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ABSTRACT 

EFFECTS OF WESTERN SPRUCE BUDWORM HERBIVORY ON FOREST SOILS 

AND LITTER DECOMPOSITION IN CENTRAL WASHINGTON 

 

by 

 

Izak Roland Neziri 

 

August 2020 

 Disturbances by herbivores can drive nutrient cycling in forest ecosystems by adding 

frass, carcasses, and molts to the forest floor which are broken down into nitrogen, 

phosphorous, and other elements to be recycled into biomass.  Western spruce budworms 

are defoliators native to the central Cascades and their herbivory could increase the 

decomposition rate of forest materials by adding essential nutrients and/or by increasing 

light and rainfall penetration to the forest floor by thinning the forest canopy during 

outbreaks.  Budworm defoliation events are expected to increase in severity as the 

climate warms, potentially altering forest ecosystem function.  The purpose of this study 

was to measure how budworms influence nutrient availability in forest throughfall, 

decomposition rate on the floor, and soil nutrient concentrations by sampling 4 sites with 

low budworm activity and 4 sites with high budworm activity from September 2015 

through November 2016.  Budworms appeared to accelerate ammonium and nitrate loss 

from the canopy via throughfall during the spring 2016 feeding season, yet those forms of 

nitrogen did not increase concurrently in soils suggesting rapid immobilization of 

nitrogen.  In contrast, budworms did not influence throughfall phosphorous yet soils in 

budworm sites had significantly higher phosphorus concentrations, possibly due to frass 
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addition or dead adults.  Decomposition rates were unexpectedly faster in the low 

budworm sites in the Teanaway suggesting that the nitrogen losses and/or canopy 

changes by budworms were not strong enough to influence forest floor organic matter 

cycling.  Overall, my study shows that budworms can influence nitrogen movement from 

the canopy to soils during feeding, but much of that nitrogen appears to be immobilized 

in soils.  Other environmental factors must control litter decomposition rates.  Due to the 

short term nature of this study, I cannot conclude whether or not the ecological effect of 

budworms changes during the course of an outbreak; however, if budworm activity 

increases due to continued fire suppression and climate change, budworms could 

accelerate nitrogen losses from the canopy which could be lost to downstream 

ecosystems with a large or prolonged outbreak. 

  



v 
 

ACKNOWLEDGMENTS 

I would like to thank Dr. Clay Arango and my committee members Dr. Paul 

James and Dr. Karl Lillquist for taking me on as a graduate student so that I could better 

prepare to be best science teacher that I can be. I would also like to thank the NSF for 

providing me with funding through their NSF EAGER Grant NSF-DEB 1540679. I am 

grateful for all of the help from our lab assistants for helping me with my research; I 

could not have done this without them. Thank you, Alexandra Ponette-González, for 

letting me use the study site map and thank you Sally Entrekin for the early discussions 

about my study design. This project would not have gone as smoothly as it did without 

the help of the biology faculty, especially the stockroom faculty, Jonathan Betz, Marty 

Botcher, and Mark Young. And a special thank you to Julia Bramstedt, Natalie Levesque 

Michael Dallas, Jen Bailey, Antonia Stewart, Caitlin Moynihan, and Sarah Trikha for all 

your time and effort in helping me complete my thesis project through your help in the 

lab and your encouragement over the years. 



vi 
 

TABLE OF CONTENTS 

Chapter            Page 

 I INTRODUCTION ........................................................................................ 1 

   

 II METHODS ................................................................................................... 6 

   Study Area ............................................................................................... 6 

   Throughfall .............................................................................................. 9 

   Frass and Litter Measurements ............................................................. 10 

   Litter Decomposition ............................................................................ 11 

   Soil Collection and Processing.............................................................. 13 

   Chemical Analysis for Throughfall and Soils ....................................... 15 

   Statistical Analysis ................................................................................ 15 

 

 III RESULTS ................................................................................................... 17 

   Throughfall Chemistry .......................................................................... 17 

   Frass and Litter Deposition ................................................................... 20 

   Decomposition Rates ............................................................................ 21 

   Soil Chemistry ....................................................................................... 22 

 IV DISCUSSION ............................................................................................. 28 

   Throughfall N ........................................................................................ 27 

   Throughfall SRP and DOC ................................................................... 30 

   Frass and Litterfall ................................................................................ 32 

   Leaf Litter Decomposition .................................................................... 32 

   Soil Moisture and Organic Matter ......................................................... 33 

   Soil Nutrients ........................................................................................ 34 

   Limitations ............................................................................................ 37 

   Future Studies........................................................................................ 38 

   Conclusion............................................................................................. 39 

  REFERENCES ........................................................................................... 42 

 

 

 



vii 
 

LIST OF FIGURES 

Figure             Page 

1  Site locations with budworm activity level derived from  

United States Forest Service aerial detection surveys flown in 2015 ........... 7 

 

2  Estimated marginal means (EMM) of (A) throughfall  

ammonium (NH4
+) concentrations and (B) throughfall nitrate (NO3

-) 

concentrations in low and high budworm stands by sample date.   

Significant interactions are noted with an asterisk ..................................... 19 

 

3  Estimated marginal means (EMM) of (A) throughfall  

soluble reactive phosphorous (SRP) concentration and (B)  

dissolved organic carbon (DOC) concentration, and rainfall in mm  

in low and high budworm stands by sample date.   

Significant differences among sample events are noted with letters .......... 20 

 

 4 The deposition of frass and litter in high impact and low impact sites ...... 21 

 5  Decomposition rates (k) of deciduous and coniferous leaf litter  

  in high and low budworm sites ................................................................... 22 

 

 6 Regression analysis of throughfall DIN and deciduous  

  decomposition rate ...................................................................................... 23 

 

 7  Estimated marginal means (EMM) of soil (A) ammonium (NH4
+),  

  (B) nitrate (NO3
-), and (C) soluble reactive phosphorous (SRP)  

  concentrations in low and high budworm stands by sample date.   

  Significant sample events are noted with letters and significant  

  interactions are noted with an asterisk ........................................................ 25 

 

 8  Estimated marginal means (EMM) of (A) soil moisture and  

  (B) soil organic matter in low and high budworm stands by  

  sample date.  Significantly different sample events are noted  

  with letters ................................................................................................... 26 

 

 9  A regression analysis comparing soil temperature at 2 cm depth  

  and air temperature (p < 0.0001, R2 of 0.78) .............................................. 27 

 

 

 

 



viii 
 

 

 

LIST OF EQUATIONS 

EQUATION            Page 

 1 The rate of decomposition where k is the slope .......................................... 13 

 

 2 The determination of moisture content in soil samples  ............................. 14 

 3 The determination of how much organic matter each soil  

  sample contained ......................................................................................... 14  

 

4  Calculation of net changes in soil inorganic nitrogen (N) pool.   

Net increase in NH4
+ indicates net mineralization, net increase  

in NO3
- indicates net nitrification, and net decrease in either  

ion indicates immobilization of that ion ..................................................... 15



1 
 

CHAPTER I 

INTRODUCTION 

Forests make-up approximately one-third of the Earth’s terrestrial surface (Likens 

et al. 1970).  In these ecosystems, a large portion of the nutrients are generally retained 

within that system (Qualls et al. 2002). Nutrients enter the system by dry deposition from 

the atmosphere, and from precipitation (Potter et al. 1991), and the general flow of these 

nutrients within a forest ecosystem includes precipitation washing out both the dry 

deposition and its own contents through the canopy as throughfall, while leaching 

nutrients from vegetation to soil, and nutrient uptake by plants that converts nutrients into 

biomass.   

When these systems are subject to disturbance, the cycling of forest nutrients is 

subject to changes and losses (Vitousek et al. 1979).  Common disturbances include clear 

cut logging, fire, and insect outbreaks.  For example, in 1970, a famous experiment in the 

Hubbard Brook Experimental Forest in New Hampshire found that experimental clear 

cutting dramatically increased annual runoff and loss of nitrate and other ions to 

downstream ecosystems (Likens et al. 1970).  The central Cascades are prone to drought 

and regular fires that can decrease biodiversity and alter species distribution and forest 

dynamics (Clarke et al. 2016). Initially, fires can increase concentrations of ammonium 

(NH4
+) and decrease PO4

3- in soil  in the short term, but a study in a Florida ecosystem 

showed that in less than 100 days post fire, available nutrients in the soil were reduced by 

half (Schafer and Mack 2010), suggesting that fires also contribute to nutrient losses via 

runoff or by wind.  Further, in a study of prescribed fires in a French Mediterranean 

forest, N, P, K, and Ca were all shown to decrease (Gillon and Rapp 1989). Similar 

results were found in a Spanish Mediterranean forest, where nutrient loss was seen in the 
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form of volatilization (Pausas and Vallejo 1999).   Herbivory by forest insects can also 

increase loss of P and N to downstream ecosystems (Hunter 2001; Metcalfe et al. 2016).  

While all of these studies point to disturbance as a mechanism of nutrient loss from 

forests to downstream aquatic ecosystems, the effect of insect herbivores has not been 

studied in the western United States, where, as global temperatures rise, an uptick in 

forest insect activity is expected. 

The process of defoliation is an important part of forest ecosystem health and 

function.  When forests become too thick, defoliators such as herbivorous insects act as a 

negative feedback loop by killing trees and reducing the population to lower levels 

(Poirier 2017; Murdock et al. 2012).  Defoliation also drives material cycling in forests 

through consumption of the canopy and excretion as frass which returns nutrients as 

organic matter to soils.  Although defoliators are a natural part of forest material cycling, 

the activity of these insects is increasing due to fire suppression and climate change 

(Abatzolou and Williams 2016).  As a result, the rate and severity of insect outbreaks has 

increased dramatically over the last century in the western United States (Senf et al. 

2016). 

For centuries, frequent, low intensity fires, some naturally caused and some 

ignited for landscape management by indigenous people, shaped the structure of 

coniferous forests across the United States (Klenner et al. 2008), creating, for example, 

ponderosa pine forests with grasses and shrubs growing between widely spaced trees.  

Under these historic fire regimes, insect pests were maintained via two avenues.  First, 

frequent, low intensity fires increased distance between trees making it challenging for 

insects to disperse and decreasing the rate at which defoliators damaged the forest 
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(McRae et al. 2001).  Secondly, fires killed pests directly (Roques et al. 2020).  Since the 

1930s, intense fire suppression throughout the American West has led to thicker forests 

with increased canopy cover (Keane et al. 2002), and insect pests have increased with the 

thickening tree stands.  Moreover, decreases in winter severity due to climate change 

have reduced the frequency of cold winters that can also kill insect pests (Murdock et al. 

2012).  Therefore, a multi-decadal history of fire suppression, coupled with summer 

drought stress and warmer winters due to climate change, has generated conditions that 

encourage sustained insect outbreaks and disease in the forest (Keane et al. 2002), and 

these insect outbreaks are expected to intensify as climate change progresses (Flower et 

al. 2014; Harvey et al. 2018).  

Notable outbreak insects in the PNW are Douglas fir tussock moths, tent 

caterpillars, and western spruce budworms.  A major defoliator of the coniferous forests 

of Central Washington, as well as western North America in general (Senf et al. 2016), is 

the western spruce budworm (WSB) (Choristoneura freemani). These are a native 

lepidopteran that range from Southern British Columbia to Arizona and New Mexico 

(Fellin and Dewey 1982).  These insects emerge during budburst around mid-May to feed 

on the new growth of short needle conifers, specifically Douglas fir (Pseudotsuga 

menziesii) and grand fir (Abies grandis), which have benefitted from fire suppression, but 

also spruce (Picea spp.) trees (Fellin and Dewey 1982), until late June or early July.  

They then pupate and emerge as adults, taking flight around mid to late July for 

oviposition.  Larvae then emerge the following year in mid-May to repeat their life cycle.  

A multi-century reconstruction of budworm outbreaks using dendrological records in 

Central Oregon to Western Montana showed that budworm outbreaks were tied to 



4 
 

climate and drought, with the end of droughts usually being tied to outbreaks (Flower 

2014). In a more natural fire regime that maintained an open forest structure, WSB 

outbreaks would occur about once every decade and last for an average of 12 years 

(Flower 2014).  The study also suggested that it is possible that changes in forest 

composition and current land use practices may influence outbreaks, but this was not 

directly studied.  Outbreaks are predicted to increase as climate and drought become 

more prevalent.  Although this study was not done directly in Washington State, Central 

Oregon is very similar climate wise and has a similar forest structure.  In recent years, 

thicker forests from fire suppression and increased drought stress from climate change 

have created conditions that encourage more frequent, widespread, and longer WSB 

outbreaks (Willis et al. 2008; Lovett et al. 2006).  This shift in forest structure and 

herbivore behavior has the potential to change internal forest ecosystem nutrient 

dynamics with implications for nutrient loss to nearby stream ecosystems that would alter 

forest-stream ecological connectivity.   

Under conditions without active defoliation, leaf litter would fall to the forest 

floor and be broken down by microbes over time, gradually releasing nutrients into the 

soil.  However actively defoliating WSB are likely to alter the nutrient cycle in forest 

soils (Schlesinger et al. 2015).  For example, the large amount of frass that these 

defoliators excrete falls to the forest floor and has the potential to increase nutrient 

availability in soils after rainfall leaches nutrients to soils, due to the complex 

carbohydrates of the tree needles being broken down by herbivores through digestion, 

making them available for the forest nutrient cycle (Tukey 1966).  In particular, nitrogen 

availability may increase (Griffin and Turner 2012), and via various transformations into 
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ammonium (NH4
+) or nitrate (NO3

-), the increased nitrogen can meet a variety of fates.  

For example, ammonium or nitrate can be taken up by plants or immobilized by bacteria 

or fungi, remaining in the ecosystem as organic N.  Organic N in frass can be mineralized 

as ammonium via decomposition or through excretion processes, whereupon it can be 

converted to nitrate via nitrification which is subject to leaching losses to downstream 

ecosystems (Lewis and Likens. 2006).  Leaching losses of nitrate are due to the cation 

exchange capacity in soils. Because soils are negatively charged like nitrate, the ability 

for nitrate export potential is high. High nitrification and nitrate export after a bark 

beetles outbreak was found in a previous study (Griffin and Turner 2012).  Furthermore, 

defoliation by WSB has the potential to allow more light and rainfall to reach the forest 

floor, increasing microbial activity via temperature and moisture increases and leading to 

a quicker break down in litter via decomposition (Chapman et al. 2013).  

Any time an ecosystem experiences a major disturbance, there is an overall 

change in ecosystem dynamics, leading to implications for both wildlife and for human 

concerns (Pecl et al. 2017).  However, little research has been done on how WSB 

herbivory disturbs the forest nutrient cycle, so it is uncertain how the predicted increases 

in their outbreaks might alter ecosystem dynamics in the Pacific Northwest and other 

western coniferous forests.  To better understand how WSB defoliation affects internal 

forest nutrient pathways, I studied a WSB outbreak in the east slope of the Cascades in 

Central Washington with an aim of understanding how WSB herbivory affected 

throughfall nutrient composition, leaf litter decomposition rate, soil chemistry, and soil 

nitrogen transformations.  I hypothesized that WSB activity would accelerate the 

movement of nutrients from the canopy to soils which would:  1) increase throughfall 
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nutrient concentration (NH4
+, NO3

-, DOC, and PO4
3-), 2) increase litter decomposition 

rate, 3) increase soil nutrient concentrations (NH4
+, NO3

-, and PO4
3-), and 4) increase net 

nitrification in soils.  I also hypothesized that canopy opening via defoliation would alter 

soil temperature and moisture patterns by allowing more radiation to reach the forest 

floor, as well as more precipitation, with implication for decomposition. 

This study took place during the last two years of a WSB outbreak and will add to 

the literature of how WSB outbreaks effect soil nutrient dynamics. Most studies of WSB 

have been concerned with their effect on tree defense response, tree mortality, and insect 

outbreak distribution. Many studies have been done on Douglas fir tussock moths, and 

the eastern spruce budworm, a cousin of the western spruce budworm, but little research 

has been done on WSB and soils.   
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CHAPTER II 

METHODS 

Study Area 

This study took place in the eastern Cascades in central Washington state (Figure 

1).  In the rain shadow of the Cascades, summers (May-September) are relatively dry, 

with seasonal drought (sometimes no precipitation during the summer months) and 

temperatures ranging from 15°C-25°C whereas winters (October-April) are wet with 

temperatures ranging from -5°C-11°C.  The average precipitation for the area is 720 mm 

(Northwest River Forecast Center 2018) with most falling as snow between November-

February.  Because of the distinct seasonal patterns in precipitation and temperature, 

eastern Cascades forests are characterized by drought tolerant trees such as Douglas fir 

(Pseudotsuga menziesii), grand fir (Abies grandis), ponderosa pine (Pinus ponderosa), 

western larch (Larix occidentalis) and at higher elevations, lodgepole pine (Pinus 

contorta).  
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Figure 1: Site locations with budworm activity level derived from United States Forest 

Service aerial detection surveys (https://www.fs.fed.us/foresthealth/applied-

sciences/mapping-reporting/gis-spatial-analysis/detection-surveys.shtml) flown in 2015 

(Arango et al. 2019). 

Land use in this study area has changed over the last few centuries, as European 

settlers spread westward in late 1800s. Prior to that time, indigenous peoples of the area 

burned forests and prairies in the Pacific Northwest to encourage growth of desirable 

edible plants, although distinguishing this from natural fires is difficult with no pre-

human data to support the claim (Hessburg and Agee 2003). As Euro-American settlers 

arrived, logging removed some of the largest and oldest trees, mainly ponderosa pine, 

leaving behind a more homogeneous forest that was susceptible to intense fires (Hessburg 

and Agee 2003). In addition to logging, Europeans brought horses, cattle, and sheep that 

have caused a large decrease in native grasses due to overgrazing (Walsh et al. 2018). 
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Mining drastically increased in the area in the 1850s and with population and commerce 

increasing, railroads became a necessity for the area, leading to more logging to make 

room for roads and railways (Hessburg and Agee 2003). 

I used a nested study design with repeated sampling through time to investigate 

how WSB herbivory influenced throughfall composition, litter decomposition, and soil 

nutrient concentrations.  I established 4 study sites each within low and high WSB 

herbivory level stands (n = 8 study sites; Figure 1), and at each study site I established 

three replicate plots approximately 15 m from each other from upstream to downstream 

(n = 24 total sample plots).  The low budworm sites were located in the Teanaway 

Community Forest in Washington state, approximately 40 miles northeast of Central 

Washington University (Figure 1) near the following creeks:  Stand Up Creek where sites 

were on a slope with light tree cover; Jungle Creek where sites were often disturbed by 

free range cattle; Jack Creek where sites were under moderately heavy tree cover; and 

Moonbeam Creek where sites were also under moderately heavy tree cover. Elevations 

for these sites ranged from 824 to 973 m a.s.l. The high budworm sites were located in 

the Swauk drainage in the Okanogan-Wenatchee National Forest in Washington state 

approximately 45 miles north of Central Washington University and east of the low 

budworm sites (Figure 1).  These study sites were located near the following creeks:  

Cougar Creek where sites were on a slope; Hurley Creek where sites were located further 

away from the stream in comparison to other sites due to the stream being less accessible 

in a confined valley; Hovey Creek where sites were under moderately heavy tree cover; 

and Blue Creek where sites were also further away from the stream due to difficulty of 

access. Elevations for these sites ranged from 978 to 1055 m a.s.l.  Although each 
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individual site varied based on microclimatic factors, sites were exposed to similar 

temperature and precipitation patterns based on similar elevation and being within 

roughly 20 km of each other. 

At each replicate plot, I measured frassfall and litterfall, soil chemistry, soil 

organic matter and moisture content, and soil temperature 8 times between early 

September 2015 and late September 2016, roughly every 6 weeks with a break from 

sampling when snow pack precluded site access.  At each sample event, I collected 

decomposition bags to calculate one decomposition rate for each plot over the course of 

the study.  Throughfall water chemistry was collected on an event basis when 

accumulated precipitation allowed (> 100 mL).  I measured net nitrification at each site 

twice; the first measurement aggregated net soil nitrogen dynamics between summer 

2015 and fall 2015, and the second aggregated net soil nitrogen dynamics between fall 

2015 and spring 2016.  Thus, my study design included measurements taken before, 

during, and after, one complete WSB life cycle, during the last year of a multi-year 

outbreak. 

Throughfall 

A throughfall collector was installed under the canopy of a randomly selected tree 

near each sample plot (n = 24).  Each throughfall collector consisted of a funnel (20 cm 

diameter) that drained through tygon tubing into a 4-L acid-washed collection jug 

(Michalzik and Stadler 2005).  The tubing was protected by feeding it through a PVC 

pipe pounded into the ground with a hole in the side so the tubing could leave the PVC 

and enter the collection jug.  The PVC pipe was stabilized by wiring it to a piece of rebar 

pounded into the ground.  To prevent material from entering the collection jug, polywool 
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was placed at the base of the funnel, and the opening of the jug was sealed with parafilm 

which also kept the tubing in place.  

Upon rainfall, water entered the funnel and traveled through the tubing into the 

jug until I retrieved it within 48 h of the rain stopping.  Upon collection, the total sample 

volume was recorded as the sample was transferred to an acid washed HDPE bottle and 

returned to the lab for filtration using a 1.0 μm glass fiber filter.  Samples were frozen 

until later water chemistry analysis (described below).  In order to differentiate nutrients 

in bulk rainfall compared to throughfall that had percolated through the canopy, a total of 

four rainfall collectors were set up in areas with no canopy cover, two in a low budworm 

study site and two in a high budworm study site. 

After deploying collectors on 25 Jun 2015 and collecting 4 samples in 2015, 

throughfall and rainfall collectors were taken down 8 November 2015 to prevent damage 

due to snowpack, and they were redeployed 23 April 2016 just after snowmelt to begin 

sampling again.  All collectors were taken down on 19 September 2016 after collecting 6 

samples in 2016. 

Frass and Litter Measurements 

 To measure organic matter movement from the canopy to the forest floor, I 

collected frass and litterfall at each site.  One funnel (0.25 m2 diameter) made of tarp and 

garden hose connected to a one-liter Nalgene bottle was set up under one tree at each 

sample plot (n = 24).  These were sampled regularly during budworm feeding and less 

frequently after feeding.  The samples were dried, sorted by frass versus litter, weighed in 

the laboratory, and converted to a daily litter or frassfall rate (mg frass/m2d or mg 

litter/m2d).  Frass collectors were taken down in 5 November 2015 to prevent damage 
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during winter snow accumulation, and they were reinstalled in 23 April 2016.  While 

studies have shown the peak litter fall for Douglas firs is between October and December 

(Reukema 1964; Weiskittel and Maguire 2007) even if I was able to protect the samplers 

from snow damage, there was no way to access the sites during the snow season.  

Therefore, these litterfall estimates are lower than actual litterfall.  Unfortunately, due to 

frequent rains in the spring months of 2016, samples decomposed before they could be 

collected and measured, so no data are available for the second half of the study.  

However, budworm activity was confirmed by visual observation of the webbing they 

create at the tips of conifer tress, as well as finding the worms themselves. 

Litter Decomposition  

At each replicate plot I deployed twenty 20x20cm mesh litter bags (García-

Palacios et al. 2016) with a top sieve size of 2 mm (Genung et al. 2013) and a bottom 

sieve size of 0.5 mm (Schweitzer et al. 2005) to reduce content loss while still allowing 

small detritivores to enter the bags.  I deployed a total of 480 bags across all plots.  Ten 

bags at each contained an air-dried, mixed conifer needle sample of Douglas fir, grand 

fir, and ponderosa pine in a 2:1:1 ratio to represent the most abundant species in the study 

area.  The other ten bags at each replicate plot contained sugar maple (Acer saccharum) 

leaves which are non-native to the area but commonly used in decomposition studies for 

comparison across biomes (Bärlocher 2005). 

Within each litter bag, I placed ~3-5 g of air-dried needles or leaves (Benfield 

1996), recorded the needle mass, and added an aluminum tag with a unique ID.  Bags 

were assembled by stapling the two sieve sizes together and by reinforcing them with 

super glue at the corners.  The bags stayed intact throughout the 13-month deployment.  
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Mesh bags with needles or leaves were subsequently placed into plastic mesh peanut bags 

(mesh size ~ 3.1 mm) to further protect them during deployment and to simplify sample 

collection, and each individual bag was placed into a Ziploc for transport to the field.  

On 8 September 2015, the mesh bags were deployed and strung together on an 

approximately 6 m nylon cord held in place by 0.6 m pieces of rebar driven into the 

ground on either side.  The rebar anchors and parachute cord prevented bags from being 

moved by the wind, displaced by hillslope runoff, or moved by animals.  A coin flip 

determined which bags (conifers or deciduous maple) were placed upstream and 

downstream at each site.  To determine mass loss per bag during deployment and 

extraction, I deployed twenty bags, ten deciduous and ten coniferous, and retrieved them 

immediately.  Mass loss per bag was averaged and applied to all bags extracted 

throughout the study, with separate calculations for conifer and deciduous leaves. 

Bags were collected 7 times beginning 11 October 2015 and ending 6 November 

2016 in approximately 1-2-month intervals with a 5-month break during winter snowpack 

(December 2015 to April 2016) when sites were inaccessible.  During each retrieval, one 

conifer bag and one maple bag was randomly collected from each plot and returned to the 

lab in a Ziploc bag to prevent additional leaf mass loss.  On the final collection day, all 

remaining bags were collected from the sites (n = 4 per leaf type at each plot).  Upon 

retrieval decomposition bags were hung on a clothesline in paper bags (Genung et al. 

2013) and air dried in the lab to constant mass (Schweitzer 2005).  After air drying, each 

bag was sorted to remove any noticeable debris that had become incorporated in the 

sample (Chapman et al. 2013).  Because of natural loss of conifer needles from the 

canopy, it was difficult to determine what was originally in the bag and what had fallen 
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into it, so the mass of conifer needles accumulated in the maple decomposition bags was 

sorted and used as a correction factor for the mass of conifer needles that entered the 

conifer bags.  Decomposition rate (k) was calculated as:  

𝑅𝑎𝑡𝑒 (𝑘)  =  −𝑠𝑙𝑜𝑝𝑒 = ln (
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑠𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑
) 

Equation 1: The rate of decomposition where k is the slope. 

Soil Collection and Processing 

Upon each collection of decomposition bags, I also used a thermocouple to 

measure temperature at three soil depths:  2 cm, 10 cm, and 20 cm, corresponding 

approximately to the O horizon, the top of the A horizon, and within the A horizon 

respectively.  A soil core of ~10 cm depth was also collected from each replicate plot 

when I collected litter bags.  Soil cores were stored on ice for return to the laboratory 

whereupon the core from each plot was homogenized in a Ziploc bag.  Soils were 

immediately analyzed for moisture content and percent organic matter and then frozen for 

later analysis of ammonium, nitrate, and inorganic P using methods detailed below. 

Moisture Content and Percent Organic Matter:  

Homogenized soil was sieved at 2 mm and a subsample was placed into an ashed 

aluminum pan and weighed immediately for initial field mass.  Pans were then placed in 

a drying oven at 60ºC until constant mass (approximately 24-48 hours), cooled to room 

temperature, and weighed to obtain dry mass (DM).  The difference between initial field 

mass and dry mass was used to calculate percent moisture (Jarrett 1983).  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 =
𝑀𝑎𝑠𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 − 𝑀𝑎𝑠𝑠𝑑𝑟𝑦 

𝑀𝑎𝑠𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑖𝑒𝑙𝑑
 𝑥 100 
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Equation 2: The determination of moisture content in soil samples. 

Then dried soil samples were ashed in a muffle furnace at 500ºC for 48 h to combust all 

organic matter.  After ashing, samples were cooled to room temperature, rehydrated with 

Milli-Q water to rehydrate clays and colloids containing water molecules, and then 

placed again into a drying oven until constant mass.  Pans were cooled to room 

temperature and reweighed to obtain ashed mass, and the difference between dry mass 

and ashed mass (ash free dry mass) was used to calculate percent organic matter. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑀𝑎𝑡𝑡𝑒𝑟 =
𝑀𝑎𝑠𝑠𝑑𝑟𝑦 − 𝑀𝑎𝑠𝑠𝑎𝑠ℎ

𝑀𝑎𝑠𝑠𝑑𝑟𝑦
 𝑥 100 

Equation 3: The determination of how much organic matter each soil sample contained. 

Net changes in the soil inorganic N pool 

To measure changes in the soil inorganic N pool at each site, I also deployed a 

resin bag made of bleached nylons (to prevent color leaching that may affect results) 

filled with 20 g of ion exchange resin (IONAC NM-60 mixed bed exchange resin, strong 

acid/strong base; sulfonated alkyl quaternary ammonium polystyrene; J.T. Baker 

#JT4631-1) 10 cm deep after initial soil samples were taken.  Bags were deployed in 

September 2015 and removed in May 2016 to measure changes over winter, and fresh 

bags were deployed in May 2016 November 2016 to measure changes during the 

growing season.   
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Net changes in the inorganic N pool were calculated as: 

𝑁𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑁 =
(𝐹𝑖𝑛𝑎𝑙 𝑆𝑜𝑖𝑙 𝑁 + 𝑅𝑒𝑠𝑖𝑛 𝐵𝑎𝑔 𝑁 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝑖𝑙 𝑁)

𝐼𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 

Equation 4: Calculation of net changes in soil inorganic nitrogen (N) pool.  Net increase 

in NH4
+ indicates net mineralization, net increase in NO3

- indicates net nitrification, and 

net decrease in either ion indicates immobilization of that ion (Griffin and Turner 2012). 

 A 2M KCl extraction method (Keeney and Nelson 1983) was used to extract 

inorganic nitrogen from each soil sample and from the ion exchange resins.  Five grams 

of air-dried soil were added to 37.5 mL of 2M KCl and shaken at 100 rpm for 2 hours on 

a shaker table and then centrifuged at 10,000 g.  The sample was then filtered with a 

syringe through a 1.0 µm glass fiber filter and stored in the freezer until analysis. 

The Bray P1 method was used to extract phosphorus from each soil sample (Bray 

and Kurtz 1945).  One gram of air-dried soil was added to 10 mL of the Bray P1 

extractant solution (30 mLs 1 N NH4F to 50 mL 0.5 HCl) and shaken at 100 rpm for 15 

minutes on a shaking table and then centrifuged at 10,000 g.  The sample was then 

filtered with a syringe through a 1.0 µm glass fiber filter and stored in the freezer until 

analysis.   

Chemical Analyses for Throughfall and Soil 

 Samples were analyzed for NO3
-+NO2

- (hereafter referred to as NO3
-) using the 

cadmium reduction method (U.S. Environmental Protection Agency (EPA) 1993) and 

NH4
+ using the phenate method (Solórzano 1969) on a Seal AQ1 Discrete Analyzer (Seal 

AQ1, Seal Analytical; Mequon, Wisconsin, USA).  Samples were analyzed for PO4
3- 

using the ascorbic acid method (Murphy and Riley 1962) on a Seal AQ1 Discrete 
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Analyzer (Seal AQ1, Seal Analytical; Mequon, Wisconsin, USA).  After acidifying the 

samples to a pH of less than 2 to remove inorganic carbon, DOC samples were measured 

using infrared methods (American Public Health Association (APHA) 1995) on a total 

organic carbon analyzer (TOC-L Total Organic Carbon Analyzer, Shimadzu, Kyoto, 

Japan)  

Statistical Analysis 

All data was analyzed in R version 3.6.1 (R Core Team 2019).  Throughfall 

composition was analyzed using (R Core Team 2019) to see how patterns varied by 

budworm herbivory level and time.  Frass and litterfall was compared by budworm level 

and time using a generalized least squares (GLS) model, and leaf decomposition was 

analyzed using a linear model (LM) with leaf type and location as interacting factors.  I 

used linear mixed effects (LME) models (Senf et al. 2016) to see how budworm 

herbivory level (low versus high) influenced percent soil moisture, percent organic 

matter, temperature, soil nutrients, and net nitrification/mineralization through time.  LM 

models were also used to regress decomposition rates of both deciduous and conifers leaf 

litter on total N in throughfall and total water falling at each plot.  To optimize models, I 

compared alternate model structures with an interaction between impact factors and 

sample event and models with a nested design (Zuur et al. 2009).  Additional models 

were constructed with weighted variances to improve model residuals.  Models were 

compared using the anova command in R and the model with the lowest AIC score was 

selected.  To evaluate the assumptions of the model, I plotted the residuals using a Q-Q 

Normal Plot and normalized when applicable.  For LME models that yielded significant 

results, estimated marginal means (EMMs) analysis was used as a post hoc test to 
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determine which sample events differed significantly.  EMMs are calculated and 

presented based on the model predictions which include any nesting terms and/or 

weighted variance terms.  I used EMMs for my plots rather than raw data because EMMs 

used with semi continuous (Smith et all 2017) multivariate analyses gives equal weight to 

all predictors in the model, thus providing a more accurate analysis of how each predictor 

interacts within the model (https://cran.r-

project.org/web/packages/emmeans/vignettes/basics.html. accessed 12 August 2020). All 

statistical tests were evaluated against  = 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://cran.r-project.org/web/packages/emmeans/vignettes/basics.html
https://cran.r-project.org/web/packages/emmeans/vignettes/basics.html
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CHAPTER III 

RESULTS 

Throughfall Chemistry 

Concentrations of throughfall ammonium differed in low and high budworm 

stands (LME, p = 0.015) and by sample event (LME, p < 0.001) throughout the course of 

the study (Figure 2A).  There was a significant interaction (LME, p < 0.001) whereby on 

four dates (11 Sep 15, 21 Jun 16, 13 Jul 16, and 21 Jul 16) throughfall NH4
+ was higher 

in high budworm stands, but on 4 Jun 16, it was higher in low budworm stands.  

Generally speaking, in times where budworms were inactive (11 Oct 15, 29 Oct 15, 8 

Nov 15, 9 Sep 16), there was no difference in throughfall NH4
+ concentration between 

high and low budworm sites.  Throughfall nitrate differed by sample event (LME, p < 

0.001) but not budworm activity level throughout the course of the study (Figure 2B).  

There was a significant interaction (LME, p < 0.001) whereby the low budworm stands 

had higher concentration NO3
- on 8 May 16, but the high budworm stands had higher 

concentration on 13 Jul 16 and 21 Jul 16, which were generally during or after peak 

budworm herbivory.  There was a general trend of increasing concentration of throughfall 
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ammonium and nitrate during the time of WSB budworm activity between 8 May 16 and 

13 Jul 16 (Figure 2, indicated by red boxes).  

Figure 2: Estimated marginal means (EMM) of (A) throughfall ammonium (NH4
+) 

concentrations (Budworm Impact: p = 0.012; Sample Event: p < 0.0001, and Interaction: 

p < 0.0001) and (B) throughfall nitrate (NO3
-) concentrations (Budworm Impact: p = 

0.63; Sample Event: p < 0.0001, and Interaction: p < 0.0001)  in low and high budworm 

stands by sample date.  Significant interactions are noted with an asterisk. Bars represent 

estimated marginal means, not raw data. Error bars represent standard error of estimated 

marginal means. 
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Figure 3: Estimated marginal means (EMM) of (A) throughfall soluble reactive 

phosphorous (SRP) concentration (Budworm Impact: p = 0.43; Sample Event: p < 

0.0001) and (B) dissolved organic carbon (DOC) concentration (Budworm Impact: p = 

0.26; Sample Event: p < 0.0001), and (C) rainfall in mm in low and high budworm stands 

by sample date.  Significant differences among sample events are noted with letters. Error 

bars (A and B) represent standard error of estimated marginal means and (C) standard 

error of the mean. Samples without error bars only had one data point for that sample 

event. 
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Throughfall SRP concentration differed by sample event (LME, p < 0.001) throughout 

the study with highest concentrations on two dates (8 Nov 15 and 21 Jul 16).  However, 

SRP concentration did not differ between high and low budworm sites (LME, p = 0.43) 

(Figure 3 A).  Throughfall DOC concentration also differed by sample event (LME, p < 

0.001) with 8 Nov 15 having the highest concentration.  Like SRP, DOC did not differ 

between high and low budworm sites (LME, p = 0.26) (Figure 3B).  The biggest pulses of 

SRP and DOC from the canopy appeared on the same dates (8 Nov 15 and 21 Jul 16), 

which also coincided with one large and one moderate rainfall event respectively. 
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Frass and Litter Deposition 

Litterfall and frassfall significantly interacted between budworm impact and time 

(GLS, p = 0.04).  In high impact sites, frass content was greater than in low impact sites 

during peak herbivory times.  Once the budworm feeding season ended, frass input for 

high impact and low impact sites was virtually the same.  Low budworm site collectors 

contained more leaf litter than high impact sights during the cooler months where the 

highest amount of litter fell during the October sampling dates. 

Figure 4: The deposition of frass and litter in high impact and low impact sites with 

vertical dashed line indicating end approximate end of budworm feeding. Analysis 

comparing high and low budworm interactions took place after the dashed line as well. 

Error bars represent the standard error of the mean. 
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Decomposition Rates 

The decomposition rate of coniferous and deciduous leaf litter did not vary by leaf 

type (p = 0.68); however, decomposition was faster in low budworm sites for both leaf 

litter types (p = 0.0024, LME; Figure 5).  The total mass of dissolved inorganic nitrogen 

(DIN) deposited by throughfall was negatively associated with the deciduous 

decomposition rate (R2 = 0.15, p = 0.033; Figure 6) but not the coniferous decomposition 

rate (p = 0.13), and the decomposition rate for both leaf types was unrelated to total 

rainfall sampled.  Because I only measured DIN and precipitation while samplers were 

deployed, these values do not represent actual totals of DIN or precipitation. 
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Figure 5: Decomposition rates (k) of deciduous and coniferous leaf litter in high and low 

budworm sites (Budworm Impact: p = 0.0024; Leaf Type: p = 0.68; and Interaction: p = 

0.79). 
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Figure 6: Regression analysis of throughfall DIN and deciduous decomposition rate (k). 

Soil Chemistry 

Soil ammonium concentrations differed by sample date (LME, p < 0.001) with 

higher concentrations on 8 May 16 and 6 Nov 16.  These were times when budworms 

were generally not active, however, there was no difference between high and low 

budworm site (p = 0.33, LME).  These times also coincided with the beginning of and the 

end of the growing season, respectively.  Although soil nitrate did not differ between high 

and low budworm sites (p = 0.76, LME), it did differ by sample event (p < 0.0001, LME) 

with a significant interaction between sample event and budworm (p = 0.003, LME).  In 

the interaction, high budworm sites had higher soil NO3
- concentration than low 

budworm sites on 6 Nov 16 whereas as low budworm sites had higher NO3
-
 on 4 Aug 16.  
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Usually soil NH4
+ was 60 times higher than soil NO3

-.  Soil SRP was significantly higher 

in high impact sites (p = 0.047, LME) but did not differ by sample event (p = 0.91).  

Changes in the soil N pool indicated net nitrification and net mineralization, (p < 0.001, 

LME) in all sites, but neither net nitrification (p = 0.33, LME) nor net mineralization (p = 

0.66, LME) differed by budworm activity level.  Net mineralization significantly 

interacted with time (p = 0.03) whereby low budworm sites had higher rates of 

mineralization over the winter.  Net nitrification was highest across sites in fall (p < 

0.0001). 
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Figure 7: Estimated marginal means (EMM) of soil (A) ammonium (NH4
+) (Budworm 

Impact: p = 0.33; Sample Event: p < 0.0001), (B) nitrate (NO3
-) (Budworm Impact: p = 

0.76; Sample Event: p < 0.0001; and Interaction: p = 0.0030), and (C) soluble reactive 

phosphorous (SRP) (Budworm Impact: p = 0.047; Sample Event: p = 0.91) and  

concentrations in low and high budworm stands by sample date.  Significant sample 

events are noted with letters and significant interactions are noted with an asterisk. Error 

bars represent standard error of estimated marginal means. 

 

Soil moisture varied among sample events (p < 0.001, LME) and was greater 

during the sample events 11 Oct 15, 8 Nov 15, 4 Aug 16, and 19 Sep 16, but there was no 

difference between high and low budworm sites (p = 0.86, LME) (Figure 8A).  Soil 
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organic matter did not differ between high and low budworm sites (p = 0.49, LME) or 

among sample dates (p = 0.70, LME) (Figure 8B).   

 

Figure 8: Estimated marginal means (EMM) of (A) soil moisture (Budworm Impact: p = 

0.86; Sample Event: p < 0.0001) and (B) soil organic matter (Budworm Impact: p = 0.49; 

Sample Event: p = 0.70) in low and high budworm stands by sample date.  Significantly 

different sample events are noted with letters. Error bars represent standard error of 

estimated marginal means. 
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Soil temperature followed the expected pattern of increasing during spring and 

summer months and decreasing during winter and fall months (data not shown), and soil 

temperature was strongly correlated with air temperature (R2 = 0.78, p < 0.0001, linear 

regression).  Budworm herbivory level did not influence soil temperature.  As expected, 

temperature increased and decreased more rapidly at shallow compared to deeper depths, 

and soil temperature differences among dates were less variable in the deepest 

measurement at 10 cm (data not shown). 

Figure 9: A regression analysis comparing soil temperature at 2 cm depth and air 

temperature (p < 0.0001, R2 of 0.78). 
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CHAPTER IV 

DISCUSSION 

In this study, I investigated how WSB herbivory affected throughfall chemistry, 

leaf litter decomposition, and soil chemistry in the eastern Cascades of central 

Washington.  Although budworm herbivory increased N loss from the canopy via 

throughfall, especially for NH4
+, WSB did not affect throughfall SRP and DOC.  Instead, 

higher concentrations of SRP and DOC in throughfall were seen in one heavy and one 

moderate rainfall event, suggesting hydrologic control.  Budworm herbivory increased 

organic matter loss from the canopy as frass in summer in comparison to low budworm 

sites, which lost more organic matter as litter in fall.  Unexpectedly, decomposition rates 

were faster in low budworm sites compared to high budworm sites for non-native 

deciduous litter and for native coniferous litter.  Decomposition of deciduous litter was 

additionally negatively influenced by total N deposited by throughfall.  Seasonality was 

the main driver of differences in soil moisture, soil temperature, and soil ammonium 

whereas budworm herbivory and seasonality interacted in soil nitrate concentrations.  

Soil phosphorus concentrations were clearly higher in high budworm sites compared to 

low budworm sites.  Although all sites experience net mineralization and net nitrification 

in soils, unexpectedly, budworm activity did not influence net nitrification rate. 

Throughfall Nitrogen 

 I hypothesized that budworms would increase the amount of ammonium and 

nitrate in throughfall, and I observed an interaction between WSB activity and sample 

date for throughfall ammonium.  On three of four sample dates, 21 Jun 16, 13 Jul 16, and 

21 Jul 16, I observed higher concentration of ammonium coinciding with budworm 
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feeding or immediately after feeding.  During pest outbreaks in Scots pine forests, N 

fluxes from throughfall increased during defoliation events, and then decreased in the fall 

in the absence of defoliation, supporting my findings for WSB (Grüning et al. 2017). 

Feeding season is tied to growing season, and this can be seen from the 8 May 2016 

sample time to the 13 July 2016 sample date. As the season changes from late spring to 

mid summer, there is an increase in both herbivory and NH4
+ concentrations. As the 

season changes from mid summer to early fall, herbivory decreases and so does NH4
+ 

concentrations as seen from 13 July 2016 to 21 July 2016. On a fourth date, 11 Sept 

2015, I also observed higher ammonium concentrations in high budworm stands, but this 

date was well after budworm feeding in 2015.  It is possible that ammonium generated by 

budworm feeding was stored in the canopy and washed out during the first major rain 

event in months that happened on 10 Sept 2015.  Although these findings are consistent 

with defoliation accelerating ammonium loss from the canopy to forest soils, right as 

budworm feeding was beginning in 2016, a 4 Jun 16 throughfall showed the opposite 

pattern whereby low budworm sites had a higher ammonium concentration.  Aphids and 

lepidopteran larvae have been shown to increase DOC concentrations and decrease NH4
+ 

and NO3
- concentrations in throughfall as they consume foliage (Stadler et al. 2001), so it 

is possible that the initial phases of larval feeding released DOC from plant tissues that 

stimulated ammonium uptake (Kirchman et al. 1990).  

Similar to patterns in throughfall ammonium, budworm activity interacted with 

sample date to affect throughfall nitrate concentrations.  Again, I saw that from 8 May 

2016 to 13 July 2016 there is an increase in NO3
- as feeding and growing season progress, 

and then a decrease in NO3
- as feeding season begins to end. It appears that the general 



33 
 

trend of canopy N is that it increases from late spring to mid summer, coinciding with 

feeding and growing season, then decreases from mid summer to early fall as herbivory 

slows and the temperature cools. This general pattern suggests that budworm herbivory 

and growing season are related to canopy N.  Interestingly, 13 Jul 16 and 21 Jul 16 have 

higher nitrate in high budworm stands that coincided with higher ammonium, which 

suggests canopy nitrification, similar to coniferous throughfall in Adirondack Mountains 

of New York (Chen et al. 1983).  More recent studies have challenged the idea of canopy 

nitrification being such a large factor.  For example, leaching of partially consumed or 

damaged leaves in the canopy from mature trees, which become less hydrophobic as they 

age, allows for more anions and cations to be released in water droplets during rain and 

wind events (Tukey 1966; Reynolds et al. 2000; Hunter et al. 2001).  An experiment on 

the effect of nitrogen fertilizer on a mature spruce-hemlock forest in Maine also suggests 

that canopy nitrification was not responsible for nitrate increases in throughfall, instead 

suggesting that it was due to nitrate in dry deposition washed off by rain events (Gaige et 

al. 2007).  Although I did not collect the data required to discriminate between these 

alternate mechanisms of NO3
- loss from the canopy, the data I did collect suggest that 

WSB herbivory is associated with NO3
- loss from the canopy to forest floor. 

Throughfall ammonium and nitrate generally increased concentration from 1.5x to 

2x as herbivory intensified relative to the low herbivory stands (Figure 2), consistent with 

a sustained and increasing budworm effect during their active feeding activity.  Both 

winter moths (Operophtera brumata) and the mottled umber moth (Eranis defoliaria) 

have been shown to increase canopy N during herbivory outbreaks in oak forests in 

Germany with evidence that herbivores affect the canopy much more than they do soils 
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(LeMellec et al. 2011).  The generalized increase in throughfall inorganic N coinciding 

with the summer growing season could have implications for plant uptake during that 

time.  An experiment using Gala apples showed that photosynthesis rates increase after 

defoliating events leading to new growth, and although this study only measured 

carbohydrates, plants also need nitrogen to grow.  If photosynthesis rates increase after 

defoliation, then nitrogen consumption must also increase (Zhou and Quebedeaux 2003).  

Therefore, the increased N in throughfall during the budworm feeding period may benefit 

the growth of understory plants, or it could contribute to continued leaf growth in the 

defoliated trees after WSB feeding ends with pupation. 

Throughfall SRP and DOC 

The observed pattern of throughfall SRP does not support my hypothesis of 

increased SRP in high WSB sites, but SRP concentrations did differ by sample event.  On 

8 Nov 15 there was a large rainfall event and on 21 July 16 there was a smaller but very 

heavy rainfall event, and on those days, I saw higher concentrations of SRP.  I expected 

that phosphorus levels would be higher in heavily impacted areas due to an increase in 

frass input and increased SRP from leaching of partially consumed leaves as seen in 

multiple herbivore ecosystem interactions (Hunter et al. 2001).  However, not all studies 

have shown that herbivory leads to increased nutrient fluxes.  In a study in western 

Oregon on Douglas fir trees, throughfall data suggests that precipitation plays a much 

bigger role in throughfall nutrients than defoliation, consistent with my findings 

(Schowalter. 1999).  Another study showed that the low level consumption of red maple 

trees and black locust trees in the southern Appalachians by canopy arthropods may not 

significantly alter throughfall concentrations of PO4
3-, but the authors of that study 



35 
 

attributed imprecise method design for a potential reason for not being able to detect 

small changes (Seastedt et al. 1983).  Therefore, SRP fluxes from the canopy to soils 

appear to be more strongly influenced by hydrology than by herbivory in my budworm 

sites. 

 Like with throughfall SRP, there were also significant sample event differences 

for throughfall DOC but no differences for budworm impact.  Again, I hypothesized 

higher DOC concentrations in high budworm impact sites as many studies have shown 

that insect herbivory leads to increased throughfall DOC and N (LeMellec et al. 2011; 

Kindlmann and Stadler 2004; Stadler and Michalzik 2001).  Given the relatively 

consistent observation that herbivory increased DOC fluxes from the canopy, it is unclear 

why this pattern was not observed for WSB.  It could be due to my concentrations being 

5x to 10x lower than those found by LeMellec (2011).  However, the samples dates with 

highest DOC coincided with the highest SRP concentrations, again suggesting hydrologic 

control over DOC delivery to forest floors in this study system. Another possibility is that 

while my data may not show that WSB increased throughfall DOC, they could still be 

adding carbon to the forest floor via frass (LeMellec et al 2009). During a pine lappet 

(Dendrolimus pini L.) outbreak in a scots pine forest, herbivory was shown to increase 

DOC in throughfall, but C:N ratios were much higher in frass than in needle biomass. 

TOC was also higher in throughfall than DOC (LeMellec et al. 2009), and although I did 

not measure frass DOC, I can speculate that budworms may still have an effect on carbon 

entering the forest floor, just not directly in the form of throughfall DOC. 
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Frassfall and Litterfall 

 Peak litter fall during the months that I sampled (June to November) occurred for 

both high and low budworm areas during late fall, but litter fall was greater for low 

budworm sites compared to high budworm sites.  In contrast, peak frass fall for those 

times was greater in high budworm sites during the summer budworm feeding season.  In 

the southern Appalachians native herbivores cause peak frass input between the months 

of June and August with temporal differences attributed to the elevation gradient and 

correspondingly different growing seasons (Hunter et al. 2003).  Moreover, increased 

frass deposition during the growing season was positively correlated with throughfall 

nitrogen inputs (Hunter et al. 2003), consistent with the ammonium and nitrate 

throughfall patterns I observed.  Because frass has fewer complex organic molecules that 

need to be broken down, it is readily susceptible to leaching (Hunter et al. 2003) allowing 

for quick microbial immobilization of ammonium, and the possibility of nitrate export to 

local watersheds.  The consistent findings of higher throughfall ammonium and nitrate 

and more frass deposition during feeding strongly suggest that frass is a mechanism for 

inorganic nitrogen delivery to forest soils. 

Leaf Litter Decomposition 

 I had hypothesized that decomposition would occur at a faster rate in high 

herbivory areas, as herbivory would decrease forest canopy to allow more water to reach 

the forest floor, and herbivory would increase nitrogen to stimulate bacterial growth 

(Lovett et al. 1995).  My results showed the opposite effect whereby litter in high 

budworm sites decomposed at a slower rate than litter in low budworm sites.  

Interestingly cottonwood leaf litter decomposition in response to galling aphids 
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(Pemphigus betae) was 34-40% slower than non-galled leaf litter (Schweitzer et al. 2005) 

suggesting that leaf litter from defoliated trees might have reduced quality.  Although I 

used standardized leaf packs across study sites, perhaps leachates from defoliated trees 

slowed decomposition, however I cannot test that hypothesis because I only measured 

DOC concentration and not DOC quality.  Fungi are less able to contribute to 

decomposition in N-rich environments (Diepen et al. 2017), suggesting that as more N 

enters the soil from throughfall, decomposition rates could decrease, which could also 

decrease decomposition in high budworm sites.  This was further supported by my 

regression analysis (Figure 6). As total DIN deposition increased, the rate of 

decomposition decreased.  I had hypothesized that microclimate differences associated 

with herbivory (i.e., open canopy allowing more light and/or water to reach the forest 

floor) would influence decomposition, ultimately but others have argued that climate has 

a small effect on late stage decomposition so the rate of decay should not increase (Berg 

and Meentemeyer 2002).  A study compared the Hubbard Brookes Experimental forest to 

a forest in North Carolina, and found that the rate of sugar maple decomposition had a k 

value of -0.25, about twice as fast as mine, but that decomposition could vary based on N 

concentrations in the soil, in leaf biomass, lignin in leaf biomass, and/or lignin to N 

ratios, making it hard to attribute decomposition rates to N alone (Melillo et al. 1982).  

Overall, my data support the idea that there is a limited role for WSB to play in litter 

decomposition, possibly due to the dry summers which limit water availability and slow 

decomposition rates.   
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Soil Moisture and Organic Matter 

 I hypothesized that budworms would affect soil moisture, but I found no evidence 

for this.  As defoliation by budworms occurred, the canopy could have had more 

openings for moisture to reach the forest floor during rain events, thus increasing soil 

moisture during wet periods and decreasing soil moisture during warmer dry periods.  

While I did see an association between large rainfall events and higher soil moisture, for 

example on 11 Oct 15 and 4-Aug-16, in high impact sites and on 8-May-16 and 6-Nov-16 

in low impact sites, there was no consistent difference between high and low impact sites.  

It is possible that even in high herbivory sites, most herbivory occurs in the new growth 

on the fringe of the trees, so herbivory might not open the canopy significantly until it 

becomes heavy enough to kill trees.  Alternatively, in this mountainous environments, 

nearby sites might have had enough differences in microclimate to exceed any variability 

caused by budworms. 

 I hypothesized that more frass input would lead to higher soil organic matter 

content.  Despite seeing higher frass deposition in high budworm sites, I did not observe 

any differences in soil organic matter content between high and low budworm sites.  Due 

to the possibly lower carbon quality of consumed leaf litter (Schweitzer et al. 2005), it is 

possible that frass had not decomposed enough to enter the soil organic matter pool in my 

relatively short study.  Alternatively, herbivores might not have a consistent effect on soil 

organic matter.  For example, grasslands worldwide show that soil organic carbon can 

increase, decrease, or stay the same in the presence of herbivory by grazers, over a wide 

range of temperatures, precipitation levels, and elevation, but bulk density either 
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increases or stays the same in response to herbivory (Piñeiro et al. 2010).  Regardless of 

the mechanism, budworm herbivory does not appear to influence soil organic matter.   

Soil Nutrients 

 I hypothesized that soil nutrients would increase in the presence of budworms, but 

this did not occur for ammonium despite higher throughfall ammonium concentrations.  

The lack of consistency between throughfall and soil ammonium concentrations suggests 

very high rates of immobilization of ammonium via soil bacterial production or 

understory plant uptake.  There was, however, a significant sample event effect indicating 

that ammonium concentrations differed through time.  Highest concentrations of soil 

ammonium occurred on 8 May 2016 and 6 Nov 16, which are before and after the 

growing season, respectively.  Higher soil ammonium during these times may represent 

reduced plant uptake from soil ammonium pools and/or net mineralization. My resin bags 

indicated net mineralization especially over winter when high soil moisture could support 

microbial activity, but that it was not significantly affected by budworms, which is 

consistent with the observed patterns in bulk soil ammonium.  A study in Puerto Rico 

found similar results whereby increases in soil NH4
+ were not related to herbivory (Fonte 

2003).   

Soil nitrate concentrations interacted between sample event and budworm 

herbivory, but concentrations were relatively low throughout the study.  Nitrate is taken 

up at similar rates during growing season (Nadelhoffer et al. 1984), which could explain 

the low concentrations for most of the sample dates.  Similar to ammonium, there did not 

seem to be a concordance between throughfall and soil nitrate concentration.  For 

example, on 8 May 2016 and 13 June 2016 pulses of throughfall nitrate were not seen in 
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the soil, suggesting rapid microbial immobilization or plant uptake into biomass.  I did 

observe two pulses of nitrate in soils, one during the growing season (August 2016) and 

one right before winter after the growing season (November 2016).  There was a large 

rainfall event just prior to both sampling events, and rainfall has been shown to leach 

nitrates into the soil solution (Wang et al. 2010) with potential for runoff to streams 

(Wang 2020).  Like soil ammonium concentration patterns, soil nitrate suggested rapid 

immobilization of N leached from the canopy, which implies a relatively tight link 

between canopy N losses via WSB followed by soil and/or plant retention of canopy-

leached N.  Soil resin bags indicated more net nitrification between spring and fall across 

all sites regardless of budworm activity, suggesting that herbivory played a limited role in 

nitrification, unlike other studies that showed a significant link (Hunter et al. 2003), 

consistent with what appears to be rapid immobilization. 

SRP concentrations in soils were higher in high budworm sites, supporting my 

hypothesis. SRP was higher in high budworm sites at all sample dates, a trend that has 

also been seen in tropical forests experiencing herbivory (Metcalfe et al. 2013).  Because 

SRP throughfall concentration did not differ by herbivory level in my study, it suggests 

that WSB in highly impacted areas are adding more phosphorous to soils in particulate 

forms such as frass, molts, dead adults, or damaged leaf litter than can be taken up by soil 

microbes as seen in other systems (Metcalfe et al. 2013).  A study with potted Douglas fir 

seedlings found that in soils containing high levels of weathered basalt, WSB increased 

soil P concentrations (Kolb et al. 1999), suggesting that budworms can increase soil P in 

systems that are not limited by P.  The central Cascade region is high in weathered basalt, 

which coupled with apparently rapid immobilization of inorganic N, would suggest that 
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high budworm sites are not P limited.  In systems not limited by P, excess P has the 

potential to be leached into the nearby streams during rain or snow melt, and excessive P 

leaching can lead to eutrophic downstream systems.  Finally, while evidence suggests a 

role for WSB to influence soil P concentration, because my study sites are not 

interspersed between the Swauk and Teanaway drainages due to where budworms were 

active, I cannot dismiss the possibility that Swauk soils generally have higher P than 

Teanaway soils in the absence of budworms.  

Limitations 

 All samples were taken during the months of late April to early November 

because of site inaccessibility during winter. This leaves four and half months of the year 

out of my sampling scheme. As snowmelt beings to occur in the spring and microbial 

metabolism starts to pick up, there is the potential for N-transformations and runoff that 

are not shown in this study, which could change interpretations of how budworms affect 

soils chemistry and the potential for export to streams. Litterfall results could also be 

interpreted differently because there is a large amount of litter that falls to the forest floor 

during the winter months (Reukema 1964; Weiskittel and Maguire 2007) that I was not 

able to measure.  

 In addition to seasonal limitations, because soil order and soil horizons affect 

nutrient-soil interactions, lack of soil characterization makes it difficult to draw concrete 

conclusions about my results. For example, soils with high clay content have the ability 

to bind positively charged ions such as NH4
+, so knowing the clay content could help 

interpret my results. Soil texture and soil composition are also likely to support different 

soil microbes and fungi, which would have different effects on soil nutrients. Even by 
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characterizing soil by order, I would have been able to draw a few more general 

conclusions about nutrient interactions and how they could be influenced by budworm 

herbivory. The depth at which I took my soil samples could also have influenced my 

results. While my resin bags did show net nitrification, a study in an oak forest in Georgia 

cited potential error with resin bags, stating that shallow depth could have missed 

nitrification. Because my samples were only 10 cm deep (Frost and Hunter 2004), there 

may have been more nitrification occurring in deeper soil layers than I measured. 

 Although I ran regression analyses for soil and air temperature, the temperature 

measurements I had were spot measurements, and therefore provide very little 

information on what is occurring in both the soil and the air throughout the day and 

throughout the seasons. I should have deployed temperature loggers and left them 

throughout the duration of the study, as well as air temperature monitors so that I could 

capture information about the difference between high and low temperatures on a diel 

basis at each site. I cannot use Forest Service data for air temperature because of site 

differences, which could lead to even more inaccurate conclusions. 

 I gathered all of my samples at the end of the WSB outbreak in the Swuak 

Drainage, and it is possible that I saw a lessened effect from WSB due to missing the 

peak outbreak event. It is also possible that my background locations in the Teanaway 

had a residual effect of a WSB outbreak three years prior in that area. A study looking at 

tree ring growth in response to defoliation events has been show that there is a lag time 

between an outbreak effect on tree growth (Swetnam et al. 1995), and so it is possible 

that nutrient concentrations would have a lag time response as well. 
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Future Studies 

Future studies could expand on the nutrients measured to include organic N and P, 

to help support the findings in this study that only looked at inorganic N and P. Other 

ions could also be recorded to help characterize the soil and to look at potential 

accumulation of PO4
3- as it can bind to positively charged ions including K, Ca, Mg, and 

Fe. Looking at these ions can also provide information on export potential. 

In additional to looking at nutrients, a study to look at the invertebrate, fungal and 

microbial communities in the forest soil to help support missing aspects of this study, 

such as what happens to the inorganic nutrients. It would give more insight as to whether 

they are being incorporated into those communities or being exported into stream 

systems, yielding greater insight into the nuanced effects of WSB herbivory on forest 

ecosystems. 

Doing a manipulated frass leaching experiment in addition to this field study 

model would more clearly outline whether or not budworm frass contributes significant 

nutrient deposition to the forest floor, or if budworm frass has little to no effect on soil 

chemistry. By adding frass and leaching it, as well as having no frass controls in both 

high impact and low impact sites, there would be more concrete evidence of the direct 

effect budworms are having while avoiding the interspersion problem of this study. 

Finally, future studies should include sampling at the beginning, during the peak, 

and at the end of an outbreak and should use specialized equipment to measure over the 

winter to provide more evidence as to whether or not these native herbivores have a 

significant effect on Central Washington terrestrial forest systems.   
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Conclusion 

 This study thoroughly investigated the effects of WSB on throughfall and soil 

nutrients, and their implications in both forest soil health and stream ecosystem health.   

I hypothesized that budworms would increase throughfall nutrients, and budworms had 

an effect during the growing and feeding season and this supported my hypothesis of 

increased throughfall N as seen in the interaction between these native defoliators and the 

times that I sampled also affected throughfall N, as well as soil NO3
-. Budworms did not 

have an effect on throughfall SRP, DOC, or soil moisture, but sample date did.   I also 

hypothesized that budworm defoliation would increase soil temperature by allowing more 

light in, but this was not seen. This could be because while more radiation made its way 

to the forest floor during the light hours, during the dark hours of the day, radiation 

escaped at a faster rate, thus not being retained, and ultimately not affecting soil 

temperature.  I hypothesized that budworms would increase the rate of decomposition, 

and there was a significant relationship between the rate of decomposition and WSB, but 

the effect was the opposite of what I hypothesized; in the presence of WSB, the rate of 

decomposition was slower than in areas not affected by the herbivore.  My last 

hypothesis was that budworms would increase soil nutrients. Soil NO3
- had a significant 

interaction, supporting my hypothesis. Soil moisture and NH4
+ were affected by sample 

date, and while soil SRP had a significant output for budworms, I cannot attribute it to 

budworm interaction because of lack of interspersed sites. 

Unfortunately, I sampled the last two years of a major WSB outbreak, and due to 

a decline in severity, it is possible that I was not able to capture the full effect of WSB on 
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the forest ecosystem that I studied.  Moreover, while I studied the budworm outbreak in 

Swauk drainage, in prior years budworms were active in the Teanaway (my low 

budworm sites) so there might have been lingering budworm effects despite no active 

defoliation. Based on my data, I can conclude that WSB have the potential to affect N 

levels in throughfall, and as outbreak severity is expected to increase due to human 

driven climate change, there is the possibility that these insects will have even greater 

effects on the N cycle within the forest increasing the possibility that they could affect 

forest streams as well.  Potential changes in forest ecosystem dynamics in response to 

budworms could lead to the need for management practices.  Traditional logging 

practices in the area of cutting only the biggest and oldest trees in the area and leaving a 

homogeneous age group of trees as discussed earlier could be changed. By logging trees 

of different sizes and ages, as well as selectively logging instead of clear cutting, a more 

open stand, heterogeneous forest could provide protection from future outbreaks, or 

minimize outbreak severity (Pettit et al. 2020). 
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