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Nonlinear progressive wave equation for stratified atmospheres
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Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington, D.C. 20375
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The nonlinear progressive wave equation (NPE) [McDonald and Kuperman, J. Acoust. Soc. Am. 81,

1406–1417 (1987)] is expressed in a form to accommodate changes in the ambient atmospheric den-

sity, pressure, and sound speed as the time-stepping computational window moves along a path possi-

bly traversing significant altitude differences (in pressure scale heights). The modification is

accomplished by the addition of a stratification term related to that derived in the 1970s for linear

range-stepping calculations and later adopted into Khokhlov-Zabolotskaya-Kuznetsov-type nonlinear

models. The modified NPE is shown to preserve acoustic energy in a ray tube and yields analytic sim-

ilarity solutions for vertically propagating N waves in isothermal and thermally stratified atmospheres.

[DOI: 10.1121/1.3641403]

PACS number(s): 43.25.Cb, 43.28.Mw [OAS] Pages: 2648–2653

I. INTRODUCTION

Recent interest in engineering supersonic jets with mini-

mal sonic boom signatures1,2 has motivated research in

improved modeling capability for propagation of weakly

nonlinear waves from a high altitude source down to ground

level. One envisions carrying out an ensemble of calcula-

tions for various seasonal atmospheric profiles and turbu-

lence distributions. The desire for computational efficiency

motivates the use of a wave-following computational win-

dow so that the entire horizontal and vertical extent from

source to ground stations need not be updated at every step.

In this paper, we present a modified version of the non-

linear progressive wave equation (NPE) model3 for nonlin-

ear wave propagation in stratified atmospheres. The original

time-marching NPE formulation was developed for the

ocean where the ambient density is nearly constant. We

adapt a correction term originally derived for range-

marching linear propagation calculations4,5 and later used in

nonlinear calculations6–9 to facilitate accurate wave propaga-

tion through realistically stratified atmospheres. The current

work may be extended as in previous work10 to include

effects of turbulence and relaxation processes.

II. THEORY

The NPE describes the evolution of finite amplitude

acoustic density fluctuations q0 in a wave-following co-

ordinate system (Fig. 1) moving in the x direction at a

nominal sound speed c0, where subscript zero refers to

the undisturbed medium ahead of the wave. NPE is a

time-marching model as opposed to the range-marching

Khokhlov-Zabolotskaya-Kuznetsov (KZK) model.11 Time

marching formulation allows for compatibility with fluid

dynamic models and is helpful in visualizing wave

evolution. NPE and KZK are equally valid within their

respective assumptions.12 Whereas range-marching has

been widely used in beam propagation,4,5,8,11 the time do-

main formulation of NPE is well suited to impulsive sour-

ces. One of the motivations for casting NPE in the time

domain was to allow the direct introduction of shock cap-

turing methods developed in computational fluid dynamics

such as was done in Ref. 3.

The NPE for unstratified media is

Dtq
0 ¼ � 1

2c0

@x p0 q0ð Þ þ c2
0 q02=q0 � q0
� �� �

þ c0

2

ð1
x

r2
?q
0dx; (1)

where Dt¼ @tþ c0@x is the time derivative in the moving

frame, q0 is the unperturbed density of the medium

with q¼ q0þq0, p0 is acoustic overpressure, and

r2
? � ð@2

y þ @2
z Þ: The x–integration path in Eq. (1) termi-

nates in the quiescent medium ahead of the wave where

q0 and its derivatives are zero. Error terms in Eq. (1) are

O(q03, q02h2), where h is the wavenormal angle with respect

to x. For this reason, it is sufficient to use an adiabatic equa-

tion of state p0(q0) because weak shock heating is cubic in

shock amplitude.13 For an adiabatic gas, Eq. (1) becomes to

the same order approximation

Dtq
0 ¼ �@x c1q

0 þ bc0

q02

2q0

� �
þ c0

2

ð1
x

r2
?q
0dx; (2)

where c1¼ c(r)� c0, b¼ (cþ 1)/2, and c is the ratio of

specific heats (c¼ 1.4 for air, so b¼ 1.2).

A. Correction for density stratification

The right side of Eq. (2) describes weak but cumulative

physical processes: refraction, nonlinear steepening, and

combined geometric spreading and diffraction in the
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transverse Laplacian. For wavelengths much less than a scale

height, the stratification effect will also be weak and cumula-

tive. From Eq. (9) of Ref. 6, the stratification term (absent all

other processes) for the acoustic pressure in a Cartesian

coordinate system would be

@p0

@s
¼ p0

2

d

ds
ln q0c0ð Þ þ � � � (3)

where s is distance along the propagation direction, and q0

and c0 are the altitude dependent density and sound speed

profiles. In the time- marching notation of the NPE, Eq. (3)

would be

c�1
0 Dtp

0 ¼ p0

2

d

dx
ln q0c0ð Þ þ � � � � (4)

Note that the range derivatives in Eq. (3) are represented in

Eq. (4) by a time derivative on the left and a range derivative

on the right. (The Appendix shows from the stratified linear

wave equation that this is the proper substitution.) One can

derive from Eq. (4) (or from the stratified wave equation as

in the Appendix) a correction term for the dimensionless

acoustic overdensity, defined as

~q0 � q0 r; tð Þ
q0 h0ð Þ

(5)

where h0 is altitude at the center of the moving computa-

tional window. The stratification term from Eq. (A7) is

appended to Eq. (2), resulting in

Dt ~q
0 ¼ �@x c1 ~q0 þ bc0

2
~q02

� �

þ c0

2

ð1
x

r2
?~q0dx� 1

2
c0 ~q0@x ln p0c0ð Þ; (6)

where ambient quantities and their derivatives are evaluated

at the center of the computational window. Equation (6) is

the NPE including atmospheric stratification. Note in Eq. (6)

that the stratification term for the overdensity involves

[�ln(q0c0)], while the stratification term for the pressure

involves [þln(q0c0)]. This illustrates that care must be used

when transplanting terms from one nonlinear acoustic for-

mulation to another.

III. ENERGY CONSERVATION IN A RAY TUBE

We will demonstrate that Eq. (6) retains the physics that

ensures energy conservation within a ray tube (i.e., the sim-

plest form14 of the Blokhintsev invariant15 of ray acoustics).

In a static three dimensional atmosphere (no winds), the Blo-

khintsev invariant reduces to

p02A

q0c0

¼ const; or q02Ap0c0 ¼ const; (7)

where A is the cross sectional area of the ray tube (away

from caustics).

We assume that level surfaces (surfaces of constant ~q0)
are smooth, with radii of curvature much larger than wave-

lengths of interest (in order to make rays a valid description

of the acoustic field). Let O designate the point where a ray

of interest passes through a given level surface.

Rays are normal to level surfaces, and x is taken to be

parallel to the ray passing through point O. In the local coor-

dinate system near O, we have (see the Appendix)

r2
?~q0 ¼ r�1

1 þ r�1
2

� �
@x ~q0 (8)

where r1 and r2 are the principal radii of curvature of the

level surface at O. The sign of r1,2 is taken to be positive for

convex (expanding) curvature, and negative for concave

(collapsing) curvature. The result [Eq. (8)] is derived from

basic principles in Eq. (A10) and alternatively is obtained in

an orthogonal curvilinear coordinate system ðx;/1;/2Þ with

transverse variables lying on level surfaces. The angle varia-

bles /1;2 are the angles between the x axis and the surface

tangents parallel to the orthogonal principal directions near

point O. The increment of arc length is given by

ds2 ¼ dx2 þ r2
1d/2

1 þ r2
2d/2

2: Then a result of differential ge-

ometry16 and local symmetry with respect to transverse coor-

dinates near O leads to Eq. (8).

For the purposes of this section, we augment the moving

time derivative to include the nonlinear increment in sound

speed: Dt ! @t þ c0ð1þ b~q0Þ@x. In ray acoustics, surfaces of

constant phase advance with the local sound speed

c ¼ c0ð1þ b~q0Þ. The level surfaces discussed in the preceding

text coincide with constant phase surfaces within the assump-

tions of ray acoustics. A ray tube of small but arbitrary cross sec-

tional area A may be partitioned into infinitesimal rectangular

elements dA¼ dl1 � dl2 aligned with the principal directions of

the level surface. Elementary geometry shows that each side

(dl1, dl2) of a rectangular element expands (or contracts)

as @t(dl1, dl2)¼ cr�1
1 dl1; cr�1

2 dl2

� �
; with the result DtdA

¼ dAc r�1
1 þ r�1

2

� �
: Thus DtA ¼ Ac r�1

1 þ r�1
2

� �
; or

Dt ln A ¼ c � r�1
1 þ r�1

2

� �
: (9)

Using Eqs. (8) and (9), we may carry out the integral in Eq.

(6) by parts, resulting in

Dt ~q
0 ¼ �@x c1 ~q0ð Þ � ~q0

2
Dt ln A

� ~q0

2
Dt ln p0c0ð Þ þ O r�2

1;2 ~q0
� 	

: (10)

FIG. 1. The NPE computational window moves at the local sound speed c0

through a stratified atmosphere at an arbitrary angle a to the horizontal. a is

taken positive for upward propagation and negative for downward.
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The last term is dropped as being much smaller than the

other terms away from caustics. If the ray tube is taken to

have infinitesimal cross section, then c1 in Eq. (10)

approaches zero within the ray tube cross section, and

Eq. (10) becomes

Dt ~q02Ap0c0

� �
¼ 0; (11)

which according to Eq. (7) preserves the ray tube energy.

Equation (11) is equivalent to an expression for acoustic

energy in a ray tube derived in the high frequency limit of

nonlinear geometric acoustics.14 For a ray tube oriented at a

small angle h to the x direction, the error in Eq. (11) is

O(~q02h2). It should be noted that the unstratified NPE theory

preserves total acoustic energy without reference to ray tubes

[Ref. 3, Eq. (27)].

IV. STRATIFICATION EFFECTS ON N WAVES

A. Self-similar shock profiles

The effect of the stratification term in Eq. (6) on the

development of N waves may be investigated using the

following one dimensional version of Eq. (6):

Dt ~q
0 ¼ �bc0 ~q0@x ~q0 � c0 ~q0 � 1

2
@x ln p0c0ð Þ: (12)

Equation (1), which was derived3 in the form of Eq. (2) from

the Euler equations, possesses a subset of similarity solu-

tions17 q0(r,t)¼q0(r/t) for propagation in homogeneous

media. Nonlinear waves in the absence of dissipation tend to

age toward stable self-similar forms.18 A modification of the

similarity variable is required for Eq. (12) because of the

stratification term. Define

d � 1

2
@x ln p0c0ð Þ; (13)

and let x be oriented vertically upward or downward and

consider d and c0 constant as in an isothermal atmosphere. In

a more realistic atmosphere, d and c0 both vary slowly as

compared to p0 or q0. (We will show in the following text

that the product c0d is very nearly constant for a standard

atmospheric model.)

The similarity variable appropriate for Eq. (12) is not x/t
but rather x/u, where

u ¼ ec0td � 1
� �

= c0dð Þ; t > 0: (14)

The similarity solution of Eq. (12) is now

~q0 x; tð Þ ¼ x

bc0u
¼ xd

b ec0td � 1ð Þ ; (15)

which is verified by substitution into Eq. (12), recalling that

x is taken relative to the origin of the moving frame. We take

shock discontinuities to be at x¼6xs, so that from Eq. (12)

and the Rankine–Hugoniot condition for mass conserva-

tion,15 we have

Dtxs ¼
1

2
bc0 ~q0 xs; tð Þ and

xs ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�c0tdj j

q
(16)

where x0 is a constant. In the limit d ! 0, one finds u ! t,
and the proper forms for homogeneous media are recovered:

~q0 ¼ x= bc0tð Þ; xj j < xs and xs /
ffiffi
t
p
: (17)

Results from Eqs. (15) to (17) are shown in Fig. 2, converted

to pressure by the linear relation p0 ¼ ~q0q0c2
0¼ cp0~q0, where

q0,c0, and p0 depend appropriately on altitude. On the left is

the unstratified result [Eq. (17)]. Equation (17) has no inher-

ent time or length scale, but for comparison with the strati-

fied N wave [Eqs. (15) and (16)], which does, we consider

vertical propagation over a distance of 6.4 km, or about 0.8

pressure scale heights Hp¼ 8 km in a stratified isothermal

atmosphere with c0¼ 331 m/s. We assign nominal N wave

peak pressure and width 100 Pa and 40 m. All three parts of

Fig. 2 begin with the same initial condition. In Fig. 2(b), we

have an upward going wave, so we have d¼�0.0625 km�1.

In Fig. 2(c), the downward going wave encounters increasing

density d¼ 0.0625 km�1.

It is evident from Fig. 2 that N wave pressure profiles

propagating into a decreasing density age faster than in a

nonstratified atmosphere. Conversely, N waves propagating

into an increasing density age slower than in in a nonstrati-

fied atmosphere.

In the isothermal examples of Figs. 2(b) and 2(c), using

the stated values Hp¼ 8 km and c0¼ 331 m/s, the product

|c0d| has the constant value 0.2069 s�1 with a negative sign

for upward propagation and positive for downward. The

earth’s atmosphere is not isothermal, but values for |c0d|

computed from the ISO 2533:1975 model19 vary only

slightly: (0.02206, 0.02433, 0.02309, 0.02230) s�1 at alti-

tudes (0, 11, 20, 32) km, with monotonic variation between

these altitudes. For this reason, the similarity solution of

Eqs. (15) and (16) with |c0d| constant should be descriptive

of Earth’s nonisothermal atmosphere.

B. N wave energetics

The energy per unit area of the propagating N wave is

E ¼
ðxs

�xs

p02

q0c2
0

dx ¼
ðxs

�xs

~q02q0c2
0dx ¼ cp0

ðxs

�xs

~q02dx: (18)

FIG. 2. Self-similar N wave development during 6.4 km propagation at 331

m/s in unstratified and isothermal atmospheres from Eqs. (14) to (17). (a)

Unstratified, (b) upward propagation (pressure scale height Hp¼ 8 km), (c)

downward propagation. Time is expressed on the left in seconds and on the

right is converted to scale heights.
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The last expression in Eq. (18) takes the ambient variables to

be constant over the extent of the N wave. For an unstratified

atmosphere, Eqs. (17) and (18) lead to

E / t�1=2: (19)

For an isothermal atmosphere, Eq. (13) implies for the

coordinate frame moving vertically with the N wave, p0

! exp(2c0td) because c0 is constant. Then Eqs. (15), (16),

and (18) lead to

E / 1� e�c0td
�� ���1=2

: (20)

The evolution of the N wave energy over the span illustrated

in Fig. 2 is shown in Fig. 3 for unstratified and isothermal

atmospheres. After downward propagation of 0.8 scale

heights, the isothermal N wave has retained 49.2% of its ini-

tial energy, as compared to 44.7% for the unstratified N

wave. For upward propagation of the same distance, the iso-

thermal N wave has retained 40.2% of its initial energy. The

change in energy for upward versus downward isothermal N

waves is less than the change in pressure amplitudes

revealed by Fig. 2 because of the presence of the bulk modu-

lus in Eq. (18).

C. N wave energetics in a non- isothermal atmosphere

Taking c0d effectively constant as shown in the preced-

ing text for the ISO 2533:1975 model,19 we can evaluate Eq.

(18) with c0 not held constant. Taking the atmosphere to be

adiabatic (a fair approximation in the troposphere up to

about 10 km), it is straightforward to show that

c0 / p0c0ð Þa; a ¼ c� 1

3c� 1
: (21)

For c¼ 1.4, a¼ 1/8. The same steps that led to Eq. (20) now

result in

E / e�c0td=4 1� e�c0td
�� ���1=2

¼ 2 sinh
c0td

2

����
����
�1=2

: (22)

It is interesting that c¼ 1.4 is the unique value that results in

Eq. (22) being symmetric with respect to c0td (i.e., upward or

downward propagation). When overlaid onto Fig. 3, Eq. (22)

is indistinguishable from the dashed (unstratified) curve

[Eq. (19)]. So the primary effect of adiabatically restoring a re-

alistic sound speed profile to the isothermal result [Eq. (20)] is

that the N wave energy loss rate for vertical propagation

becomes nearly identical to that of an unstratified atmosphere.

V. SUMMARY

We have shown that the addition of a correction term

involving a logarithmic derivative of the product p0c0 to the

NPE model as in Eq. (6) allows the wave-following window

to traverse significant altitude differences as measured in

pressure scale heights. The stratification term is closely

related to that used in range-marching models4–9 but with

differences as discussed after Eq. (6). The analysis applies to

wavelengths much shorter than ambient scale heights. The

modified wave equation has been shown to preserve energy

within a ray tube (i.e., the simplest form of the Blokhintsev

invariant). It also results in a self-similar N wave analytic so-

lution [Eq. (16)], which reverts to the proper form for homo-

geneous media in the limit of weak stratification. The N

wave solution shows increased nonlinear aging for propaga-

tion into decreasing density and decreased aging for propa-

gation into increasing density. The rate of N wave energy

loss has been derived in Eqs. (19) to (22) for unstratified, iso-

thermal, and adiabatically stratified atmospheres.
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APPENDIX: DERIVATION OF THE NPE
STRATIFICATION TERM

We will now derive a one dimensional linear analog for

Eq. (2) (absent refraction, nonlinearity and the transverse

Laplacian term) corrected to first order in ambient gradients.

The resulting stratification term will then be appended to

FIG. 3. Integrated energy per unit

area in the N waves of Fig. 2.

Dashed line: unstratified atmos-

phere; solid line: isothermal with

scale height 8 km. Energies are nor-

malized to the initial condition.
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Eq. (2). Validation of this procedure will demonstrate (1)

that the resulting equation preserves energy in a ray tube (at

frequencies high enough to make ray acoustics valid) and (2)

that it gives physically realistic expressions for N wave pro-

files and their energetics. This type of stratification term has

been previously derived4,5 for range-marching models and

used in papers6–9 with the KZK model.

The appropriate linear wave equation for stratified

media is

@2
t q
0 ¼ r2p0 � q�1

0 rq0 � rp0 (A1)

where q0(h) is the ambient density profile, and h is the alti-

tude above the earth. We adopt a moving coordinate system

with the primary propagation direction x at an arbitrary angle

a (positive upward) to the horizontal (Fig. 1), so that

@q0

@x
¼ sin a

dq0 hð Þ
dh

: (A2)

The other coordinates (y, z) of the moving coordinate system

are chosen so that y is horizontal, and z has a positive verti-

cal component. The vertical extent of the moving coordinate

system needs to be sufficient to contain an adequate range of

refracted rays from source to ground stations within the dot-

ted lines of Fig. 1.

In Eq. (A1), we substitute

@2
t q
0 ¼ Dt � c0@xð Þ Dt � c0@xð Þq0

¼ D2
t � c0@xDt � c0@x Dt � c0@xð Þ

� �
q0

’ �2c0@xDtq
0 þ c0@x c0@xq

0ð Þ
¼ �2c0@xDtq

0 þ c0c0xq
0
x þ c2

0q
0
xx: (A3)

In Eq. (A3), we have used the fact that the operator (Dt� c0

@x)¼ @t commutes with c0@x, and introduced the notation sub-

script x for @x. In the second line of Eq. (A3), we have dropped

D2
t q
0 as being smaller than the other terms on the right. Now

with p0(r)¼ c2
0(h)q0(r), we supress transverse derivatives and

express Eq. (A1) to lowest order in environmental gradients as

@2
t q
0 ¼ c2

0q
0
xx þ 2q0x � 2c0c0x � c2

0q
0
xq0x=q0: (A4)

Combining Eqs. (A3) and (A4), then carrying out an x inte-

gral, the reduced 1D wave equation is

Dtq
0 ¼

ðx 1

2
q0xc0q0x=q0 � 3q0xc0x

� �
dx

’ 1

2
q0c0 q0 � 3c0x=c0ð Þ: (A5)

The last expression in Eq. (A5) results from integration by

parts, dropping second order environmental gradients. Equa-

tion (A5) together with Dtq0¼ c0q0x and c2
0¼ cp0/q0 can be

used to arrive at a one dimensional linear equation for the

normalized overdensity (for constant c). Define

~q0 � q0 r; tð Þ
q0 h0ð Þ

(A6)

where q0(h0) is the ambient density evaluated at the center

of the moving computational window. Then

Dt ~q
0 ¼ � 1

2
c0

q0

q0

@x ln q0c3
0

� �

¼ � 1

2
c0

q0

q0

@x ln p0c0ð Þ: (A7)

Now we turn to a derivation of Eq. (8). Leonard Euler

showed that at an arbitrary point O on a smooth surface,

there are two orthogonal principal directions along which the

curvature of the surface reaches an extremum. We may

model such a surface as

u2 ¼ x2 þ ay2 þ bz2 ¼ const (A8)

where (y, z) are the principal directions, and point O is taken

so that x> 0, y¼ z¼ 0, so that x̂ is normal to the surface

at O. In Eq. (A8), a and b are dimensionless constants (not

necessarily positive). Let us calculate r2f uð Þ:

r2f uð Þ ¼ r � furu ¼ fur2uþrfu � ru:

At point O, we have ru¼ x̂ and r2f(u)¼ fx r2uþ fxx. From

Eq. (A8) it follows that at O, r2u¼ (aþ b)/x. Consider the

curve u¼ const on z¼ 0: x2þ ay2¼ c2, with c constant. The

radius of curvature at y¼ 0 is r1¼ x/a. Similarly, the radius

of curvature of x2þ bz2 at z¼ 0 is r2¼ x/b. Thus at point O,

r2u ¼ aþ bð Þ=x ¼ r�1
1 þ r�1

2 (A9)

so that at point O

r2f uð Þ ¼ fxx þ r�1
1 þ r�1

2

� �
fx or

r2
?f ¼ r�1

1 þ r�1
2

� �
fx: (A10)
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