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Abstract. Black carbon (BC) is an important climate-forcing
agent that affects snow albedo. In this work, we present a
record of refractory black carbon (rBC) variability, measured
from a 20 m deep snow and firn core drilled in West Antarc-
tica (79◦55′34.6′′ S, 94◦21′13.3′′W, 2122 m above sea level)
during the 2014–2015 austral summer. This is the highest el-
evation rBC record from West Antarctica. The core was an-
alyzed using the Single Particle Soot Photometer (SP2) cou-
pled to a CETAC Marin-5 nebulizer. Results show a well-
defined seasonality with geometric mean concentrations of
0.015 µg L−1 for the wet season (austral summer–fall) and
0.057 µg L−1 for the dry season (austral winter–spring). The
core was dated to 47 years (1968–2015) using rBC season-
ality as the main parameter, along with sodium (Na), sul-
fur (S) and strontium (Sr) variations. The annual rBC con-
centration geometric mean was 0.03 µg L−1, the lowest of
all rBC cores in Antarctica referenced in this work, while
the annual rBC flux was 6.25 µg m−2 a−1, the lowest flux in
West Antarctica rBC records. No long-term trend was ob-
served. Snow albedo reductions at the site due to BC were
simulated using SNICAR online and found to be insignifi-
cant (−0.48 %) compared to clean snow. Fire spot inventory
and BC emission estimates from the Southern Hemisphere
suggest Australia and Southern Hemisphere South America
as the most probable emission sources of BC to the drilling
site, whereas HYSPLIT model particle transport simulations
from 1968 to 2015 support Australia and New Zealand as
rBC sources, with limited contributions from South Amer-
ica. Spectral analysis (REDFIT method) of the BC record
showed cycles related to the Antarctic Oscillation (AAO) and

to El Niño–Southern Oscillation (ENSO), but cycles in com-
mon with the Amundsen Sea Low (ASL) were not detected.
Correlation of rBC records in Antarctica with snow accumu-
lation, elevation and distance to the sea suggests rBC trans-
port to East Antarctica is different from transport to West
Antarctica.

1 Introduction

Black carbon (BC) is a carbonaceous aerosol formed during
incomplete combustion of biomass and fossil fuels, charac-
terized by strong absorption of visible light and resistance to
chemical transformation (Petzold et al., 2013), and it plays
an important role in the climatic system by being able to al-
ter the planetary albedo (McConnell et al., 2007; Ni et al.,
2014).

BC-containing aerosols are the species most commonly
identified as being short-lived climate forcers, along with
methane and ozone (AMAP, 2015). BC particles stay in the
atmosphere for just 1 week to 10 d (Bond et al., 2013; Ni
et al., 2014), but during that time they change the direct
radiative forcing at the top of the atmosphere by absorb-
ing and scattering sunlight, with high spatial and temporal
variability on regional scales (Bond et al., 2013). In some
parts of the globe, the impact of BC on the climate can be
even higher than greenhouse gases (Bice et al., 2009). Glob-
ally BC is estimated to be second only to CO2 in its con-
tribution to climate forcing, with +1.1 W m−2 for the indus-
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1538 L. Marquetto et al.: Refractory black carbon (rBC) variability

trial era (1750–2005) (Bond et al., 2013; Ramanathan and
Carmichael, 2008)

Increases in BC concentrations in the cryosphere since the
industrial revolution have been observed, with most studies
focusing on the Arctic, the Himalayas and European glaciers
as these ice caps are close to large urban centers and con-
sequently are influenced by these. Antarctica is a pristine
environment far from the rest of the world, but BC can
still be found in its atmosphere, snow and ice, as shown by
early studies (Chýlek et al., 1987, 1992; Warren and Clarke,
1990). Although there are local emissions of BC due to sci-
entific and touristic activities (Casey et al., 2017; Stohl and
Sodemann, 2010), Antarctic ice also records Southern Hemi-
sphere (SH) emissions and long-range transport of BC from
low and midlatitudes (Bisiaux et al., 2012a, b; Pasteris et al.,
2014), with BC concentrations in Antarctica being linked to
biomass burning from South America, Africa and Australia
(Arienzo et al., 2017; Koch et al., 2007; Stohl and Sodemann,
2010). Even tropical latitude emissions have a measurable in-
fluence on the continent (Fiebig et al., 2009).

Although there are several records of SH paleo-biomass
burning, there are only a few publications on BC variabil-
ity in ice cores from Antarctica. Some of those are focused
on centennial–millennial timescales (Arienzo et al., 2017;
Chýlek et al., 1992) and others on annual to decadal scales
(Bisiaux et al., 2012a, b; Pasteris et al., 2014). More ice core
records are needed to understand the spatial variability of
BC transport and deposition to Antarctica, as well as to im-
prove general circulation models (Bisiaux et al., 2012b). In
this work we present a new West Antarctic high-temporal-
resolution rBC snow and firn core record. This record is the
highest West Antarctic rBC record produced to date and con-
tributes to the understanding of BC temporal and spatial vari-
ability in Antarctica.

2 Site description and field campaign

The core (TT07) was drilled in the 2014–2015 austral
summer on the Pine Island Glacier (West Antarctica) at
79◦55′34.6′′ S, 94◦21′13.3′′W (elevation 2122 m above sea
level – a.s.l.), near the Mount Johns nunatak (located 70 km
NE of the drilling site) (Fig. 1) and close to the Institute–
Pine Island ice divide. The drilling site was chosen due
to its relatively high accumulation rate, which ensures sea-
sonally preserved stratigraphic resolution (Schwanck et al.,
2016b; Thoen et al., 2018), and due to the region’s interest-
ing pattern of atmospheric circulation, originating from the
confluence of air masses from the Weddell, Amundsen and
Bellingshausen seas (Parish and Bromwich, 2007; Thoen et
al., 2018).

The West Antarctic Ice Sheet (WAIS) has a lower ele-
vation and lower coastal slopes than the East Antarctic Ice
Sheet (EAIS), which facilitates the intrusion of moisture-
rich cyclones to the interior of the continent and the trans-

Figure 1. Drilling location for the snow and firn core analyzed in
this work (TT07) and other points of interest mentioned in the text.
Base map from the Quantarctica project (Matsuoka et al., 2018).

port of aerosols inland (Neff and Bertler, 2015; Nicolas and
Bromwich, 2011). Katabatic winds are not as strong in the
drilling site region as they are in most of West Antarctica,
due to the higher site elevation compared to the surroundings
(Parish and Bromwich, 2007). Seasonal differences in atmo-
spheric transport have been reported for the TT07 drilling
site, with particle trajectories during the austral summer be-
ing slow moving and more locally influenced, while, dur-
ing the winter, air trajectories are influenced by oceanic air
masses due to strong westerlies. The majority of air masses
arrive from the Amundsen Sea and, secondarily, from across
the Antarctic Peninsula and Weddell Sea (Schwanck et al.,
2017). These are also the preferred pathway for dust parti-
cles (Neff and Bertler, 2015).

We used a Mark III auger (Kovacs Enterprises, Inc.) cou-
pled with an electrical drive powered by a generator (kept
downwind at a minimum of 30 m away) to retrieve the core.
The Mark III auger recovers cylinders of 7.25 cm diameter
and up to 1 m long. All sections of the core were weighed
in the field, packed in polyethylene bags and then stored in
high-density styrofoam boxes. These boxes were sent by air
to Punta Arenas (Chile), then to a deposit in Bangor (ME,
US) for storing and finally to the Central Washington Uni-
versity Ice Core Laboratory (Ellensburg, WA), where they
were kept at −1 ◦C in a clean cold room until subsampling
and analysis.
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3 Methods

3.1 rBC analytical method

We used an extended-range Single Particle Soot Photome-
ter (SP2, Droplet Measurement Technologies, Boulder, CO,
USA) at the Department of Geological Sciences, Central
Washington University (CWU – WA, USA) to analyze our
samples. The particle size range detected by the SP2 at CWU
is 80–2000 nm mass-equivalent diameter for the incandes-
cent signal, assuming a void-free BC density of 1.8 g cm−3

(Moteki and Kondo, 2010).
The SP2 measures the number and size of rBC particles

using laser-induced incandescence and was used in a vari-
ety of studies for BC in snow and ice (Bisiaux et al., 2012a,
b; Casey et al., 2017; Kaspari et al., 2014, 2015, 2011; Mc-
Connell et al., 2007; Osmont et al., 2018, 2019). In this
work we use the recommended terminology by Petzold et
al. (2013) and present results from the SP2 as refractory
black carbon (rBC).

As the SP2 was initially designed to analyze rBC from the
atmosphere (dry aerosol), a necessary step to run liquid sam-
ples is their nebulization before being coupled to the sample
inlet of the SP2. For this, we used a CETAC Marin-5, de-
scribed in detail by Mori et al. (2016). The authors found a
good nebulizing efficiency of 50.0± 4.4 % and no size de-
pendency in the diameter range of 200–2000 nm. Katich et
al. (2017) managed to obtain nebulization efficiencies near
100 % with their equipment setup. We calculated the CWU
Marin-5 nebulization efficiency to be 68.3±5.9 % (1σ ) based
on the external calibration carried out every working day us-
ing Aquadag standards (Marquetto et al., 2020). We found
a decrease in nebulization efficiency during the laboratory
work period (−0.31 % per working day or −13.3 % over the
43 working days), but we assume the nebulization efficiency
to remain stable between the measurement of the standard
and the samples measured for the day, following Katich et
al. (2017). We attribute this decrease to the Marin-5 but do
not see any apparent cause. Liquid pump flow rates were kept
constant at 0.14± 0.02 mL min−1 during analysis.

For details of the CWU SP2 internal and external calibra-
tion, refer to Marquetto et al. (2020).

3.2 Laboratory and vial cleaning

Regular intensive cleaning was carried out inside the cold
room for all surfaces, parts and equipment in contact with the
core using ethanol and laboratory-grade paper tissues. Tyvek
suits (DuPont, Wilmington, DE, USA) and sterile plastic
gloves were used at all times in the cold room during the
core processing.

Vials used to store the samples (50 mL polypropylene
vials) were soaked in Milli-Q water for 24 h and rinsed three
times. This process was repeated two more times, in a total
of 3 d with the samples soaked in Milli-Q water and rinsed a

total of nine times. The vials were left to dry, covered from
direct contact, in the laboratory.

3.3 Sample preparation

The sample preparation process consists of removing the
outer layers of the core, as these are prone to contamination
during drilling, handling and transport of the core (Tao et al.,
2001). In the cold room, we partitioned the 21 sections of
the core longitudinally, using a bandsaw with a meat-grade,
stainless-steel blade. For every cutting session, a Milli-Q
(MQ) ice stick, previously prepared, was cut at the begin-
ning, to guarantee a clean blade for the snow and firn core.
After cutting the core with the bandsaw, we hand-scraped
the resulting snow and firn sticks with a ceramic knife in a
laminar flow hood (still in the cold room) and cut them in 2–
2.5 cm samples with the same knife (resulting in ∼ 40 sam-
ples per section). We stored the samples in the pre-cleaned
50 mL polypropylene vials and kept them frozen until anal-
ysis. Samples were melted at room temperature or in a tepid
bath not exceeding 25 ◦C, sonicated for 15 min and then ana-
lyzed (in less than 1 h after melting). The resulting rBC con-
centrations using this subsampling method were compared
to subsampling using a continuous melter system for the first
8 m of the core, and results for both methods were statisti-
cally the same (Marquetto et al., 2020).

From all steps of the sample preparation, the bandsaw cut-
ting in the cold room proved to be the most prone to contam-
inating samples. An intensive decontamination process was
carried out for a month, before we could start working with
the core itself. In order to reach acceptable background levels
for this step (around 0.02 µg L−1), we replaced and modified
some components of the bandsaw. We replaced the rubber
tires for urethane ones; the carbon blade for a meat-grade,
stainless-steel blade; and the original plastic blade guides for
ceramic ones, and we manufactured an acrylic blade guard,
as the original plastic guard was chipping. Before using the
new blade, we burned it using a blowtorch and MAP/Pro gas
(propylene with <0.5 % propane) to remove any residues or
oils present; then we cleaned it with ethanol. For detachable
parts, a detergent was used, followed by ethanol and MQ wa-
ter. For parts inside the cold room, ethanol was used. We also
prepared ice sticks of MQ water to cut in the bandsaw and
help clean the blade.

3.4 Whole-system setup

The setup for the system in use at CWU is as it follows.
The melted sample is dispensed to the Marin-5 nebulizer
by a Reglo Digital peristaltic pump (ISMATEC, Wertheim,
Germany) at 0.14± 0.02 mL min−1 and monitored by a Tru-
Flo sample monitor (Glass Expansion, Port Melbourne, Aus-
tralia). The Marin-5 nebulizer receives standard laboratory
air at 1000 sccm (1000 L min−1), regulated by an Alicat flow
controller (Alicat Scientific, Tucson, AZ, USA) connected
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to a Drierite gas purifier, which removes any moisture or
particulates from the air. The nebulizer heating and cooling
temperatures are set to 110 and 5 ◦C, respectively, following
Mori et al. (2016). We used Tygon LFL tubing i.d. 1.02 mm
(Saint-Gobain Performance Plastics, France) for sample-to-
nebulizer connection. The SP2 flow is maintained at 120 vol-
umetric cm3 min−1 (vccm). YAG laser power for this project
stayed constant above 5.0 V.

Samples were analyzed for 5 min each. Procedural blanks
(MQ water) were run at the beginning and end of every work-
ing day and also every 15–20 samples. Background levels
were kept at 0–0.5 particles cm−3 (translating to less than
0.01 µg L−1 rBC concentration), and a 5 % HNO3 solution
was used for cleaning the tubing and nebulizer when needed.
For the SP2 to go back to background levels, only MQ water
was used. Peristaltic pump tubing replacement was necessary
only once during the process. The limit of detection (LOD)
of the method was estimated to be 1.61×10–3 µg L−1 based
on procedural blanks measured to characterize the instrument
detection limit (mean +3σ , n= 30).

Data processing was performed with the SP2 Toolkit 4.200
developed by the Laboratory of Atmospheric Chemistry at
the Paul Scherrer Institute (PSI) and was used on the scien-
tific data analysis software IGOR Pro version 6.3.

3.5 Fire spots and BC emission database

To help define the dating of the core and to investigate po-
tential emission source regions, we compared our results
with two different datasets: BC emission estimates from the
Global Fire Emission Database version 4s (GFED4s – van
Der Werf et al., 2017) for the SH (SH South America, SH
Africa, Australia and Equatorial Asia) and the Australian and
Brazilian satellite programs, which count the fire spots (num-
ber of active fires) in Oceania and South America, respec-
tively.

The GFED4s (https://www.globalfiredata.org/data.html,
last access: 13 June 2019) is based on the Carnegie Ames
Stanford Approach biogeochemical model (Giglio et al.,
2013) and has several improvements compared with the ear-
lier version, including burned area and emissions from small
fires as these could be substantial at a global scale (Rander-
son et al., 2012). BC emission estimates are given in 109 g
and separated by region of the globe with a spatial reso-
lution of 0.25◦ latitude by 0.25◦ longitude. For the South-
ern Hemisphere, four regions are identified: Southern Hemi-
sphere Africa (SHAF), Southern Hemisphere South America
(SHSA), Australia and New Zealand (AUS), and equatorial
Asia (EQAS).

Sentinel Hotspots (https://www.ga.gov.au/
scientific-topics/earth-obs/case-studies/mapping-bushfires,
last access: 13 June 2019) and the Programa Queimadas
(http://www.inpe.br/queimadas/, last access: 13 June 2019)
are fire monitoring programs run by the government of
Australia (Geoscience Australia) and Brazil (Instituto

Nacional de Pesquisas Espaciais – INPE), respectively.
Both programs use Moderate Resolution Imaging Spec-
troradiometer (MODIS), Advanced Very High-Resolution
Radiometer (AVHRR) and Visible Infrared Radiometer
Suite (VIIRS) sensors to detect areas of elevated infrared
radiation. The Sentinel Hotspots holds data from 2002 to
present, while Programa Queimadas has a record of fire
spots since 1998. The parameter “fire spot” used in both
Australian and Brazilian fire monitoring programs does
not translate directly to the dimension and intensity of the
biomass burning events, but it holds a correlation with
burned area (Andela et al., 2017) and thus can be used to
help date the core and investigate potential emission sources.

3.6 Core dating

Antarctic ice core rBC records from other sites show a
well-defined seasonality, with peak concentrations in austral
winter–spring (dry season) due to increased biomass burn-
ing activity in the SH during this time of the year (Bisiaux
et al., 2012b; Pasteris et al., 2014; Sand et al., 2017; Win-
strup et al., 2019). Sodium (Na) and strontium (Sr) also peak
in the austral dry season (during winter) due to intense at-
mospheric circulation and transport (Legrand and Mayewski,
1997; Schwanck et al., 2017). Increased marine biogenic ac-
tivity reflects an increase in sulfur (S) in late austral summer
(Schwanck et al., 2017; Sigl et al., 2016). Also, the maxima
in the ratio of non-sea-salt sulfur to sodium (nssS /Na) is
a robust seasonal indicator and peaks around the New Year
(Arienzo et al., 2017). This parameter helps in the identifi-
cation of the annual layers more than the Na and S records
alone. Non-sea-salt sulfur was calculated using Eqs. (3) to
(6) from Schwanck et al. (2017) and references therein.

The core was dated by multiparameter manual layer count-
ing primarily driven by rBC seasonal variability, as this is a
reliable parameter for dating in Antarctica (Sigl et al., 2016;
Winstrup et al., 2019), and a well-defined seasonality has al-
ready been observed for Pine Island Glacier (Pasteris et al.,
2014). We used S, Sr, Na and nssS /Na records from a core
drilled 1 m away as additional parameters to the main count-
ing. The trace element records goes down only to∼ 6.5 m, so
below 6.5 m the ice core is dated using the rBC record. The
trace elements were analyzed by the Climate Change Insti-
tute (CCI) Thermo Scientific ELEMENT 2 inductively cou-
pled plasma sector field mass spectrometer (ICP-SFMS) cou-
pled to an ESI model SC-4 autosampler; working conditions
and measurement parameters are described in Schwanck et
al. (2016b, 2017).

We considered the New Year to match the end of what we
define as the austral dry season, as this is a reliable tie point
in the record due to the abrupt drop in rBC concentrations.
Previous studies have demonstrated that rBC deposition oc-
curs in winter–spring, mostly September to December. For
example, Arienzo et al. (2017) observed rBC concentrations
to peak in September in the WAIS Divide ice core; Winstrup
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et al. (2019) used annual variations in rBC as the most reli-
able annual tracer for the Roosevelt Island Climate Evolution
(RICE) ice core, stating that rBC tends to peak earlier in the
year than 1 January. Pasteris et al. (2014) also corroborates
rBC to peak in October and drop after for the Pine Island
and Thwaites glaciers, with the lowest values from February
to June. Bisiaux et al. (2012b) state that subannual rBC con-
centrations are highly seasonal in the WAIS Divide ice core
for the period spanning 1850–2000 – low austral wet season
and high austral dry season concentrations – and presented
annual picks in the drop in rBC concentrations, as in this
work. This is also consistent with the BC emission estimates
from GFED4s and the fire spot databases from Australia and
South America.

3.7 Snow accumulation, rBC concentrations and fluxes

To account for imperfections in the core geometry (and con-
sequently imprecise density measurements), we averaged the
core’s density profile with the density profile from Schwanck
et al. (2016b) for a 45 m deep core drilled in the same region
of West Antarctica, 850 m away from TT07. We then fitted a
quadratic trend line in the average curve and used this trend
line instead of the field measurements to calculate the annual
snow accumulation, water equivalent (w.e.) and rBC fluxes.
rBC fluxes were calculated by multiplying annual rBC means
by annual snow accumulation.

We consider that the frequency distributions of the core
rBC concentrations are lognormal, and so we present ge-
ometric means and geometric standard deviations as these
are more appropriate than arithmetic calculations (Bisi-
aux et al., 2012a; Limpert et al., 2001). The geometric
standard deviation is the multiplicative standard deviation
(σ ∗), so the 68.3 % interval of confidence is calculated as
σ minconc = geometric mean× geometric standard deviation
and σ maxconc = geometric mean/geometric standard devia-
tion (Limpert et al., 2001). Also, correlation analysis was car-
ried out using Mann–Kendall’s test; we choose it as opposed
to Spearman’s test as confidence intervals are more reliable
in the former (Kendall and Gibbons, 1990; Newson, 2002).

We present our data as austral summer–fall (wet sea-
son: January to June) concentrations and austral winter–
spring (dry season: July to December) concentrations. Wet–
dry season concentrations and annual concentration geomet-
ric means and standard deviations were calculated in the
raw rBC measurements using the dating carried out to sep-
arate years and rBC concentration variations to pinpoint
the changes from dry season to wet season and vice versa.
Monthly mean concentrations were calculated by applying a
linear interpolation in the raw measurements, resampling the
dataset to 12 values per year.

3.8 rBC impact on snow albedo

To investigate BC impact on snow albedo, we used the Snow,
Ice, and Aerosol Radiation (SNICAR) online model (Flanner
et al., 2007). We ran the model using the parameters pre-
sented in Table 1 with varying rBC concentrations. We used
the wet and dry season geomeans to analyze variations for
both seasons and the highest seasonal geomean found in the
core, which occurred in the dry season. As our focus in this
paper is BC, we simulated albedo changes considering only
the particulate and disregarding any dust or volcanic ash in-
fluence. Snow grain size used was based on Gay et al. (2002).

3.9 Spectral analysis

In order to investigate periodic oscillations (cycles) in the
TT07 core and BC atmospheric transport to the drilling site,
we conducted a spectral analysis in the rBC record using
the REDFIT procedure described in detail in Schulz and
Mudelsee (2002) in the “PAST – Paleontological Statistics”
software version 3.25. The spectral analysis is motivated by
the observation that the most predictable (regular) behavior
of a time series is to be periodic (Ghil et al., 2002). The RED-
FIT method is a more advanced version of the simple Lomb
periodogram and can be used for evenly and unevenly sam-
pled data. The model is fit to an AR(1) red noise model, the
bandwidth is the spectral resolution given as the width be-
tween the −6 dB points, and confidence levels of 90 %, 95 %
and 99 % are presented (based on chi2) (Hammer, 2019).

We chose this approach instead of estimation techniques
for evenly spaced data (such as the multitaper method) be-
cause interpolation in the time domain inevitably causes bias
and alters the estimated spectrum of a time series (Schulz and
Mudelsee, 2002). This way, we used the rBC raw measure-
ments (not resampled, only dated by year and separated by
dry–wet season).

We compared the rBC spectrum with the El Niño–
Southern Oscillation (ENSO), the Antarctic Oscillation
(AAO) and the Amundsen Sea Low (ASL) spectra to observe
the possible influence of these in the rBC variability. While
ENSO and AAO are well-known climate drivers, recent stud-
ies have shown the ASL has a profound effect on the West
Antarctic climate (Hosking et al., 2013, 2016; Turner et al.,
2013). We also compared the core records with the GFED4s
BC emission estimates and the satellite fire spot database to
look for similarities between the datasets which could sug-
gest BC emission sources to the drilling site. Table 2 shows
the dataset used for the spectral analysis.

3.10 Particle trajectory simulations

In order to simulate rBC particle trajectories from source
areas to the TT07 drilling site, we used the Hybrid Single
Particle Lagrangian Integrated Trajectory v4 model (HYS-
PLIT – Draxler and Rolph, 2003; Stein et al., 2015), from

www.the-cryosphere.net/14/1537/2020/ The Cryosphere, 14, 1537–1554, 2020
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Table 1. Parameters used to calculate albedo changes in snow for the TT07 site.

Incident flux Diffuse

Surface spectral distribution Summit Greenland clear-sky
Snowpack effective grain size 150 µm
Snowpack thickness 20 m
Snowpack density 400 kg m−3

Visible albedo of underlying surface 0.2
Near-IR albedo of underlying surface 0.4
Uncoated black carbon concentration Varied; see text
Sulfate-coated black carbon concentration 0 ppb
Dust concentration 0 ppm

Volcanic ash concentration 0 ppm
Experimental particle one concentration 0 ppb
MAC scaling factor 1.0

Table 2. Datasets used for the REDFIT spectral analysis.

Dataset Data points Range Observation Source

rBC 860 Jan 1969
Dec 2014

Raw dataa TT07 core

ENSOb 576 Jan 1967
Dec 2014

Monthly data Bureau of Meteorology, Australiac

AAO 432 Jan 1979
Dec 2014

Monthly data NOAAd

ASL 432 Jan 1979
Dec 2014

Monthly data BAS, Hosking et al. (2016)e

GFED4s 216 Jan 1997
Dec 2014

Monthly data Global Fire Emission Database

Sentinel Hotspots 150 Aug 2002
Dec 2014

Monthly data Geoscience Australia

Programa Queimadas 200 May 1998
Dec 2014

Monthly data INPE

a Not resampled, only dated by year and separated by dry–wet season. b Here we use the Southern Oscillation index – SOI as the ENSO
indicator. c http://www.bom.gov.au/climate/current/soihtm1.shtml, last access: 15 June 2019.
d https://www.cpc.ncep.noaa.gov/products/precip/CWlink/, last access: 15 June 2019. e https://legacy.bas.ac.uk/data/absl/, last access:
15 June 2019.

NOAA. HYSPLIT is a complete system for computing sim-
ple or complex transport and deposition simulations (Stein et
al., 2015) that has been used in Antarctica for several stud-
ies (Dixon et al., 2011; Markle et al., 2012; Marquetto et al.,
2015; Schwanck et al., 2016a, 2017; Sinclair et al., 2010).

We used global reanalysis data from the National Centers
for Environmental Prediction (NCEP) and the National Cen-
ter for Atmospheric Research (NCAR) – the NCEP/NCAR
dataset – and ran 10 d (240 h) back trajectories, every 5 d,
from 1968 to 2015, at an initial height of 1000 m. We con-
sider 10 d to be an appropriate simulation time as this is the
estimated maximum lifetime of BC in the troposphere (IPCC
et al., 2013). An initial height of 1000 m was used in order

to minimize disturbance from the underlying terrain, but still
maintaining a link with the surface wind field (Sinclair et al.,
2010). To identify main airflow patterns at the TT07 drilling
site, the individual trajectories were separated into dry and
wet seasons (depending on day and month of each run) and
simulations from each season were grouped into five clusters
using the HYSPLIT model’s cluster analysis algorithm.
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4 Results and discussion

4.1 Dating

The core was dated to 47 years (1968–2015), and details are
presented in Fig. 2. We consider this dating to have ±2 years
uncertainty. The first uncertain year is located at 6.18 m (be-
tween 2003 and 2002, Fig. 2a), where S and nssS /Na peak,
but no full cycle is observed in the rBC record. We did not
consider this to be a year, as rBC does not present a full cycle.
The second uncertain year is located at 18.14 m (year 1973,
Fig. 2b) where there is no clear rBC peak but snow accumu-
lation would be anomalously high if considered to be only
1 year instead of 2. We consider this to be an annual peak
and consequently 2 years, as there is no evidence of higher-
than-normal snow accumulation in the region for this period
(Kaspari et al., 2004).

4.2 Core density and annual snow accumulation

The core density (measured in the field) ranged from
0.38 to 0.60 g cm−3. Using the corrected density curve ob-
tained from our field measurements and from Schwanck et
al. (2016b), we calculated that the 20.16 m length core repre-
sents 10.37 w.e. m (Fig. 3).

Average annual snow accumulation is 0.21± 0.04 w.e. m
per year and varies little throughout the record, with an ex-
ception of a peak in accumulation of 0.31 w.e. m in 1971. The
average accumulation is similar to what Banta et al. (2008)
found for the WAIS Divide ice core for the last cen-
turies (0.20± 0.03 w.e. m yr−1, elevation 1759 m a.s.l.) and
to the higher altitude cores (>1700 m a.s.l.) from Kaspari et
al. (2004) (0.18 to 0.23 w.e. m yr−1); although the latter work
also presents lower altitude cores (1200 to 1600 m a.s.l.)
closer to the drilling site with accumulation rates between
0.32 and 0.42 w.e. m yr−1.

4.3 rBC concentrations and fluxes

In agreement with other studies (Bisiaux et al., 2012a; Pas-
teris et al., 2014; Sand et al., 2017; Winstrup et al., 2019),
we found a well-marked seasonal rBC cycle along the core,
with the same pattern of low summer–fall and high winter–
spring concentrations (Fig. 4). As we collected our sam-
ples in January and the drilling was carried out from the
snow surface, our core starts at approximately the 2015 New
Year. The core’s annual rBC geometric mean concentra-
tion was 0.030 µg L−1 with a minimum of 0.001 µg L−1

and a maximum of 0.080 µg L−1. Winter–spring (dry sea-
son) concentration geometric mean was 0.057 µg L−1, while
summer–fall (wet season) concentration geometric mean was
0.001 µg L−1. Wet season average concentrations remained
constant over time, while dry season average concentrations
showed more variation with peak values in 1999 but no ap-
parent trend. The main results from TT07 rBC analysis are
summarized in Table 3.

Table 3. Main results from the core rBC analysis. All values in
micrograms per liter, except fluxes, which are in micrograms per
square meter per year. Geomean is the geometric mean and 1σ∗

is the multiplicative standard deviation, representing 68.3 % of the
variability (Bisiaux et al., 2012b; Limpert et al., 2001).

Total samples 860

Annual geomean 0.03
1σ∗ interval 0.020–0.041
Lowest/highest 0.012/0.080

Dry season geomean 0.057
1σ∗ interval 0.031–0.105
Lowest/highest 0.005/0.332

Wet season geomean 0.015
1σ∗ interval 0.009–0.027
Lowest/highest 0.001/0.053

rBC flux geomean 6.25
Lowest/highest 2.67/14.61

We calculated annual rBC fluxes to account for potential
biases in annual rBC concentrations due to changes in snow
accumulation rates. Concentrations and fluxes follow a simi-
lar pattern along the core, as can be observed in Fig. 5. This
means that rBC concentration variability likely reflects vari-
ations in BC emissions, transport and deposition at the site
instead of reflecting changes in snow accumulation.

4.4 Comparison with other rBC records in Antarctica

BC has been studied in Antarctic snow since the late 1980s
and early 1990s (Chýlek et al., 1987, 1992; Warren and
Clarke, 1990). These initial studies used filter-based meth-
ods, which could under- or overestimate BC concentrations
due to some analytical artifacts (Soto-García et al., 2011;
Torres et al., 2014; Wang et al., 2012). Studies using the SP2
started appearing more than 2 decades later, aiming at recent
snow rBC concentrations (Casey et al., 2017; Khan et al.,
2019), near-surface air (Khan et al., 2018), recent-past ice
cores (couple centuries – Bisiaux et al., 2012a, b; Pasteris et
al., 2014) and the past millennia (Arienzo et al., 2017). From
these, a few rBC records overlap temporally with the TT07
core presented in this work (Table 4). rBC concentrations are
low at all sites (<0.5 µg L−1); thus small differences in con-
centration from one core to another could result in a 2–3-fold
difference in rBC concentrations.

Pasteris et al. (2014) present rBC records from three
high-accumulation West Antarctic ice cores: Pine Island
Glacier, Thwaites Glacier and the divide between the two
sites (220, 750 and 370 km apart from TT07 core, respec-
tively). The cores presented annual rBC concentrations of
0.22 (Pine Island), 0.21 (Thwaites) and 0.20 µg L−1 (Di-
vide). The lower-altitude cores (DIV2010 – 1329 m a.s.l. and
PIG2010 – 1593 m a.s.l.) presented almost 1.5 times more
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Figure 2. (a) Dating of the snow and firn core based on rBC and using S, Sr, Na and nssS /Na records from a nearby core (see Sect. 3.6) as
support for the first 6.5 m. Dashed lines indicate the estimated New Year, and the red dotted line indicates uncertainty in dating, explained in
the text. (b) Dating for the full core (y axis is logarithmic). The red dotted line indicates uncertainty in dating, as explained in the text.

Figure 3. TT07 density profile (blue). Depth is presented in meters
and water equivalent (w.e.) meters. The quadratic fit was calculated
from the average density profile (black) from this work and from
Schwanck et al. (2016b).

Figure 4. (a) rBC concentrations for the entire core. The thick
black line represents annual averages, while the gray line represents
monthly values. Note the y-axis scale is logarithmic. (b) Dry season
and wet season average concentrations per year.
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Figure 5. rBC concentrations (y axis is logarithmic), accumulation
and fluxes for TT07.

snow accumulation than the higher-altitude core (THW2010
– 2020 m a.s.l.) and almost 2 times more than TT07. The
mean annual rBC concentrations from Pasteris et al. (2014)
are almost 6 times higher than the rBC annual values ob-
served in TT07. Higher rBC concentrations in Pasteris et
al. (2014) could be a result of higher accumulation rates, con-
sidering that BC is primarily deposited through wet deposi-
tion (Flanner et al., 2007). This is discussed later on in this
section.

The WAIS Divide rBC record from Bisiaux et al. (2012a)
is located 350 km away from TT07, has similar accumula-
tion rates to TT07 and rBC annual concentration 2.7 times
higher than annual values from TT07 (0.08 µg L−1 at WAIS
and 0.03 µg L−1 at TT07). The authors observed a steep in-
crease in rBC concentrations in the WAIS core from 1970
to 2001 (∼ 0.06 to ∼ 0.11 µg L−1) and related this to an in-
crease in fossil fuel consumption and deforestation in the SH.
This increasing trend was not observed in the TT07 core,
which showed fairly stable annual concentrations and fluxes
through time. Although the WAIS Divide core is located al-
most at the same distance from TT07 as DIV2010, and far-
ther than PIG2010, its snow accumulation rates and rBC an-
nual concentrations are more similar to TT07 than the cores
from Pasteris et al. (2014).

The South Pole samples (1120 km from TT07) from Casey
et al. (2017) were collected in early austral summer, possibly
still reflecting the SH dry season. They present even higher
rBC concentrations than Pasteris et al. (2014), although the
samples were collected close to the Amundsen–Scott scien-
tific station, and even the “clean air sector” can present local
influence, particularly in comparison to the TT07 remote site.

Khan et al. (2018) found rBC concentrations on the same
order of magnitude as Casey et al. (2017), although the Dry
Valleys collection site from Khan et al. (2018) was far from
local interference of scientific station activities. The cores
from Bisiaux et al. (2012b) (East Antarctica) present the
highest elevations from the cited bibliography and show sim-
ilar rBC fluxes compared to TT07, although these fluxes are

Figure 6. rBC records from Antarctica. rBC concentrations plot-
ted against snow accumulation, elevation and distance from the sea.
Solid lines indicate statistically significant correlations (p<0.05),
while dashed lines indicate not significant correlations (p>0.05).

a result of high rBC concentrations with low accumulation
rates in East Antarctica, while the TT07 fluxes are the oppo-
site – high accumulation rates (similar to the WAIS Divide
core) with low rBC concentrations.

Figure 6 shows a comparison of the abovementioned rBC
records with snow accumulation, elevation and distance from
the open sea. Distance from the sea influences rBC fluxes in
West Antarctica (Arienzo et al., 2017) and was calculated
considering the median sea ice extent from 1981 to 2010 for
September (Matsuoka et al., 2018), when rBC emissions start
to rise in South America–Australia–New Zealand and rBC
concentrations begin to rise in West Antarctica (Arienzo et
al., 2017; Bisiaux et al., 2012b; Pasteris et al., 2014). We
measured the distance from the rBC records to the closest
open sea source (Amundsen Sea for West Antarctic records,
Lazarev to Cosmonauts seas for NUS0X-X, and Mawson Sea
for Law Dome). We acknowledge this is a simplistic approxi-
mation and that the preferred air mass pathways from the sea
to the points are not as straightforward, but for the scope of
this work we consider this approximation sufficient.

No patterns are clear for both East and West Antarc-
tica, whereas when considering the data from East and West
Antarctica separately, opposite trends are observed. In East
Antarctica, rBC concentrations have a negative correlation
with snow accumulation and positive correlation with eleva-
tion and distance to the sea, whereas in West Antarctica rBC
concentrations present a positive correlation with snow ac-
cumulation and a negative correlation with elevation and dis-
tance to the sea. We observed that for East Antarctica, rBC
vs. snow accumulation and rBC vs. elevation presented sta-
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tistically significant correlations (r2
= 0.78, p<0.01 for the

former and r2
= 0.79, p<0.01 for the latter). On the other

hand, distance from the sea is not significantly correlated
with rBC (r2

= 0.52, p = 0.06).
For West Antarctica, relationships are the opposite: pos-

itive correlation between rBC concentrations and snow ac-
cumulation (r2

= 0.69, p = 0.08) and negative correlations
between rBC concentrations and elevation and distance from
the sea (r2

= 0.30, p = 0.33 for the former and r2
= 0.79,

p<0.05 for the latter). Only the correlation between rBC vs.
distance from the sea, though, is statistically significant. Mc-
Murdo and South Pole points are not considered in this cal-
culation as they likely reflect local contamination instead of
long-range transport (Casey et al., 2017; Khan et al., 2018).
Bisiaux et al. (2012b) have also observed negative (positive)
relationships between rBC concentrations and snow accumu-
lation (elevation) for East Antarctica, although their compar-
ison also included the WAIS Divide point in the dataset.

These opposite trends may indicate differences in rBC
transport to East and West Antarctica. While for East Antarc-
tica upper-tropospheric transport and dry deposition may
be the main controllers of rBC concentrations (Bisiaux et
al., 2012b), for West Antarctica rBC concentrations may
be modulated by intrusion of air masses from the marine
boundary layer. Low elevations in West Antarctica facili-
tates the intrusion of moisture-rich cyclones and the trans-
port of aerosols inland (Neff and Bertler, 2015; Nicolas and
Bromwich, 2011), while the positive relationship between
West Antarctica rBC concentrations and snow accumulation
may indicate rBC to be primarily deposited through wet de-
position, being scavenged along the coastal regions where
snow accumulation is higher.

4.5 BC impact on snow albedo

To investigate BC impact on snow albedo we used SNICAR
online to simulate three scenarios with the same parameters
but varying rBC concentrations. We ran the model using the
wet and dry season geomeans and the highest seasonal ge-
omean (0.015, 0.057 and 0.105 µg L−1, respectively). Results
show that snow albedo reduction at the TT07 site due to BC
is very low to nonexistent (Table 5). This was already ex-
pected considering (observed) albedo reported by Casey et
al. (2017). Although significant albedo reductions have been
reported in more contaminated zones near the South Pole
Station, the authors found a minor to negligible reduction in
albedo for the “clean sector” snow.

We note that this albedo reduction occurs only in the aus-
tral summer, as the site is located almost at 80◦ S.

4.6 Emission sources and influence of transport on the
record

Variability in ice core records reflects variability in BC emis-
sions, atmospheric transport and deposition (Bisiaux et al.,

Table 5. Albedo changes due to rBC concentrations at the TT07 site
(from SNICAR online).

Concentration Reference Albedo
(µg L−1) variation

(relative to
clean snow)

0.015 Wet season geomean 0
0.057 Dry season geomean −0.41 %
0.105 Highest seasonal geomean −0.48 %

2012a). As BC stays in the atmosphere for a short period of
time (7 to 10 d; IPCC et al., 2013), increases in BC emissions
would rapidly reflect increases in BC concentrations in snow,
and thus comparing the seasonality of the two records may
help to elucidate source regions. To this end, we compared
BC monthly emissions in the SH (from the GFED4s model)
with monthly rBC values from the TT07 record (Fig. 7a).
The BC seasonality at TT07, with increasing concentrations
in July, a peak in October and minimum values in April–May,
is the same as reported for the nearby Pine Island Glacier
(Pasteris et al., 2014; Fig. 1), indicating that comparing the
TT07 seasonality to regional emissions is valid.

Some models indicate that the carbonaceous load in the
Antarctic troposphere mainly originates from South Amer-
ican emissions (Koch et al., 2007); others recognize both
South America and Australia as the main sources (Stohl and
Sodemann, 2010). Although southern Africa has the largest
BC emissions in the SH, it is not considered to be a signif-
icant contributor to the aerosol load in Antarctica (Li et al.,
2008; Neff and Bertler, 2015; Stohl and Sodemann, 2010).
Both Australia (Bisiaux et al., 2012a) and South America
(Arienzo et al., 2017) have been suggested as sources of BC
to West Antarctica.

Figure 7a shows the rBC monthly-average values for
TT07 (1968–2014) and monthly-averaged BC emissions
from GFED4s (1997–2015) for the four SH emission regions
(regions defined in GFED4s; see website). rBC in the TT07
starts increasing considerably in July, peaks in October and
shows high but decreasing concentrations until December.

African emissions increase and decrease earlier in the year
compared with other SH emission sources and with the TT07
BC record (Kendall’s tau= 0.30, p = 0.17, n= 12). Equa-
torial Asia BC emissions increase in August and peak in
September, not reflecting the initial rBC increase in TT07
record (Kendall’s tau= 0.33, p = 0.13, n= 12). The increas-
ing trend matches South American emissions, as they start
rising in the same period, although peaking in September and
dropping significantly after (Kendall’s tau= 0.66, p<0.01,
n= 12). At last, Australia and New Zealand emit much less
BC than the other three regions (Fig. 7b) but atmospheric cir-
culation favors aerosol transport from there to West Antarc-
tica (Li et al., 2008; Neff and Bertler, 2015). Australian and
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Figure 7. (a) TT07 rBC (monthly averages, 1968–2014) and BC emissions estimated from GFED4s for the four SH regions (normalized,
1997–2014). The shaded area represents 1 geometric standard deviation of monthly rBC values. (b) Absolute BC emissions estimated from
GFED4s for the SH.

New Zealand emissions start increasing in August and peak
in October, falling later than the other regions (December)
(Kendall’s tau= 0.85, p<0.01, n= 12). The correlation co-
efficients then indicate Australia–New Zealand as the most
probable source region for BC at the site for the period stud-
ied, followed by SH South America. SH Africa and Equa-
torial Asia present much weaker correlations, which likely
indicates these two regions do not contribute substantially to
the rBC flux to the TT07 site. This is consistent with previous
research (Arienzo et al., 2017; Bisiaux et al., 2012a).

There is a small increase in Australian emissions earlier
in the year (May) that is not observed in the TT07 rBC
monthly averages. This difference could be associated with
the seasonal difference in particulate transport to Antarctica
in winter–summer (Hara et al., 2008; Schwanck et al., 2017;
Stohl and Sodemann, 2010).

4.7 Spectral analysis

We further investigated the possible emission sources and
transport influences to the site using the REDFIT spectral
analysis. We compared the rBC record with ENSO, AAO and
ASL indexes (Fig. 8). This investigation would give infor-
mation about the effect of local to regional changes in atmo-
spheric circulation on the BC records (Bisiaux et al., 2012a).

The TT07 rBC spectrum showed significant cycles in the
6-year band (AR1 confidence interval, CI >90 %) and in the
2-year band (AR1 CI ∼ 90 %). Intra-annual cycles in the 0.6
and 0.5 frequencies were also observed at a 95 % confidence
interval. Comparing the TT07 rBC record spectrum with the
GFED4s and fire spot spectra, we identified similar periodic-
ities only in the Sentinel Hotspots (Australia) record (Fig. 8),
more specifically in the 2-year band (AR1 CI∼ 90 %) and in

the 0.6-year band (AR1 CI>90 %). All other spectra (includ-
ing Programa Queimadas satellite data) showed only well-
marked annual periodicities and intra-annual periodicities of
two and three cycles per year (0.5- and 0.3-year bands, not
shown). We consider some of these intra-annual cycles ques-
tionable, as the high-frequency end of the spectrum is of-
ten overestimated and can present aliases, “folded signals”,
of another frequency process (Mudelsee, 2010; Schulz and
Mudelsee, 2002), in this case aliases of the annual cycle at
the 0.5- and 0.3-year bands. Due to this, we do not consider
0.5- and 0.3-year cycles to be representative.

rBC and AAO present similar cycles (2.1- and 0.6-year
bands), as well as rBC and ENSO (2-year band).

Using the multitaper method, Bisiaux et al. (2012a) ob-
served the rBC periodicities for the WAIS Divide ice core
and Law Dome (both dated to 1850–2001). Although WAIS
is closer to the TT07 drilling site (∼ 350 km), the TT07 core
presented similarities with the Law Dome spectrum (in the
6- and 2-year bands, not shown). It is not clear to us what the
relation between the two sites could be, as the TT07 site loca-
tion, annual accumulation and site elevation are more related
to the WAIS ice core than to Law Dome (Table 4). Arienzo
et al. (2017) used the multitaper method to analyze the WAIS
Divide rBC flux for the period spanning 14–6 kyr BP and
found a 6.6-year cycle (AR1 CI= 95 %) and a 2.3-year cy-
cle (AR1 CI>95 %), similar to the rBC cycles found in this
work; although timescales and methodology used were dif-
ferent. Both Arienzo et al. (2017) and Bisiaux et al. (2012a)
attribute the 2.3-year cycle to an indirect effect of the Quasi-
Biennial Oscillation (QBO). Although the QBO circulation
spans the Equator to ∼ 30◦, QBO-generated variability can
affect Antarctica (Strahan et al., 2015), in which case an
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Figure 8. Spectral analysis of the rBC concentrations and comparison with existing datasets (Sentinel Hotspots Australia, ASL, AAO and
ENSO indexes). Numbers in bold indicate cycle frequency, in years. Red lines are confidence intervals 99 % (a, b), 95 % (c, d) and 90 % (e).
The green line indicates the AR1 red-noise background. The question mark in the Australian fire spot spectrum indicates a longer unidentified
cycle.

upper-troposphere–stratospheric component may be impor-
tant for BC transport to the continent.

In summary, the spectral analysis suggests Australia and
New Zealand as the most probable sources of rBC to the
drilling site. Also, rBC seems to be related to the AAO (0.6-
and 2-year cycle) and to ENSO (2-year cycle) but not to ASL,
and similarities between rBC cycles at the TT07 site and the
WAIS Divide site have been observed.

4.8 Particle trajectory simulations using HYSPLIT

We simulated particle transport during the austral wet and
dry seasons as another mean of addressing rBC source areas.
We ran the HYSPLIT back-trajectory model every 5 d from
1968 to 2015, for 10 d each (estimated maximum BC lifetime
in the troposphere) and clustered the results in five groups for
the wet and dry seasons (Fig. 9).
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Figure 9. HYSPLIT clusters of 10 d back trajectories run every 5 d from 1968 to 2015 arriving at the TT07 drilling site. Results are separated
by wet and dry seasons and grouped in five clusters (percentage of trajectories for each cluster is shown in parentheses). Number of trajectories
(n) used for the cluster algorithm is shown at the top, on the left side.

Figure 10. Individual trajectories used for the cluster analysis in Fig. 8. Number of trajectories (n) used for each cluster is shown at the top,
on the left side. Clusters 1, 2 and 4 show air masses arriving from Australia and New Zealand to the TT07 drilling site, while clusters 2, 3
and 4 show the (limited) contribution of South American air parcels to the site. Similar clusters from the wet and dry seasons are side by side
for comparison. The wet season presented 76 ungrouped trajectories, while the dry season presented none.

A significant part of the simulated air parcels arriving at
the drilling site (50 % in the wet season and 57 % in the dry
season) presented a slow-moving trajectory (speed is propor-
tional to trajectory length), reflecting a local and/or regional
influence more than long-range transport from other conti-

nents (clusters 3 and 4 in Fig. 9). This local and/or regional
influence is observed in both the wet and dry seasons, al-
though during the former the contribution of air masses from
the Antarctic Peninsula and across the Weddell Sea is higher
than during the latter. A fast-moving, year-round continen-
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tal group is also present (cluster 5) and may partly repre-
sent katabatic winds flowing from the continent’s higher alti-
tudes (East Antarctica) towards lower-altitude West Antarc-
tica. The strongest contribution of long-range air parcels is
from the South Pacific (clusters 1 and 2). These air masses
are also fast-moving and present slight seasonal variations,
shifting poleward during the wet season, when they repre-
sent 34 % of all air parcels, and away from Antarctica during
the dry season, when they respond for 22 % of all air parcels
modeled.

Results from clusters 1 and 2, along with individual tra-
jectories of each cluster (Fig. 10) support our conclusion that
Australia and New Zealand are the most probable sources
of rBC to the drilling site, considering tropospheric trans-
port. The most visible influence of air parcels from these two
countries to the drilling site can be seen in the individual tra-
jectories of cluster 1 (Fig. 10) for both dry and wet seasons,
while for clusters 2 and 4 there are trajectory variations from
one season to another. The poleward shift of cluster 1 tra-
jectories in the wet season (Fig. 9) may be a reason why the
Australian emissions earlier in the year (May) are not vis-
ible in the TT07 rBC record. South American influence on
the TT07 drilling site, on the other hand, is restricted to the
higher-latitude countries (Chile, Argentina), as shown in the
individual trajectories of clusters 2, 3 and 5 (Fig. 10). This
suggests that South American fires are not significant con-
tributors to the rBC concentrations observed at the TT07 site
when considering only tropospheric transport.

5 Conclusions

BC in Antarctica has been studied only in the recent decades,
but long-range anthropogenic influences have already been
observed (Bisiaux et al., 2012a; Stohl and Sodemann, 2010).
Models predict a continued increase in BC emissions from
source areas (Bond et al., 2013) and a continued increase
in BC flux to the Antarctic region, mostly to the Antarctic
Peninsula and West Antarctica (Arienzo et al., 2017). Un-
derstanding the spatial variability of BC is then essential to
predict BC’s future impact on the continent.

We analyzed a 20 m long snow–firn core from West
Antarctica spanning 1968–2015 for rBC. Results show a
well-defined seasonal variability in the record, with low
(high) concentrations during the Southern Hemisphere wet
(dry) season but no long-term trend along the 47 years of
the core. Snow accumulation remained stable during this pe-
riod. rBC annual concentrations were found to be the lowest
in samples from recent decades compared to other studies,
while rBC annual fluxes compare with the low values found
by Bisiaux et al. (2012b) for high-elevation East Antarctica
ice cores. Correlations between rBC and snow accumulation,
elevation and distance to the sea for East and West Antarctica
records indicate rBC transport and deposition might be dif-
ferent for each. SNICAR modeling indicated BC does not

affect snow albedo significantly at the site, with a reduc-
tion of 0.48 % and 0.41 % for the highest rBC concentrations
found in the core and for dry season geomean concentra-
tions relative to clean snow, respectively. Negligible impact
on albedo was observed for wet season geomean concen-
trations. BC emission estimates, satellite data of fire spots
and HYSPLIT particle transport simulations suggest Aus-
tralia and New Zealand as the main contributors to the rBC
present in the TT07. Based on GFED4s emission estimates,
SH South America may be a secondary contributor, although
this is not supported by spectral analysis results or air mass
trajectories. Spectral analysis of the rBC shows influence of
AAO and ENSO periodicities; ASL influences were not de-
tected. This core is the highest-elevation rBC core collected
in West Antarctica and its low BC concentrations compared
to previous studies indicate spatial variability in the transport
and deposition of BC in West Antarctica.

Data availability. TT07 data are available upon request; auxiliary
data can be downloaded from respective sources cited along with
this work.
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