
lable at ScienceDirect

Nuclear Engineering and Technology 52 (2020) 1462e1470

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST
Contents lists avai
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
Experimental approach to evaluate software reliability in hardware-
software integrated environment

Jeongil Seo a, Hyun Gook Kang b, Eun-Chan Lee c, Seung Jun Lee a, *

a Ulsan National Institute of Science and Technology, South Korea
b Rensselaer Polytechnic Institute, USA
c Korea Hydro & Nuclear Power Co., Ltd, South Korea
a r t i c l e i n f o

Article history:
Received 21 July 2019
Received in revised form
26 December 2019
Accepted 8 January 2020
Available online 17 January 2020

Index Terms:
Software reliability
Failure modes and effects analysis
Digital instrumentation and control
Probabilistic safety assessment
* Corresponding author.
E-mail address: sjlee420@unist.ac.kr (S.J. Lee).

https://doi.org/10.1016/j.net.2020.01.004
1738-5733/© 2020 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
a b s t r a c t

Reliability in safety-critical systems and equipment is of vital importance, so the probabilistic safety
assessment (PSA) has been widely used for many years in the nuclear industry to address reliability in a
quantitative manner. As many nuclear power plants (NPPs) become digitalized, evaluating the reliability
of safety-critical software has become an emerging issue. Due to a lack of available methods, in many
conventional PSA models only hardware reliability is addressed with the assumption that software
reliability is perfect or very high compared to hardware reliability. This study focused on developing a
new method of safety-critical software reliability quantification, derived from hardware-software inte-
grated environment testing. Since the complexity of hardware and software interaction makes the
possible number of test cases for exhaustive testing well beyond a practically achievable range, an
importance-oriented testing method that assures the most efficient test coverage was developed.
Application to the test of an actual NPP reactor protection system demonstrated the applicability of the
developed method and provided insight into complex software-based system reliability.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the last couple of decades, digital instrumentation and
control (I&C) systems in nuclear power plants (NPPs) have been
replacing analog I&C systems due to the enhanced digital features
as well as the scarcity of parts for existing systems and high
maintenance costs. Unlike traditional analog systems, one impor-
tant characteristic of digital systems is software. Software failures,
differing from random hardware failures, are driven by specific
inputs that lead to the failures, so quantitative software reliability
assessments require a different approach than hardware reliability
assessments.

Reliability in safety-critical systems and equipment is of vital
importance, so the probabilistic safety assessment (PSA) has been
widely used for many years in the nuclear industry to address it in a
quantitative manner [1e4]. However, due to the lack of available
methods, many conventional PSA models still do not properly
consider software reliability. So far, safety-critical software reli-
ability in NPPs has been assumed to be perfect or very high
by Elsevier Korea LLC. This is an
compared to hardware reliability without a proper foundation or
experimental data. Further, it is difficult to apply the software
reliability evaluation methods used in other industries to NPP
software on account of the extremely low failure probability
required in the nuclear industry. Therefore, it is necessary to
develop a method to evaluate the reliability of safety-critical soft-
ware [5e9].

Numerous studies have been conducted to develop a method to
reflect software reliability in PSA models. Kim et al. showed the
limitations in applying software reliability growth models to
safety-critical software due to the rare failure sets in NPP software
[10]. In another work, a software reliability estimation method
based on software development life cycle quality showed the po-
tential for application in the nuclear field; however, it has limita-
tions stemming from its reliance on expert judgement [11]. Test-
based methods have been proposed using white-box and black-
box testing [12e14]. Black-box testing approaches have limita-
tions regarding the coverage and completeness of the test cases. In
contrast, while white-box testing methods could reflect the oper-
ational profile of software, the number of test cases is often very
large. IEC 61226 classifies the risk potential for safety functions into
four safety integrity levels (SILs), with safety-critical software
open access article under the CC BY-NC-ND license (http://creativecommons.org/

https://core.ac.uk/display/344778771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sjlee420@unist.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2020.01.004&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2020.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2020.01.004
https://doi.org/10.1016/j.net.2020.01.004

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e1470 1463
failure probability per demand assumed to be SIL 4, signifying the
lowest potential for failure. Specifically, this means that the prob-
ability of a dangerous failure of a safety function on demand is
between 10E-4 and 10E-5, although this range has no experimental
basis.

The purpose of this work is to develop a software reliability
evaluation method using a hardware-software integrated testing
environment. This work is a part of a larger project to quantitatively
evaluate software reliability in a digital reactor protection system
(RPS). In this project, two methods were proposed: simulation-
based software testing for exhaustive testing [15], and evaluation
of the entire environment using a hardware-software integrated
testing environment. The first method seeks to prove the
completeness of the application logics, while the second method,
considering hardware-software integrated testing, confirms that
the software application logics perform their functions reliably in
real operating situations. While the emulator used in the first
approach can perform tests much faster than the second approach
(which uses actual hardware), it is not easy to guarantee the reli-
ability of test results. On the other hand, exhaustive testing is not
possible with the second approach. Despite this, more reliable re-
sults can be obtained because the hardware-software integrated
test examines software behavior in an actual operating environ-
ment. These two approaches are therefore complementary, with
both experimental methods necessary for software reliability
evaluation. This research focuses on the second.
2. Target system

The target system of this work is the digitalized RPS of the
Advanced Power Reactor 1400 (APR1400), which is a fully digita-
lized NPP. The RPS of the APR1400 consists of four redundant
channels, each of which contains two bistable processors (BPs) and
three coincidence processors (CPs) [16,17]. Fig. 1 shows a block
Fig. 1. Block diagram of
diagram of the IDiPS-RPS, which is a prototype of the APR-1400
RPS.

The BPs receive an input signal generated by individual sensors
and discrete signals from the reactor core protection system
(RCOPS). The input parameter is periodically scanned by the BPs for
each of the safety parameters. This digital RPS possesses fifteen
types of trip parameters, including variable overpower trip, high
log power trip, high log power density (LPD) trip, departure from a
nucleate boiling ratio (DNBR) trip, high and low pressurizer (PZR)
pressure trips, high and low steam generator (SG) A/B level trips,
low SGA/B pressure trip, low SG A/B reactor coolant flow trip, and
high containment pressure trip. The high LPD and low DNBR trip
are determined in the RCOPS and the results are transferred to eight
BPs. For the other 13 trip logics, a BP determines the trip state by
comparing the measured process variables with a pre-determined
trip set-point. Then a partial trip signal is transmitted from the
BPs to the CPs. The CPs then generate a trip signal based on a 2-out-
of-4 voting logic for each process parameter based on the signal
from the BPs.

A BP transfers partial trip signals with their quality signals to
four channels of CPs. The quality signal indicates the reliability of
the generated partial trip signal in the BP. When any hardware in a
BP fails and gets detected by diagnostic functions, a bad quality
signal is transferred to the connected CPs, indicating to not use the
partial trip signal with bad quality in the voting logic for final trip
signal generation. Partial trip signals consist of RPS and RCOPS
partial trip signals, each with its own quality signal.
3. Methodology

The objective here is to conduct software reliability testing
considering hardware, software, and the operating system to check
whether the software works properly and provide quantitative
software reliability data.
the IDiPS-RPS [16].

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e14701464
Since the total number of input cases is huge and the RPS re-
quires extremely high reliability, a simple input coverage which is
the number of examined test cases divided by the total number of
test cases cannot be used. For example, if there are 10,000 test
cases, 9999 tests should be performed to make 99.99% coverage.
Due to the extremely high coverage required, this approach is
almost same as an exhaustive testing. Therefore, a coverage
considering the importance of each input case is proposed.

Generally, it is not practical to predict the occurrence probability
or frequency of a certain input set. As the plant parameters and the
controls by operators in a BP input set and the partial trip signals in
a CP input set are determined by abnormal situation occurrence, it
is not practical to evaluate weightings for certain test cases unless
the frequencies of the abnormal situations and operator actions can
first be quantitatively estimated. On the other hand, the quality
signals in a test case would have different occurrence probabilities
because diagnosis results are included. Note here that the trans-
ferred signals from a BP to a CP consist of partial trip signals and
their qualitiesdsince a quality signal indicates whether the corre-
sponding component is normal or not, the occurrence possibility of
a quality signal can be predicted based on the related hardware
failure rate. This relative occurrence possibility of a test set is used
to evaluate the importance in this work. For example, the impor-
tance of a test set is high when it includes one ‘bad’ quality signal
related to a hardware failure mode with a relatively higher failure
rate. In contrast, a test case representing multiple simultaneous
hardware failures has relatively low importance.

While both BP and CP test cases include quality signals repre-
senting hardware failures, the importance method proposed in this
work is applied to only CP test cases because the total number of BP
test cases is an executable number for exhaustive testing. There-
fore, the methods for developing test cases in this work are cate-
gorized into two: exhaustive test case generation for BP testing, in
which the test cases have even importance, and selective test case
generation to meet the target coverage for CP testing, in which the
test cases have different importance designations.

In the proposed method, the coverage of CP testing is defined as
the ratio of the importance of performed test cases to that of
completed test cases, as shown in Equation (1). The denominator in
Equation (1) indicates the total importance of all possible test cases
and the numerator represents the importance of tested test cases.

coverage¼
Pt

i¼1IPi
IPtotal

(1)

where,

IPi: Importance of ith test case
IPtotal: Total importance of complete test cases
t: Number of tested test cases

Since a CP receives inputs from eight BPs, the CP test cases
consist of the failure mode combinations of the eight BPs. After
figuring out possible failure mode combinations from one BP, the
denominator of the coverage of total CP test cases can be derived.
Since each test case includes at least one failure, the denominator
can be calculated by Equation (2) below.

IPtotal ¼1�
Y8

i¼1

Ynf

j¼1

�
1�pij

�
(2)

where,

IPtotal: Total importance of all CP test cases
nf : Number of failure modes in a BP
pij: Unavailability by failure mode j in ith BP

pij represents the component unavailability by a failure mode.
According to NUREG-0492, for periodic tests performed at intervals
of T, the unavailability, q(t), rises from a low of q(t ¼ 0) ¼ 0
immediately after a test is performed to a high value of immediately
before the next test is performed. Since the exponential can be
approximated by a linear function (for lT <0:1) and the failure rate
of RPS hardware is very small, the average unavailability between
tests is approximately lT=2[6]. It is assumed that all components in
the target system have the same periodic test intervals, because the
importance proposed in this work is a relative measurement to
compare the occurrence possibilities of test cases.

The numerator of the coverage can be found by combining the
importance of the test cases performed. The importance of each
test case is calculated by Equation (3). If kth CP test case includes
one hardware failure, IPk is the product of the unavailability of the
failed hardware and the availabilities of the other components.

IPk ¼
Y8

i¼1

Ynf

j¼1
xij (3)

where,

IPk: Importance of kth CP test case
nf : Number of failure modes in a BP
xij: If the jth failure mode in the ith BP is true, then xij ¼ pij,
otherwise xij ¼ ð1 � pijÞ
pij: Unavailability by failure mode j in ith BP

To perform such quantitative testing, the following procedure is
suggested: (i) set the experimental environment as close as
possible to an actual operating environment; (ii) identify which
hardware input signal sets match the software application logic
inputs; (iii) generate test cases according to every possible input;
(iv) optimize the number of test cases to achieve a sufficiently high
reliability; and (v) execute the test cases. There is no need to
perform test cases below a certain level when performing
hardware-software integrated testing; such particular levels can be
determined through measurements of importance using failure
rate data from the failure modes and effects analysis (FMEA) of
software-related hardware. FMEA proposes possible failure modes
for each hardware component and analyzes the probability of each
failure mode and its final effect [11].

To assess the software reliability method proposed in this work,
this research quantitatively evaluates software reliability in the
APR1400 RPS by including importance measurements and test case
optimization. By prioritizing the test cases in terms of importance
and executing only the high-importance ones, a sufficiently high
reliability can be ensured in a relatively short period of time.
4. Test environment and test cases development

4.1. Hardware-software integrated test environment

As mentioned above, the APR1400 RPS consists of eight BPs and
twelve CPs. Instead of using all eight BPs and twelve CPs, only one
BP and one CP, which are the same as the actual hardware installed
in the APR1400 RPS, are used in this study to construct the exper-
imental environment. In order to replace the seven BPs and eleven
CPs not included in this experimental environment, an input/
output (I/O) simulator is used to generate virtual signals and
simulate plant parameters such as temperature and pressure. The I/
O simulator generates and delivers the plant parameters necessary
for BP application execution. Although the experimental

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e1470 1465
environment uses only two real hardware modules because of their
cost, as shown in Fig. 2, it can simulate the same safety-related
signals as a real hardware-software integrated environment. The
experimental environment has a total of 91 signals that are trans-
ferred to the actual hardware BP and CP. The integrated testing
carried out in this study is aimed at an overall inspection of the
safety-related functions in a fully integrated state, specifically
focusing on the reactor trip signal.

Among the eight BP signals entering the CP-D1, the BP-D1 signal
is generated by an actual processor and input to the CP via safety
data link (SDL). The remaining seven virtual signals, labeled BP-A1,
BP-A2, BP-B1, BP-B2, BP-C1, BP-C2, and BP-D2, are generated in the
I/O simulator and input to the CP-D1 through the SDL. All necessary
plant parameters are generated in the I/O simulator and delivered
to the analog or digital input module of the BP.

Fig. 3 depicts the development process for the experimental
environment using the I/O simulator application. The application
was developed using pSET2 so that when a developer enters a test
case into the application, the I/O simulator can act as an input for
the corresponding set of signals into the relevant hardware [18].
The pSET2 is an engineering tool that can translate function block
diagram (FBD) programs into executable codes for programmable
logic controllers (PLCs).

4.2. Composition of each test case

The effects of failures in an RPS are classified into three cate-
gories, as shown in Fig. 4. If there is no end effect in a given failure
mode, the hardware status is normal. If an end effect that is not
associated with a safety function occurs, such as a light fixture
failure, it is classified as a failure modewithout an end effect. When
a failure mode does result in an end effect, it can be classified
depending on whether the failure is detected or not. In the case of
an undetected failure ((a) in Fig. 4), the situation can be conserva-
tively modeled by converting the partial trip signal of the relevant
test case from ‘trip’ to ‘non-trip’. That means a failure causes wrong
system behavior without detection. In the case of a detected failure
((b) in Fig. 4), the situation can be simulated by setting the relevant
partial quality signal to ‘bad’. This research considers all (a), (b), and
Fig. 2. Diagram of the expe
normal hardware states as test cases.
All test cases were developed with the following assumptions:

1) Regarding plant parameters entered to the BP, among the huge
number of combinations of plant parameters, only 15 combi-
nations are considered. Among the 15 combinations, 13 com-
binations are representative of 13 trip parameter trip logics and
2 combinations are representative of 2 RCOPS trip logics.

2) For conservatism, only trip logic is considered in a test case. The
cases that two or more trip logics occur simultaneously are not
considered. For example, it is assumed that low DNBR is the first
reactor trip variable when a loss of coolant accident or steam
generator tube rupture occurs; if this first parameter does not
generate a reactor trip signal, it is assumed that the function of
the RPS fails.
4.2.1. BP test cases
The signals that are input to the BP-D1 using the I/O simulator

consist of 49 signals. Fig. 5 shows the connections between the I/O
simulator and BP-D1. Among the 49 signals, 24 are generated by the
ex-core neutron fluxmonitoring system (ENFMS), auxiliary process
cabinet system (APC-S), and RCOPS such as PZR pressure, SG water
level and pressure, and containment pressure as shown in Fig. 2.
These 24 signals are set to predefined variables to generate a spe-
cific reactor trip signal among 15 trip logics. Followings are the 15
trip logics employed in the BP application:

- Variable overpower trip
- High log power trip
- High PZR pressure trip
- Low PZR pressure trip
- Low SG 1 water level trip
- Low SG 2 water level trip
- High SG 1 water level trip
- High SG 2 water level trip
- Low SG 1 pressure trip
- Low SG 2 pressure trip
- High containment pressure trip
rimental environment.

Fig. 3. Development process of the experiment environment.

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e14701466
- Low SG 1 RC flow trip
- Low SG 2 RC flow trip
- Low DNBR trip
- High LPD trip

For example, PZR pressure is set to 0 and the others are set to
normal value at full-power operation for low PZR pressure trip. To
trigger low SG 1 water level trip, the narrow water level range of
the SG 1 is set to 0 and the others are set to normal.

The other 25 signals are control signals made by operators
including the signals from main control room/remote shutdown
room (MCR/RSR) andMCR/RCR transfer switch status signal. The 25
variables can be classified as follows:

1 MCR/RSR transfer switch status signal: 1
2 Signals from MCR: 16
3 Signals from RSR: 8

The RSR is not used in normal NPP operating environments, as it
is only employed in emergency cases when the MCR is disabled.
TheMCR and RSR signals were considered independently according
to the MCR/RSR transfer switch status.

Signals from the MCR and RSR consist of signals by operators
and their quality. The signals generated by operators aim to reset a
set point or bypass the certain trip logic to prevent unnecessary
reactor shutdown. Four signals from the MCR are variable set point
(VSP) reset signals and their quality signals, 6 of them are operating
bypass (OPB) request signals and their quality signals, and 6 of
them are OPB off signals and their qualities as follows:

- PZR pressure VSP reset and quality
- SG pressure VSP reset and quality
- High log power level OPB request and quality
- High log power level OPB request off and quality
- High LPD and low DNBR OPB request and quality
- High LPD and low DNBR OPB request off and quality
- Low PZR pressure OPB request and quality
- Low PZR pressure OPB request off and quality

All signals from the MCR are Boolean and are transferred from
the I/O simulator to the BP-D1 via SDL. The number of BP MCR test
cases is 65,536 following the combination of 16 Boolean variables.

The RSR signals are simpler than MCR signals. Only two VSP
reset signals and one OBP signal are included.

- PZR pressure VSP reset and quality
- SG pressure VSP reset and quality
- Low PZR pressure OPB request and quality

Fig. 4. Flowchart for classifying failure modes.

Fig. 5. Signals from the I/O simulator to BP-D1 and CP-D1.

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e1470 1467
- Low PZR pressure OPB request off and quality

The signals transmitted from the RSR to the BP are Boolean and
transferred from the I/O simulator to the BP-D1 via SDL. The
number of BP RSR test cases is 256 following the combination of 8
Boolean variables.

The total number of BP test cases is therefore 986,880 by
Equation (4) below, considering MCR and RSR test cases and 15 trip
logics.

nbp ¼ ntrip �
�
nbpM

þnbpR

�
(4)

where,
nbp: Total number of BP test cases.
ntrip: Number of trip logics.
nbpM

: Number of BP MCR test cases.
nbpR

: Number of BP RSR test cases.
4.2.2. CP test cases
The CP test cases consist of the signals from the BP-D1 (actual

hardware) and other virtual BPs. The desired BP-D1 outputs are
generated by controlling the BP-D1 input signals, while the outputs
of the other BPs are directly generated by the I/O simulator.

One CP test case includes 91 variables. Under the assumption
mentioned in the previous section, 49 variables transmitted from
the I/O simulator to the BP-D1 are predefined to generate a specific
partial trip signal. The other 42 variables are transmitted from the I/
O simulator to the CP-D1, and all of them are 32-bit Boolean vari-
ables. Fourteen variables are to generate partial trip signals in seven
virtual BPs. Thus, 14, 7, and 7 variables represent the quality signals
for the partial trip signals, the heartbeat (HB) signals, and miscel-
laneous signals for virtual BPs, respectively, as follows:

1 Trip parameter partial trip quality: These quality signals cover
the 13 trip logics determined by trip parameters. Each is a 32-bit
Boolean variable with only 18 out of the 32 bits used. The other
14 bits have no meaning and are set to false.

2 RCOPS partial trip quality: These quality signals cover the 2 trip
logics determined by the RCOPS. Each is a 32-bit Boolean vari-
able with only 2 out of the 32 bits used. The other 30 bits have
no meaning and set to false.

3 Miscellaneous: These signals include PM (Processor Module)
quality and function enable quality; 2 out of 32 bits have
meaning.

4 BP HB: This signal represents the HB transmitted from the
connected BP. Only two cases are considered: stuck and normal.

The number of exhaustive CP signal combinations is 3.68E56 by
Equation (5) below.

ncp ¼ ntrip �
Y8

i¼1

�
ni;RPS �ni;RCOPS �ni;MISC � ni;HB

�
(5)

where,

ncp: Total number of CP test cases
ntrip: Number of trip logics
ni;RPS: Number of combinations of trip parameter quality signals
for ith BP
ni;RCOPS: Number of combinations of RCOPS quality signals for ith
BP
ni;MISC: Number of combinations of MISC signals for ith BP
ni;HB: Number of HB inputs for ith BP

Table 1
Source of Trip parameter/RCOPS Quality Signals.

Signal Source

Trip parameter partial trip quality signal by certain trip logic A PM error, AI slot_w module error, AI slot_w channel_a error
Trip parameter partial trip quality signal by certain trip logic B PM error, AI slot_x module error, AI slot_x channel_a error
… …

RCOPS partial trip quality signal by certain trip logic X PM error, DI slot_z module error, DI slot_z channel_b error
RCOPS partial trip quality signal by certain trip logic Y PM error, DI slot_z module error, DI slot_z channel_d error

Table 3
Examples of hardware failure rates [19].

Hardware failure mode Failure rate [/24 h]

AI module error 2.15E-03
DI module error 2.83E-04
PM error 1.36E-04
DI channel error 7.89E-05
AI channel error 6.41E-07

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e14701468
5. Importance of test cases

While the total number of BP test cases, 98,830, is an executable
number by exhaustive testing, that of CP test cases is too huge to be
exhaustively tested. Therefore, in this work, the importance of each
CP test cases was analyzed.

5.1. Optimization of the test cases

The first step is to identify the impossible test cases. In a CP test
case, there are 23 bits related to hardware failures per one BP. As
mentioned previously, while partial trip signals and operator sig-
nals do not have weightings, quality signals representing hardware
failures have different occurrence probabilities. In an input set from
a BP to a CP, there are 23 bits related to hardware failures: 18 bits in
trip parameter partial trip quality, 2 bits in RCOPS partial trip
quality, 2 bits in miscellaneous, and 1 bit in HB.

To optimize the test cases by eliminating impossible combina-
tions of these bits, it is necessary to check which hardware failures
each signal is affected by, as shown in Table 1.

Impossible test cases can be identified by analyzing how the
hardware failure affects the quality signal, as shown in Table 1. For
example, if a PM in a BP fails, all quality signals are set to ‘bad.’ Also,
the function enable quality signal is set to ‘bad’ and HB is stuck. For
other hardware failures such as AI (Analog Input) module failure or
channel failure, the quality signals related to the failed hardware
are set to ‘bad’.

Table 2 shows examples of the relationship between hardware
failure(s) and the number of affected quality signals.

After analyzing the relations between hardware failures and
affected quality signals, it was observed that only 293,762 possible
cases of 32 quality signals are valid in a BP. Then, the number of
total CP test cases is calculated as 8.32E44 by Equation (5).

5.2. Importance measurements

The next step is to evaluate the importance of each test case.
Since failure rates are used to evaluate importance, all the failure
modes are analyzed based on FMEA. Examples of hardware failure
rates derived from FMEA are shown in Table 3.

Table 4 shows examples of test case importance derived from
hardware failure rates by Equation (3) with an assumption that the
periodic test interval is one day. There is no effect of the assumed
Table 2
Examples of the number of quality bit signals affected by failure

Hardware failure(S)

Channel a error in AI module X
AI module X error
Channel b error in DI module Y
DI module Y error
PM Z error
PM module Z error þ channel a error in AI module X
PM module Z error þ AI module X error
periodic test interval on the result because all components have the
same periodic test interval and the importance is relative measure.
For example, failure mode 1 represents a single failure of AI module
#1 in BP-A1. The importance of this failure mode is calculated by
the unavailability of the failed AI module and the availabilities of
the other failure modes. In total, 24 failure modes are included in a
single failure of the AI module, because there are three AI modules
in eight BPs. The importance of test cases with one failed AI module
is 2.14E-3 because all AI modules have the same failure rate. If a
failure mode includes two DI (Digital Input) module channel fail-
ures and one AI module channel failure, as shown in failure mode 6
in Table 4, then the importance of this test case is calculated as
3.99E-13.

Each BP has 293,762 possible failure modes. The total impor-
tance of all CP test cases is calculated as 0.9843 by Equation (2).
Then, the coverage is determined by the number of test cases
examined.

6. Result analysis

A CP testing coverage of 1 can be satisfied by performing the
entire set of test cases, a total of 8.32E44, but this would take an
extremely long time. To ensure a sufficiently high degree of reli-
ability in the hardware-software integrated environment, the
importance of the test cases was measured, and in order to ensure
maximum reliability throughminimum test case execution, the test
cases should be performed in order of importance. Coverage when
the nth test case is performed can be derived as Equation (1). Since
there is a large difference in the importance value of each test case,
the result is expected to increase exponentially as the value of n
increases. High reliability can be ensuredmore efficiently by setting
a coverage target.

In the experiment performed in this work, the test cases were
Mode(s).

Number of affected quality bit signals
by the hardware failure(s)

2
9
1
4
23
23
23

Table 4
Examples of CP test case importance.

No Failure mode Importance of
test case

1 BP-A1 AI module#1 error 2.14E-03
2 BP-A1 DI module#1 error 2.83E-04
3 BP-A1 DI module#1 error þ BP-B1 DI module#1 error 8.00E-08
4 BP-A1 AI module#1 error þ BP-B1 DI module#1

error þ BP-B1 AI module#1 error
1.31E-09

5 BP-A1 module#1 error þ BP-B1 DI module#1 error þ BP-
C1 DI module#1 channel#3 error

4.81E-11

6 BP-A1 DI module#1 channel#2 error þ BP-B1 DI
module#1 channel#1 error þ BP-C1 AI module#1
channel#2 error

3.99E-13

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e1470 1469
optimized with a target coverage of 0.9999 according to the SIL 4
requirement. As shown in Fig. 6 and Table 5, a coverage of
0.99991136 can be satisfied by performing only 672,000 CP test
cases. Since the test cases with the highest importance are tested
first, it is confirmed that after an initial rapid increase in coverage,
further testing only yields minimal, gradual increases in coverage.

Through this study, 1,658,880 test cases were performed in the
hardware-software integrated environment, and no failures were
found. Since each test takes 120 ms in the implemented environ-
ment, it took 32.9 h to perform 986,880 BP test cases and 22.4 h for
672,000 CP test cases to achieve 0.9999 coverage.

The purpose of this work is to derive the software reliability
which can be used as the basic event in a PSA model. Equation (6)
represents the failure probability of the RPS software. pi indicates
the relative occurrence probability of a test case and the sum of all
pi should be 1.

q¼
Xn

i¼1

qipi (6)

Where,

q: the failure probability of the RPS software
Fig. 6. Coverage o
qi: the failure probability of the RPS software for ith test case. If
the test result is failure, then qi ¼ 1, else qi ¼ 0
pi: the relative occurrence probability of the ith test case

Since both the importance and pi represent the relative occur-
rence probability of a test case and both sum of all importance and
all pi are 1, the importance can be used for the pi in Equation (6). qi
for the test cases examined in the experiment are 0 because there is
no failed output observed. If all test cases not examined are
assumed to be failed (qi ¼ 1), then the coverage can be used as the
reliability by the equation.
7. Conclusion

Quantitatively proving software reliability or providing an
empirical basis is important in the nuclear industry because most
current PSA models assume the reliability of software to be 1 or
very high. In the nuclear field, while exhaustive testing could be
one possible option to prove the extremely high reliability of
safety-critical software because of the relatively simple logics and
small number of inputs, the number of the exhaustive test cases is
impractical to be performed. Therefore, this study proposed a
method to efficiently perform software testing based on occurrence
probabilities of the test cases.

By evaluating the importance of each test case and testing
sequentially from thosewith the highest importance, a high level of
software reliability can be achieved in a relatively short period of
testing. In the experiment performed in this study, it was proven
that 0.9999 coverage was satisfied by executing 672,000 CP test
cases among the total 8.32E44 test cases.

The implemented experiment environment includes only two
PLC racks of the RPS. To cope with this partially implemented
experiment environment, the I/O simulator was developed to
provide necessary signals to the CP. However, due to this experi-
mental environment, some part of the RPS such as the voting logic
of four redundant CP channels cannot be tested in this work.
Moreover, there could be some unexpected failures if full PLCs are
employed. For more accurate and reliable evaluation result, full
f CP testing.

Table 5
Coverage according to the number of CP test cases.

of test cases Test time [hour] (120 ms/test) Coverage

1920 0.06 0.96455830
13,440 0.45 0.97987931
94,080 3.14 0.99922413
672,000 22.40 0.99991136
1,424,640 47.48 0.99995783
2,392,320 80.00 0.99998739
3,682,560 122.75 0.99998953
4,448,640 148.28 0.99998985
5,295,360 176.51 0.99999017

J. Seo et al. / Nuclear Engineering and Technology 52 (2020) 1462e14701470
scope experiment is needed to be performed.
The proposed method can provide insights to evaluators in

determining target coverages efficiently by analyzing the trend of
coverage increase. In terms of regulation, a standard importance
value for satisfying a given target coverage can be used as a screen-
out criterion for test case execution. Also, this approach could be
applied to safety-critical software that is relatively simple but re-
quires very high reliability in other safety-critical infrastructures.

Acknowledgment

This work has supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2018M2B2B1065653).

References

[1] T. Aldemir, D.W. Miller, M.P. Stovsky, J. Kirschenbaum, P. Bucci,
A.W. Fentiman, L.T. Mangan, Current State of Reliability Modeling Method-
ologies for Digital Systems and Their Acceptance Criteria for Nuclear Power
Plant Assessments" United States Nuclear Regulatory Commission, vol. 6901,
U.S.NRC, USA, 2004. NUREG/CR.

[2] T. Aldemir, M.P. Stovsky, J. Kirschenbaum, D. Mandelli, P. Bucci, L.A. Mangan,
D.W. Miller, X. Sun, E. Ekici, S. Guarro, M. Yau, B. Johnson, C. Elks, S.A. Arndt,
Dynamic Reliability Modeling of Digital Instrumentation and Control Systems
for Nuclear Reactor Probabilistic Risk Assessments, U.S.NRC, USA, 2004.
NUREG/CR-6942.
[3] T. Aldemir, S. Guarro, J. Kirschenbaum, D. Mandelli, L.A. Mangan, P. Bucci,
M. Yau, B. Johnson, C. Elks, E. Ekici, M.P. Stovsky, D.W. Miller, X. Sun,
S.A. Amdt, Q. Nguyen, J. Dion, A Benchmark Implementation of Two Dynamic
Methodologies for the Reliability Modeling of Digital Instrumentation and
Control Systems, vol. 6985, U.S.NRC, , USA, 2004. NUREG/CR.

[4] T.L. Chu, M. Yue, G. Martinez-Guridi, K. Memick, J. Lehner, A. Kuritzky,
Modeling a Digital Feedwater Control System Using Traditional Probabilistic
Risk Assessment Methods, vol. 6997, U.S.NRC, , USA, 2004. NUREG/CR.

[5] S.J. Lee, W.D. Jung, J.E. Yang, PSA model with consideration of the effect of
fault-tolerant techniques in digital I&C systems”, Ann. Nucl. Energy 87 (2010).

[6] S.J. Lee, J.G. Choi, H.G. Kang, S.C. Jang, Reliability assessment method for NPP
digital I&C systems considering the effect of automatic periodic tests, Ann.
Nucl. Energy 37 (2010).

[7] H.G. Kang, M.C. Kim, S.J. Lee, H.J. Lee, H.S. Eom, J.G. Choi, S.C. Jang, An overview
of risk quantification issues of digitalized nuclear power plants using static
fault tree, Nucl. Eng. Technol. 41 (2009).

[8] H.G. Kang, T. Sung, An analysis of safety-critical digital systems for risk-
informed design, Reliab. Eng. Syst. Saf. 78 (2002).

[9] J.H. Jo, S.J. Lee, W.D. Jeong, Fault analysis of reactor protection system based on
FMEA, 2014. KAERI, ROK, KAERI/TR-5655.

[10] M.C. Kim, S.C. Jang, J. Ha, Possibilities and limitations of applying software
reliability growth models to safety critical software, Nucl. Eng. Technol. 39
(2007).

[11] H.S. Eom, G.Y. Park, S.C. Jang, H.S. Son, H.G. Kang, V&V-based remaining fault
estimation model for safety-critical software of a nuclear power plant, Ann.
Nucl. Energy 51 (2013).

[12] T.L. Chu, Development of Quantitative Software Reliability Models for Digital
Protection Systems of Nuclear Power Plants, NUREG/CR-7044, U.S. Nuclear
Regulatory Commission, 2013.

[13] S. Kuball, J.H.R. May, A discussion of statistical testing on a safety-related
application, Proc. Inst. Mech. Eng. O J. Risk Reliab. 221 (2007) 121e132.

[14] H.G. Kang, H.G. Lim, H.J. Lee, M.C. Kim, S.C. Jang, Input-profile-based software
failure probability quantification for safety signal generation systems, Reliab.
Eng. Syst. Saf. 94 (2009) 1542e1546.

[15] S.H. Lee, S.J. Lee, J.K. Park, E.C. Lee, H.G. Kang, Development of simulation-
based testing environment for safety-critical software, Nucl. Eng. Technol.
50 (2018).

[16] P.V. Varde, J.G. Choi, D.Y. Lee, J.B. Han, Reliability Analysis of Protection System
of Advanced Pressurized Water Reactor - APR 1400 vol. 2468, Korea Atomic
Energy Research Institute (KAERI), Republic of Korea (ROK), 2003. KAERI/TR.

[17] C.G. Lee, I.S. Oh, D.H. Kim, J.H. Park, J.H. Shin, Y.B. Kim, Requirements for the
Development of KNICS Control Systems, 2004. KAERI, ROK, KAERI/TR-2737.

[18] J.B. Yoo, S.D. Cha, E.K. Jee, in: A Verification Framework for FBD Based Soft-
ware in Nuclear Power Plants” 15th Asia-Pacific Software Engineering Con-
ference, 2008.

[19] S.J. Lee, W. Jung, J. Yang, PSA Model Considering the Effects of Self-Diagnostic
of Digital I&C Systems, Korea Atomic Energy Research Institute (KAERI), Re-
public of Korea (ROK), 2015. KAERI/TR-5946.

http://refhub.elsevier.com/S1738-5733(19)30624-2/sref1
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref1
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref1
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref1
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref1
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref2
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref2
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref2
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref2
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref2
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref3
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref3
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref3
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref3
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref3
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref4
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref4
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref4
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref5
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref5
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref5
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref6
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref6
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref6
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref6
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref7
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref7
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref7
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref8
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref8
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref9
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref9
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref10
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref10
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref10
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref11
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref11
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref11
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref11
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref12
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref12
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref12
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref13
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref13
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref14
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref14
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref14
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref15
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref15
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref15
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref16
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref16
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref16
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref17
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref17
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref18
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref18
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref18
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref19
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref19
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref19
http://refhub.elsevier.com/S1738-5733(19)30624-2/sref19

	Experimental approach to evaluate software reliability in hardware-software integrated environment
	1. Introduction
	2. Target system
	3. Methodology
	4. Test environment and test cases development
	4.1. Hardware-software integrated test environment
	4.2. Composition of each test case
	4.2.1. BP test cases
	4.2.2. CP test cases

	5. Importance of test cases
	5.1. Optimization of the test cases
	5.2. Importance measurements

	6. Result analysis
	7. Conclusion
	Acknowledgment
	References

