Central Washington University ScholarWorks@CWU

All Undergraduate Projects

Undergraduate Student Projects

Spring 2020

Adjustable Short Throw Shifter (ASTS)

Joshua Franklin Central Washington University, franklinjo@cwu.edu

Follow this and additional works at: https://digitalcommons.cwu.edu/undergradproj

Part of the Engineering Science and Materials Commons, and the Mechanical Engineering Commons

Recommended Citation

Franklin, Joshua, "Adjustable Short Throw Shifter (ASTS)" (2020). *All Undergraduate Projects*. 127. https://digitalcommons.cwu.edu/undergradproj/127

This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Student Projects at ScholarWorks@CWU. It has been accepted for inclusion in All Undergraduate Projects by an authorized administrator of ScholarWorks@CWU. For more information, please contact scholarworks@cwu.edu.

ADJUSTABLE SHORT THROW SHIFTER (ASTS)

F.B Engineering Group (FBEG)

Proposal for Adjustable Shifter

Joshua Franklin Partner: Dustin Braun Joshua.Franklin31@yahoo.com Design: Adjustable Shifter Design: Adjusted Frame (253)509-3550

TABLE OF CONTENTS

Introduction	5	
Description		5
Motivation		5
Function		5
Requirements:		5
Engineering Merit		6
Scope		6
Benchmark		6
Success Criteria		6
Design	8	
Conception		8
Design Description		9
Anaylyses	10	
Stock Analysis		10
Current Stock		10
Yield		10
Allowable		10
Design Analysis		11
Other Analyses		11
Methods and Construction	13	
Construction		13
Benchmark		15
Performance Predictions		15
Testing method	16	
Method/Approach		16
Test Procedure Description		16
Deliverables (Summary of data produced in testing Compared to prediction)		17
Budget	19	
Part Purchasing		19
Outsourcing Labor		20

Labor		20
Estimate Total Project Cost		20
Funding Source(s)		20
Schedule	21	
Tasks		21
Project management	23	
Human Resources		23
Physical Resources		23
Soft Resources		23
Financial Resources		23
Discussion	24	
Design Evolution / Performance Creep		24
Project Risk Analysis		24
Success/Failures		24
Next phase		26
Conclusion	27	
ASTS Market Readiness		27
Analysis to Success		27
Performance		27
Acknowledgements: For gifts, advisors and other contributors	29	
Appendix A-ANALYSES	30	
Appendix A1-Analysis of Stock Shifter (AOSS) Yield		31
Appendix A2-AOSS Torque on Internal Rod		33
Appendix A3-AOSS Forces on Ball Joint and Linkage Attachment		34
Appendix A4-AOSS Allowable Forces		35
Appendix A5- Analysis of Design (AOD) Long Shifter		37
Appendix A6-AOD Long Shifter Holes		40
Appendix A7-AOD Shifter Bracket Holes		42
Appendix A8-AOD Press Fit Swivel Joint		43
Appendix A9-AOD Short Shifter		45
Appendix B-DRAWING	47	

Appendix B1-Drawing Tree		47
Appendix B2-Assembly		49
Appendix B3- Parts		54
Appendix B4 Design		80
Appendix C-PARTS LIST	83	
Appendix C1-Parts list		83
Appendix C2-Decision Matrix of Parts		83
APPENDIX D-BUDGET	85	
APPENDIX E-SCHEDULE	87	
APPENDIX G-TESTING REPORT	89	
Appendix G1-Test Report		89
Test 01		89
Test 02		93
Test 03		96
Installation Procedure		99
Appendix G2-Data Forms		101
Appendix G3-Raw Data		106
APPENDIX H-RESUME	110	
Joshua D. Franklin	110	
Objective	110	
Skills and Abilities	110	
Education	110	
Employment Experience	111	
Additional	111	
Information	111	
APPENDIX J-JOB HAZARD ANYLYSIS	112	

INTRODUCTION

Description

Every manual transmission vehicle has a shift lever for changing gears. The problem is that the shifting linkage is setup up for one kind of driving. Numerous vehicles have multiple settings for the suspension to adapt to varying driving scenarios (i.e. cruising, sport, track). No vehicle currently has an adjustable short throw shifter (ASTS) that can accommodate drag racing, drifting, sports car racing, rallying, off-roading, or casual driving. The design of the ASTS solves this problem by moving the central axis of rotation of the shifter up two inches, permitting the adjustment of the shifting throw between 20 and 40%. The swivel joint, at the central axis of rotation, is increased in size for the threaded sleeve to be press fit on the inside. Adjustments to the amount of throw are made from inside the vehicle because the threaded rod travels up and down the sleeve. For safety reasons the new shifter is also required to meet the same safety standards as the stock model shifter in the test vehicle, a 2005 Ford Mustang GT. The shifter must withstand a load of 50 lbs. with less than 0.5-inch deflection. The final design met all the requirements and performed with a throw reduction of 20-50% and providing an adjustability of throw within a tenth of an inch, thus allowing for max versatility and personalization from the customer.

Motivation

The motivation of this project was the problem/lack of versatility and interchangeability of other shifters. The lack of one's ability to custom fit, so to speak, or to create the right feel with their stock shifter or any other aftermarket shifter. No customer should ever feel bonded by the restraints of the product provided but empowered. This project will allow individual freedom as the ASTS can be changed at any time to meet their own desire.

Function

The function of the ASTS is to transmit force at different angles to the transmission shifting linkage suppling the connection into different gears.

Requirements:

The new design is required to:

- Adjust to decrease the throw between 20%-40% for shorter shifts.
- Adjustable from inside the car in under 60 seconds.

- The Safety Factor must be the same or better than 2005 2009 Ford Mustang GT manual transmission factory shifter
- Reduce the force required to shift by a factor 10%
- The shifter must withstand a load of 50 lbs. with less than 5% deflection

Engineering Merit

The engineering in this project will arrive from the requirement for similar safety factors. This requirement will be a calculation of the stress on the shaft. The other requirement that needs calculation will be the shifters ability to withstand 50 lb. force with less than five percent deflection. The design also requires a press-fit calculation for design of the internal diameter (ID) of the swivel joint and the outside diameter (OD) of the threaded sleeve.

Scope

Will include:

- Design of adjustable rod to transmission rod (accounting for rotation)
- Design of sleeve holding rod
- Design of exterior part of shaft to hold shifter knob
- Design of larger ball joint and higher placement
- Design for thread locking
- Selection of ball joint size
- Manufacturing of parts
- Stress on shaft and adjustable rod
- Shaft and rod material selection
- Deflection of rod under load

Benchmark

The proof of concept is that the design will be tested on a 2005 Mustang GT. The vehicle has its own stock shifter. There is also a short throw shifter made by Hurst. Beating the stock and short throw shifter in their lack of ability to adjust will be the benchmark. Another benchmark reduce the amount of throw more than the short throw shifter.

Success Criteria

This project will be considered a success when:

- The force required to shift is less than 10% of the stock.
- The forces applied to the shaft cause no visible deflection.

- The ability to adjust from inside the cockpit is complete.
- The vehicle is driven and shifts with the new ASTS.

DESIGN

Conception

The design was created based upon the idea from Dustin Braun. The initial idea (Appendix B4-1) was to go under the vehicle and change the distance of throw using locking channels. The second design (Appendix B4-2) was to thread the ball joint, which in turn was a failure due to the driver's inability to twist the ball joint or spin the rod due to the linkage attached to the transmission. The third design (Appendix B4-3) was a solution to not being able to rotate the Ball Joint or Internal Threaded Rod (ITR). In Table B4-1 (Appendix) the depth of these designs investigated more thoroughly in a decision matrix, showing the reason why the fourth Design (Figure 1) was chosen to 3D print as a prototype. The prototype showed rotation, rigidity, and product construction problems. This led to the fifth design which was manufactured and constructed. The final Design, the birth of this design has been accompanied with challenges, failures, and continuous redrawing's. The only change to the final design shown in Figure 2 is that of the linkage attachment.

Figure 1

Design Description

The result of this design will consist of 11 parts. The parts are the: Threaded Rod, Ball Joint, Threaded Sleeve, Shifter, Shift Bracket, Locking Nut, and Linkage Attachment (etc. Shown in Figure 4). The Swivel Joint will be inside of Dustin Braun's Housing Assembly. The swivel joint is the point of origin as well as the fixed component. The threaded sleeve is then press fit into the swivel joint allowing for full rotation within the housing assembly. The threaded rod is then tightened through the sleeve to allow for adjustment to be made to the height of the linkage attachment. A Locknut is then put on the bottom side of the threaded rod followed by the linkage attachment. The locknut on the bottom is meant to be tightened down onto the linkage attachment to fix its angle and orientation. A spacer will be place on the unmachined side of the linkage attachment upon installations. The top portion of the assembly begins by putting the shifter bracket through the threaded rod and seeding it on

top of the sleeve. A locknut will then tighten down the shifter bracket to the rest of the assembly to fix its angle and orientation (Appendix B2-2C). A shifter will then match hole up centered inside of the shifter bracket. This shifter bracket and shifter will be tightened together using 1" long ¹/₄-20 threaded locknut. The tapping insert is then tightened into the shifter knob and the shifter is tightened into the shifter. The construction will be put together as shown in Figure 2.

ANAYLYSES

Stock Analysis

Current Stock

Meeting the current stock safety factors is the most important requirement. "Engineers, in the fulfillment of their professional duties, shall: ... Hold paramount the safety, health, and welfare of the public (Code of Ethics for Engineers)." Analyzing the values of the current 2005 Mustang Stock shifter as shown in Figure 3. The first analysis is of the actions on the current rod. The Rod itself can move until it hits its circular rim. This rim is located above the Ball joint to stop the shifter from jamming the linkage into gear. The location of the rim on the rod is 6 inches from the top. This allows for a static scenario where the force can be calculated and used to find the rest of the properties of the

rod.

Yield

After analysis the Stock rod has a yield force of 104 lb_f (Appendix A1-1). This force was found using the yield strength of AISI 1020 Steel as the assumed material, yield stress was 50,800 psi. Using the yield stress and modulus of elasticity to find the deformation of the object's

Figure 3

equation (Mott, Robert L et al) and the maximum sheer with yield stress. The deformation at yield was 0.09 inches (Appendix A1-2). The maximum shear at yield stress was 1362 psi (Appendix A1-2). The amount of allowed Torque for the entire length of the shaft was will 623 lb_f *in, with a 0.0357 Rad. of Torque (Appendix A2). The importance of these calculations is to create a new design that exceeds or matches these very calculations.

Allowable

After testing and collecting data the amount of actual force it takes to shift the Shift Lever is 7 lb_f. Overall the purpose of this force is to show eventually what the designed Safety Factor to yield was. The whole system itself has a ball joint in the middle with linkage attached 1.75 inches below the ball joint. Appendix A3 shows the amount of force acting on the ball joint and the translating force of the 7 lb_f of the Linkage. The force allowed translates down to the linkage allowing the force on the Ball Joint to be 39 lb_f and the force on the linkage to be 32 lb_f (Appendix A3). With the 7 lb_f being the deciding factor the difference between allowable and yield can be found. The Stress allowed is 3422 psi (Appendix A4-1) in comparison to 50,800 psi (Appendix A1-1). The allowed Deflection at 7 lb_f is 0.0061 inches (Appendix A4-2) in comparison to 0.09 inches (Appendix A1-2). Finally, the Shear is allowed is 92 psi (Appendix A4-2) versus the 1362 psi (Appendix A1-2) of the yield.

Design Analysis

This new design is required to adjust from inside the cockpit and to have the same safety factor as the current stock model. This design is required to withstand the forces listed above and improve or be equivalent to the current model. The current Internal Rod as shown in Figure 2 Item Number 2 is a Grade 8 rod meant to withstand a tensile strength of 150,000 psi. The current 6 inch shifter and bracket are currently designed to the same force required from the stock shifter (Appendix A7,A9). The 6-inch Shifter revision model is designed to withstand a force of 31,900 psi and the material chosen for it to be made from has a Low Carbon Steel Grade 1006-1026 with a yield strength of 60,000 psi. This current design has been analyzed to meet the standard requirements for using the threaded sleeve and rod to adjust the thread from inside the cockpit. It has been designed to be better in safety than the current stock model.

Other Analyses

These analyses included ways or needs for manufacturing. For example, the shifter itself after its first redesign (Appendix B3-6B) needed to be created to withstand the same force as the stock shifter. There were several different sized shifters made for testing, assembly, and product modifications. These shifters are shown in Appendix B3-6B through B3-6D. The only analysis that was necessary for this series of shifters was to design the force requirement to the longest one. Appendix A5 analyzes a 12 in long shifter. This length of shifter is redesigned in over and over in size until a stress value approximate to the stress of 50,800 psi or higher was met. The problem was solved when a 3/8" by 5/8" shifter stress was found at 60,300 psi. The shifter also needed to make sure that the holes would withstand the force place on them at 6 inches higher than the stock model (Appendix A6). The holes can withstand the force without breaking on the load only putting a maximum stress of 43,700 psi. The final portion of analyses for the shifters was check the stress for the shortest shifter which showed the max stress would be 15,200 psi. This analysis showed that the shifters would be safe for use under the stress yield of 65,000.

Appendix A8 summarizes the necessary manufacturing fit required for the object. This is illustrated in the tolerance found on the Threaded Sleeve (Appendix B3-2A). This press fit required a very tight

tolerance and required a force of 14.5 ksi to press fit this FN3 Drive Fit Class. This was then adjusted to the change the angle of the shaft to allow shifting. Unfortunately, the class fit for the new Threaded sleeve was not calculated but was watched over by Matt Burvee to make sure the correct fit was accomplished.

METHODS AND CONSTRUCTION

This project has been conceived, designed, and analyzed by the collaborative efforts of Dustin Braun and Joshua Franklin. Both co-designers, working with the help of Central Washington University (CWU), created and then recreated the different designs that make up the ASTS today. This Final design (Appendix B2-3) was created to be designed, manufactured, and assembled at CWU. The constraints of design were to make sure that the material was machinable. Braun and Franklin only pursued avenues of design that allow them to gain the most experience and simplicity for easy manufacturability of the product. They chose this method of design and manufacturing for easy distribution as well as the improvement of their design, for any hinderances would be found by them in the manufacturing phase. The project will be the best version Braun and Franklin can create.

Construction

This device itself was brought up in conception by Braun to be hand assembled. This assembly for distribution purposes was thought by both designers to be the best product result. All the parts will have to be manufactured. The design of the ASTS was to minimize the amount of un-standardized parts. The idea of constructing the design was to reduce waist on the FBEG products side. The parts talked about below are listed in Appendix C. This project is made up of 11 different parts as shown in Figure 2.

The Swivel Joint (Appendix B3-4B) is the center of the assembly This piece is the immovable object that is the only attachment part that Franklin has that ties to Dustin Braun. This Large 1-inch internal diameter swivel joint will allow for a large angle of rotation. This is a Corrosion Resistant Lubrication-Free Swivel Joint. It is purchased from McMaster and doesn't require any manufacturing except to have the Threaded Sleeve press fit within it.

The Threaded Sleeve will start out as a $1 \frac{1}{8}$ " Ultra-Machinable 12L14 Carbon Steel Rod. This rod will then be machined to the drawing 22-0002 (Appendix B3-2B). This part has a high tolerance and will be placed on the lathe to be machined, bored, and tapped slowly. The sleeve will then be press fit into the swivel joint 55-0006 (Appendix B3-4B). This will be pressed using a hydraulic press. Once placed perfectly within the sleeve it will remain forever. This is the only part of the project Franklin and Braun believe that the customer will not be able to accomplish so it is done in construction before final assembly.

The Grade 8 Threaded rod is carefully put into a clamping system to be cut to the correct length drawing 20-0001 (Appendix B3-1B). This device can be cut with a bandsaw, Hack saw, or a file. This is the only manufacturing required of the Threaded Rod as its purpose is to hold up the Linkage

attachment and travel up and down the threaded Sleeve. The other use of this rod is to clamp down the Shifter Bracket to the shaft to allow for proper shifting.

The Linkage attachment is a High-strength Rod End Blank (Appendix B3-7C). This piece will have to be machined down to meet the 20-0014 drawing specification (Appendix B3-7C). The shaft will have to be cut off using a bandsaw, hacksaw or lathe. The end of the shaft will have to be bored or drilled to then tap through 1.5 inches. The center of the rod end will be drilled in the impression mark at 0.625 inches. Once side of the rod end will be machined down 0.03125 inches to match the stock part perfectly center. This will be threaded but before will have a nut threaded (Appendix B3-12) onto the rod before it so that when placed in line with the linkage rod it can be clasped in placed to not unthread during vibration.

The Shifter Bracket and Shifters will all be made from 1018 Steel. Shifter Bracket will be milled by continuously flipping sides on the mill to give it a perfect shape. This started as a block of 2" steel that needed to be cut then machined down to the dimensions shown in drawing 20-0003 (Appendix B3-3B). The drill press will be used to drill the holes on datum A. These holes will be marked using Die then stamped and drilled. After drilling the holes will then be taped. The Larger hole at the base of the drawing will be end milled out for proper accuracy. The shifter will be seeded onto the long upright part of the Threaded sleeve with the threaded rod through the hole. The Nut in 55-0004 (Appendix B3-12) will be tightened down over the shifter bracket to hold tight the threaded sleeve to not allow for adjustment up and down as well as to hold the shifter bracket perpendicular to the threaded rod. The Shifters as shown in Appendix B3-6B-D and are tapered. The stock rectangular bars are cut to length. Stock is then placed in a 4-jaw chuck lathe. The chuck allows for concentricity of the end to be machined to a cylinder then threaded using a dye. The taper is by using the top angle adjustment of the cutter to push the cutter at a given angle creating the taper affect around the rectangular stock. The holes are drilled using the same process as the shifter bracket and then tapped. These devices can be interchanged by lining up the holes on the shifter bracket and then taking the shifter bolts (Appendix B-9) tightening the shifter into the shifter bracket.

The shifter knob is a piece of mahogany that will be created on a wooden lathe in CWU woodshop. This piece could not have been properly made without the proper instruction and safety lesson from Scott Calahan. The design itself is a classic as shown in 20-0008 (Appendix B3-8B). This is a meant to be bored to have the Tapping Insert (Appendix B3-13) placed in the lower end to allow for it to thread on and off each shifter. The top portion is bored open for a classic mustang pin to be epoxied into the top. The mahogany piece will be finished with a Gun Oil for a rough but great finish. The wrench adjustment tool. The limited space allowed in the center console where the shifter will go required a custom wrench. This wrench needed to be flatter than a regular wrench to fit the slots in the threaded sleeve. This required the wrench to be ground down to the measurement with an equal thickness on each side of the center axis. Then the wrench needs to be formed in a way that when turning the Threaded sleeve would not hit the center console of the vehicle. The wrench required to be bent using heat. The wrench was pressed into a vise grip heated up and then bent down into opposing 90-degree angles. This form makes a "Z" frame wrench. The only manufacturing issues are that the accuracy for bending at the exact distances. This is due to the technique used to bend the wrench. Instead of bending using a vise grip and heat it would have been better to use a hydraulic bending machine.

The Spacer is created using a cylindrical shaft. The shaft was lathed to the OD of the spacer. Then the spacer was bored to fit perfectly of the linkage rod. The Small Spacer (Appendix B3-15B) is set with internal tolerances. Once bored a mark was made using a caliper to set the exact distance within thousands of an inch. Once marked the spacer was separated from the rest of the shaft using a parting tool on the lathe. The Spacer is made to fit a bushing on the inside that are standard for the vehicle. This project will be constructed from start to finish in this order. The project can be assembled and disassembled in every aspect except the swivel joint and the threaded sleeve. These to pieces once placed together can never be separated. This project was designed for this reason for interchangeability. This will allow for future parts to be chosen or for customizations to be made. Also, if there is any failure of any parts they can be easily remade and disassembled.

Benchmark

The Benchmark for all the materials is to meet all their dimension requirements 100%. Another benchmark is that the material would be within 5% of the Strength it was either purchased at or made from. The whole project will be a success if it simply fits in the vehicle, shifts, and adjusts throw within 5% of required thrown. The design will produce 10% more reduction in throw that the short throw shifter.

Performance Predictions

The reduction in thrown of the device is predicted to be 5% greater and will be tested conforming to ASTS standard procedures. It will also 100% outperform its competitors in its ability to adjust throw.

TESTING METHOD

The Shifter assembly as shown in Figure 2 (Appendix B2-3) will be tested. It is going to be testing for beating all the requirements and to meet any of the benchmarks set for the product. Things that will be needed is a pound scale, measuring tape, stopwatch) protractor, private road, and the 2005 Mustang. The product itself will have to be installed inside the car.

Method/Approach

The information needed to evaluate the success of the project will be listed below. Things that will be tested for:

- Shortest and Longest Distance of Throw (Measuring Tape)
- Smallest and Largest angle of movement (protractor)
- Engages each gear (Vehicle)
- Full allowed rotation of shaft, no unwanted interference (Vehicle)
- Install difficulty (Stopwatch)
- Interchangeability of parts difficulty (Stopwatch)
- Force required for Long shifter (Pound Scale)
- Force required for medium shifter (Pound Scale)
- Force required for short shifter (Pound Scale)
- Difficulty of changing throw (Stopwatch)
- Testing allowed distance for rod to travel downward doesn't hit drive shaft

Test Procedure Description

For this shifter to be tested, it will have to be installed into the 2005 Mustang. Installation Procedure has been outlined by Dustin Braun in Appendix G1-Installation Procedure. The vehicle will be taken onto a private road for performance examination. The vehicle will complete the tests shown above in the method/approach section.

For Test One the shifter knob to the swivel joint will be measured by measuring tape. This will be recorded for the 6", 8", and 10" shifters. The angle reading will come from the magnetic locator attached to the side of the shifter at each gear with three different adjustments in at different times of the test. This data will then be put in excel (Table G2-1) and will formulate the distance that the shifter knob was required to travel. The performance of this device shall succeed and is predicted to be higher 5% higher reduction in throw.

For Test Two Part One a timer begins and the ³/₄ inch wrenched is used to loosen the locking nut. Once the locking nut is removed the shifter assembly is removed and the adjustment is made and then components reinstalled. The second part is the shifter assembly shall be disassembled using a 3/16" Hex Key. This will simply be to change the assembly of shifter height. The shifter knob will be unassembled and then new assembly components will be reinstalled. All recorded times will be stored in Table G2-2. The prediction for this test will complete the adjustability within 60 seconds and that is what its predicted to accomplish.

Test Three uses 3 different sized 6", 8", and 10" shifters. The Force required to shift into gear will be measured using pound scale and slow-motion application on a phone. This data will then be put in excel and an average for each will be formulated and stored into Table G2-3. The prediction for this test is to reduce the force required to shift by 10%.

Deliverables (Summary of data produced in testing Compared to prediction)

When this test one was performed the magnetic angle locater only held values within a tenth of a degree. This was measured in 55 different variations ranging at angles of $17.5^{\circ}-2.8^{\circ}$ (Table G3-1). The Arc length of is calculated using the distance of the central axis as the radius and the angle to find the distance of throw. Using $Arc_{length} = 2\pi r \left(\frac{\theta}{360}\right)$ to compare to the stock model shifter and Hurst shifter to find the percent reduction. Range of adjustability allowed for an arc length of 1.8-0.48 inches (Table G3-1). Success for this test would have been a reduced throw between 20-40%. This test clamed success by achieving a Reduction of stock by a percentage of 38-66% (Table G3-1). This also met the benchmark by reducing more throw than the Hurst shifter by 0-44% of its throw (Table G3-1). This test demonstrates the upper and lower limits of operations for the device. The shifters capability to change adjustment and customization for the customer is beyond successful. The demonstration performed shortly after install was consistent of swift effortless shifts that were short and easy. This devices versatility seems to the hallmark of its capability.

Test Two was performed the stopwatch only held values within a hundredth of a second. This was measured in 20 different variations ranging at times of 39.28-73.48 seconds (Table G3-2). The only calculation will be the sum of all the trials divided by the number of trials and an average of those averages from part one and two of this test. Success for this test would have been any form of adjustment inside the cockpit in less than 60 seconds. This test clamed success by achieving an average of 47.28 seconds for part one and 52.72 seconds for part two (Table G3-2). A total average of 50.00 seconds (Table G3-2) from part one and two was found concluding the success of the device. This test demonstrates the adjustability of the device. The shifters capability to change adjustment and

customization for the customer is beyond successful. The testing was also complete by other different operators to allow for a better average. This devices versatility seems to the hallmark of its capability. Test Two Successful.

Test Three was performed the pound scale only held values within a hundredth of a pound. This was measured in 30 different variations ranging at angles of 2.22-7.1 lb_f (Table G3-2). The only calculation will be the sum of all the trials divided by the number of trials and an average of those averages from part one and two of this test. Success for this test would have been any form of force to shift 10% less than stock. This test clamed success by achieving an average of 4.305 Lbs. which is 37.71% less than Stock model (Table G3-2). The force required can range depending on shifter an average of 3.44-4.92 lb_f (Table G3-2). For a Reduction between 28.9-50.1% less force for the individual shifters average (Table G3-2). This product succeeded for each shifter but succeeded beyond the requirement by shifting 50% less than the stock shifter. This test demonstrates the upper and lower limits of operations for the device. The shifters capability to change adjustment and customization for the customer is beyond successful. The demonstration performed shortly after install was consistent of swift effortless shifts that were short and easy especially with the shifters force being 37% less than stock. This devices versatility seems to the hallmark of its capability.

BUDGET

This project will be managed in terms of parts and allotted time to work on each part. There are several risks with this project. The largest risk is the mustang, which the owner holds a value of \$6000. Making sure that the analysis is correct and that all the ways the vehicle could be damaged are covered by a safety factor in analysis. The other risk of the project would be the cost due to the values of the parts because of their quality. Any parts that are not made to their specifications will have to be redone. There is a risk of allotted time allowed vs the amount of time to finish the project. Running the risk of either not finishing to create a quality product or finishing without a quality product is going to be a factor which is substantiated.

Part Purchasing

The parts list in Table C (Appendix C) is the list of parts that will be required to build this device. The Parts list itself is just a place holder to make sure that all the parts that are needed are either ordered or manufactured. The Budget in Table D (Appendix D) shows the parts, found location and cost. The Budget itself specifies that only 3 parts are going to be ordered from a different site of the other 10 parts. The most important part is going to be the prototype. This part is purchased separate from the others, the order came from amazon. The Wooden PLA was the most important because it reduces the cost of labor, time, and therefore money. The reason this reduces cost is because printing the project will show problems in manufacturing and design. These problems are fixed with less time and money due to the printed prototype.

The Drill Tap will be bought from MSC Industrial Supply Company. This part itself will make take the part that is a shaft drill it out and then tap with this specific tool. The Mahogany was another part that was going to have to be purchased from another location but was donated by Kelson Mills. This part will be lathed in the woodshop to create the wooden handle. All the other parts will be purchased from McMaster. The other parts will have a larger portion with the project and their designed purposes are stated up in the construction section.

Due to the change of the design the from design 3-6 the taking away of product linkage attachment to a purchased ball joint and then to a blank rod end. This increased the amount of cost of the project. At first the purchase of a ball joint saves the project labor time, but then happened to be one of the flaws in testing. The part didn't allow for the device to shift into every gear. The linkage attachment had to be redesigned costing the project another \$8.27 and 3 hours of labor. The spacers seen in drawing 20-0012-0013 (Appendix B3-14 to 15A) had to be recreated as their hole sized was incorrect. The bushing would not fit in that size of hole. Requiring another bushing to be made only costing 1 hours'

worth of labor. No parts cost required because new spacer 20-0014 (Appendix B3-15B) was machined from the scrap of the threaded sleeve like the spacers before it. Other decisions to the budget involved a larger swivel joint which costed more than the original by \$21.30. The increase in the size of the swivel joint in turn increased the size and price of the threaded sleeve allowing for the angle of adjustment needed to shift. This was not price out in the beginning of the budget plan but was changed before purchasing.

The final Budget came in under cost as seen in Table D2 shows the actual spent cost. The \$232.08 spent was under budget despite some of the setbacks in parts. The reason for this is due to the CWU machine shop purchasing the drill tap for their shop and allowing the use of this tool. The use of some of the scrap steel to machine the threaded sleeve was also a save to the budget as those parts had to be machined again. Another reason for being under budget was the removing of retaining rings and lock washers from the project due to the change in design. The budget came in at a total of \$68.53 less than expected.

Outsourcing Labor

Currently there is no outsourcing of labor, all the labor will be done in the F.B.E.G. The manufacturing will be done by the companies own interns at CWU.

Labor

Joshua Franklin and Dustin Braun head this project. There are being paid \$15 per hour. There are required to begin with creation through completion of this Project. The price of their labor is fair due to their inexperience in the field.

Estimate Total Project Cost

The total time it will take to complete the project itself will be 500 hours from start to finish. The current cost of parts is \$300.60. The estimated labor cost is \$7500. The current estimated total of the project will cost \$7800.60. This final cost will include all parts and labor for: manufacturing, purchasing, documentation, testing, and designing the project.

Funding Source(s)

The only source of funding is from FB Engineering Group.

SCHEDULE

This project consists of designing, creating, manufacturing, testing, and documenting the completed product within a 9-month period. This project will outline have specific deadlines that meet the standards of any given project with the load of the two engineers working it. Table E (Appendix E) outlines the schedule that will be followed throughout this 9-month period as shown in Table 1.

Tasks

Over the 9-month schedule the object is to finish specific sections in allotted time. As shown below in Figure 1, one of the sections, the Proposal Outline is supposed to be finished by the first week of December. Other sections that are to be completed are:

- Analyses
- Documentation
- Proposal Modifications
- Parts Construction
- Device Construction
- Device Evaluation
- 495 Deliverables

TASK:	Description	Est.	Actua	%Comp.	S	October		November	Dec
ID		(hrs)	(hrs)						
-							_		
1	Proposal*								\mathbf{O}
1a	Outline	3	2	99		\$			× .
1b	Intro	3	4	99		\$			
1c	Methods	3	0.25	50					\$
1d	Analysis	5	0.5	25					\$
1e	Discussion	4	0	0					\$
1f	Parts and Budget	7	4	20					\$
1g	Drawings	4	3.92	80					\$
1h	Schedule	5	1	10					\$
1i	Summary & Appx	3	0	0					\$
	subtotal:	37	15.7	42.5556					

Table 1

These specific sections have their own required finish date as well as an estimated hour. This schedule is set to be accomplished in less than a 500-hours. This is the schedule the ASTS is set to and will be managed by Joshua Franklin.

The schedule in the proposal was made in order to follow the operation of the project to its succession. The objectives that this project had failed at producing were the setbacks that the project succumb to. The first experience that this project failed in was a proper or great design. The design portion needed to be summited within a certain amount of time. The project itself went through 6 different design phases before this submitting was required. These designs are a culmination of Appendix B2 through Appendix B4 as the final Design. This overall design changed throughout the entire project right up until the testing was completed. This project also receives shipping setbacks as companies had some delay in the arrival time of some products that were ordered. The other problems that were issued in this project were not finishing manufacturing for some of the products as they required the exact dimension of another to be made for press-fit purposes or hole location purposes. Things that took more time than expected: performing evaluation, website, test plan, and analyses had a part to the problems with the schedule.

Setbacks from the analyses came with the continue design changes in the beginning as the analyzing the new design was the analysis to acquire. Once the fourth design was chosen then the analyses began. The reason Franklin waited to do the analyses was because to him it seemed pointless to analyze something that wouldn't have worked in the first place. One could say that design was the thing that became a scheduling problem in the beginning.

The website was a real of testing Franklin was not diverse in. This portion of the project took time to learn and research to create. Franklin experienced his adolescence in creating and designing a website. Even though this took more time than Franklin had expected his schedule was not to far behind. The test plan and prepping required more than just creating a test plan but creating test sheets and accomplishing the evaluation in a proper and thorough manner. Franklin felt the insistent need to make sure that every video and picture would be captured at the right time and every procedure written out. This test planning set back the project 5 hours more than expected.

The final setback was the evaluation of the product. The setback was caused by COVID-19. The reason was due to the meeting of people to be ill-advised. The problem with this advisement was that Franklin and Braun needed to meet to test the product. In turn they waited a little longer to test. The second setback came when the Linkage attachment only allowed the car to travel into third and fourth gear. This was then remedied by ordering another part and manufacturing a new linkage attachment (Appendix B3-7C). This took time and more money but then allowed them to do the rest of the testing that could not be accomplished during the first session.

Overall the Franklin struggle in the beginning keeping things on time but regained in the end working to stay on schedule and finishing on time.

PROJECT MANAGEMENT

Human Resources

Human resources are embellished by the engineers working on the ASTS. Ted Bramble and Matt Burvee are two faculty members at CWU that a big part to the success, quality, and ease of manufacturing this project. Both Have dedicated countless hours to improve, mentor, and consult on this project. They are invaluable members that are appreciated and used wisely.

Physical Resources

Matt Burvee is the manager of the machine shop at CWU where most of the manufacturing process will take place. His permission to use the shop is of the highest value as it allows for all the milling, lathing, CNC work, grinding, drilling, cutting, and press fit work to take place. Scott Calahan runs the wood shop. Calahan is allowing the lathe work for the shifter knob to happen in his woodshop which is a valuable source of labor so that the part itself will not have to be outsource. Jeff Wilcox is allowing the engraving of some of the parts to be done by the laser machine. This will add to the quality of the products as they become higher in value and are needed for the creation of a project like this.

Soft Resources

Companies like Microsoft are invaluable to a project like this. Creating a space for a document such as the Word document this was written on to the countless tables from excel that have propelled this project to the quality of documentation that it has acquired. Solid-Works is a large part of this project as without it no parts would be created or designed as they are in Appendix B. The tools and usage of McMaster has been invaluable as their allowing of shared files of parts has allowed for easy understanding of the parts and their dimension as well as the ability to recreate the product based upon the documents they share.

Financial Resources

A Donation has been received by a Kelson Mills. Mills donated a piece of mahogany that is the shifter knob.

DISCUSSION

Design Evolution / Performance Creep

This project began with a discussion. Franklin and Braun decided that they wanted to work on a project together. Not just any project. They both wanted to create something they had never created before. Beginning brainstorming different ideas from a shallow boat launch trailer to the ASTS. As class began on the first day of the quarter Braun looked over at Franklin and said wait a second. Changing the entire plan for their senior year. After several minutes Braun designed Figure 4. This initial design was the catalyst for the entire project. Braun and Franklin then created their own

separate portion of the project. Braun worked on the housing as his job was to lift the swivel joint 2 inches higher. Franklin then had to create the adjustability component. This portion of adjustment when through 6 different designs. This evolution is stated in the design conception section as well as in the success and failures below. Also stating why this design didn't work and why the final design was best design for this project.

Project Risk Analysis

The projects biggest risk was to ruin the 2005 Ford Mustang. This vehicle not only had a real-world value of \$6500. This Mustang also has a sentimental value that makes it priceless to

the owner. The largest pressure was to make sure that the safety factors for this project were correct. Making sure that the material is correct and has the right proprieties to make sure that they still have the strength to withstand the stress place on the different components. Franklin had to make sure that his product wasn't going to harm or ruin this vehicle in any way.

Success/Failures

The press-fit for this swivel joint and the threaded sleeve were perfect. This success was due to the help of Matt Burvee. This press fit required a large amount of work that was slow, methodical, and precise. The piece also perfectly fit into Braun's Design allowing for more rotation like predicted. Failures were things like the original design. This design wouldn't allow for full rotation of the shaft that was necessary to make large enough shifts. This was remedied using a large swivel joint with an offset step shaft to create more rotation.

Figure 4

The only unattachable components will be the swivel ball joint and sleeve (Appendix B3-4,5). The swivel joint will be purchased and then manufactured to fit into the housing for tight tolerances. There was a mistake in the amount of angle of movement to shift. The original plan was to take the Ball Joint Sleeve (Appendix B3-5) and create chamfer on the inside that would allow for a larger angle. Matt Burvee suggested a safer solution which was to buy a larger Swivel Joint assembly. This larger Swivel joint will allow for the same angle rotation. The plus side of having a larger Inside Diameter (ID) will allow for the Threaded Sleeve to be lathed down to have a 1-inch section press fit into the piece with a smaller diameter for larger degree movement (Appendix B3-4B)

The original design of the Threaded Sleeve (Appendix B3-2A) was to have retaining ring (Appendix B3-11) that would hold the Sleeve from moving up and down. Burvee's suggestion for the Swivel joint also came with the knowledge that the retaining rings wouldn't be necessary, and they would only decrease the angle of movement of the Threaded Rod. The concept of Appendix B3-2B was created. Another setback was that the threaded rod didn't want to travel through the entirety of the sleeve. A portion had to be drilled to allow for the rod to travel all the way through the sleeve.

The Grade 8 Threaded rod is received (Appendix B3-1). A concern that began early on was that the material is so hard that it might not be able to be drilled and then tapped on one end. After consulting Burvee he thought of a great ball joint (Appendix B3-7B) that could be used so that the TR didn't need to be tapped and then threaded (Appendix B3-1B).

The Linkage Attachment, 20-0007 (Appendix B3-7A), was to be a small block which will be lathed at first to create that ¹/4"-20 thread from drawing. Once machined the cylinder will then be set to a dye and will be given threads. The Linkage attachment was going to be complex and to be extremely precise. To solve many issues that had risen Burvee's previous suggested saved this from being a problem. The Linkage attachment would then go from difficult part to manufacture to an even better part as a ball joint (Appendix B3-7B). Unfortunately, this ended up failing during testing. This ball joint would only allow the shifter to move into third and fourth gear. This problem was solved using 20-0014 (Appendix B3-7C) which made sure that the linkage rod would not rotate around the linkage attachment. This then allowed for the shifter to travel into all gears.

The shifter itself was a part that was designed to be pleasing to the eye but a difficult concept to manufacture. The shifter original was a sleek and well tapered concept as shown in Appendix B3-6A. A much simpler design was created as shown in Appendix B3-6B through B3-6D. This takes the tapered concept and simplifies it to a shorter taper distance. This part itself did have machine problems as zeroing in this product on a metal lathe can be quite tedious. The hole locations are also very important as they must match up perfectly with the shifter bracket. Another issue with lathing a rectangular object is the interrupted cutting. Interrupted cuts create a lot of issues in terms of the

project staying zeroed and symmetry. Looking at the shifter one might be able to notice a 1-2-degree linearity problem. After lathing the edges that were cut had to filed down more to give the shifter a better look and even cut throughout the taper.

The Lock washers (Appendix B3-10) ended up just being unnecessary for the tension required of the shifter bracket and shifter. The lock washers also pushed out the shifter bolts more, so they were rid of immediately to reduce the distance the bolts pushed out.

The final part as shown in Figure 2 is drawing 20-0008 (Appendix B3-8). The only problem is that the tapping insert might create a brittle end by threading the wood on the end. The problem during manufacturing is that due to the cheap material while threading the insert in the hex nut broke. This solution was solved by the grinding off the remaining material so make it look smooth.

Next phase

The next phase of this project would be to create a lighter easier to assemble system. Other parts of the next phase would include create a new boundary of parameters instead of using the Safety factors of the stock system for the design. An attempt to make it sleeker or more appealing to the eye would also be a goal.

CONCLUSION

This Project from start to finish was about learning how to create as an Engineer. Franklin and Braun Spent their time on learning as inventors how to create an idea of their own. This project is only a concept. This concept is one that proves that a design can be made that will allow for the adjustment of throw for a vehicle. From the initial design to the final design all have allowed for the adjustability of throw. This design is the first of its kind and has never been created before. The model as shown in Figure 3 meets the functional requirements of adjusting and other requirements set.

ASTS Market Readiness

How far is this product away from production? This project conceptualized adjustability of throw. Unfortunately, this device was made for a genre of Mustangs. The only way to create something at this level of production would be to analyze the most popular transmission and create something similar or future transmissions and adjust to its requirements. This concept would have to be reconceptualized to fit multiple transmissions and then marketed to only the higher luxury or aftermarket of vehicles. This product is still in the beginning stages of design as improvements can be made.

Analysis to Success

The success of this project is due to the analysis of the original shifter. The structural integrity and strength needed to be duplicated or improve on for this model to be a successful. The success was in knowing how to analyze the failure points of this design. Then to improve or match the that same strength. The model created nearly double the internal shaft safety factor with a stress yield of 120,000 psi. This model if anything is absolute overkill in terms of analytically meeting the safety requirements. Another model could eventually be created as to see how far lowered the safety factor and still not effect performance.

Performance

This project was required to and expected to meet all the requirements. The device simply adjusted inside the cockpit and to shift the vehicle into all gears. This device accomplished those function and succeeded at more:

Predicted Performance/Requirements

Actual Performance

Adjust to decrease the throw between 20%-40% for shorter shifts (was predicted to travel from 20-50%).

 ✓ This test clamed success by achieving a Reduction of stock by a percentage of 38-66%.

- Adjustable from inside the car in under
 60 seconds (No Prediction).
- The Safety Factor must be the same or better than 2005 - 2009 Ford Mustang GT manual transmission factory shifter (50,800 psi required)
- Reduce the force required to shift by a factor 10% (No Prediction).
- The shifter must withstand a load of 50 lbs. with less than 5% deflection (No Prediction).

- ✓ A total average of 50.00 seconds from part one and two (Appendix G1-Test Two) was found concluding the success of the device.
- ✓ Internal Threaded Rod with a Yield Stress of 120,000 psi.
- ✓ For a Reduction between 28.9-50.1% less force for the individual shifters average.
- ✓ Analyses show less than 1% deflection (Appendix A6,9)

This product performed with success in the required areas and went beyond even to meet the benchmark of this project by beating the short throw shifter by reducing its throw by 50%. This project met the budget and the schedule to the final due date. Most importantly this device made for a smooth and fun drive.

ACKNOWLEDGEMENTS: FOR GIFTS, ADVISORS AND OTHER CONTRIBUTORS

Matt Burvee, Ted Bramble-Advisor and Contributor

Burvee is the manager of the machine shop at CWU where most of the manufacturing process will take place. Their permission to use the shop is of the highest value as it allows for all the milling, lathing, CNC work, grinding, drilling, cutting, and press fit work to take place. Burvee also gifted small metals, nuts to this project as well. Both Bramble and Burvee dedicated their time to this project.

Scott Calahan-Contributor

Calahan runs the wood shop. Calahan is allowing the lathe work for the shifter knob to happen in his woodshop which is a valuable source of labor so that the part itself will not have to be outsource.

Jeff Wilcox-Contributor

Wilcox is allowing the engraving of some of the parts to be done by the laser machine. This will add to the quality of the products as they become higher in value and are needed for the creation of a project like this.

Kelson Mills-Gift

Mills donated a piece of mahogany that is the shifter knob.

CWU-Contributor

CWU is the reason that classes and people like these are here to help create, develop, and manufacture products like the ASTS. This project would not have been successful or inventible without the contributions that this education system has made to creating a program that can teach students how to become true engineers.

REFERENCES:

"AISI 1020 Steel, Cold Rolled". Matweb. Com, 2019,

http://www.matweb.com/search/DataSheet.aspx?MatGUID=10b74ebc27344380ab16b1b69f1cf fbb. Accessed 17 Oct 2019.

Code of Ethics for Engineers. Publication #1102, National Society of Professional Engineers, 2018, https://www.nspe.org/sites/default/files/resources/pdfs/Ethics/CodeofEthics/NSPECodeofEthic sforEngineers.pdf.

Mott, Robert L et al. Machine Elements In Mechanical Design. 6th ed., Pearson.

APPENDIX A-ANALYSES

Appendix A1-Analysis of Stock Shifter (AOSS) Yield

Gootlound from page 6 ANALYSTS OF STOCK SHIFTER (ADSS) CITUEN ATST 1020 THEL (MATURES) Typels = 50,800 PST E = 27000 KMZ 116 FOND: HELD FORCE ON STOCK SHITTER (FORCE & YOUD) DEFLECTION OF YOLLD FORLE SHEAR AT YTELD Assume: Homocarreous MATERIAL, MAX FORCE DEPETED AT OF SHIFTER AT 90" ANGLE, STATIC LOADINK AT F, TO SHAFT TS STRATGHT. ASSUME SAME STEE Monios: FED, EQUILIPETUM OF FORCES, USE YTED STORES TO FIND THE FORCE, USE FORCE TO FIND DEFORMATION USE FORCE TO FOND | TOTALL SHEAR. Sour: 12Fy= O 2 EFx= D= F-Fr F= Fr OTTEN = MC/I => 50.8 KSC = [(FURD. (0Tro). (0.5/2)Tro] / (-0.5%) 50.8 Koz = Fyre 488.9 TN2 => [Face = 103.9 LBp = 104 LS-SHEAR + MOMENT DEALRAM 154 LZE 332 LOT GEHLERING GIN HR 25 MEN 3221 GERS Continued to page SD TO AND UNDERSTOOD O 10-16-19 DATE PROPRIETARY INFORMATION

Appendix A1-2 AOSS Yield Force

Continued from page 6 (MEND GTH EDITION) TABLE A14-2 PAGE 803 OPTION 43 = YANAX = -PL3/3EI MAX DEFECTION AT YTELD YMAK = [-104 135 - (Grade] / [2. 27000 KSE . 3.078.300"] HMAX = 0.09 = ~] As the Constant TOTAL SHEAR F=Fe = V = 104 13= (Page 6) 2= VQ/IT = [104 13= (0.125. (TO.5-8)) = 3/[3.078-3= -0.5T E MANUSVERSE = 831.99 POI = 832 POI 2010ELT = F/AS = 104 LOF/(T 0152/4)IN2 = 529.6 PS= (EGRAGET = 580 PSI) TOTAL SHEAR EROTAL = 832 Por + 530 Por = 1362 Por ETOTAL = 1362 PSE 45 MIN Continued to page 3 DATE 10-17-19 DATE PROPRIETARY INFORMATION ORED TO AND UNDERSTOOD BY

Appendix A1-3 AOSS Yield Shear & Deflection

Continuen from page 7 AOSS OF TO TORQUE + ANGLE (0) OF TINDEST 8 CIUSAD: ATOI 1020 STEEL (MATNES) Oyser = 50.8 KAR EG= 27000 KS TG 9.5 TACHES PT LENGTH = 9.5 IN DED, 5TN TIND : TORQUE + ANGUE OF THISE COPERAD. ASSUMPE: HOMOGENEOUS MATERIAL. END OF SHIFTER IS FILED SAME TORQUE APPLIED ON ISSED END IN OPPOSITE TO APPOSTOR. METHOD FOD, USE STRESS YTELD TO ETAD SHEAR YTELD, USE SHEAR TO SEND TOPONE, USE TOROUR TO FIND

2y=TU/J C= 9/2 = 0,550/2=0.2500

J= + D9/32 = + (05=2)"/32 = 6,13E-3 TN"

Solve: Z= Oyrevo /2 => Zyrevo = 50.8 KS2 /2 = 25.4 KS2

25.4 KSI = T. D. 25IN/ 6.138-3 IN = [T = 623 LBF.IN]

0=[623 LBE . IN . 9.5 IN] [27000 KEE . 6. 138-3IN"

DATE

0= 0.0357 RAD

SIGNATURE

DISQUESED TO AND UNDERSTOOD BY

Appendix A2 AOSS Torque & Angle of Twist

Appendix A2-AOSS Torque on Internal Rod

ANGLE OF TWIST.

TOQUE AT YIELD Zy=TE/1

ANGLE OF TWIST OFTL/Ch)

33

35 MON

Continued to page

DATE

10-24-19

Appendix A3-AOSS Forces on Ball Joint and Linkage Attachment

Continued from page 10 ADSS ALLOWDABLE FORCES FODDAN CATURN: SAME AS PAGE 6-7, DODS TALSA 5410 = 50.8 KAT E: 27000 KST ESA FALLOWABLE = 7 LBF (PACIE 9) 1.79 FIND : THE RESILTANT FORCE, " -- FR FORCE ACTING ON THE BALL Assume: BALL JOINT IS FREE FLOWENCE, FORCE IS ONLY IN THE X + 2 PLANE AND IS THE SAME STATIC LOADING ASSUME SAME SIZE MATERIAL, HOMOGUNA MATERIAL, FORCE & IS CENTER ON BALL METHOD : FOD, EQUILISETUM OF FORCES, SHEAR + MOMENT DJAGRAM. Solve: +(Ma=D= FR. 1.75IN - 713-8=N=> FR= 56/1.75 => FR= 3218= #EFX = O = 7 L8F + 32 L3F - FB F8= - (-713F - 3213F) => F8=39 L8F 301 320 6500 95N 32 185 GIN 950 NET 50 35 MIN -56 18FON SIGNATURE Continued to page DATE DISCLOSED TO AND UNDERSTOOD BY 10-25-19 DATE PROPRIETARY INFORMATION

Appendix A3 AOSS Forces Acting on Linkage Attachment and Ball Joint

Appendix A4-AOSS Allowable Forces

Continued from page 10 11 ADSS STRESS, DEFORMATION, TOTAL SHEAR CATURA SAME AS PACE 6-7 + FOD TOL ATHE SAME ON PAGE G al 10 7.0 180 ETND: ALLOWABLE STREES, DEFORMATION + SHEAR COMPARE TO YTELD VALUES ON PACE 6-7. Assume: Same as PAGE 6 METHOD: FOD, EQUILITSEIN FORES, SPEAR + MOMINT, DEFORMATION + TOTAL SHEAR, Solve: +1 EF = 0 = F - Fo = 7.018 - FR =7 Fo = 7.018 = (Prod 4 m= -7.0 LBE. GIN +M=0 M= 42 LBE. IN C= 0.5 IN/2=0.25IN I=(TO/22) IN"=(TO.5"/64) DN"= 307831 3 40 42 LBE 500 7685 2 M(LBF - 5 x GIN 35N. STORSS ALLOWABLE DALLOW = MC/I OALLOW = [42 LBE. IN. O. 25 IN] / [3.07E-3IN" 5 pwow = 3422 por JALLOW 3472PSI 6 JUJELD 50,800 PSI 15 min Continued to page 12 DATE SIGNATUR 10-25-19 DATE PROPRIETARY INFORMATION TO AND UNDERSTODO BY

Appendix A4-1 AOSS Allowable Stress
Continued from page [] 12 DEFORMATION APPENDIX TABLE AM-2 PAGE 803 OPTION A CMEM D GTH EDITION YOFYMAX = - PL3/3EI MAX DEFLECTION ALLOWABLE FORCE YALLOW = [718+ . (6+~)] [3. 27000 KSI . 3.076-3+~"] E= 27000 HOT (PAGE 6) I=3078-3 IN" (PAGE 11) (YAROW = 0.006 (TTN) YAROW = 0.006 (The YYTELD = 0.09=NV ALLOWASLE TOTAL SHEAR USING ILL UST RATION ON PAGE 7 SUT 718 F INSTER. FALLOW = 7 LOEV ZORANS SERSE = VQ/IT Q= (0.125=N'(TO.52/8)IN2) = 0.0123 IN3 I= 3.078-31N" T=0.5=N ZTEANSNERSE = [713 + 0.0123 = 3] / [3.072-31, 4.0.5. GRANE = 55. 99 POF = 56 POF IDIDELT = FAS = 713=/[FT 0.52/4.]IN2 = 35.70 POI Rospect = 36 PST TTOTALE 56 POI - 36 POI = 92 POI ZALLOW = 92PSE L EFTERD TOTAL = 1362 PSE 25 MIN Continued to page DATE 10-25-19

Appendix A4-2 AOSS Allowable Shear and Deflection

13 ANALYSIS OF DESIGN (AOD) LONG SHITTER GRUEN: PART SHEFTER LARCEST FOD: Ex TYPELD FORCE = 104122 FOULD FND: THE MAXIMUM REACTION FORCE IN X AND & DIRECTION STRESS IN X + 2 DIRECTION ASSUME: NO CLAMPING FORCES HOMOCLENOUS MATERIAL. STATES LOADING, MATERIAL IS FIXED AT 1.5 IN. ABOVE SHIFTER. LOAD CONCENTRATION AT 1.5" FROM THE BOTTOM METHOD: F3D, EQUILIBRIUM EQUATION, SHEAR + MOMENT DIAGRAM, STRESS, MATERIAL CHOSCE. Solve: FRUIS" 8.5" JIOYLOF EX EFy = 0 = F - Fe - 104 LBF SEMFR = 0 = -104 LBF · 10" + F · 1.5" [F= 693.3 LBF EF4 = D = 693.3 - F2-104 F2= 589.3 L8A 6 200 50 mon Continued to page 14 11-28-19 DATE PROPRIETARY INFORMATION UNDERSTOOD B

Appendix A5- Analysis of Design (AOD) Long Shifter

Appendix A5-1 AOD Long Shifter Forces

Continued from page 13 14 ADD LONG SHIFTER STREED IN THE X DIRECTION M= 884 LBFIN I: 12. 0.5.0:253: 6.518+4 204 J=Me/I = 884 LBF. (0.25/2)=~/6.516-4 IN4 J=170KSI STRESS IN THE Z DERECTION M=884 L3=. IN I= 12.0.25.0.53=0.002(_TA) 0=Mc/1884 LBF. (05/2)/0.0026 -14 J- 85 451 ONLY STEEL DAPS AT THIS SIZE ARE HARDENED. CANNOT USED HARDENED STEEL BECAUSE IT WONT BE MACHINE ABLE. REDESTAN THICKNESS WILL BE 72" AND WIDTH WILL BE 5/8 STRESS IN X DIRECTION 0 - Mc/I = 88413F . 10.375/2)5N/(+2.0.625-0.3753) 5NH 5 = [60.3 KST] STRESS IN Y DECECTION 0: MUII= 284 LBF · (D.62512) JN/(+2.0.375.0.623) JN D= 36.2 Kosz1 HRS 1095 SPRING STEEL (76.1 KSI) Continued to page EIGNATUR DATE 12-2-19

Appendix A5-2 AOD Long Shifter Stress

38

LONX SHIFTED 400 15 (10202) New DESIGN 3/8"X5/8" F30 PALLE 13 43610 STRENGTH = 761 KST E= 29.7×106 PM FEND! SHEAR TOTAL 1.5" FROM THE BOTTOM + DEFLECTION ASSUME: PAGE 12 METHOD: PAGE 13, DESOR MATION, TOTAL STRESS SOLUTION: DEFORMATION APPLNDIX TABLE A14-2 9803 OPTION A (MEMD 6TH EDITION) 43= 4MAX= - PL3/3EI MAX DEFLECTION AT YTELD LOADER 44TELDER= - 104 LBF . 8. 5IN/ 3.29.7.100 PSI . 0.00275204= 0.002/050 4(47410(2)=-104 LB= . 8. 5 Tov/ 3. 29.7.106 PSI. 0.00763 IN = 0.0013 T TOTAL SHEAR X+ 2 DIRECTION - 2 38" MG12 Vx = V2 = 104 LBF ETERNANCESEX = [104185 · (38+4) 58-(38+2)+3)]/0.002752N4. 2820=664 Par 2000 JULER = [104 LOF ((58-4) 2 . (5/8-2) 223)]/0.0076322" 200 - 665 PS EDERECT = F/A=104 18= / 38".5/8" = 443. 73 Por TITALX = TITOT PSE DOESN'T EXCEED THE MATERIAL STRESS ZTOTALY = [1108 PST] 35 MEN Continued to page 16 DATE 12-3-19 DATE PROPRIETARY INFORMATION

Appendix A5-3 AOD Long Shifter Shear and Deformation

Appendix A6-AOD Long Shifter Holes

F301] Continued from page 16 16 F10413 ADD LONG SHIFTER HOLE ANLYSIS GIVEN: MATERIAL 1095 SARJUG STEELS PLATE WITTH HOLE EQUATION FROM MEMD 6TH EDITION PALE \$32) 1-Own = 6Mw // w3- D3) + FIND STRESS AROUND THE HOLES DUE TO BENDING. ASSUME: NEGLECT THE SECOND HOLE WHILE DOTAL THE CALCULATION FOR THE OTHER. ASSUME NO IMP-ERFECTIONS & STATIC LOADING, FIXED AT HOLS NEWLECT FORCES IN THE X DIRECTION. NO FRECE AT HOLE 1. METHOD FIND MOMENT AT EACH HOLE USTAX THE Same 104 LBF. HOL EQUATION IN THE CIVEN. Sowe FI=0 +1EFy=0= 104 LBF - F2-F2 F2=104 LB=-5 +GEM1= D = 104 L37.89"+F2.0.7"+ Fe.1.1" 0-104 13F 8.9" + F2 . D.7" + (10413 - F2).1.1" 5=2600B Fa= 104 LBF - 2600 LBF FE= 2496 LBF E+ 2500 300 1500 PH-400 10 500 10 41 600 1 HE 50 MDN Continued to page 17 SIGNATURE DATE 12-3-19

Appendix A6-1 AOD Long Shifter Holes Forces

ADD LONG SHIFTER 17 FIND MOMENT AT EACH HOLE M2= 998.4 LBE. IN Q = TAN" (9.6/998,4) = 0.551° 89/M. = TAN (0.551) M. = 925.6 L8= JN 07 = [40,5 KSF] (5/8" - 14"). 3/8" = [40,5 KSF] 02 = [998 4 LBF - TO - 58"] / (58" = 12") - 38" = [43.7 KS] 15 MEN Continued to page DATE 12-3-14 DATE PROPRIETARY INFORMATION

Appendix A6-2 AOD Long Shifter Holes Stress

Continued from page 18 ADD SHIFTER SEACKET HOLE GIEVEN: MOMENTE AT HOLES FOOM FACE FOO FA 17. GIVEN EQUATION PALLE 16 FOR HOLE ANALYETS. ONOM = 6 MW/63-03)t M. = 925.6 LBF IN M22 998.413F.TN t= 0.25 FIND STRESS AROUND THE HOLE DUE 5/8 To BENDING. Assume: Homogenous MATERIAL, STATIC LOADING. METHOD. BENDING IN THE PLANE OF THE PLATE. 0700m = 6 · 925.6 LB - TN · 5/8 (5/8 - 1/4) · 1/4 0. Nom = 60.8 KSI 02Nom = 6.998, 4135. IN. 58 52 Nom = 65.5KSI JNON W/ 3/8 THICKNESS - 6.925.6. 58 = 40.5 KOT Joonw/ 28 THICKNESS = (. 998.4.5/8 = 43.7 KSI (5/83 - 1/43).3/8 30 MEN Continued to page SIGNATURE DATE 12-3-19 SCLOSED TO AND UNDERSTOOD BY DATE

Appendix A7-AOD Shifter Bracket Holes

Appendix A7 AOD Shifter Bracket Holes

Appendix A8-AOD Press Fit Swivel Joint

ADD THREADED SLEEDE PRESSEST INTO GALL JOINT 19 WEN: NEW DESTERN BALL JOINT + BOL. THREADED SLEEVE. BALL JOINT OD = 1.5" ID = THREADED SLEEVE DD = 1" 7D = 1240000 SLEEK FN3 DRIVE FIT 70:19 FIND : STRESS OF PRESS FIT, INCREASE + DECREASE OF CONNECTING DIAMETER ASSUME: STATULESS STEEL FOR BALL SOINT + LARBON ALLOW STEEL FOR THREADED SLEEDE. HOMOGENOUS FOR BOTH MATERIALS METHOD: FIND POISONS CATTON, FIND TOLECANCES, TENSTLE STEESS, COMPRESSION STEESS, INCREASE + DECREASE OF DIAMETER. Souse: 14= 013 STAENLESS STEEL ED = 29 X104 POI VI = 0.29 CARBON STEEL ES 30 KIOS POR (MEMD R. 30) SIZENE OD = 1.0016" - 1.0021" BALL JOTNT ID = 1.000 - 1.0008 MAX ITERFERENCE 0.0021: 8 A=0,25" B=0.5" C=0.75" $\left(\frac{2+3^{2}}{2-3^{2}}+V_{0}\right)+\frac{1}{\epsilon_{i}}\left(\frac{B^{2}+A^{2}}{B^{2}-A^{2}}-V_{0}\right)$ P= 3/26/-10= 0.0021 / 2.0.5 29,00 0.75+05+03 45 MEN Continued to page 20 12-3-19 DATE PROPRIETARY INFORMATION

Appendix A8-1 AOD Press Fit Swivel Joint

Continued from page 10 20 P= 0.0021/2.05 (1.10-7+4.5*x10)=[4.5K0] 00 = P (02+B2/c2-B2) = 14.5 KSr (0.752+0.52/0.752-0.52)= [37.7 Kiz JE = P(B2+A2/B2-A2) =-141,5 KOX (0.52+0.252/0.52-0.262)= -24.2 Kit INCREASE DIAMETER So= 28p ((2+32)+ Vo)= 2.0.5.14.5Kot. 0.752+0.52 Eo ((2-32)+ Vo)= 29 × 106 PSE 0752-0.52 80= 0.00145 14 DELEGASE DIAMORER Si = 2Bp B2+A2 - Vi = 2.0.5. 14.5KSI 0.52-0.252 - 0.29 Ei B2-A2 30 x10° PSI 0.52-0.252 Si= 0.00067 IN 30 MEN SIGNATURE Continued to page 2/1 DATE OSED TO AND UNDERSTOOD BY 12-3-19 DATE

Appendix A8-2 AOD Press Fit Swivel Joint

Appendix A9-AOD Short Shifter

GEVEN: YTELD FORCE: 104/BE PBD LAwren MEDIUM SHIFTER DIMENSIONS FRODE STREET TAU THE X + 2 DUREDON 50 SHEAR AND DEFLECT TON ASSUME: FIXED FROM BOTTOM TO 1.5", AT THAT LOCATION TO THE LOAD CONCENTRATION. HOMOGENOUS MATERIA STATTE LOADING METHOD: FBD, EQUILIBRIUM SHEAR + MONENT DEALAM MATERTAL CHOICE, DEFLECTION + SHEAR Sowei Fri=Fri Fri=Fri EFX = FX, -104 L3F - FX2 = 0 HEMX, = D= 104 13×.4.5" - Fx2.1.5" => Fx2=5= 31213 Fr. = 104 L&= + 312 L&= =) Fx1 = 416 1 00 3 200) 4 5 Ja Bar LBF 200 4 68 LBETN 0x = MC/I = 468 LBr . (0,625/2) m/ (12.0.375.0.625) m4 01 = 13.2 KSI 02= Mc/I = 468 LBF · (0.375/2) IN/(+2. 0.625.0375)) J2 = 31.9 KOI 35 min Continued to page 77 DATE SIGNATURE 12-4-19

Appendix A9-1 AOD Short Shifter Stress

Continued from page 21 22 ADD MEDIUM SHIFTER MATERIAL 1018 LOW CARBON STEEL GIELD STRANKER : 54 KSI DEFLECTION APPENDIX TABLE A14-2 PS 203 (MEMD 65) yo=ynax=-PL3/3EI yx = -104 28+ (4.53) 7N3/3.30×10° PSI . 0,00277N4 = [0.0837. y2 = -104 L3= (4.53) In3/ 3. 30×10 PSI . 0.0096 IN4 = [0.011 - N] SHEAR : DIRECT ZO = FA= 104 13= /(0.375.623)= 443.700 ¥1012= 3/8 -2-58 21 YOULBE mon TRANSVERSE SHEAR PACE 15 VALUES TEANSVERSEX = 665 PST ETERNEWERSEZ = 464 post GOTALX = 1108 PSI FRATALY = 1107 PSS 25 MEN Continued to page DATE TO AND UNDERSTOOD BY 12-4-19 DATE

Appendix A9-1 AOD Medium Shifter Shear and Deflection

46

APPENDIX B-DRAWING

Appendix B1-Drawing Tree

Appendix B1-A

Appendix B1-B

Appendix B2-Assembly

Appendix B2-1B Shifter Assembly

Appendix B2-2A Assembly Drawing

Appendix B2-2B Assembly Drawing

Appendix B2-2C Assembly Drawing

Appendix B2-3 Assembly Drawing

Appendix B3- Parts

Appendix B3-1A Threaded Rod

Appendix B3-1B Threaded Rod

Appendix B3-2A Threaded Sleeve

Appendix B3-2B Threaded Sleeve

Appendix B3-3A Shifter Bracket

Appendix B3-3B Shifter Bracket

Appendix B3-4A Ball Joint

Appendix B3-4B Ball Joint

Appendix B3-5 Ball Joint Sleeve (Replacement is Appendix B3-4B)

Appendix B3-6A Shifter

Appendix B3-6B 6" Short Shifter

Appendix B3-6C Medium Shifter

Appendix B3-6D Long Shifter

Appendix B3-7A Linkage Attachment

Appendix B3-7B Linkage Attachment

Appendix B3-7C Linkage Attachment

Appendix B3-8A Shifter Knob

Appendix B3-8B Shifter Knob

Appendix B3-9 Shifter Bolts

Appendix B3-10 Lock Washer

Appendix B3-11 Retaining Ring

Appendix B3-12 Locking Nut

Appendix B3-13 Tapping Insert

Appendix B3-14 Large Spacer

Appendix B3-15A Small Spacer

Appendix B3-15B Small Spacer

Appendix B4 Design

Appendix B4-1 Concept Design

2 Tend is that shall the Allthese Red churt shar due to the Antonie Hurt the Ball the THE DATA Junt LOOLD BE ABLE TO SHAR THE BALL ON THE DATA THE BALL OF THE DATA THE BALL OF THE PARTY AND BEN NOT IS THE CHIT THAT FORMED BEN THE FROM MONTHER UN OF DOWN. THE ALLTHREE

Appendix B4-2 Threaded Ball Design

Appendix B4-3 Shaft Adjustment Design

Appendix B4-4 Shaft Adjustment with Bracket Shift lever and Threaded Linkage Attachment

Table B4-1 Decision Matrix

Decistion Matrix											
Deciding Best Design											
Criterion	Weight	Best Possible	Design		Design		Design		Design		
	1 to 3	3	Figure A-1	Score x Wt	Figure A-2	Score x Wt	Figure A-3	Score x Wt	Figure A-4	Score x Wt	
Cost (Less \$)	1	3	2	2	3	3	2	2	1	1	
Weight (Less LB)	3	9	2	6	3	9	2	6	2	6	
Precision Quality	2	6	3	6	2	4	2	4	2	4	
Confidence Design Meeting Requirements	3	9	1	3	2	6	2	6	3	9	
Throw Reduction	3	9	1	3	2	6	2	6	3	9	
Less Complexity	2	6	2	4	1	2	1	2	1	2	
Total	12	36		24		30		26		31	
NORMALIZE THE DATA (muliply by fraction	i, N)	2.77777778		66.66666667		83.33333333		72.2222222		86.111111	Percent
										77.083333	Average
										9.1778831	Std Dev.
Decide if Bias is Good or Bad		Good Bias:	Standard Deviation	on is two or mo	re digits		Yes				
		Poor Bias:	Standard Deviation	on is one or les	s digits		No				
			You can change	the criteria, we	ighting, or f	he projects the	emselves				
Weighting/Scoring Scale											
1	66.66666667	Figure A-1	Worst (too costly	/, low confiden	ce, too big,	etc.)					
2	72.22222222	Figure A-3	Median Values,	or Unsure of ac	tual value						
3	83.33333333	Figure A-2	Best (Low Cost,	high confidenc	e, etc.)						
4	86.11111111	Figure A-4	Very Best (Low (Cost, High Con	fidence, Lo	west Throw, etc	c.)				
Comments:											
Figure A-1	First Desgin itse	If is the most pre	cise, but it doesn	't meet all the	requirement	S.					
Figure A-2	Second Design [Did quite well as	the complexity to	spin the Ball J	oint was ju	st the thing tha	t made it second	. This was th	ie cheapest	brest secon	d option.
Figure A-3	Third Design just	made the desig	n to complex and	didn't work the	best for the	e overall desigr	n. This design di	d do a great j	ob of meetin	g the Requir	ments.
Figure A-4	This Final option	collects the bes	t from the second	and third desig	gn to create	a more precis	e and most amo	unt of throw.			

APPENDIX C-PARTS LIST

Appendix C1-Parts list

Table C1-Parts List

Name	Parts	Material Type
		Grade B7 Medium-Strength Steel Threaded
Threaded Rod	1/2"-20 Thread Size, 1 Foot Long	Rod
Threaded		
Sleeve	3/4" Diameter 1 ft	Low-Carbon Steel Rod 1018
		Alloy Steel Material, Chrome-Plated Bearing
Swivel Joint	Lubrication-Free, 3/4" ID, 1-7/16" OD	Steel Ball
Drill Tap	1/2-20 UNF, 4 Flute Plug Hand Pulley Tap	Unknown
Steel Bar for		
Shifter	3/4" Thick, 3/4" Wide	4140 Alloy Steel Bar
Shifter Screws	1/4"-20 Thread, 1" Long	Black-Oxide Alloy Steel
Locknut	Nylon-Insert Locknut 1/2"-20 Thread Size	Grade 8 Fastener
	3/4" OD, Black-Phosphate 1060-	
Retaining Ring	1090 Spring Steel	Black-Phosphate 1060-1090 Spring Steel
Tapping Insert	Tapping Inserts for Hardwood	Zinc-Plated Steel
Shifter Knob	Mahogony Block	Mohogony
Lock Washer	1/4" Screw Size, 0.26" ID, 0.487" OD	18-8 Stainless Steel
Prototype	Wood PLA	PLA

Appendix C2-Decision Matrix of Parts

Table C2-1

Senior Project - Shifte	r and Bracket									
		Score: 0 to 10 (best)							
Criterion	₩eight	5	1.4140 Alloy S	iteel Bar	High-Strength 104	5 Carbon Steel Bar	Ultra-Corrosion-Resista	nt Grade 2 Titanium Bar	Oversized Shock-Resist	ant S7 Tool Steel Bar
	1 to 5 (must)	Best Possible	1	Score x Wt	2	Score x Wt	3	Score x Wt	4	Score x Wt
Price	4	20	5	20	4	16	1	4	3	12
Yeild Strength	5	25	4	20	5	25	2	10	3	15
Excess	2	10	4	8	3	6	4	8	1	2
Length	2	10	4	8	4	8	4	8	4	8
Confidence	4	20	4	16	3	12	4	16	3	12
Trust	3	15	4	12	4	12	4	12	4	12
Machinability	4	20	3	12	4	16	3	12	4	16
lotal	24	100		36		35		70		
NORMALIZE THE DAT	A (muliply by fracti	1		96		95		70		77
								84.5	Average	
								13.02561579	Std Dev.	
Decide if Bias is Good	or Bad	Good Bias:	Standard Dev	viation is two or m	ore digits		Good? Then you're don	e.		
		Poor Bias:	Standard Dev	viation is one or le	ess digits		Poor? Then change sor	nething!!!		
			You can char	nge the criteria, v	veighting, or the pro	ects themselves				
	Usishin sign	uine Saala								
	weightingi Jot	1 4140 Allou St	alBar							
	2	High-Strength	1045 Carbon 9	Stool Bor						
	3	Duersized Sho	ok-Besistant 9	37 Tool Steel Bar						
	4	Ultra-Corrosion	n-Resistant Gr	ade 2 Titanium B	ar					
	Criterion									
	Price	Cost of materia	l. High values a	are low costs.						
	Yeild Strength	The value of st	rength in ksi							
	Excess	The ammount (of excess mate	erial						
	Length	does it meet th	e required leng	,th						
	Confidence	Confidence in	he material							
	Trust	in the company	to diliver the p	product and mate	erial correctly					
	Machinability	the ability to ma	achine easily							

Table C2-2

Senior Project - Threa	ided Rod								
		Score: 0 to 10 (best)						
Criterion	₩eight	5	1/2"-13 ASTM A307 Grad	e A, Coarse Thread, Zinc	1/2"-13 ASTM A193 B7	7 Medium-Strength	1/2-20 Grade B7 Mediu	m-Strength Steel	
	1 to 5 (must)	Best Possible	1	Score x Wt	2	Score x Wt	2	Score x Wt	
Price	4	20	5	20	4	16	3	12	
Yeild Strength	5	25	1	5	4	20	5	25	
Excess	2	: 10	2	4	2	4	2	4	
Thread Strength	3	15	3	9	3	9	4	12	
Length	2	: 10	4	8	4	8	4	8	
Confidence	4	20	3	12	3	12	3	12	
Trust	3	15	2	6	4	12	4	12	
Density	2	: 10	2	4	4	8	4	8	
Total	25	125		68		83		93	
NORMALIZE THE DAT	A (muliply by fract	i 0.8		54.4		71.2		74.4	
								66.66666667	Averag
							-	10.74305978	Std Dev
Uecide it Bias is Good	or Bad	Good Bias:	Standard Deviation is two	or more digits			Good? Then you're don	e.	
		Poor Bias:	Standard Deviation is one	or less digits			Poor? Then change so	nething!!!	
			You can change the crite	ria, weighting, or the proje	ots themselves				
	11.1.1								
	Weighting/Sc	oring Scale							
		I I/2-20 Grade b	Miedium-Strength Steel						
	2	112 - 13 ASTM	MIJJD/ Medium-Strengtr	1 7.					
	Colorian	1 IZ -13 ASTMI	ASUT Grade A, Coarse Thre	ad, Linc					
	Criterion	I Cara (and a static							
	Filde Veild Steere als	The velve of at	ii. Fiigh values are low costs						
	Feid Strength	The amount	renganin ksi of ouoocomotorial						
	Thread Strength	Course us fine l	that oourco has a lossor str	anath than fina					
	Length	doos it moot th	a required length	engaraiannne					
	Confidence	Confidence in	the material						
	Truet	in the company	ute diliver the product and	material correctly					
	Densitu	Comparison be	atween different densities	natenarooneotiy					
	Densky	- companson be	en een aneren densides.						-
									<u> </u>
	Comments:	·							
	I found that the tr	unst I have com	es from a more Fine thread	as well as that the 1 threa	ded rod didn't even aive	a veild strength.			

Table C2-3

Senior Project - Threa	ded Sleeve											
		Score: 0 to 10 ((best)									
Criterion	₩eight	5	4140 Alloy St	eel Rotary Shaft	Low-Carbon S	teel Rod 1018	Oversized High-Spee	ed M2 Tool Steel Rod	Oversized Wear-Resista	nt D2 Tool Steel Rod	High-Strength Grad	e 5 Titanium Rod
	1to 5 (must)	Best Possible	1	Score x Wt	2	Score x Wt	3	Score x Wt	4	Score x Wt	5	Score x Wt
Price	4	20	2	8	5	20	1	4	4	16	2	8
Yeild Strength	5	25	4	20	2	10	3	15	2	10	5	25
Excess	2	10	5	10	2	4	1	2	1	2	5	10
Length	2	10	5	10	4	8	4	8	4	8	4	8
Confidence	4	20	4	16	2	8	2	8	2	8	4	16
Trust	3	15	3	9	3	9	3	9	3	9	3	9
Machinability	4	20	3	12	4	16	3	12	4	16	1	4
Total	24	100		85		75		58		69		80
NORMALIZE THE DAT	A (muliply by fracti	1		85		75		58		69		80
								73.4	Average			
								10.45466403	Std Dev.			
Decide if Bias is Good	or Bad	Good Bias:	Standard De	viation is two or n	nore digits		Good? Then you're d	one.				
		Poor Bias:	Standard De	viation is one or l	ess digits		Poor? Then change:	something!!!				
			You can cha	nge the criteria,	weighting, or the	projects them:	selves					
	11.1.1.1.10											
	Weighting/Sco	oring Scale										
	1	4 I4U Alloy Stee	el Rotary Shaft	D I								
	2	High-Strength	Grade S Litan	ium Hoa								
	3	Low-Carbon a	oteel Hod IU lo	27								
	4	Oversized wea	 Second M2 T 	2 TOOLSteelMod								
	Critorion	Oversized high	-opeed hz h	boi steer hou								
	Price	Cost of materia	al High values	are low costs								
	Yeild Strength	The value of st	renath in kei	are low costs.								
	Evoger	The ammount	of excess mate	arial								
	Length	does it meet th	e required lend	ath								
	Confidence	Confidence in	the material	g								
	Trust	in the company	u to diliver the r	oroduct and mat	erial correctly							
	Machinability	the ability to ma	achine easily									
		and an any control										

APPENDIX D-BUDGET

Table D1-Budget

Budget	Parts							
Parts #	Name	Parts	Material Type	Yeild Strength	Quantity	Cost (\$)	Tax (S)	Shipping (S)
20-0001	Threaded Rod	1/2"-20 Thread Size, 1 Foot Long	Grade B7 Medium-Strength Steel Threaded Rod	105 ksi	1	9.08	0.75	Unknown
20-0002	Threaded Sleeve	1 1/8" Diameter 1 ft	Ultra-Machinable 12L14 Carbon Steel Rod	#VALUE!	1	19.11	1.59	Unknown
20-0004,5	Swivel Joint	Lubrication-Free, 1" ID, 1-3/4" OD	Corrosion-Resistant Swivel Joint	47850 lbs	1	52.39	4.35	Unknown
0	Drill Tap	1/2-20 UNF, 4 Flute Plug Hand Pulley Tap	Unknown	Unknown	1	42.28	4.57	12.79
20-0003,6,7	Steel Bar for Shifter	3/4" Thick, 3/4" Wide	4140 Alloy Steel Bar	60 ksi	<u>د</u>	26.81	2.23	Unknown
55-0001	Shifter Screws	1/4"-20 Thread, 1" Long	Black-Oxide Alloy Steel	120 ksi	10	10.18	0.84	Unknown
55-0004	Locknut	Nylon-Insert Locknut 1/2"-20 Thread Size	Grade 8 Fastener	Unknown	10	4.58	0.38	Unknown
55-0003	Retaining Ring	3/4" OD, Black-Phosphate 1060-1090 Spri	Black-Phosphate 1060-1090 Spring Steel	3750 Ibs	100	12.8	1.06	Unknown
55-0005	Tapping Insert	Zinc Alloy Tapping Inserts for Softwood	Flanged, 3/8"-16 Thread Size, 63/64" Installed L	Unknown	25	13.97	1.16	
20-0008	Shifter Knob	Mahogony Block	Mohogony	Unknown	1	•	0.00	0
55-0002	Lock Washer	1/4" Screw Size, 0.26" ID, 0.487" OD	18-8 Stainless Steel	unknogn	100	3.68	0.31	
0	Prototype	Wood PLA	PLA	Unknown		31.41	2.61	0
	Linkage Attachment	1/2"-20 Internal Thread	Corrosion-Resistant Ball Joint Rod End	4700 Ibs		38.49	3.19	
						264.78	23.04	12.79
					Total	300.6075		

Table D2-Final Cost

Budget	Parts							
Parts #	Name	Parts	Material Type	Yeild Strengt	Quantity	Cost (\$)	Tax(\$) S	hipping (\$)
20-0001	Threaded Rod	1/2"-20 Thread Size, 1Foot Long	Grade B7 Medium-Strength Steel Threaded R	120 ksi	_	9.08	0.7536 Ui	nknowń
20-0002	Threaded Sleeve/S:	11/8" Diameter 1ft	Ultra-Machinable 12L14 Carbon Steel Rod	54 ksi	_	1 9. 11	1.5861 Ui	nknowm
20-0004,5	5 Swivel Joint	Lubrication-Free, 1" ID, 1-3/4" OD	Corrosion-Resistant Swivel Joint	47850 lbs	_	52.39	4.3484 Ui	nknown
20-0003,6	Steel Bar for Shifter	3/4" Thick, 3/4" Wide	4140 Alloy Steel Bar	60 ksi	_	26.81	2.2252 U	nknowh
55-0001	Shifter Screws	1/4"-20 Thread, 1" Long	Black-Oxide Alloy Steel	120 ksi	ㅋ	10.18	0.8449 Ui	nknowń
55-0004	Locknut	Nylon-Insert Locknut 1/2"-20 Thread Sit	Grade 8 Fastener	Unknown	ㅋ	4.58	0.3801 Ui	nknowm
55-0005	Tapping Insert	Zinc Alloy Tapping Inserts for Softwood	Flanged, 318"-16 Thread Size, 63164" Installed	Unknown	23	13.97	1.1595	
20-0008	Shifter Knob	Mahogony Block	Mohogony	Unknown	_	0	0	0
_	Prototype	Wood PLA	PLA	Unknown	_	31.41	2.607	0
	Linkage Attachmeni	3/4" Shank Diameter, 3-1/2" Shank Ceni	High-Strength Rod End Bolt Blank	125 ksi		8.27	0.6864	
	Linkage Attachmeni	1/2"-20 Internal Thread	Corrosion-Resistant Ball Joint Rod End	4700 lbs	_	38.49	3.1947	
						242	17 700	
							11.100	q
					Total	232.08		
							_	

APPENDIX E-SCHEDULE

Table E-Schedule

_			
	35 20-0008	2 25	e e
	511 20 0000		
	31 55-0001	0.5 0.5	5
	3j 55-0002	0.5 0.5	S
	3k 55-0003	0.6 0.5	s
	31.55-0004	0.5 0.5	c
	5, 55 0004	0.5 0.5	
	3m 55-0005	0.75 0.5	5
	3n 12-0001	10 8	\$
		subtotal: 27.35 26.15	
	4 Proposal Mods		\diamond
	4a Project Robot Schedule	15 17.25	s
	4b Designst Debet Dest Text		5
	40 Project Robot Part Inv.	3 3	3
	4c Crit Des Review*	10 8	5
		subtotal: 30 28.25	
			^
	7 Part Construction		
	7a Mentor Meeting	15 17.5	s
	7b Ordering Parts	2 1 25	e
	70 Ordering Parts	2 1.25	
	/c Inreaded Rod	1 2	
	7d Threaded Sleeve	8 8.5	\$
	7e Revising Drawings ASME(14.5)	3 4	\$
	7f Methods and Construction	1 2	\$
	7- Chiffere	4 6 76	
	/g shitters	4 0.25	3
	7h Shifter Knob	6 4.2	5
	7j Linkage Attachment	1 3	Ś
	7k Shifter Bracket	5.5 5.2	s
	7m Budget	3 1	¢
	7- Assembly		
	/n Assembly	0 0	5
	7o Spacers	2 2.5	5
	7p Wrench	1 4	s
	78		
	- 4		
	/r		
	75		
	7t		
	Zu Tesk#9	0 0	
		subtatel: 58.5 67.4	
		3000001. 30.3 07.4	
	0 Device Construct		^
	9 DEVICE CONSTRUCT		
	9a Assemble Joshua Components	4 5.5	5
	9b Assemble Whole Project	3 4.5	\$
	9e Take Dev Pictures	2 2.25	\$
	9f Update Website	8 6.25	\$
	St opdate website	aubtatalı 17 18 E	-
		SUDIOLOI: 17 18.5	
			<u>^</u>
	10 Device Evaluation		
	10a List Parameters	2.5 3	\$
	10b Design Test&Scope	3 2	\$
	10c Obtain resources	2 1.6	s
	10d Make test sheets	2 3	e
	100 Plake Lest sileets	2 3	
	10e Plan analyses	1 1.5	\$
	10g Test Plan*	10 15	\$
	10h Perform Evaluation	10 12	x
	10i Take Testing Pics	3 3	x
	10h Update Website	7.5 8	x
	-	subtotal: 41 49.1	
	11 495 Deliverables		
	11a Get Report Guide	3 2	S
	11b Make Rep Outline	3 4	s
	11c Write Report	20 18	e e
	11d Make Slide Outline	5 4 5	¢
	11e Creste Presentation	10 10 25	
	11f Undete Webelte	10 10.20	\$
	110 Jump Drive	10 12	\$
	and pamp prive	subtotal: 60 53 75	
		Sectore: 00 53./3	
	Total Est. Hours=	289 85 277 92 =Total Actual Hrs	
	Labors	15 4348	
		7500	
	Note: Deliverables*		
	Draft Proposal	\diamond	
	Analyses Mod	ŏ	
	Document Mods	\diamond	
	Final Proposal	Ŏ.	
	Part Construction	♦	
	Device Construct	\diamond	
	Device Evaluation	\diamond	
	495 Deliverables	\diamond	

Appendix G1-Test Report

Test 01 Introduction

Requirements:

It is required that the throw will adjust to between 20%-40% of shifts.

Parameters of Interest:

This test is interested in the distance of travel the shifter knob makes between 2 gears and into neutral. This will be trailed at 3 different adjustments with three different shifter sizes.

Predicted Performance:

It is predicted that the travel for all three different shifters will reduce up to 50 % of the highest distance of throw.

Data Acquisition:

The data acquired will be the angle of adjustment between each shift and the heights of the shifter knobs from each different length shifter. This will be done using a magnetic angle locater and a measuring tape. The Data will be recorded into Excel and then will be formulated into the distance of travel.

Schedule:

This test was performed on Friday April 17, 2020. See Gantt chart in APPENDIX E in main report for other schedule details.

Method

Resources:

The resources for this test is very minimal but the most important component was provided by Scott Calahan of CWU, this device was the Magnetic Angle Locator. The vehicle with the installed Adjustable Short Throw Shifter (ASTS) and a measuring tape. Assess to the vehicle will be the location.

Data Capture:

Data Capture is very straight forward. The length of the shifter arm is measured. The angle at each gear with three different adjustments will also take place using the magnetic angle locator.

Test Procedure Overview:

The shifter knob to the swivel joint will be measured by measuring tape. This will be recorded for the 6", 8", and 10" shifters. The angle reading will come from the magnetic locator attached to the side of the shifter at each gear with three different adjustments in at different times of the test. This data will then be put in excel and will formulate the distance that the shifter knob was required to travel.

Operational Limitations:

The movement of the device into each gear is the main operation that will be measured. The measurement of the angle and length of the shifter will determine the adjusted throw. The limitation is the height measure from the center of the swivel joint to the shifter knob will be difficult due to the parts in the way. Measurements will have to measure from those specific parts to create a base measurement to go from.

Precision/Accuracy:

The precision of height measurement will be within a quarter of an inch. The accuracy and precision to measure the angle at each gear is 0.1 degrees per the device's capability.

Data Storage/Manipulation/Analysis:

The measurements will be stored on paper, translated to excel, then formulated to receive travel to each gear. Graphs then will show distance of travel for each gears, shifters, and adjustments.

Data Presentation:

Data is presented in graph and a percent of range reduced throw.

Test Procedure

Summary/Overview:

This project is designed for the reduction of throw. This test will measure the distance of travel for individual shifter length at different adjustment levels to show that this device performs by reducing the throw by 40% or more. The ASTS will be tested inside the vehicle recording the measurements required. For this test, one person will measure and record the angles of shifters.

Time/Duration:

This test will take roughly 2 hours as there will be a total of 48 different measurements.

Place:

This test took place inside the vehicle.

Resources Needed:

- ASTS
- ³/₄" Wrench or Socket
- Measuring Tape
- Magnetic Angle Locator
- 10 mm Allen Key
- Z Frame Wrench

- Shifter Knob
- The 3 different type Shifters

Procedure:

- 1. Ensure installation was done correctly and fastened. Referencing installation of ASTS in Appendix G1 provided by Dustin Braun
- 2. Install shifter bracket onto ASTS by sliding the half inch hole over the threaded Rod and fitting the slot over the threaded sleeve. Align Slot in bracket facing parallel with the vehicle.
- 3. Press firmly on the shifter bracket, measure from the top face of the shifter bracket to the top of the threaded Rod. This measurement should read ³/₄" of an Inch. If adjustment is needed use step _____ to adjust until the measurement reads 0.75 inches.
- 4. Take the ½"-20 Locknut and tighten the nut clockwise with the ¾" Wrench or Socket until it touches the shifter bracket. Leave the wrench or socket on nut.
- 5. Take custom Z Frame Wrench and put it into the slot on the threaded sleeve. Use the Z frame wrench and the ³/₄" Wrench or Socket to fully tighten the shifter bracket. Do not rotate the Z frame wrench hold in place while rotating the ³/₄" wrench clockwise until tight. Then remove Wrenches
- 6. Choose one of the shifter lengths to begin testing.
- Take Shifter bracket and place the shifter inside of slot, line up the holes for the 1 ¹/₄" Socket Head Screws. Tighten screws using a 10 mm Allen Key through shifter bracket and shifter for a tight fit.
- 8. Install Shifter knob by rotating clockwise on the top of the shifter.
- 9. Place the vehicle in Neutral.
- 10. Record measurement from the top face of the shifter bracket down to the swivel joint. Then add half of an inch to this measurement.
- 11. Measure from the top face of the shifter bracket to the top of the shifter knob.
- 12. Take the two measurement and add them together to equal the height from central axis of rotation to the top of the shifter knob, record total.
- 13. Attach Magnetic Angle Locator to the flat surface on the shifter above the threaded rod. Zero the angle locater.
- 14. Record the angle in this progression
 - a. First gear
 - b. Second gear
 - c. Third Gear
 - d. Fourth Gear
 - e. Fifth Gear

- 15. Once angles are recorded place Z frame wrench into slot on threaded sleeve holding in place with no rotation. Take the ³/₄" wrench and place it over the locknut and rotate counterclockwise to loosen the nut off the threaded rod. Leave Z frame wrench in slot.
- 16. Hold Shifter bracket in place while rotating Z frame wrench to the middle adjustment height for the average throw.
- 17. Repeat steps 4-5 for tightening down shifter bracket.
- 18. Repeat 10-12 to make sure the height is still similar.
- 19. Repeat steps 13-18 to record all angle data and then adjust throw to highest level.
- 20. Once all data is collected for the first shifter choice. Take 10 mm Allen Key rotate counterclockwise the 1 ¹/₄" Socket Head Screws to remove the shifter.
- 21. Rotate the shifter knob counter-clock to uninstall from shifter.
- 22. Then repeat steps 6-20 for the last two shifter sizes.

Risk/Safety:

This test will have a lot of pinching points. Wear proper PPE, this test recommends glasses and gloves. Make sure when tightening with the two wrenches that they are close enough in handle distance to interlock hands to avoid pinching of fingers.

Discussion:

This test, and the information above should be enough to accomplish the collection of data necessary.

day of, the operator and assistant should not hesitate to make them.

Deliverables

Parameter Values:

When this test was performed the magnetic angle locater only held values within a tenth of a degree. This was measured in 55 different variations ranging at angles of $17.5^{\circ}-2.8^{\circ}$.

Calculated Values:

Arc length of is calculated using the distance of the central axis as the radius and the angle to find the distance of throw. Using $Arc_{length} = 2\pi r \left(\frac{\theta}{360}\right)$ to compare to the stock model shifter and Hurst shifter to find the percent reduction. Range of adjustability allowed for an arc length of 1.8-0.48 inches.

Success Criteria Values:

Success for this test would have been a reduced throw between 20-40%. This test clamed success by achieving a Reduction of stock by a percentage of 38-66%. This also met the benchmark by reducing more throw than the Hurst shifter by 0-44% of its throw.

Conclusion:

This test demonstrates the upper and lower limits of operations for the device. The shifters capability to change adjustment and customization for the customer is beyond successful. The demonstration performed shortly after install was consistent of swift effortless shifts that were short and easy. This devices versatility seems to the hallmark of its capability.

Test 02

Introduction

Requirements:

It is required Adjustable from inside the car without removing or replacing anything but the Locking Nut in under 60 seconds.

Parameters of Interest:

This test is interested in the time (seconds) it takes to take change the amount of throw in the shifter. The requirements are that it takes place inside the vehicle.

Predicted Performance:

It is predicted that the adjustment the throw from inside the vehicle in less than 60 seconds.

Data Acquisition:

The data acquired will be the time it takes to remove the Locking nut, remove shifter assembly, and then adjust and reinstall and go. This test will consist of two parts changing the shifter and or adjusting the throw. This test be done using a timer. The Data will be recorded into Excel and then will be formulated into the average adjustability time.

Schedule:

This test was performed on Friday April 17, 2020. See Gantt chart in APPENDIX E in main report for other schedule details.

Method

Resources:

The resources for this test are very minimal because all that is needed is stopwatch, $\frac{3}{4}$ inch wrench, and a $\frac{3}{16}$ " Hex Key.

Data Capture:

Data Capture is very straight forward. The length of the time is measured and then averaged.

Test Procedure Overview:

Part One of test two is the timer begins and the $\frac{3}{4}$ inch wrenched is used to loosen the locking nut. Once the locking nut is removed the shifter assembly is removed and the adjustment is made and then components reinstalled. The second part is the shifter assembly shall be disassembled using a $\frac{3}{16}$ " Hex Key. This will simply be to change the assembly of shifter height. The shifter knob will be unassembled and then new assembly components will be reinstalled.

Operational Limitations:

The movement of the device around the Center Console of the vehicle will be the largest limitation. When the vehicle is set in the highest throw a socket will not be able to be used, due to the depth of the socket not being long enough, adding more time to the trial. Other limitations are to change multiple components at a time could prove difficulty when the working space is only a lab.

Precision/Accuracy:

The precision of height measurement will be within a hundredth of a second. The simulation will be the operator is changing or adjusting the device so the operator will begin and end the time simulating driver capability. The precision will be to the operator's ability to adjust the ASTS and the ability to use the stopwatch.

Data Storage/Manipulation/Analysis:

The measurements will be stored on paper, translated to excel, then formulated to receive Average time.

Data Presentation:

Data is numerical and presented in a chart.

Test Procedure

Summary/Overview:

This project is designed for the allow a driver to adjust the throw of the vehicle to his/her comfortability for different driving modes. This test will measure the time it will take for the operator to adjust the throw of the shifter. The ASTS will be tested inside the vehicle recording the measurements required. For this test, one person will start the time and then change or adjust the throw of the shifter and then stop the time.

Time/Duration:

This test will take roughly 1 hours as there will be a total of 20 different measurements.

Place:

This test took place inside the vehicle.

Resources Needed:

- ASTS
- ³/₄" Wrench or Socket
- 10 mm Allen Key
- The 3 different type Shifters
- Shifter Knob
- Z Frame Wrench

• Stopwatch

Procedure:

- 1. Ensure installation was done correctly and fastened. Referencing installation of ASTS in Appendix G1 provided by Dustin Braun
- 2. Install shifter bracket onto ASTS by sliding the half inch hole over the threaded Rod and fitting the slot over the threaded sleeve. Align Slot in bracket facing parallel with the vehicle.
- 3. Press firmly on the shifter bracket, measure from the top face of the shifter bracket to the top of the threaded Rod. This measurement should read ³/₄" of an Inch. If adjustment is needed use step _____ to adjust until the measurement reads 0.75 inches.
- 4. Take the ½"-20 Locknut and tighten the nut clockwise with the ¾" Wrench or Socket until it touches the shifter bracket. Leave the wrench or socket on nut.
- 5. Take custom Z Frame Wrench and put it into the slot on the threaded sleeve. Use the Z frame wrench and the ³/₄" Wrench or Socket to fully tighten the shifter bracket. Do not rotate the Z frame wrench hold in place while rotating the ³/₄" wrench clockwise until tight. Then remove Wrenches
- 6. Choose one of the shifter lengths to begin testing.
- Take Shifter bracket and place the shifter inside of slot, line up the holes for the 1 ¼" Socket Head Screws. Tighten screws using a 10 mm Allen Key through shifter bracket and shifter for a tight fit.
- 8. Install Shifter knob by rotating clockwise on the top of the shifter.
- 9. Place the vehicle in Neutral.
- 10. Begin time on stopwatch. This is Part one which will test adjustable time.
- 11. Z frame wrench into slot on threaded sleeve holding in place with no rotation. Take the ³/₄" wrench and place it over the locknut and rotate counter-clockwise to loosen the nut off the threaded rod.
- 12. Remove shifter Assembly and rotate Z frame wrench to the to adjust throw.
- 13. Install shifter assembly.
- 14. Repeat steps 4-5.
- 15. Stop time.
- 16. Repeat Steps 10-15 for 9 more trials (total of 10 trails).
- 17. Part Two test changeability of the shifters.
- 18. Start time
- 19. Loosen 1 ¹/₄" Socket Head Screws by rotating counterclockwise. Remove shifter from Shifter Bracket.
- 20. Remove shifter knob from shifter and chose different shifter to reinstall.

- 21. Repeat Steps 7-8.
- 22. Stop time.
- 23. Repeat Steps 18-22 for 9 more trials (total of 10 trails).

Risk/Safety:

This test will have a lot of pinching points. Wear proper PPE, this test recommends glasses and gloves. Make sure when tightening with the two wrenches that they are close enough in handle distance to interlock hands to avoid pinching of fingers.

Discussion:

This test, and the information above should be enough to accomplish the collection of data necessary.

Deliverables

Parameter Values:

When this test was performed the stopwatch only held values within a hundredth of a second. This was measured in 20 different variations ranging at times of 39.28-73.48 seconds.

Calculated Values:

The only calculation will be the sum of all the trials divided by the number of trials and an average of those averages from part one and two of this test.

Success Criteria Values:

Success for this test would have been any form of adjustment inside the cockpit in less than 60 seconds. This test clamed success by achieving an average of 47.28 seconds for part one and 52.72 seconds for part two. A total average of 50.00 seconds from part one and two was found concluding the success of the device.

Conclusion:

This test demonstrates the adjustability of the device. The shifters capability to change adjustment and customization for the customer is beyond successful. The testing was also complete by other different operators to allow for a better average. This devices versatility seems to the hallmark of its capability. Test Two Successful.

Test 03

Introduction

Requirements:

Reduce the force required to shift by a factor 10%

Parameters of Interest:

This test is interested in the force required to shift into a gear. This will be trailed at 3 different adjustments with three different shifter sizes.

Predicted Performance:

It is predicted that the force will be less than 10% of the force required to shift the stock shifter.

Data Acquisition:

The data acquired will be the Lb_f of each shift into gear. This will be done by using a pound scale that will put the shifter reading a force at movement into gear. The data will be recorded into excel.

Schedule:

This test was performed on Friday April 17, 2020. See Gantt chart in APPENDIX E in main report for other schedule details.

Method

Resources:

The resources for this test is very minimal but the most important component was provided by Ted Bramble of CWU, this device was the pound Scale. The vehicle with the installed Adjustable Short Throw Shifter (ASTS) and a Phone with slow-motion capabilities are other requirements. Assess to the vehicle will be the location.

Data Capture:

Data Capture is very straight forward. The reading of the scale as it pulls into gear. This will be capture via phone to give an exact number when the shifter moves into gear out of neutral.

Test Procedure Overview:

Installed ASTS will be used and then tested on with the 3 different sized 6", 8", and 10" shifters. The Force required to shift into gear will be measured using pound scale and slow-motion application on a phone. This data will then be put in excel and an average for each will be formulated.

Operational Limitations:

The movement of the device into each gear is the main operation that will be measured. The space inside the vehicle unfortunately does not leave enough room for testing for 1st, 3rd, and 5th gear. The limitation is that the only great measurement available was to just shift in 4th gear. The testing for the stock model and the ASTS will be similar but the measured value won't be for all gears.

Precision/Accuracy:

The precision of height measurement will be within a quarter of a tenth of a pound. The accuracy and precision to measure the force will be based upon the operator pulling the pound scale perpendicular to the shifter the entire time. The precision of the camera is 20 frames per second so that the measurement will show accurately and precisely when it shifts.

Data Storage/Manipulation/Analysis:

The measurements will be stored on paper, translated to excel, then formulated to receive Average time.

Data Presentation:

Data is numerical and presented in a chart.

Test Procedure

Summary/Overview:

This project is designed for the reduction the force of throw. This test will measure the force for individual shifter length at to show that this device performs against the stock model. The ASTS will be tested inside the vehicle recording the measurements required. For this test, two people will measure and record the force required to shift.

Time/Duration:

This test will take roughly 2 hours as there will be a total of 30 different measurements.

Place:

This test took place inside the vehicle.

Resources Needed:

- ASTS
- 10 mm Allen Key
- Shifter Knob
- The 3 different type Shifters
- Pound Scale
- Slow-motion camera/phone

Procedure:

- 1. Ensure installation was done correctly and fastened. Referencing installation of ASTS in Appendix G1 provided by Dustin Braun.
- 2. See Test One Appendix D procedure steps 2-5.
- 3. Choose one of the shifter lengths to begin testing.
- 4. Take Shifter bracket and place the shifter inside of slot, line up the holes for the 1 ¹/₄" Socket Head Screws. Tighten screws using a 10 mm Allen Key through shifter bracket and shifter for a tight fit.
- 5. Install Shifter knob by rotating clockwise on the top of the shifter.
- 6. Place the vehicle in Neutral.
- 7. Place hook around top of shifter resting against the bottom of the shifter knob. Make sure the pounds scale is zeroed.
- 8. The second person get ready with their camera to take a video while the pull travels. The Video needs to start before the tension to the scale is brought.
- 9. Pull The pound scale slowly until the shifter moves into 4th gear.

- 10. Stop Video. Review the video in slow motion recording the climax number to move the shifter into 4th gear and record data.
- 11. Repeat Steps 6-10 for 9 more trials (total of 10 trails).
- 12. Once all data is collected for the first shifter choice. Take 10 mm Allen Key rotate counterclockwise the 1 ¹/₄" Socket Head Screws to remove the shifter.
- 13. Rotate the shifter knob counter-clock to uninstall from shifter.
- 14. Then repeat steps 2-13 for the last two shifter sizes.

Risk/Safety:

This test will have a lot of pinching points. Wear proper PPE, this test recommends glasses and gloves.

Discussion:

This test, and the information above should be enough to accomplish the collection of data necessary.

Deliverables

Parameter Values:

When this test was performed the pound scale only held values within a hundredth of a pound. This was measured in 30 different variations ranging at angles of 2.22-7.1 lb_f.

Calculated Values:

The only calculation will be the sum of all the trials divided by the number of trials and an average of those averages from part one and two of this test.

Success Criteria Values:

Success for this test would have been any form of force to shift 10% less than stock. This test clamed success by achieving an average of 4.305 Lbs. which is 37.71% less than Stock model. The force required can range depending on shifter an average of 3.44-4.92 lb_f. For a Reduction between 28.9-50.1% less force for the individual shifters average. This product succeeded for each shifter but succeeded beyond the requirement by shifting 50% less than the stock shifter.

Conclusion:

This test demonstrates the upper and lower limits of operations for the device. The shifters capability to change adjustment and customization for the customer is beyond successful. The demonstration performed shortly after install was consistent of swift effortless shifts that were short and easy especially with the shifters force being 37% less than stock. This devices versatility seems to the hallmark of its capability.

Installation Procedure

ASTS Installations Provided by Dustin Braun

Resources

- Car jack
- 2 jack stands
- 10mm wrench
- 13mm wrench
- Flat head screwdriver

Procedure

Frame Removal

- 1. Place shifter in neutral position.
- 2. Work upper part of shift boot out of retainer groove of shifter knob and slide down onto stick.
- 3. Remove shifter knob from stick by turning counterclockwise.
- 4. Using both hands, place fingers underneath front outer edges of shifter boot and pull up to release and remove from console (see fig.1). Slide boot up and over shifter stick.
- 5. Remove large dust boot by pulling out of floor pan opening and sliding up over shifter stick.
- 6. Raise vehicle with car jack to gain access to the underside of the shifter assembly. Support car with the stands.
- From underneath the car, use a 13mm wrench to remove the hex nut that secures the transmission linkage rod to the bottom of the factory shifter (see fig.2). Disconnect the rod by pulling it out of the shifter stick bottom.
- 8. With the 10mm wrench, remove the front bolt that secures the shifter assembly arm to the transmission and set aside (see fig.3).
- 9. Using a 10 mm wrench remove the two hex nuts that secure the rear mount of the shifter assembly to the floor pan and set aside (see fig.4).

Figure 1

- 10. From inside the car, carefully pull the shifter assembly out. This is a little bit of a trick so take time, making sure not to scratch or bend center console.
- 11. Remove the two plastic bushings from the bottom of the shifter. Remove the metal bracket from the rear rubber mount and the two metal-flanged sleeves from the front rubber bushings located in the shifter assembly arm.

ASTS Frame Installation

1. Insert the two bushings from the old frame into the new ASTS frame Long-arm.

Figure 3

Figure 4

- 2. From inside the car, carefully insert the ASTS Long-arm through the opening in the floor tunnel.
- 3. From underneath the car, attach Long-arm to the transmission.
- 4. Insert Short-arm through console and re-attach the rear mount of the shifter assembly to the floor pan studs. Replace the hex nuts previously removed. Using a 10mm wrench or socket, tighten securely.
- 5. Using a 10mm wrench, tighten the hex bolt that secures the front shifter arm to the transmission.
- 6. Slide housing through console and attach to Short-arm and Long-arm with ¼-20 bolts.
- 7. Replace the large rubber dust boot onto the shifter assembly. Check to be sure that boot seals around shifter base and that groove in dust boot is seated properly into floor tunnel.

Time Test Procedure

- 1. Repeat steps in ASTS Frame Installation 3 times.
- 2. Record the time it takes for each installation period.
- 3. Average the results and compare to stock frame install time.

Risks

To avoid any possibility of bodily injury or damage to vehicle, do not attempt shifter installation until confidence that the vehicle is safely secured and will not move or fall from its raised position. Amount of risk can be lowered by adding a second car jack as a safety net once the car is on jack stands.

Appendix G2-Data Forms

Table G2-1 Test One

Hurst Short Throw Shifter						
	Neutral	1st	2nd	3rd	4th	5th
		Gear	Gear	Gear	Gear	Gear

Angle (°)	0]	
Height from Central Axis (in.)	9	Take 4th ge	a Picture ear	e of the s	shift from	3rd to		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV /0!	#DIV /0!	#DIV/ 0!	#DIV/0!		
Stock Model Shifter								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear	_	
Angle (°)	0							
Height from Central Axis (in.)	8.75	Take 4th ge	a Picture ear	e of the s	shift from	3rd to		
Distance of Throw (in.)	0	0	0	0	0	0		1
10" Shifter Long Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)					Take a F	Picture of the	e shift	
Height from Central Axis (in.)	13.93				from 3rc	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
10" Shifter Average Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a F	Picture of the	e shift	
Height from Central Axis (in.)	13.93				from 3rc	l to 4th gear		-
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!

Reduction Vs. Hurst		#DI	#DIV/	#DIV/	#DIV/	#DIV/0!	Avg	#DIV/
		V/0!	0!	0!	0!			0!
10" Shifter Short Throw								
				0.1				
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
$A = a \left(0 \right)$	0	ooui	ooui	oour	Talva a F	Lister of the	abift	
Angle (*)	0				Take a P	ficture of the	e shiit	-
Height From Central Axis (in.)	11.93				from 3rd	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
8" Shifter Long Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a F	Picture of the	e shift	
Height From Central Axis (in.)	11.93				from 3rd	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
8" Shifter Average Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a F	Picture of the	e shift	
Height From Central Axis (in.)	11.93				from 3rd	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!

8" Shifter Short Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a P	Picture of the	shift	
Aligie ()	0						, sint	-
(in.)	11.93				from 3rc	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
6" Shifter Long Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a P	Picture of the	e shift	
Height From Central Axis (in.)	9.93				from 3rd	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
6" Shifter Average Throw								
	Neutral	1st Gear	2nd Gear	3rd Gear	4th Gear	5th Gear		
Angle (°)	0				Take a P	Picture of the	e shift	
Height From Central Axis (in.)	9.93				from 3rd	l to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
6" Shifter Short Throw								

	Neutral	1st	2nd	3rd	4th	5th Gear		
		Gear	Gear	Gear	Gear			
Angle (°)	0				Take a P	icture of the	e shift	
Height From Central Axis (in.)	9.93				from 3r	d to 4th gear		
Distance of Throw (in.)	0	0	0	0	0	0		
Reduction Vs. Stock		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!
Reduction Vs. Hurst		#DI V/0!	#DIV/ 0!	#DIV/ 0!	#DIV/ 0!	#DIV/0!	Avg	#DIV/ 0!

Table G2-2 Test Two

ASTS												
trail	1	2	3	4	5	6	7	8	9	10		
Adjustment											Avg	0
Time (s)												
Shifter											Avg	0
uninstall/install												
Time (s)												
	Video	o Of A	djustir	ng Thro	OW	Video of Changing				Total		0
						Shifter				Aver		

Table G2-3 Test Three

Force	1	2	3		4	5	6	7	8		9	10		
Required														
to Shift														
10"													Δνσ	
													Avg	
Shifter														
8" Shifter													Avg	
<i>c</i>														
6" Shifter													Avg	
Percent Les	ss A	Avg.		10	"		8" A	vg		6'	' Avg		Avg	
than Stock	t	otal		Av	vg %		% le	SS		%	less			
				les	ss									
				les	SS									

Average Force to Shift into gears			
Trail	Force (lb _f)	Trail	Force (lb _f)
1	6.25	7	6.37
2	7	8	5.75
3	7.32	9	7.51
4	6.56	10	9.49
5	5.27	11	7.5
6	6.9	Average Force	6.901818

Appendix G3-Raw Data

Table G3-1 Test One

Hurst Short Throw													
Shifter													
	1	Neutral	1st	2nd Gear	3rd Gear	4th	5t	h					
			Gear			Gear	Ge	ear					
Angle (°)	(0	7.3	11.3	8.4	9.5	10	.3					
Height From	Ģ	9	Take a	Picture of the	he shift fron	n 3rd to	4th						
Central Axis (in	n.)		gear										
Distance of Th	row (0	1.14	1.775	1.319	1.492	1.617						
(in.)													
Reduction Vs.			0.426	0.203	0.456	0.435	0.3	394	Av	vg	0.3834		
Stock													
Stock Model													
Shifter													
	1	Neutral	1st	2nd Gear	3rd Gear	4th	5t	h					
			Gear			Gear	Ge	ear					
Angle (°)	(0	13.1	14.6	15.9	17.3	17	.5					
Height From	8	8.75	Take a	Picture of the	he shift fron	n 3rd to	4th						
Central Axis (in	n.)		gear										
Distance of Th	row (0	2.000	2.229	2.428	2.641	2.0	672					
(in.)													
10" Shifter Lon	ıg												
Throw	_												
	1	Neutral	1st	2nd Gear	3rd Gear	4th Ge	ar	5th					
			Gear					Gea	r				
Angle (°)		0	7.4	5.2	5.2	6	5.7	5	.1				
Height From		13.93	Take a	Picture of the	he shift	from 3	from 3rd to 4th gear						
Central Axis (in	n.)												

Distance of Throw	0	1.799	1.264	1.264	1.628	1.239			
(in.)									
Reduction Vs.		0.100	0.432986	0.479346	0.383445	0.536	Avg	0.3865	
Stock									
Reduction Vs.		-	0.287	0.0418	-0.091	0.233	Avg	-	
Hurst		0.568					_	0.0194	
10" Shifter									
Average Throw									
U	Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th			
		Gear				Gear			
Angle (°)	0	6.2	4.6	5.1	5	6			
Height From	13.93	Take a	Picture of th	ne shift	from 3rd to	o 4th ge	ar		
Central Axis (in)	15.75	T une u			nom sid t		ui		
Distance of Throw	0	1 507	1 1 1 8	1 239	1 215	1 4 5 8			
(in)	0	1.507	1.110	1.237	1.215	1.450			
Reduction Vs		0.246	0 / 98	0.489	0 539	0.454	Δνα	0.4456	
Stock		0.240	0.470	0.407	0.557	0.7.77	nvg	0.7750	
Reduction Vs			0 369	0.060	0.185	0.008	Δνα	0.0798	
Hurst		0.314	0.507	0.000	0.105	0.070	Avg	0.0790	
		0.314							
10" Chifton Chort									
Throw									
THIOW	Neutral	1	2nd Coor	2nd Coor	Ath Coor	541			
	Neutrai	Tst Coor	2nd Gear	Srd Gear	4th Gear	Sun			
$\Delta nala (0)$	0	Gear	5 /	12	5				
Angle ()	0	J.2	J.4	4.3	S	5.9			
Height From	11.93	Take a	Picture of the	he shift	from 3rd to	o 4th ge	ar		
Central Axis (in.)	0	1.000	1 104	0.005	1.0.11	0.010			
Distance of Throw	0	1.082	1.124	0.895	1.041	0.812			
(1n.)		0.450	0.40.7	0.621	0.60	0.000		<u> </u>	
Reduction Vs.		0.458	0.495	0.631	0.60	0.696	Avg	0.5775	
Stock		0.055	0.044	0.001				0.0000	
Reduction Vs.		0.055	0.366	0 321				0.3088	
Hurst				0.321	0.302	0.498	Avg		
				0.321	0.302	0.498	Avg		
				0.521	0.302	0.498	Avg		
8" Shifter Long				0.321	0.302	0.498	Avg		
8" Shifter Long Throw				0.321	0.302	0.498	Avg		
8" Shifter Long Throw	Neutral	1st	2nd Gear	3rd Gear	0.302 4th Gear	0.498	Avg		
8" Shifter Long Throw	Neutral	1st Gear	2nd Gear	3rd Gear	0.302 4th Gear	0.498 5th Gear	Avg		
8" Shifter Long Throw Angle (°)	Neutral 0	1st Gear 7.2	2nd Gear 5.9	3rd Gear 5.8	0.302 4th Gear 6.9	0.498 5th Gear 5.1	Avg		
8" Shifter Long Throw Angle (°) Height From	Neutral 0 11.93	1st Gear 7.2 Take a	2nd Gear 5.9 Picture of tl	3rd Gear 5.8 ne shift	0.302 4th Gear 6.9 from 3rd to	0.498 5th Gear 5.1 o 4th ge	Avg		
8" Shifter Long Throw Angle (°) Height From Central Axis (in.)	Neutral 0 11.93	1st Gear 7.2 Take a	2nd Gear 5.9 Picture of tl	3rd Gear 5.8 ne shift	0.302 4th Gear 6.9 from 3rd to	0.498 5th Gear 5.1 0 4th ge	Avg ar		
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499	2nd Gear 5.9 Picture of tl 1.228	3rd Gear 5.8 ne shift 1.207	0.302 4th Gear 6.9 from 3rd to 1.436	0.498 5th Gear 5.1 o 4th ge 1.061	Avg ar		
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw (in.)	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499	2nd Gear 5.9 Picture of tl 1.228	3rd Gear 5.8 ne shift 1.207	0.302 4th Gear 6.9 from 3rd to 1.436	0.498 5th Gear 5.1 o 4th ge 1.061	Avg ar		
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs.	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499 0.250	2nd Gear 5.9 Picture of tl 1.228 0.449	3rd Gear 5.8 ne shift 1.207 0.502	0.302 4th Gear 6.9 from 3rd to 1.436 0.456	0.498 5th Gear 5.1 o 4th ge 1.061 0.602	Avg ar Avg	0.4522	
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs. Stock	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499 0.250	2nd Gear 5.9 Picture of tl 1.228 0.449	3rd Gear 5.8 ne shift 1.207 0.502	0.302 4th Gear 6.9 from 3rd to 1.436 0.456	0.498 5th Gear 5.1 o 4th ge 1.061 0.602	Avg ar Avg	0.4522	
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs. Stock Reduction Vs.	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499 0.250	2nd Gear 5.9 Picture of tl 1.228 0.449 0.307	3rd Gear 5.8 he shift 1.207 0.502 0.084	0.302 4th Gear 6.9 from 3rd to 1.436 0.456 0.037	0.498 5th Gear 5.1 o 4th ge 1.061 0.602 0.343	Avg ar Avg Avg	0.4522	
8" Shifter Long Throw Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs. Stock Reduction Vs. Hurst	Neutral 0 11.93 0	1st Gear 7.2 Take a 1.499 0.250	2nd Gear 5.9 Picture of tl 1.228 0.449 0.307	3rd Gear 5.8 ne shift 1.207 0.502 0.084	0.302 4th Gear 6.9 from 3rd to 1.436 0.456 0.037	0.498 5th Gear 5.1 o 4th ge 1.061 0.602 0.343	Avg ar Avg Avg	0.4522	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8" Shifter Average								
--	--------------------	---	--------	----------------	----------	------------	----------	-----	--------
Neural Ist Gear 2nd Gear 3rd Gear 4th Gear 5th Gear Angle (°) 0 6.6 4.8 5.3 5.7 6.2 Height From Central Axis (in.) 11.93 Take a Picture of the shift from 3rd \cup 4th gear Distance of Throw (in.) 0 1.374 0.999 1.103 1.1868 1.290 Reduction Vs. 0.313 0.551 0.545 0.500 0.516 Avg 0.4956 Stock 0.198 0.436 0.163 0.204 0.202 Avg 0.1617 Hurst 0.198 0.566 0.516 Avg 0.4956 Stock 0 5.7 4.4 5.1 4.4 3.2 Reduction Vs. 11.93 Take a Picture of the stift from 3rd to 4th gear 5th Gear Leight From 11.93 Take a Picture of the stift from 3rd to 4th gear 5th Gear Leight From 11.93 Take a Picture of the stift from 3rd to 4th gear 5th Gear Central Axis	Throw								
		Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Gear				Gear		
Height From Central Axis (in.) 11.93 Take a Picture of the shift Distance of Throw (in.) from 3rd to 4th gear Reduction Vs. 0.313 0.999 1.103 1.1868 1.290 Reduction Vs. 0.313 0.551 0.545 0.500 0.516 Avg 0.4956 Reduction Vs. 0.198 0.436 0.163 0.204 Avg 0.1617 Hurst 0.198 0.436 0.163 0.204 Avg 0.1617 Hurst 0.198 0.436 0.163 0.204 Avg 0.1617 Hurst 0.198 1.18 2nd Gear 3rd Gear 4th Gear 5th Gaa Image	Angle (°)	0	6.6	4.8	5.3	5.7	6.2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Height From	11.93	Take a	Picture of the	he shift	from 3rd t	o 4th ge	ar	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Central Axis (in.)								
	Distance of Throw	0	1.374	0.999	1.103	1.1868	1.290		
Reduction Vs. Stock 0.313 0.551 0.545 0.550 0.516 Avg 0.4956 Reduction Vs. Hurst 0.198 0.163 0.204 0.202 Avg 0.1617 Hurst 0.198 0.163 0.204 0.202 Avg 0.1617 West 0.198 0.163 0.204 0.202 Avg 0.1617 B" Shifter Short Throw 0.198 0.436 3rd Gear 4th Gear 5th Gear 5th Gear 5th Gear 5th Gear 5th Gear 5th 5	(in.)								
Stock Image: star interval and the star interva	Reduction Vs.		0.313	0.551	0.545	0.550	0.516	Avg	0.4956
Reduction Vs. Hurst	Stock								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reduction Vs.		-	0.436	0.163	0.204	0.202	Avg	0.1617
S 8" Shifter Short ThrowNeutral I 11.931st Gear2nd Gear Angle (°)3rd Gear Gear4th Gear Angle (°)5th Gear5th 	Hurst		0.198						
8" Shifter Short Throw Neutral Neutral 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear - Angle (°) 0 5.7 4.4 5.1 4.4 3.2 Height From Central Axis (in.) 11.93 Take a Picture of the shift from 3rd to 4th gear - Distance of Throw (in.) 0 1.186 0.916 1.061 0.916 0.666 Reduction Vs. 0.406 0.589 0.562 0.653 0.750 Avg 0.5924 Stock 0.305 0.483 0.195 0.386 0.588 Avg 0.3236 Hurst 0.305 0.496 0.577 5.5 5.8 3.9 - Angle (°) 0 6.7 5.7 5.5 5.8 3.9 - Height From (in.) Neutral 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear - Angle (°) 0 6.7 5.7 5.5 5.8 3.9 - Reduction Vs.<									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8" Shifter Short								
$ \begin{array}{ c c c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c } \begin{tabular}{ c c c c c c c } \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Throw								
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th		
$ \begin{array}{ c c c c c c c } Angle (^{\circ}) & 0 & 5.7 & 4.4 & 5.1 & 4.4 & 3.2 \\ \hline Height From & 11.93 & Take a Picture of W shift & from 3rd U states a Variable of M and States a Variable of M$			Gear				Gear		
Height From Central Axis (in.) 11.93 Take a Picture of the shift from 3rd to 4th gear Distance of Throw (in.) 0 1.186 0.916 1.061 0.916 0.666 Reduction Vs. 0.406 0.589 0.562 0.653 0.750 Avg 0.5924 Reduction Vs. - 0.406 0.889 0.195 0.386 0.588 Avg 0.3236 Hurst 0.035 - 0.483 0.195 0.386 0.588 Avg 0.3236 Hurst 0.035 - 0.483 0.195 0.386 0.588 Avg 0.3236 Hurst 0.035 - 0.483 0.195 0.386 0.588 Avg 0.3236 Hurst 0.035 - - - - - - - - 6" Shifter Long Throw 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear - - - - - - - - - - - - - - - - -	Angle (°)	0	5.7	4.4	5.1	4.4	3.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Height From	11.93	Take a	Picture of t	he shift	from 3rd t	o 4th ge	ar	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Central Axis (in.)						U		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Distance of Throw	0	1.186	0.916	1.061	0.916	0.666		
Reduction Vs. Stock 0.406 0.589 0.562 0.653 0.750 Avg 0.5924 Reduction Vs. Hurst 0.035 0.483 0.195 0.386 0.588 Avg 0.326 Hurst 0.035 0.483 0.195 0.386 0.588 Avg 0.326 6" Shifter Long Throw Neutral 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear	(in.)								
StockImage: stock <th< td=""><td>Reduction Vs.</td><td></td><td>0.406</td><td>0.589</td><td>0.562</td><td>0.653</td><td>0.750</td><td>Avg</td><td>0.5924</td></th<>	Reduction Vs.		0.406	0.589	0.562	0.653	0.750	Avg	0.5924
Reduction Vs. Hurst - 0.483 0.195 0.386 0.588 Avg 0.3236 Hurst 0.035 0.035 0.195 0.386 0.588 Avg 0.3236 6" Shifter Long Throw Neutral 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear 5th Gear 5th 5t	Stock							C C	
Hurst0.035Image: second	Reduction Vs.		-	0.483	0.195	0.386	0.588	Avg	0.3236
G" Shifter Long ThrowNeutralIst Gear2nd Gear3rd Gear4th Gear5th GearAngle (°)06.75.75.55.83.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gearDistance of Throw (in.)01.1610.987 0.5560.6070.6190.747Avg0.5901Reduction Vs. Stock0.4190.5560.6070.6190.747Avg0.5901Reduction Vs. Hurst-0.4430.2770.3260.582Avg0.3234Murst0.012-0.4430.2770.3260.582Avg0.3234Murst0.0120.4430.2770.3260.582Avg0.3234Murst0.0120.4430.2770.3260.582Avg0.3234MurstNeutral Height From Central Axis (in.)1st 9.932nd Gear3rd Gear4th Gear5th Gear-Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear	Hurst		0.035					-	
6" Shifter Long ThrowNeutral1st Gear2nd Gear3rd Gear4th Gear5th GearAngle (°)06.75.75.55.83.9Height From Central Axis (in.)9.93Take a Picture of the shift Torian and the structure of the shiftfrom 3rd to 4th gearDistance of Throw (in.)01.1610.9870.9531.0050.675Reduction Vs. Stock0.4190.5560.6070.6190.747Avg0.5901Reduction Vs. Hurst0.012-0.4430.2770.3260.582Avg0.32346" Shifter Average Throw6" Shifter Average Throw-1st Gear2nd Gear3rd Gear4th Gear5th Gear-Angle (°)06.54.94.85.15.9-Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6" Shifter Long								
Neutral Gear1st Gear2nd Gear Gear3rd Gear4th Gear5th GearAngle (°)06.75.75.55.83.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gearDistance of Throw (in.)01.1610.9870.9531.0050.675Reduction Vs. Stock0.4190.5560.6070.6190.747Avg0.5901Reduction Vs. Hurst-0.4430.2770.3260.582Avg0.32346" Shifter Average ThrowNeutral1st Gear2nd Gear3rd Gear4th Gear5th Gear-Angle (°)06.54.94.85.15.9-Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear	Throw								
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th		
Angle (°) 0 6.7 5.7 5.5 5.8 3.9 Height From Central Axis (in.) 9.93 Take a Picture of the shift from 3rd to 4th gear Distance of Throw (in.) 0 1.161 0.987 0.953 1.005 0.675 Reduction Vs. Stock 0.419 0.556 0.607 0.619 0.747 Avg 0.5901 Stock 0.012 0.012 0.277 0.326 0.582 Avg 0.3234 Hurst 0.012 0.012 0.590 0.582 Avg 0.3234 6" Shifter Average Throw 1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear 5.9 Height From Central Axis (in.) 0 6.5 4.9 4.8 5.1 5.9			Gear				Gear		
Height From Central Axis (in.)9.93Take a Picture of the shift of the shiftfrom 3rd to 4th gearDistance of Throw (in.)01.1610.9870.9531.0050.675Reduction Vs. Stock0.4190.5560.6070.6190.747Avg0.5901Reduction Vs. Hurst0.0120.4430.2770.3260.582Avg0.32346" Shifter Average Throw01.1st Gear2nd Gear3rd Gear4th Gear5th Gear1Angle (°)06.54.94.85.15.95.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear	Angle (°)	0	6.7	5.7	5.5	5.8	3.9		
Central Axis (in.) Initial and a branch of the function of the	Height From	9.93	Take a	Picture of t	he shift	from 3rd t	o 4th ge	ar	
Distance of Throw (in.)01.1610.9870.9531.0050.675Reduction Vs. Stock0.4190.5560.6070.6190.747Avg0.5901Reduction Vs. Hurst-0.4430.2770.3260.582Avg0.32346" Shifter Average Throw6" Shifter Average Throw0.0126" Shifter Average Throw-1st Gear2nd Gear3rd Gear4th Gear5th Gear-Angle (°)06.54.94.85.15.9-Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear	Central Axis (in.)								
(in.) Image: constraint of the stress o	Distance of Throw	0	1.161	0.987	0.953	1.005	0.675		
Reduction Vs. Stock 0.419 0.556 0.607 0.619 0.747 Avg 0.5901 Reduction Vs. Hurst - 0.443 0.277 0.326 0.582 Avg 0.3234 Hurst 0.012 - 0.443 0.277 0.326 0.582 Avg 0.3234 6" Shifter Average Throw -	(in.)								
StockImage of the state of the shiftImage of the state of the shiftReduction Vs. Hurst- 0.0120.4430.2770.3260.582Avg0.3234Image of the shift0.012Image of the shiftImage of the shiftImage of the shift0.32346" Shifter Average ThrowImage of the shiftImage of the shift6" Shifter Average ThrowImage of the shiftImage of the shiftAngle (°)06.54.94.85.15.9Image of the shiftImage of the shiftImage of the shiftImage of the shiftHeight From Central Axis (in.)9.93Take a Picture of the shiftImage of the shiftImage of the shiftImage of the shiftImage of the shift	Reduction Vs.		0.419	0.556	0.607	0.619	0.747	Avg	0.5901
Reduction Vs. Hurst-0.4430.2770.3260.582Avg0.3234 0.012 0.012000000006" Shifter Average Throw6" Shifter Average Throw </td <td>Stock</td> <td></td> <td>. = 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Stock		. = 2						
Hurst 0.012 \ldots \ldots \ldots \ldots \ldots 6" Shifter Average Throw \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 6" Shifter Average Throw \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 6" Shifter Average Throw \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 6" Shifter Average Throw \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 6" Shifter Average Throw \ldots 6" Shifter Average Throw \ldots 6" Shifter Average Gear \ldots <t< td=""><td>Reduction Vs.</td><td></td><td>-</td><td>0.443</td><td>0.277</td><td>0.326</td><td>0.582</td><td>Avg</td><td>0.3234</td></t<>	Reduction Vs.		-	0.443	0.277	0.326	0.582	Avg	0.3234
6" Shifter Average ThrowImage: Constraint of the shiftImage: Constraint of the shiftImag	Hurst		0.012						
6" Shifter Average ThrowImage: Shifter Average ThrowImage: Shifter Average ThrowImage: Shifter Average ThrowImage: Shifter Average ThrowImage: Shifter Average ThrowImage: Shifter Average 									
ThrowImage: Constraint of the shiftImage: Constraint of the sh	6" Shifter Average								
Neutral1st Gear2nd Gear3rd Gear4th Gear5th GearAngle (°)06.54.94.85.15.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear	Throw								
GearGearAngle (°)06.54.94.85.15.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear		Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th		
Angle (°)06.54.94.85.15.9Height From Central Axis (in.)9.93Take a Picture of the shiftfrom 3rd to 4th gear			Gear				Gear		
Height From9.93Take a Picture of the shiftfrom 3rd to 4th gearCentral Axis (in.)	Angle (°)	0	6.5	4.9	4.8	5.1	5.9		1
Central Axis (in.)	Height From	9.93	Take a	Picture of t	he shift	from 3rd t	o 4th ge	ar	
	Central Axis (in.)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u						

Distance of Throw	0	1.126	0.849	0.831	0.883	1.022		
(in.)								
Reduction Vs.		0.436	0.619	0.657	0.665	0.617	Avg	0.5992
Stock								
Reduction Vs.		0.017	0.521	0.369	0.407	0.367	Avg	0.3368
Hurst								
6" Shifter Short								
Throw								
	Neutral	1st	2nd Gear	3rd Gear	4th Gear	5th		
		Gear				Gear		
Angle (°)	0	Gear 5.6	3.9	5.5	4.7	Gear 2.8		
Angle (°) Height From	0 9.93	Gear 5.6 Take a	3.9 Picture of th	5.5 he shift	4.7 from 3rd	Gear 2.8 to 4th ge	ear	
Angle (°) Height From Central Axis (in.)	0 9.93	Gear 5.6 Take a	3.9 Picture of th	5.5 ne shift	4.7 from 3rd	Gear 2.8 to 4th ge	ear	
Angle (°) Height From Central Axis (in.) Distance of Throw	0 9.93 0	Gear 5.6 Take a 0.970	3.9 Picture of tl 0.675	5.5 he shift 0.953	4.7 from 3rd 0.814	Gear 2.8 to 4th ge 0.485	ear	
Angle (°) Height From Central Axis (in.) Distance of Throw (in.)	0 9.93 0	Gear 5.6 Take a 0.970	3.9 Picture of tl 0.675	5.5 ne shift 0.953	4.7 from 3rd 0.814	Gear 2.8 to 4th ge 0.485	ear	
Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs.	0 9.93 0	Gear 5.6 Take a 0.970 0.514	3.9 Picture of tl 0.675 0.696	5.5 ne shift 0.953 0.607	4.7 from 3rd 0.814 0.691	Gear 2.8 to 4th ge 0.485 0.818	ear Avg	0.6658
Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs. Stock	0 9.93 0	Gear 5.6 Take a 0.970 0.514	3.9 Picture of tl 0.675 0.696	5.5 he shift 0.953 0.607	4.7 from 3rd 0.814 0.691	Gear 2.8 to 4th ge 0.485 0.818	ear Avg	0.6658
Angle (°) Height From Central Axis (in.) Distance of Throw (in.) Reduction Vs. Stock Reduction Vs.	0 9.93 0	Gear 5.6 Take a 0.970 0.514 0.153	3.9 Picture of tl 0.675 0.696 0.619	5.5 ne shift 0.953 0.607 0.277	4.7 from 3rd 0.814 0.691 0.454	Gear 2.8 to 4th ge 0.485 0.818 0.701	ear Avg Avg	0.6658

Table G3-2 Test Two

ASTS												
trail	1	2	3	4	5	6	7	8	9	10		
Adjustment	45.89	45.	55.4	42	56.4	40.4	41.2	52.1	45.5	48	Av	47.28
Time (s)		7	2		5		5	5	6		g	2
Shifter	46.46	45.	73.4	39.2	52.7	60.4	65.4	42.0	58.7	43.4	Av	52.72
uninstall/inst		1	8	8	9	5	5	2	8	1	g	2
all Time (s)												
Video Of Adju	sting Th	row	1	Video of	Changi	ng Shift	er		Total	Averag	e	50.00
												2

Table G3-3 Test Three

Force	1		2	3		4	5	6	7		8	9	10		
Required															
to Shift															
10"	2.2	22	3.8	3.3	5	3.75	4.15	4.11	3.24	4	2.64	2.98	4.2	Avg	3.44
Shifter															
8" Shifter	3.7	71	4.8	5.3	2	4.33	5.13	3.54	4.7	1	6.23	3.32	4.46	Avg	4.55
6" Shifter	5.6	54	7.1	4.1	7	1.35	3.73	5.08	5.42	2	4.71	6.09	5.87	Avg	4.91
Percent Les	SS	Avg	g. 0	.377	1()"	0.501	8" A	vg	0.	340	6" Avg	0.288	Avg	4.30
than Stock		tota	1		A	vg %		% le	SS			% less			
					le	SS									

APPENDIX H-RESUME

Franklin	(253) 509-3550 Joshua.Franklin31@yahoo.com						
Objective	My objective is to obtain a career opportunity that would improve m and further my ability to use my work ethic and professionalism to b any employer that wishes to employ me.	ny experience, skills become an asset to					
Skills and	Labor Skills						
Abilities	 Have experience with small machinery, have operated units (SDS max, SDS pits), lawn mowers, dump trucks, tractors, forklifts, and have mixed concrete for grout. Experience with hands on construction at Puget Sound Naval Shipyard. Demolition of 8" ductile iron water mains and reinstallation for NOVA Group. Maintained and serviced properties in need of maintenance or care, at Touchstone Landscape Management, Valet Waste, Centurion Carpet Cleaning. AutoCAD Certified Completed All Courses of Thermal Fluid Sciences. Problems solving skills through various course of physics, statics, strengths, dynamics, and seven different math courses up to Elementary Linear Algebra. Machining experience with lathe and mill in class MET&255. Flexible schedule, hardworking, fast learning. I strive to never quit until the job is done. 						
	 Communication Skills I have provided information about new and used vehicles, via phocustomers on and off the clock, at Peninsula Auto Group. Assist customers to sales for purchase and provide quality service before I work well in a team or alone. Following and Leading crews for W Touchstone Landscape Management, and Fred Meyer. 	one and email, for ed in transitioning e customer arrival. Valet Waste,					
Education	Central Washington University , Ellensburg WA Attending for MET BS & Mathematics Minor	2016-Present					
	Olympic Community College , Bremerton WA Associates degree Cumulative GPA 3.64	2013-2016					
	Related Courses English: 101, 102 & 235 Communications: 210 & 220 Mathematics: 141, 142, 151, 152, 163, 254, & 264 Engineering Technology, Safety, & Construction: 160, 311, 312 Mechanical Engineer Technology: 255, 327, 351, 426 Physics: 111-113						
	South Kitsap High School, Port Orchard WA	2012-2014					

High School Diploma Received Cumulative GPA 3.84

Employment Experience	Nortech Solutions, Ellensburg WA Steel Detailer	April 2020-Present
	Mercer Creek Church, Ellensburg WA Building Maintenance	January 2020-Present
	Fred Meyer, Ellensburg WAJuFreight Crew	uly 2017-October 2019
	Valet Waste, Port Orchard WA Driver	July 2016-July 2017
	Centurion Carpet Cleaning , Port Orchard WA Carpet Cleaner	July 2016-July 2017
	Nova Group, Port Orchard WA Laborer	Oct. 2015-July 2016
	Peninsula Auto-Group, Bremerton WA Internet Concierge	Feb. 2015-Oct. 2015
	Touchstone Landscape Management, Gig Harbor WA Landscaper	Aug. 2014-Feb. 2015
Additional	10-Hour OSHA Hazard Recognition Training	2015
Information	Certified Fire Watch Training	2015
	Certified Porklitt Training	2015
	Awarded for Academic and Athletic Performance	2015
	81 Hours of Community Service	2012-2014
	Technical Educations Department Student of the Year National S of High School Scholars Member	ociety 2013

APPENDIX J-JOB HAZARD ANYLYSIS

JOB HAZARD ANALYSIS Installation and Manufacturing of Shifter in car

Prepared by: Joshua Franklin	Reviewed by: Dustin Braun
	Approved by: Dustin Braun

Location of Task:	CWU Machine/Wood shop
Required Equipment / Training for Task:	
Reference Materials as appropriate:	

Personal Protective Equipment (PPE) Required (Check the box for required PPE and list any additional/specific PPE to be used in "Controls" section)								
Gloves	Dust Mask	Eye	Welding	Appropriate	Hearing	Protective		
		Protection	Mask	Footwear	Protection	Clothing		
X	X X X 🗌 X X							
Use of any res user.	piratory protecti	ve device beyon	d a filtering face	epiece respirator	(dust mask) is v	oluntary by the		

PICTURES (if applicable)	TASK DESCRIPTION	HAZARDS	CONTROLS		
	Mixing and applying Epoxy	Chemical Vapor	Wear Appropriate PPE, Gloves, Respirator		
	Band Saw	Cutting fingers and hands Avoid contact with blade teeth.	Avoid contact with blade teeth.		
		Pinching fingers or hands.	Keep fingers and hands away from pinch points.		
		Pinching fingers or hands	Avoid pinch points between guard and housing and between guard and material.		
		Injuries from flying Metal	Wear safety glasses or face shield.		

	Cutting fingers and hands	Keep fingers and hands away from blade.
Drill	Eve injury from metal debris	Wear eve protection. Do not use
Press		compressed air
	Foot injury if the vise falls	Secure the vise on the table with T-pins
	Finger pinching while sliding	Don't let fingers get under the vise unless
	the vise	lifting it from the table. Keep eyes on the
	Back strain	Don't lean over the table to twist the lock
		handle.
	Hand injury from the bit	Wear gloves. Don't hold on the end of the bit
	Injury caused by breaking the	Feed with the appropriate pressure. Use the
	bit	appropriate bit for the type of metal. Wear eye protection.
	Eye or skin damage from cutting oil	Use the lowest RPM. Wear eye protection. Wear a long-sleeved shirt.
	Hand injury from the exposed pulley near the feed handle	Make sure a pulley guard is in place. Don't push the feed handle toward the pulley
Milling	Injury to hands from milling blades	Never disconnect safety shields from milling blades.
	Hearing damage from noise of machine operation	Wear hearing protection, such as ear plugs, if operating machine for periods extending more than 10 minutes.
	Possible eye injury from wire stitches thrown out by milling blade	Wear safety glasses during operation.
	Crushing finger hazard from book clamp	Do not hold book at spine when activating book clamp. Hold book at the face.
Threading	Slips	Control oil contact with the floor.
		Wear non-slip shoes.
		Clean up spills.
		Use a floor covering or absorbent such as kitty litter.
	Skin or eye injury from the	Use nitrile gloves.
	cutting oil in the reservoir	Use a vacuum cleaner to clean the catch pan. Wear eye protection.
	Hand injury while sliding the pipe through.	Wear leather gloves or similar protection.
	Muscle strain	Position pipe without reaching over the threader.
	Hand injury	Wear leather gloves or similar protection.
		Keep foot out of the foot safety switch.
		Don't tighten the clamp while the machine
	Hand injury	Don't drop the reamer on hands while
		positioning the reamer.
	Hand injury	Keep hand away from the die.
		Don't clean the die or the pipe end with hands. Don't start the machine until the die is set.

	Injuries due to clothes catching on the threader	Don't wear loose clothing while operating the threader.
		Keep gloved hands away from the die and the pipe.
	Skin or eye injury from the cutting oil being delivered to the pipe.	Use nitrile gloves. Wear eye protection.
	Metal debris projectiles	Wear long sleeved shirt, gloves, and face
	Burns from metal debris	Wear long sleeved shirt, gloves, and face shield.
	Hand injury from rotating threads	Wear gloves and don't touch the rotating threads. Use a steel brush or similar instrument to clean the threads.
	Injuries due to clothing catching on the threader	Don't wear loose clothing while operating the threader.
		Keep gloved hands away from the rotating pipe.
	Hand injuries from interaction with the pipe vise.	Remove foot from the safety switch, flip the switch off, and ensure the pipe has stopped rotating.
		Wear gloves.
	Hand injuries from interaction with the pipe vise	Remove foot from the safety switch, flip the switch off, and ensure the pipe has stopped rotating.
		Keep fingers (gloved) away from the vise jaws.
Hydraulic	Pinch hazards from	Keep fingers out of any potential pinch
 Press	converging parts	zones and out of the way of moving parts.
	Hydraulic Fluid or Oil leaks	puddles under the machine, or lack of oil or hvdraulic fluid.
	Broken lines or pressure	Check pressure gauge to see if it moves
	gauge	with the addition of pressure.
	Improper settings for job	Make sure the machine is set to the proper
	Dropping material onto feet	Steel to shoes to mitigate injury from
	Dropping material onto reet	dropping material.
	Lack of machine guards	Add or adjust machine guards before doing any work.
	Pinch hazards from moving parts	Keep body parts away from press area while the machine is working. Ensure all steps are taken and pressure is off lines before putting hand into the work area.
	Flying debris hazards from	Pay attention while working on the press.
	the pressure being put on the material being pressed	

	Dropping/Falling material	Steel toe shoes to protect feet from falling material.
	Hydraulic fluid/oil spill	Inspect lines after work to see if any
	Trydraune fiuld/off spin	leakage had occurred while line was
		reakage had occurred while line was
	Line has a free as a second	Verse effete aleger en de le ser en en til ell
	ne break from over	Keep safety glasses and gloves on until all
		steps are complete.
Metal	Entanglement in unguarded	Inspect guards prior to work.
Lathe	moving parts.	
	Injury due to improper	Locate and ensure that personal familiarity
	machine operations	with all machine operations and control
	Tools and objects can fall and	Remove unsecured tools and objects from
	be propelled at the operator.	the lathe.
	Hand/finger contusion due to	Use correct tool to secure chuck or collet
	tool slippage from securing	
	chuck or collet	
	Foot injury from dropping	Wear recommended footwear
	chuck/tool.	
	Strain/sprain from	Use mechanical lifting device or get
	transporting heavy and/or	assistance
	awkward chuck	
	Damage to cutting tool and/or	Refer to operations manual and set proper
	spindle drive system	spindle speed for material type/diameter to
	T Start Start	be machined
	Bodily injury and/or damage	Refer to operations manual and set proper
	to workpiece from incorrect	lathe speed
	feed rate	
1	D 11 / 1 1	** 1 1 1 1 1
	Dull tools and improper	Use correct and properly sharpened tool
	buil tools and improper height lead to bad surface	Use correct and properly sharpened tool
	built tools and improper height lead to bad surface finishes out of tolerance parts	Use correct and properly sharpened tool
	built tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous	Use correct and properly sharpened tool
	built tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation	Use correct and properly sharpened tool
-	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to	Use correct tool to secure chuck jaws and
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece.
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situationHand/finger contusion due to tool slippage from tightening chuck jaws or colletDamage to workpiece due to loose and/or off center installation of workpiece into chuckStrain/sprain from heavy	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece.
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a har food tuba to hold workpiece
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator Injury to exposed body parts at points of operation	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator Injury to exposed body parts at points of operation	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator Injury to exposed body parts at points of operation Eye injury from debris	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation Wear PPE during operation
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situationHand/finger contusion due to tool slippage from tightening chuck jaws or colletDamage to workpiece due to loose and/or off center installation of workpiece into chuckStrain/sprain from heavy and/or awkward workpieceDamage from chuck key flying offLong workpieces can bend and strike operatorInjury to exposed body parts at points of operation Eye injury from debrisHeat damage to part and	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation Wear PPE during operation Start at low speed and slowly increase to
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situation Hand/finger contusion due to tool slippage from tightening chuck jaws or collet Damage to workpiece due to loose and/or off center installation of workpiece into chuck Strain/sprain from heavy and/or awkward workpiece Damage from chuck key flying off Long workpieces can bend and strike operator Injury to exposed body parts at points of operation Eye injury from debris Heat damage to part and cutting tool	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation Wear PPE during operation Start at low speed and slowly increase to avoid overheating; use coolant
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situationHand/finger contusion due to tool slippage from tightening chuck jaws or colletDamage to workpiece due to loose and/or off center installation of workpiece into chuckStrain/sprain from heavy and/or awkward workpieceDamage from chuck key flying offLong workpieces can bend and strike operatorInjury to exposed body parts at points of operation Eye injury from debrisHeat damage to part and cutting toolInjury to exposed body parts	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation Wear PPE during operation Start at low speed and slowly increase to avoid overheating; use coolant Ensure equipment has stopped prior to
	Dull tools and improper height lead to bad surface finishes, out of tolerance parts and potentially a hazardous situationHand/finger contusion due to tool slippage from tightening chuck jaws or colletDamage to workpiece due to loose and/or off center installation of workpiece into chuckStrain/sprain from heavy and/or awkward workpieceDamage from chuck key flying offLong workpieces can bend and strike operatorInjury to exposed body parts at points of operationEye injury from debris Heat damage to part and cutting toolInjury to exposed body parts at points of operation	Use correct and properly sharpened tool Use correct tool to secure chuck jaws and collet to workpiece Ensure workpiece is secure and evenly tightened into chuck or collet. Use dial test to center workpiece. Use mechanical lift or get assistance from coworker Never leave key in chuck. For newer models, use spring-loaded or self-ejecting chuck key Use workpiece of minimum length or use a bar feed tube to hold workpiece Keep body parts and clothes away from the point of operation Wear PPE during operation Start at low speed and slowly increase to avoid overheating; use coolant Ensure equipment has stopped prior to placing hands near the point of operation

	workpiece	coworker
	Trip/fall on other	Clean work areas
	tools/materials	
	Foot injury from dropping	Wear recommended footwear
	workpiece	