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Abstract. Currently statistical and artificial neural network methods dominate in data 
mining applications. Alternative relational (symbolic) data mining methods have shown 
their effectiveness in robotics, drug design, and other areas. Neural networks and decision 
tree methods have serious limitations in capturing relations that may have a variety of 
forms. Learning systems based on symbolic first-order logic (FOL) representations cap-
ture relations naturally. The learned regularities are understandable directly in domain 
terms that help to build a domain theory. This paper describes relational data mining 
methodology and develops it further for numeric data such as financial and spatial data. 
This includes (1) comparing the attribute-value representation with the relational repre-
sentation, (2) defining a new concept of joint relational representations, (3) a process of 
their use, and Discovery algorithm. This methodology handles uniformly the numerical 
and interval forecasting tasks as well as classification tasks. It is shown that Relational 
Data Mining (RDM) can handle multiple constrains, initial rules and background knowl-
edge very naturally to reduce the search space in contrast with attribute-based data min-
ing. Theoretical concepts are illustrated with examples from financial and image process-
ing domains.  
  
Keywords: Data mining, relational data mining, numerical data, first order logic, prob-
abilistic first order logic rules, stock market, image processing, edge detection.  
 

1. Introduction  

 Historically, methods based on attribute-value languages (AVLs) have been most 
popular in applications of learning algorithms. One of the reasons is that in many areas 
training data are naturally described by attributes of individual entities such as stock 
prices or pixel intensities. Sometimes the actual values of X and Y are not available or 
not accurate and relation Price(X) > Price (Y) or Intensity(X) > Intensity(Y)  is the only 
data available. Well-known, relatively simple and efficient neural networks and decision 
trees methods are typical examples of methods based on AVLs. However, these methods 
have serious limitations in capturing relations. Learning systems based on symbolic 
first-order logic (FOL) representations capture relations naturally. These methods have 
been successfully applied to many problems in chemistry, physics, medicine and other 
fields [4-6, 10-11, 18, 34, 39-41]. It was stated in these publications that the results ob-
tained with relational methods using real industrial or environmental data are better than 
with any other known approach, with or without machine learning. Such tasks as mesh 
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design, mutagenicity, and river water quality exemplifies successful applications. Domain 
specialists appreciate that the learned regularities are understandable directly in domain 
terms. Financial and spatial applications can specifically benefit from these methods. It is 
noted in [17] that lack of comprehension causes concern about the credibility of the result 
when neural networks are applied to risky domains, such as patient care and financial in-
vestment.  
 Traditionally, FOL methods were pure deterministic techniques, which originated in 
logic programming. There are well-known problems with deterministic methods—
handling data with a significant level of noise. This is especially important for financial 
and spatial data, which typically have a very high level of noise. To utilize advantages of 
human-readable forecasting rules produced in relational data mining, logical relations 
(predicates) should be developed for financial and spatial problems. These predicates 
should be interpretable in ordinary financial and spatial terms like stock prices, interest 
rates, trading days, pixel RGB colors, intensities, and so on. In this way, relational meth-
ods can produce valuable understandable rules in addition to the forecast.  
 Using this technique a specialist can evaluate the performance of the forecast and 
discovery as well as a forecasting rule. Hybridizing the pure logical relational data min-
ing methods with a probabilistic approach (“probabilistic laws”) has many advantages. 
Such hybrid methods use probabilities over logical formulas [7, 14, 21, 24, 29, 30, 36, 54, 
56, 57]. The Discovery method is one of the few Hybrid Probabilistic Relational Data 
Mining methods developed and applied to financial data.  
 Below we outline the FOL approach and describe a new hybrid relational and prob-
abilistic technique that handles numerical data efficiently. Traditional data mining 
methods focus on classification tasks.  Relational data mining conceptually can handle 
(1) classification, (2) interval and (3) numerical forecasting tasks with noise uniformly. 
We advocate relational learning mechanisms, which combine advantages of rule induc-
tion, analytical learning and statistical paradigms such as statistical significance, ex-
planatory power and a highly-expressive language. Specifically rule induction and ana-
lytical methods have strong capabilities for explaining discovered patterns, statistical 
methods ensure reliability of these patterns and the analytical methods use a highly ex-
pressive language (first-order predicate language) to ensure that complex patterns will not 
be overlooked.  

The emphasis of our study is on development of numerical relational methods includ-
ing relational representation of numeric data. How can one move from a real numerical 
measurement to a first-order logic representation? This is a non-trivial task [32]. For ex-
ample, how does one represent temperature measurement in terms of first-order logic 
without losing the essence of the attribute (temperature in this case) and without inputting 
unnecessary conventional properties? For instance, Fahrenheit and Celsius zeros of tem-
perature are arbitrary conventions in contrast with the Kelvin scale where zero is the low-
est possible temperature (the physical zero). Therefore, incorporating properties of the 
Fahrenheit zero into first-order rules may force us to discover/learn properties of this 
convention along with more significant scale invariant forecasting rules. Learning algo-
rithms in the space with those kinds of arbitrary properties may be very time consuming 
and may produce inappropriate rules.  
 We use the relational data mining (RDM) term, RDM, in parallel with the earlier 
terms Inductive Logic Programming (ILP) and First Order Logic (FOL) methods to em-



phasize the goal -- discovering relations. The terms ILP and FOL reflect the technique 
for discovering relations -- logic programming and FOL. In particular, discovering rela-
tional regularities can be done without logical inference and in languages of higher order. 
Therefore, we define Relational Data Mining as  

Discovering hidden relations (general logic relations) in numerical and symbolic data 
using background knowledge.  

 FOL systems have a mechanism to represent background financial and spatial knowl-
edge in human-readable and understandable form. Obviously, understandable rules 
have advantages over forecast and discovery without explanations. One of the major ob-
stacles to more effective use of the FOL methods is their limited facility for handling 
numerical data. This is one of the active topics of modern RDM research [4].  
 There are two types of numerical data in data mining:  

• the numerical target variable and  
• numerical attributes used to describe objects and discover patterns.  

 Traditionally FOL methods solve only classification tasks without direct operations 
on numerical data. The Discovery method handles an interval forecast of numeric vari-
ables with continuous values like prices along with solving classification tasks. In addi-
tion, Discovery handles numerical time series using the first-order logic technique, 
which is not typical for ILP and FOL applications.  
 Statistical significance is another challenge for deterministic methods. Statistically 
significant rules have an advantage in comparison with rules tested only for their per-
formance on training and test data [33]. Training and testing data can be too limited 
and/or not representative. If rules rely only on them then there are more chances that 
these rules will not deliver a correct forecast on other data. This is a difficult problem for 
any data mining method and especially for deterministic methods including deterministic 
ILP. We address this problem in Section 6. Intensive studies are being conducted for in-
corporating a probabilistic mechanism into ILP [18, 38].  
 Knowledge Representation is an important and informal initial step in relational 
data mining. In attribute-based methods, the attribute form of data actually dictates the 
form of knowledge representation. Relational data mining has more options for knowl-
edge representation. For example, attribute-based information should be transformed into 
the first order logic form. This knowledge includes much more than only values of attrib-
utes. There are many ways to represent knowledge in the first order logic language. One 
of them can skip important information; another one can hide it. Therefore, data mining 
algorithms may work too long to “dig” relevant information or even may produce inap-
propriate rules. Introducing data types [15] and concepts of representative measurement 
theory [31, 47] into the knowledge representation process helps to address this represen-
tation problem. In fact the measurement theory developed a wide set of data types, which 
cover data types used in [15].  
 It is well known that the general problem of rule generating and testing is NP-
complete [22]. Therefore, the discussion above is closely related to the following ques-
tions. What determines the number of rules? When do we stop generating rules? The 
number of hypotheses is another important parameter. It has already been mentioned that 
RDM with first order rules allows one to express naturally a large variety of general hy-
potheses, not only the relation between pairs of attributes. These more general rules can 



be used for classification problems as well as for an interval forecast of a continuous 
variable. RDM algorithms face exponential growth in the number of combinations of 
predicates to be tested. A mechanism to decrease this set of combinations is needed. Sec-
tion 6 addresses these issues using a data type system and the representative measurement 
theory approach. Type systems and measurement theory approaches provide better ways 
to generate only meaningful hypotheses using syntactic information. A probabilistic ap-
proach also naturally addresses knowledge discovery in situations with incomplete or 
incorrect domain knowledge. In this way the individual training cases are not general-
ized beyond the limits of statistically significant rules.  

2. Examples  
 
 Examples in this section illustrate (1) attribute-value object representation vs. rela-
tional representation, (2) first order logic rules with one and two arguments, (3) the dif-
ference between IF-Then first-order logic rules and more traditional IF-Then proposi-
tional logic rules, (4) multi-attribute object representation vs. joint relational representa-
tion, and (5) steps of data mining based on joint relational data representation. These ex-
amples are derived from financial and image processing domains.  

2.1. Example 1: attribute-value object representation vs. relational representation for 
data mining  

Table 1 illustrates an attribute-value object representation. The first two lines represent 
some objects from a training data set. The last line represents an object without a value 
for the target attribute. The target value needs to be predicted for this object, i.e., stock 
price for the next day, 01.05.99. Each attribute-value pair can also be written as a name of 
an attribute and its value.  
 

Table 1. Attribute-value object presentation 
Attribute: date  Attribute 1: Stock 

price on date t  
Attribute 2: Vol-
ume (number of 
shares) traded on 
date t  

Attribute 3: Tar-
get-- stock price 
on date t+1  

Value: 01.02.99  Value: $ 60.6  Value: 1,000,000  $53.8  
Value: 01.02.99  Value: $ 53.8  Value: 700,000  $54.6  
Value: 01.03.99  Value: $ 54.6  Value: 800,000  $56.3  
Value: 01.04.99  Value: $ 56.3  Value: 840,000   

 
For instance, the following rule 1 can be extracted from table 1:  
 

IF stock price today is more than $60 AND trade volume today is greater than 
900,000  
THEN tomorrow stock will go down.  

 
This rule can be written more formally:  

IF StockPrice(t)>$60 AND StockTradeVolume(t)> 900,000  



THEN Greater(StockPrice(t+1), StockPrice(t))  
 
Rule 2 is also true for table 1:  

 
IF stock price today is greater than stock price yesterday AND  
trade volume today is greater than yesterday THEN tomorrow stock price will go 
up.  

 
Rule 2 also can be written more formally:  
 

IF Greater(StockPrice(t), StockPrice(t-1)) AND  
Greater(StockTradeVolume(t),StockTradeVolume(t-1)) THEN Stock-
Price(t+1)>StockPrice(t) 
  

Note, actually rule 2 is true for table 2 because table 1 does not have examples that con-
tradict this rule. However, table 1 has only one example (t=01.03.99) confirming this 
rule. Obviously, table 1 is too small to derive reliable rules. Table 1 and presented rules 
are used just for illustrating that attribute-value methods were not designed to discover 
rules 1 and 2 from table 1 directly. Both rules involve relations between two objects (re-
cords for two trading days t and (t+1)):  
 
StockPrice(t+1)>StockPrice(t) and  
Greater(StockTradeVolume(t),StockTradeVolume(t-1)).  
 
Special preprocessing is needed to create additional attributes, such as  
 

StockUp(t) = Greater(StockPrice(t), StockPrice(t-1)).  
 
In logic terms attributes StockUp(t) and VolumeUp(t) are monadic (unary) predicates 
(Boolean functions with only one argument). Adding relations like  
 
 Greater(StockTradeVolume(t),StockTradeVolume(t-i))  
 
with 2, 3, ...i days ahead to the set of attributes creates a huge set of relations.  
 The first order language differs from a propositional logic language mainly by the 
presence of variables. Therefore, a language of monadic functions and predicates is a 
first order logic language, but a very restricted language. A language of monadic func-
tions and predicates was not designed to represent relations that involve two, three or 
more objects. The domain (background) knowledge that can be used in the learning proc-
ess of attribute-value methods is of a very restricted form. Moreover, other relations from 
a database cannot be used in the learning process if they are not incorporated into a single 
attribute-value table [11].  

2.2. Example 2: first-order rules vs. propositional rules 

 There is a lot of confusion about the difference between logical attribute-value meth-
ods and relational methods. At first glance, they do the same thing -- produce “IF-Then” 



rules and use logical expressions. Dzeroski [11] presented a fragment of a relational data-
base for the potential customers of an enterprise to illustrate the difference. Table 2 pre-
sents a similar fragment of a relational database for corporate credit card holders. We 
wish to discover patterns in this table useful for distinguishing potential new cardholders 
from those who are not.  
 An attribute-value learning system may use Age, Sex and the Number of supervised 
associates from table 2. In this way, the following two patterns could be discovered with 
monadic functions Num_of_Supervised(Person) and Potential-Cardholder(Person):  
 

Rule 1: IF Num_of_Supervised(Person) ≥  100 
 THEN Corporate_Cardholder(Person)  
Rule 2: IF Sex(Person)=F AND Age(Person) ≥ 38 
 THEN Corporate_Cardholder(Person)  

 
Using a first order language with a two-argument predicate Colleague-of(person, col-
league) the following pattern can be found:  
 

Rule 3: IF Colleague-Of(Person, Colleague)  
AND Corporate_Cardholder(Person) THEN Corporate_Cardholder(Colleague).  

 
Table 2. Database Relation “Potential-Corporate-Credit-Cardholder” (Attribute-value ta-

ble) 
Person  Age  Sex  Number of  

supervised  
associates  

Corporate  
cardholder  

Diana Right  39  F  10  Yes  
Carol Peterson  49  F  1000  Yes  
Barbara Walker  24  F  20  No  
Cindy Peck  47  F  20  Yes  
Peter Cooper  35  M  100  Yes  
Stephen Baker  54  M  200  Yes  

 
Table 3. Database relation “Colleague-of” (Attribute-value table) 

Person (CEO)  Colleague (CFO)  
Peter Cooper  Diana Right  
Stephen Baker  Cindy Peck  

 
The last rule is much more meaningful than the first two formal rules. Rules 1 and 2 are 
discovered in an isolated file (table 2), but rule 3 is discovered using two files simultane-
ously. Table 2 represents a single relation in relational database terms. Table 3 represents 
another single relation. To find regularity involving records from both tables we need to 
use more expressive first-order language. Mathematically, first order languages generate 
such relations with two, three and more variables. This explains the origin of another 
name used for relational data mining – multi-relational data mining.  

2.3. Example 3:  multiattribute object representation vs. joint relational representation 



 The example below illustrates multi attribute-value object representation vs. joint 
spatial/spectral/temporal relational representation in spatial domain. The numeric 
data representation carries relations between pixels implicitly, but relational representa-
tion carries them explicitly. Traditional numeric representation of imagery (raster repre-
sentation) can be more compact than relational representation. Therefore, relations are 
not stored but computed as needed from imagery raster data. There is also an opposite 
effect when the “native” data representation is relational (see Table 3). In this case, con-
version from relations to multi-attribute form can generate a much larger representation 
of the same data.   
 Implicit representation of relations has its fundamental drawback.  The implicit rela-
tions that occur in imagery data and relations used by a particular KDD&DM method can 
mismatch. It can be difficult to see mismatch for relations presented only implicitly.  As 
a result, data mining discoveries and forecasts may have no interpretation in the domain. 
Specifically neural network based stock market forecast has no explanation beyond a 
possible good interpolation of the historic stock data.  
 The fundamental challenge is invention of both meaningful and useful relations from 
noisy numeric data because not every meaningful relation is useful and not every useful 
relation is meaningful.   
 In image processing and spatial domain typical data are 2-D images, 3-D scenes, 
video (a set of n 2-D frames), and multidimensional cube of multispectral data (a set of n 
2-D images).  These data have both spectral and spatial relations of the pixels. The link 
between these relations should not be lost in modeling. These relations should not be 
separated to independent spectral and spatial components. Relations below carry such 
integrity.   
 Let p=(x,y,s) be a pixel at the location (x,y) with a spectral characteristic s=s(p), 
where s is scalar for panchromatic images (pixel intensity) and a vector  for multispectral 
images. Predicate PC( I ) denotes that image I is a panchromatic, predicate CO( I ) means 
that I is color image, and MS(I) means that I is multispectral cube. We define several 
“Between” and “Edge” relations for any three pixels, p1, p2, and p3 in the image I that are 
located in the same straight line. See Table 4. The relations that we defined in Tables 4 
and 5 are relative spectral/spatial/temporal relations that are invariant to measurement 
units and distances. 
 The experimental base for these relations is eye gaze motion lines recorded in many 
experiments. An experiment can be designed to discover experimentally actual joint rela-
tions captured by a human eye. There are also opportunities to base joint relations on ret-
ina modeling research and measurements [19]. Specifically it can help to set up axioms 
(that can cut search time) for edge detection or invariance property of the joint relation 
due to impact of shadows, shading and highlights transforms. If these impacts are mono-
tone then they do not change many relations we defined in tables 4 and 5. Otherwise non-
monotone shading effects applied to our relations can help to find image areas modified 
by shading that can be used for edge detection.   

 
Table 4. Joint spectral/spatial relations for individual images 

Relation Interpretation 
LB(p1,p2,p3) = Location_Between 
(p1,p2,p3)  

p2 is located between pixels p1 and p3 on a 
straight line 



NPB(p1,p3)=NoPixelsBetween(p1,p3) No pixels in between p1 and p3. 
SB((p1,p2,p3) = SpectrBe-
tween(p1,p2,p3) 

Spectral characteristic of p2 is between spectral 
characteristic of p1 and p3 (no limit on mutual 
location of p1,p2,p3) 

SH((p1,p2,p3) = Spec-
trHigher(p1,p2,p3) 

Spectral characteristic of p2 is higher than spec-
tral characteristic of p1 and p3 (no limit on mu-
tual location of p1,p2,p3) 

SL((p1,p2,p3) = 
SpectrLower(p1,p2,p3) 

Spectral characteristic of p2 is lower than spec-
tral characteristic of p1 and p3 (no limit on mu-
tual location of p1,p2,p3) 

LBSB(p1,p2,p3) =  
LB(p1,p2,p3) & SB(p1,p2,p3) 

Both LB(p1,p2,p3) & SB(p1,p2,p3) are true, that 
is p2 is between p1 and p2 in location and spec-
tral characteristic.  

LBSH(p1,p2,p3) =  
LB(p1,p2,p3) & SH(p1,p2,p3) 

Both LB(p1,p2,p3) & SH(p1,p2,p3) are true, that 
is p2 is between p1 and p2 in location and higher 
than both p1 and p3 in spectral characteristic.  

LBSL(p1,p2,p3) =  
LB(p1,p2,p3) & SL(p1,p2,p3) 

Both LB(p1,p2,p3) & SL(p1,p2,p3) are true, that 
is p2 is between p1 and p2 in location and lower 
than both p1 and p3 in spectral characteristic.  

E(p)  User assigned predicate, p is on the edge, 
“ground truth”. It is reasonable to assume that a 
user identifies edges using joint spectral/spatial 
relations consciously or unconsciously.   

Edge(p1,p2,p3) = LB(p1,p2,p3)&E(p2) p2 is on the edge between p1 and p3   
ET(p) s(p)>T  Threshold based edge, spectral value s(p) of 

pixel p is grater than a threshold T. 
ETLB((p1,p2,p3) = ET(p2) & 
LB(p1,p2,p3)   

Threshold and location based edge, spectral 
value s(p) of pixel p is grater than a threshold T 
and p2 is located between p1 and p3.  

 
Relations LBSB(p1,p2,p3), LBSH(p1,p2,p3), LBSL(p1,p2,p3) are joint spectral/spatial re-
lations, but ET(p) is only spectral relation. We can compute its value without knowing 
its location. Similarly, LB(p1,p2,p3) is only spatial relation. We can compute its value 
without knowing spectral characteristics of pixels p1,p2 and p3.  For short, we will call a 
joint spectral/spatial relation a spatiospectral relation.  For 3-D scenes all relations are 
modified – each pixel p is substituted by 3D volume element (voxels) v in Table 4. Simi-
larly, for multispectral imagery (cube) each pixel p is substituted by multidimensional 
element m =(x,y,s1,s2,…,sn), where (x,y) is a location of the element and si is a spectral 
value for band mi.   
 Table 5 presents the second level of joint relations, i.e., relations on sets of pixels not 
only individual pixels. These relations can be used to learn and discover edges in differ-
ent parts of the image I. For dynamic 3-D scenes all relations are modified – each pixel p 
is substituted by 3D volume element (voxels) v in Table 6. Similarly, for multispectral 
imagery (cube) each pixel p is substituted by a multidimensional element 
m = (x,y,s1,s2,…,sn), where (x,y) is a location of the element and si is a spectral value for 
band mi. Alternatively, for multispectral imagery time t is substituted by a spectral band 



d in CSSE(p1,p2,p3,d1,d2).  
 

Table 5. Spatiospectral relations of the second level for an individual image 
Relation Interpretation 
Edge(D,S) ∀ p2 ∈ D, ∃ p1, p3 ∈ S  
Edge(p1, p2, p3)  

D is an edge (a set of edge pixels) for a set of pix-
els S based on all available information including 
human edge detection skills. 

SSE(D,S) = SpatioSpectralEdge(D, 
S)  ∀ p2 ∈ D, ∃ p1, p3 ∈ S 
LBSH(p1,p2,p3)  

D is an edge for a set of pixels S based only on 
spatio-spectral knowledge. It can differ from 
Edge(D.S).  

Edge(D,I)  Edge(D,I) identifies all edges D in image I. 
SSE(D,I) = SpatioSpectralEdge(D, I) SSE(D,I) identifies all spatiospectral edges D in 

image I.  
 
   

Table 6. Spectral/spatial/temporal relations for motion imagery 
Relation Interpretation 
CSSE(p1,p2,p3,t1,t2)= 
ChangeSpatioSpectralEdge(p1,p2,p3,t1,t2) 

 (LBSH(p1,p2,p3,t1) ≠ LBSH(p1,p2,p3,t2)  

Change of spatiospectral edge relation from 
time t1 to time t2 for pixels p1,p2 and p3. 

CSSE(D, I, t1,t2)) = ChangeSpatioSpec-
tralEdge(D, I,t1,t2)  ∀ p2 ∈ D ∃ p1,p3  ∈ I 
CSSE(p1,p2,p3,t1,t2) 

SSE(D,I) identifies  all changed edges D in 
image I between t1, and t2. 

 
   In summary, the data type for still images, static 3D scenes and multispectral imagery 
includes relations defined above:  
 
RDT=RelationalDataType = 〈LB, SB, SH, SL, LBSB, LBSH, LBSL, E, Edge, ET, 
ETLB〉. 
 
 These relations are augmented by relations CSSE and LBSH for motion imagery, dy-
namic 3D scenes and multispectral imagery. The relational data mining approach can use 
any relations listed in Tables 4-6. Many other relations can be generated from imagery, 
but joint spectral/spatial/temporal relations have important advantages. They are at the 
low level and can be easily computed. In contrast, a high level spatial only relations such 
as   “at”, “nearby”, “in the vicinity”, and “far away” are difficult to interpret exactly and 
compute.  
 The relations based solely on qualities such as distance, size, volume, spatial order 
and time have no direct reference to spectral relations. Pure spatial relations abstract and 
separate spatial relations from pixel intensities in images and scenes.  These abstraction 
skills are learned in the early childhood and are critical for human conscious visual and 
analytical reasoning. In this way, human natural unconscious abilities to percept joint 
spectral/spatial relations are augmented.  But the computer vision systems has nothing 
to augment, it fundamentally lacks human natural capabilities to process joint relations.  
 In Table 4, relations LBSB, LBSH and LBSL are proposed to reconstruct some joint 
spatiospectral relations. In addition, these relations with three arguments capture proper-



ties of the images deeper than relations between only two pixels or properties of individ-
ual pixels.  The next step to capture even deeper properties of the images is to generate 
joint multilevel spectral/spatial/temporal relations (data types).  
 The importance of joint relations has been recognized in the multispectral research 
and classic mathematical morphology theory was used as a tool [59], however it was 
stated in [59] that most available attempts are based on the consideration of spectral in-
formation separately from spatial information, and thus the two types of information are 
not treated simultaneously. A relatively common approach to integration is computing 
spatiospectral frequencies and distributions. This approach generalizes spectral values 
relative to their locations, but does not capture individual relations explicitly. We model 
actual joint relations not generalized frequencies and use probabilities on relations not 
raw data to model the effect of noise and other factors.  

2.4. Steps of data mining based on joint relational data representation for edge detection 

 Having training data (images) relational data mining approach can learn an algorithm 
of how to detect edges. Ideally, the learning should produce an algorithm to classify pix-
els as clear edges, noisy edges and no edges. The advantage of such automatic learning 
approach is that it avoids manual design of an edge detection algorithm. This is its fun-
damental advantage over modern manual design of edge detections algorithms. It discov-
ers an algorithm automatically instead of manually designing it. Potentially an automatic 
approach based on joint spectral/spatial relations can rediscover known edge detection 
algorithms and mimic human edge detection process. The relational learning has an ad-
vantage over edge learning based on an assemble of the neural networks [3] because of 
abilities to interpret the discovery and check its validity conceptually beyond acceptable 
accuracy on specific test images that are always limited.  
 The process of automatic relational discovery of an edge detection algorithm can be as 
follows: 
 
Step 1:  Identify training and testing data (images, {Itraining}, {Itesting}) and their data types 

(relations on data, RDT)  
 
Step 2. Identify the target relation/predicate from RDT.  For the edge detection problem, 

it is E(p), that is human detected edge pixels “ground truth” (see Table 4).  
 
Step 2:  Learn E(p) using  some relations P={Pi} from RDT, that is discover a 
rule/algorithm Redge 
 

Redge :   P1&P2&…Pk ⇒ E(p) 
 
The learning starts from testing shortest hypotheses that contain only individual relations 
Pi  

        Pi ⇒ E(p) 
More relations are added from set P to the if-part of the rule if the hypothesis failed or 
cannot be improved on training and testing images in the statistical test.  Search for a rule 
is shortened by eliminating some input data to be tested.  It is done by using RDT axioms 



such as:  
 

1) ∀p1,p2,p3 LBSB(p1,p2,p3) = LBSB(p3,p2,p1)   
2) ∀ p2 E(p2)&PC( I ) ⇒ ∃p1,p2 SH((p1,p2,p3)  

 
 We do not need to test LBSB(p3,p2,p1)  in  the rule if  for LBSB(p1,p2,p3) rule was al-
ready satisfied. The first axiom is a commutativity axiom for p1 and p3. The second one 
states that if p is on the edge in a panchromatic image I then pixels p1 and p3 should exist 
on a line with p2 such that their intensity is less then the intensity of p2.  Note that in the 
axiom 2 we cannot reverse the implication because SH is only necessary but insufficient 
condition to be able to identify edge pixels.  

Table 7 presents some hypotheses of a rule (an algorithm) for edge detection. These 
hypotheses can be tested on images by using relational data mining methods.  
 

Table 7. Hypotheses for rules/algorithms 
Rule Interpretation 
∀ p1,p2,p3 LBSH(p1,p2,p3) ⇒ 
E(p2) 

Spatiospectral edges LBSH are fully consistent with 
human assigned edges (“ground truth”). If this hy-
potheses in confirmed in images {Itraining} and {Itesting} 
then it gives an algorithm to detect edges.  

∀ p1,p2,p3, p4,p5  LBSH (p1,p2,p3) 
& LBSH (p2,p3,p4) & LBSH 
(p3,p4,p5)  
⇒  E(p2) & E(p4) 

If pixels p1,p2,p3, p4 and p5  all are on a the straight 
line between p1 and p5   then only p2 and p4 are  edge 
pixels. Pixel p3 is not edge pixel, because it is be-
tween two edge pixels.   For instance, for a wide road, 
only pixels that identify shoulders of road are edge 
pixels, but internal road pixels are not edge pixels.  

∀ p1,p2,p3 LBSH(p1,p2,p3) & 
NPB((p1,p2)  ⇒ E(p2). 

If pixel p2 is in the edge between p1 and p2  according 
to LBSH and no pixels in between  p1 and p2  then p2 
is an edge pixel.  

 
The further work in this area can be to restore spatial relations using spectral relations in 
a jigsaw puzzle, where global spatial relations are lost, but local are available and the goal 
is to restore global spatial relations using every local ones.  The typical approach again is 
based on frequencies of the individual numerical value not relations. Relational approach 
has advantages over this one. 
 The next step of integration of spectral/spatial/temporal relations audio/text relations 
is adding relations of image audio and text annotations for an image, video or a multis-
pectral data cube. This subject is closely related to the emerging multimedia relational 
data mining [52].  

3. Relational data mining paradigm  

 As we discussed in the previous section, attribute-value languages are quite restrictive 
in inducing relations between different objects explicitly. Therefore, richer languages 
were proposed to express relations between objects and to operate with objects more 
complex than a single tuple of attributes. Lists, sets, graphs and composite types exem-



plify complex objects. These more expressive languages belong to the class of first order 
logic languages (see definitions in [49, 11, 34]). These languages support variables, rela-
tions, and complex expressions. FOL methods can discover regularities using several ta-
bles (relations) in a database, such as Tables 3 and 4, but the propositional approach 
requires creating a single table, called a universal relation (relation in the sense of rela-
tional databases) [11].  
 Relational data mining methods should be able to solve numerical and interval fore-
casting tasks along with classification tasks such as presented above. This requires modi-
fying the concept of positive and negative training examples E+ and E- and modifying 
the concept of deriving (inferring) training examples from background knowledge and a 
predicate. A relational algorithm, called Discovery is able to solve numerical and interval 
forecasting tasks. This algorithm operates with a set of training examples E. Each exam-
ple is amended with a target value like is done in Table 2, where attribute #3 is a target 
attribute--stock price for the next day. This is a numerical value. There is no need for 
Discovery to make this target discrete to get a classification task. Therefore, more gener-
ally, a deterministic relational data mining (DRDM) mechanism is designed for fore-
casting tasks, including classification, interval and numerical forecasting. Similar to the 
definition for classification tasks, for general deterministic RDM background knowledge 
B is expressed as:  

• a set of predicate definitions,  
• training examples E expanded with target values T (nominal or numeric), and  
• set of hypotheses {Gk} expressed in terms of predicate definitions.  

Using this background knowledge a RDM system will construct a set of predicate logic 
formulas {Hi} such that: the target forecast for all the examples in E can be logically de-
rived from B and the appropriate Hi .  
 
Example 3.  Let us consider Rule 2 discovered from Table 2.  
 
      IF Greater(StockPrice(t), StockPrice(t-1))  
 AND Greater(StockTradeVolume(t) StockTradeVolume(t-1))  
      THEN StockPrice(t+1)>StockPrice(t)  
 
This rule represents logical formula H, and table 2 represents training examples E. These 
two sources allow us to derive the following relation logically for date (t+1)=(01.04.99):  

                                       
StockPrice(01.04.99)>54.6                       (1)  

 
assuming that t=(01.03.99). This is consistent with actual StockPrice(01.04.99)=56.3 for 
date 01.03.99. Rule 1 from the same Example 1 in Section 4 represents logical formula 
H1, but this rule is not applicable to t=(01.04.99). In addition, other rules can be discov-
ered from Table 2.  
 For instance,  
 IF StockPrice(t)<$60 AND StockTradeVolume(t) < $90000  
 THEN Greater($60,StockPrice(t+1))  
This rule allows us to infer   
 StockPrice(01.04.99)< 60                                                                    (2)  



Combining (1) and (2) we obtain   
 60>StockPrice(01.04.99)>54.6                                                           (3)  
With more data we can narrow the interval (54.6, 60) for t=(01.04.99). A similar logical 
inference mechanism can be applied for t=(01.04.99) to produce a forecast for 
(t+1)=(01.05.99). This example illustrates one of the ideas used in the hybrid Discovery 
method for numeric interval forecast.  

In contrast with the deterministic approach, in Hybrid Probabilistic Relational Data 
Mining background knowledge B is expressed as:  

• A set of predicate definitions,  
• Training examples E expanded with target values (nominal or numeric), and  
• A set of probabilistic hypotheses {Gk} expressed in terms of predicate definitions.  

Using this background knowledge, a system constructs a set of predicate logic formulas 
{Hi} such that: Any example in E is derived from B and the appropriate Hi probabilisti-
cally, i.e., statistically significantly. Applying this approach to (3) 60> Stock-
Price(01.04.99)>54.6, we may conclude that although this inequality is true and is de-
rived from table 2 it is not a statistically significant conclusion. It may be a property of a 
training sample, which is too small. Therefore, it is risky to rely on statistically insignifi-
cant forecasting rules to derive this inequality.  
 

4. Theory of RDM  

4.1. Data types in relational data mining  

 A data type (type for short) in modern object-oriented programming (OOP) lan-
guages is a rich data structure, 〈A,P,F〉. It consists of elements A={a1,a2,...an}, relations 
between elements P={P1,P2,...Pm} and meaningful operations with elements 
F={F1,F2,...,Fk}. Operations may include two, three or more elements, e.g., c = a # b, 
where # is an operation on elements a and b producing element c. This definition of data 
type formalizes the concept of a single-level data type. For instance, a single-level graph 
structure (“stock price” data type) can be created with nodes reflecting individual stock 
prices and edges reflecting relations between stock prices (<, =, >). These graph struc-
tures (values of the data type) can be produced for each trading day -- StPr(1), StPr(2),..., 
StPr(t) – generating a time series of graph structures.  
 A multilevel data type can be defined by considering each element ai from A as a 
composite data structure (data type) instead of as an atom. To introduce a multilevel 
stock price data type, stocks are grouped into categories such as high-tech, banking and 
so on. Then relations (<, =, >) between the average prices of these groups are defined. 
Traditional attribute-value languages operate with much simpler single-level data types. 
Implicitly, each attribute in attribute-value languages reflects a type, which can take a 
number of possible values. These values are elements of A. For instance, attribute “date” 
has 365 (366) elements from 01.01.99 to 12.31.99. There are several meaningful relations 
and operations with dates: <, =, >, and middle(a,b). For instance, the operation mid-
dle(a,b) produces the middle date c=01.05.99 for inputs a=01.03.99 and b=01.07.99. It is 
common in attribute-value languages that a data type such as a date is given as an im-
plicit data type (see example 4 below). Usually in AVLs, relations P and operations F 
are not expressed explicitly. However, such data types can be embedded explicitly into 



attribute-value languages.  
 Example 4. Let us consider data type “trading weekdays”, where a set of elements A 
consists of {Mon, Tue, Wed, Thu, Fri}. We may code these days as {1,2,3,4,5} and in-
troduce a distance ρ(a,b)=|a-b| between them using these numeric codes. For instance, 
ρ(Mon,Tue)=ñ(1,2)=|1-2|=1 and ρ(Fri,Mon) = ρ(5,1)=|5-1|=4. The last distance is natural 
if both Friday and Monday belong to the same week, but if Monday belongs to the next 
week it would be more reasonable to assign ρ(Fri,Mon)=1, because Monday is the next 
trading day after Friday. This is a property of cyclical scales. Different properties of cy-
clical scales are studied in representative measurement theory [31]. The “trading week-
days” data type is a cyclical data type. This distance has several properties, which are 
unusual for distances. For instance, it is possible that ρ(a,b) ≠ ρ(b,a),  
 Let us assume that weekday a always precedes weekday b. Under this assumption 
ρ(Fri,Mon) means a distance between current Friday and Monday next week, but 
ρ(Mon,Fri) means a distance between Mon and Fri during the same week. In this exam-
ple, the requirement that a precedes b was not defined explicitly. In [26,27] we studied 
cyclical scales and suggested numeric and binary coding schemes preserving this prop-
erty for a variety of cyclical scales.  
 A new strongly typed programming language Escher was developed to meet this 
challenge [15]. The Escher language is an important tool, which allows users to incorpo-
rate a variety of explicit data types developed in representative measurement theory into 
the programming environment. On the other hand, RDM can be successfully imple-
mented using common languages like Pascal and C ++ [56-57].  

4.2. Relational representation of examples  

 Relational representation of examples is the key to relational data mining. If examples 
are already given in this form, relational methods can be applied directly. For attribute-
based examples, this is not the case. We need to express attribute-based examples and 
their data types in relational form. There are two major ways to express attribute-based 
examples using predicates: (1) generate predicates for each value and (2) use projection 
functions (see below). Table 8 presents an attribute-based data example for a stock. 
  

Table 8. Attribute-based data example 
Stock price, 

$ 
Volume, 
x1000 

Date Weekday 
Stock 

Event 

54.60 3067.54 01.04.99 Monday New product 
 
 Generating predicates for each value. To express stock price $54.60 from Table 8 
in predicate form, we may generate predicate P546(x), such that P546(x) = true if and 
only if the stock price is equal to $54.60. In this way, we would be forced to generate 
about 1000 predicates if prices are expressed from $1 to $100 with a $0.10 step. In this 
case, the ILP problem will be intractable. Moreover, the stock price data type has not yet 
been presented with the P546(x) predicate. Therefore, additional relations to express this 
data type should be introduced. For example, it can be a relation between predicates 
P546(x) and P478(x), expressing a property that stock price 54.6 is greater than 47.8. To 
avoid this problem and to constrain the hypothesis language for RDM, the projection 



function was introduced [15]. This concept is described below.  
 Representation of background knowledge. ILP systems use two sorts of back-
ground knowledge: objects and relations between those objects. For example, objects are 
named by constants a,b,c and relations are expressed using these names, P(a,b)=true and 
P(c,b)=false. Use of constants is not very helpful because normally names do not carry 
properties of objects useful for faster data mining. In the approach suggested in [15], this 
is avoided. An object is “named” by the collection of all of its characteristics (terms).  
 For instance, term representation of stock information on 01.04.1999 can be written 
as follows:  
 

StockDate(w)=01.04.1999 & StockPrice(w)=$54.60 &  
StockVolume(w)=3,067,540 & StockWeekday(w)=Mon &  
StockEvent(w)=”new product”.  

 
Here StockPrice is a projection function which outputs stock prices (value of StockPrice 
attribute). Only naming of subterms is needed. This representation of objects (examples) 
is convenient for adding new information about an object (e.g., data types) and localizing 
information. For instance, subterm “StockEvent” permits one to localize such entities as 
reported profit, new products, competitor activity, and government activity.  
In the example above the following data types are used:  

• type weekday = {Mon, Tue, Wed, Thu, Fri},  
• type price,  
• type volume,  
• type date,  
• type event ={reported profit, new product, competitor’s activity, government ac-

tivity, ....},  
• type stock = {price, volume, date, weekday, event}.  

Type event brings a description of event related to the stock, e.g., published three month 
profit, new product, competitor’s activity. This can be as a simple text file as a structured 
data type.  
The representation of an example then becomes the term Stock (54.6, 3067.54, 01.04.99, 
Mon, new product). Notice that when using projection functions in addition to predicates 
it is possible, without the use of variables, to represent relational information such as the 
equality of the values of two attributes. E.g., projection function StockEvent together 
with the equality relation (=) are equivalent to predicate SameEvent(w,x): 
SameEvent(w,x) StockEvent(x)=StockEvent(w).  
 Thus, the distinction between different propositional and first-order learning tasks 
depends in part on the representation formalism.  
 Strongly typed languages. FOL systems use types to provide labels attached to logi-
cal variables. However, these are not the data type systems found in modern program-
ming languages. All available literals in the Prolog language will be considered for inclu-
sion if a naive refinement operator is used for Prolog [15]. These authors developed a 
new strongly typed ILP language, Escher, which employs a complex data type system 
and restricts the set of hypotheses by ruling out many useless hypotheses. The Discovery 
method (Section 4) employs another way to incorporate data types into data mining by 
adding a data type structure (relational system) into the background knowledge. Such a 



relational system is based on representative measurement theory.  
 Complex data types and selector functions. Each data type is associated with a rela-
tional system, which includes: (1) cardinality, (2) permissible operations with data type 
elements, and (3) permissible relations between data type elements.  
 In turn, each data type element may consist of its own subelements with their types. 
Selector functions [15] serve for extracting subterms from terms. Without selector func-
tions, the internal structure of the type could not be accessed. Projection for selecting the 
i-th attribute requires the tuple type and a list of components (attributes) of the tuple. A 
list of components (attributes) requires the length of the list and the set of types of com-
ponents.  
 The number of hypotheses. The most important feature of strongly typed languages 
is that they not only restrict possible values of variables, but also more importantly con-
strain the hypothesis language.  
 Table 9 summarizes information about data type features supported by different lan-
guages: ordinary attribute-based languages, attribute-based languages with types, first-
order logic languages with types and ILP languages based on Prolog. This table is based 
on analysis from [15]. Strongly typed languages for numerical data are especially impor-
tant for financial and spatial applications with prevailing numeric data. 
 Single Argument Constraints. Consider an example, the term stock(A,B,C,D,E) has 
a type definition of stock(price, volume, date, weekday, event). Having this type defini-
tion, testing rules with arguments such as (25.7, 90000, 01.04.99, 67.3, new product) is 
avoided because 67.3 does not belong to weekday type. Thus, this typing information is a 
useful simple form of background knowledge. Algorithms FOCL  and Discovery take 
advantage of typing information. On the other hand, the well-known FOIL algorithm 
does not use type constraints to eliminate literals from consideration.  
 

Table 9. Data types supported by data mining languages 
Supported features of object  
representation  

Attribute-
based 
language 

Attribute-
based lan-
guage with 
types  

First-
order 
language 
with 
types  

ILP 
based on 
Prolog 
language 

Formally expressed data type con-
text  

No  Yes  Yes  Yes  

Attribute-value tuples  Yes  Yes  Yes  No  
Explicitly induced relations be-
tween tuples  

No  Yes  Yes  Yes  

Data types of attributes expressed 
as in modern object-oriented  lan-
guages  

No  Yes  Yes  No  

Mechanism to restrict the set of 
possible hypotheses using data 
types  

No  Yes  Yes  No  

Representing objects by terms us-
ing a projection function  

No  Yes  Yes  No  

 



Typing can be combined with localized predicates to reduce the search space. For in-
stance, a localized relation Greater_dates(A,B) can be introduced to compare only dates 
with type information Greater_dates(date,date) instead of a universal relation 
Greater(item, item). Similarly, a localized relation Greater_$(A,B), type information 
Greater_$(price, price) can be introduced and applied for prices. This localized typing 
avoids the testing of some arguments (literals). For instance the localized predicate 
Greater_dates(A, B) should not be tested for literals of types such as 
Greater_dates(stockprice, stockprice), Greater_dates(stockprice, date), and 
Greater_dates(date, stockprice).  
 More generally, let {Ti} be the types of already used arguments {xi} in predicate P. 
Predicate P should be tested for different sequences of arguments. If the type Ti of the 
already used i-th argument of P contradicts the type of a new i-th argument suggested for 
testing P, then the testing of the sequence which involves this new argument can be 
eliminated. This is a correct procedure only if a predicate is completely localized, i.e., 
only one type of argument is allowed for yi. It is the case for the predicate Greater_dates, 
but it is not for the original predicate Greater defined for any items. This consideration 
shows that typing information improves background knowledge in two ways: (1) adding 
predicates and clauses about data types themselves and (2) refining and adding predicates 
and clauses about objects (examples). In such situations, typing can in the best case ex-
ponentially reduce the search space [15]. FOCL algorithm illustrates the benefit of typ-
ing. FOCL algorithm tested 3240 units and 242,982 tuples using typing as compared to 
10,366 units and 820,030 tuples without typing. This task contained [44]:  

• learning a predicate with six variables of different types and  
• 641 randomly selected training examples (233 positive and 408 negative train-

ing examples).  
Typing is very useful for data mining tasks with limited training data, because it can 

improve the accuracy of the hypothesis produced without enlarging the data set. How-
ever, this effect of typing is reduced as the number of examples increases [15, 44].  

Existential variables. The following hypothesis illustrates existential variables:  
 

IF (there exists stock w such that StockEvent(x)=StockEvent(w)) AND (Some other 
statement)  
THEN StockPrice(x)>StockPrice(w)  

 
The variable w is called existential variables. The number of existential variables like w 
and z provides one of the measurements of the complexity of the learning task. Usually 
the search for regularities with existential variables is a computational challenge.  

4.3. First-order logic and rules  

  A predicate is defined as a binary function or a subset of a set D=D1×D2×…×Dn, 
where D1 can be a set of stock prices at moment t=1 and D2 can be stock price at moment 
t=2 and so on. Predicates can be defined extensionally, as a list of tuples for which the 
predicate is true, or intensionally, as a set of (Horn) clauses for computing whether the 
predicate is true. Let stock(t) be a stock price at t, and consider the predicate Up-
Down(stock(t), stock(t+1), stock(t+2)), which is true if stock goes up from date t to date 



t+1 and goes down from date t+1 to date t+2. This predicate is presented extensionally in 
the last column in Table 10.  
 

Table 10. Stock data and UpDown predicate 
Stock(t) Stock(t+1) Stock(t+2) Updown( , , ) 

$34 $38 $35 True 
$38 $35 $35.50  False 

$35.50 $36 $34 True 
$36 $37 $38 False 

 
It also can be presented intensionally using two other predicates Up and Down: 
 

Up(stock(t),stock(t+1)) & Down(stock(t+1),stock(t+2))→  Up-
Down(stock(t),stock(t+1),stock(t+2),  

 
where Up(stock(t),stock(t+1))  Stock(t+1)  ≥ Stock(t), and  
Down(stock(t),stock(t+1))  Stock(t) ≤ Stock(t+1).  
 
 A literal is a predicate A or its negation (¬A). The last one is called a negative literal. 
An unnegated predicate is called a positive literal. A clause body is a conjunction 
A1&A2&...&At of literals A1,A2,...,At. Often we will omit & operator and write 
A1&A2&...&At as A1A2...At. A Horn clause consists of two components: a clause head 
(A0) and a clause body (A1A2...At). A clause head, A0, is defined as a single predicate. A 
Horn clause is written in two equivalent forms: A0 ← A1A2...At, or A1A2...At. → A0, where 
each Ai is a literal. The first form is common in applications and the second one is com-
mon in mathematical logic.   

A collection of Horn clauses with the same head A0 is called a rule. The collection can 
consist of a single Horn clause; therefore, a single Horn clause is also called a rule. 
Mathematically the term collection is equivalent to the OR operator (∨), therefore the rule 
with two bodies A1A2...At and B1B2...Bt can be written as A0 ←(A1A2...At ∨ B1B2...Bt). A k-
tuple, a functional expression, and a term are the next concepts used in relational ap-
proach. A finite sequence of k constants, denoted by 〈a1,...,ak〉 is called a k-tuple of con-
stants. Constants are used as arguments in Ai and Bi. A function applied to k-tuples is 
called a functional expression. A term is a constant, variable or functional expression. 
Examples of terms are given in table 11. A k-tuple of terms can be constructed as a se-
quence of k terms. These concepts are used to define the concept of atom. An atom is a 
predicate symbol applied to a k-tuple of terms. For example, a predicate symbol P can be 
applied to 2-tuple of terms (v,w), producing an atom P(v,w) of arity 2. If P is predicate 
“>” (greater), v=StockPrice(x) and w=StockPrice(y) are two terms then they produce an 
atom: StockPrice(x) > StockPrice(y), that is, price of stock x is greater than price of stock 
y. Predicate P uses two terms v and w as its arguments. The number two is the arity of 
this predicate.  



Table 11. Examples of terms 
Expression  Comment Term  Term 

?  
x  Variable – stock x  Yes  
MSFT  Constant (specific stock/index)  Yes  
StockPrice(x)  Functional expression  Yes  
TradeVolume(x)  Functional expression  Yes  
Stock-
Price(x)*TradeVolume(x)  

Functional expression  Yes  

Nasdaq(x)>StockPrice(x)  Incorrect  No  
NASDAQ(x)  Predicate, literal (Stock x is traded on 

NASDAQ)  
No  

Stock-
Price(x)>StockPrice(y)  

Predicate(x,y), literal  No  

 
 If a predicate or function has k arguments, the number k is called arity of the predi-
cate or function symbol. By convention, function and predicate symbols are denoted by 
Name/Arity. Functions may have variety of values, but predicates may have only Boo-
lean values true and false. The meaning of the rule for a k-arity predicate is the set of k-
tuples that satisfy the predicate. A tuple satisfies a rule if it satisfies one of the Horn 
clauses that define the rule. A unary (monadic) predicate is a predicate with arity 1. For 
example, NASDAQ(x) is unary predicate. Predicates defined by a collection of exam-
ples are called extensionally defined predicates, and predicates defined by a rule are 
called intensionally defined predicates. If predicates defined by rules then inference 
based on these predicates can be explained in terms of these rules. Similarly, the exten-
sionally defined predicates correspond to the observable facts (or the operational predi-
cates) [34]. A collection of intensionally defined predicates is also called domain knowl-
edge or domain theory. Statements about a particular stock MSFT for a particular trad-
ing day can be written as:  
 

StockPrice(MSFT) > 83,  NASDAQ(MSFT),  TradeVolume(MSFT)=24,229,000.  

5. Background knowledge  

5.1. Arguments constraints and skipping useless hypotheses  

 Background knowledge fulfills a variety of functions in the data mining process. One 
of the most important is reducing the number of hypotheses to be tested to speed up 
learning and make this process tractable. There are several approaches to reduce the size 
of the hypothesis space. Below two of them are presented. They use constraints on argu-
ments of predicates from background knowledge B. The difference is that the first ap-
proach uses constraints on a single argument and the second one uses constraints on 
several arguments of a predicate defined in B. The first approach called typing ap-
proach is based on information about individual data types of arguments of a predicate. 
For instance, suppose only an integer can be the first argument of predicate P and only 
the date (M/D/Y) can be the second argument of this predicate. It would be wasteful to 



test hypotheses with the following typing P(date, integer), P(integer, integer) and P(date, 
integer). The only one correct type here is P(integer, date). The second approach is called 
inter-argument constraints approach. For example, predicate Equal(x,x) is always true 
if both arguments are the same. Similarly, it is possible that for some predicate P for all x 
P(x,x)=0. Therefore, testing hypotheses extended by adding Equal(x,x) or P(x,x) should 
be avoided and the size of the hypothesis space explored can be reduced. The value of 
inter-argument constraints is illustrated by the experimental fact that the FOCL algo-
rithm, using typing and inter-argument constraints, was able to test 2.3 times less lit-
erals and examples than using only typing [44]. Table 12 summarizes properties of the 
two discussed approaches for reducing the number of hypotheses.  
 

Table 12. Approaches for reducing hypothesis space 
 Approach 1: Implementing a sin-

gle argument constraint (typing )  
Approach 2: Implementing inter-
argument constraints  

Defini-
tion  

Properties of an individual argu-
ment of the predicate.  

A relationship between different argu-
ments of a predicate  

Example 
of con-
straints  

Only an integer can be the first 
argument of a predicate. Only 
date (M/D/Y) can be the second 
argument of the predicate.  

All of the variables in one predicate 
should be different, i.e., a hypothesis 
should not include predicate P(x,x), but 
may include P(x,y)  

 

5.2. Initial rules and improving search of hypotheses  

This section considers another useful sort of background knowledge — a (possibly in-
correct) partial initial rule that approximates the concept (rule) to be learned. There are 
two basic forms of this initial rule: (1) extensional form and (2) intensional form. If a 
predicate is defined by other predicates, we say the definition is intensional. Otherwise, 
a predicate given by example is called extensional. It is also possible that background 
knowledge B contains a predicate in a mixed way partially by examples and partially by 
other predicates. In general, background knowledge presented in a mixed way reduces the 
search. [44].  

Learning using initial extensional rule. An expert or another learning system can 
provide an initial extensional rule [58]. Then this rule (initial concept) is refined by add-
ing clauses [44]:  

1. An algorithm computes the criterion of optimality (usually information gain) of 
each clause in the initial concept.  

2. The literal (or conjunction of literals) with the maximum gain is added to the end 
of the current clause (start clause can be null).  

3. If the current clause covers some negative tuples (examples), additional literals 
are added to rule out the negative tuples.  

 Learning using initial intensional rules. Next, consider domain knowledge defined 
in terms of extensional and intensional initial predicates. Systems such as CIGOL [38] 
make use of (or invent) background knowledge of this form. For example, if an exten-
sional definition of the predicate GrowingStock(x,y,z) is not given, it could be defined in 
terms of the intensional predicate GreaterPrice by:  



 
GrowingStock(x,y,z) ← GreaterPrice(x,y), GreaterPrice(y,z),  

 
where x, y, and z are prices of the stock for days t, t+1, and t+2, respectively.  
 It is possible that the intensional predicate GrowingStock(x,y,z) added to the hy-
pothesis improves it, but each of predicates GreaterPrice(x,y) and GreaterPrice(y,z) does 
not improve the hypothesis. Therefore, common search methods may not discover a valu-
able stock regularity. Pazzani and Kibler [44] suggested that if the literal with the maxi-
mum of the optimality criterion (gain) is intensional, then the literal is made extensional 
and the extensional definition is added to the clause under construction. Note that compu-
tation of the optimality criterion, which guides the search, is different for extensional and 
intensional predicates. For intensional predicates, it is usually involves a Prolog proof. 
Potentially operationalization can generate very long rules.  
 Learning using initial intensional and extensional rules. The previous considera-
tion has shown that adding background knowledge can increase the ability of algorithms 
to find solutions. Table 13 shows an example of partial background knowledge for a 
stock market forecast. It consists of  

• a definition of target predicates Up2(x,y), Up3(x,y,w), Up4(x,y,w,z) with two, 
three and four arguments to be learned,  

• typing information about x,y,w and z,  
• intensional predicate Q3(x,y,w) with three arguments to be used for discover-

ing predicate Up4(x,y,w,z), and  
• extensional predicates Monday(t) and Tuesday(t) to be used for discovering 

Up4(x,y,w,z).  
 

Table 13. Partial background knowledge for stock market 
Definition of target predicate to be learned:  
 
The learning algorithm should learn the predicates Upi, i.e., generate a logical rule 
combining i arguments such as Stock(t), Stock(t+1),Stock(t+2) and Stock(t+3)  
 
(1) Up2(Stock(t), Stock(t+1))  (Stock(t)) < Stock(t+1)  
  
(2) Up3(Stock(t), Stock(t+1), Stock(t+2))   
(Stock(t)) < Stock(t+1) & (Stock(t+1) < Stock(t+2)  
 
(3) Up4(Stock(t), Stock(t+1), Stock(t+2), Stock(t+3)   
(Stock(t)) < Stock(t+1) & (Stock(t+1) < Stock(t+2) &  Stock(t+2) < Stock(t+3) 
 
Type : UP(float, float, float, float)  
Positive examples, Pos: Ex1-- (34.0, 35.1, 36.2, 37.4), Ex2 -- (37, 38.1, 34.4, 35.7)  
Negative examples, Neg: Ex3 -- (33.2, 32.1, 33.7, 31.6), Ex4 -- (30.8 29.3, 28.8 27.9)  
 
Intensional Predicate(s): 
Q(Stock(t), Stock(t+1), Stock(t+2))   Stock(t+1) - Stock(t) < Stock(t+2) - Stock(t+1)  
Type : Q(float, float, float);  



 
Extensional Predicates:  
Monday (t). t type: date. This predicate is true for Mondays.  
Pos : (04.05.99)(04.12.99)(04.19.99)...(11.01.99)  
Tuesday(t). t type: date. This predicate is true for Tuesdays.  
Pos : (04.06.99)(04.13.99)(04.20.99)...(11.02.99)  

 
Initial intensional rules for the target concept Up4(x,y,w,z) are  
 
Q(Stock(t),Stock(t+1), Stock(t+2) => Up2(Stock(t), Stock(t+1)) 
 
and 
 
Q(Stock(t),Stock(t+1), Stock(t+2) => Up2(Stock(t+1), Stock(t+2)). 
 
This rule assumes that if growth was accelerated from date t to t+2 then the stock will 
grow further on date t+3. Background knowledge is called extended background 
knowledge if it includes: (1) extensional knowledge (training examples and extensional 
predicates), (2) initial rules, and (3) intensional target concept definition.  
 Pazzani and Kibler [44] found in experiments that extended background knowledge 
with a correct intensional target definition avoids exhaustive testing every variable of 
every predicate and increases the speed of the search. In their experiments, a correct ex-
tensional definition of the target concept was found by testing only 2.35% of literals 
needed for rule discovery if the target concept is not provided. However, the same re-
search has shown that extended background knowledge (1) can increase the search 
space, (2) can decrease the accuracy of the resulting hypothesis, if the background 
knowledge is partially irrelevant to the task, and (3) can increase the number of training 
examples required to achieve a given accuracy.  

These observations show the need for balancing initial intensional and exten-
sional predicates in background knowledge. One of them can be more accurate and can 
speed up the search for regularity more than other. Therefore, the following procedure 
will be more efficient:  

(1) Compare accuracy of intensional and extensional knowledge.  
(2) Include a more accurate one in the background knowledge.  
(3) Discover regularities using the most accurate background knowledge from 

(2).  
(4) Discover regularities using all background knowledge.  

 The modification of this mechanism includes use of probabilities assigned to all 
types of background knowledge. There are several ways to combine extensional and in-
tensional knowledge in discovering regularities. One of them is converting initial rules 
(predicates) into extensional form (operationalize a clause) if it has positive information 
gain. The extensional predicates are compared to the induced literal with the maximum 
information gain. This approach is used in the FOIL algorithm. In an explanation-based 
learning approach, the target concept is assumed a correct, intensional definition of 
the concept to be learned and the domain knowledge is assumed correct as well. An ap-
proach that is more realistic is implemented in algorithms such as FOCL and Discovery. 
These methods relax the assumption that the target concept and the domain knowledge 



are correct.  

6. Algorithms   

 A variety of relational machine learning systems have been developed in recent years 
[33]. Theoretically, these systems have many advantages. In practice though, the com-
plexity of the language must be severely restricted, reducing their applicability. For ex-
ample, some systems require that the concept definition be expressed in terms of attrib-
ute-value pairs [9, 32] or only in terms of unary predicates [21, 35, 42, 51]. The systems 
that allow actual relational concept definitions (e.g., OCCAM [43], IOE [16], ML-
SMART [2]) place strong restrictions on the form of induction and the initial knowledge 
that is provided to the system [44].  
 Algorithm FOIL [48] learns constant-free Horn clauses, a useful subset of first-order 
predicate calculus. Later FOIL was extended to use a variety of types of background 
knowledge to increase the class of problems that can be solved, to decrease the hypothe-
sis space explored, and to increase the accuracy of learned rules.  
 Algorithm FOCL [44] uses first order logic and FOIL's information-based optimality 
metric in combination with background knowledge. This is reflected in its full name -- 
First Order Combined Learner. FOCL has been tested on a variety of problems [45] that 
includes a domain theory describing when a student loan is required to be repaid [46]. It 
is well known that the general problem of rule generating and testing is NP-complete 
[22]. Therefore, we face the problem of designing NP-complete algorithms. There are 
several related questions. What determines the number of rules to be tested? When should 
one stop generating rules? What is the justification for specifying particular expressions 
instead of any other expressions? FOCL, FOIL and Discovery use different stop criteria 
and different mechanisms to generate rules for testing. MMRD selects rules, which are 
simplest and consistent with measurement scales [31] for a particular task. The algorithm 
stops generating new rules when the rules become too complex (i.e., statistically insig-
nificant for the data) in spite of the possibly high accuracy of the rules when applied to 
training data. The obvious other stop criterion is time limitation. FOIL and FOCL are 
based on the information gain criterion.  
 Authors of FOCL draw a number of important conclusions about the complexity of 
learning rules and the value of different sorts of knowledge. Some of these conclusions 
are summarized below:  

• The branching factor grows exponentially in the arity of the available predicates 
and the predicate to be learned;  

• The branching factor grows exponentially in the number of new variables intro-
duced; 

• The difficulty in learning a rule is linearly proportional to the number of clauses 
in the rule;  

• Knowledge about data types provides an exponential decrease for a search neces-
sary to find a rule;  

• Any method (argument constraints, semantic constraints, typing, symmetry, etc.) 
that eliminates fruitless paths decreases the search cost and increases the accu-
racy.  

• The uniform evaluation function allows FOCL to tolerate domain theories that are 



both incorrect and incomplete.  
 A Discovery system contains several extensions over other RDM algorithms. It per-
mits various forms of background knowledge to be exploited. The goal of the Discovery 
algorithm is to create probabilistic rules in terms of the relations (predicates and literals) 
defined by a collection of examples and other forms of background knowledge. Discov-
ery as well as FOCL has several advantages over FOIL:  

• Limits the search space by using constraints.  
• Improves the search of hypotheses by using background knowledge with predi-

cates defined by a rule directly in addition to predicates defined by a collection 
of examples.  

• Improves the search of hypotheses by accepting as input a partial, possibly in-
correct rule that is an initial approximation of the predicate to be learned.  

There are also advantages of MMRD over FOCL:  
• Limits the search space by using the statistical significance of hypotheses.  
• Limits the search space by using the strength of data types scales.  
• Shortens the final discovered rule by using the initial set of hypotheses in inten-

sional form directly (without operationalization).  
The advantages above represent a way of generalization used in Discovery system. 

Generalization is the critical issue in applying data-driven forecasting systems. The Dis-
covery method generalizes data through “lawlike” logical probabilistic rules presented 
in first order logic.   
 Theoretical advantages of Discovery method generalization are based on previous 
research presented in [53-57, 26-27, 50, 59, see the article in this issue]. The original 
challenge for Discovery system (it was developed in the frame of the original school in 
Russia “Machine Methods of Discovery Regularities (MMDR)” [59]) was the simulation 
of discovering scientific laws from empirical data in chemistry and physics. There is a 
well-know difference between “black box” models and fundamental models (laws) in 
modern physics. The latter have much longer life, wider scope, and a solid background. 
There is a reason to believe that Discovery method caught some important features of 
discovering these regularities (“laws”).   

7. Experimental results  

 This section presents some examples of use of Discovery system in the prediction of 
SP500. Comparison of forecasting performance obtained by use of different methods is 
presented in three tables below. These data show that Discovery outperformed other 
methods. Discovery system produced 70% and 84%, respectively, correct up-down and 
down-up forecasts. The first ARIMA model that was selected without any connections 
with Discovery system produced a correct buy/sell signal in 62.58% of the cases. The 
simple Markov process model that was identified by using Discovery system search 
mechanism gave 79.6%.  The third model that exploits parameters prompted by rules dis-
covered by Discovery system gave 75.92%.  
 The most significant advantage of the first order methods and Discovery system, in 
particular, is that they can forecast directly the sign of the difference in SP500 instead 
of the value as ARIMA does. ARIMA can generate a sign forecast using a predicted 



value. The forecast of a value is more complex and available data may not fit for value 
forecast. The value forecast can be inaccurate and statistically insignificant, but the fore-
cast of the sign can be accurate and statistically significant for the same data. Tables 14 
and 15 shows forecast comparison for Discovery system with neural Network and FOIL 
algorithms.  
 

Table 14. Forecast performance of different methods on test data (% of correct sign 
(up/down) forecast of SP500C) 

Method 1995-1996 1997-1998 Average  1995-
1998 

Neural network 1 (with preprocessing) 68% 57 62.5% 
Rules extracted from NN 1(indirect es-
timate) 

≤68% ≤57% ≤62.5% 

Decision tree (Sipina with C4.5 simpli-
fication) 

67% 60% 64% 

First-order logic with probability (Dis-
covery system) 

78% 85% 81.5% 

First-order logic method (FOIL) 50.50% 45.40% 47.95% 
 

Table 15. Simulated gain per year for SP500 trading (% of initial investment) 
Gain per year in simulated experiments  Method    

                            1995-1996 1997-1998  Average 1995-1998  
Adaptive Linear  21.9  18.28  20.09  
Discovery system  26.69  43.83 35.26 
Buy-and-Hold  30.39  20.56  25.47  
Risk-Free  3.05  3.05  3.05 
Neural Network  18.94  16.07  17.5  

 
The most interesting is comparison of the Discovery system with the Buy-and-Hold 
(B&H) strategy. B&H strategy slightly outperformed Discovery system for 1995-1996 
(30.39% for B&H and 26.69% for Discovery system. On the other hand, Discovery sys-
tem significantly outperformed Buy-and-Hold for 1997-1998 (43.83% for Discovery sys-
tem and 20.56% for B&H.)  

8. Conclusion 

  In this paper we contrasted attribute-value languages (AVLs) with relational lan-
guages based on the deterministic first order logic (FOL) and then with stochastic FOL 
relational languages. This comparison is provided in general and for financial applica-
tions and spatial applications. Relational Data Mining is defined as discovering hidden 
deterministic or stochastic relations in numerical and symbolic data using background 
knowledge.  
 The paper provides examples that illustrate: (1) attribute-value representation vs. rela-
tional representation, (2) first order logic rules with one and two arguments, (3) the dif-
ference between IF-Then first-order logic rules and more traditional IF-Then proposi-
tional logic rules, (4) multiattribute representation vs. joint relational representation, and 



(5) steps of data mining based on joint relational data representation. These examples are 
derived from financial, image processing domains. The examples intend to clarify a long-
term confusion about the difference between logical attribute-value methods and rela-
tional methods. 
 The relational data-mining paradigm is described. It handles uniformly numerical and 
interval forecasting tasks as well as classification tasks. This paradigm elaborates a sin-
gle-level data type concept with a rich data structure that consists of elements, relations 
between elements (predicates) and meaningful operations with elements. Two major 
ways to express attribute-based examples using predicates are presented based on the 
predicate invention concept that includes generation of predicates for each attribute or 
multiple attributes and use of projection functions. We discussed single argument con-
straints vs. multiple arguments. It is shown that Relational Data Mining (RDM) can han-
dle multiple constrains, initial rules and background knowledge very naturally to reduce 
the search space in contrast with attribute-based data mining.  
 Finally, three RMD algorithms (FOIL, FOCL and Discovery) are compared and suc-
cessful experiential results with financial data using Discovery system are presented. Dis-
covery system contains several extensions over other RDM algorithms. It exploits various 
forms of background knowledge, estimates of statistical significance of hypotheses, and 
the relative strength of data type scales.   

References  

[1] Abu-Mostafa, A., Learning from hints in neural networks. Journal of complexity 
6: 192-198, 1990.  

[2] Bergadano, F., Giordana, A., & Ponsero, S. (1989). Deduction in top-down induc-
tive learning. Proceedings of the Sixth International Workshop on Machine 
Learning (pp. 23--25). Ithaca, NY: Morgan Kaufmann.  

[3] Blundell, J. Opitz, D.,Object recognition and feature extraction from imagery: the 
feature analyst® approach, 1st international conference on object-based image 
analysis (OBIA 2006), Salzburg University, Austria, July 4-5, 2006,  
http://www.commission4.isprs.org/ obia06/ Papers/09_Automated 
%20classification%20Generic%20aspects/OBIA2006_Blundell_Opitz.pdf 

[4] Bratko, I., Muggleton, S., Varvsek, A. Learning qualitative models of dynamic 
systems. In Inductive Logic Programming, S. Muggleton, Ed. Academic Press, 
London, 1992  

[5] Bratko, I. Innovative design as learning from examples. In Proceedings of the In-
ternational Conference on Design to Manufacture in Modern Industries, Bled, 
Slovenia, June 1993.  

[6] Bratko I, Muggleton S (1995): Applications of inductive logic programming. 
Communications of ACM 38 (11):65-70.  

[7] Carnap, R., Logical foundations of probability, Chicago, University of Chicago 
Press, 1962.  

[8] Cramer D. (1998). Fundamental Statistics for Social Research, Step-by-step cal-
culations and computer technique using SPSS for Windows, Routledge, London, 
NY  

[9] Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for 
induction with contextual information. Proceedings of the Sixth International 



Workshop on Machine Learning (pp. 34--36). Ithaca, NY: Morgan Kaufmann.  
[10] Dzeroski, S., DeHaspe, L., Ruck, B.M., and Walley, W.J. Classification of river 

water quality data using machine learning. In: ENVIROSOFT’94, 1994.  
[11] Dzeroski S (1996): Inductive Logic Programming and Knowledge Discovery in 

Databases. In: Advances in Knowledge Discovery and Data Mining, Eds. U. 
Fayad, G., Piatetsky-Shapiro, P. Smyth, R. Uthurusamy. AAAI, MIT Press, pp. 
117-152.  

[12] Dzeroski, S., Lavrac, N., Eds., Relational Data Mining, Springer, Berlin, 2001 
[13] Džeroski, S., Blockeel, H., Multi-relational data mining 2004: workshop report, 

ACM SIGKDD Explorations Newsletter, v.6 n.2, December 2004 
[14] Fenstad, J.I. Representation of probabilities defined on first order languages // 

J.N.Crossley, ed., Sets, Models and Recursion Theory: Proceedings of the Sum-
mer School in Mathematical Logic and Tenth Logic Colloguium (1967) 156-172.  

[15] Flach, P., Giraud-Carrier C., and Lloyd J.W. (1998). Strongly Typed Inductive 
Concept Learning. In Proceedings of the Eighth International Conference on In-
ductive Logic Programming (ILP'98), 185-194.  

[16] Flann, N., & Dietterich, T. (1989). A study of explanation-based methods for in-
ductive learning. Machine Learning, 4, 187--226.  

[17] Fu Li Min (1999) Knowledge Discovery based on Neural Networks, Communica-
tions of ACM, v. 42, n 11, pp. 47-50  

[18] Getoor , L., Diehl, C, Link mining: a survey, ACM SIGKDD Explorations News-
letter, v.7 n.2, p.3-12, December 2005 

[19] Geusebroek, J. M., G.J. Burghouts, J.C. van Gemert, and A.W.M. Smeulders. In-
variant representations to prepare for content based image retrieval from first 
principles. In R. Veltkamp, editor, Trends and Advances in Content-Based Image 
and Video Retrieval. Springer Verlag, Berlin, 2005. 
www.science.uva.nl/~jvgemert/pub/Dagstuhl2005Geusebroek.pdf 

[20] Halpern J. Y, An analysis of first-order logic of probability. Artificial Intelligence 
46: 311-350, 1990.  

[21] Hirsh, H. (1989). Combining empirical and analytical learning with version 
spaces.  

[22] Hyafil L, Rivest RL,Constructing optimal binary decision trees is NP-Complete. 
Information Processing Letters 5 (1),15-17,1976  

[23] Kendall M.G., Stuart A. (1977) The advanced theory of statistics, 4th ed., 
v.1.Charles Griffin & Co LTD, London.  

[24] Koller, D., Pfeffer, A., Learning probabilities for noisy first-order rules, In: Proc. 
of the 15th Int. Joint Conf. on Artificial Intelligence, Nagoya, Japan, 1997  

[25] Kovalerchuk B (1973): Classification invariant to coding of objects. Computa-
tional systems. 55:90-97, Novosibirsk. (in Russian).  

[26] Kovalerchuk B (1975): On cyclical scales. Comp. Syst. 61:51-59, Novosibirsk, 
Institute of Mathematics (in Russian).  

[27] Kovalerchuk, B. (1976), Coordinating methods for decision rules and training 
data in pattern recognition. Ph. D. Diss., Institute of Mathematics, USSR Acad-
emy of Science, Novosibirsk, 146 p. (in Russian).  

[28] Kovalerchuk B, Vityaev E, Ruiz JF. (1997). Design of consistent system for radi-
ologists to support breast cancer diagnosis. Joint Conf. of Information Sciences, 



Duke University, NC, 2: 118-121, 1997.  
[29] Kovalerchuk B, Vityaev E (1998): Discovering Lawlike Regularities in Financial 

Time Series. Journal of Computational Intelligence in Finance 6 (3):12-26.  
[30] Kovalerchuk B., Vityaev E. Data Mining in Finance: Advances in Relational and 

Hybrid methods. (Kluwer international series in engineering and computer sci-
ence; SECS 547), Kluwer Academic Publishers, 2000, p.308  

[31] Krantz DH, Luce RD, Suppes P, and Tversky A: Foundations of Measurement 
V.1-3, Acad. Press, NY, 1971, 1989, 1990.  

[32] Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Sci-
ence, 10.  

[33] Mitchell (1997): Machine Learning, Prentice Hall.  
[34] Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based learning: 

A unifying view. Machine Learning, 1, 47--80.  
[35] Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated 

learning of concepts with both explainable and conventional aspects. Proc. 6th In-
ternational Workshop on Machine Learning (pp. 5--7). Ithaca, NY: Morgan 
Kaufmann.  

[36] Muggleton S. (1994) Bayesian inductive logic programming. In Proceedings of 
the Eleventh International Conference on Machine Learning W. Cohen and H. 
Hirsh, Eds., pp. 371–379.  

[37] Muggleton S (1999): Scientific Knowledge Discovery Using Inductive Logic 
Programming, Communications of ACM, vol. 42, N11, pp. 43-46.  

[38] Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates 
by inverting resolution. Proceedings of the Fifth International Workshop on Ma-
chine Learning (pp. 339--352). Ann Arbor, MI: Morgan Kaufmann.  

[39] Muggleton, S., King, R.D. and Sternberg, M.J.E. (1992) Protein secondary struc-
ture prediction using logic. Prot. Eng. 5, 7), 647–657  

[40] Mooney, R. J. , P. Melville, L. P. Rupert Tang, J. Shavlik, I. de Castro Dutra, D. 
Page, and V.   Santos Costa. Relational data mining with inductive logic pro-
gramming for link discovery. In Proceedings of the National Science Foundation 
Workshop on Next Generation Data Mining, Baltimore, Maryland, USA, 2002.  

[41] Luc De Raedt,  From Inductive Logic Programming to Multi-Relational Data 
Mining, Springer.2006 

[42] Pazzani, M. (1989). Explanation-based learning with weak domain theories. Pro-
ceedings of the Sixth International Workshop on Machine Learning (pp. 72-- 74). 
Ithaca, NY: Morgan Kaufmann.  

[43] Pazzani, M. J. (1990). Creating a memory of causal relationships: An integration 
of empirical and explanation-based learning methods. Hillsdale, NJ: Lawrence 
Erlbaum Associates.  

[44] Pazzani, M., Kibler, D. (1992). The utility of prior knowledge in inductive learn-
ing. Machine Learning, 9, 54-97  

[45] Pazzani, M., (1997), Comprehensible Knowledge Discovery: Gaining Insight 
from Data. First Federal Data Mining Conference and Exposition, pp. 73-82. 
Washington, DC  

[46] Pazzani, M., Brunk, C. (1990), Detecting and correcting errors in rule-based ex-
pert systems: An integration of empirical and explanation-based learning. Pro-



ceedings of the Workshop on Knowledge Acquisition for Knowledge-Based Sys-
tem. Banff, Canada.  

[47] Pfanzagl J. (1971). Theory of measurement (in cooperation with V.Baumann, 
H.Huber) ed. Physica-Verlag.  

 [59]   Plaza, A.   Martinez, P.   Plaza, J.   Perez, R. Spatial/Spectral analysis of hyper-
spectral image data, In: 2003 IEEE Workshop on Advances in Techniques for 
Analysis of Remotely Sensed Data, 2003, pp. 298 – 307. 

[48] Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learn-
ing, 5, 239-266.  

[49] Russel S, Norvig P (1995): Artificial Intelligence. A Modern Approach, Prentice 
Hall.  

[50] Samokhvalov, K., (1973). On theory of empirical prediction, Comp. Syst., #55, 3-
35. IM, Novosibisk (in Russian)  

[51] Shavlik, J., & Towell, G. (1989). Combining explanation-based learning and arti-
ficial neural networks. Proceedings of the Sixth International Workshop on Ma-
chine Learning , pp. 90-93. Ithaca, NY: Morgan Kaufmann.  

[52] Seventh International Workshop on Multimedia Data Mining, "Merging Multi-
media and Data Mining Research",  MDM/KDD2006 , 2006, Philadelphia, USA, 
http://www.fortune. binghamton.edu/MDM2006/ Multimedia 
%20Data%20Mining%20_%20KDD%2705 _files/content_data/MDMKDD2006-
v2.pdf 

[53] Vityaev E. (1976). Method for forecasting and discovering regularities, (Comput-
ing systems, #67), Institute of Mathematics, Novosibirsk, pp.54-68 (in Russian)..  

[54] Vityaev E. (1983). Data Analysis in the languages of empirical systems. Ph.D. 
Diss, Institute of Mathematics SD RAS, Novosibirsk, p.192. (In Russian)  

[55] Vityaev E. (1992) Semantic approach to knowledge base development: Semantic 
probabilistic inference. (Comp. Syst. #146): 19-49, Novosibirsk. (in Russian).  

[56] Vityaev E., Moskvitin A. (1993). Introduction to discovery theory: Discovery 
software system. (Comp. Syst., #148): 117-163, Novosibirsk. (in Russian).  

[57] Vityaev E., Logvinenko A. (1995). Method for testing systems of axiom, Compu-
tational Systems, Theory of computation and languages of specification, (Comp. 
Syst., #152), Novosibirsk, p.119-139. (in Russian).  

[58] Widmer, G. (1990). Incremental knowledge-intensive learning: A case study 
based on an extension to Bergadano & Giordana's integrated learning strategy 
(Technical Report). Austrian Research Institute for Artificial Intelligence.  

[59] Zagoruiko N.G., Elkina V.N. Eds. (1976), Machine Methods for Discovering 
Regularities. Proceedings of MOZ’76, Novosibirsk. (In Russian)  

  


	Symbolic methodology for numeric data mining
	Microsoft Word - SimbMethodology8_space1.doc

