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Metastable states in classical and quantum systems
Mark Makela, Samantha Parmley, and Roger Yu
Department of Physics, Central Washington University, Ellensburg, Washington 98926

~Received 6 May 1996; accepted 14 January 1997!

The classical vibrational metastable states in a one-dimensional two-mass system are investigated
experimentally and theoretically via the transmission of a coherent wave packet propagating through
the system. The Fourier transform of the vibrational signal recorded in between the masses reveals
resonant excitations by the coherent wave packet. The time-resolved spectrum indicates that the
lifetime of a metastable state of higher frequency is longer than that of lower frequency, which is
in contrast with the quantum mechanical double-barrier system. This study, which is easily
accessible to physics majors, also demonstrates quantum resonant tunneling in a very simple
classical way. ©1997 American Association of Physics Teachers.

The concept of metastable states in quantum mechanics
dates back to the beginning of the century. The interaction
between a quantum system and an external electromagnetic
field was described by Planck using the concept of a meta-
stable state. A metastable state is an unstable and exponen-
tially decaying state with a certain lifetime. It is distin-
guished from a stationary state, which is ‘‘infinitely’’ long
lived. For the sake of simplicity, we discuss the one-
dimensional quantum scattering problem:1 the description of
the metastable states and the transmission coefficient of a
plane wave. Figure 1~a! illustrates a schematic diagram of
the double-barrier structure under consideration. The station-
ary quantum scattering problem is governed by the time-
independent Schro¨dinger equation

F2
\2

2m

d2

dx2
1V~x!GC5EC, ~1!

where m is the mass of an electron andV(x)5ad(x)
1ad(x2d) is the potential energy of the electron. The con-
stantsa andd are the barrier strength and barrier separation.
Some of the eigenstates are mainly confined in between the
barriers, and their energies form a discrete spectrum. The
discrete eigenstates are metastable because their energies are
above a stable ground state taken to be atE50. The insta-
bility of such a state, i.e., the decay of an electron from the
nth metastable state in the potential well, can be described by
a complex energy,2

Ēn5En1 iGn/2. ~2!

With this complex variable, the time-dependent part of the
wave function for thenth state has the following form:

C~ t !}exp@2tGn/2\#exp@2 iEnt/\#. ~3!

The physical quantity\/Gn then, is the lifetime of thenth
metastable state. The energy spectrum of the system when
electrons escape from thenth unstable state is obtained by
the Fourier transform

S~E!}E
0

`

exp@2tGn /~2\!2 i t ~E2En!/\#dt

5
\

i ~E2En!2Gn/2
. ~4!

The probability density per unit energy of finding the energy
E for the emitted electron from the staten is proportional to
the square ofS(E) :

uS~E!u25
\2

~E2En!
21~Gn/2!2

. ~5!

This function peaks atE5En . The characteristic width
DEn broadens as one moves to a higher unstable state, be-
cause of the stronger overlap between the wave functions
inside and outside the double-barrier structure. Accordingly,
the lifetime of a higher metastable state shortens. The life-
time of a metastable electronic state can also be determined
by the transmission coefficient of a harmonic plane wave
tunneling through the double-barrier structure.3 By solving
the Schro¨dinger equation with the double delta barrier poten-
tial, as illustrated in Fig. 1~a!, and using the standard bound-
ary conditions at the barriers, one finds the transmission co-
efficient of an electronic harmonic wave~see the Appendix!:

T5utu2

where ~6!

t54/@e2e2ikd1~ i e12!2#.

Here, the dimensionless parametere is 2am/(\2k), and the
wave vectork equals (2mE/\2)1/2. We have plotted the ab-
solute value oft vs energyE in Fig. 1~a! by using specific
values of d(5100 Å), a(52.0 eV Å!, and me ~electron
mass!. The resonant peaks corresponding to the metastable
states become broadened at higher energy indicating the de-
creasing lifetime of the metastable states.
This quantum mechanical phenomenon has a strong anal-

ogy in classical systems and it is our intention to demonstrate
it in this article. We first consider theoretically an infinitely
long string loaded with two equal masses separated by dis-
tanced as shown in Fig. 1~b!. Classically, the two masses
restrict the interaction between the string segments inside
and outside, leading to a resonant frequency spectrum for the
string segment confined by the masses. The quantized states
are metastable and decay exponentially like the metastable
states in the quantum double-barrier system. The resonant
states confined between the masses would be stable or sta-
tionary if the masses were infinitely large. The waveforms of
the metastable states are similar to the standing waves found
in a clamped bare string of lengthd.
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Despite the strong analogy between the classical and
quantum metastable states, there is a crucial difference be-
tween them: The lifetime of a higher frequency metastable
state in the classical two-mass system becomes longer. We
have also calculated the transmission coefficientT of a clas-
sical plane wave through the two-mass system as a function
of the harmonic frequency by solving the time-independent
wave equation4

T0ü~x!1sv2u~x!50, ~7!

where,T0 is the tension,s(x)5s1md(x)1md(x2d) is
the mass density,u(x) is the transverse displacement of the
string,v is the harmonic frequency, andd is the mass sepa-
ration. The boundary condition matching at the locations of
the masses results in a transmission coefficient which ap-
pears similar to the quantum counterpart@Eq. ~6!# ~see the
Appendix!, except that the dimensionless parametere now
equalsmv/(T0s)

1/2. Figure 1~b! depicts the absolute value
of the transmission amplitude (5T1/2) plotted against the
frequency. The resonant peaks, shown by the inserts, sharpen
at higher frequencies; therefore, the lifetime becomes
longer. Actually, in the limit of largee, the lifetimes of both
systems can be approximated analytically. Here, the argu-

ment is presented in a parallel fashion. Start with the dimen-
sionless parametere : eQ52am/\2k, and eC5vm/AT0s
5(m/sd)vd/v. It follows from Eq. ~6! that for largee,
utu'2/(e2 sin(kd)); utu is a maximum atkd5np as ex-
pected. To find the width of the resonant peaks, letutu
'2/(e2 sin(kd)) 5 1/2, then sinkd564/e2!1, and kd
5np64/e2, so Dk58/(e2d). Due to the different disper-
sion relations,E5\2k2/2m, and v5vk, we found DE
;E3/2, andDv;v22. The uncertainty principle yields the
quantum lifetime;E23/2 and the classical lifetime;v2.
The physical interpretation of longer lifetime for resonant
state of higher frequency in the classical system is quite
clear. At lower frequencies, the wavelength is longer than the
mass separation so the propagating wave ‘‘views’’ the two
masses as one. As the wavelength decreases, the size of the
mass separation becomes much more critical in confining the
metastable states.
The classical metastable states can be excited by sending a

propagating mechanical wave packet through the two-mass
system. The string segment between the masses responds to
the incident wave packet strongly if the mean wavelength of
the incident wave and that of the metastable states become
close. In general the incident wave packet contains many
plane waves of different wavelengths so that several meta-
stable states may be excited. Because the resonant transmis-
sion peaks are so sharp, the two masses actually serve as a
filter. As the wave packet impinges on the masses, some of
the harmonic waves are reflected, and the waves whose fre-
quencies match those of the metastable states are transmitted.
The part of the wave packet that can tunnel through the
masses contains the harmonic components of frequencies of
the metastable states. In the experimental setup, similar to
the one we used in studying the eigenstates of a loaded
string,5 two 5-g masses separated by 0.33 m(5d) were at-
tached at the middle of a 6.5-m(5L) long brass harpsichord
wire. The wire with linear mass densitys51.231023 kg/m,
was tensioned to 40.7 N. Pulses of full width at half-
maximum ~FWHM! of about 0.33 m were delivered to the
wire via an audio speaker with an aluminum rod attached to
the voice coil. The speaker was pulsed with a trianglelike
wave derived from a Tektronix function generator and a
200-W amplifier. Figure 2~a! depicts the initial pulse and its
spectral distribution. As the pulse propagates through the
string, a transducer records the ac signal and runs it through
the linear amplifier into the computer driven digitizer. The
digitized data enable us to analyze the real time series in the
frequency domain by fast Fourier transform~FFT!. Figure
2~b! shows the short-period~;0.02-s! transmitted signal re-
corded on the far side of the masses and its Fourier trans-
form. At the early stage of the transmission, the signal is
dominated by the vibration of about 50 Hz, modulated by
modes near 300 and 600 Hz. Figure 2~c! displays the Fourier
transform of the long-period time series of a few seconds,
recorded in between the masses: more peaks and structure
are shown in the figure. In order to fully understand the
experimental data, one needs to solve the eigenequation@Eq.
~7!#, in conjunction with the boundary conditions,u(0)
5u(L)50. Very recently we have developed a method of
solving the finite-length@L56.5 (m)# problem based on
sine-wave expansion.5 For the present finite-length problem,
the mass density in Eq.~7! is expressed ass(x)5s
1md(x2(L/22d/2))1md(x2(L/21d/2)). The method

Fig. 1. The calculated transmission amplitudeutu calculated using the two-
delta-barrier model. For the classical system the parameters used in the
calculation are matched with the experiment:T0540.7 N, m55.0 g, s
51.231023 kg/m, mass separationd50.33 m and total length of the string
L56.5 m. In order to show the resonant width, the peaks at 283, 560, and
839 Hz are widened by a factor of 60 and displayed by the inserts. The
frequency intervals for the three peaks are from 282 to 285 Hz, 559 to 562
Hz and from 837 to 840 Hz. For the quantum system,d5100 Å, a
52.0 eV Å, m5me .
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was adapted in this study and the eigenfunctionsun(x) and
eigenfrequenciesvn are obtained accurately. The dynamics
of the loaded string can be expressed in terms of the eigen-
states by the superposition principle:

uu~x,t !&5 (
n51

`

uun~x!&dn cos~vnt !. ~8!

The density of states,dn5^un(x)uu(x,o)&, is determined by
the initial displacement of the string. The Fourier transform
of Eq. ~8! gives rise to the spectrum at a certain position,

s~x,v!5(
m

dmum~x!d~v2vm!. ~9!

In the above equation,dmum(x) is the local density of states
which reveals the information about the density of harmonic
components at positionx. If x is in between the masses, the
local spectrumS(x,v) is expected to peak at the frequencies
of metastable states. Figure 2~d! displays the theoretical local
spectrum (x5L/21d/4) calculated using long-period time
series, so it is directly comparable to Fig. 2~c!. The wave
speed in the string is approximately equal to (T0 /s)

1/2

5180 m/s, the wavelength of the lowest metastable state is
l152d50.66 m, and the frequency of the state is about 290
Hz. The frequency of the metastable states jumps upwards in
steps of 290 Hz. Because of the finite length of the entire
string, the frequency spectrum of the entire system is also
discrete: The frequency separation is roughly equal to
180 m/s/~236.5 m!514 Hz. By observing Figs. 2~c! and
2~d!, one can identify four kinds of resonant excitations as
the wave packet tunnels through the double-mass system:~a!
metastable resonances near 290, 580, 870, and 1160 Hz;~b!
discrete background structure, peaks separated by about 14

Hz corresponding to the resonances of the entire string;~c!
strong peaks at 18 Hz due to the fundamental resonant mode
of the entire string;~d! the well-defined peak at about 50 Hz
which can be attributed to the rotational vibration of the two
masses. The calculated eigenfunction at 50 Hz~not shown
here! displays large out-of-phase displacement of the masses
and a straight line in between them: It is a strong indication
of dumbbell-like rotational motion. Because of the spatial
resolution of the pickup~the size of the pickup is about 10
cm!, the metastable states beyond 1200 Hz, whose wave-
lengths are shorter than 7 cm, were not detected. The calcu-
lated spectrum misses the mode at 1160 Hz because the cho-
sen position (x5L/21d/4) is right on a node of the mode.
The string segment in between the masses couples with the
string outside through the masses. This interaction is respon-
sible for the frequency splitting shown in Figs. 2~c! and 2~d!
near 300 and 600 Hz. The short-period transmitted vibra-
tional signal and its Fourier transform@Fig. 2~b!# does not
contain the 18 Hz mode because the corresponding period is
longer than 0.02 s. The higher metastable states of 870 and
1160 Hz do not play a significant role in the early stage of
the transmission because of their longer lifetime: They take
longer to radiate the energy out of the region confined by the
masses.
The experimental spectrum shown in Fig. 2~c! is the Fou-

rier transform of this entire time series of 1.0 s. It tells us
how many metastable states are excited over the period but it
does not provide any indication of how long the metastable
state of a certain frequency lasts. We have used the short-
period Fourier transform to study the lifetime of metastable
states: We break up the time series into small segments and
Fourier analyze each time segment.6 We shall call the time-
dependent spectrum the spectrogram. The time series was
divided into 32 pieces to obtain the spectrogram. The spec-
trograms of frequencies near the lowest four metastable
states are plotted semilogarithmically in Fig. 3. At lower
frequencies@Figs. 3~a! and 3~b!#, the coupling between the
metastable states and the rest of the system is much stronger,
as shown in Figs. 2~c! and 2~d! by the mode splitting, so the
spectrograms display oscillations. The spectrograms of 859
and 1171 Hz basically follow straight lines, indicating the
nature of exponential decay. The slopes of the straight lines
are proportional to the reciprocal of the lifetime of the states.
At high frequencies, the slope is slightly smaller so the life-
time is longer. The lifetimes for the lowest four metastable
states are found to be approximately 0.2, 0.3, 0.4, and 0.4 s,
respectively, by finding the slopes in Fig. 3. One can also
estimate the lifetime of a metastable state using the analytical
equations derived above. For the present experimental pa-
rameters~T0540.7 N,m55.0 g,s51.231023 kg/m, mass
separationd50.33 m!, e equalsvm/(T0s)

1/2;0.023v, and
Dk equals 8/(de2)24.63104/v2. The resonant widthDv is
equal tovDk;8.33106/v2. Because of the uncertainty re-
lation, DvDt;2p, the lifetime Dt equals 2pv2/(8.3
3106). If the fundamental frequency is used~v52p3290
Hz!, the lifetime is about 2.6 s whose inverse is quite close to
the width of the resonant peak shown in Fig. 1~b! near 290
Hz. However, the lifetime is an order of magnitude larger
than the experimental data. We believe that the broadening
of the experimental resonant peaks can be attributed to the
interaction between the masses and the string. The string
segment in between the masses loses energy to the masses,
which serve as two dampers, and therefore broadens the
resonant peak.

Fig. 2. ~a! and~b!, respectively, display the experimental incident and trans-
mitted wave shapes and their Fourier components;~c! and ~d! show the
experimental and theoretical density of states in between the masses. Arbi-
trary units are used for all the vertical axes.
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In conclusion, we have studied the resonant tunneling and
metastable states in a classical one-dimensional two-mass
system using a coherent wave packet. The excited metastable
states confined in between the masses decay exponentially.
The transmission of the wave packet happens as the excited
metastable states radiate their energy. We have found that the
lifetime of a metastable state with higher frequency is longer
than that of lower-frequency modes, which is in contrast
with the quantum-mechanical result. We have also found an
interesting dumbbell-like rotational vibration of the masses.
The eigenproperties of the classical system are determined
accurately using our newly developed sine-wave expansion
method. The dynamics of the wave packet is described by
superimposing the eigenstates. The experimental and theoret-
ical resonant peak locations agree with each other very well.
Some experimental evidence has been found indicating that
the lifetimes of metastable states in the string–mass system
at higher frequency are longer. This investigation may pro-
vide some insight into the dynamics of coherent states in a
solid-state multiple-quantum-well system. The experiment
and the theoretical approach are also accessible to physics
majors. The experiment has been integrated into our quan-
tum mechanics course as a supplemental project.

ACKNOWLEDGMENTS

One of the authors~SP! appreciates the support from the
Council for Undergraduate Research Summer Opportunities
for Research~CURSOR! Fellowship. R. Y. appreciates the
financial support financial support from the College of
Graduate Studies and Research at Central Washington Uni-
versity and thanks Dr. Willard Sperry for many fruitful dis-
cussions.

APPENDIX

To find the transmission coefficient of a harmonic wave,
we start with the time-independent Schro¨dinger equation:

F2
\2

2m

d2

dx2
1V~x!GC5EC, ~A1!

whereV(x)5ad(x)1ad(x2d). The solution in three dif-
ferent regions can be expressed as follows:

C I~x!5eikx1Re2 ikx, x<0,

C II~x!5Aeikx1Be2 ikx, 0<x<d, ~A2!

C III ~x!5teikx, x>d.

Here,R andt are the reflection and transmission amplitudes,
respectively, andk5(2mE/\2)1/2. The transmission coeffi-
cientT equals the square of the modulus oft, T5utu2. The
boundary conditions atx50 andx5d are used to determine
the amplitudet. At the locations of the delta barriers, the
wave functions are continuous, that is

C I~0!5C II~0!, C II~d!5C III ~d!. ~A3!

The slope of the wave function atx50 andx5d is discon-
tinuous, and it can be shown by carrying out the following
integrals:

lim
e→0

E
2e

1eF2
\2

2m

d2

dx2
1ad~x!1ad~x2d!GC~x!dx

5 lim
e→0

E
e

1e

EC~x!dx,

so ~A4!

2
\2

2m
@C II8~0!2C I8~0!#1aC I~0!50

and

lim
e→0

E
d2e

d1eF2
\2

2m

d2

dx2
1ad~x!1ad~x2d!GC~x!dx

5 lim
e→0

E
d2e

d1e

EC~x!dx,

or ~A5!

2
\2

2m
@C III8 ~d!2C II8~d!#1aC III ~d!50.

From Eqs.~A4! and~A5!, the discontinuity of the first-order
derivatives of the wave functions atx50, andd can be ob-
served. By substituting Eq.~A2! into Eqs.~A3!, ~A4!, and
~A5!, we find

11R5A1B2
\2

2m
@Aki2Bki2ki1kRi#1a~11R!

50,

Aeikd1Be2 ikd5teikd2
\2

2m
@tkeikdi2Akeikdi

1Bke2 ikdi #1ateikd50. ~A6!

Fig. 3. Four spectrograms at the lowest four resonant frequencies are plotted
in arbitrary units.
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We find it easier to work with the dimensionless parametere
which is defined ase52am/(\2k). Equation ~A6! now
reads

11R5A1B,

A2B211R2
e

i
~11R!50,

~A7!
Aeikd1Be2 ikd5teikd,

2Aeikd1Be2 ikd1S 12
e

i D teikd50.

Some simple substitutions result in the following quantum
transmission amplitude;

t54/@e2eikd1~ i e12!2#. ~A8!

For a classical string–two-mass system, the transmission am-
plitude can be found by using a similar method~see Ref. 4!.
The classical transmission amplitude is given by

t54/@e2e2ikd1~2 i e12!2#. ~A9!

Here, the dimensionless parametere equalsmv/(T0s)
1/2,

wherem is the point mass,T0 is the tension in the string,s
is the mass density of the string, andv is the angular fre-
quency of a harmonic wave. For both quantum and classical
systems, the transmission coefficientT(5utu2) and the trans-
mission amplitudeutu display resonant behavior: they peak
at resonant frequencies. The widths of the resonant peaks
obtained by usingT andutu are of the same order of magni-
tude.
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