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Abstract 

The compression molding of glass mat thermoplastics (GMT) allows high volume 

manufacture of composite parts with a short production cycle. Computer simulation is often 

used to assist process development and optimization. Reliable simulation depends on input of 

material property parameters and accurate prediction of heat transfer. This thesis developed 

experimental methods to characterize material property and heat transfer process parameters. 

Results were obtained by applying the methods to a selected commercial GMT sheet. Heat 

transfer coefficients including convection coefficients during pre-heating and transfer, as 

well as contact conductance at sheet-mold interface were estimated by a parameter-fitting 

approach. Viscoelastic parameters of the composite were characterized by oscillatory torsion 

bar, which can be used to model the draping behavior. The elastic modulus and viscosity 

were fitted by a Williams-Landel-Ferry (WLF) and Cross-WLF model, respectively. Flow 

behavior of a stacked charge was also characterized by a 1-D squeeze flow model, where the 

apparent viscosity was fitted by a temperature dependent power-law model. 

Keywords 

Glass mat thermoplastic, compression molding, material characterization, heat transfer, 
draping, squeeze flow 
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Summary for Lay Audience 

In the automotive industry, light-weighting has become one of the top priorities as it provides 

better fuel efficiency and handling. Polymer composites are widely used in car 

manufacturing for this purpose. In general, it refers to a material that is composed of a 

polymer matrix (e.g. PP, PA) and fiber reinforcement (e.g. glass or carbon fiber). Automobile 

parts made of polymer composites not only enables light-weighting, but also possesses good 

mechanical strength. The process of forming raw composite material into desired part 

geometry is called molding. Various molding techniques have been developed, such as the 

compression molding, the resin transfer molding or the thermoforming. 

To build a molding process for part production, it is often required to also establish a 

continuous and functional virtual process chain by means of computer simulation. Simulation 

results may accelerate and optimize the development of real process chain. One of the keys to 

reliable simulation output is the accurate input parameters. In terms of molding simulations, 

these parameters include material properties and heat transfer coefficients. Therefore, the 

characterization of these parameters is increasingly gaining interest by the industry. 
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Chapter 1  

1 Introduction 

1.1 Background 
In the modern automotive industry, polymer composites have been widely used in 

automobile parts, which enables light-weighting while still maintaining required 

performance properties. Glass mat thermoplastic (GMT) composites are a widely chosen 

material category for this purpose. In general, GMT describes sheet-like composites with 

chopped, randomly oriented fiber reinforcement in a thermoplastic polymer matrix. This 

type of material system, when compared to alternatives such as sheet molding 

compounds (SMC) and thermoplastic pellets, possesses the feature of both a re-meltable 

matrix and potentially long-fiber reinforcement. Usually, compression molding, resin 

transfer molding or thermoforming can be used to process the material into desired parts 

[1], [2]. Of all these forming techniques, compression molding offers the highest 

potential to preserve the long fibers and thus lead to better mechanical property of the 

part [3], [4]. Furthermore, the combination of compression molding and GMT material 

allows high-volume manufacturing with cycle times on the order of one minute. The 

compression molding process for thermoplastic composites generally consists of the 

following stages in sequence: the preheating of charge to its molten state, the transfer of 

charge, the placement of charge, and the forming of parts. The mold is usually controlled 

at a much lower temperature than the recrystallization temperature of the composite. 

Therefore, after forming, the part stays in the mold for an extended amount of time until 

it vitrifies. Afterwards, the molds open and the part is taken out. Figure 1-1 gives a 

graphical illustration of the stages. 

The development of a process chain for the mass production of thermoplastic composite 

parts is a complex task. Often, it is required to establish a continuous and functional 

virtual process chain by means of computer simulation, including Computer Aided 

Engineering (CAE) or Computational Fluid Dynamics (CFD) software. With the help of 

this virtual twin, development of the real process chain can be accelerated and optimized 
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[5]. Reliable simulation results depend not only on the selection of the appropriate 

thermomechanical model, but also the input of accurate material and process model 

parameters. Therefore, the characterization of these parameters is increasingly gaining 

interest in terms of industrial application. In terms of thermoplastic composite 

compression molding processes two perspectives are considered — the thermal and the 

mechanical. From the thermal perspective, heat transfer parameters between the charge 

and the environment/tool help to model charge temperature evolution during the molding 

process. The use of material mechanical properties allows prediction of deformation 

behavior when the charge is molded. 

 

Figure 1-1: General stages of the compression molding process for thermoplastic 

composites 

1.2 Objectives 
This thesis aims at developing experimental methods to characterize the heat transfer 

parameters during the compression molding process, as well as the mechanical properties 

of GMT materials in the deformable state (prior to vitrification). The combined heat 

transfer and the material property parameter sets serve as inputs for numerical simulation 

of the GMT compression molding process. By means of the experimental studies, a better 

understanding is gained on composite forming and its related thermal and deformation 

mechanisms. The experimental results were generated from a selected commercial GMT 

material. The experimental methods, however, can be expanded for use on other sheet-

like thermoplastic composites. 
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1.3 Thesis Structure 
This thesis is divided into six chapters. Followed by the brief introduction in this chapter, 

Chapter 2 is a short literature review on relevant characterization studies. The importance 

of each characterization perspective (heat transfer and material property) is also further 

discussed. The material property characterization is further divided into two categories — 

the draping characterization and the flow characterization. Chapter 3 develops an 

experimental set-up and a simulation-fitting method to characterize the heat transfer 

parameters during compression molding of GMT materials. Chapter 4 develops a large 

amplitude oscillatory method on a torsion bar fixture to characterize the viscoelastic 

properties relating to the draping of molten state GMT materials. Chapter 5 adopts an 

existing 1-D squeeze flow method to characterize the flowing behavior of a GMT stacked 

charge. Chapter 6 gives a summary, conclusions and comments on future work. 
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Chapter 2  

2 Review 
This chapter reviews some existing characterization studies for the forming process of 

thermoplastic composites, which have inspired the technique development or 

experimental design discussed in chapters 3, 4 and 5. 

2.1 Heat Transfer in Thermoplastic Composite Forming 
Process 

Charge temperature is an important process parameter in composite forming process. It 

can directly affect material mechanical properties and therefore, impact final forming 

outcomes [6], [7]. Various modes of heat transfer take place in the process cycle, which 

contribute to the charge temperature distribution. Many efforts have been made to 

investigate heat transfer and estimation of the charge temperature distribution. For 

example, Cunningham et al [7] studied radiative heat transfer when pre-heating the 

charge in an infra-red oven,  and convective heat transfer when moving the charge from 

the heating oven to the mold. In their study, analytical methods were used to calculate the 

net radiation from oven and net heat loss during moving. The results were used in a finite 

element thermal model to predict charge core temperature, which were then compared 

with experimental measurements. Chy [6] also studied a feedback-control system for 

charge temperature distribution by modeling heating thermoplastic sheets with infra-red 

oven. In comparison with Cunningham et al. [7],  Chy’s model introduced the effect of 

air convection in the oven. 

Heat transfer between plastic melts and mold surfaces is another often studied topic. 

Thermal contact conductance at the plastic-metal interface is commonly estimated to 

characterize this type of heat transfer [8], [9], [10], [11], but most of the studies have 

been for injection molding.  

By definition, thermal conductance is characterized by a coefficient that relates the heat 

transfer flux with the temperature difference between the two contacting surfaces, in this 

case the sheet and mold surfaces, such that: 
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𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℎ𝑐𝑐 ∙ (𝑇𝑇𝑠𝑠1 − 𝑇𝑇𝑠𝑠2)  (2.1) 

Where 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the transferring heat flux (W/m2) and ℎ𝑐𝑐 is the thermal conductance 

(W/m2·K). 

Bendada et al. [8] studied the positive correlation between contact conductance value and 

normal pressure at the interface. Somé et al. [10] further described this correlation with a 

mathematical model that was derived from basic topographical, mechanical and heat 

transfer principles. All the studies above focused on injection molding situations. The 

contact conductance varied from 400-5000 W/m2·K, depending on the pressure applied 

(0-25 MPa) and materials used.  

Kugule et al. [12] investigated the contact conductance for thermoforming situations. 

Two conditions were considered — the open-mold condition where the charge sits on 

static bottom mold with no external pressure, and the closed-mold condition where the 

upper mold closes to apply pressure to the charge. These two conditions represent two 

necessary stages after pre-heating in the thermoforming process. Due to the additional 

pressure (0.6 bar), the closed-mold contact conductance (600-700 W/m2·K) was found to 

be much greater than the open-mold one (100-300 W/m2·K). 

2.2 Draping Behavior of Thermoplastic Composite Sheets 
In thermoforming or stamp-forming processes, a thermoplastic composite sheet is placed 

between two mold halves, where limited pressure is applied [13]. The sheet would 

deform into the mold geometry due to the pressure, where no flow or little flow of the 

material would take place [5], [14]. This deformation behavior is typically referred to as 

‘draping’ of the material. In compression molding using sheet-like material, draping is 

also predominant in the initial phase of compression, where the mold pressure is not 

enough to generate material flow [14]. After the draping phase, the increasing pressure 

forces the material to flow and fill the entire mold. Accurate characterization and 

modeling of the draping behavior allows prediction of production defects such as 

wrinkling and folding in forming [5]. The draping behavior of thermoplastic composite 

sheets includes deformation micro-mechanisms [15], [16]. For multiple sheets with good 
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laminations, intra-ply shear is the main mechanism [17]. For stacked or delaminated 

sheets, however, inter-ply friction should also be considered [18].  

 

Figure 2-1: Deformation micro-mechanisms contributing to draping (left) intra-ply 

shear and (right) inter-ply friction [13] 

For intra-ply shear, studies include Groves et al. [19], [20], Wheeler and Jones [21], 

McGuinness and Ó Brádaigh [22] and Stanley and Mallon [23]. Various set-ups were 

used in these studies, which also lead to very different shear rates or shear magnitudes for 

the results. Parameters such as shear viscosity and elastic modulus were characterized to 

describe the material draping behavior. However, these studies all had certain 

shortcomings, such as ignoring the effect of fiber orientation and distribution, or not 

eliminating inter-ply slippage in the shearing tests. This also led to large deviations 

between the viscoelastic parameters characterized from different set-ups (up to two 

orders of magnitude). Recently, Haanappel et al. [17] and Sachs and Akkerman [24] each 

developed a custom fixture based on use of a rotational rheometer to characterize the 

intra-ply shear of thermoplastic UD tapes. The fixtures support a rectangular torsion bar 

specimen [17] and a bending specimen [24], respectively (Figure 2.2). Both fixtures 

could induce intra-ply shearing of the specimens by rotation. By setting the rheometer to 

a constant speed rotation, the fixtures were able to deform the specimens to a large strain 

magnitude. The response torques was recorded by the rheometer, generating torque vs. 

deformation angle curves (Figure 2-4). Finite element software (Abaqus CAE) was used 

to simulate the experiments by means of a Kelvin-Voigt or Generalized Maxwell 

viscoelastic model [25]. The model parameters were adjusted in order to fit the simulated 

torque vs angle curve to the experimental data. In this way an elastic parameter and a 

viscous parameter were characterized using the model. These types of set-ups have the 
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advantage of controlling shear rate and magnitude, as well as testing in the desired fiber 

reinforcement direction.  

 

Figure 2-2: Intra-ply shearing fixtures developed by (left) Haanappel et al. [17]and 

(right) Saches and Akkerman [24] 

 

 

Figure 2-3: Abaqus simulation of the experiments in Figure 2-2 [25] 

Dörr et al. [5] further applied these methods on glass mat thermoplastics (GMT). By 

using the parameter set generated from the tests, they successfully simulated the draping 

of the GMT sheet on a complex mold geometry, and predicted local wrinkling of the 

draped parts. 
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Figure 2-4: Torque vs. deformation angle curves for the GMT material in (left) 

torsion experiment and (right) bending experiment [5] 

The inter-ply friction is another important topic in studies that aimed at characterizing 

draping behavior of thermoplastic composite sheets. Apart from inter-ply friction, the 

friction between sheet and the tool/mold (tool-ply friction) is often characterized at the 

same time in these studies. A thorough understanding of these frictional mechanisms 

would help developing modeling or computer simulation technologies to predict the 

draping bevahior, thus minimize production defects [18].  

Many research studies have been conducted to characterize the inter-ply and/or tool-ply 

frictional behavior. Various experimental methods were developed to perform these 

characterizations on thermoplastic composite sheets. Groves et al. [19] tested the 

resistance against inter-ply motions by placing a stack of continuous fiber thermoplastic 

laminates between the two rotating plates of a Rheometrics Dynamic Spectrometer. 

Groves represented such resistance by general terms of shear stress and shear viscosity. 

Scherer et al. [26] tested inter and intra-ply stresses of laminates by pulling one piece of 

polypropylene carbon UD tape out of a stack between two heated plates. No temperature 

or normal pressure dependence was investigated in these studies (Figure 2-5).  
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Figure 2-5: Experimental set-up developed by (left) Groves et al. [19] and (Right) 

Scherer et al. [26] 

Murtagh et al. [27] developed a similar set-up with Scherer, but started to characterize the 

inter-ply slippage in a more quantitative manner, in terms of coefficient of friction (CoF). 

CoF is defined as the ratio of pulling force to normal load, such that: 

𝜇𝜇 =  𝐹𝐹𝑓𝑓
𝑁𝑁

  (2.2) 

Where 𝜇𝜇 is the CoF, 𝐹𝐹𝑓𝑓 is the pulling force and 𝑁𝑁 the normal load (force). 

In cooperation with other research institutions, Saches [28] from University of Twente 

conducted a benchmark study of different testing set-ups.  All participants used their own 

testing apparatus to measure the tool-ply friction using Twintex® PP material under same 

predefined conditions. The basic principle of all participating set-ups was a pull-

out/through test. The test involves either pulling a piece of steel foil out of two plies, or 

pulling a piece of ply out of two metal blocks. Despite the same basic principle, all set-

ups can be divided into two main categories: horizontal set-up and vertical set-up. In 

general, horizontal set-ups may use a simple dead weight to apply normal load, but 

require preheating of the material to testing temperature. On the other hand, vertical set-

ups may employ electrically heated pressure blocks, but need additional equipment to 

apply and monitor normal pressure (e.g. pneumatic bellows and load cells). Figure 2-6 

illustrates typical examples of horizontal and vertical set-ups from TU Dresden and 

University of Twente. 
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Figure 2-6: Experimental set-ups to measure tool-ply and inter-ply friction: (left) 

horizontal apparatus from TU Dresden and (right) vertical apparatus from 

University of Twente [28] 

By analyzing the results from all participating set-ups, Saches et al. [28] concluded 

several points from a design perspective to help improve accuracy of friction 

measurement: 

1. Using a large contacting surface and round-edges of contacting block help 
preventing edge effects during the pulling. 

2. Stretch of the specimen need to be limited. 
3. Uniform distribution of normal pressure and temperature is essential for tests 

conducted above melting temperature. 
4. Pull-through test is preferred than pull-out test, as it provides a constant 

contacting area. 

The results from all participants of this benchmark study also proved that tool-ply friction 

of Twintex® PP material follows a simple Amontons-Coulomb model under room 

temperature. The CoF was independent of pulling speed and normal pressure under such 

conditions. But when the test temperature went above melting temperature, 

hydrodynamic frictional behaviors started to be observed. The CoF started to be 

dependent on material viscosity, pulling speed and normal pressure through Hersey 

Number and Stribeck Curve. 

Hersey Number is defined as below: 

He = 𝜂𝜂∙𝑣𝑣
𝑝𝑝

 (2.3) 
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where 𝜂𝜂 is the viscosity, 𝑣𝑣 the pulling velocity and 𝑝𝑝 the normal pressure. Stribeck Curve 

is the correlation curve between CoF and Hersey Number. 

By using the same set-up in Figure 4, Akkerman et al. [29] Successfully characterized the 

tool-ply frictional behaviors of UD-C/PEEK and 8HS-G/PPS materials above their 

melting temperature. Similar to results obtained by Saches et al. [28], the characterized 

frictions were also recognized as hydrodynamic lubrication (i.e. follows equation 2.3). 

2.3 Flow Behavior of Thermoplastic Composites 
In the compression molding of thermoplastic composites, the material is eventually 

forced to flow and fill the mold by increasing mold pressure. In the flowing phase, bulk 

viscosity of the charge is an important parameter to help predict the flow pattern and 

molding forces [30]. 

Typical methods for viscosity characterization include cone and plate viscometer, 

oscillatory shear (rotational rheometer) and squeeze flow tests. However, for long-fiber 

reinforced thermoplastic materials, a cone and plate viscometer cannot provide accurate 

results, as fibers tend to align with the motion direction [30]. Oscillatory shear is also not 

an appropriate option for this type of material, because it may be difficult to induce true 

shear flows [31].  

Squeeze flow, on the other hand, has been an often used and constantly developed 

method for rheological characterization of GMT or SMC materials. SMC is another 

sheet-like composite material often used for molding automobile parts, similar to GMT 

material but with thermoset polymer matrix. In general, the method involves isothermally 

squeezing the material between two heated parallel plates, typically a circular shape. The 

squeezing plate can be either force control or speed control [30]. The pressing force is 

recorded against distance between the two closing plates. Then, a constitutive flow model 

can be fitted into the measured data to extract material viscosity or other parameters. The 

constitutive flow model is typically Generalized-Newtonian (Newtonian, power law, 

Herschel-Bulkley, or Bingham) depending on the material type [30]. For long-fiber GMT 
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materials, the most commonly used rheology model in previous studies are the power law 

models.  

Kotsikos et al. [31] conducted squeeze flow tests on two commercial GMT materials with 

30% and 40% glass content by weight, respectively. The tests were performed at constant 

closing speed using a set of 150 mm diameter heated plates, mounted on a universal 

testing machine. In order to characterize the flow, Kotsikos et al. [31] used two separate 

flow models, namely pure shear flow and pure extensional flow to describe the squeeze 

flow behavior. Extensional flow was predominant in squeeze flow, with shear near the 

plate wall. In later research, Kotsikos and Gibson [32], a more complex flow model 

which combines extensional and shear flow was developed for squeeze flow of SMC 

materials.  

Dweib and O Br´adaigh [33] developed the method to characterize GMT material with 

anisotropic flow behavior. They discovered in previous studies that the originally round 

specimen deformed into an elliptical shape as shown in Figure 2-6: 

 

Figure 2-7: Ellipse formed by squeeze flow of anisotropic GMT materials (Dweib 

and O Br´adaigh [33]) 

Dweib and O Br´adaigh used the transversely isotropic power law model developed by 

Rogers [34] to characterize the tested material. Their model allowed the calculation of 

extensional viscosities in three directions: 𝜆𝜆1 in 𝑥𝑥 direction, 𝜆𝜆2 in 𝑦𝑦 direction, and 𝜆𝜆3 in 

the normal direction. 
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Assuming incompressibility of the material, the strain rates in these three directions can 

be represented as: 

𝜀𝜀𝑥̇𝑥𝑥𝑥 = 𝑓𝑓𝑓𝑓
(𝑒𝑒+𝑓𝑓)ℎ

 (2.4) 

𝜀𝜀𝑦̇𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒
(𝑒𝑒+𝑓𝑓)ℎ

 (2.5) 

𝜀𝜀𝑧̇𝑧𝑧𝑧 = −𝑢𝑢
ℎ
 (2.6) 

Where:  

𝑓𝑓 = 𝑟𝑟1
𝑟𝑟2

  (2.7) 

𝑒𝑒 = 𝛥𝛥𝛥𝛥1
𝛥𝛥𝛥𝛥2

 (2.8) 

𝑢𝑢 represents the closing speed of plates and ℎ represents the distance between the two 

plates. Dweib and O Br´adaigh assumed pure extensional flow and used lubricant to 

create full slip at the plate walls. Thus, the extensional viscosities are calculated to be: 

𝜆𝜆1 = 𝜆𝜆3 = 𝑝̅𝑝
(𝑢𝑢ℎ)

  (2.9) 

𝜆𝜆2 = 𝑝̅𝑝

�𝑢𝑢ℎ�
(𝑒𝑒+𝑓𝑓
2𝑒𝑒

)  (2.10) 

Where 𝑝̅𝑝 is the average pressure over the squeeze area. 

These models mentioned above all neglected the pressure distribution over the squeeze 

area. Kotsikoset al [35] in later studies developed a model to predict the radial pressure 

distribution during the squeeze process. The model was improved from the combined 

(extensional and shear) flow model in their early works [32]. Pressure cells over the 

squeezing plate were used to record pressure data and validate the model.  

An important assumption of all the early studies was the incompressibility of GMT 

material during the press molding process. Recent research on SMC material observed 
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bubbles generated and transported when material filled the mold [36]. The release and 

growth of these bubbles could lead to a macroscopic compressibility on SMC materials 

[37]. A similar situation could be considered for GMT materials as well.  

Hohberg et al. [38] developed a compressible squeeze flow model by using an 1-D flow 

rheological tool. Unlike earlier tools, which were mostly round plates, the equipment 

developed by Hohberg et al. was a plaque molding tool of rectangular shape, with 

dimensions 800 mm x 250 mm. The tool was able to produce plates with thickness 

between 1 mm to 5 mm. 7 pressure sensors were located along horizontal center line of 

the tool. A schematic of the tool is given by Figure 2-7. 

 

Figure 2-8: The rheology tool developed by Hohberg et al. [24] 

As is shown in figure 2-7, the pressure sensors are aligned with 𝑒𝑒1 direction, which is the 

main flow direction during the squeeze flow test. This arrangement allows the 

characterization of the pressure distribution along the flow direction. The initial charge 

placed at sensor 1 location was squeezed at constant closing speed of the mold. The 

pressure values gathered by the 7 sensors were plotted against distance between the 

molds. A compressible flow model was developed by Hohberg et al. [38] to fit the 

experimental data. The fitting of this power law model allowed the extraction of 

hydrodynamic friction coefficient and extensional viscosity from the data: 



15 

 

𝜀𝜀33(𝑥𝑥1) = 𝜂𝜂 1
𝐷𝐷0
𝑛𝑛−1 �

ℎ̇
ℎ
�
𝑛𝑛−1 ℎ̇

ℎ
− ( 2𝜆𝜆

𝑚𝑚+1
) ℎ̇
ℎ𝑚𝑚+1 (�ℎ̇�

𝑉𝑉0
)𝑚𝑚−1 �𝑥𝑥1𝑚𝑚+1 − (𝑙𝑙0ℎ0

ℎ
(∆𝑡𝑡𝑡𝑡(𝑡𝑡) + 1))𝑚𝑚+1�

 (2.11) 

Where 𝜀𝜀33(𝑥𝑥1) represents the local pressure measurement at position 𝑥𝑥1, 𝜂𝜂 represents the 

extensional viscosity, 𝜆𝜆 represents the hydrodynamic friction coefficient, and m as well as 

n are power law coefficients. 𝐷𝐷0  represents the reference deformation rate. ℎ and ℎ̇ are 

distance between the molds and the mold closing speed, respectively. 

Subtracting measurements from two different sensors would yield the following equation: 

𝜆𝜆 = 𝑚𝑚+1
2

(�ℎ̇�
𝑉𝑉0

)−𝑚𝑚+1 ℎ
𝑚𝑚+1

ℎ̇
𝜀𝜀33(𝑥𝑥2)−𝜀𝜀33(𝑥𝑥1)
[𝑥𝑥2𝑚𝑚+1−𝑥𝑥1𝑚𝑚+1] (2.12) 

Data from four sensors yield a set of two equations in the form of equation 2.12. The 

values of 𝑚𝑚 and 𝜆𝜆 can thus be determined from this equation set. 

After knowing the values of 𝑚𝑚 and the hydrodynamic friction coefficient 𝜆𝜆, 𝑛𝑛 can be 

fitted by plotting 𝜀𝜀33 against 𝐷𝐷0 . Afterwards, the extensional viscosity can be calculated. 

The authors [24] validated the accuracy of this model by performing squeeze flow test on 

three different SMC materials. 
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Chapter 3  

3 Characterize Heat Transfer Parameters in Compression 
Molding of Glass Mat Thermoplastics 

In the thermoplastic composites forming process, charge temperature is an important 

process parameter that can eventually contribute to forming outcomes [39], [40], [6], [7]. 

Generally, charge temperature directly affects charge viscoelastic properties such as 

viscosity or elastic modulus, which then dominate the behavior of charge when it is 

deformed [6] and may affect ultimate final part properties. Final component properties 

can heavily depend on the charge temperature profile when it is formed [12]. At each 

stage of the process chain, the temperature profile of the charge is determined by heat 

transfer with either the ambient environment or the mold. In thermal modeling, the 

amount of heat exchange can be calculated once heat transfer parameters have been 

estimated for the various forms of heat transfer (i.e. conductive, convective and 

radiative).  The compression molding process chain of GMT (Glass Mat Thermoplastics) 

material can be divided into four stages, in sequence: pre-heating, charge transfer from 

oven to mold, open-mold cooling of the charge, and closed-mold cooling after 

compression. Open-mold cooling is the period of time when the charge sheet is in the 

mold cavity before the mold closes, and closed-mold cooling refers to the compression 

molding phase before ejection. 

At each stage, the GMT sheet exchanges heat with the surroundings. The flat geometry of 

the sheet means that the dominant heat transfer takes place at its top and bottom surfaces, 

making the through thickness temperature profile the main point of interest. 

Consequently, this chapter focuses on investigating heat transfer from the sheet top and 

sheet bottom during the process chain. Table 3-1 below summarizes the types of heat 

transfer at both sides of sheet during each process stage. 
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Table 3-1: Heat transfer types at sheet surfaces during each process stage 

Process Stage Heat Transfer at Top Surface Heat Transfer at Bottom Surface 

Pre-heating Forced Convection Forced Convection 

Transfer Forced/Natural Convection Forced/Natural Convection 

Open-Mold Cooling Natural Convection Contact Conduction with Mold 

Closed-Mold Cooling Contact Conduction with Mold Contact Conduction with Mold 

Natural and forced convection coefficients on flat geometries have been well studied and 

can be easily calculated with Nusselt Number correlations. On the other hand, thermal 

contact conductance between tool and sheet remains a challenge. Some researchers have 

studied the contact conductance between metal and polymer melts in injection molding 

[8], [9], [10], [11]. However, differences in the material and forming mechanism can 

cause the magnitude of heat transfer to be very different in injection molding compared to 

compression molding. Kugele et al. [12] studied contact heat transfer for thermoforming, 

which shares some similarities to compression molding. Therefore, based on their 

approach, an experimental setup was designed to characterize the tool-sheet contact 

conductance during open-mold and closed-mold cooling.  

Due to complex flow pattern in the convection oven, the forced convection coefficient 

during pre-heating cannot be estimated by usual Nusselt Number equations which deal 

with uni-directional flow. Therefore, a similar approach was developed to also 

characterize forced convection coefficient within the oven. 

3.1 Methods 

3.1.1 Materials and Sample Preparation 

The GMT sheet used in this study was Tepex Flowcore from Lanxess. Characteristics of 

the material are summarized in table 3-2 below. 
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Table 3-2: Characteristics of Tepex Flowcore 

Characteristic Unit Value 

Product Name - Tepex® Flowcore 102-RGR2400/47% 

Fiber - E-Glass Roving 

Weaving style - Random Mat 

Fiber Length mm 50 

Fiber Content vol.% 47 

Polymer Matrix - Polyamide 6 (PA 6) 

Bulk Density kg/m3 1800 

Thickness mm 2 

Pre-consolidated samples were prepared from several sheets of Tepex Flowcore. During 

consolidation of each sample, a thermocouple was embedded between middle layers to 

monitor the core temperature of the sample as a function of time. The thermocouple was 

also centered in the plane directions, so that it would not be affected by sidewall heat 

transfer. Two types of samples were prepared for each process stage: 4-layer consolidated 

samples and 6-layer consolidated samples. Each layer of Flowcore was 2 mm in 

thickness. However, the consolidation process resulted in fusion between the layers of 

Flowcore, and the thickness of the consolidated sheet was reduced to around 6 mm for 

the 4-layer samples, and around 9 mm for the 6-layer samples. The consolidated sheets 

had near square geometry with roughly 400 mm side length (300 mm squares before 

consolidation). Figure 3-1 below schematically illustrates the preparation process and the 

location of thermocouple in each type of sample. 
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Figure 3-1: Thermocouple placement during consolidation of experimental samples 

3.1.2 Experimental Set-up 

The experimental procedure involved 

recording sample core temperature over time 

during process stages of interest.  

For the pre-heating stage, each sample was 

heated in a forced convection oven (HK--

Präzisonstechnik) from room temperature 

(typically between 20 and 25 oC). The oven 

was set at 300 oC. The sample core 

temperature was measured by the embedded 

thermocouple. A laptop was connected to the 

type K thermocouple wire through a 

transducer (Phidget TMP1101-0) for recording time evolution of measurements (Figure 

3-4(a)). 

Figure 3-2: Forced convection oven 

(opened) 
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For open-mold cooling and closed mold 

cooling, each sample was first pre-heated for 

15-20 minutes so that it reached as close as 

possible to homogenous temperature 

distribution (no obvious increasement of the 

core temperature). After pre-heating, the 

sample was transferred to a press 

(Dieffenbacher DCP-U 2500/2200) in the 

immediate vicinity of the oven (5-6 meters 

distance and 6-8 seconds transfer time). The 

sample then cooled due to heat transfer 

between its bottom surface and the mold, as 

well as the natural convection at its top surface. The mold used for these experiments had 

flat geometry, which was temperature controlled at 150 oC. For open-mold cooling 

situation, only the bottom mold was in contact with sample. The upper half of the mold 

remained open (Figure 3-4(b)). In closed-mold cooling, the upper mold closed and was in 

contact with the sample. The upper mold was set to stop pressing once the force build-up 

reached 400 kN (Figure 3-4(c)). Based on sample area, this force equates to a pressure of 

approximately 16 bar. In both types of cooling experiments, the sample core temperature 

was measured by embedded thermocouple and was recorded by a laptop. Schematics of 

the pre-heating experiment, open-mold and closed-mold cooling experiments are shown 

in Figure 3-4. 

Figure 3-3: Flat mold used (bottom 

half) 
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Figure 3-4: Experimental set-up to collect sample core temperature during (a) pre-

heating stage (b) open-mold cooling stage and (c) closed-mold cooling stage 

3.1.3 Thermal Modeling 

The through-thickness temperature profile within the sample sheet was predicted using a 

1-D transient conduction model. The heat transfer at sheet surfaces during each process 

stage was also modeled by applying corresponding boundary conditions. 
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According to Fourier’s Law, (conductive) heat flux is proportional to the negative 

temperature gradient and to the area normal to the temperature gradient through which 

the heat flows. In a 1-D model, only heat transfer along the through-thickness direction is 

considered. If 𝑥𝑥 is denoted as the thickness direction, the heat flux through any cross 

section along this axis is given by equation 3.1. 

𝑞𝑞(𝑥𝑥) = −𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (3.1) 

where 𝑘𝑘 is the bulk thermal conductivity of the material. 

 

Figure 3-5: A section of the sample along x axis with thickness ∆x 

Heat balance analysis can be performed by dividing the sample into infinitely many 

segments with thickness ∆𝑥𝑥 and considering one of them (Figure 3.5). Under 

transient state, heat flowing into the segment must be equal to the sum of heat 

flowing out and heat accumulation [41]: 

−𝑘𝑘 ∙ 𝑎𝑎 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑥𝑥)

= 𝜌𝜌 ∙ 𝑎𝑎 ∙ 𝐶𝐶𝑝𝑝 ∙ ∆𝑥𝑥 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑘𝑘 ∙ 𝑎𝑎 ∙ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝑥𝑥+∆𝑥𝑥)
  (3.2) 

Where 𝑎𝑎 is area of the cross section and 𝐶𝐶𝑝𝑝 is bulk heat capacity of the material. 

The term on left side of the equation represents heat flowing into the segment, 

whereas the terms on right side represents heat accumulation and heat flowing out, 

Heat Accumulation

Heat Flow out

Heat Flow in

Δx
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respectively. Dividing both sides by 𝑎𝑎 ∙ ∆𝑥𝑥 and rearranging, the 1-D transient 

conduction model can be obtained (equation 3.3). 

𝑘𝑘 ∙ 𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑥𝑥2
= 𝐶𝐶𝑝𝑝 ∙ 𝜌𝜌 ∙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (3.3) 

For the model to be able to predict charge temperature profile, correct boundary 

conditions with respect to each process stage must be applied at top and bottom 

surfaces of the sample. In general, the boundary conditions are based on continuity 

of heat flux.  

For the pre-heating stage, a forced convection boundary condition was applied at 

both surfaces of the sheet. In this case, the magnitude of convection coefficient was 

assumed to be the same at both the top and bottom surfaces. The boundary 

conditions are given as: 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐿𝐿, 𝑡𝑡) = ℎ𝑓𝑓 ∙ �𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� (3.4) 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = ℎ𝑓𝑓 ∙ (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (3.5) 

Where 𝐿𝐿 represents the entire thickness of the sheet, and ℎ𝑓𝑓 is the forced 

convection heat transfer coefficient inside the oven. 

For the transfer stage, natural convection in combination of radiation boundary 

conditions are applied (equations 3.6 and 3.7). In this case, the magnitudes of heat 

transfer at the top and bottom surfaces can be different because hot air always tend 

to flow upward. 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐿𝐿, 𝑡𝑡) = ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 ∙ �𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎� + 𝜎𝜎𝜎𝜎 ∙ (𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡4 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎4 ) (3.6) 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) + 𝜎𝜎𝜎𝜎 ∙ (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎4 − 𝑇𝑇𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4 ) (3.7) 
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In the equations above, ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 and ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are natural convection coefficients at 

top and bottom surfaces, respectively. Furthermore, σ is the Stefan-Boltzmann 

constant, and ϵ is the emissivity. 

During open-mold cooling, the top surface of sheet exchanged heat with the 

environment in the mold cavity area. Therefore, a combined radiation and natural 

convection boundary condition was used (equation 3.8). The bottom surface of 

sheet contacted with the mold, thus the heat transfer here was modeled by thermal 

contact conductance (equation 3.9). 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐿𝐿, 𝑡𝑡) = ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 ∙ �𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎� + 𝜎𝜎𝜎𝜎 ∙ (𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡4 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎4 ) (3.8) 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (3.9) 

In equation 3.9, ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the contact conductance at sheet-mold interface under 

open-mold condition, i.e. not compressed. 

During closed-mold cooling, both sides of the sheet were in contact with the mold. 

Therefore, equation 3.10 and equation 3.11 were applied at top and bottom surfaces 

respectively in this case. Here, ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was the sheet-mold contact conductance 

under closed-mold condition and was assumed same in magnitude at both sides. 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐿𝐿, 𝑡𝑡) = ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ �𝑇𝑇𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�  (3.10) 

−𝑘𝑘 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(0, 𝑡𝑡) = ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑠𝑠−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (3.11) 

Homogeneous temperature distribution was used as initial condition for modeling 

of all the stages mentioned above. Room temperature was used for pre-heating 

stage. Core temperature measured after pre-heating was used for cooling stages. 
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3.1.4 Parameter Estimation 

The parameters to be estimated were the heat transfer coefficients given in previous 

section, i.e. ℎ𝑓𝑓 during pre-heating stage, ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 and ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑚𝑚 during transfer,  ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

during open-mold cooling and ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 during closed-mold cooling stage.  

As was mentioned, theory of natural convection around plate geometry has been well 

studied. Nusselt Number correlations are typically used to estimate the natural convection 

coefficient. Therefore, values of ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 and ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are determined by this method. 

Here, the correlation from [41] is taken for the purpose. 

The Nusselt Number is given as: 

𝑁𝑁𝑁𝑁 = 𝑐𝑐 ∙ (𝐺𝐺𝐺𝐺 ∙ 𝑃𝑃𝑃𝑃)𝑛𝑛 (3.12) 

Where 𝐺𝐺𝐺𝐺 is the Grashof number defined as: 

𝐺𝐺𝐺𝐺 = 𝑔𝑔∙𝛽𝛽(𝑇𝑇𝑠𝑠−𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)𝐿𝐿3

𝑣𝑣3
 (3.13) 

and 𝑃𝑃𝑃𝑃 is the Prandtl Number defined by: 

𝑃𝑃𝑃𝑃 = 𝐶𝐶𝑝𝑝∙𝜇𝜇
𝑘𝑘

 (3.14) 

In equation 3.13, 𝐿𝐿  is the characteristic length of the plate. The rest parameters showing 

in equations 3.13 and 3.14 are air properties at film temperature, i.e. the average between 

surface temperature and room temperature. In equations 3.12, parameters 𝑐𝑐 and 𝑛𝑛 can be 

determined by the following ranges of applicability [41]: 
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Table 3-3: Rules for determining values of n and c 

Side of Horizontal Plate Range of (𝑮𝑮𝑮𝑮 ∙ 𝑷𝑷𝑷𝑷)  Value of 𝒄𝒄 Value of 𝒏𝒏 

Top Side 105 to 2 x 107 0.54 1/3 

2 x 107 to 3 x 1010 0.14 1/4 

Bottom Side 3 x 105 to 3 x 1010 0.27 1/4 

After Nusselt Number is determined, the natural convection coefficient can be calculated 

by equation 3.15. 

ℎ𝑛𝑛 = 𝑁𝑁𝑁𝑁∙𝑘𝑘
𝐿𝐿

 (3.15) 

Although the natural convection coefficients can be estimated from literature 

correlations, other heat transfer parameters must be estimated from experimental data. 

The estimation was done by fitting experimental data to the model developed in section 

3.1.3. 

In a first step, initial values were assigned for these coefficients, based on which the 

transient temperature modeling of 4-layer samples were solved using finite element 

method (FEM) simulation software (Abaqus CAE). Uncoupled heat transfer analysis and 

element type DC3D8 were defined for the Abaqus simulations. Sheet surface emissivity 

was input at 0.8 based on literatures reporting [42], [43], [44], [45]. Other necessary 

material thermal properties were measured by the Moldex3D Material Testing Lab and 

are summarized in Tables 3-4, 3-5 and Figure 3-6. The data belongs to and was kindly 

shared by General Motors. Figures 3-7 and 3-8 illustrate example simulations created for 

the open-mold and closed-mold cooling stages. The simulated core temperature-time 

curve was then compared to the experimental measurement. Afterwards, the values of the 

coefficients to be estimated ( ℎ𝑓𝑓,  ℎ𝑐𝑐−𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝 and ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) were iteratively altered until the 

simulation curves matched the experimental ones. 
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Table 3-4: Heat capacity of Tepex Flowcore measured at Moldex3D Material 

Testing Lab 

Temperature (oC) Heat Capacity (J/kg·K) 

35  1067  

90  1384  

110  1484  

160  1702  

170  1809  

175  1973  

180  2671  

185  4134  

190  2016  

195  1684  

230  1687  

290  1657  

 

Table 3-5: Thermal conductivity of Tepex Flowcore measured at Moldex3D 

Material Testing Lab 

Temperature (oC) Thermal Conductivity (W/m·K) 

30 0.423 

100 0.473 

200 0.397 
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Figure 3-6: Plot of heat capacity data in Table 3-4, peak indicates the 

recrystallization temperature range of the material 

 

Figure 3-7: Abaqus simulation for open-mold cooling stage 
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Figure 3-8: Abaqus simulation of closed-mold cooling stage 

3.1.5 Parameter Validation 

As was mentioned, two types of samples were used for each process stage. The main 

difference between the two was the number of consolidated layers, and therefore the 

thickness and mass. The heat transfer coefficients estimated using 4-layer samples were 

then applied to the modeling of 6-layer samples. These coefficients can then be validated 

by checking if they predict well the thermal behavior of the 6-layer sample. All the 

fittings and validations use RMSE (root mean square error) as evaluation function. The 

fittings were optimized by slope-based approach, i.e. the concept of response surface 

methodology however with single input variable. 

3.2 Results and Discussion 

3.2.1 Pre-Heating Stage 

Figure 3-9 compares the experimental temperature-time curve and simulated 

temperature-time curve for pre-heating sample sheets in the oven. Figure 3-9(a) shows 

the results after fitting forced convection (ℎ𝑓𝑓) coefficient using 4-layer sample. Figure 3-

9(b) shows the validation by applying this coefficient on 6-layer sample. 
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Figure 3-9: Simulated core temperature compared with experimental core 

temperature during pre-heating stage (a) parameter estimation using 4-layer sample 

(b) parameter validation using 6-layer sample 

In both cases, the simulation matches well with experiment over the entire heating period. 

In experimental curve, the melting of the polymer matrix (the sudden drop of curve slope 
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near 220 oC) has been captured. This was predicted by including latent heat (21.4 kJ/kg, 

calculated from heat capacity data in Table 3-4) in the simulation. 

3.2.2 Cooling Stages 

Figure 3-10(a) presents the simulated curve and experimental curve for the 4-layer 

sample in the case of open-mold cooling. Good agreement was obtained by fitting the 

thermal contact conductance value between the sheet and mold interface. However, after 

applying this value to the 6-layer sample, the simulation predicted significantly higher 

core temperature than experiment (not shown in Figure 3-10). This suggested that the 

contact conductance fitted from 4-layer sample does not apply to 6-layer sample. It is 

possible that the heavier sample created more pressure on the lower mold surface and led 

to a better contact at the interface. This phenomenon was also observed by Kugule et al. 

[12] in their study for thermoforming process. Consequently, in the case of open-mold 

cooling, a separate fitting was performed for the 6-layer sample to determine a different 

conductance value. Figure 3-10(b) compares the predicted cooling curve against 

experiment after performing the fitting for 6-layer sample. 
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Figure 3-10: Simulated core temperature compared with experimental core 

temperature during open-mold cooling stage (a) parameter estimation using 4-layer 

sample (b) parameter estimation using 6-layer sample 

During closed-mold cooling, the press exerted additional force on sample that was much 

greater than sample weight (400 kN vs. 0.013-0.019 kN), making the difference between 

the two sample types negligible. In other words, the sheet-mold contact conductance can 

be considered equal for 4-layer and 6-layer samples in this case. Figure 3-11(a) shows the 

estimation of the conductance using 4-layer sample and Figure 3-11(b) shows the 

validation using a 6-layer sample. Again here, simulation predictions match well with 

experimental measurements for both types of samples. 
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Figure 3-11: Simulated core temperature compared with experimental core 

temperature during closed-mold cooling stage (a) parameter estimation using 4-

layer sample (b) parameter validation using 6-layer sample 

3.2.3 Estimated Parameters 

Table 3-6 summarizes the estimated heat transfer coefficients in each studied process 

stage, where ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 and ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are natural convection coefficients calculated directly 
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from correlations (marked with asterisks), ℎ𝑓𝑓, ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and ℎ𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are heat transfer 

parameters estimated by the model-fitting method compared to experimental data. 

Table 3-6: Summary of estimated heat transfer parameters 

Process Stage Value of Heat Transfer Parameter 

Pre-Heating ℎ𝑓𝑓 = 36 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

Transfer Top Side* ℎ𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡 = 8.5 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

Bottom Side* ℎ𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 4.5 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

Open-Mold Cooling 4-Layer Sample ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 280 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

6-Layer Sample ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 490 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

Closed-Mold Cooling ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 7500 𝑊𝑊/𝑚𝑚2 ∙ 𝐾𝐾 

As can been seen in open-mold cooling, heavier samples lead to greater sheet-mold 

contact conductance due to the reason explained in Section 3.2.2. In the cases of pre-

heating and closed-mold cooling, a single heat transfer coefficient value was adequate for 

modeling sheets with different thicknesses. Additionally, the closed-mold ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value 

was found to be much higher than open-mold ℎ𝑐𝑐−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 values because of the press force 

applied. This would explain the rapid cooling of sheet usually observed during the 

forming (closed-mold) stage [46]. 

3.3 Applications in Process Chain 
Characterizing these heat transfer parameters enables accurate prediction of through-

thickness temperature profile within charge, which further enables better process 

optimization. Sensitivity analysis is an essential step in process optimization, as it studies 

the impact of process conditions on process outcomes. In compression molding process, 

conditions such as mold temperature and sheet thickness can significantly affect the 

evolution of charge temperature distribution which directly impacts the final molding 
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outcome. Knowing the heat transfer parameters, the effects of these process conditions 

can be easily analyzed by varying them in the thermal modeling. To illustrate this 

application, a sensitivity analysis was performed by simulation with several combinations 

of sheet thicknesses and mold temperatures, while keeping all other process conditions 

(e.g. heating time, transfer cooling time, on-mold cooling times) the same. The resulting 

sheet temperature profiles at the final closed-mold stage are plotted in Figure 3-12. In the 

figure, the recrystallization temperature of polymer matrix was marked with a vertical red 

line (at 190 °C). 

 

Figure 3-12: Simulated through-thickness temperature profile for studied process 

conditions (a) single layer sample and 110 oC mold temperature (b) 3-layer sample 

and 110 oC mold temperature (c) 2-layer sample and 150 oC mold temperature (d) 2-

layer and 70 oC mold 
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In all conditions, the sheet temperature profiles are initially asymmetric as a result of 

open-mold cooling prior to mold closure. After the mold closes, large ℎ𝑐𝑐−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 values at 

both sides of sheet lead to rapid cooling of surfaces to mold temperature, and 

consequently an evolution toward a symmetric temperature profile. The main effect of 

the studied process conditions is considered at core of the sheet. Figure 3-12(a) shows 

that a single layer sheet will solidify completely in 2 seconds at 110 oC mold temperature. 

The core of a thicker 3-layer sheet can remain above recrystallization temperature for 

much longer at the same mold temperature (Figure 3-12(b)). Figures 3-12(c) and 3-12(d) 

suggest that elevated mold temperature (150 oC vs. 70 oC) can significantly lengthen the 

time to solidify the core of sheet. A complete summary of all simulated conditions and 

the resulting time to solidify the core of sheet are given in Table 3-7. For thickest sheets 

and highest mold temperature (Table 3-7), the sheet core can remain molten (over 

190 oC) for over 20 seconds. In the case of thinnest sheet and lowest mold temperature 

(Table 3-7), however, complete solidification takes place in 2 seconds. Based on this 

data, the time window of forming can be estimated accordingly with respect to different 

mold temperatures and types of sheet used. 

Table 3-7: Simulated conditions and corresponding time to complete solidification 

after the mold closes 

Sample Thickness Mold Temperature (oC) Time to Complete Solidification 
After Mold Closes (s) 

Single Layer 70 1.7 

Single Layer 110 2.5 

Single Layer 150 3.5 

2-Layer 70 9.2 

2-Layer 110 13.0 

2-Layer 150 >20.0 

3-Layer 70 >20.0 

3-Layer 110 >20.0 

3-Layer 150 >20.0 
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3.4 Conclusions 
In this chapter, an experimental setup was designed to measure the core temperature of 

GMT sheets at each stage of the compression molding process. A one-dimensional 

thermal model was used to predict the through thickness temperature profiles of sheets. 

Natural convection heat transfer coefficients at sheet surfaces during transfer and open-

mold cooling stages were directly calculated by Nusselt Number correlations. By fitting 

model prediction to experimental data, other important heat transfer parameters during 

different process stages were characterized. With these heat transfer parameters, the 

evolution of charge temperature profile through process chain can be accurately 

simulated. The application of accurate thermal modeling can further assist in the 

optimization of the molding process, for example sensitivity analyses and time window 

determination. In addition, the thermal modeling can be coupled with mechanical 

modeling, developing thermomechanical approaches to simulate the material forming 

behavior [47]. 
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Chapter 4  

4 Material Characterization for Draping Simulations 
Computer simulation is a powerful tool to help develop compression molding processes. 

With accurate prediction of material behavior during forming, the process development 

can be accelerated and optimized [5], [14].  In the case when a sheet-like charge is used 

in compression molding, the forming process can be divided into two phases, namely a 

draping phase and flowing phase [14]. In the draping phase, the sheet drapes into mold 

cavity with slight pressure applied on the mold, where little or no flow behavior takes 

place. In the flowing phase, the mold pressure increases and forces the material to flow 

and fill the entire cavity. Figure 4-1 illustrates the two phases in the compression molding 

of thermoplastic sheets.  

 

Figure 4-1: Draping and flowing phases of the compression molding process 

Modeling the draping phase is an important part of 

compression molding simulation, as it predicts forming 

defects such as local wrinkling and part distortion [5], [13], 

[14], [48]. In the draping phase, the molten state sheet 

barely flows, but deforms into the structured shape due to 

contact mold pressure. The material deformation is 

dominated by the behavior called intra-ply shearing (Figure 

4-2, X2 is the thickness direction, X1 is the shearing 

direction). To model this shear behavior, viscoelastic 

Beginning Draping Flowing

Figure 4-2: Intra-ply 

shearing when material is 

draping [17] 
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properties of the molten state material must be characterized. 

Many set-ups have been developed to characterize the shear behaviors of thermoplastic 

composites. For example, Haanappel et al. [17] developed an oscillatory torsion bar 

method on a rotational rheometer. Margossian et al. [49] used dynamic mechanical 

analysis system (DMA) and a bending fixture to investigate the viscoelastic properties of 

thermoplastic UD tapes. However, both their methods were conducted under small strain 

conditions, where the material was in its linear viscoelastic regime (LVE). In LVE, the 

microstructure of material remains unchanged, and therefore the properties such as shear 

modulus or viscosity is constant or independent of strain amplitude. However, when 

material undergoes large strain deformation, such as in the case of compression molding, 

its microstructure breaks and would lead to change of shear properties depending on 

strain amplitude. Characterization methods under large strain conditions include the 

rheometer bending presented by Sachs et al. [24] and the modified torsion bar presented 

by Haanappel et al. [17]. The two methods shared similar concepts but had different 

specimens and fixtures (figure 4-3).  

 

Figure 4-3: Fixtures and specimens to characterize intra-ply shearing presented by 

(a) Saches et al. [24] and (b) Haanappel et al. [17] 

In both methods, steady rotation of the rheometer was conducted up to a maximum angle 

of 60o. This large rotational angle enabled capture of non-linear viscoelastic behavior of 

the material. By fitting experimental data to nonlinear viscoelastic models, the methods 

(a) (b)
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were able to characterize shear properties used for thermoforming simulations, which is 

very similar to the draping phase of compression molding. However, these methods 

require building custom fixtures that are not part of the standard equipment set of a 

commercial rheometer. Furthermore, some rheometer types do not provide the function 

of steady rotation. In this chapter, a large strain method was developed to characterize the 

viscoelastic properties of selected glass mat thermoplastic (GMT) sheet. The method was 

based on large amplitude oscillatory shear (LAOS), which is convenient to set up on most 

commercial rotational rheometers. The fixture was torsion bar set-up provided in the 

rheometer equipment set. Using the LAOS theory developed by Ewoldt et al. [50], the 

shearing data was analyzed to decouple and estimate shear modulus and shear viscosity 

of the GMT material. The properties were then fitted into Cross-WLF viscosity and WLF 

modulus models to generate materials card that can be used as input for draping 

simulation during compression molding the GMT. Finally, characterization methods 

presented by Sachs et al [24] and Haanappel et al [17] were also conducted for the same 

material at Fraunhofer ICT (Pfinztal, Germany). The properties characterized by the three 

methods were compared and validated. 

4.1 Material and Property Anisotropy Examination 
The main characteristics of the Tepex 

Flowcore material were given in Table 3-2. 

For fiber reinforced materials, it is possible 

that the mechanical properties are 

anisotropic due to factors such as fiber 

orientation. Uni-directional machine patterns 

were found to appear on blank Tepex 

Flowcore sheets (Figure 4-4). This might 

suggest that the sheet had passed through 

rollers when it was manufactured, which 

could lead to slight deviation from the intended random fiber orientation, and 

consequently anisotropic mechanical properties. To test this hypothesis, a simple squeeze 

Figure 4-4: Machine pattern on Tepex 

Flowcore and the two objective directions 
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flow test was performed. Two objective directions were specified with respect to the 

pattern direction (Figure 4-4).  

The material was cut into 10 cm x 10 cm squares, stacked into 10 layers and squeezed at 

molten state by the press (Dieffenbacher DCP-U 2500/2200). The squeezed flow length 

in the two objective directions were found to be constantly different in all 6 repeated 

tests. The after-flow dimensions of sample in each test were measured and are 

summarized in Table 4-1. A graphical comparison is illustrated in Figure 4 using results 

from test #1 (yellow square represents the original charge location).  

Table 4-1: After-flow dimensions measured in two objective directions 

Test Number Length in 0 direction (cm) Length in 90 direction (cm) 

1 25.755 30.370 

2 24.945 31.589 

3 29.164 36.005 

4 29.155 37.695 

5 33.003 40.442 

6 33.135 45.034 

 

Figure 4-5: Squeezed charge from test #1 



42 

 

The flow length in 0 direction being constantly lower could suggest that fibers orient 

slightly more in this direction in the blank sheet. To further validate this point, a micro-

CT analysis was performed on Tepex Flowcore to study the fiber orientation 

distributions. The test was performed on a Zeiss Xradia 410 Versa Micro-CT. 

Rectangular sample (49 mm x 11 mm) was cut from the 2 mm thick Flowcore blank (as 

received, not molded) sheet. The sample was scanned at voxel sizes of 5 µm with beam 

energy of 40 kV. The results are given in Figure 4-6. 

 

Figure 4-6: Fiber orientation distribution of Tepex Flowcore blank sheet 

 

Figure 4-7: One of the micro-CT stitch images taken on the sample (view through 

the thickness) 
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As can be seen in figure 4-6, the fiber orientation of Tepex Flowcore is random in the two 

objective directions through most of the thickness. However, near one side of the sheet, 

the fibers tend to orient more toward the 0 direction and eventually lead to a highly 

uneven distribution at the surface. This finding explains the different flow lengths found 

in squeeze flow test. Furthermore, it can cause anisotropic shear properties of the 

material. In fiber reinforced materials, the intra-ply shearing is typically distinguished 

into two micro-mechanisms [17], [48], [13]. The first is longitudinal shearing which 

considers fibers sliding parallel to their orientation. The second is transversal shearing 

which considers relative fiber movement normal to the orientation direction (Figure 4-8). 

The two micro-mechanisms can result in very different shear properties. For instance, 

uni-directional composites such as thermoplastic UD tapes can be highly anisotropic with 

respect to the fiber orientation. In Tepex Flowcore, longitudinal and transversal 

mechanisms co-exist when intra-ply shearing takes place. With ideally random fiber 

orientation, contributions of the two mechanisms should be exactly same at 0 and 90 

directions, creating isotropic shear properties. However, current fiber orientation analysis 

(Figure 4-6) suggests that longitudinal shearing can contribute more at 0 direction, while 

contributing less at 90 direction. In other words, intra-ply shearing behavior can be 

different in 90 and 0 directions. This reasoning leads to necessity of conducting shear 

characterization experiments toward both of the two objective directions. 

 

Figure 4-8: Two intra-ply shearing mechanisms distinguished by (a) longitudinal 

shearing and (b) transversal shearing 

Fibers

(a) (b)
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4.2 Sample Preparation and Experimental Procedures 
Torsion bar specimens were cut from a single layer of Flowcore 

blank sheet. The specimens measure 60 mm in length, 12.7 mm in 

width and 2 mm in thickness (Figure 4-9). Due to the reasons 

explained in Section 4.1, two types of specimens were prepared — 

length along the 0 direction and length along the 90 direction. In 

this sense, the intra-ply shearing behavior can be characterized in 

these two directions. The torsion bar experiments were carried out 

on a rotational rheometer (Rheometrics Dynamic Spectrometer 

Model RDS II) with its standard fixture. The rheometer was also 

equipped with environmental chamber that allows testing at 

elevated temperatures. Figure 4-10 (Left) shows a specimen being 

fixed on equipment. Figure 4-10 (Right) presents a schematic 

drawing of the equipment (reproduced from user manual). 

 

Figure 4-10: (Left) picture of sample being installed on the fixtures, (Right) 

equipment schematic drawing reproduced from the user manual 

Bottom fixture driven by motor

Top fixture connected to transducer

Sample

Total sam
ple length

Clamp
Collar and screw to 

tighten sample 
fixation

Heat Baffles

60 mm

12.7 mm
2 mm

Figure 4-9: Torsion 

bar specimen 

dimensions 
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After a specimen was set up to the fixture, it was heated to and maintained in the molten 

state. Afterwards, large amplitude oscillatory shear (LAOS) tests were carried out. The 

function of arbitrary waveshape tests were used. The motor drove the bottom fixture to 

perform sinusoidal rotation periods under pre-fixed frequencies and amplitude angles. 

Based on amplitude angles, the machine was able to calculate corresponding strain 

amplitudes. For each rotational period, the transducer at top fixture measured and 

recorded the response torque curve, then automatically converted it to the stress curve. 

For each specimen, three strain amplitudes were each tested at three different frequencies. 

Moreover, to capture temperature-dependency of material properties, three testing 

temperatures were performed using more specimens. The detailed test matrix is given in 

table 4-2. 

Table 4-2: Detailed test matrix for oscillatory torsion bar tests 

 230 oC 250 oC 260 oC 

1% Strain Amplitude 0.5 rad/s 0.5 rad/s 0.5 rad/s 

1 rad/s 1 rad/s 1 rad/s 

10 rad/s 10 rad/s 10 rad/s 

1.7% Strain Amplitude 0.5 rad/s 0.5 rad/s 0.5 rad/s 

1 rad/s 1 rad/s 1 rad/s 

10 rad/s 10 rad/s 10 rad/s 

2.3% Strain Amplitude 0.5 rad/s 0.5 rad/s 0.5 rad/s 

1 rad/s 1 rad/s 1 rad/s 

10 rad/s 10 rad/s 10 rad/s 

Each test condition in Table 4-2 was repeated for three specimens cut in the 0 direction 

and three specimens cut in the 90 directions. 
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4.3 Data Analysis 
Time domain data was collected from the experiments, which composed of strain vs. time 

and measured stress vs. time curves of each rotational period. Figure 4-11 shows a 

segment of strain curve and the corresponding stress curve in one of the tests. As can be 

seen from the figure, there is a phase lag between the strain and stress waves. The phase 

angle, however, is obviously smaller than 90o or 1
2
𝜋𝜋. The phase angle within the range of 

0o to 90o indicates viscoelastic behavior of the material. Furthermore, the shape of the 

stress curve is apparently distorted from a perfect sinusoidal wave (e.g. the strain curve in 

same graph). This distortion typically means that the material is within the large strain 

amplitude regime, thus having non-linear viscoelastic behaviors [50]. In fact, the 

distorted stress curves were observed among all three tested strain amplitudes. This 

phenomenon was anticipated, as the objective was to characterize material properties 

under large deformation.  

 

Figure 4-11: Example strain and stress data collected from experiments 

In oscillatory rheometry, equations 4.1 and 4.2 are usually used for small strain tests to 

calculate storage and loss modulus, respectively. However, these equations were derived 

from the premise that stress curve is a sinusoidal wave in the form of equation 4.3. 
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𝐺𝐺′ = 𝜎𝜎0
𝛾𝛾0
∙ cos (𝛿𝛿) (4.1) 

𝐺𝐺′′ = 𝜎𝜎0
𝛾𝛾0
∙ sin (𝛿𝛿) (4.2) 

𝜎𝜎(𝑡𝑡) = σ0 ∙ sin (𝜔𝜔 ∙ 𝑡𝑡 + 𝛿𝛿) (4.3) 

This premise does not apply for the large strain regime, where the stress curve is no 

longer a purely sinusoidal function of time. Therefore, a different method needs to be 

developed.  

The stress curve for LAOS data, although not purely sinusoidal, is still a periodic 

function of time. The function can be completely represented by a Fourier series given in 

equation 4.4 [51]. 

σ(t,ω, γ) =  𝛾𝛾0 ∙ ∑ [𝐺𝐺𝑛𝑛′ ∙ sin(𝑛𝑛𝑛𝑛𝑛𝑛) + 𝐺𝐺𝑛𝑛′′ ∙ cos(𝑛𝑛𝑛𝑛𝑛𝑛)𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜) ] (4.4) 

where σ is the stress, 𝛾𝛾0 is the strain amplitude, 𝐺𝐺𝑛𝑛′  and 𝐺𝐺𝑛𝑛′′ are Fourier series coefficients, 

and 𝜔𝜔 the oscillatory frequency of strain signal. Here, only odd terms of the series are 

taken, because stress is assumed oddly symmetrical with respect to directionality of strain 

or strain rate [52]. Even terms would typically be considered for transient tests [53].  

Furthermore, Cho et al. [54] has developed a method to decompose the total viscoelastic 

stress into superposition of two portions — the elastic portion and the viscous portion. In 

general, the time domain stress and strain data can be replotted with stress against strain, 

and also stress against strain rate. For example, Figure 4-12 and Figure 4-13 are plotted in 

this way using the data from Figure 4-11.  
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Figure 4-12: Stress against strain plot using data from Figure 4-11 

 

Figure 4-13: Stress against strain rate plot using data from Figure 4-11 

Using the idea that elastic stress should be oddly symmetrical with respect to strain (or 

vertical axis in Figure 4-12) and evenly symmetrical with respect to strain rate (or vertical 

axis in Figure 4-13), whereas viscous stress should do the opposite, the two portions can 

be decomposed from total stress by the following equations [54]: 
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σ = 𝜎𝜎′ + 𝜎𝜎′′ (4.5) 

𝜎𝜎′ = 𝜎𝜎(𝛾𝛾,𝛾̇𝛾)−𝜎𝜎(−𝛾𝛾,𝛾̇𝛾)
2

 (4.6) 

𝜎𝜎′′ = 𝜎𝜎(𝛾𝛾,𝛾̇𝛾)−𝜎𝜎(𝛾𝛾,−𝛾̇𝛾)
2

 (4.7) 

Where σ is the total stress, 𝜎𝜎′ is the elastic stress portion, 𝜎𝜎′′ is the viscous stress portion, 

𝛾𝛾 the strain and 𝛾̇𝛾 the strain rate. 

Performing equation 4.6 to all data points in Figure 4-12 will generate a new set of data, 

representing elastic stress as a function of strain. It can be plotted as shown on Figure 4-

14. Similarly, performing equation 4.7 to all data points in Figure 4-13 generates viscous 

stress as a function of strain rate, which is plotted in Figure 4-15. 

 

Figure 4-14: Elastic stress decomposed from Figure 4-12 using equation 4.6 
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Figure 4-15: Viscous Stress decomposed form Figure 4-13 using equation 4.7 

With elastic and viscous stress being decomposed as functions of strain and strain rate, 

the estimation of viscoelastic parameters can be performed. Recall that equation 4.4 

transforms the stress signal into a Fourier series. Ewoldt et al. [50] found the Fourier 

series to be equivalent to the stress decomposition by relating to equations 4.6 and 4.7, 

such that: 

𝜎𝜎′ = 𝜎𝜎(𝛾𝛾,𝛾̇𝛾)−𝜎𝜎(−𝛾𝛾,𝛾̇𝛾)
2

=  𝛾𝛾0 ∙ ∑ 𝐺𝐺𝑛𝑛′ ∙ sin(𝑛𝑛𝑛𝑛𝑛𝑛)𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜)  (4.8) 

𝜎𝜎′′ = 𝜎𝜎(𝛾𝛾,𝛾̇𝛾)−𝜎𝜎(𝛾𝛾,−𝛾̇𝛾)
2

= 𝛾𝛾0 ∙ ∑ 𝐺𝐺𝑛𝑛′′ ∙ cos(𝑛𝑛𝑛𝑛𝑛𝑛)𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜)  (4.9) 

By doing so, 𝐺𝐺𝑛𝑛′  can be viewed as elastic parameters linking elastic stress to the strain, 

while 𝐺𝐺𝑛𝑛′′ can be viewed as viscous parameters relating viscous stress and the strain rate. 

Fitting equations 4.8 and 4.9 with Chebyshev polynomials (equations 4.10 and 4.11, 

respectively) of the first kind allows the estimation of these parameters.  

𝜎𝜎′ =  𝛾𝛾0 ∙ ∑ 𝑒𝑒𝑛𝑛 ∙ 𝑇𝑇𝑛𝑛(sin(𝜔𝜔𝜔𝜔))𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜)  (4.10) 

𝜎𝜎′′ =  𝛾𝛾0̇ ∙ ∑ 𝑣𝑣𝑛𝑛 ∙ 𝑇𝑇𝑛𝑛(cos(𝜔𝜔𝜔𝜔))𝑛𝑛 (𝑜𝑜𝑜𝑜𝑜𝑜)  (4.11) 
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Ewoldt et al. [50] has developed  software (MITlaos) to perform such fitting. The 

software was freely available and was used in this study. MITlaos was able to fit the 

polynomial to the third harmonic order. In other words, 𝐺𝐺1′ , 𝐺𝐺3′ , 𝐺𝐺1′′ and 𝐺𝐺3′′ were 

estimated. 𝐺𝐺3′  and 𝐺𝐺3′′ are indicators of intra-cycle nonlinear behaviors under oscillatory 

conditions. These two parameters are of less importance to the draping simulation which 

considers a continuous deformation. On the other hand, 𝐺𝐺1′  and 𝐺𝐺1′′ reflect the average 

viscoelastic properties within the cycle, which are equivalent to the often referred “elastic 

modulus” and “loss modulus” [50]. By dividing 𝐺𝐺1′′ with the oscillatory frequency, the 

average viscosity 𝜂𝜂1 within the oscillatory cycle can be obtained (equation 4.12). 

𝜂𝜂1 = 𝐺𝐺1′′

𝜔𝜔
 (4.12) 

The parameters 𝐺𝐺1′  and 𝜂𝜂1 can now be regarded as the shear modulus and shear viscosity, 

which are typically characterized and used in viscoelastic models (e.g. the Kelvin Voigt 

model) to predict draping behavior of thermoplastic composites [5].  For the purpose of 

this study, it is also necessary to identify the shear rate dependency of the two 

parameters. Since 𝐺𝐺1′  and 𝜂𝜂1 represent average elasticity and viscosity during oscillation, 

it is reasonable to match them with an average shear rate extracted from the oscillatory 

cycle. Just like shear strain, the shear rate during oscillation is a sinusoidal function of 

time given in equation 4.13. 

𝛾̇𝛾 = 𝛾𝛾0̇cos (𝜔𝜔𝜔𝜔) (4.13) 

To extract an average shear rate, the root mean square average (RSMA) of equation 4.13 

is used. For sinusoidal functions, the RSMA is the amplitude divided by √2, therefore: 

𝛾̇𝛾𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛾𝛾0̇
√2

 (4.14) 

For each set of test frequency and strain amplitude, equation 4.14 was used to find an 

average shear rate that matches the characterized elastic modulus and viscosity. 
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4.4 Characterization Results and Discussions 
Using the data analysis method explained in section 4.1, the elastic modulus and viscosity 

were characterized for all conditions listed by table 4-2. As was mentioned, each test 

condition was repeated on three 0 direction specimens and three 90 direction specimens. 

For each specimen type, the finalized material properties were obtained as the arithmetic 

means of the results generated by the three experimental replicates. As an example, table 

4-3 summarizes the characterization results from all 90 direction specimens tested at 230 
oC, as well as the finalized material properties under this temperature. In addition, the 

RSMA shear rate is included for each combination of frequency and strain amplitude. 

Table 4-3: Results from all 90 direction specimens tested at 230 oC 

 

As can be seen, the RSMA shear rate increases with greater frequencies or greater strain 

amplitudes. The combination of these two test conditions has generated many data points 

for studying shear rate dependency of material properties. After finalizing material 

properties for all specimen types and test conditions, the complete characterization results 

of elastic modulus are plotted against shear rate in Figure 4-16. 

 

G (Mpa) Viscosity (Mpa.s) G (Mpa) Viscosity (Mpa.s) G (Mpa) Viscosity (Mpa.s)
#1 1.41 2.10 1.42 1.11 2.07 0.23
#2 0.90 1.70 0.91 0.93 1.45 0.22
#3 1.02 1.52 1.02 0.82 1.53 0.19

Avg 1.11 1.77 1.12 0.95 1.68 0.21
RMSA Shear Rate (1/s)

#1 1.17 1.56 1.20 0.86 1.82 0.20
#2 0.70 1.25 0.71 0.72 1.25 0.2
#3 0.82 1.15 0.84 0.66 1.34 0.18

Avg 0.90 1.32 0.92 0.75 1.47 0.19
RMSA Shear Rate (1/s)

#1 1.29 1.41 1.30 0.78 1.97 0.18
#2 0.65 1.09 0.68 0.64 1.24 0.19
#3 0.81 1.03 0.84 0.60 1.37 0.17

Avg 0.92 1.18 0.94 0.67 1.53 0.18
RMSA Shear Rate (1/s)

0.5 rad/s 1 rad/s 10 rad/s
230 C, 90 Degree Samples

0.00707 0.07070.00354

1% Strain Amplitude

1.7% Strain Amplitude

2.3% Strain Amplitude

0.00601 0.0120 0.120

0.00813 0.0163 0.163
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Figure 4-16: Elastic modulus characterized for 0 and 90 direction samples under (a) 

230 oC (b) 250 oC and (c) 260 oC 
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Relatively low values have been characterized for the elastic modulus. At all three tested 

temperatures, the elastic modulus presents an increasing trend with increasing shear rate. 

However, the trend is not pronounced, especially at higher temperatures and relatively 

low shear rate range. Another noticeable point is the elastic modulus in 0 direction being 

consistently higher than elastic modulus in 90 direction. This fits the reasoning in section 

4.1, that more fibers oriented in the 0 direction resulted in greater contributions from 

longitudinal shearing than transversal shearing, and consequently larger shear properties 

in this direction. Nevertheless, for elastic modulus at this magnitude, the viscoelastic 

modelling (e.g. Kelvin Voigt model) of draping behavior can be less sensitive to its 

impact [5]. Therefore, it is possible to just consider a constant elastic modulus by taking 

the average value of data points at each temperature. In this case, one could take the 

options to distinguish or ignore the differences between 0 and 90 directions. The 

temperature dependency of elastic modulus, however, is necessary to be considered as it 

can be obviously seen in Figure 4-17 (on log scale plots, normal scale plots are also given 

in appendices as a reference). Furthermore, the material temperature can change 

dramatically during forming stage (studies in Chapter 3), which can create much more 

variations on material properties. 
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Figure 4-17: Temperature dependency of elastic modulus on (a) 90 direction 

specimen and (b) 0 direction specimen 

The viscosity values were also characterized at all test conditions and plotted against the 

shear rate, given in Figure 4-18. 
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Figure 4-18: Viscosities characterized for 0 and 90 direction samples under (a) 

230 oC (b) 250 oC and (c) 260 oC 

The viscosity, unlike elastic modulus, has exhibited large dependency on the shear rate. 

The decreasing viscosity values with higher shear rates can be characterized as a shear 

thinning behavior. It is a common phenomenon observed for polymer melts. Typically, 

polymer chains tend to disentangle and align toward the shear direction, which lead to 

drops in apparent viscosity. In the case of thermoplastic composites, fibers can have 

similar behavior and contribute to shear thinning, especially when material is forced to 
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flow [55]. Within the tested shear rate range, the decline of viscosity appears almost 

linear on logarithmic plots (Figure 4-18). This means the characterized viscosity values 

can be approximated by a power-law or Cross model, which allows extrapolation to a 

broader range of shear rate. 

Similar to the case of elastic modulus, the viscosity of 0 direction specimen is constantly 

higher than the viscosity of 90 direction specimen under all temperatures. This again 

validates the assumption of anisotropic shear properties made in section 4.1. Furthermore, 

the temperature dependency of viscosity is clearly observed for both types of specimen 

(Figure 4-19), thus must be considered for modeling and simulation. 

 

 

Figure 4-19: Temperature dependency of viscosity on (a) 90 direction specimen and 

(b) 0 direction specimen 
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4.5 Generation of Material Cards 
The elastic modulus and viscosity values characterized in previous sections can be used 

to create material cards that serve as input of forming simulations. Instead of direct input 

as tabulated data, a more commonly used method is to fit property models and generate 

model parameters. As was discussed in section 4.4, the elastic modulus of Tepex 

Flowcore can be considered independent of shear rate. The temperature dependency is a 

more important factor. In this consideration, the elastic modulus was fitted to the 

Williams–Landel–Ferry (WLF) equation (equation 4.15), which is a commonly used 

model for temperature dependency.  

𝐺𝐺(𝑇𝑇) = 𝐷𝐷1 ∙ exp (−�𝐴𝐴1∙(𝑇𝑇−𝐷𝐷2)
𝐴𝐴2+𝑇𝑇−𝐷𝐷2

�) (4.15) 

where 𝐺𝐺(𝑇𝑇) is the temperature dependent modulus, 𝑇𝑇 is the temperature, 𝐴𝐴1, 𝐴𝐴2, 𝐷𝐷1 and 

𝐷𝐷2 are model parameters. 

The Cross model has been widely used for fitting viscosity. It is well known for being 

able to include both the Newtonian regime and shear thinning regime of polymer melts. 

In combination of the WLF equation, a Cross-WLF approach was used to capture both 

shear rate and temperature dependency of the viscosity data. (equations 4.16 and 4.17). 

𝜂𝜂(𝛾̇𝛾) = 𝜂𝜂0
1+(𝜂𝜂0∙𝛾̇𝛾𝜏𝜏∗ )1−𝑛𝑛

 (4.16) 

Where 

𝜂𝜂0(𝑇𝑇) = 𝐷𝐷1 ∙ exp (−�𝐴𝐴1∙(𝑇𝑇−𝐷𝐷2)
𝐴𝐴2+𝑇𝑇−𝐷𝐷2

�) (4.17) 

Equation 4.16 is the Cross model which describes shear rate dependency of viscosity. 

The parameter 𝑛𝑛 is the flow index in shear thinning regime, parameter 𝜏𝜏∗ is the critical 

stress at the Newtonian plateau and 𝜂𝜂0 is the constant viscosity in this regime. Equation 

4.17 determines the value of 𝜂𝜂0 based on temperature, which adds temperature 

dependency to the cross model. 
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In this study, the temperature dependency of elastic modulus was only characterized with 

three data points (three test temperatures). Fitting all four parameters of the WLF 

equation to the elastic modulus data would be difficult and might create overfitting 

problems. Fixing some of the parameters with reasonable values would help address this 

issue. For polymer melts, 𝐷𝐷2 can usually use the glass transition temperature [56]. Given 

this premise, 𝐴𝐴1 and 𝐴𝐴2 can also be fixed at the values provided by Osswald et al. [56], 

leaving 𝐷𝐷1 the only parameter to be fitted. 

When fitting of viscosity data, this technique was used again for the WLF part. In 

addition, 𝜏𝜏∗ in the Cross part was fixed at specially selected values to prevent the 

viscosity value at Newtonian regime being too high. Details of fixed and fitted 

parameters for modulus and viscosity data are summarized in table 4-4. The fitting was 

evaluated and optimized by relative square error. 

Table 4-4: Fixed and fitted parameters used for elastic modulus and viscosity data 

Parameters Elastic Modulus Viscosity 

𝐷𝐷1 fitted fitted 

𝐷𝐷2 60 oC (Tg) 60 oC (Tg) 

𝐴𝐴1 31.141 [56] 31.141 [56] 

𝐴𝐴2 51.6 oC [56] 51.6 oC [56] 

𝜏𝜏∗ - 0.001 MPa 

𝑛𝑛 - fitted 

The fitted models of elastic modulus and viscosity can be used to construct nonlinear 

viscoelastic models (e.g. Kelvin Voigt model) to simulate the draping behavior of Tepex 

Flowcore during compression molding process. When necessary, the models can also be 

extrapolated to predict material properties in a wider shear rate or temperature range. The 

fitted curves are summarized in Figures 4-20 and 4-21, the fitted parameters are given in 
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tables 4-5 and 4-6. It should be noted that the extrapolation of elastic modulus is only 

applicable above recrystallization temperature (around 190 oC or the red lines in Figures 

4-20 and 4-21). 

 

Figure 4-20: Fitting of 0 direction properties (left) Cross-WLF for viscosity and 

(right) WLF for elastic modulus 

 

Figure 4-21: Fitting of 90 direction properties (left) Cross-WLF for viscosity and 

(right) WLF for elastic modulus 
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Table 4-5: Fitted parameters for 90 direction and 0 direction 

Fitted Parameters Elastic Modulus Viscosity 

 90 Direction 0 Direction 90 Direction 0 Direction 

𝐷𝐷1 3.12 x 1010 MPa 4.39 x 1010 MPa 9.25 x 1011 MPa·s 2.83 x 1012 MPa·s 

𝑛𝑛 - - 0.32 0.34 

4.6 Comparison of Different Methods 
Apart from the characterization method developed in this chapter, Tepex Flowcore has 

been characterized for intra-ply shearing behaviors using different techniques, 

specifically, the torsion method presented by Haanappel et al [17] and the bending 

method presented by Saches et al [24]. These characterizations were completed by 

Susanne Lüssenheide and other collaborators at KIT and Fraunhofer ICT. Although using 

different fixtures, the two methods share similar concepts, which involves capturing 

torque vs. angle curve in a steady rotation. Afterwards, virtual experiments were 

simulated in finite element software (Abaqus CAE) with custom constitutive models 

(Kelvin-Voigt approach). Finally, elastic modulus and viscosity were characterized by 

reverse model fitting. Dörr et al. [5] found that the property set generated by bending 

method can successfully predict some local wrinkling on the draped parts. This suggests 

that the parameters characterized by the bending method are relatively accurate.  

To examine the method developed in this study, the characterized material properties 

were compared with data from the bending (RB [5]) technique, which was generously 

provided by Dörr et al. and other collaborators at KIT/ICT. A graphical comparison of 

the data is given in Figures 4-22 and 4-23. The RB tests were only conducted in 90 

direction. Therefore, the comparison was made using 90 direction properties generated in 

this study. As can be seen from the figures, elastic modulus characterized by the two 

methods are within the same order of magnitude (within the range 1-10 MPa), with this 

study being several times lower at same shear rates. The RB test indicates a more 

obviously increasing trend of the elastic modulus as shear rate increases. However, as 
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was mentioned in section 4.4, draping simulations would not be sensitive to elastic 

modulus of such small magnitudes. With regard to viscosity, the two tests both 

characterized a shear thinning behavior, and yielded very close values (with this study 

being only 1-2 times higher than the RB test at same shear rates). Overall, the viscoelastic 

properties characterized by this study are similar to those by the RB test. Obtaining close 

property values to a validated method from literature can be considered a validation 

aspect to the method from this study. 

 

Figure 4-22: Comparison of elastic modulus with RB test 

 

Figure 4-23: Comparison of viscosity with RB test 
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4.7 Conclusions 
In this chapter, a method was developed to characterize the intra-ply shearing behavior of 

selected GMT material, and consequently, generate material properties used in draping 

simulations. Samples from two directions were prepared to address the anisotropy 

brought by uneven fiber orientation. Stress-Strain data was collected from large 

amplitude oscillatory torsion bar tests using a rotational rheometer. Different frequencies 

and strain amplitudes were used to create a range of shear rates. Three temperatures were 

tested to capture the temperature dependency of material properties. The collected data 

was analysis based on theories of Cho et al. [54] and Ewoldt et al. [50] to estimate 

viscoelastic properties under large deformation. The elastic modulus was found to be low 

in magnitude and having not much dependency on shear rate. The viscosity, however, 

was highly shear thinning. As a result, elastic modulus was fitted to a WLF approach to 

only capture the temperature dependency, whereas the viscosity was fitted to a Cross-

WLF model that includes the impact of both shear rate and temperature. These fitted 

parameters generated materials card that can be used to construct constitutive models for 

draping simulation. Finally, the characterization results were compared with results from 

another method [5], [24] using the same material. The comparison could partly validate 

the method developed by this study. However, it is recommended to do further validation 

by inputting the characterization results into draping simulations, then comparing 

simulation results against draping experiments. 
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Chapter 5 

5 Material Characterization for Flow Simulations 
As was discussed in Chapter 4, the compression molding of GMT sheets can be divided 

into two phases — draping and flowing. Compared to the draping phase, the flowing 

phase involves a much greater press force that squeezes the material to flow and fill the 

cavity. The accurate simulation of flowing phase helps predict warpage and fiber 

orientation in molded parts [14]. In simulations of compression molding, the material is 

usually considered a fluid. Therefore, the apparent viscosity of the composite under flow 

must be characterized as essential simulation input. To distinguish this viscosity 

parameter from the parameter characterized in Chapter 4, it is referred to as the ‘press 

viscosity’ in this chapter. Squeeze flow rheometry is a commonly used technique for this 

purpose. By measuring press force, press velocity and gap distance, the press viscosity of 

the squeezed material can be estimated. Radial flow is commonly used in many 

experimental set-ups, however this flow pattern is not suitable for anisotropic materials. 

On the other hand, 1-D flow set-ups have also been invented, which can target toward 

interested directions of an anisotropic material. For example, Kalaidov et al. [57] 

developed such a method for D-LFT (direct long fiber thermoplastic) materials by 

making use of the hydraulic press and plaque mold at Fraunhofer Project Center (Figure 

5-1). 

 

Figure 5-1: 1-D flow characterization set-up developed by Kalaidov et al. [57] 
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 In this chapter, the same method and equipment will be adopted to perform flow 

characterization on the selected GMT sheet (Tepex Flowcore, features were given in 

Chapters 3 & 4). Afterwards, the estimated press viscosity will be fitted with a power-law 

model for flow simulation. 

5.1 Sample Preparation and Experimental Set-up 
The hydraulic press (Dieffenbacher DCP-U 2500/2200) and the plaque mold at 

Fraunhofer Project Center were used to perform the experiments. The mold has a square 

dimension with 457 mm side-length and 15 mm cavity depth. Rectangular pieces were 

cut from Flowcore sheets and were stacked to make squeeze flow charges. The length of 

the charge was made the same as the side-length of mold, the width was 150 mm and the 

stacked charge height was 12 mm. The charge was placed with its length along one side 

of the mold (Figure 5-2) to force a 1-D flow. Figure 5-2 illustrates the experimental set-

up. 

 

Figure 5-2: Experimental set-up for 1-D squeeze flow of Tepex Flowcore 

Prior to the squeeze flow tests, the charges were heated in a forced convection oven to 

above its melting temperature. Two charge temperatures were tested — 260 oC and 

300 oC. Thermal modeling results from Chapter 3 were used to determine heating times, 

which ensured the charge reached the target experimental temperatures (i.e. 

homogeneous temperature distribution). 

Upper Mold

Charge 1-D Flow

Bottom Mold

Pressing Force
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Charge

1-D Flow
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Again here, the anisotropic material properties discovered in Chapter 4 makes it 

necessary to characterize flow behavior in both 0 and 90 directions of the sheet. All 

layers in one stack were placed to flow in the same target direction, i.e. all 0 or all 90. In 

addition, the possible effect of different stacking styles was examined. Two types of 

stacks were used to prepare the 12 mm charge height — 6 layers of 2 mm sheets and 4 

layers of 3 mm sheets. A summary of the test matrix is given in table 5-1. 

Table 5-1: Test matrix of squeeze flow 

 6 x 2 mm Stack 4 x 3 mm Stack 

260 oC 90/0 90/0 

300 oC 90/0 90/0 

Settings used on equipment during all the tests are summarized below: 

• Fast mold closing (before mold contacted the charge): 550 mm/s 

• Slow mold closing (initial speed after contact of the charge): 15 mm/s 

• Maximum force build-up after contact of the charge: 3132 kN 

• Mold temperatures (upper & lower): 150 oC 

It is to be mentioned that the switch between ‘fast’ and ‘slow’ mold closing must be done 

manually to perform the experiments. The ‘fast’ closing also means the press is under 

speed control, whereas ‘slow’ closing also represents force control mode. Therefore, after 

upper mold contacts the charge and continues to squeeze, the actual closing speed can no 

longer be maintained at 15 mm/s. The actual closing speed during squeezing can only be 

read from press recordings (e.g. Figure 5-3). 

5.2 Data Analysis 
The press itself was able to measure and record three time-dependent data sets required 

by press viscosity estimation: 

• Mold closing speed ℎ̇ 
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• Pressing force 𝐹𝐹 

• Ram position ℎ (the gap distance between upper and bottom molds)  

A relatively smooth portion needed to be selected from each data set for the estimation. 

An example is given in Figure 5-3. 

 

Figure 5-3: Example data sets collected from press during squeeze flow experiments 

To perform the viscosity estimation method, some assumptions must be made for the 1-D 

flow problem. The assumptions are: 

• The charge is an incompressible fluid 

• The problem is assumed isothermal 

• The pressing speed is low enough to ignore the inertia effects. 

• The flow is purely one dimensional. In other words, flow is only toward positive 

x direction. No flow takes place in the z direction (Figure 5-4). 

• No slip at walls (Figure 5-4). 
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Figure 5-4: Coordinates and variables in the 1-D flow problem 

With the above assumptions and the studies on the “fountain flow effect” of polymer 

melts [58], [59], [60], the wall shear rate and shear stress at the flow front can be derived 

for this 1-D flow. The detailed derivations can be found in the works of Klaidov et al. 

[57]. The wall shear stress is given as:  

𝜏𝜏𝑤𝑤 = 𝐹𝐹∙𝐵𝐵∙ℎ3

2∙𝑘𝑘∙𝑉𝑉2
 (5.1) 

In equation 5.1, 𝐵𝐵 is the width of the flow which is simply the side-length of the mold 

(457 mm). 𝑉𝑉 is the total volume of the flow. Since the charge was assumed 

incompressible, 𝑉𝑉 remains constant at the initial charge volume (457 mm x 150 mm x 

12 mm). 𝑘𝑘 is an adjustable model parameter and is assumed a value of 1/3 here [57]. 

For Newtonian fluids, the velocity profile at flow front can be considered a parabola 

during squeeze flow (Figure 5-5). Based on this, the Newtonian wall shear rate 𝛾̇𝛾𝑛𝑛𝑛𝑛 under 

specified 1-D flow can be given in equation 5.2. 

𝛾̇𝛾𝑛𝑛𝑛𝑛 = 6∙𝑉𝑉∙ℎ̇
𝐵𝐵∙ℎ3

 (5.2) 

However, for non-Newtonian fluids like thermoplastic composites, the velocity profile 

deviates from a parabolic shape (Figure 5-5). Therefore, equation 5.2 must be corrected 

to get the true shear rate 𝛾̇𝛾𝑡𝑡𝑡𝑡 at wall. The Weissenberg-Rabinowitsch correction is used 

here for the purpose (Equation 5.3)  

y

x
z

h

Force, Speed

1-D Flow

No Slip
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𝛾̇𝛾𝑡𝑡𝑡𝑡 = 𝛾̇𝛾𝑛𝑛𝑛𝑛
3

(2 + 𝑑𝑑(𝑙𝑙𝑙𝑙𝛾̇𝛾𝑛𝑛𝑛𝑛)
𝑑𝑑(𝑙𝑙𝑙𝑙𝜏𝜏𝑤𝑤)

) (5.3) 

 

Figure 5-5: Newtonian (red) and non-Newtonian (blue) velocity profiles at flow front 

during squeeze flow 

Finally, the viscosity can be calculated by its definition given in equation 5.4. 

𝜂𝜂 = 𝜏𝜏𝑤𝑤
𝛾̇𝛾𝑡𝑡𝑡𝑡

 (5.4) 

By fitting equations 5.1, 5.2, 5.3 and 5.4 to the data set in Figure 5-3, a range of shear rate 

data points can be obtained with press viscosity calculated on each point. Figure 5-6 plots 

the viscosity estimation on logarithmic scale. 

 

Figure 5-6: Press viscosity estimation using the data in Figure 5-3 
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5.3 Results and Discussion 
Using the data analysis method explained in section 5.2, press viscosity was evaluated for 

each test condition. Figure 5-7 summarizes the results. 

 

 
Figure 5-7: Summary of press viscosity at all tested conditions (a) 300 oC and (b) 260 
oC 

Shear thinning press viscosity of the material has been characterized. The captured shear 

rate range varies from test to test. This is due to different portions of raw data sets 

available for estimation. As was mentioned in section 5.2, only smooth portions of the 

raw data sets (e.g. Figure 5-3) can be analyzed. Several tests generated extremely noisy 

data sets, thus provided relatively shorter usable portion, and consequently narrower 
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shear rate range. However, most of the tests were able to capture press viscosity in a wide 

range (0.1 to 100 s-1). This also indicates that observed shear rates can span a significant 

range during the flowing phase of compression molding. For the same type of stack, the 

press viscosity of the charge in the 0 degree direction is noticeably higher than the press 

viscosity in the 90 degree direction. This phenomenon is observed at both 260 oC and 

300 oC. It can be explained by uneven fiber orientation distribution in the two directions 

(section 4.1). Interestingly, stack type is found to also impact the apparent press viscosity 

of the charge. It can be seen in Figure 5-7 that the press viscosity of a 6x2 stack charge is 

obviously higher than that of a 4x3 stack charge, which is true for both directions and 

both test temperatures. This is possibly caused by another mechanism often characterized 

in forming process of thermoplastic sheets — inter-ply friction [29]. There are 5 frictional 

interfaces in a 6x2 stack, whereas only 3 frictional interfaces in a 4x3 stack (Figure 5-8). 

More frictional interfaces may have added additional resistance to the flow of charge, and 

appeared as greater press viscosity in this experiment. Practically, this finding suggests 

that using fewer thicker layers in a stacked charge may be a better option for compression 

molding of GMT sheets. 

 

Figure 5-8: Frictional interfaces in a 6x2 (6-layer) stack 

Temperature dependency of press viscosity is another important aspect to study. The 

press viscosity was found to decrease at higher temperatures, which is reasonable for 

thermoplastic composites. The temperature dependency is presented in Figure 5-9. 

Frictional 
Interfaces
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Figure 5-9: Temperature dependency of press viscosity (a) 90 direction (b) 0 

direction 

5.4 Generation of Materials Cards 
The press viscosity can be used as an input of flow simulation. Creating property sets for 

both 90 and 0 directions allows capturing anisotropic material behavior in the simulation. 

On the other hand, property sets for different stack types provide options to choose from 

depending on the case (e.g. simulating a 6x2 stack or simulating a 4x3 stack). Therefore, 

a material card was generated for each combination of the direction and stack type. As 

was mentioned in Chapter 4, materials cards are typically created by fitting data to 
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viscosity models, then getting the model parameters. To also include the temperature 

effect, a temperature dependent power-law model was selected here for the press 

viscosity data. The model is given below: 

𝜂𝜂 = 𝜂𝜂0 ∙ (𝛾̇𝛾)𝑛𝑛−1 (5.5) 

Here 𝛾̇𝛾 is the shear rate, 𝜂𝜂 is the viscosity and 𝑛𝑛 is the flow index. 𝜂𝜂0 is the flow 

consistency index which involves temperature dependency: 

𝜂𝜂0 = 𝐵𝐵 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑇𝑇𝑏𝑏
𝑇𝑇

) (5.6) 

In equations 5.5 and 5.6, 𝑛𝑛, 𝐵𝐵 and 𝑇𝑇𝑏𝑏 are model parameters to be fitted. More 

specifically, 𝑇𝑇𝑏𝑏 determines temperature dependency, 𝐵𝐵 determines the overall magnitude 

of viscosity values and 𝑛𝑛 controls the shear rate dependency. As was discussed, several 

tests generated viscosity values over narrow shear rate ranges. When fitting the power-

law model, this reduces the reliability of fitted parameters. 0 direction and 4x3 stack is 

the only combination that created broad shear rate ranges at both two test temperatures 

(260 oC and 300 oC). Therefore, the parameters fitted for this combination is of most 

statistical confidence. All other combinations of direction and stack type have at least one 

set of shear rate data being too narrow in range. Fittings were still performed for these 

combinations. However, the fitted parameters here should be considered less reliable. The 

fitted curve for 4x3 stack in 0 direction is plotted in Figure 5-10, including an 

extrapolation at 280 oC. All the fitted parameters are summarized in table 5-2. In the 

table, it can be seen that 𝑛𝑛 values are around 0 in all the test conditions. In some 

conditions, the values are even slightly negative. Normally, it is not physically possible to 

create materials with negative n values. However, from a simulation point of view, this 

could simply represent very rapid drop of the bulk charge viscosity with increasing shear 

rate. The value of 𝑇𝑇𝑏𝑏 varies slightly around 10000 K with different stacking types and 

flow directions. This suggests that temperature dependency of press viscosity is not 

impacted by the two factors. The value of 𝐵𝐵, however, is more sensitive to stacking types 

and flow directions. For example, the 𝐵𝐵 value for 6x2 stack is around 3 times higher than 

that for 4x3 stack in the 90 direction. 
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Figure 5-10: Fitted power-law curves for 4x3 stack charge in 90 direction 

Table 5-2: Fitted power-law parameters for all stack types and flow directions 

 90 Direction 0 Direction 

 4x3 Stack 6x2 Stack 4x3 Stack 6x2 Stack 

𝒏𝒏 (-) -0.0225 0.00298 -0.00705 0.005414 

𝑩𝑩 (Pa·s) 0.00976 0.0265 0.00440 0.175 

𝑻𝑻𝒃𝒃 (K) 9705 9449 10371 8568.943 

5.5 Conclusions 
In this chapter, a squeeze flow method was adopted to characterize the apparent viscosity 

of Tepex Flowcore under flowing state. A hydraulic press and a plaque mold were used 

to squeeze the 1-D flow of stacked charges. The corresponding press force, press speed, 

and ram position (gap distance) were recorded and used for viscosity estimation. It was 

found that the press viscosity differs in 90 and 0 directions possibly due to uneven fiber 

orientation distribution. Stacking type was another fact that affect press viscosity. The 

6x2 stack charges generally presented higher viscosity than the 4x3 stack charges. This 

could suggest stacking with less layers when preparing charges for actual compression 
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molding. In addition, temperature dependency of the press viscosity was captured. The 

experimental results were fitted to a temperature dependent power-law model. Model 

parameters were obtained for each combination of stacking type and flow orientation. 

However, due to data quality issues, only the parameters fitted from 4x3 stack in 0 

direction can be considered reliable. The parameters for other combinations are 

questionable in reliability. Further experiments should be performed to repeat these test 

conditions, creating more shear rate data points which allows better fittings. Another 

possible issue with the method was the isothermal assumption, which could over-estimate 

viscosity values when charges actually lost heat to the mold, forming pronounced 

temperature profiles, e.g. studies in Chapter 3. Furthermore, the current power law model 

can be modified to include the effect of flow direction and stacking type (e.g. decompose 

𝐵𝐵 into more parameters to describe these dependency). Such way, a single parameter set 

can be obtained rather than the multiple parameter sets presented in section 5.4. 
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Chapter 6 

6 Conclusions and Future Work 

A model-fitting approach was developed to characterize important heat transfer 

parameters during compression molding of GMT sheets. The estimated parameters, when 

applied in a 1-D conduction model, can accurately predict through-thickness charge 

temperature profile at process stage. The method could also be applied on other sheet-

liked thermoplastic composites in the case of compression molding. For flat sheets, heat 

transfer at the top and bottom surfaces is the main point of interest. However, when it 

comes to bulk charges (such as cubic geometry), a 3-D conduction model must be used 

and the heat transfer at side-walls must also be characterized. This can be an important 

perspective of future work. 

 

A torsion bar set-up on rotational rheometer was used to characterize the draping 

behavior of selected GMT material. By using the LAOS data interpretation method [50], 

viscoelastic parameters were characterized. The parameters can be applied in simulating 

the draping phase of compression molding. This study, however, only focused on intra-

ply shear mechanism. When GMT sheets are stacked, the frictional behavior between 

plies should also be considered. Future works could be characterizing the coefficient of 

friction between molten state GMT sheets. 

The flow behavior of a stacked GMT charge was characterized with a 1-D squeeze flow 

method. Apparent press viscosity was estimated, which can be applied in flow 

simulations. An interesting finding was the effect of stack layer number on press 

viscosity. Current hypothesis for the cause is the different number of frictional interfaces 

between stack layers. However, this would require further investigation and validation. 

Furthermore, the current power-law model for fitting viscosity data can be modified to 

include impact of stack layer number and flow orientation. 
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Appendices 

Appendix A: Temperature dependency (normal scale) of elastic modulus 

characterized from torsion bar (a) 90 direction and (b) 0 direction 

 

 



85 

 

Appendix B: Temperature dependency (normal scale) of viscosity characterized 

from torsion bar (a) 90 direction and (b) 0 direction 
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