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ABSTRACT 

Objectives: Direct comparative work in morphology and growth on widely 

dispersed wild primate taxa is rarely accomplished, yet critical to understanding 

ecogeographic variation, plastic local variation in response to human impacts, and 

variation in patterns of growth and sexual dimorphism. We investigated population 
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variation in morphology and growth in response to geographic variables (i.e., 

latitude, altitude), climatic variables (i.e., temperature and rainfall), and human 

impacts in the vervet monkey (Chlorocebus spp.). 

Methods: We trapped over 1600 wild vervets from across Sub-Saharan Africa and 

the Caribbean, and compared measurements of body mass, body length, and relative 

thigh, leg, and foot length in four well-represented geographic samples: Ethiopia, 

Kenya, South Africa, and St. Kitts & Nevis. 

Results: We found significant variation in body mass and length consistent with 

Bergmann’s Rule in adult females, and in adult males when excluding the St. Kitts & 

Nevis population, which was more sexually dimorphic. Contrary to Rensch’s Rule, 

although the South African population had the largest average body size, it was the 

least dimorphic. There was significant, although very small, variation in all limb 

segments in support for Allen’s Rule. Females in high human impact areas were 

heavier than those with moderate exposures, while those in low human impact 

areas were lighter; human impacts had no effect on males.  

Conclusions: Vervet monkeys appear to have adapted to local climate as predicted 

by Bergmann’s and, less consistently, Allen’s Rule, while also responding in 

predicted ways to human impacts. To better understand deviations from predicted 

patterns will require further comparative work in vervets. 

 

INTRODUCTION 

Morphological variation in widespread taxa may arise by a number of mechanisms: 

natural selection, developmental plasticity in response to local environmental 
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forces, and random processes like genetic drift. Locally differentiable morphological 

variation in subpopulations of taxa with wide distributions has historically been 

used to indicate the possible beginnings of speciation (Hill, 1966; Kingdon, 1997).  

In populations with significant amounts of gene flow, local polytypy and 

substructuring can result in morphological clines within a single taxon (e.g., Cardini 

et al. 2007; Roseman & Auerbach, 2015), as well as geographically distinct taxa 

comprised of multiple environmentally driven phenotypes that may ultimately 

become fixed by natural selection (Kuzawa and Bragg, 2012; Kuzawa and Thayer, 

2011; Lomolino et al. 2006).  

Although data from animals living in diverse habitats throughout a taxon’s 

range are crucial to understanding population differentiation, they are rarely 

collected in primates. Museum specimens can provide information from a limited 

number of skins and skeletonized specimens, although the geographic range and 

number of animals can often be substantial, especially if multiple collections are 

used (e.g., Fooden, 1979; Groves, 2001; Kingdon, 2013; Albrecht et al., 1990; Cardini 

et al., 2007; Elton et al. 2010). Data on morphological variation are also often 

collected from populations of living animals at a single location. Such populations 

often have limited geographic distributions (e.g., booted macaques: Schillaci and 

Stallmann, 2005; Gombe chimpanzees: Pusey et al., 2005; ring tailed lemurs: Cuozzo 

and Sauther, 2006) or are housed in laboratories or semi-naturalistic environments 

(e.g., rhesus macaques: Tanner et al., 1990; Schwartz and Kemnitz, 1992; Turnquist 

and Kessler, 1989; mangabeys: Deputte, 1992; baboons: Coelho and Rutenberg, 

1989; mandrills: Setchell et al., 2001). Finally, comparisons of morphological 
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variation more broadly within genera may be made across numerous independent 

study sites, collected by different research groups. Comparison across baboons, for 

example, may be based on the work of Jolly and Phillips-Conroy (2003) on baboons 

in the Awash Park, Ethiopia; Altmann and colleagues on baboons in Amboseli 

National Park, Kenya (Altmann et al., 1981; Altmann et al., 1993); Strum and 

colleagues on baboons in the Rift Valley area of Kenya (Strum, 1991; Eley et al., 

1989) and Johnson (2003) on animals from Botswana. Comparative morphological 

data are also available for populations of macaques from Singapore (Schillaci et al., 

2007), Kojima Island in Japan (Hamada et al., 1986) and Polonnaruwa (Cheverud et 

al., 1992). Only rarely is information available from free ranging animals living in 

multiple locations within a taxon’s range and collected by the same researchers 

using comparable protocols (e.g., macaques: Albrecht, 1980; vervets: Turner et al., 

1997; Whitten & Turner, 2004).  

Furthermore, in these cases where geographically widespread data are 

available for adult animals of a particular taxon, it is rare to also have comparable 

information on multiple life stages. Where comparable data have been collected on 

immature mammals, the contribution of developmental patterns to adult 

phenotypes has been critical to understanding adult selective regimes (e.g., Ozgul et 

al., 2010; Ozgul et al., 2009). Information on animals of various life stages within and 

across closely related but widely dispersed populations is necessary for a complete 

understanding of the life history trade-offs that may underlie adult variation in 

response to the selective challenges of differing environments.   
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 The study reported here relies on morphological measurements obtained 

from over 1600 free ranging vervet monkeys (the genus Chlorocebus, also called 

savannah monkeys or African green monkeys; population-specific names include 

grivets, malbroucks, and others) from multiple locations spanning the range of the 

genus. Vervets are highly adaptable, semi-terrestrial foragers, able to occupy a 

variety of tropical and subtropical, seasonal habitats that provide sufficient trees 

and water, especially in savanna-woodland and open country with riverine forest.   

Vervets are found throughout sub-Saharan Africa. The genus most likely originated 

in East/Central Africa, first diverging into West African Ch. sabaeus ~531 kya, 

followed by the isolation and divergence of Ch. aethiops ~ 446 kya, and a southern 

expansion from East Africa around ~265 kya (comprised of the ancestral population 

of Ch. pygerythrus hilgerti, Ch. cynosuros, and Ch. p. pygerythrus, which diverged 

around ~129 kya), after which populations were introduced to several islands in the 

Caribbean from West Africa ~350 years ago (Jasinska et al., 2013; Warren et al., 

2015; Svardal et al. 2017). Throughout their evolutionary history in Sub-Saharan 

Africa, these taxa show long histories of gene flow, although they have more recently 

become genetically isolated (Svardal et al., 2017). They have been observed living in 

hot and arid areas, as well as more temperate and cooler areas where winter 

nighttime temperatures may fall below freezing (e.g., Lubbe et al. 2014; Kingdon, 

1997). Vervets live in multi-male, multi-female groups, with males migrating 

between groups in early adulthood, and groups range in size up to 50 animals, 

although most are considerably smaller (Struhsaker, 1967; Hall & Gartlan, 1965; 

Fedigan & Fedigan, 1988; Cheney & Seyfarth, 1983; Enstam & Isbell, 2007). 

Page 6 of 69

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t 7

Chlorocebus are regarded as pests throughout much of their range since they raid 

crops and houses for food (Grobler et al. 2006; Brennan et al. 1985; Boulton et al., 

1996; Dore, 2013).  

It is generally agreed that Chlorocebus may be divided into several 

diagnosable and geographically defined subspecies or species based on phenotypic 

characters (Hill, 1966; Groves, 2001; Grubb et al. 2003). Recent genetic work 

(Turner et al., 2016a; Haus et al., 2013) generally supports these taxonomic 

groupings, although current taxonomic distinctions below the genus level are 

disputed (Warren et al., 2015), as well as the status of these groupings as species 

nested in Chlorocebus or subspecies nested in Chlorocebus aethiops. Svardal et al. 

(2017) use established taxonomic names for genomically clustered population 

groups within the samples studied in this paper, with Ch. aethiops describing 

populations sampled from Ethiopia, Ch. p. hilgerti for populations sampled in Kenya, 

Ch. p. pygerythrus for populations sampled from South Africa, and Ch. sabaeus for 

populations sampled in St. Kitts & Nevis with an origin in West Africa. Although 

Svardal et al. recognize Ch. p. hilgerti and Ch. p. pygerythrus as two genomically 

distinct populations, with Ch. p. hilgerti being at least as distinguishable from Ch. p. 

pygerythrus as Ch. cynosuros, current taxonomy subsumes Ch. p. hilgerti and Ch. p. 

pygerythrus into the Ch. pygerythrus species or subspecies (Groves 2001; Grubb et 

al. 2003). To avoid further discussion of this taxonomic uncertainty, here we refer to 

each population by either their country of origin or accepted taxonomic names 

according to Groves (2001) and Butynski et al. (2013): Ch. aethiops, Ch. p. hilgerti, 

Ch. p. pygerythrus, and Ch. sabaeus. 

Page 7 of 69

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t 8

 The breadth of our sample allows us to examine several predictions 

suggested by established hypotheses regarding the evolution of body size:  

 

(1) Bergmann’s Rule (Bergmann, 1847; Meiri & Dayan, 2003) hypothesizes that 

animals in colder climates (i.e., geographically at higher latitudes and 

altitudes and climatically at lower temperatures) will be larger in body size 

compared to those in warmer climates to stave off the loss of body heat. 

a. Animals at higher latitudes and altitudes will be larger in body size 

than those in equatorial latitudes and low altitudes. 

b. Animals experiencing lower mean annual and winter temperatures 

will be larger in body size than those experiencing warmer annual and 

winter temperatures. 

(2) Allen’s Rule (Allen, 1877) hypothesizes that animals in colder climates (e.g., 

geographically at higher latitudes and altitudes and climatically at lower 

temperatures) will have relatively short limbs to preserve body heat. 

a. Animals at higher latitudes and altitudes will have relatively short 

limbs compared to those in equatorial latitudes and low altitudes. 

b. Animals experiencing lower mean annual and winter temperatures 

will have relatively shorter limbs than those experiencing warmer 

annual and winter temperatures. 

(3)  Rensch’s Rule (Rensch, 1950; Clutton-Brock et al., 1977) hypothesizes that 

sexual dimorphism will be greater in populations that exhibit greater overall 

body mass.  
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The animals in our sample come from 61 trapping locations across three 

countries in Sub-Saharan Africa and two islands in the Caribbean (Fig. 1), 

representing a wide range and mosaic of ecogeographic, anthropogenic, and climatic 

variation (Table 1). Our East African sample (Ch. aethiops and Ch. p. hilgerti) comes 

from mid to high altitudes but with a range of human impacts and climatic 

variability. Our sample from St. Kitts and Nevis (Ch. sabaeus) come from uniformly 

low altitudes, high human impacts, and relatively mild and uniformly tropical 

climate. Our largest sample, from South Africa (Ch. p. pygerythrus), is also the most 

diverse for all variables, representing high and low altitudes, a range of latitudes, 

and local climatic variation ranging from wet and temperate to dry and very cold. 

Employing traditional analysis of geographic variation by altitude and 

latitude, we predict that (a) Ch. p. pygerythrus will be the largest, Ch. sabaeus 

intermediate, and Ch. p. hilgerti and Ch. aethiops the smallest, and (b) Ch. p. 

pygerythrus and high-altitude populations in Ch. p. hilgerti should have relatively 

short limbs. Although recent analyses of Bergmann’s and Allen’s Rules show mixed 

results regarding the importance of any one climatic variable to the patterns noted 

in size variation in animals across large geographic areas, including primates (e.g., 

Meiri & Dyan, 2003; Dunham et al. 2013; Guillaumet et al. 2008), we have also 

included these in our analysis. We also predict that patterns of dimorphism within 

Chlorocebus will follow the pattern suggested by Rensch’s Rule. We further suggest 

that body size and proportion will follow climatic variability as opposed to 

taxonomic categories. We expect this to be particularly noticeable within the larger 
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Ch. pygerythrus clade, wherein the distance between Kenyan (Ch. p. hilgerti) and 

South African (Ch. p. pygerythrus) populations is over 5000 km along the eastern 

side of Africa; this should leave them open to higher environmentally mediated 

intrapopulational variance in body size and proportion than what we will see within 

Ch. sabaeus or Ch. aethiops. 

Given previous work showing that developmental variation underlies adult 

patterns in variation, we predict that the rate and pattern of growth will also differ 

across these populations, such that populations that reach a larger adult size will 

either be consistently larger throughout development (Smith & Leigh 1998), and/or 

show a more exaggerated spurt of growth around pubertal age (Shea 1985). 

Evolutionary responses to local selection pressures, however, cannot account 

for all variation in body size. Phenotypic plasticity in body mass is well noted in wild 

primates, especially in response to environments altered by humans, such as 

increased caloric availability due to garbage dumps, human crops and food waste, 

and laboratory diets (Altmann et al., 1993; Alberts & Altmann 2005; Turner et al. 

1997; Turner et al. 2016b). As such, we also predict that: 

 

(4) Local, human-mediated resource availability will lead to within-population 

variability in body mass and length. In particular, populations exposed to 

environments more highly impacted by humans (e.g., near garbage dumps, 

crops, or otherwise human-modified areas) will also have larger body mass 

than those found in environments more isolated from human impacts. 
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MATERIALS AND METHODS 

The data derive from field collections made over many years using a common 

protocol: Ethiopia in 1973, Kenya in 1978-79; South Africa in 2002-2008, and 

several African countries and the Caribbean in 2009-2011 in collaboration with the 

International Vervet Research Consortium (Jasinska et al., 2013).  The International 

Vervet Research Consortium is a multidisciplinary research group that has, in 

addition to morphological variation, studied variation in patterns of growth and 

development (Schmitt et al., 2017), genetic/genomic (Jasinska, et al., 2013; Turner 

et al. 2016a; Warren et al. 2015; Svardal et al., 2017; Schmitt et al., 2017) and 

transcriptomic (Jasinska et al., 2017) variation, SIV immune response (Ma & 

Jasinska et al. 2013; Ma & Jasinska et al. 2014; Svardal et al., 2017), hormonal 

variation (Fourie et al., 2015), C4 isotopes variation in hair (Loudon et al., 2014), gut 

parasite and disease variation (Gaetano et al. 2014; Senghore et al., 2016), genital 

morphology and appearance (Cramer et al. 2013; Rodriguez et al. 2015a, 2015b), 

and other biological parameters within the genus Chlorocebus. 

Vervet monkeys were trapped at locations across sub-Saharan Africa, 

including South Africa, Botswana, Zambia, Ethiopia, The Gambia, Ghana, and on the 

Caribbean islands of St. Kitts and Nevis (Fig. 1).  Trapping in Africa employed 

individual drop traps as described by Brett et al. (1982) and Grobler and Turner 

(2010), while trapping in St. Kitts and Nevis was done by local trappers using large 

group traps (Jasinska et al., 2013). Animals were anesthetized while in the trap and 

then removed to a processing area. Sex was determined by visual and manual 

inspection, while age classes were assigned from dental eruption sequences and 
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based on previous observations (Table 2). All animals were weighed with either an 

electronic or hanging scale, and measured with a tape measure and sliding calipers. 

Parameters and protocols describing all measurements are available through the 

Bones and Behavior Working Group (2015; http://www.bonesandbehavior.org/). 

All animals were released to their social group after sampling and recovery from 

anesthesia. Observations during trapping allowed us to confirm the animals' social 

group and local population affiliation.    

For the present study, we chose metrics representative of skeletal size (body 

length, thigh length, leg length, and foot length) and body mass from a total of 1613 

vervets in four geographically and genomically distinct populations: Ch. aethiops in 

Ethiopia, Ch. p. hilgerti in Kenya, Ch. p. pygerythrus in South Africa, and Ch. sabaeus 

on the Caribbean islands of St. Kitts and Nevis (Table 3). The Caribbean populations 

are known to be descended from West African Ch. sabaeus brought to the Caribbean 

several hundred years ago (Warren et al. 2015). Of the whole sample, 288 females 

and 460 males were dentally immature. Sexual maturity is typically not reached in 

vervets until near the time of canine tooth eruption, here denoting the beginning of 

dental age 6 (Cramer et al., 2013; Rodriguez et al., 2015a); although somatic and 

skeletal growth often continues beyond the emergence of the third molar, which is 

here denoted as adult (Bolter & Zihlman, 2003). As is common, dental age and 

skeletal age are presumed to be similarly correlated across the genus, meaning that 

comparable dental age implies comparable skeletal developmental age across 

populations (Šešelj, 2013). 
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All measurements were developed by CJJ and TRT and other measurers (CAS 

and JDC) were trained directly by TRT. During training, repeated measures of the 

same individual were conducted in tandem with TRT until concordance was 

reached. 

The location of each trapping site is reported in decimal degrees (Table 1), 

and for most sites measured using hand-held GPS units. For those trapping sites 

lacking GPS readings, a general latitude and longitude for the trapping area (e.g., 

game reserve, town) was used. Human impact at each trapping location was 

assessed according to conditions during the time of trapping using a previously 

published index developed by Pampush (2010) to study variation in vervet body 

size, and subsequently used by Loudon et al. (2014) and Fourie et al. (2015) (Table 

1). This index includes presence/absence measures of reliable access to 1) 

agricultural land, 2) human food, 3) rubbish or garbage dumps, and 4) whether 

animals are regularly provisioned, as well as a three-level scale of human activity 

within the presumed home range of the group (low, moderate, or high). In the index, 

point values are assigned to each value, with the lowest tier of human impact each 

receiving a 1, scaling up by 1 for each level. Added together, these values comprise a 

human impact group ranging from low (lowest score in each category; index=5), to 

moderate (index=6-8), to high (index=9-11). These measures take into account only 

the ecological impact of humans, and do not address local ecological variables (such 

as native plant productivity) that might also influence body size and growth. As a 

proxy for these measures, we collected several climatic variables for trapping sites 

from the WorldClim 2 database, which has a spatial resolution of about 1 km2 (Fick 
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& Hijmans, 2017). Climatic variables considered for inclusion in our models were 1) 

annual mean temperature (in degrees Celsius), 2) temperature seasonality 

(measured as the standard deviation of annual mean temperature multiplied by 

100), 3) the minimum temperature of the coldest month (in degrees Celsius), 4) the 

mean temperature of the coldest quarter of the year, 5) annual precipitation (in 

mm), and 6) precipitation seasonality (measured as the coefficient of variation of 

monthly precipitation). Climate data were accessed via the R package raster v. 2.6-7 

(Hijmans & van Etten, 2012), and assigned to trapping sites based on latitude and 

longitude. 

 

Statistical analyses 

Summary statistics of somatic measures are presented as mean ± standard 

deviation for each population and age category (Table 3) Due to the uneven sample 

sizes and differences in variance structure across age/sex/taxon categories, we 

assessed differences in mean measures using a Welch ANOVA with a Games-Howell 

Tukey post hoc test implemented using the package userfriendlyscience v. 03-0 

(Peters, 2015) in R v. 3.2.0 (R Core Team 2017). We used linear mixed modeling, 

also implemented in R, to assess the influence of latitude (in decimal degrees), 

altitude (in meters), human impacts (using the human impact group), and climatic 

variables on adult body mass and length. We used the absolute value of latitude to 

allow for negative latitudinal values in the southern hemisphere. We included 

country of origin as a random effect to control for potentially uncontrolled effects 

that might be the result of large-scale population differences. With models fit in 
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lme4 v. 1.1-13 (Bates et al., 2015), we used the Akaike Information Criterion with a 

correction for finite sample sizes (AICc) to compare models with differing fixed 

effects structures (Burnham & Anderson, 2002) using the package AICcmodavg v. 

2.1-1 (Mazerolle, 2017). Final models were assessed for goodness of fit to the data 

using the R2 for mixed models method reported by Nakagawa and Schielzeth 

(2013), implemented in the package MuMIn v. 1.15.6 (Barton, 2016). We used 

MCMC-estimated P values to assess the significance of fixed effects (α = 0.05) for the 

final models in the package MCMCglmm v. 2.24 (Hadfield, 2010), using flat priors. 

We allowed the Markov chains a burn-in period of 1,000 iterations, after which we 

ran 100,000 iterations and sampled every 20th iteration for the posterior 

distribution.  

Relative hind limb lengths were measured as the ratio of each limb segment 

to body length, respectively (e.g., thigh length/body length). We used the methods 

above to fit generalized linear mixed models for the hind limb proportions with the 

exception that models were fit with a beta distribution in the package glmmADMB v. 

0.8.3.3 (Fournier et al., 2012) to appropriately model proportions, with country of 

origin as a random effect. We selected the best model based on comparatively 

lowest AIC using the package bbmle v. 1.0.20 (Bolker, 2017). To estimate goodness-

of-fit, pseudo-R2 values for the best beta regression models were derived from fixed 

effects only in the package betareg v. 3.1-0 (Cribari-Neto & Zeileis, 2010). To allow 

for sexual dimorphism, all models were run separately for males and females. Sexual 

dimorphism for each taxon was measured as the average mass of adult males 

divided by the average mass of adult females (Smith 1999). We assessed whether 
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differences in sexual dimorphism between populations were significant using the 

method of Relethford and Hodges (1985). 

In our data set, relying on cross-sectional dental eruption means that a range 

of chronological ages may be encompassed within a single dental age category, as 

age at particular tooth eruption can vary both within and across taxa, although 

typically not between sexes (Smith et al., 1994). Turner et al. (1997) and Bolter and 

Zihlman (2003) have suggested that, in vervets (Ch. p. hilgerti and Ch. tantalus, 

respectively), these dental age categories represent uneven, approximately 3-12 

month periods of age up until adulthood, which contains all adults from the eruption 

of the third molar onward (Table 2). Here, we interpret significant changes in size 

between these categories as indicative of patterns of growth. Longitudinal 

measurement data on wild individuals of known ages will be necessary to validate 

this assumption. This interpretation of growth is limited, however, to those intervals 

represented by age categories 6 and prior, after which point the relatively wide 

chronological age range encompassed by of ‘adult’ age assignment, here after the 

emergence of the third molar, obscures the pattern of any further growth. 

We visualize and compare growth patterns within and across taxa using 

loess smoothers, or nonparametric locally weighted quadratic least squares 

regression, implemented in ggplot2 (Wickham, 2009). Localized loess smoothers 

make no assumptions about the shape of the curve, and are robust to uneven 

samples (e.g., Leigh 1992; Leigh & Shea 1996). We modeled each trait in each sex 

within each taxon separately. We attempted this model fitting using estimated 

chronological age categories from within the range suggested by previous work 
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(Turner et al., 1997; Bolter & Zihlman, 2003). In loess models, estimated 

chronological age categories were treated as continuous variables, and taxonomic 

designation and geographic origin were modeled as random effects. For all tests, we 

considered a P value of less than 0.05 to be significant. 

 

RESULTS 

 

Prediction 1: Population variation in vervet body size will follow Bergmann’s Rule 

(larger in higher latitudes and altitudes). 

As predicted and consistent with Bergmann’s Rule, our linear model shows a 

significant positive relationship between body mass and latitude in adult females, 

with body mass increasing as latitude increases (β = 0.033, p = 0.022; R2GLMM(c) = 

0.690; Table 4), but not with altitude (β = 0.000, p = 0.678). Loess curves for adult 

female body mass suggest that the high latitude Ch. p. pygerythrus population (23° – 

34° S) maintains a heavier mass than all other taxa throughout development (Fig. 

2a; Table 3), significantly so for dental ages 1 (p < 0.05), 6 (p < 0.001; all populations 

but Ch. sabaeus), and adults (p < 0.001). Although females of the intermediate 

latitude Ch. sabaeus population (17° N in St. Kitts; 13° N in ancestral populations in 

The Gambia) maintain an intermediate mass similar to the sampled Ch. p. hilgerti 

and Ch. aethiops populations for most of development, between dental ages 5 and 6 

they experience a steep increase in mass that nearly catches up in size to Ch. p. 

pygerythrus females. This rapid growth in Ch. sabaeus females apparently levels off 

sooner in adulthood than in Ch. p. pygerythrus, as the latter females ultimately reach 
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a significantly higher average adult size.  The lower latitude, East African 

Chlorocebus females, Ch. p. hilgerti (3° S – 1° N) and Ch. aethiops (7° – 12° N), 

maintain masses similar to each other throughout the life course, with the notable 

exception that female Ch. aethiops are much smaller than all other taxa at dental age 

1, but grow rapidly at this stage to catch up to Ch. p. hilgerti and Ch. sabaeus females 

by dental age 2. The end result of these growth patterns is a scale of mass in 

Chlorocebus females that follows Bergmann’s Rule, with the equatorial East African 

females being the smallest, mid-range Ch. sabaeus females being intermediate, and 

the high latitude Ch. p. pygerythrus females being the largest. 

The scaling of Bergmann’s Rule, however, does not adequately describe the 

variation seen in males, as there is no significant relationship between body size and 

latitude (β = -0.358, p = 0.231) or altitude (β = -0.011, p = 0.179; R2GLMM(c) = 0.616; 

Table 4). Although the size relationship between the larger Ch. p. pygerythrus and 

smaller East African taxa holds, the relatively rapid growth of Ch. sabaeus males 

from Dental Age 2 onward to eventually match the mass of Ch. p. pygerythrus adult 

males is unexpected within the context of Bergmann’s Rule (Fig. 2b; Table 4). 

Indeed, when the Ch. sabaeus males are removed from the regression equation, 

Bergmann’s Rule is supported, with significant positive relationships between body 

weight and both latitude (β = 0.083, p = 0.006) and altitude (β = 0.001, p = 0.011; 

Table 4). Both Ch. p. hilgerti and Ch. aethiops males, like the females, remain 

matched in size, and significantly smaller than both Ch. p. pygerythrus and Ch. 

sabaeus for much of their development. 
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Models including climatic variables in models for body mass show no effects 

of latitude and altitude, but also no consistent evidence of climatic effects on body 

mass variation. In females, the best model indicated no significant effects on body 

mass of any covariate considered (Table 5). In males, there were significant but 

negligibly small effects of temperature seasonality and annual precipitation, and, 

consistent with Bergmann’s Rule, slightly larger negative effects on body mass of the 

minimum temperature of the coldest month (β = -0.055, p = 0.046). A small but 

negative relationship between body mass and precipitation seasonality (β = -0.017, 

p < 0.001; Table 5) suggests that male body size may decrease in areas with highly 

seasonal rainfall, which may also be consistent with Bergmann’s Rule. For the sake 

of consistency, we also ran the global model with climatic variables on males 

excluding Ch. sabaeus, and found the same significant but small effects of 

temperature seasonality and annual precipitation, as well as a larger negative 

relationship between male body mass and annual mean temperature, consistent 

with Bergmann’s Rule. 

 

Prediction 2: Population variation in vervet limb length will follow Allen’s Rule 

(shorter in higher latitudes and altitudes). 

Contrary to expectations according to Allen’s Rule, both thigh and leg lengths 

for the adult equatorial Ch. p. hilgerti population are absolutely and relatively 

(compared to body length) shorter than those in Ch. p. pygerythrus, at almost every 

age, or Ch. sabaeus from dental age 6 onward (Fig. 4 and Fig. 5; Table 6). Our models 

that only take into account latitude, altitude, and human impacts do suggest that 
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relative limb length is significantly related to altitude, latitude, and their interaction 

effects, supporting Allen’s Rule in both sexes for both the thigh and the leg. 

However, the magnitudes of the effects of these predictors are so small in each trait 

that they do not appear to have a large influence on trait variation (Table 6).  

Differences among taxa in relative thigh and leg length are already apparent by 

dental age 1, and growth in all taxa appears to be uniform across age categories. The 

one exception is Ch. p. hilgerti, in which a small sample size and some large 

individuals trapped at dental age 5 in Mosiro result in outliers having a profound 

effect on loess models at that age, although they do not appear to have influenced 

the Allen’s Rule model. 

Foot size in Chlorocebus shows the same steady growth pattern across age 

classes as thigh and leg (Fig. 6; Table 6). As in the rest of the lower limb, and 

consistent with Allen’s Rule, there is a significant relationship between foot length 

and latitude, altitude, and their interaction effect for both sexes (Table 6). 

Additionally, in males there was a significant effect of human impacts, with males in 

low impact sites having a significantly smaller ratio of foot length to body length (β 

= -0.961, p = 0.023), or relatively small feet. The estimated effects of these 

predictors are near zero, however, and for relative foot length goodness-of-fit of the 

models are not as high as for the rest of the lower limb (Table 6). In dental age 1, Ch. 

p. pygerythrus individuals of both sexes have significantly larger feet than in Ch. 

sabaeus and Ch. p. hilgerti, but a relatively high rate of growth leads to adults in the 

Ch. sabaeus population having feet comparable in size to Ch. p. pygerythrus adults 

and significantly larger than Ch. p. hilgerti adults (p < 0.001). 

Page 20 of 69

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t 21

Models including climatic variables, for the most part, show latitude and 

altitude to be insignificant to morphological variation, with the exception of relative 

leg length in females, which increased slightly with latitude (β = 0.006, p = 0.013; 

Table 7). There were consistent effects of two individual climatic variables across 

the lower limb in both sexes: a slight increase in relative thigh, leg, and foot length 

with increased annual mean temperature, and increases of similar magnitude in 

relation to decreased minimum temperature of the coldest month (Table 7); the 

former is consistent with Allen’s Rule, while the latter is not. Unlike females, males 

show a consistent effect of human impacts (longer relative limb segment lengths in 

low impact areas compared to high), annual precipitation (minimal but positive), 

and precipitation seasonality (small but negative) across all sections of the lower 

limb. Models for thigh length in females also suggest a positive relationship with 

temperature seasonality, while leg length in females show small but significant 

effects of annual precipitation and precipitation seasonality similar to those seen in 

males. Finally, there is also a positive relationship between mean temperature of the 

coldest quarter of the year and relative foot length in females, which is consistent 

with Allen’s Rule. 

 

Prediction 3: Sexual dimorphism in vervet populations will follow Rensch’s Rule, with 

large taxa also having larger dimorphism. 

 Considerable sexual dimorphism in adult body mass and length was found in 

each population (Table 8). In Ch. aethiops, Ch. p. hilgerti, and Ch. sabaeus males were 

not significantly larger than same-aged females in age classes 1-6, for either trait, 
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while in Ch. p. pygerythrus there was significant sexual dimorphism in mass from 

dental age 6 (p < 0.05; Figs. 2 and 3; Tables 3 and 8). Contrary to Rensch’s Rule and 

our predictions, the sexual dimorphism in Ch. p. pygerythrus (the population with 

the largest overall body mass) was the least pronounced, although it did not differ 

significantly from the dimorphism seen in Ch. p. hilgerti and Ch. aethiops. The most 

pronounced sexual dimorphism was found in the Ch. sabaeus population, which was 

significantly more dimorphic than Ch. aethiops (t = -3.848, df = 220, p < 0.001), Ch. p. 

hilgerti (t = 4.86, df = 301, p < 0.001), and Ch. p. pygerythrus (t = 3.59, df = 419, p < 

0.001) populations. 

 

Prediction 4: Regional variation in size will scale with human-mediated resources. 

Body Mass 

 In keeping with our predictions, results from our linear models without 

climate covariates indicate that human impacts have a large and significant effect on 

body mass in female Chlorocebus. In adult females, this impact is scaled in 

accordance with the level of impact, with body mass being significantly lower in low 

human impact sites (β = -0.378, p = 0.044; Table 4) and significantly higher with 

high human impacts (β = 0.297, p = 0.029) compared to sites with moderate 

impacts. In males, both including and excluding Ch. sabaeus males, there was no 

discernible effect of human impacts on body size (Table 4). With climatic variables 

included, human impacts appear to only affect adult males, where lower human 

impacts correspond to shorter body length (Table 5) and longer relative limb 

lengths (Table 7). 
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Due to small regional sample sizes and subsequently large confidence 

intervals surrounding growth curves for regional populations, regional differences 

in body mass are difficult to differentiate in our loess models, although there were 

some clear outliers in most taxa. In keeping with a previously published report on 

these data (Turner et al., 1997), the Naivasha population was significantly heavier 

than the other three Ch. p. hilgerti populations, with this difference being most 

extreme in males; females in Kimana were also heavier than those from either 

Mosiro or Samburu (Suppl. Fig. 1a). 

Within Ch. p. pygerythrus, access to human resources may also mediate body 

size. The largest-bodied Ch. p. pygerythrus population, for both males and females, 

comes from Gauteng, South Africa, and was trapped at or near Woodhill Golf Estate 

in the southeast of the city of Pretoria (Suppl. Fig. 1b). There is also a steep, early 

increase in size in male Ch. p. pygerythrus from the Northern Cape. This early gain in 

size is lost by adulthood, at which point Northern Cape males fall within the range of 

all other Ch. p. pygerythrus populations.  

Within Ch. sabaeus, males from the two islands of St. Kitts and Nevis cannot 

be differentiated, while females do show some differences across islands in body 

mass (Suppl. Fig. 1c). Females from St. Kitts appear to be larger at almost every 

dental age, with the difference being particularly pronounced in dental ages 5 and 6. 

By adulthood this pattern has reversed, with females from Nevis growing past the 

size of females from St. Kitts. Due to the large age range binned within dental age 7, 

however, it is unclear whether this is the result of rapid or sustained post-pubertal 
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growth, or from oversampling of older individuals in the adult category on Nevis 

compared to St. Kitts. 

Within Ch. aethiops, very few individuals were weighed in non-Awash 

trapped populations. While females trapped in the Awash largely mirror the general 

pattern also seen in Ch. p. hilgerti to grow slowly to a relatively small adult size, 

males and females trapped in non-Awash areas including near the Lake Tana textile 

mill (n = 2) and the tourist area of Hawaasa (n = 7) appear to be of a size 

comparable to Ch. p. pygerythrus and Ch. sabaeus (Suppl. Fig. 1d).  

Body Length 

In both adult males (β = -29.460, p = 0.002; Table 4) and females (β = -4.181, 

p = 0.008) body length is significantly smaller in areas with low human impacts 

compared to those with moderate or high human impacts. Also in both sexes, there 

appears to be a significant positive interaction between latitude and human impacts, 

such that both males (β = 0.873, p = 0.002) and females (β = 0.152, p < 0.001) have 

significantly shorter body lengths at lower latitudes when human impacts are low 

compared to moderate or high. Although the best model for females did not include 

an interaction between altitude and human impacts, in males this same effect is seen 

with altitude (β = 0.022, p = 0.002).  These results suggest that areas with moderate 

to high human impacts may buffer body length from the effects responsible for 

Bergmann’s Rule in this trait.   

As in regional comparisons of body mass, body lengths in Ch. p. hilgerti 

females from Naivasha and Kimana appear to be longer than other populations, 

although Naivasha males at dental age 1 are significantly smaller than in other 
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populations (Suppl. Fig. 2a). Similar patterns to those seen in body mass can also be 

seen in Ch. p. pygerythrus, with longer body lengths in Gauteng vervets, as well as an 

early increase in length in the Northern Cape (Suppl. Fig. 2b). A comparably large, 

but slightly later at dental age 4, early increase in body length can be seen in those 

vervets sampled from Mpumalanga. 

 Within Ch. sabaeus, growth in body length is slightly different than in body 

mass.  While males again appear largely undifferentiated across islands, females 

from Nevis appear significantly larger both as juveniles and adults, although infants 

(dental age 1) and subadults (dental age 6) appear similar in size (Suppl. Fig. 2c). 

 As with body mass, average body length in Ch. aethiops individuals sampled 

outside the Awash region appears to be large compared to that seen in the Awash 

(Suppl. Fig. 2d). However, small sample sizes from outside the Awash urge caution 

in interpreting these differences. 

Hind Limb Length 

Models for relative hind limb length show no significant effect of human 

impacts nor any interaction effect between latitude and human impacts. Regional 

variation in thigh and leg lengths appear largely similar within taxa, with the 

exception of generally high variation at dental age 1 (Suppl. Fig. 3 and Suppl. Fig. 4). 

Potential exceptions include apparent divergences in females younger than ~30 

months, in which we see relatively long thighs and legs in females and, to a lesser 

extent, males in Ch. p. pygerythrus from Limpopo in South Africa (Suppl. Fig. 3b and 

4b). There are no significant regional differences in foot length (Suppl. Fig. 5). 
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DISCUSSION 

Ecogeographic Variation and Climate 

Information on body size and shape from individuals representing multiple 

taxa in a widely distributed group of closely related organisms allows for an 

assessment of the ways in which form may be modulated by local environmental 

constraints and selective pressures. Both excluding and including climatic variables, 

the patterns in mass and relative limb length noted in this study differ from those 

found in previous assessments of pan-African variation in vervets based on cranial 

size and shape (Cardini et al., 2007; Elton et al., 2010), wherein clinal variation in 

cranial size was consistently larger in populations nearer the Congo basin rather 

than in higher latitudes and, according to the authors, most probably associated 

with levels of rainfall. Differences among taxa in adult phenotypes and sexual 

dimorphism suggest some unique adaptive interpretations both within and across 

taxa as well as plastic responses to human impact, while variation in developmental 

patterns appears to underlie these differences. Our results, taken into consideration 

with those of Cardini et al. (2007), seem to also suggest that the cranium may be 

responding to different ecogeographic pressures than the body, and that size 

variation across populations in these two sets of traits may not be tightly correlated.  

In our global models not incorporating climatic variables, geographic 

variation like latitude and altitude, along with human impacts in the case of body 

mass, consistently come out as significant covariates consistent with the patterns 

predicted by Bergmann’s and Allen’s Rules. With the climatic variables included, the 

geographic variables and human impacts become unimportant to variation in these 
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traits, although there are no universal climatic effects across all measures, and those 

measures that do come out as significant are not always in accord with Bergmann’s 

and Allen’s Rules. This variation suggests that different aspects of physiology and 

parts of the body must respond to climatic variation in unique ways. 

The hind limb shows some surprising patterns in Chlorocebus. Sexual 

dimorphism in the thigh begins at dental age 5, which is earlier than either body 

mass or body length. The thigh length of juvenile Ch. p. hilgerti vervets is also 

significantly less than that of the Ch. p. pygerythrus populations, despite the fact that 

Ch. p. hilgerti are similar in body length at this age. That Ch. p. hilgerti should have 

such relatively short hind limbs conflicts with an ecogeographic interpretation of 

relative limb size differences between these two closely-related taxa, and calls for a 

more systematic investigation of the factors affecting limb morphology that might 

take into account other potential intervening factors, such as differences in 

substrate use and relative biomechanical advantage of these relative limb 

differences between taxa both in adults (e.g., Weinstein, 2011), and on an 

ontogenetic scale that takes allometry into account (e.g., Shea, 1992; Young, 2005; 

Bezanson, 2009).  Systematic deviations across taxa are often presumed to carry 

some signal of selection, as independent morphological changes in the foot and hind 

limb can be adaptations to species- and age-specific needs during locomotor 

ontogeny (Carrier, 1996; Lawler 2006). A closer investigation of how tightly the 

development of the hind limb is integrated with the rest of the body, taking into 

account ontogenetic allometry, along with comparative data on locomotor behavior, 
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would be necessary to accurately characterize this relationship and to determine 

whether it is adaptively linked to functional constraints (e.g., Lawler, 2006, 2008). 

 

Anthropogenic Impacts and Local Variation 

 In addition to supporting larger adaptive patterns of ecogeographic variation 

in body size represented by Bergmann’s Rule, both our linear and growth models 

suggest an equally significant role of plastic responses to human impacts on vervet 

body size and relative limb length. In Kenyan Ch. p. hilgerti, according to Turner et 

al. (1997), the divergent adult body mass and length and their associated growth 

patterns in Naivasha and Kimana are more likely due to access to human foods in 

intensely cultivated areas than to any evolutionary responses to either altitude or 

climate. 

Similar human impacts can be seen within South African populations. The 

very large body sizes seen in Gauteng Ch. p. pygerythrus are largely due to sampling 

in the southeast of urban Pretoria – in such an urban setting, access to human food 

could lead to a higher calorie diet and increased body size, as seen in other primate 

species (Altmann et al. 1993; Altmann & Alberts 2005). The notable early increase 

in size in males from the Northern Cape is more difficult to attribute to a particular 

source. Further sampling and investigation may be needed to ascertain whether 

these differences are due to sampling error or local ecological factors selecting for 

an earlier increase in size in these populations. Contrary to published reports that 

primates in captivity or sanctuaries are often larger than wild populations due to 

the increased caloric value of human-provisioned diets (i.e., as found by Turner et 
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al., 2016b, on St. Kitts), vervets of both sexes from the well-sampled Riverside 

Wildlife Rehabilitation Centre in Limpopo do not appear to be significantly heavier 

than wild-trapped populations in South Africa, although they were considerably 

smaller in body length at almost every age while also appearing to have 

comparatively long thigh and leg lengths relative to other populations sampled in 

South Africa. This differently proportioned body may reflect the poor nutrition or 

early life trauma that are characteristic of pets or rescued wildlife (e.g., Jones-Engel 

et al., 2001), as stunting based on poor nutrition and systemic disease has been 

noted to affect body length disproportionately to limb length, resulting in relatively 

longer limbs (e.g., Krishna et al., 1996; van den Berg et al., 2016). The divergent 

growth patterns in body length of vervets sampled in Mpumalanga may be due to 

their being largely sampled at or near tourist resorts at Swadini, Londolozi, and 

Blyde River Canyon. Vervets in these areas may also have had access to human 

provisioning, but why there is a more apparent increase in body length than body 

mass in these groups is unclear.  

 

Differences in Dimorphism 

Bergmann’s rule appears to hold across taxa in the genus Chlorocebus, with 

the notable exception of Ch. sabaeus males from St. Kitts & Nevis. Among primates, 

sexual dimorphism is attained via a number of developmental routes, and can vary 

markedly even between closely related taxa (Leigh 1992; Leigh and Shea, 1996; 

Turner et al. 1997). As in previous studies (Bolter and Zihlman, 2003; Turner et al. 

1997), within each Chlorocebus population there is some evidence of modular 
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differences in both rate of growth and overall patterns of growth. While growth 

patterns in Ch. sabaeus appear generally different from those seen in the South and 

East African taxa, the male pattern, with comparatively rapid growth in all traits 

during late development (age classes 4-6), leads to a particularly large adult male 

size relative to females.  

Pronounced adult sexual dimorphism, as seen in Ch. sabaeus, is often 

attributed to sexual selection based on increased male-male competition rather than 

sex-specific responses to environmental stress (e.g., Gaulin and Sailer, 1984; 

Leutenegger, 1978). Although such selective pressures may be operational in all 

vervets, which show at least moderate sexual dimorphism, these results suggest it 

may be extreme in Ch. sabaeus.  As directly comparative behavioral data are 

currently lacking across Chlorocebus populations, it is unclear whether Ch. sabaeus 

males face more extreme intrasexual competition than their congeners. Another 

physiological trait that separates Ch. sabaeus from other taxa of Chlorocebus is their 

remarkably blanched scrota; while most Chlorocebus males have vivid blue scrota, 

scrota in Ch. sabaeus blanch during development to become pale or white in adults 

(Cramer et al., 2013). Previous work seeking to understand the social role of this 

secondary sexual coloration has found it to mediate dominance status among males 

(Gerald, 2001), and that it may be a reliable signal of male health or quality (Gartlan 

& Brain, 1968; Isbell, 1995), although color itself does not appear to influence 

female mate choice (Gerald, 2010). Whether the extreme body size dimorphism 

found in Ch. sabaeus represents an adaptive response to (or perhaps cause of) this 

lack of color – representing a shift in signals most associated with reproductive 
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success for males (e.g., Badyaev et al., 2002), be it through intrasexual assessment or 

female choice – remains a question for future study. Comparative behavioral studies 

on the various vervet populations could help answer these questions by examining 

male-male competition and female availability in different taxa. Given that scrotal 

coloration varies during ontogeny, and that the developmental pattern of Ch. 

sabaeus appears to differ from the rest of the genus, developmental studies could 

shed a particularly interesting light on this question. All we can say, at the moment, 

is that Ch. sabaeus is a compelling case suggesting that both ecogeographic factors 

and differing levels of sexual selection may be operating across populations to 

produce the pattern seen, and that more direct, comparative studies combining 

behavioral and morphological data between these taxa could yield interesting 

results. 

 That South African vervets are the heaviest population and yet are also the 

least dimorphic contradicts larger phylogenetic patterns that support Rensch’s Rule 

in primates (Clutton-Brock et al. ,1977; Leutenegger and Cheverud, 1982; 

Leutenegger, 1978), although some previous intrageneric comparisons within 

primates have similarly shown a lack of support (Gordon, 2006). There are several 

potential explanations for this unexpected pattern, all of which remain speculative: 

intralocus sexual conflict in South African but not in other vervet populations, a 

phenomenon by which body size evolution towards a particular sex-specific 

optimum (e.g., larger body size for males) forces mass and size in the sexes to 

converge (e.g., Tarka et al., 2014; Lande, 1980), could explain this pattern; some 

unique fitness benefit for females in South Africa to become comparatively large 
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independent of selection acting on males (e.g., fecundity advantage models: Darwin, 

1874; Shine, 1988); sexual selection for larger females via either male choice or to 

combat male coercion (although the literature shows varying accounts of male 

coercion and choice in vervets: Isbell et al., 2002; Fairbanks & McGuire, 1987; 

Keddy, 1986; Young et al., 2017); or, to return to Bergmann’s Rule, the increase in 

mass overall in the South African population could be due to sexually unbiased 

selective pressures acting on both sexes to increase size. South African vervets live 

in areas that are seasonally very cold, and are exposed to particularly low nighttime 

temperatures that can drop well below freezing, which has been noted to cause 

large seasonal fluctuations in core body temperature (Lubbe et al., 2014).  These 

have been offset by both larger body size, which stabilizes core body temperature in 

Ch. p. pygerythrus (Henzi et al., 2017), and also the adoption of behavioral (Danzy et 

al., 2012) and social (McFarland et al., 2015; Henzi et al., 2017) strategies to mitigate 

the loss of body heat that have not yet been noted in other Chlorocebus taxa. That 

larger body size occurs in both males and females in South Africa also suggests a 

common etiology within the population, which need not be genetic in origin: recent 

work in humans, for example, suggest that such clinal variation in body mass as seen 

in Chlorocebus may also be reached by adaptive shifts in gut microbiota across 

populations (Suzuki and Worobey, 2014). Exactly how this clinal variation is 

achieved in response to temperature, and how it informs sexual dimorphism, will 

require further genomic and physiological comparisons between vervet taxa, with 

perhaps the most fruitful being in the latitudinally wide-spread clade consisting of 

Ch. p. hilgerti, Ch. cynosuros, and Ch. p. pygerythrus. 
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CONCLUSION 

Our results suggest that the taxonomic divisions often recognized between 

populations of the genus Chlorocebus do show some significant differences in both 

adult phenotype and developmental patterns, but also that widely geographically 

separated populations within taxa also carry with them significant differences in 

morphology and growth. These population differences may reflect unique responses 

in each to ecogeographic, socio-sexual, or biomechanical selective pressures acting 

on adult phenotypes via natural selection or during ontogeny via developmental 

plasticity; further, more targeted work across populations is needed to adequately 

address the variation seen in this sample. This work generates many more 

questions than answers. Why does the Ch. pygerythrus clade show divergent 

ecogeographic signals with respect to Allen’s rule? Is the exaggerated sexual 

dimorphism of the St. Kitts & Nevis Ch. sabaeus due to more intense male-male 

competition than other vervet populations, and does it represent a trade-off in 

sexual signaling? What are the genetic systems that underlie these traits, and can 

they give us an idea of how these growth and adult phenotypes function and are 

related? Finally, exactly how much of this variation is truly adaptive, how much due 

to plastic responses to local conditions and random effects related to species-

specific demographic and population history? To truly tease apart the pressures and 

processes that underlie these phenotypic differences will require much more 

extensive comparative work in behavioral ecology and developmental morphology 

within and across these populations. 
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Fig. 1. Chlorocebus sample collection locations in Africa. Individual collection sites in St. Kitts & 

Nevis were extensive and distributed widely across both islands, and so are not shown here 

(see Jasinska et al., 2013, for a complete map of trapping sites). 

 

Fig. 2.  Loess models for changes in body mass (kg) by estimated chronological age in 

Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points 

represents the midpoint of the interval of a single dental age category, from 1 to 6. Category 7, 

or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean age is 

unknown. Their data points are therefore situated on the plot at 50 months, the start of this 

age interval, when the animal is at or close to adult size. 

 

Fig. 3. Loess models for changes in body length (cm) by estimated chronological age in 

Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points 

represents the midpoint of the interval of a single dental age category, from 1 to 6. Category 7, 

or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean age is 

unknown. Their data points are therefore situated on the plot at 50 months, the start of this 

age interval, when the animal is at or close to adult size. 

 

Fig. 4. Loess models for changes in relative thigh length (cm) by estimated chronological age in 

Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points 

represents the midpoint of the interval of a single dental age category, from 1 to 6. Category 7, 

or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean age is 

unknown. Their data points are therefore situated on the plot at 50 months, the start of this 

age interval, when the animal is at or close to adult size. 

 

Fig. 5. Loess models for changes in relative leg length (cm) by estimated chronological age in 

Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points 

represents the midpoint of the interval of a single dental age category, from 1 to 6. Category 7, 

or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean age is 

unknown. Their data points are therefore situated on the plot at 50 months, the start of this 

age interval, when the animal is at or close to adult size. 

 

Fig. 6. Loess models for changes in relative foot length (cm) by estimated chronological age in 

Chlorocebus a) females, and b) males with 95% confidence sheaths. Each cluster of points 

represents the midpoint of the interval of a single dental age category, from 1 to 6. Category 7, 

or ‘Adult’, includes adults in whom at least one third molar has erupted, and whose mean age is 

unknown. Their data points are therefore situated on the plot at 50 months, the start of this 

age interval, when the animal is at or close to adult size. 

 

Supp. Fig. 1. Loess models for changes in body mass (kg) by estimated chronological age in 

sampled regional populations of a) Ch. p. hilgerti, b) Ch. p. pygerythrus, c) Ch. sabaeus, and d) 

Ch. aethiops. Regional populations are denoted in the legend. 
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tSupp. Fig. 2. Loess models for changes in body length (cm) by estimated chronological age in 

sampled regional populations of a) Ch. p. hilgerti, b) Ch. p. pygerythrus, c) Ch. sabaeus, and d) 

Ch. aethiops. Regional populations are denoted in the legend. 

 

Supp. Fig. 3. Loess models for changes in thigh length (cm) by estimated chronological age in 

sampled regional populations of a) Ch. p. hilgerti, b) Ch. p. pygerythrus, c) Ch. sabaeus, and d) 

Ch. aethiops. Regional populations are denoted in the legend. 

 

Supp. Fig. 4. Loess models for changes in leg length (cm) by estimated chronological age in 

sampled regional populations of a) Ch. p. hilgerti, b) Ch. p. pygerythrus, c) Ch. sabaeus, and d) 

Ch. aethiops. Regional populations are denoted in the legend. 

 

Supp. Fig. 5. Loess models for changes in foot length (cm) by estimated chronological age in 

sampled regional populations of a) Ch. p. hilgerti, b) Ch. p. pygerythrus, c) Ch. sabaeus, and d) 

Ch. aethiops. Regional populations are denoted in the legend. 
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Fig. 1. Chlorocebus sample collection locations in Africa. Individual collection sites in St. Kitts & Nevis were 
extensive and distributed widely across both islands, and so are not shown here (see Jasinska et al., 2013, 

for a complete map of trapping sites).  
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Fig. 2. Loess models for changes in body mass (kg) by estimated chronological age in Chlorocebus a) 
females, and b) males with 95% confidence sheaths. Each cluster of points represents the midpoint of the 
interval of a single dental age category, from 1 to 6. Category 7, or ‘Adult’, includes adults in whom at least 
one third molar has erupted, and whose mean age is unknown. Their data points are therefore situated on 

the plot at 50 months, the start of this age interval, when the animal is at or close to adult size.  
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Fig. 3. Loess models for changes in body length (cm) by estimated chronological age in Chlorocebus a) 
females, and b) males with 95% confidence sheaths. Each cluster of points represents the midpoint of the 
interval of a single dental age category, from 1 to 6. Category 7, or ‘Adult’, includes adults in whom at least 
one third molar has erupted, and whose mean age is unknown. Their data points are therefore situated on 

the plot at 50 months, the start of this age interval, when the animal is at or close to adult size.  
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Fig. 4. Loess models for changes in relative thigh length (cm) by estimated chronological age in Chlorocebus 
a) females, and b) males with 95% confidence sheaths. Each cluster of points represents the midpoint of the 
interval of a single dental age category, from 1 to 6. Category 7, or ‘Adult’, includes adults in whom at least 
one third molar has erupted, and whose mean age is unknown. Their data points are therefore situated on 

the plot at 50 months, the start of this age interval, when the animal is at or close to adult size.  
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Fig. 5. Loess models for changes in relative leg length (cm) by estimated chronological age in Chlorocebus 
a) females, and b) males with 95% confidence sheaths. Each cluster of points represents the midpoint of the 
interval of a single dental age category, from 1 to 6. Category 7, or ‘Adult’, includes adults in whom at least 
one third molar has erupted, and whose mean age is unknown. Their data points are therefore situated on 

the plot at 50 months, the start of this age interval, when the animal is at or close to adult size.  
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Fig. 6. Loess models for changes in relative foot length (cm) by estimated chronological age in Chlorocebus 
a) females, and b) males with 95% confidence sheaths. Each cluster of points represents the midpoint of the 
interval of a single dental age category, from 1 to 6. Category 7, or ‘Adult’, includes adults in whom at least 
one third molar has erupted, and whose mean age is unknown. Their data points are therefore situated on 

the plot at 50 months, the start of this age interval, when the animal is at or close to adult size.  
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Table    1            Coordinates and human impact index scores by trapping sites for Chlorocebus.  Climate variables are derived from the WorldClim  database based on latitude and longitude locations of trapping sites.

Taxon Country Region Site Latitude Longitude Altitude    (m) Agriculture
Human    

Food
Rubbish Provisioning

Human    

Activity

Human    

Impact    

Index

Human    

Impact    

Group

Annual    Mean    

Temp.

Temp.    

Seasonality

Min.    Temp.    

Coldest    

Month

Mean    Temp.    

Coldest    

Quarter

Annual    

Precipitation

Precipitation    

Seasonality

Ch. aethiops Ethiopia Awash Awash 8.9917 40.1632 925 0 0 0 0 Low 5 Low 25.6 2033 13.7 22.7 132 291

Ch. aethiops Ethiopia Non-Awash Hawaasa 7.0504 38.4955 1712 0 1 1 1 High 10 High 19.2 734 9.4 18.6 134 394

Ch. aethiops Ethiopia Non-Awash Lake Tana 12.0266 37.0266 2102 0 1 1 1 High 10 High 20.1 1141 10.4 19 363 917

Ch. p. hilgerti Kenya Kimana Kimana -2.8000 37.5333 1277 1 1 0 0 Moderate 8 Moderate 20.2 1500 12.7 18 179 374

Ch. p. hilgerti Kenya Mosiro Mosiro -1.4833 36.1000 1302 0 0 0 0 Low 5 Low 21.5 1088 13.2 19.8 152 335

Ch. p. hilgerti Kenya Naivasha Naivasha -0.7172 36.4310 1901 1 1 1 0 Moderate 9 High 16.9 931 8.4 15.6 133 298

Ch. p. hilgerti Kenya Samburu Samburu 1.2571 37.1768 1181 0 0 0 0 Low 5 Low 20.1 854 10.6 18.8 173 337

Ch. p. pygerythrus South Africa Eastern Cape Geelhoutbos -33.7692 24.0988 369 0 0 0 0 Low 5 Low 15.6 2935 5.1 11.8 76 220

Ch. p. pygerythrus South Africa Eastern Cape Rooiplatt -33.7692 24.0988 369 1 0 0 0 Moderate 7 Moderate 15.6 2935 5.1 11.8 76 220

Ch. p. pygerythrus South Africa Eastern Cape Bukela -33.5722 26.1239 253 0 0 0 0 Low 5 Low 17.4 2647 6.8 13.9 58 160

Ch. p. pygerythrus South Africa Eastern Cape Bushman Sands -33.2936 26.1483 313 0 0 0 0 Low 5 Low 17.6 3048 5.6 13.5 60 155

Ch. p. pygerythrus South Africa Eastern Cape Intaka Lodge -33.5708 26.6025 276 0 0 1 0 Low 6 Moderate 18 2248 9.2 15.2 65 182

Ch. p. pygerythrus South Africa Eastern Cape Leeuwenbosch -33.5364 26.0694 269 1 0 0 0 Low 6 Moderate 17.7 2749 6.7 14.1 54 148

Ch. p. pygerythrus South Africa Eastern Cape NMMU -34.0010 25.6715 29 0 1 1 1 High 10 High - - - - - -

Ch. p. pygerythrus South Africa Eastern Cape Pine Lodge -34.0101 25.6887 13 0 0 0 0 Low 5 Low 17.8 2359 9.1 14.9 58 172

Ch. p. pygerythrus South Africa Eastern Cape Rietfontein -33.5503 26.1247 253 0 0 0 0 Low 5 Low 17.4 2647 6.8 13.9 58 160

Ch. p. pygerythrus South Africa Eastern Cape Osfontein (Shamwari GR) -33.4783 26.0297 245 0 0 1 0 Low 6 Moderate 17.8 2872 6.4 14.1 53 139

Ch. p. pygerythrus South Africa Eastern Cape Bayethe Lodge (Kwantu GR) -33.3995 26.1811 442 0 0 1 1 Moderate 8 Moderate 16.9 2884 5.4 13 65 178

Ch. p. pygerythrus South Africa Eastern Cape Harden Lodge (Shamwari GR) -33.4736 26.0422 231 0 0 1 1 Moderate 8 Moderate 18 2833 6.8 14.3 52 138

Ch. p. pygerythrus South Africa Eastern Cape Longlee Lodge (Shamwari GR) -33.4667 26.0508 228 0 0 1 1 Moderate 8 Moderate 18 2833 6.8 14.3 52 138

Ch. p. pygerythrus South Africa Eastern Cape Ravine (Shamwari GR) -33.4936 26.0067 261 0 0 0 0 Low 5 Low 17.8 2872 6.4 14.1 53 139

Ch. p. pygerythrus South Africa Eastern Cape Conningly (Shamwari GR) -33.4089 26.1011 338 1 0 0 0 Low 6 Moderate 17.4 2932 5.8 13.5 59 157

Ch. p. pygerythrus South Africa Eastern Cape Doringkom (Shamwari GR) -33.2881 26.0314 400 1 0 0 0 Low 6 Moderate 17.8 3199 5.4 13.5 57 146

Ch. p. pygerythrus South Africa Eastern Cape Splitting Image -33.3975 26.2933 455 0 0 0 0 Low 5 Low 17 2834 5.8 13.2 67 184

Ch. p. pygerythrus South Africa Eastern Cape Sibuya -33.6308 26.6444 15 0 0 0 0 Low 5 Low - - - - - -

Ch. p. pygerythrus South Africa Eastern Cape Sidbury Club -33.5025 26.1311 196 0 0 1 1 Moderate 8 Moderate 18 2658 7.4 14.5 53 146

Ch. p. pygerythrus South Africa Eastern Cape Stellenhof (Addo) -33.5497 26.7083 266 1 0 0 0 Low 6 Moderate 17.8 2255 9.2 15 68 190

Ch. p. pygerythrus South Africa Eastern Cape Tslowane -32.1834 26.5020 1407 0 0 0 0 Low 5 Low 12.4 3625 0 7.5 92 261

Ch. p. pygerythrus South Africa Free State Fishery (!Gariep Dam) -30.6067 25.4464 1206 1 1 1 0 High 10 High 16.9 5380 1.7 9.6 72 186

Ch. p. pygerythrus South Africa Free State !Gariep Dam Nature Reserve -30.6008 25.4945 1367 0 0 0 0 Low 5 Low - - - - - -

Ch. p. pygerythrus South Africa Free State Orange River Guest Farm (!Gariep Dam) -30.6342 25.4869 1296 1 0 1 0 Moderate 7 Moderate 16.9 5309 1.9 9.7 74 189

Ch. p. pygerythrus South Africa Free State Parys Country Estate -26.8939 27.4909 1429 0 1 1 1 High 10 High - - - - - -

Ch. p. pygerythrus South Africa Free State Sandveld Nature Reserve 1 -27.6761 25.6817 1240 0 0 1 0 Low 6 Moderate 17.8 5190 -0.2 10.5 82 240

Ch. p. pygerythrus South Africa Free State Sandveld Nature Reserve 1 -27.6811 25.7125 1240 0 0 1 0 Low 6 Moderate 17.6 5184 -0.2 10.3 84 242

Ch. p. pygerythrus South Africa Free State Sandveld Nature Reserve 1 -27.6757 25.6825 1240 0 0 0 0 Low 5 Low 17.8 5190 -0.2 10.5 82 240

Ch. p. pygerythrus South Africa Free State Sandveld Nature Reserve 1 -27.7460 25.7686 1242 1 0 0 0 Low 6 Moderate 17.5 5200 -0.3 10.2 85 241

Ch. p. pygerythrus South Africa Free State Soetdoring Nature Reserve 1 -28.8219 26.0594 1262 1 0 0 0 Low 6 Moderate 16.7 5395 -1.5 9.2 79 228

Ch. p. pygerythrus South Africa Free State Soetdoring Nature Reserve 2 -28.8219 26.0594 1262 0 0 1 0 Low 6 Moderate 16.7 5395 -1.5 9.2 79 228

Ch. p. pygerythrus South Africa Free State Southford Farm (!Gariep Dam) -30.6067 25.4464 1206 1 1 1 0 High 10 High 16.9 5380 1.7 9.6 72 186

Ch. p. pygerythrus South Africa Free State Waschbank (!Gariep Dam) -30.6167 25.4622 1206 1 1 1 0 High 10 High 16.6 5293 1.4 9.4 74 192

Ch. p. pygerythrus South Africa Gauteng Loristo -25.8116 28.3040 1424 0 1 1 1 High 10 High 16.7 3948 1.7 11 141 359

Ch. p. pygerythrus South Africa Gauteng Woodhill -25.8116 28.3040 1424 0 1 1 1 High 10 High 16.7 3948 1.7 11 141 359

Ch. p. pygerythrus South Africa KwaZulu-Natal Alize, Blythedale Beach -29.3747 31.3489 21 0 1 1 0 High 9 High 21 2592 11.3 17.5 128 370

Ch. p. pygerythrus South Africa KwaZulu-Natal Anerley -30.6697 30.5078 14 0 1 1 0 High 9 High 20.2 2402 12.1 17 145 392

Ch. p. pygerythrus South Africa KwaZulu-Natal Futululu -28.4389 32.2823 48 0 0 0 0 Low 5 Low 21.8 2713 12.5 18.2 131 361

Ch. p. pygerythrus South Africa KwaZulu-Natal Kwela Lodge -29.4911 31.3600 24 1 1 1 1 High 11 High - - - - - -

Ch. p. pygerythrus South Africa KwaZulu-Natal Maurann Farm -28.4389 32.2823 48 0 1 0 0 Low 6 Moderate 21.8 2713 12.5 18.2 131 361

Ch. p. pygerythrus South Africa KwaZulu-Natal Oribi Gorge -30.6910 30.2925 427 1 0 0 0 Low 6 Moderate 18.2 2297 9.6 15.2 141 404

Ch. p. pygerythrus South Africa KwaZulu-Natal Seula Zimbili -29.2078 31.4242 89 0 1 1 0 Moderate 8 Moderate 21.1 2631 11.2 17.5 132 376

Ch. p. pygerythrus South Africa KwaZulu-Natal Thorny Park Estate -29.1858 31.4417 40 1 1 1 0 Moderate 9 High 21.1 2631 11.2 17.5 132 376

Ch. p. pygerythrus South Africa KwaZulu-Natal Zinkwazi Lagoon Lodge -29.2769 31.4397 22 0 1 1 0 High 9 High 21.2 2595 11.4 17.7 132 376

Ch. p. pygerythrus South Africa Limpopo Bird Sanctuary -23.8962 29.4486 1257 0 0 0 0 Low 5 Low 17.7 3583 4.1 12.6 103 292

Ch. p. pygerythrus South Africa Limpopo Lapa Reserve -23.9006 28.3170 1176 0 0 0 0 Low 5 Low 18.8 3986 2.8 13 114 301

Ch. p. pygerythrus South Africa Mpumalanga Blyde Resort -24.5807 30.7723 1184 0 1 1 0 Moderate 8 Moderate 17.6 2785 5.5 13.5 173 504

Ch. p. pygerythrus South Africa Mpumalanga Potholes -24.5807 30.7723 1184 0 1 0 0 Moderate 7 Moderate 17.6 2785 5.5 13.5 173 504

Ch. p. pygerythrus South Africa Mpumalanga Swadini -24.5170 30.8100 606 0 0 0 0 Low 5 Low 20.1 2983 7.6 15.8 147 415

Ch. p. pygerythrus South Africa Northern Cape Benfontein -28.8245 24.8201 1177 1 0 0 0 Low 6 Moderate 18.2 5189 1.7 11 74 207

Ch. p. pygerythrus South Africa Northern Cape Dronfield -28.7379 24.7627 1233 0 0 0 0 Low 5 Low - - - - - -

Ch. p. pygerythrus South Africa Northern Cape Druiswater/Kanoneiland -28.6552 21.0847 768 0 0 0 0 Low 5 Low 19.6 5336 2.8 12.4 35 86

Ch. sabaeus St. Kitts & Nevis St. Kitts St. Kitts 17.3578 -62.7830 155 1 1 1 1 High 11 High 24.1 1118 19.2 22.5 193 557

Ch. sabaeus St. Kitts & Nevis Nevis Nevis 17.1554 -62.5796 355 1 1 1 1 High 11 High 25.2 1117 20.3 23.6 176 509
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Dental Age Class Age Range (months)

1 6 - 115 days

2 12-14

3 22-27

4 26-31

5 32 - 40 

6 38-41

Adult > 38

Table    2     Dental Age Classes based on dental eruption sequences for Chlorocebus. 

Age range listed is the lower range for initiation of that age class.

M1, I1, I2, M2, P3, P4, C

Eruption of M3

Permanent Dentition Present

All deciduous

All deciduous, M1

M1, I1, I2

M1, I1, I2, M2

M1, I1, I2, M2, P3, P4
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Table    3 Summary statistics for vervet morphometric data

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 8 0.55 0.15 18.33 2.08 - - - - - - -

2 16 1.25 0.24 25.66 2.02 - - - - - - -

3 4 1.61 0.11 30.20 2.72 - - - - - - -

4 3 1.72 0.36 29.70 2.10 - - - - - - -

5 4 2.33 0.11 32.23 2.80 - - - - - - -

6 5 3.54 1.06 36.32 2.48 - - - - - - -

Adult 29 4.02 0.68 38.18 2.91 - - - - - - -

1 2 0.24 0.13 15.45 0.64 - - - - - - -

2 12 1.29 0.13 25.72 2.27 - - - - - - -

3 4 1.79 0.42 28.13 2.78 - - - - - - -

4 4 1.84 0.42 30.15 3.99 - - - - - - -

5 - - - - - - - - - - - -

6 7 2.16 0.19 31.43 0.93 - - - - - - -

Adult 41 2.70 0.51 33.28 2.02 - - - - - - -

n
Body    Length    (cm)Body    Weight    (kg) Foot    (cm)Leg    (cm)Thigh    (cm)

n

Male      

(n = 69)

Female    

(n = 106)

Taxon Location Sex Dental    Age

Ch. aethiops      

(n = 139)
Ethiopia
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Table    3 Summary statistics for vervet morphometric data, continued…

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1 21 0.96 0.21 22.67 5.90 22 9.50 0.83 10.93 1.82 9.59 0.81

2 28 1.37 0.45 26.14 3.95 28 11.20 1.30 12.37 2.10 10.70 1.05

3 19 2.05 0.39 29.66 2.11 19 13.11 1.17 14.53 1.18 11.84 0.80

4 15 2.36 0.46 31.40 2.85 14 13.89 1.38 15.54 1.41 12.54 1.18

5 16 2.69 0.46 32.91 3.29 16 14.59 1.05 16.00 1.06 13.25 1.83

6 37 4.04 0.92 36.77 3.84 38 16.84 1.47 18.58 1.39 14.45 0.85

Adult 90 5.67 0.74 40.41 3.08 90 18.24 0.83 19.81 0.76 15.11 0.67

1 17 0.89 0.23 22.26 1.94 18 9.42 0.75 10.61 0.99 9.33 0.75

2 16 1.62 0.28 26.94 2.29 17 11.62 0.82 12.79 1.06 10.68 0.79

3 9 2.28 0.49 31.78 3.36 10 13.10 1.82 14.60 1.87 12.05 1.23

4 14 1.99 0.51 30.07 2.37 13 13.23 1.24 14.43 1.22 11.86 0.77

5 10 2.37 0.20 31.70 2.20 10 14.00 0.78 15.56 0.73 12.20 0.59

6 53 3.41 0.68 34.59 2.99 53 15.31 0.80 16.45 0.79 13.08 0.97

Adult 64 3.54 0.81 34.67 2.57 64 15.33 0.92 16.47 0.75 12.91 0.79

n
Body    Length    (cm)Body    Weight    (kg) Foot    (cm)Leg    (cm)Thigh    (cm)

n

Male      

(n = 212)

Female    

(n = 183)

Taxon Location Sex Dental    Age

Ch. sabaeus      

(n = 409)
St. Kitts & Nevis
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Table 4 Best model regression results of the influence of latitude, altitude and human impact on adult Chlorocebus a) body size, b) body length, c) thigh/body length, d) leg/body length, and e) foot/body length. Posterior 

means (parameter estimate or b), 95% credibility intervals, and P values are estimated using MCMC with significant values in bold. Data for insignificant interaction terms are not included in the table. Since random effect 

estimates did not overlap with zero, both the marginal R
2
GLMM (assessing the fit of fixed effects) value and conditional R

2
GLMM (assessing the fit of fixed and random effects) are used to report goodness of fit. 
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Table 5 Best global model regression results of the influence of latitude, altitude and human impact with climatic variables on adult Chlorocebus a) body size, b) body length. Posterior means (parameter estimate or b), 95% 

credibility intervals, and P values are estimated using MCMC with significant values in bold. Data for insignificant interaction terms are not included in the table. Since random effect estimates did not overlap with zero, 

both the marginal R²GLMM (assessing the fit of fixed effects) value and conditional R²GLMM (assessing the fit of fixed and random effects) are used to report goodness of fit. 
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Table 6 Best global model beta regression results of the influence of latitude, altitude and human impact for adult Chlorocebus a) 

ratio of thigh to body length, b) ratio of leg to body length, and c) ratio of foot to body length, using Country as a random effect. 

Pseudo-R² value to assess goodness-of-fit is only for fixed-effects, and does not include the random effect of country. 
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