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ABSTRACT  

The variability of panchromatic and multispectral images, vector data (maps) and DEM models is growing. Accordingly, 
the requests and challenges are growing to correlate, match, co-register, and fuse them. Data to be integrated may have 
inaccurate and contradictory geo-references or not have them at all. Alignment of vector (feature) and raster (image) 
geospatial data is a difficult and time-consuming process when transformational relationships between the two are 
nonlinear. The robust solutions and commercial software products that address current challenges do not yet exist. In the 
proposed approach for Vector-to-Raster Registration (VRR) the candidate features are auto-extracted from imagery, 
vectorized, and compared against existing vector layer(s) to be registered. Given that available automated feature 
extraction (AFE) methods quite often produce false features and miss some features, we use additional information to 
improve AFE. This information is the existing vector data, but the vector data are not perfect as well. To deal with this 
problem the VRR process uses an algebraic structural algorithm (ASA), similarity transformation of local features 
algorithm (STLF), and a multi-loop process that repeats (AFE-VRR) process several times. The experiments show that it 
was successful in registering road vectors to commercial panchromatic and multi-spectral imagery.  

Keywords: image, vector data, registration, conflation, alignment  

1. INTRODUCTION

Alignment of vector (feature) and raster (image) geospatial data is a difficult and time-consuming process when 
transformational relationships between the two are nonlinear. Figure 1 illustrates misalignment problems that are 
nonlinear in general, i.e., may require adjustments of individual components versus global systematic adjustments. To 
further complicate the problem, candidate data for registration may have inaccurate and contradictory geo-references or 
not have them at all. Different and unknown rotations, disproportional scales, uncontrolled noise, different modalities, 
are all fundamental challenges for robust registration.  

There are certain applications that require a high degree of accuracy when integrating (fusing) multiple data layers. In 
figure 1a, the degree of misalignment between road vectors with imagery varies locally within a range of 0-30 meters. In 
this case, the source of the misalignment is caused by the original extraction of the road vector layer being based upon 
outdated imagery. Therefore, realignment of the road vector layer is needed with respect to the more recently acquired 
image, which is presumed more geospatially accurate than its predecessor image. In this context, it is particularly 
noteworthy that many vector-to-raster inconsistencies exist at popular data websites such as Google™ Maps, Yahoo!® 
Maps, MapQuest®, and Microsoft Virtual Earth™ (see Figure 1b). The major reason of misalignment is the 
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oversimplified method of co registration of vector an raster data shown in Figure 2 that uses only few corner points and 
ignores intermediate points.  

(a) (b)

Fig. 1. (a) Examples of nonlinear misalignment between UVMap road vectors (red), and commercial imagery. (images 
©DigitalGlobe, 2006), (b) Image-map overlay in hybrid Google maps with several visible misalignments. 

Fig. 2. Control point based fusion of imagery and maps: (a) image corner points, (b) feature-based points.  
In both cases (a) and (b) when only intersection points are matched, the match of the intermediate point Q is not 

known for such highly non-linear match situation. 

Vector and raster data registration and conflation problems are discussed extensively in the literature, e.g., 1-3. The 
sequential steps of feature extraction, feature matching, parameters estimation, and resampling have evolved into a 
common paradigm for automated image matching and registration4. In general, automated vector-to-image registration 
methods are not nearly as robust compared to raster-to-raster registration as shown in5, or vector-to-vector conflation 
methods.  

The problem domain addressed in this paper is characterized as follows:  

• Register Urban Vector Map (UVMap) data to panchromatic (1m) and/or multispectral (MSI) (4m) commercial
satellite imagery.

• Focus on road vector layers.
• Extent of misalignment is in the range of 0-30m, and transformation is nonlinear.

Q

(a)

(b)
Q

(a)

(b)
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• Misalignment needs to be corrected for at road intersections (nodes), and at intermediate points between road
intersections (shape points).

In our approach for Vector-to-Raster Registration (VRR) the candidate features are auto-extracted and vectorized from 
imagery, which are the basis to compare against existing vector layer(s) to be registered. Given that available automated 
feature extraction (AFE) methods quite often produce false features and miss some features, we exploits additional 
information available in the vector-to-raster registration task. This information is the vector data, but the vector data are 
not perfect as well. The VRR process uses an algebraic structural algorithm (ASA) and similarity transformation of local 
features algorithm (STLF). This paper demonstrates is able to register road vectors to commercial panchromatic and 
multi-spectral imagery.  

The paper is organized as follows. In section 2 at first, we discuss limits of robust and reliable VRR and requirements for 
this. Section 3 presents the general technical approach framework. Sections 4 presents automated road extraction and 
performance evaluation. Section 5 describes experiments with VRR algorithms.  

2. LIMITS OF ROBUST AND RELIABLE VRR

The fundamental question is how critical is the quality of feature extraction for VRC systems success. The opinions 
range from it is vital to the almost opposite opinion that any reasonable but noisy AFE is sufficient for VRC. Below we 
clarify this issue.  

Many automated and semi-automated approaches exist. The accuracies of change detections by pixels learning with 
Feature Analyst (FA) method are reported in11: Aircraft 37.4%, buildings 35.8%, vehicles 28.1%, (all less then 
50%). This paper has no direct data for roads but our experiments show that it is in the same range. The semi-automatic 
learning FA method requires minor intervention for selection of training pixels. That is, one might be willing to spend 
some time pulling some pixels (the easy ones) from an image to be used  for training purposes if this leads to a  greatly 
increased  overall accuracy of the extraction compared to a fully  automated  method. The semi-automatic method 
proposed by GeoEye requires more user guidance that FA but can be accurate. The level of robustness of current fully 
automated road extraction tools typically is lower. Therefore, while fully automated road extraction is a worthy goal, the 
semi-automated approaches increase feature extraction accuracy right away. Some scenes lend themselves toward total 
automation more than others. The semi-automated approaches must meet the requirement to be as minimal and as simple 
as possible for the user. The user should provide minimal but sufficient number of roads to match to the road vector 
datasets. Testing and comparing automatic and semi-automatic methods requires a side-by-side comparison of results in 
terms of accuracy, time and other requirements to be able to judge was it worth the added time. 

The practical goal is to avoid a complete extraction of the road network. The expectation/hypothesis is that a reasonable 
percentage of inliers (say 30%) can be good enough to solve the conflation problem with minimal semi-automated 
solution involved. Our experiments show that data can be conflated/registered having much less than 30% of roads. 
However, a user should be aware that it was done with, say mentioned 30% of roads extracted and for the 70% or roads 
the mach was not justified yet. The user should examine that 70% of roads and be ready to spend time. Only after the 
user confirms that the result is "good enough" for his/her purposes it can be used. The user may decide to examine only 
1% of randomly selected roads to say that this is "good enough," but it is user’s risk. Alternatively, an automated system 
can try to measure "a reasonable percentage" and "good enough". This approach leads to the concept of the "measure of 
confidence." If such measure is low then it is not "good enough" and a user should examine almost every road (and 
spend a lot of time). The low measure of confidence may require examining conflation result at almost every road. In 
contrast having majority of roads with a high level of confidence a user needs to examine just few outlier roads saving 
users time. 

The “good enough” measure is not universal but task-specific. The number or percentage of roads extracted is the 
quantitative factor, and that might be high for an analyst whose job it is to accurately locate and map the transportation 
network for a large area. On the other hand, there are the "right" roads to extract for an analyst who is focused on a 
specific local target - hence this is more of a qualitative or "good enough" aspect of the problem. Such user needs only a 
very small set of roads extracted with great accuracy. While the solution approach is task-specific, it does not deny the 
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need to have the full capability to do a large area road network. If we have a perfect AFE we do not need VRR. Can we 
reach the perfect AFE using only available images? This is quite unrealistic expectation at this moment. Assume that a 
weak AFE allows high quality or perfect VRR. How can we ensure this for large dataset, not only for a small image that 
a person can examine in depth?  The question is: “What is the limit of weak AFE?” In other words, “How weak AFE can 
be to allow high-quality or perfect VRC?” 

Let us start from the extreme case where AFE did not extract any road correctly, that is none of the pixels match, and the 
distance to the matching pixels is greater than a reasonable for the application threshold. It is hard to expect that this 
extreme AFE can be useful for VRC.  

Now we will start a more detailed analysis of the situation by introducing a notation: 

• x is the number of road pixels extracted correctly,
• z  is the number of roads pixels missed in the extraction process
• y is the number of  false positive extracted pixels (non-road pixels recognized as a road pixel).
• N is the correct number of road pixels

Let us consider the following assumptions:  
(A1)   y=0 (no false positive pixels points in vector data that is every point in vector data has a matching point in raster 
image).  

(A2)   The class of transforms {Fp} from vector to raster is selected correctly  
(A3)  The number x of the extracted points is sufficient to identify specific values of parameters p of the transform Fp. 

Statement 1. If A1-A3 are satisfied then VRR function Fp provides a correct transformation of vector data to raster 
image.  

Statement 2. If x/N=1 (all road pixels are extracted) and y=0 (perfect AFE) and conditions A1-A3 are satisfied then 
VRR function Fp provides a correct transformation of Vector to Raster, but Fp is not needed due to perfect  feature 
extraction.  

Statement 3. If x=0 (AFE fails) then parameters of VRR function Fp cannot be identified. 

Statement 1 covers interesting situation when 0 < x/N <1 and statements 2 and 3 cover two trivial extremes. Now we 
want to analyze assumption A1-A3 to check how realistic they are and how they can be tested.  

How can we know that A1 holds?  It can be a judgment based previous experiments with the same type of data (e.g. for 
x/N ≈ 0.4 as reported in11). A time consuming option is a direct examination of AFE results by the user. To test A2 an 
experiment on the small patch of data can be conducted or results of previous experiments can be used. For A3 this can 
be derived from the properties of the class {Fp} such as affine transforms. 

Now we need to consider a situation when some of A1-A3 failed in the described above tests. If   y>0 then we need a 
tool to filter these pixels out, e.g., some roof pixels were recognized as road pixels. It can be done if A2 holds using 
vector data as a guide. If both A1 and A3 fail then external tools are needed to filter out y pixels. These considerations 
show that for robust solution of VRR problem in a complex situation external knowledge is needed that may lead to 
semi-automated system. In essence, the analysis above outlines the area where a fully automated method can succeed. If 
A1-A3 test fail then interactive semi-automatic solutions would be preferred to ensure the robust VRR result.  

3. GENERAL TECHNICAL APPROACH

Below we outline three stepwise categories of our VRR technology: preprocessing, processing, and post-processing 
steps (see Figure 3). The goal of preprocessing is to identify and assess metadata and knowledge that are available but 
may not be contained in the imagery or vector data explicitly. Such information if available can guide processing steps 
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that actually conflate/align data. The guidance serves several important functions such as mimicking a successful human 
pre-conflation process. Humans always have some meta-knowledge before starting conflation. Preprocessing can also 
shorten conflation time significantly; for example, if we know that unknown rotation is less than 30 degrees, then the 
search space will be smaller than the full search space. The preprocessing steps often are skipped with naïve hope that a 
processing conflation algorithm will do magic without any background knowledge. Anther advantage of explicit 
introduction of a preprocessing step is enhancing problem understanding. This may or may not improve processing 
results immediately, but it may explain why processing results are not good and magic did not happen. This can guide 
development of new or better algorithms, making the whole process of improvement consistent and continuous. To be 
able to do this, we want to build a software system with additional capabilities to support failure recording and analysis 
based on preprocessing information. Preprocessing steps are designed to be interactive sessions; e.g., a user may be 
asked to answer multiple-choice questions. Processing steps are designed to integrate two well-developed methodologies 
for conflation: algebraic structural algorithms (ASA) and similarity transformation of local features (STLF). Both 
methodologies match and transform imagery and vector data. The post-processing steps are for approving/disapproving 
and fixing match and alignment by the user.  

Fig. 3. General technical approach framework 

To test the technology we use ground truth roads that are extracted manually and/or semi-automatically from imagery 
and then manually corrected and verified. These data allow us to evaluate the quality of (a) automated feature (road) 
extraction algorithms, (b) road representation in the in the vector data, (c) road representation in the imagery (some roads 
can be obscured by vegetation, flood, clouds, etc), and (d) automated vector to rater conflation algorithms. Finally, 
ground truth data are the base for building an objective measure of the confidence of raster-vector conflation. Two roads 
may not match due to: (1) actual difference of roads, (2) weaknesses of the algorithms (including feature extraction 
algorithm), (3) errors in source vector data, (4) problems with raster data (low resolution, occlusion etc). 

How can AFE and VRC can assist each other? AFE assists VRC in a natural way, AFE results are the base of the vector 
to vector to conflation. Simply without AFE VRC is impossible. The question is: “How it can be done in the opposite 
direction?” When VRC is produced then we can examine roads extracted by AFE and evaluate how close they are and 
how similar they are to vector roads after roads have been moved to new location. The advantage of such examination is 
that we obtain some additional information on where the road can be. This information is independent of the raster itself 
and can guide a deep analysis of specific pixels in a specific image region. For instance, we can use multispectral 
imagery to analyze very specific pixels where the road can be obscured by vegetation. This process can run as a loop of 
AFE and VRC.  

4. AUTOMATED ROAD EXTRACTION AND PERFORMANCE EVALUATION

Our approach to road extraction is to consider and assess several automated methods in the literature and marketplace. 
The goal is to maximize the level of automation, while concurrently optimizing the confidence level of the output. Our 
hypothesis is that using only higher confidence output from road extraction algorithms will reduce false positive rate of 
extraction, and subsequently avoid confusion for registration of an existing misaligned road layer. The tradeoff is a 
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Table 1.  DOE Factors and Uncoded Values for 10 Factor Fractional Factorial Design 

Factor 
Symbol 

Factor 
Label Shorthand Factor Name Low 

Value 
High 
Value 

TL A low threshold 0.08 0.14 

TH B high threshold 0.20 0.40 

σ C sigma 1.00 6.00

wmin D min feature width (m) 2 8 

wmax E max feature width (m) 10 16 

α F alpha (deg) 20.0 60.0 

ccmin G min number connected pixels 2 12 

eccThresh H eccentricity threshold 0.70 0.90 

g J gradient orientation angle 1 2 

p K Perpendicularity  0 1 

higher false negative rate of extraction. Thus, a key research question is determining what extraction rates of 
completeness and correctness are optimal for registration. Sensitivity analysis of road extraction parameters can provide 
insight into this issue. 

In this section we experiment with the Anti-parallel Centerline Extraction (ACE) road extraction algorithm6. In context 
of VRR, the objective of ACE is to provide road centerline “seed” segments, which are defined as high confidence road 
segments according to predefined shape and topology criteria. Sensitivity analysis of ACE parameters was performed via 
design of experiments (DOE). 

4.1. Design of Experiments 

To help determine optimal and/or robust parameter 
(or factor) settings in applying the ACE algorithm, 
a Design of Experiments (DOE) approach was 
considered. DOE is a systematic approach to 
explore response surfaces which are a function of 
controllable and uncontrollable input factors. In the 
case of the ACE algorithm, all of the input factors 
are parameter settings which are controllable as 
specified by the user. The systematic methodology 
behind DOE allows one to explore this surface and 
look for parameter settings that yield desirable 
output results in an efficient manner. Using the 
DOE methodology as described in various sources 
13-14, we established an initial screening design for
our ACE parameters of interest and then
determined suitable low and high values for each of
these as shown in Table 1. The reader should refer
to6-7 for a more complete description of these ACE
parameters and corresponding test images.

Fig. 4 shows a graphical plot of main effects for 
each of the 10 ACE parameters under 
consideration. This plot provides a visual clue as to 
the relative significance of parameters in that each 
line represents the average response when a 
particular parameter is at its low setting and high 
setting. The more a line departs from a horizontal 
position (meaning there is no difference between 
the parameter being at its low or high setting) the 
more significant the effect. As seen, the three most 
significant effects for this scene are C: sigma 
(standard deviation of Gaussian smoothing filter 
applied before Canny filter), H: eccentricity 
threshold, and E: maximum feature width 
respectively. 

In summary, DOE revealed that the most statistically significant variables influencing the accuracy of road extraction of 
the sampled images were sigma (Gaussian smoothing parameter), eccentricity threshold, and the minimum number of 
connected pixels. However, the specification of a suitable constrained range of parameter values over different scenes 
was problematic. In general, the most important metric to favor is correctness since the results of ACE will be used in as 
training samples for the k-means clustering algorithm. Therefore, parameters should be chosen such that correctness is 
maximized. It was found that despite having a relatively low number of pixels identified by ACE, if the correctness was 
high, the clustering method was able adequately identify roads versus non-roads from the input image. 
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4.2. Road Extraction Experiments with ACE 

Figure 5 demonstrates road extraction results from application of ACE. Pane (a) shows a section of Quickbird 
panchromatic image, with manually extracted road centerline vectors overlaid in red. The dotted yellow vectors 
demonstrate the misalignment of the existing vector data. In pane (b), a 5m buffer has been extended around the 
centerline vectors from pane (a) to provide an evaluation buffer. Output from ACE is shown in red in pane (b). The goal 
of ACE in this experiment is to provide road centerline “seed” segments, which are defined as high confidence road 
segments according to predefined shape and topology criteria. Pane (c) shows smoothed ACE output in red. The 
smoothing algorithm is a standard generalization technique for vector data. Smoothing is needed to calculate the linear 
length of extracted output that is consistent with the length calculation of manually extracted “truth” for comparative 
evaluation. Since ACE is a pixel-based extraction method, its raw output will manifest pixilated zigzag artifacts as 
shown in pane (b). Such artifacts artificially increase the linear length calculations. Pane (d) shows the ACE output 
separated in to true positive segments (blue), and false positive segments (dotted red), based upon the 5m evaluation 
buffer. The size of the buffer is determined empirically to allow for some tolerance between manual and algorithm-based 
extraction. In general, the size of the evaluation buffer is directly proportional to the true positive rate of extraction, and 
inversely proportional to the false positive rate.  

Empirical performance metrics are based upon standard calculations performed in the literature6,12, which can be done in 
raster or vector space. For example, the performance of the ACE output in pane (d) is calculated as: 

completeness = TPL / GTL = 1330m / 9133m = 15% 

correctness = TPL / (TPL + FPL) = 1330m / (1330m + 506m) = 72% 

TPL, FPL, GTL, are defined as true positive length, false positive length, and ground truth length respectively. These 
performance metrics can serve as the basis for sensitivity analysis to determine how to optimally tune the road extraction 
algorithm to support vector-to-vector registration. For this particular ACE parameter set, the completeness is relatively 
low at 15%, but correctness is relatively high at 72%.  

5. EXPERIMENTS WITH VECTOR TO RASTER REGISTRATION ALGORITHMS

Experiments were performed with two VRR methods: 1) Algebraic Structural Analysis (ASA) algorithm, and 2) 
Similarity Transformation of Local Features (STLF). Tests with several chipped regions from panchromatic and 
multispectral imagery (MSI), with corresponding UVMap vector data. Test images were rescaled from 11bit, to 8bit for 
operational efficiency. Several image enhancement methods were considered, including pan sharpening, and principal 
component analysis. 

5.1 Algebraic Structural Analysis (ASA) algorithm 

The algebraic Structural Analysis (ASA) algorithms3, 7-8 are proposed to conflate (i) linear features that are modeled as 
open contours (algorithm ASA and (ii) region features (that are modeled by closed contours and areas (algorithm 
ARC). Roads can be modeled by both open and closed contours depending on particular data. These algorithms can 
work together with linear feature extraction tools for (i) and segmentation tools for (ii). Both ASA and ARC algorithms 
are parts of a general Algebraic Framework. Advantages of algebraic approach relative to pure geometric and 
topological approach for feature matching are presented in3.  

Proc. of SPIE Vol. 6966  69660W-7
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(a)   (b) 
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Fig. 5. Automated road extraction output and evaluation. (a) Quickbird panchromatic image (© DigitalGlobe) with new 
manually extracted road centerlines (red), and older and misaligned road vectors (dotted yellow); (b) manually extracted 
centerlines buffered by 5m (tan), with high confidence ACE centerline seed segments (red); (c) smoothed ACE output 
(red) for more consistent evaluation; (d) ACE seed output separated into true positive vectors (blue) and false positive 
vectors (dotted red). 

The algorithm used for linear features is the binary sequential division (BSD) algorithm. BSD assumes that input data 
contain at least one well-defined linear feature that can be presented as a polyline (continuous chains of linear intervals). 
A feature on one image might be only a portion of the same feature on another image. Also features might overlap or 
have no match at all. It is further assumed that these well-defined linear features can be relatively easy extracted. For 
practical reasons, we would prefer images with five well-defined linear features that can be presented as polylines. This 
provides more robust and confident conflation. Next versions of the algorithm will work with polylines that have gaps.  

Fig. 6 shows results of VRR produced by ASA. Pane (a) shows the input QuickBird MSI scene. Pane (b) shows the 
original road vectors (yellow) superimposed with semi-automated feature extraction output by Feature Analyst® (white). 
Pane (c) shows the road extraction output from Feature Analyst. Pane (d) shows the final adjustment for original vectors 
(green), superimposed with Feature Analyst vectors (cyan), and ASA matched segments (black).  
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Fig. 6. Experiment with ASA method. (a) QuickBird MSI (©DigitalGlobe, 2006); (c) road extraction output from 
Feature Analyst®; (b) original road vectors (yellow) superimposed with Feature Analyst output (white); (d) final 
adjustment for original vectors (green), superimposed with Feature Analyst vectors (cyan), and ASA matched segments 
(black).  
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5.2. Similarity Transformation of Local Features (STLF) 

STLF is an extension of the method developed in10 that is used to match road centerlines that were obtained from vector 
data. The locality of STLF stems from the fact of partitioning the GIS vector data as well as the imagery into small tiles. 
And the matching process is performed over these local tiles (Fig. 7). The tiling approach is chosen to mitigate the global 
non-linearity of the transformation between vector data and imagery. For example, the three overlapping rectangles (red, 
blue, and yellow) shown in Fig. 7 represent local tiles in the imagery and vector data that need to be aligned or conflated 
automatically using STLF. This tiling is repeated over the whole image and the vector data. In this paper, three 
experiments were reported to demonstrate some of the important features of STLF, which are very critical to the overall 
success of the automatic alignment between vector data and imagery. In particular, the following issues were addressed: 

1. The impact of incomplete road centerline hypotheses or gaps on the robustness of the matching process.
2. The impact of the geometric distribution of the road centerlines in imagery and vector data on the correctness of

the matching process.
3. The impact of outliers in the vector data and imagery on the correctness of the matching results. Outliers here

refer to incorrect matches or non identical information in the vector data and imagery.
4. The impact of the size or tiling on the consistency of the matching results.

Three local image tiles or patches, of different sizes, were extracted from the left upper corner of the image and the 
vector data (Fig. 7c). The red patch resembles a local area of 100 x 100 pixels; the blue one 200 x 200 pixels, and the 
yellow one is 400 x 400 pixels. The sizes of these patches were determined empirically at this stage of the research and 
indeed a sophisticated criterion is needed. In Fig. 8, the magenta color in each patch refers to hypotheses of road 
centerlines that were extracted from each image patch. The blue one refers to the vector data before alignment.  

Fig. 7. Tiling in STLF. (a) across image; (b) on corresponding road vectors; (c) experiments with different tile sizes. 

Blue patch 
 Yellow patch 

Red patch Fig. 8. Patches of 
road centerlines 
and GIS vector 
data. 
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The STLF algorithm was used to match the vector data with the hypotheses of road centerlines. The parametric result of 
this matching is shown in Table 2. Few matching results were obtained from the red patch (the smallest one) and this is 
could be explained by the limited number of similar information between the vector data and imagery centerlines. An 
abundance of matching results was obtained from the blue and yellow patches, which show more consistent results in the 
transformation parameters. This is explained by the larger number of similar information between the vector data and 
imagery centerlines in the larger tiles. An informative and objective criterion needs to be developed to address the issue 
of the size selection of the local patch. The incomplete road centerlines or gaps that were inherited from the feature 
extraction algorithm (in this case, ACE), are not problematic for STLF to retain correct matching results.  

Table 2. Similarity transformation parameter results from STLF for each patch (two translations, scale, and rotation). 

 

Red patch.     Blue patch.    Yellow patch. 

6. CONCLUSIONS AND FUTURE WORK

Results from AFE algorithms used for road extraction indicated better results from Feature Analyst versus ACE. This 
result is expected since the former is semi-automated (human supervised), and the latter fully automated. The 
multispectral imagery (4m) provided better AFE road results than the panchromatic or pan sharpened imagery (1m). This 
result is likely due to smoothing effects to the AFE output when using lower resolution imagery, which dramatically 
reduced false positives from scene clutter.  

Current experiments have qualitatively shown that BSD-based ASA, and STLF are able to provide meaningful road 
matching with a partial solution to automated road extraction. Important functionalities demonstrated include: 1) 
matching polylines that have gaps; 2) measuring level of structural match and mismatch; and 3) abilities of measuring 
structural line discrepancy in meters.  

We believe there is a clear tradeoff between (1) minimizing time for matching points (by matching fewer numbers of 
points) and (2) minimizing time for manual inspection to ensure that the match is sufficiently accurate. Any approach 
that minimizes item (1) will likely increase item (2) to maintain a comparable level of robustness over a wide range of 
images. This tradeoff issue can be addressed in an innovative way by designing an intelligent switching mechanism 
between automatic and interactive modes. This includes two complementary V-to-I methods that can be used to 1) 
perform cross verification, and 2) internally design algorithms that can simulate human inspection of results by 
employing a structural mathematical approach versus a more traditional distance-based approach.  

Results from experiments presented in this paper were intended to be qualitatively evaluated by visual inspection in 
support of a proof-of-concept approach to vector-to-image registration. The next stage of development is expected to 
consider rigorous quantitative evaluation and validation. In this section, we describe the intended approach. Our 
approach will be to manually extract ground truth from the image as vectors, then rasterize the centerlines for a pixel-by-
pixel comparison with AFE output. This will allow for comparison of intermediate (shape points) between different road 
extractions. In order to accommodate variances in the extraction process, a buffer will be established around the 
centerline. To the extent that road extraction variances go beyond the buffered truth region, overly optimistic or 
pessimistic measures of correctness and completeness may result in an absolute sense. However, extraction variances 
should have less impact when making relative accuracy comparisons.  

The completeness and correctness performance measures will be used with an adjustable buffer to assess between nodes 
segments, as well as operational sensitivity of the method that relates AFE accuracy to accuracy of registration. An 
assessment of operational conditions (e.g., image quality, scene content, imaging geometry, spatial resolution, road 
contrast and resolvability relative to background, etc.) will be conducted. Sensitivity analysis will determine how the 
relative performance of AFE roads propagates to, and impacts the performance of V-to-I registration.  
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