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Abstract 

 

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disorder 

with an average life expectancy of 2-5 years post-diagnosis. Common pathological features 

associated with ALS are the formation of cytoplasmic inclusions of intermediate filaments and 

RNA-binding proteins within motor neurons. The formation of intermediate filament 

cytoplasmic inclusions is believed to be driven by a loss of stochiometric expression between 

five neuronal intermediate filament proteins—NFL, NFM, NFH, INA and PRPH—where there is 

a selective suppression of the steady-state levels of NEFL, INA and PRPH mRNA. Further, three 

RNA-binding proteins—TDP-43, FUS and RGNEF—have been shown to co-aggregate with 

each other in ALS motor neurons indicating a possible common mechanism that leads to their 

dysregulation.  

In the last decade, microRNAs (miRNAs)—small RNA molecules generally responsible 

for post-transcriptional regulation of gene expression—were observed to be massively 

dysregulated in the spinal cord tissue of ALS patients, providing a possible explanation for the 

changes observed in intermediate filament steady-state mRNA levels and RNA-binding protein 

dysregulation in ALS. Further, TDP-43 and FUS regulate miRNA biogenesis, indicating there 

may be a regulatory network between RNA-binding proteins and miRNAs that is disrupted in 

ALS. I hypothesize that a regulatory network between specific RNA-binding proteins and 

miRNAs is disrupted in ALS leading to changes in miRNA processing which contributes to 

intermediate filament and RNA-binding protein pathology.  

In this dissertation, I have examined: 1) whether ALS-linked miRNA(s) contribute to the 

selective suppression of NEFL, PRPH, and INA; 2) whether ALS-linked miRNAs regulate the 

expression of NEFM and NEFH; 3) whether ALS-linked miRNAs regulate the expression of 
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RNA-binding proteins whose metabolism is dysregulated in ALS (TDP-43, FUS, and RGNEF); 

and, 4) whether TDP-43 and FUS are in a regulatory network with ALS-linked miRNAs. 

Overall, 12 ALS-linked miRNAs were identified to regulate either intermediate filament or 

RNA-binding protein expression, and further, a novel negative feedback loop between TDP-43 

and two miRNAs (miR-27b-3p and miR-181c-5p) was identified. This dissertation highlights 

that changes to miRNA levels, as seen in ALS, would contribute to overall ALS pathology, 

making them viable avenues for potential therapeutics.   

 

 

Keywords: MicroRNA, ALS, RNA-binding proteins, TDP-43, intermediate filaments, 

neurofilaments, RNA, neurodegeneration, regulatory networks   
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Lay Abstract 

 Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder defined by the 

progressive loss of motor function such as walking, reaching grabbing, standing, etc., eventually 

confining individuals to a wheelchair. ALS is generally fatal within 2-5 years of diagnosis. This 

disease results from the dramatic loss of a specific cell-type within the brain and spinal cord 

tissue called motor neurons. Decades of research has tried to understand what causes the loss of 

motor neurons in ALS, and while much progress has been made, there remains a considerable 

amount that is not understood regarding the underlying cause(s) of ALS. Recent research has 

shown that small molecules known as microRNAs (miRNAs) are reduced in ALS motor 

neurons. MiRNAs regulate the levels of gene expression within our cells which is critical for 

cells to efficiently respond to environmental cues (i.e. stress) and maintain overall cell health. 

Lack of these small molecules, as seen in ALS motor neurons, has been shown to cause motor 

neuron death in mice, indicating the importance of miRNAs to motor neuron function. In this 

dissertation, I explored the potential consequence of reduced miRNA levels, as seen in ALS, and 

how this may relate to what we already know about ALS pathology. Further, I explored potential 

molecular pathways that may explain why miRNA reduction occurs in ALS. I have found that 

the loss of a specific pool of miRNAs in ALS may contribute to overall ALS pathogenesis.  In 

addition, I have identified a novel molecular network between miRNAs and TDP-43—a protein 

that is dysregulated in 97% of all ALS cases—which may explain the loss of miRNAs seen in 

ALS motor neurons. Overall, this thesis implicates miRNAs as major contributors to ALS 

pathogenesis and identifies a disrupted molecular network between miRNAs and TDP-43, 

providing new avenues to explore potential therapeutics for ALS.  
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 Amyotrophic lateral sclerosis (ALS) is generally a late-onset neurodegenerative disease 

that results in motor neuron loss causing death within 2-5 years after diagnosis. Several genetic 

and pathological features of ALS have given us insights into the etiology of the disease (Strong, 

2017). However, despite these efforts, very few therapeutics have been successful in treating 

ALS. Therefore, we need to continue to explore the biological mechanisms underpinning ALS if 

we are to find novel drug targets that may slow or halt the progression. Recent work has shown 

that microRNAs (miRNAs) may be a major contributor to the disease pathogenesis.  

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene 

expression via formation of a ribonucleoprotein complex with Argonaute (AGO) proteins and 

complementary base pairing with their target mRNAs (Lee et al., 1993; Slack et al., 2000). 

Despite the apparent simplicity of miRNA function, their expression and mRNA targets are 

highly dependent on the stage of development, environmental cues, aging and cellular type. This 

highly dynamic process allows for the fine-tuning of gene expression depending not only on the 

global needs of the cell, but also somatotopically-specific needs such as the maintenance of the 

synaptic junction or the response to neuronal injury (van Rooij et al., 2007; Wilczynska and 

Bushell, 2015).  In this introduction, we will discuss motor neurons, ALS pathology, miRNA 

biology and their role in motor neuron disease, and finally, potential mechanisms that may 

contribute to the dysregulation of miRNAs seen in ALS.    

1.1 Motor Neurons   

 

Motor neurons are classified as either somatic or visceral. Visceral motor neurons are 

responsible for innervating smooth and cardiac muscle allowing for involuntary contractions. In 

contrast, somatic motor neurons innervate skeletal muscle to perform voluntary movement 
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(Goulding, 1998; Guthrie, 2007). This dissertation will focus on somatic motor neurons 

(henceforth referred to as “motor neurons”). 

In general, motor neurons can be further grouped into those whose projections remain 

within the central nervous system (CNS) and those that do not. Upper motor neurons (UMNs) 

are a group of descending supraspinal neurons, the majority of which arise from the primary 

motor cortex, premotor cortex and the supplementary motor area (Dum and Strick, 2005; Nachev 

et al., 2008). UMNs arising in these cortical regions course through the corticospinal tracts with 

the majority (75-90%) crossing at the level of the medulla to ultimately innervate contralateral 

spinal motor neurons. The remaining 10-25% innervate ipsilateral spinal motor neurons. UMNs 

send excitatory chemical signals via glutamate to activate spinal motor neurons (Fig. 1.1A). 

Spinal motor neurons belong to the category of lower motor neurons (LMNs) that, in concert 

with the muscle fibers that they innervate through their axonal terminals, constitute the motor 

unit (Lemon, 2008; Welniarz et al., 2016). The interaction between the axon terminals and 

skeletal muscle occurs at the neuromuscular junction (NMJ) where acetylcholine release across 

the synapse induces muscle contractions which allow us to perform basic motor functions such 

as standing, walking, reaching, grabbing, etc. (Fig 1.1B).  

1.1.1 Axonal Transport  

Axonal transport is necessary for motor neurons to send signals to other cells within the 

body. An individual motor neuron axon can extend for upwards of a meter, giving rise to a 

unique set of metabolic demands. Mitochondria, ribonucleoprotein (RNP) granules, and vesicles 

must be positioned at specific sites along the length of the axon depending on somatotopic needs 

and thus requiring a high degree of regulation (Fig. 1.1C) (Lin and Sheng, 2015; Vuppalanchi et 

al., 2009). Critical to the integrity of the axonal projection are key cytoskeletal proteins,   
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Figure 1.1. Motor neuron transmission. (A) The glutamatergic synaptic connection between 

lower motor neurons (LMNs) and upper motor neurons (UMNs). This synapse drives excitation 

of the LMN through a process that is dependent on the influx of Ca++ into the presynaptic 

terminus which in turn triggers release of glutamate into the synaptic cleft. There, glutamate 

stimulates the influx of Na+ and Ca++ into the post-synaptic LMN, which leads to its 

depolarization. (B) Transport across the long axon of motor neurons. Neurons must be constantly 

transferring mitochondria, vesicles and RNPs granules to localized spots in the axon depending 

on the need of the cell. Transport is bidirectional along the axon where the molecular motor 

kinesin drives anterograde transport, whereas dynein provides retrograde transport. This is 

crucial for the proper distribution of proteins, transcripts and organelles. (C) Neuromuscular 

junction. When the action potential has reached the neuromuscular junction, there is an influx of 

Ca++ into the axonal presynaptic bouton resulting in the synaptic release of acetylcholine. This 

causes the efflux of K+ and the influx of Na+ leading to the depolarization of the muscle fiber. 

The influx of Na+ causes the opening of sodium voltage-gated channels along the muscle fiber, 

allowing for the action potential to propagate through the muscle fiber (indicated by the golden 

arrows), generating the muscle contraction. 
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including microtubules which provide the highway that guides axonal transport, and 

neurofilaments which are key to maintaining the cytoskeletal architecture of the axon and thus 

indirectly, the degree of myelination (Hirokawa et al., 2010; Szaro and Strong, 2010). Further, 

axons and synapses are highly dynamic structures that are constantly changing in an activity-

dependent manner, and thus, there is a constant redistribution of mitochondria depending on 

localized energy demands (Miller and Sheetz, 2004). This is especially true for motor neurons as 

their axonal length requires precise movement of mitochondria to meet their high energy 

demands (Hinckelmann et al., 2013). 

Beyond mitochondrial trafficking, the transport of mRNA along the axon allows for 

somatotopically-specific protein synthesis. To accommodate this, mRNAs and translational 

machinery are incorporated into RNP granules and transported to distal regions along the axon 

for localized translation (Sutton and Schuman, 2006; Vuppalanchi et al., 2009).  It is widely 

accepted that during RNP transport that the mRNA within the granule is translationally silent, a 

state that is suggested to be largely mediated by various RNA-binding proteins (Bramham and 

Wells, 2007). However, it has also been shown that proteins essential for miRNA processing are 

found within these RNP transport granules (Barbee et al., 2006), suggesting that the post-

transcriptional regulation of mRNA within RNPs is likely an interaction between RNA-binding 

proteins and regulatory RNA molecules, allowing for localized protein synthesis and even 

mRNA degradation. 

1.1.2 Regeneration  

One of the fundamental differences between mature UMNs and LMNs is the ability for 

LMNs to regenerate. In general, the peripheral nervous system (PNS) in which LMNs reside  
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provides an environment where neurons can survive and regenerate subsequent to axonal 

damage. This is not the case in the CNS (Fitch and Silver, 1997; Fu and Gordon, 1997). This 

phenomenon has been attributed to the lack of neurotrophic factors and an abundance of 

inhibitory proteins present after a nerve injury in the CNS (Schwab, 1996). For example, the 

increased expression of neurotrophic factors brain-derived neurotrophic factor (BDNF) and 

fibroblast growth factor 2 (FGF-2) and their receptors – trkB and FGFR-1, respectively – 

promotes LMN regeneration in response to a nerve injury. However, within the CNS, the 

expression of these receptors and ligands are reduced after nerve injury, creating a less 

permissive environment for regeneration (Funakoshi et al., 1993; Kobayashi et al., 1996; Lewin 

and Barde, 1996).  Interestingly, ectopic expression of BDNF within the CNS after a neuronal 

injury enhances the regenerative capacity of the neurons, suggesting it is an essential protein for 

nerve recovery (Giehl and Tetzlaff, 1996; Kobayashi et al., 1997).  

Further, the upregulation of cytoskeleton proteins including actin, tubulin and peripherin also 

assist with the regeneration of LMNs by restructuring the axon as it recovers (Bisby and Tetzlaff, 

1992; Chadan et al., 1994; Jiang et al., 1994). However, there is a downregulation in 

neurofilament expression after a nerve injury, which has been shown to allow for efficient 

transport of actin, tubulin and peripherin to distal regions of the injured axon (Tetzlaff et al., 

1996; Zhu et al., 1998). This change in cytoskeleton proteins after an axonal injury is far less 

robust within the CNS, and thus, could be another reason why regeneration is not able to occur 

within UMNs (Kost and Oblinger, 1993; Tetzlaff et al., 1991). This tightly coordinated change in 

the expression of cytoskeleton genes within the PNS allows for efficient axonal repair, and thus, 

a transient network of regulatory elements, such as miRNAs, must play an essential role in this 
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regenerative process. Disruption of molecular pathways that are critical to motor neuron function 

like axonal transport and regeneration have been shown to be disrupted in patients with ALS. 

1.2 ALS  

 

ALS is a neurodegenerative disease which is defined by the loss of both upper and lower 

motor neurons within the brain and spinal cord tissue, respectively (Strong et al., 2005). This 

debilitating disease ultimately leads to a person being confined to a wheelchair with the inability 

to perform basic motor tasks including and not limited to reaching, grabbing, standing, walking, 

speech, swallowing and breathing (Strong et al., 2017). Currently, there are limited treatments 

for this disease which has an expected survival time of 2-5 years post-diagnosis.  

 

1.2.1 Demographics of ALS 

 

Generally, ALS is a late onset disease with an average age of diagnosis between 40-70 

years of age with an incidence rate of two out of 100,000 people (Zarei et al., 2015). Ninety 

percent of ALS cases have no familial history (sporadic ALS [sALS]), and within those cases, 

only about 12-13% carry a known genetic mutation to explain the etiology of their disease. The 

remaining 10% of ALS cases are familial (fALS), and in those cases, about two-thirds have a 

known genetic defect (Mathis et al., 2019; Taylor et al., 2016). By far, in both sporadic and 

familial ALS cases, the most common genetic alteration is a hexanucleotide (GGGGCC) repeat 

expansion in C9ORF72 making up about 25-40% of familial and 10% of sporadic genetic cases. 

This is followed by mutations in SOD1, TDP-43 and FUS, respectively, which total to about 

30% within familial cases and 2-3% within sporadic cases (Majounie et al., 2012; Taylor et al., 

2016). There have been several other genes that contain disease causative mutations which 

accumulate to ~12% of familial and <1% of sporadic ALS cases (Table 1.1). While it is clear 

that genetic alterations play a critical role within the disease etiology for some patients, the vast  
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Table 1.1. Known genes that carry disease causative variants of familial and sporadic ALS  

Gene ID 
Chromosome 

Location 

Mode of 

inheritance* 
Protein Function 

% of fALS 

cases** 

% of sALS 

cases** 
Reference 

C9ORF72 9p21.2 AD Nucleocytoplasmic transport 25-40% 10% 
(DeJesus-Hernandez et al., 

2011; Renton et al., 2011) 

SOD1 2q22.11 AD, AR Superoxide dimutase 20% 2% (Rosen et al., 1993) 

TARDBP 1p36.22 AD DNA/RNA-binding protein 5% <1% (Sreedharan et al., 2008) 

FUS 16p11.2 AD DNA/RNA-binding protein 5% <1% 
(Belzil et al., 2009; Vance 

et al., 2009) 

OPTN 10p13 AD, AR Autophagy 4% <1% (Maruyama et al., 2010) 

NEK1 4q33 Not determined Kinase and DNA repair 2-3% <1% (Kenna et al., 2016) 

VCP 9q13.3 AD Autophagy 2% <1% (Johnson et al., 2010) 

TIA-1 2p13.3 AD 
DNA/RNA-binding protein, 

stress granule formation 
2% <1% (Mackenzie et al., 2017) 

hnRNPA1 7p15.2 AD RNA-binding protein <1% <1% (Kim et al., 2013) 

hnRNPA2B1 12q13.3 AD RNA-binding protein <1% <1% (Kim et al., 2013) 

UBQLN2 Xp11.21 X-linked Autophagy <1% <1% (Deng et al., 2011) 

KIF5A 12q13.3 AD 
Anterograde transport of 

organelles and RNP granules 
<1% <1% 

(Brenner et al., 2018; 

Nicolas et al., 2018) 

TBK1 12q154.2 AD Autophagy and inflammation <1% <1% (Freischmidt et al., 2015b) 

PFN1 17p13.2 AD Actin polymerization <1% <1% (Wu et al., 2012) 

DNAJC7 17q21.2 Not determined Heat Shock 40 protein <1% <1% (Farhan et al., 2019) 

SQSTM1 5q35.3 AD Autophagy <1% - 
(Fecto et al., 2011; Le Ber 

et al., 2013) 

VAPB 20q13.33 AD Axonal transport <1% - (Nishimura et al., 2004) 

SEXT 9q34.13 AD DNA/RNA helicase ? ? (Chen et al., 2004) 

ALS2 2p33.2 AR Rho nucleotide exchange factor ? ? 
(Hadano et al., 2001; Yang 

et al., 2001) 

SPG11 15q21.1 AR Transmembrane protein ? ? 
(Hentati et al., 1998; 

Orlacchio et al., 2010) 

ALS7 20p13 AD Unknown ? - (Sapp et al., 2003) 

*Autosomal Dominate (AD); Autosomal Recessive (AR) 

**Percentages represent approximate values. May vary in different ALS cohorts studied.
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majority of cases have no known genetic cause, suggesting that environmental factors may also 

play a critical role in ALS. Thus, we must further explore changes to both RNA and protein if we 

are to understand the progression of the disease at the molecular level.  

1.2.2 ALS Pathology  

The formation of neuronal cytoplasmic inclusions (NCIs), consisting of aberrantly 

aggregated proteins, is a common pathological phenomenon is several neurodegenerative 

diseases, including ALS. The most common protein groups found to be aberrantly aggregated in 

ALS are intermediate filaments and RNA-binding proteins (Strong, 2017). The formation of 

intermediate filament inclusions is believed to be driven by changes to stochiometric expression 

between cytoskeleton proteins (Szaro and Strong, 2010), whereas RNA-binding protein 

inclusions are believed to be driven by changes to their low-complexity domain (LCD; i.e. post-

translational modifications, or mutations) that make the protein more prone to aggregate 

(Franzmann and Alberti, 2019; Molliex et al., 2015; Murakami et al., 2015; Murray et al., 2017; 

Patel et al., 2015). The formation of RNA-binding protein cytoplasmic aggregates is the most 

common pathology seen in ALS, indicating that RNA dysregulation may be a major driver of 

ALS (Keller et al., 2012; Strong, 2017).  

In 1981, Davidson et al. demonstrated using tinctorial stains that there was an 31% and 

42% reduction in total RNA content within ALS lumbar and cervical motor neurons, 

respectively, providing the first evidence of RNA dysregulation in ALS (Davidson and 

Hartmann, 1981; Davidson et al., 1981). It was subsequently demonstrated that an overall 

reduction in polyadenylated RNA in ALS motor neurons bearing neurofilament NCIs was 

present when assessed using in situ hybridization (Bergeron et al., 1994), suggesting a 

dysregulation of coding RNA. These works would kick-off decades of research that would later 
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show issues in mRNA expression, splicing, polyadenylation, transport, stability, and further, 

dysregulation of non-coding RNAs in ALS motor neurons. In this section, we will discuss the 

various RNA-binding protein pathologies followed by what we currently understand about RNA 

dysregulation in ALS as these two phenomena are highly connected.  

1.2.2.1 RNA-binding Protein Pathology  

 

1.2.2.1.1 TDP-43 

 

TAR DNA-binding protein 43 kDa (TDP-43) is a ubiquitously expressed nuclear protein 

that has a diverse set of functions which include: mRNA transcription, mRNA splicing, RNA 

export, mRNA translation, miRNA biogenesis, long non-coding RNA (lncRNA) processing, and 

stress granule formation (Ratti and Buratti, 2016). Re-localization of TDP-43 from the nucleus to 

the cytoplasm and the subsequent formation of NCIs in motor neurons is the most common 

pathological feature of ALS, being observed in 97% of all cases (Ling et al., 2013).  

Several of the ALS-linked mutations and phosphorylation sites associated with TDP-43 

pathology are harbored in the LCD (Buratti, 2015). LCD’s are intrinsically disordered domains 

which can form either alpha-helical or pleated beta-sheet structures regulating the solubility of 

the protein (Franzmann and Alberti, 2019). Both aberrant mutations and phosphorylation within 

the LCD of TDP-43 promotes beta-sheet structures which lead to the eventual accumulation and 

formation of insoluble protein aggregates (Barmada et al., 2010; Choksi et al., 2014; Liachko et 

al., 2010). The primary phosphorylation sites of TDP-43 associated with pathological aggregates 

in motor neurons of ALS patients are serine 409/410, amino acids that are found in the LCD 

(Neumann et al., 2009a; Neumann et al., 2006). This suggests that conformational changes 

within the LCD of TDP-43 contributes to its pathogenic role in ALS; however, the exact 

mechanism(s) that lead to these changes are still unclear.  
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Mixed results have been seen in whether or not overexpression of wild-type TDP-43 in 

mouse models can actually lead to the formation of pathological aggregates in motor neurons 

(Mitchell et al., 2015; Xu et al., 2010). However, in sporadic ALS cases with no known genetic 

background, increased expression of TDP-43 protein and mRNA levels within the spinal cord 

and motor neurons has been observed, and further, the overexpression of other proteins with 

LCD’s similar to TDP-43 have been shown to form insoluble aggregates in both in vitro and in 

vivo models (Koyama et al., 2016; Mitchell et al., 2013; Patel et al., 2015; Swarup et al., 2011; 

Xu et al., 2010).TDP-43 has been shown to co-aggregate with several other LCD-containing 

proteins including FUS, TIA-1 and MATR3 in ALS motor neurons (Keller et al., 2012; Liu-

Yesucevitz et al., 2010; Tada et al., 2018; Volkening et al., 2009). These observations suggest 

that the simple accumulation of TDP-43 alone may not sufficient to drive this protein into 

insoluble aggregates and that the presence of other LCD-containing proteins may be needed. 

Further investigation is needed.  

1.2.2.1.2 FUS, EWSR1 and TAF15 (FET) Proteins  

 

Fused in liposarcoma (FUS), Ewing sarcoma (EWSR1), and TATA-binding associated 

factor 15 (TAF15) make up the family of FET proteins that are mainly responsible for genomic 

maintenance, RNA transcription, mRNA splicing, mRNA metabolism and miRNA production. 

FET proteins are a highly conserved set of proteins that are primarily nuclear and expressed in 

every cell (Andersson et al., 2008; Ballarino et al., 2013; Morlando et al., 2012; Svetoni et al., 

2016). 

In ALS, all three of these proteins have been shown to re-localize from the nucleus to the 

cytoplasm and produce cytoplasmic aggregates, or contain mutations associated with the disease 

(Belzil et al., 2009; Couthouis et al., 2012; Couthouis et al., 2011; Kwiatkowski et al., 2009; 
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Neumann et al., 2009b; Ticozzi et al., 2011; Vance et al., 2009). Out of the three FET proteins, 

FUS immunoreactive NCIs are the most often observed in ALS, being present in about 1% of all 

ALS cases. EWSR1 and TAF15 inclusions have been seen in only a small number of ALS cases 

(>0.1%) (Ling et al., 2013). Similar to TDP-43, FET proteins contain an LCD that is believed to 

be the major driver of pathological aggregate formation in ALS.  

Causative FUS mutations for ALS tend to be concentrated within the nuclear localization 

sequence (NLS) and also in the LCD (Taylor et al., 2016). This suggests that the loss of nuclear 

localization of FUS is critical to the pathogenesis of ALS. Further, the accumulation of wild-type 

FUS leads to phase separation and insoluble protein aggregates in a process that can be 

accelerated by mutations in the LCD of FUS (Mitchell et al., 2013; Patel et al., 2015). Several 

rodent and in vitro models have shown that the overexpression of FUS is sufficient to drive 

cytoplasmic aggregation and that this aggregation is dependent on its’ LCD (Kato et al., 2012; 

Mitchell et al., 2013; Murakami et al., 2015). Increased levels of FUS protein have also been 

observed in sALS spinal cord with no known genetic history (Hawley et al., 2017). Thus, the 

pathological formation of aggregates by FUS may be concentration dependent, where mutations 

accelerate phase separation and the formation of cytoplasmic aggregates by promoting the 

accumulation of FUS through the LCD.      

 

1.2.2.1.3 HnRNPA1 and HnRNPA2B1 

Heterogeneous nuclear Ribonucleoprotein A1 and A2B1 (hnRNPA1 and hnRNPA2B1, 

respectively) are primarily nuclear proteins that are involved in mRNA splicing, stability, 

transport and miRNA processing (Zhao et al., 2018). Both these proteins contain mutations 

within their LCD in less than 1% of ALS cases (Kim et al., 2013; Molliex et al., 2015). 

Interestingly, muscle biopsies from ALS patients revealed that hnRNPA1 and hnRNPA2B1 
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mutations can lead to cytoplasmic aggregates within muscle tissue, although no aggregates were 

observed in motor neurons (Kim et al., 2013). While neither protein specifically has been shown 

to aggregate in motor neurons, loss of TDP-43 nuclear localization results in aberrant splicing of 

hnRNPA1, promoting an alternative isoform called hnRNPA1B that has an extended LCD. 

Interestingly, hnRNPA1B does form cytoplasmic aggregates in ALS motor neurons where there 

are also pathological aggregates of TDP-43 (Deshaies et al., 2018). These findings suggest that 

hnRNP’s may play multiple roles in the pathogenesis of ALS affecting both muscle and motor 

neuron cell populations.  

1.2.2.1.4 RGNEF 

 

Rho Guanine Nucleotide Exchange Factor (RGNEF) is both a guanine exchange factor 

involved in the RhoA signaling pathway and an RNA-binding protein. The mouse homologue, 

p190RhoGEF, was first described in murine tissues and was shown to activate RhoA and interact 

with microtubules (van Horck et al., 2001). Further, work showed that p190RhoGEF interacted 

with and destabilized mouse Nefl mRNA preventing neurofilament aggregation—a common 

feature seen in ALS (Lin et al., 2004). This provided the first clue that RGNEF may be involved 

in the pathogenesis of ALS. 

 Several guanine exchange factors and RNA-binding proteins are associated with 

neurodegenerative diseases, but RGNEF is the only protein that shares these two functions and is 

also associated with neurodegeneration (Droppelmann et al., 2014). Still, little is known about 

RGNEF’s role in RNA regulation although it has been shown to negatively regulate the mRNA 

stability of NEFL through interactions with the 3’UTR (Droppelmann et al., 2013a). Further, 

RGNEF has been shown to interact with NEFL mRNA only in ALS, but not control, spinal cord 
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homogenates (Volkening et al., 2010), and therefore, may play a major role in intermediate 

filament pathogenesis associated with ALS. 

In terms of pathology, RGNEF has been observed in ubiquitin-positive aggregates and to 

co-localize with TDP-43 and FUS cytoplasmic aggregates (Keller et al., 2012). Further, several 

mutations in ARHGEF28 (gene name of RGNEF) have been associated with ALS (Droppelmann 

et al., 2013b; Farhan et al., 2017; Ma et al., 2014; Song et al., 2020; Zhang et al., 2016). 

However, while there is a definite association between RGNEF and ALS, it is still unclear 

whether these mutations alone are causative of the disease.  

1.2.2.1.5 ATXN2 

Ataxin 2 (ATXN2) is an RNA-binding protein that is primarily expressed within the 

cytoplasm where it regulates mRNA stability, RNA polyadenylation and mRNA translation. In 

~5% of all ALS cases, ATXN2 contains a polyglutamine (polyQ) repeat element (CAG) that is 

greater than 37 repeats, while healthy individuals tend to have ~15-22 repeats (Ostrowski et al., 

2017; Zhao et al., 2018). Expanded repeats of this gene has been associated with other 

neurodegenerative diseases including Spinal Cerebellar Ataxia (SCA), frontotemporal dementia 

and Parkinson’s disease (Houlden and Singleton, 2012; Majounie et al., 2007; Rubino et al., 

2019). The exact role that these repeat expansions play in disease is relatively unclear. However, 

the repeat expansion of ATXN2 in ALS appears to enhance TDP-43 and FUS toxicity, while the 

suppression of ATXN2 expression using antisense oligos (ASOs) reduces TDP-43 toxicity in fly 

and rodent ALS models overexpressing TDP-43, making it a possible therapeutic target of ALS 

(Elden et al., 2010; Farg et al., 2013).    

1.2.2.1.6 MATR3 
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Matrin 3 (MATR3) is an DNA/RNA-binding protein that is involved with mRNA 

transcription, export and stability, and primarily found within the nuclear matrix. In less than 1% 

of ALS cases, there is a missense or splicing mutation in the MATR3 gene (Leblond et al., 2016; 

Taylor et al., 2016). Mutations in MATR3 still result in it being primarily nuclear within ALS 

motor neurons; however, some have reported either MATR3 diffusely localized to the 

cytoplasm, or in cytoplasmic inclusions with TDP-43 (Johnson et al., 2014; Tada et al., 2018). 

Transgenic mice overexpressing ALS-mutant MATR3 F115C showed muscle atrophy, but no 

effect on spinal motor neurons, indicating that MATR3 mutations may have a greater impact on 

muscle than motor neurons (Moloney et al., 2018). Others have observed in primary rat neuronal 

cell culture models that MATR3 mutations enhance neuronal death, where neurotoxicity is 

dependent on its nuclear localization, not cytosolic localization, as we have seen with other ALS-

associated RNA-binding proteins (Malik et al., 2018). Overall, a lot still needs to be understood 

about MATR3 mutations and its relation to the pathogenicity of ALS.  

1.2.2.1.7 TIA-1 

 

TIA1 cytotoxic granule associated RNA-binding protein (TIA-1) is a primarily nuclear 

protein involved in RNA processing and translation (Del Gatto-Konczak et al., 2000; Dixon et 

al., 2003; Forch et al., 2000; Piecyk et al., 2000). However, TIA-1 is better known for its role in 

stress granule assembly (Gilks et al., 2004; Kedersha et al., 2000; Kedersha et al., 1999). During 

periods of cellular stress, TIA-1 leaves the nucleus and enters the cytoplasm where it nucleates 

and initiates the formation of stress granules, which contain several ALS-related RNA-binding 

proteins including TDP-43, FUS, hnRNPA1, hnRNPA2B1, ATXN2 and MATR3 (Gilks et al., 

2004; Kedersha et al., 2000; Zhao et al., 2018). Stress has been suggested to be a seed to 

cytoplasmic aggregation of proteins associated with ALS as TIA-1 has been shown to form 



17 
 

pathological aggregates in ALS motor neurons that co-localize with TDP-43 (Liu-Yesucevitz et 

al., 2010; Volkening et al., 2009). More recently, several ALS-associated mutations have been 

observed within the LCD of TIA-1 (Mackenzie et al., 2017; Yuan et al., 2018; Zhang et al., 

2018b). While patients with these mutations did show TDP-43 cytoplasmic aggregates in motor 

neurons, no TIA-1 was observed in cytoplasmic aggregates. Despite this finding, mutations 

within the LCD of TIA-1 still promoted the phase separation of TDP-43 into insoluble 

aggregates in in vitro motor neuron models, indicating that TIA-1 mutations and its LCD likely 

contribute to TDP-43 pathology (Mackenzie et al., 2017).  

1.2.2.2 Other Major Protein Pathologies in ALS 

 

Several other proteins have been observed in ALS motor neurons to form cytoplasmic 

aggregates that are not categorized as RNA-binding proteins. However, here I will discuss two 

other major protein pathologies—SOD1 and C9ORF72—that have been also shown to contribute 

to RNA dysregulation in ALS.   

1.2.2.2.1 SOD1 

 

Cu/Zn-superoxide dimutase 1 (SOD1) cytoplasmic protein aggregation is seen in 2% of 

all ALS cases. Mutations in SOD1 (mtSOD1) leads to misfolding of the protein causing reduced 

activity and increased accumulation of free radicals that are toxic to cells (Kaur et al., 2016). 

Interestingly, mutant, but not wild-type, SOD1 binds to the 3’ untranslated region (UTR) of 

NEFL and VEGF mRNA, destabilizing these mRNA molecules and reducing their steady-state 

levels (Li et al., 2009; Lin et al., 2004; Lu et al., 2007; Menzies et al., 2002). Therefore, while 

not classically an RNA-binding protein, mtSOD1 appears to acquire a gain-of-function where it 

negatively regulates the levels of NEFL and VEGF through direct interactions with their 3’UTRs. 
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VEGF is a critical trophic factor known to promote motor neuron survival, while NEFL is critical 

for cytoskeleton formation (Oosthuyse et al., 2001; Szaro and Strong, 2010). This highlights that 

mtSOD1 toxicity not only disrupts cytoskeleton formation, which is critical for motor neuron 

structure and function, but as well reducing the expression of trophic factors critical for motor 

neuron survival. MtSOD1, due to protein misfolding, appears to have a high affinity for 

adenylate- and uridylate-rich elements (ARE’s) located in the 3’UTRs of NEFL and VEGF, and 

thus, while these are currently the only two RNA molecules known to be affected by mtSOD1, 

there could be other RNA molecules with ARE regions that mtSOD1 could target (Li et al., 

2009).  

1.2.2.2.2 C9ORF72 

 

Chromosome 9 open reading frame 72 (C9ORF72) GGGGCC intronic repeat expansions 

are the most common genetic variant associated with ALS where less than 24 repeats is 

considered a normal state, between 24-100 repeats represents an intermediate state (between 

normal and pathological), and over 100 repeats represents a pathological state (DeJesus-

Hernandez et al., 2011; Mathis et al., 2019; Renton et al., 2011). This expansion leads to aberrant 

translation—non-ATG or RAN-translation—of C9ORF72 creating dipeptide repeats (poly-GA, 

poly-GP, poly-GR, poly-PA and poly-PR dipeptides) that are known to form cytoplasmic 

aggregates that are linked to neurotoxicity (Mori et al., 2013a; Mori et al., 2013b; Wen et al., 

2014). Through a gain-of-function mechanism via the dipeptide repeats several RNA processing 

pathways are affected including RNA transcription, splicing and translation (Kwon et al., 2014; 

Suzuki et al., 2018; Zhang et al., 2018c). Further, in several in vitro and in vivo models, the 

dipeptide repeats have been shown to bind to multiple nucleoporin proteins which blocks nuclear 

export of RNA molecules (Freibaum et al., 2015; Shi et al., 2017; Zhang et al., 2015).  
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Overall, several proteins associated with ALS are in involved in the regulation of coding 

and non-coding RNA pathways making it clear that RNA dysfunction is likely a major 

contributor in the disease pathogenesis.  

1.2.2.3 RNA Dysregulation in ALS 

1.2.2.3.1 Cytoskeleton Pathology and RNA Dysregulation in ALS  

Intermediate filaments are a critical component that provide cellular structure, and in 

particular, provide axonal structure to neurons which allow for axonal transport and signaling 

which are necessary for neuronal survival (Szaro and Strong, 2010). In mature neurons, there are 

three intermediate filaments, generally called neurofilaments, that are critical for axonal 

structure; neurofilament light (NFL), medium (NFM) and heavy (NFH). Together they form a 

triplet protein structure where NFL either forms homopolymers or heteropolymers with NFM 

and NFH. Neither NFM or NFH alone can form homopolymers and are therefore dependent on 

NFL to form the cytoskeleton structure of an axon (Carpenter and Ip, 1996). Further, peripherin 

(PRPH) and α-internexin (INA) are two intermediate filaments responsible for forming the early 

cytoskeleton structure in developing neurons, but also interact with the neurofilament triplet 

protein structure in mature neurons (Athlan and Mushynski, 1997; Kaplan et al., 1990; Yuan et 

al., 2006; Yuan et al., 2012). These five intermediate filaments are under tight spatiotemporal 

control to maintain axonal structure and integrity (Szaro and Strong, 2010).  

In ALS, several of these intermediate filaments have been shown to form pathological 

aggregates within motor neurons, including NFH, NFM and PRPH (He and Hays, 2004; Keller 

et al., 2012; Mendonca et al., 2005; Migheli et al., 1993; Mizuno et al., 2011; Munoz et al., 1988; 

Strong et al., 2005). It is believed that loss of spatiotemporal control leads to an alteration in the 

stoichiometry between the intermediate filaments causing intermediate filament aggregation 
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(Szaro and Strong, 2010). This is because in several ALS mouse models where intermediate 

filaments have either been knocked-out, or knocked-in, intermediate filament aggregation was 

observed that was representative of what was seen in the disease, and in most cases, led to motor 

neuron death (Beaulieu and Julien, 2003; Beaulieu et al., 1999; Cote et al., 1993; Kriz et al., 

2000; Lee et al., 1994; Robertson et al., 2002; Zhu et al., 1997).  Further, in motor neurons of 

patients with sALS with no known genetic background, there is reduced expression of NEFL, 

PRPH and INA mRNA levels with no change to NEFM or NEFH levels (Wong et al., 2000). 

These changes in mRNA levels between intermediates filaments causes a change in 

stoichiometry that could result in intermediate filament aggregation.      

While intermediate filament mRNA dysregulation is a well-known phenomenon in ALS, 

it is unclear what causes this RNA dysregulation. Two ALS-related RNA-binding proteins—

TDP-43 and RGNEF—have been shown to interact with the 3’UTR and regulate NEFL mRNA 

by either increasing or reducing the mRNA levels, respectively (Droppelmann et al., 2013a; 

Volkening et al., 2009). Interestingly, NEFL mRNA in spinal cord homogenates was only bound 

to RGNEF when homogenates were derived from ALS patients and not from controls 

(Volkening et al., 2010). This suggests that dysregulation of TDP-43 and RGNEF, as seen in 

ALS motor neurons, may alter NEFL mRNA steady-state levels, contributing to changes in 

intermediate filament stoichiometry. 

Further, our group has shown several ALS-linked miRNAs interact with the NEFL 

3’UTR to regulate mRNA stability including: miR-146a*, miR-524-5p, miR-582-3p miR-b1336, 

and miR-b2403. Expression levels of miR-524-5p, miR-582-3p, miR-b1336 and miR-b2403 

have all been shown to be reduced in ALS spinal cord but increase mRNA stability when 

interacting with the NEFL 3’UTR.  In contrast, miR-146a* has been shown to be increased in 
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ALS spinal cord but decreases mRNA stability when interacting with the NEFL 3’UTR 

(Campos-Melo et al., 2013; Ishtiaq et al., 2014). These observations suggest that miRNA 

dysregulation may be a major contributor to reduced NEFL mRNA levels in ALS motor neurons, 

and to overall changes in intermediate filament stoichiometry. However, research still needs to 

be done to understand why there is a selective suppression of NEFL, PRPH and INA in ALS 

motor neurons while sparing the remaining intermediate filaments. 

1.2.2.3.2 Splicing Dysregulation in ALS  

Several ALS-related RNA-binding proteins are known to be involved in mRNA splicing 

including: TDP-43, FUS, TAF15, EWSR1, valosin-containing protein (VCP), hnRNPA1 and 

hnRNPA2B1 (Perrone et al., 2020). Thus, it is not surprising that mis-splicing of mRNA in 

motor neurons and spinal cord is a common phenomenon found in patients with ALS.  

TDP-43 dysregulation has been heavily associated with mis-splicing of several genes 

including, but not limited to CFTR, MAPT, SMN2, hnRNPA1 and STMN2 (Bose et al., 2008; 

Buratti and Baralle, 2001; Deshaies et al., 2018; Gu et al., 2017; Klim et al., 2019). In particular, 

mutations in the C-terminal end of TDP-43 have been associated with a gain-of-function where 

TDP-43 creates an alternative splicing event which skips exons that would normally be included 

(Fratta et al., 2018). These are known as “skiptic exons”. Further, loss of TDP-43 nuclear 

localization has been associated with loss-of-function splicing by which exons that would not 

normally be a part of the final transcript are placed in the transcript due to the absence of TDP-43 

(Fratta et al., 2018). These are known as “cryptic exons.” Both skiptic and cryptic exons have an 

increased prevalence in mouse models that contain gain or loss-of-function of TDP-43, 

respectively (Fratta et al., 2018). More recently, reduced TDP-43 levels within iPSC-derived 

motor neurons resulted in the production of a cryptic exon in the gene stathmin-2 (STMN2)—a 
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protein necessary for axonal regeneration—which leads to early termination of translation and 

loss of protein production. Further, this cryptic exon in STMN2 showed increased prevalence in 

ALS motor neurons where reduced STMN2 protein was also observed (Klim et al., 2019). 

TDP-43 also functions in the splicing of hnRNPA1. However, loss of TDP-43 nuclear 

localization promotes the production of the hnRNPA1B transcript, an alternative splice isoform 

which produces a protein that has an extended LCD and promotes the formation of hnRNPA1B 

cytoplasmic aggregates in ALS motor neurons (Deshaies et al., 2018).  

ALS-associated mutations in VCP have been shown to result in mis-splicing of Splicing 

Factor Proline and Glutamine rich (SFPQ) transcript causing the retention of intron 9 as shown 

in iPSC-derived motor neuron models (Luisier et al., 2018). The retention of this intron leads to 

increased binding of the SFPQ protein on the SFPQ transcript resulting in the protein exiting the 

nucleus and forming cytoplasmic aggregates. Clearance of SFPQ from the nucleus can be seen in 

motor neurons of mtVCP, mtSOD1, and sporadic ALS cases (Luisier et al., 2018). This provides 

an interesting mechanism by which mis-splicing, or intron retention, may directly contribute to 

the cytoplasmic aggregation of nuclear proteins as seen in ALS. 

Finally, FUS and other FET proteins (TAF15 and EWSR1) are known to interact with the 

spliceosome and regulate the splicing of several transcripts in the central nervous system (Kapeli 

et al., 2016; Orozco and Edbauer, 2013; Rogelj et al., 2012; Svetoni et al., 2016; Yu and Reed, 

2015; Zhou et al., 2002). FUS splicing events have been shown to be critical for neuronal 

function and survival (Lagier-Tourenne et al., 2012). Loss of FUS nuclear localization due to 

ALS-associated mutations has been known to cause massive changes in splicing within brain 

tissue of rodent models and in vitro neuronal models (Dormann et al., 2010; Kapeli et al., 2016; 
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Lagier-Tourenne et al., 2012; Reber et al., 2016; Zhou et al., 2013b). Overall, mis-splicing of 

transcripts appears to be a major contributor to the disease pathogenesis. 

1.2.2.3.3 Altered Polyadenylation in ALS  

Recent research has shown that altered poly(A) may be a contributing factor to the 

disease pathogenesis as a consequence of the loss of TDP-43 nuclear localization. In particular, 

TDP-43 regulates the poly(A) of STMN2 as shown in iPSC-derived motor neuron models, but 

loss of TDP-43 regulation promotes an early poly(A) termination site during transcription of 

STMN2 (Melamed et al., 2019). This leads to loss of STMN2 protein which, as mentioned 

previously, is a protein considered necessary for axonal regeneration (Klim et al., 2019). This 

early poly(A) termination of STMN2 has been observed in patients with ALS, indicating altered 

polyadenylation could be a factor contributing to motor neuron degeneration (Melamed et al., 

2019). While STMN2 is one example of altered polyadenylation in ALS, it would be worth 

exploring the extent of poly(A) dysregulation due to loss of TDP-43 nuclear function to 

understand the scope of this alteration across the transcriptome.  

1.2.2.3.4 Dysregulation of RNA Export in ALS 

Disruption in nucleocytoplasmic transport is a major phenomenon that occurs in ALS due 

to dysregulation of nuclear pore complexes (Chou et al., 2018; Freibaum et al., 2015; Taylor et 

al., 2016; Zhang et al., 2018a; Zhang et al., 2015). Nuclear pore complexes have been shown to 

interact with insoluble TDP-43. Mouse models and iPSC-derived motor neuron models 

containing disease-related mutations in TDP-43 showed impaired poly(A)-containing RNA 

export causing it to accumulate in the nucleus (Chou et al., 2018). Further, ALS-related 

mutations in MATR3 and C9ORF72 have also been shown to cause nuclear mRNA export 
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defects (Boehringer et al., 2017; Zhang et al., 2015). However, whether this is a global effect or 

if specific mRNA molecules are being retained is still in question.    

1.2.2.3.5 Non-coding RNA Dysregulation in ALS  

 

Non-coding RNA molecules that have been associated with the pathogenesis of ALS 

include miRNAs, long non-coding RNA’s (lncRNA’s) and small nucleolar RNA’s (snoRNA’s) 

(Campos-Melo et al., 2013; Chen and Chen, 2020; De Felice et al., 2014; Emde et al., 2015; 

Figueroa-Romero et al., 2016; Nishimoto et al., 2013; Riva et al., 2016). Although several 

snoRNA’s have been shown to be upregulated in ALS motor neurons, the significance of this 

finding and how it contributes to the pathogenesis of ALS is still unclear (Riva et al., 2016).  

 LncRNA NEAT1_2 has been observed to be increased in the motor neurons of sALS 

patients (Nishimoto et al., 2013). NEAT1_2 is an essential component for nuclear paraspeckle 

formation—RNP granules that regulate gene expression via nuclear retention of mRNA (Fox and 

Lamond, 2010). Increased NEAT1_2 levels coincide with an increase number of paraspeckles in 

sALS motor neurons where NEAT1_2 has been shown to interact with TDP-43 and FUS proteins 

(Nishimoto et al., 2013). Interestingly, ALS-linked mutations in FUS have been shown to cause 

paraspeckle dysfunction, but also lead to greater NEAT1_2 levels, indicating that FUS may be 

needed to form paraspeckles, and the loss of these structures could contribute to the pathology of 

the disease (An et al., 2019).  

As previously discussed, miRNAs have been the most extensively studied non-coding 

RNA molecules in ALS. The majority of miRNAs, but not all, have been shown to be reduced in 

the spinal cord and motor neurons of ALS patients (Campos-Melo et al., 2013; De Felice et al., 

2014; Emde et al., 2015; Figueroa-Romero et al., 2016; Reichenstein et al., 2019). It is tempting 

to hypothesize that this may be because several RNA-binding proteins that are dysregulated in 
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ALS are also involved in miRNA biogenesis. These include TDP-43, FUS, TAF15, EWSR1, 

hnRNPA1, and hnRNPA2B1 (Alarcon et al., 2015; Ballarino et al., 2013; Guil and Caceres, 

2007; Kawahara and Mieda-Sato, 2012; Kim et al., 2014; Morlando et al., 2012). However, very 

little is known about how miRNAs become dysregulated in the first place and whether this 

change in miRNA expression really has an impact on the disease pathogenesis. In this 

dissertation, my goal is to try and understand possible mechanisms for why miRNAs are reduced 

in ALS motor neurons and whether if any of the miRNAs affected result in altered expression of 

genes associated ALS. For example, does reduced miRNA expression alter intermediate filament 

stoichiometry, or lead to increased expression of LCD-containing proteins which may promote 

their aggregation? To understand miRNA dysregulation, we must first understand miRNA 

regulation. In the next section, I will discuss miRNA biogenesis, regulation and function, and 

then briefly discuss our current understanding of the role of miRNAs in motor neuron function 

and disease.   

1.3 MiRNAs 

 

MiRNAs are evolutionary conserved non-coding RNAs (ncRNAs) of 18-22 nucleotides 

that post-transcriptionally regulate the expression of most mammalian genes. First discovered in 

Caenorhabditis elegans over 25 years ago, miRNAs are the dominant class of small RNAs in 

somatic cells (Ha and Kim, 2014; Lee et al., 1993). The human genome harbours more than 

2,500 mature miRNAs that play major roles in a variety of biological pathways such as 

apoptosis, cell proliferation, development, differentiation and pathological processes (Bartel, 

2018). Each miRNA contains a unique nomenclature used to identify them (Table 1.2).  

1.3.1 MiRNA Biogenesis 

 

1.3.1.1 Canonical miRNA Biogenesis Pathway 
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Table 1.2. MiRNA nomenclature. 

Examples of miRNAs Symbol Meaning 

miR-218 “miR-“ Abbreviation for “miRNA” 

miR-218 “218” Unique identifier for specific miRNA 

miR-1 “miR-1” 

Name listed without asterisks 

represent predominant miRNA 

product that originates from 

precursor miRNA 

miR-1* “*” 

Asterisk refers to miRNA which is 

on the opposite arm from 

predominant product on the precursor 

miRNA 

miR-124-5p or miR-124-3p “-5p, -3p” 

Suffixes determine whether the 

miRNA originated from the 5’ end (-

5p) or 3’end (-3p) of precursor 

miRNA molecule 

miR-27a-3p or miR-27b-3p “a, b” 

Letters beside miRNAs with the 

same unique identifier refer to 

miRNAs that are a part of the same 

family. If miRNAs are in the same 

family, they contain the exact same 

seed sequence, but the full mature 

miRNA sequence is not the same 

miR-9-1-5p, miR-9-2-5p or miR-9-3-5p “-1, -2, -3” 

Numbers, written as such beside the 

unique identifiers, refer to duplicate 

miRNAs. These miRNAs have the 

exact same mature miRNA sequence 

but originate from different areas of 

the genome 
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In mammals, the majority of miRNAs are encoded within introns of either protein-coding 

or non-coding genes (Rodriguez et al., 2004). Several miRNA loci close in proximity are 

generally co-transcribed, thus constituting a miRNA cluster. Most miRNAs are transcribed by 

RNA polymerase II (Pol II); however RNA Pol III has been also shown to transcribe some viral 

and human miRNAs (Borchert et al., 2006; Pfeffer et al., 2005). MiRNA transcription is 

controlled by RNA Pol II-associated transcription factors such as MYC, ZEB1 and ZEB2 and 

epigenetic regulators (Cai et al., 2004; Davis-Dusenbery and Hata, 2010; Lee et al., 2004). 

Transcription products - primary miRNAs that are over 1 kb in length (pri-miRNAs) - contain a 

stem-loop structure in which mature miRNA sequences are embedded. Similar to mRNAs, pri-

miRNA transcripts contain a 7-methyl guanylate cap at the 5' end and a poly(A) tail at the 3' end 

(Davis and Hata, 2009). The nuclear RNAse III-type endonuclease DROSHA, and its essential 

cofactor DiGeorge syndrome chromosomal region 8 (DGCR8), form the microprocessor 

complex to target and cleave pri-miRNAs at the stem-loop to release the ~65 nt length precursor 

miRNA (pre-miRNA) (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Lee et al., 

2003). The pre-miRNA is then exported to the cytoplasm by exportin-5 and Ras-related nuclear 

protein guanosine-5'-triphosphate (Ran-GTP) (Bohnsack et al., 2004; Lund et al., 2004; Yi et al., 

2003). It has been reported that exportin-5 is necessary but not critical for miRNA maturation, 

suggesting that other mechanisms complement its function (Kim et al., 2016).  

Pre-miRNA is cleaved by another RNAse III-type endonuclease called DICER, releasing 

the small miRNA duplex (Hutvagner et al., 2001; Ketting et al., 2001). DICER associates with 

the cofactors human immunodeficiency virus transactivating response RNA-binding protein 

(TRBP) and protein activator of the interferon-induced protein kinase (PACT), which do not 

seem to be essential for DICER-mediated pre-miRNA processing (Chendrimada et al., 2005; 
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Haase et al., 2005; Lee et al., 2013; Lee et al., 2006). However, it has been shown that TRBP is 

an integral cofactor for DICER processing in RNA-crowded environments, acting as a 

gatekeeper to preclude DICER from engaging with pre-miRNA-like substrates (Fareh et al., 

2016). After DICER processing, the miRNA duplex is loaded into AGO proteins (AGO 1-4 in 

humans) to form the RNA-induced silencing complex (RISC). Subsequently, the miRNA is 

unwound into two separate strands. The guide strand, which is determined during the AGO 

loading step based on relative thermodynamic stability, is usually much more prevalent and more 

biologically active than the passenger strand (miRNA*) (Ha and Kim, 2014; Kawamata and 

Tomari, 2010).  After AGO-mature miRNA binding, AGO seeks target mRNAs that are 

complementary to the miRNA seed sequence. Of note, miRNA silencing likely occurs by 

submicroscopic complexes in the cytoplasm that are constantly exchanging with cytoplasmic 

RNA granules called processing bodies (p-bodies) (Leung and Sharp, 2013). Finally, an 

interesting observation is that most mature miRNAs are also present in the nucleus, indicating 

that mature miRNAs can shuttle between the nucleus and cytoplasm. Exportin-1 (XPO1) and 

importin-8 (IPO8) have been shown to mediate the translocation to the nucleus of not only 

miRNAs, but also AGO proteins (Castanotto et al., 2009; Weinmann et al., 2009). Within the 

nucleus, miRNAs can function in gene activation or in an unconventional manner regulating the 

biogenesis and functions of miRNAs and long non-coding RNAs (lncRNAs) (Liang et al., 2013) 

(Fig. 1.2). 

1.3.1.2 Non-canonical miRNA Biogenesis Pathway  

 

Several alternative mechanisms of miRNA biogenesis have been described besides the 

canonical pathway, although only about 1% of conserved miRNAs are produced independently 

of DICER or DROSHA in vertebrates (Ha and Kim, 2014). The most common non-canonical 
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pathway is used for mirtron production: miRNAs encoded in introns at the exon junction site. 

Mirtron miRNAs bypass the DROSHA-DGCR8 complex. Pre-miRNAs are instead generated by 

mRNA splicing, lariat debranching and trimming (Berezikov et al., 2007; Ruby et al., 2007). 

DROSHA-mediated processing is also bypassed in the case of miRNAs derived from shRNAs, 

tRNAs or tRNA-like precursors, small nucleolar RNAs (snoRNAs) or snoRNA-like viral RNAs 

(Babiarz et al., 2008; Cazalla et al., 2011; Ender et al., 2008).  

In some cases, such as miR-451, miRNAs can also be generated by DICER-independent 

miRNA biogenesis. After DROSHA cleavage, pre-miR-451 is directly loaded and sliced by 

AGO2 (Cifuentes et al., 2010). Then, a poly(A)-specific ribonuclease (PARN) trims down the 3ʹ 

end of pre-miR-451 to produce the mature miR-451 (Yoda et al., 2013).  

Another class of miRNAs undergo DROSHA and DICER dependent biogenesis, but an 

additional processing step is included in between the two RNases. Precursors of these miRNAs 

carry a shorter (one-nucleotide long instead of two) 3ʹ overhang. Terminal uridylyl transferases 

(TUT2, TUT4 and TUT7) target these pre-miRNAs and extend their 3’end by 1 nucleotide  

through monouridylation for efficient DICER processing (Heo et al., 2012) (Fig. 1.3). Of 

interest, TUTs can also trigger pre-miRNA degradation through oligouridylation of 3' trimmed 

pre-miRNAs and pre-let-7 (see section “Regulation of miRNA expression”) (Kim et al., 2015).  

1.3.2 Regulation of miRNA Expression 

 

MiRNA expression can be regulated at multiple levels. Transcription is the first control 

point of the miRNA biogenesis. Of note, one-third of intronic miRNAs have transcription 

initiation regions independent of their host promoters. RNA Pol II-transcribed miRNA promoters 

are generally similar to mRNA promoters in terms of frequencies of CpG islands, TATA 

elements, TFIIB recognition elements, initiator elements (Inr), motif ten elements (MTE) and 
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Figure 1.2. MiRNA biogenesis of canonical miRNAs. The first part of miRNA processing 

occurs in the nucleus. Pri-miRNA is transcribed by RNA polymerase II or III (RNA pol II/III) 

and then cleaved by DROSHA/DGCR8 to form pre-miRNA. Pre-miRNA is exported to the 

cytoplasm by exportin-5 and then cleaved by DICER. MiRNA duplex is loaded into argonaute 

proteins (AGO 1–4) and subsequently unwound into two separated strands. For most miRNA 

targets, AGO is recruited to a complex that contains GW182 proteins (RNA-induced silencing 

complex, RISC) that induces translational repression and degradation of the mRNA targets. 

TDP-43 and FET family, RNA-binding proteins linked to amyotrophic lateral sclerosis (ALS), 

interact with DROSHA and/or DICER, regulating miRNA processing at both primary and 

precursor levels. 
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Figure 1.3. Non-canonical pathways of miRNA processing. For mirtron production, miRNAs 

encoded in introns at the exon junction site, miRNAs bypass DROSHA/DGCR8 and pre-

miRNAs are instead generated by mRNA splicing, lariat debranching and trimming. In other 

cases, miRNAs can also be generated by DICER independent miRNA biogenesis. After 

DROSHA cleavage miRNA is directly loaded and sliced by AGO2. PARN then trims down the 

3’ end of the pre-miRNA to produce the mature miRNA. A third class of miRNAs undergo 

DROSHA and DICER dependent biogenesis, but an additional processing step is included in 

between the two RNAases. Precursors of these miRNAs carry a shorter 3’ overhang. Terminal 

uridylyl transferases (TUT2, TUT4 and TUT7) target these pre-miRNAs and extend their 3’ end 

by 1 nucleotide through monouridylation for efficient DICER processing. 
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downstream promoter elements (DPE). Also, some transcription factors that control mRNA 

production regulate the transcription of miRNAs encoded in introns of protein coding genes 

(Davis and Hata, 2009; Ozsolak et al., 2008).  

Changes in the methylation of miRNA promoters or miRNA sequences can impact on the 

expression of miRNAs. The methylation status of some miRNA genes has been associated with 

cancer. For instance, hypermethylation of the CpG island upstream of the tumor suppressor miR-

33b, is responsible for its downregulation in gastric cancer (Yin et al., 2016). Also, methylation 

of promoters of the miR-200b cluster is associated with metastasis in advanced breast cancer 

(Wee et al., 2012). Interestingly, methylation of the 5’ monophosphate of pre-miR-23b and pre-

miR-145 inhibits the processing of these miRNAs by DICER (Xhemalce et al., 2012). This is 

because the interaction between DICER and the 5’ monophosphate is necessary for the efficient 

processing of pre-miRNAs (Park et al., 2011). MiRNA promoters are also regulated by histone 

modifications. Some miRNAs have been reported to be up- or down-regulated after the treatment  

with histone deacetylase (HDAC) inhibitors (Nasser et al., 2008; Saito and Jones, 2006; Scott et 

al., 2006). For instance, acetylation regulates the expression of miR-133a during chronic pressure 

overload-induced cardiac fibrosis (Renaud et al., 2015). Single nucleotide polymorphisms 

(SNPs) in miRNA genes can also affect miRNA biogenesis (Duan et al., 2007). For example, 

SNPs in miR-1206 and miR-612 genes within two cancer risk loci affect the expression of both 

mature miRNAs (Kim et al., 2012).  

RNA editing (adenosine to inosine catalyzed by adenosine deaminase that acts on RNA; 

(ADARs)) also impacts on miRNA processing. Let-7 pri-miRNA editing impairs the biogenesis 

of this miRNA and drives leukemia stem cell self-renewal (Zipeto et al., 2016). Another type of 

regulation of miRNA biogenesis is by RNA-tailing (nucleotidyl addition to the 3ʹ end of RNA). 
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For example, LIN28 proteins recruit terminal uridylyl transferases TUT4 and TUT7 C6 to induce 

oligouridylation of pre-let-7 (Hagan et al., 2009; Heo et al., 2008; Heo et al., 2009). This oligo-U 

tail blocks DICER processing, and facilitates miRNA decay by 3’-5’ exonuclease DIS3L2 

(Chang et al., 2013; Ustianenko et al., 2013). Some miRNA transcripts, like most mRNAs, are 

methylated at N6-adenosine (m6A). This modification acts as a mark for pri-miRNA processing. 

RNA-binding protein hnRNPA2B1 binds to m6A, interacts with DGCR8, and promotes pri-

miRNA cleavage to produce pre-miRNA (Alarcon et al., 2015).  Finally, levels of certain 

miRNAs are controlled by regulating miRNA stability. For instance, levels of miR-122 are 

stabilized by monoadenylation via the non-canonical cytoplasmic poly(A) polymerase GLD-2 

(TUT2) in mammals (D'Ambrogio et al., 2012; Katoh et al., 2009). Moreover, a highly 

complementary mRNA target can induce miRNA degradation through 3’ addition of a single 

non-templated uridine followed by 3’ to 5’ trimming of the miRNA with a 2′-O-methyl group 

added by Hen1 enzyme in Drosophila (Ameres et al., 2010; Baccarini et al., 2011). 

Recently, another layer of complexity has been added into miRNA regulation. Levels of 

mature forms of miR-122 are post-transcriptionally regulated by modulating its processing in 

a target-dependent manner during recovery from starvation-related stress (Bose and 

Bhattacharyya, 2016). 

1.3.3 Mechanisms of miRNA Function 

 

MiRNAs are able to regulate gene expression by several mechanisms (Fig. 1.4). In RNA 

silencing, miRNAs function as a guide to recognize target mRNAs, whereas AGO proteins 

function as effectors by recruiting factors that induce translational repression and/or mRNA 

decay (Ha and Kim, 2014). The 5’ region of the miRNA (seed, nucleotides 2 to 7) is crucial for 

target recognition through the complementary base pairing of miRNA recognition elements   
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Figure 1.4. Mechanisms of action of miRNAs. (A) MiRNAs promote mRNA degradation by 

recruiting deadenylases on the target mRNA via GW182 and also through the dissociation of 

PABP, increasing the accessibility of the poly(A) tail to deadenylases. (B) MiRNAs inhibit 

translation at the initiation step, however the exact mechanism is still unclear. Three mechanisms 

have been proposed; (i) PABP displacement mediated by GW182; (ii) recruitment of the 

translational repressors through GW182; and (iii) dissociation of eukaryotic initiation factor-4A 

(eIF4A) from the cap-binding complex eIF4F. (C) MiRNAs also induce upregulation of their 

targets. MiRNAs have been implicated in gene activation triggered by promoter-targeted small 

RNAs, known as RNA activation (RNAa). (D) Upregulation of certain transcripts can also be 

mediated by miRNA binding to mRNA 3’untranslated regions (3’UTRs), resulting in either 

translation activation or RNA stability enhancement. MiR-346-dependent upregulation of 

telomerase reverse transcriptase (TERT) occurs through the binding to TERT mRNA 3’UTR and 

is mediated by G-rich RNA sequence binding factor 1 (GRSF1). MiR-346 facilitates the 

recruitment of TERT mRNA to ribosomes to promote translation. In another example, miR-4661 

uses the binding sites of the tristetraprolin (TTP) in the IL-10 3’UTR preventing TTP-mediated 

IL-10 mRNA degradation in macrophages. 
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(MREs) that are mostly localized in the mRNA 3’untranslated region (UTR). Currently, MREs 

in 3’UTRs are determined using prediction algorithms and then validated with functional 

analysis. However, seedless 3’UTR MREs have been described, as well as MREs localized 

within 5’UTRs and coding regions (Forman et al., 2008; Lal et al., 2009; Moretti et al., 2010). To 

provide an alternative view of human miRNA targets, a protocol termed cross-linking, ligation 

and sequencing of hybrids (CLASH) was developed for high-throughput identification of 

miRNA-target RNA duplexes associated with AGO and is independent of bioinformatic 

predictors. Transcriptome-wide data set revealed that binding of most miRNAs to their targets 

includes the seed region, but around 60% of seed interactions are noncanonical. Of interest, seed 

interactions are generally accompanied by non-seed base pairing (Helwak et al., 2013). 

MiRNAs downregulate target mRNAs through translational repression and mRNA 

destabilization, with mRNA destabilization dominating most miRNA-mediated repression 

(Eichhorn et al., 2014; Guo et al., 2010; Hendrickson et al., 2009). Although miRNAs inhibit 

translation at the initiation step, the exact mechanism is still unclear. Three mechanisms have 

been proposed i) PABP displacement mediated by GW182 (Moretti et al., 2012; Zekri et al., 

2013), ii) recruitment of the translational repressors through GW182 (Kamenska et al., 2014; 

Meijer et al., 2013; Waghray et al., 2015) and iii) dissociation of eukaryotic initiation factor-4A 

(eIF4A) from the cap-binding complex eIF4F (Fukao et al., 2014; Fukaya et al., 2014).  

At the same time, mRNA destabilization is a consequence of miRNA-mediated deadenylation of 

target mRNAs which causes these mRNAs to undergo decapping and 5’ –3’decay (Behm-

Ansmant et al., 2006; Rehwinkel et al., 2005; Wu et al., 2006).  MiRNAs promote mRNA decay 

by recruiting the deadenylase complex CCR4–NOT or PAN2–PAN3 on the target mRNA via 

GW182 (Braun et al., 2011; Fabian et al., 2011). Also, miRNAs promote mRNA decay through 
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the dissociation of PABP, increasing the accessibility of the poly(A) tail to deadenylases (Moretti 

et al., 2012).  

Beside well-known downregulatory functions, there is increasing evidence that miRNAs 

can also induce upregulation of their targets (Campos-Melo et al., 2014; Valinezhad Orang et al., 

2014; Vasudevan et al., 2007). MiRNAs, similar to double stranded RNAs (dsRNAs), have been 

implicated in gene activation triggered by promoter-targeted small RNAs, known as RNA 

activation (RNAa). For instance, the expression of cyclin B1 (Ccnb1) depends on RNAa by 

miRNAs and components of miRNA biogenesis in mouse cells. Chromatin immunoprecipitation 

(ChIP) analysis had shown that AGO1 is selectively associated to the Ccnb1 promoter and miR-

744, which induces Ccnb1 expression, increases enrichment of RNA Pol II and trimethylation of 

histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. At a functional level, short-

term expression of miR-744 enhances cell proliferation, but prolonged overexpression causes 

tumor suppression (Huang et al., 2012). 

Finally, the upregulation of certain mRNA transcripts can also be mediated by miRNA 

binding to mRNA 3’UTRs, resulting in either translation activation or RNA stability 

enhancement. For example, miR-346-dependent upregulation of telomerase reverse transcriptase 

(TERT) occurs through the binding of miR-346 to TERT mRNA 3’UTR. When miR-346 is 

bound to the TERT mRNA 3′UTR, its middle sequence motif forms a “bulge loop”, facilitating 

the G-rich RNA sequence binding factor 1 (GRSF1)-mediated recruitment of TERT mRNA to 

polysomes to promote translation (Song et al., 2015). A similar mechanism of GRSF1 interaction 

with AGO2 in a miR-346-dependant manner, leading to upregulate the expression of AGO2, has 

been described for cervical cancer (Guo et al., 2015). It has also been reported that miR-4661 

uses the binding sites of the RNA-binding protein tristetraprolin (TTP) in the IL-10 3’UTR AU-
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rich elements, thus preventing TTP-mediated IL-10 mRNA degradation in macrophages (Ma et 

al., 2010).  

1.4 MiRNAs in Motor Neuron Function 

 

Transgenic mouse models containing loss of DICER function set the foundation for the 

importance of miRNA regulation within motor neurons. These experiments showed that in early 

development, loss of DICER function within motor neuron progenitor cells leads to aberrant 

motor neuron development in the lateral motor column, while in adult mice, loss of DICER 

expression in motor neurons resulted in progressive motor neurodegeneration (Chen and 

Wichterle, 2012; Haramati et al., 2010). With these two studies, it became apparent that the 

production of miRNAs is a critical factor to overall motor neuron function and survival. There is 

very little known about the miRNome (the full spectrum of miRNAs being expressed) of motor 

neurons. However, as we further discover miRNAs related to motor neuron development and 

degeneration, it becomes increasingly evident that there are specific miRNAs needed to regulate 

cytoskeleton integrity, neuronal development, signalling and function, synaptic plasticity, and 

overall survival of motor neurons which we have termed “MotomiR’s” (Table 1.3).   

1.4.1 MiRNAs in Motor Neuron Diseases  

 

Given the several roles of miRNAs in regulating motor neuron differentiation, structure, 

activity and cytoskeletal integrity, it is not surprising that alterations in the expression of 

miRNAs have been increasingly linked to human motor neuron degenerative disorders. These 

alterations can be in the miRNAs and/or MREs such as changes in the expression, editing and 

methylation, mutations and SNPs, and also alterations in competing endogenous RNAs 

(ceRNAs) involved in the regulation of the interaction of miRNAs and their targets. 
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Table 1.3. List of current MotomiRs and their function* 
 

MotomiR 
Genes shown 

to regulate 

Role within motor 

neurons 

Organism/Cell 

models used to 

describe function 

References 

miR-9 

OC1, FoxP1, 

NEFH, 

MAP1B, 

MCPIP1 

Development, 

cytoskeleton 

maintenance, cell 

survival 

Chick, mouse 

neuronal 

precursor cells, 

mouse 

(Dajas-Bailador et al., 2012; 

Haramati et al., 2010; 

Luxenhofer et al., 2014; 

Otaegi et al., 2011; Xu et al., 

2016) 

miR-124 
REST, Stat3, 

Kfl6 

Development, 

regeneration 
Mouse 

(Nagata et al., 2014; 

Visvanathan et al., 2007) 

miR-146*, 

miR-524, miR-

582, miR-

b1336, & 

miR-b2403 

NEFL 
Cytoskeleton 

maintenance 

In vitro 

interactions done 

in HEK293T cells 

 

(Campos-Melo et al., 2013; 

Ishtiaq et al., 2014) 

miR-218 

TEAD1, 

FOXP2, LHX1, 

SLC6A1, 

BCL11A, 

SLC1A1 

Development, 

membrane 

excitability, NMJ 

synaptic connections 

Mouse 
(Amin et al., 2015; Thiebes 

et al., 2015) 

miR-8 
FasIII, Nrg, 

wg, lar 
Synaptic plasticity Drosophila 

(Lu et al., 2014; Nesler et 

al., 2013) 

miR-958 & 

miR-289 
Lar Synaptic plasticity Drosophila (Nesler et al., 2013) 

miR-375 
PAX6, CCND2, 

p53 

Development, cell 

survival 

Human neural 

progenitor cell 

cultures 

(Bhinge et al., 2016) 

miR-310-313 Khc-43 
Synaptic vesicle 

release 
Drosophila (Tsurudome et al., 2010) 

miR-128 & 

miR-20a 
PDZ-RhoGEF 

Axonal growth, 

regeneration 

Rat cortical 

neuron cultures 
(Sun et al., 2013) 

miR-153 SNAP-25 

Axonal growth, 

synaptic vesicle 

release 

Zebrafish (Wei et al., 2013) 

miR-196 Hoxb8 Development Drosophila (Asli and Kessel, 2010) 

miR-183 mTOR Neurite growth 

Rat primary 

spinal motor 

neuron cultures 

(Kye et al., 2014) 

miR-206 BDNF, HDAC4 NMJ Regeneratoin Mouse 

 

(Miura et al., 2012; 

Williams et al., 2009) 
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miR-34 Nrx-IV,  Hts  
NMJ synaptic 

connections 
Drosophila (McNeill et al., 2020) 

miR-126 Sema3, NRP 
NMJ synaptic 

connections 

In vitro motor 

neuronal models 
(Maimon et al., 2018) 

miR-137 Calpain-2 
Regeneration, 

survival  

In vivo rat motor 

neurons 
(Tang et al., 2018) 

*Table adapted from Hawley et al., 2017a  
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1.4.1.1 MiRNA Dysregulation in Spinal Muscular Atrophy (SMA) 

SMA is an autosomal recessive disease characterized by progressive loss of lower motor 

neurons and atrophy of muscle (Burghes and Beattie, 2009). Proximal SMA has an incidence of 

∼1:10,000 newborns and is the most frequent SMA type (Wirth et al., 2006). SMA is caused by 

homozygous deletion or mutation of survival motor neuron 1 (SMN1) (Lefebvre et al., 1995). 

SMN has been found to play roles in RNA metabolism, specifically in snRNP (small nuclear 

ribonucleoproteins) biogenesis, alternative splicing, trafficking of RNA-binding proteins and 

translation of target mRNAs in neurites. SMN also binds to fragile X mental retardation protein 

(FMRP), KH-type splicing regulatory protein (KSRP) and FUS, which are important for miRNA 

biogenesis and function (Akten et al., 2011; Fallini et al., 2014; Fallini et al., 2011; Gubitz et al., 

2004; Hubers et al., 2011; Piazzon et al., 2008; Tadesse et al., 2008; Trabucchi et al., 2009; 

Yamazaki et al., 2012). In fact, several lines of evidence have involved miRNAs in SMA. It was 

reported that mice lacking the miRNA-processing enzyme DICER selectively in motor neurons 

display hallmarks of SMA (Haramati et al., 2010). Also, SMN protein has been shown to alter 

miRNA expression and distribution in neurons (Kye et al., 2014; Wang et al., 2014). 

Specifically, miR-183 is increased in neurites of SMN-deficient neurons. Inhibition of 

miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves 

motor function of Smn-mutant mice (Kye et al., 2014). SMN protein also downregulates the 

expression of miR-9a. Interestingly, miR-9a levels have shown a positive correlation with SMA 

severity (Wang et al., 2014). A more recent study has shown that miR-431, involved in motor 

neuron neurite length, also plays a role in the SMA motor neuron phenotype. By integrating 

miRNA:mRNA profiles, it was observed that miR-431 expression is highly increased in spinal 

motor neurons, and a number of its putative mRNA targets are significantly downregulated in 

motor neurons after SMN loss (Wertz et al., 2016). Another miRNA involved in SMA motor 



44 
 

neuron phenotype is miR-375. Besides its role in neurogenesis, miR-375 protects neurons from 

apoptosis in response to DNA damage. Motor neurons derived from a SMA patient have shown 

reduced levels of miR-375, elevated p53 protein levels, and higher susceptibility to DNA 

damage induced apoptosis (Bhinge et al., 2016).  

Recently, the first vertebrate system allowing transgenic spatio-temporal control of the 

smn1 gene was developed using stable miR-mediated knockdown technology in zebrafish. The 

expression of anti-smn1 miRNAs in motor neurons reproduced most hallmarks observed 

previously in the ubiquitous knockdown model. In addition, smn1 knockdown in zebrafish motor 

neurons is sufficient to induce late-onset motor neuron degeneration (Laird et al., 2016). Finally, 

the potential use of miR-9, miR-206 and miR-132 as biomarkers in SMA has been proposed. It 

was shown that there is differential expression of all three miRNAs in spinal cord, skeletal 

muscle and serum samples in SMA mouse models, while only miR-9 and miR-132 were 

differentially expressed in serum samples of SMA patients (Catapano et al., 2016). 

 

1.4.1.2 MiRNA Dysregulation in ALS  

Numerous studies in ALS models and patient samples have demonstrated a mass 

disruption of miRNA expression in ALS (Butovsky et al., 2012; Dobrowolny et al., 2015; Koval 

et al., 2013; Marcuzzo et al., 2014; Parisi et al., 2013; Toivonen et al., 2014; Williams et al., 

2009; Zhou et al., 2013a).  The most consistent observation from the mtSOD1 mice is the 

upregulation of miR-9 and miR-206 (Dobrowolny et al., 2015; Toivonen et al., 2014; Williams et 

al., 2009; Zhou et al., 2013a). Specifically, miR-9 expression is upregulated in mtSOD1 mouse 

spinal cord (Dobrowolny et al., 2015; Shi et al., 2004; Tan et al., 2012; Zhao et al., 2009; Zhou et 

al., 2013a), while miR-206 expression is upregulated in muscle in both mtSOD1 and SMA 
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mouse models (Valsecchi et al., 2015). Of note, mtSOD1 disease progression is accelerated with 

downregulation of miR-206 expression (Williams et al., 2009).  

The first miRNA profile of human spinal cord tissue was obtained in 2013 and observed 

a massive downregulation of miRNAs in ALS (Campos-Melo et al., 2013). This disruption was 

subsequently shown to be specific to motor neurons (Emde et al., 2015). The reduction of 

miRNA levels has been previously indicated to be a consequence of the inhibition of DICER 

pre-miRNA processing activity (Emde et al., 2015). Of note, the downregulation of miRNAs  has 

also been observed in other ALS-derived tissues such as in motor cortex, fibroblasts, serum 

/plasma, and CSF (Benigni et al., 2016; Freischmidt et al., 2015a; Raman et al., 2015; Takahashi 

et al., 2015; Wakabayashi et al., 2014).  A consistent upregulation of miR-206 in muscle (de 

Andrade et al., 2016; Russell et al., 2013) and in serum samples of ALS patients has also been 

reported (de Andrade et al., 2016; Toivonen et al., 2014). The latter appears to correlate with the 

rate of clinical deterioration (de Andrade et al., 2016). Although studies in larger cohorts are 

necessary, these results suggest that miR-206 could be a potential biomarker for ALS. 

While miRNAs have clearly been shown to be reduced within the spinal cord and motor 

neurons of ALS patients (Campos-Melo et al., 2013; Emde et al., 2015), the exact cause of this 

mechanism is still unclear. However, a major contributor to reduced miRNA levels in ALS 

motor neurons is that several ALS-associated RNA-binding proteins have been shown to be 

involved in miRNA biogenesis as discussed earlier, including: TDP-43, FUS, TAF15, EWSR1, 

hnRNPA1 and hnRNPA2B1 (Alarcon et al., 2015; Ballarino et al., 2013; Kawahara and Mieda-

Sato, 2012; Kim et al., 2014; Kooshapur et al., 2018; Morlando et al., 2012). The common 

pathological feature among all these proteins in ALS is that they have been found to re-locate 

from the nucleus to the cytoplasm in motor neurons, and subsequently form cytoplasmic 
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aggregates. This indicates a loss of nuclear function of RNA-binding proteins in ALS may 

contribute to the changes in miRNA processing. Interestingly, cellular stress has been shown to 

transiently induce the re-localization of many ALS-related nuclear RNA-binding proteins to the 

cytoplasm providing a potential mechanism that could induce the pathology of these proteins in 

ALS and disrupt miRNA biogenesis.  

1.5 Stress Granules  

 

The compendium of genes that have been associated with ALS have shown a high 

enrichment for RNA-binding proteins, indicating that changes to RNA processing in motor 

neurons is a major factor to the disease progression (Andersen and Al-Chalabi, 2011; Chen et al., 

2013; Therrien et al., 2016). Further, many of the ALS-associated RNA-binding proteins are 

responsible for the formation, assembly, and disassembly of stress granules—transient 

ribonucleoprotein (RNP) granules that form during periods of cellular stress and contain 

translationally silent mRNA (Anderson and Kedersha, 2008; Aulas and Vande Velde, 2015; 

Buchan, 2014). ALS-linked RNA-binding proteins associated with stress granules include: TDP-

43, FUS, ATXN2, hnRNPA1, hnRNPA2B1, TAF15, EWSR1, RBM45, C9ORF72 and TIA1 

(Andersson et al., 2008; Colombrita et al., 2009; Kim et al., 2013; Li et al., 2015; Mackenzie et 

al., 2017; Maharjan et al., 2017; Nonhoff et al., 2007). This list contains many of the ALS-

related RNA-binding proteins that are involved in miRNA biogenesis mentioned in the previous 

section. Based on this information, it is widely believed that stress granules may be the seed to 

pathological aggregate formation of RNA-binding proteins ultimately leading to changes in 

miRNA processing in ALS.   

 

1.5.1 Stress Granule Assembly and Disassembly  
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When cells face adverse conditions within their environment (e.g. oxidative, osmotic, or 

proteasomal stress), cells start to produce structures called stress granules (Gilks et al., 2004; 

Kedersha et al., 2000; Kedersha et al., 1999). The purpose of these granules is to act as a triage 

for mRNA, where mRNA can be either stored within the stress granule, transferred to processing 

bodies (p-bodies) for degradation, or go back into polysomes to be translated (Anderson and 

Kedersha, 2008; Aulas and Vande Velde, 2015).  

Phosphorylation of eIF2α appears to be an early trigger that initiates stress granule 

assembly; however, there are cases of stress granule assembly that are independent of eIF2α 

phosphorylation (Kedersha et al., 2002; Kim et al., 2007; McEwen et al., 2005; Shenton et al., 

2006). The phosphorylation of eIF2α results in reduced formation and activity of translational 

machinery (Shenton et al., 2006). This is followed by an accumulation of RNA-binding proteins 

and RNA molecules into granules that lack a membrane structure (Anderson and Kedersha, 

2008; Baradaran-Heravi et al., 2020; Gilks et al., 2004). TIA-1 and G3BP1 are two RNA-binding 

proteins that early on were thought to be critical for proper stress granule formation. However, as 

we learn more about stress and stress granules, we are starting to understand how truly dynamic 

and diverse these structures are. Thus, while some proteins are critical for the formation of stress 

granules for certain stresses, they might not be critical for others (Aulas et al., 2015; Gilks et al., 

2004; Kedersha et al., 2016; Markmiller et al., 2018). For example, G3BP1 is critical for the 

formation of stress granules during oxidative stress, but it is not needed for stress granule 

assembly during periods of osmotic stress (Kedersha et al., 2016; Solomon et al., 2007). Further, 

proteomics of stress granules has shown different stresses and different cell types result in 

different protein profiles (Markmiller et al., 2018). This suggests that stress granule formation 

and proteomic profile are highly dynamic and context dependent. 



48 
 

After cellular stress disappears, stress granules start disassembling as the cell goes back 

to its homeostatic state allowing translation of previously silent mRNA to begin again (Molliex 

et al., 2015). Several mechanisms have been implicated in stress granule disassembly, including: 

reduced stress results in the formation and increased activity of translational machinery 

destabilizing the granule structure; inhibition of RNA helicases that promote assembly and 

maintenance of stress granules; heat shock proteins disassemble RNP complexes; and, 

ubiquitination of proteins via VCP allowing for stress granules to be targeted by autophagy 

pathways (Buchan et al., 2013; Cherkasov et al., 2013; Jain et al., 2016; Kroschwald et al., 2015; 

Meyer and Weihl, 2014; Protter and Parker, 2016; Wheeler et al., 2016). All these pathways 

likely work together to allow for efficient disassembly of stress granules. It is also clear that 

stress granule disassembly is an active process that requires ATP hydrolysis (Jain et al., 2016; 

Meyer and Weihl, 2014; Protter and Parker, 2016).  

In all of this, LCD-containing proteins appear to be critical for the formation of stress 

granules by allowing them to phase separate and form liquid droplets, which produces dynamic 

interactions with p-bodies, other stress granules and the cytosol of the cell (Aulas et al., 2015; 

Gilks et al., 2004; Kato et al., 2012; Mackenzie et al., 2017; Molliex et al., 2015; Murray et al., 

2017; Patel et al., 2015). Structurally, this is because the LCD participates in β-pleated sheet 

formation and forms amyloid-like interactions similar to what is seen in prion disease (Molliex et 

al., 2015; Murakami et al., 2015; Patel et al., 2015). These interactions are critical for the 

formation of RNA granules which lack a membrane to contain its components (Baradaran-

Heravi et al., 2020; Taylor et al., 2016). Therefore, phase transition into reversible liquid droplets 

is a critical mechanism for the formation of stress granules. While the LCD’s are necessary for 

quick assembly of stress granules, it can also be a detriment to the cells if proteins are left to 
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accumulate, risking the formation of hydrogels (Kato et al., 2012; Li et al., 2013; Molliex et al., 

2015).      

 

1.5.2 Hydrogels  

 

LCD-containing proteins in both cell-free and cell in vitro models have been shown to 

form hydrogels (Kato et al., 2012; Molliex et al., 2015; Murakami et al., 2015; Murray et al., 

2017). Hydrogels are defined by the aggregation of proteins leading to phase transition into 

liquid droplets and eventually irreversible gelatin structures (Murakami et al., 2015). The 

formation of these hydrogel structures is primarily driven by the LCD. (Kato et al., 2012; 

Molliex et al., 2015; Murakami et al., 2015; Murray et al., 2017).  

As discussed, several ALS-related proteins are LCD-containing proteins, including: TDP-

43, FUS, hnRNPA1, hnRNPA2B1, TAF15, EWSR1, RBM45 and TIA-1 (Baradaran-Heravi et 

al., 2020). ALS-linked mutations within the LCD of TDP-43, FUS and hnRNPA1 have been 

shown to increase the rate at which these proteins phase separate and form hydrogel-like 

structures (Conicella et al., 2016; Kim et al., 2013; Molliex et al., 2015; Murakami et al., 2015). 

Since LCD-containing ALS-related proteins tend to form insoluble aggregates, several 

researchers have focused on therapeutics that prevent the accumulation of these proteins. 

However, little research has been done on the dysregulation of miRNAs in ALS, and potential 

changes to their regulation on the expression of ALS-related genes that could be a major 

contributor to the accumulation of these proteins.     

 

1.6 Putting it all together: ALS, cell stress and miRNA dysfunction  

 

Based on the number of ALS-linked genes associated with stress granules, improper 

stress granule formation has been suggested to be a key precursor to the pathogenesis of ALS 
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(Aulas and Vande Velde, 2015; Li et al., 2013; Taylor et al., 2016). Intriguingly, out of the 190 

RNA-binding proteins identified by Treiber and colleagues to be involved in miRNA processing, 

33.2% were associated with stress granules (Treiber et al., 2017). This high enrichment of stress 

granule associated RNA-binding proteins found with pre-miRNA molecules provides some 

insight into how miRNAs are able to dynamically change their expression under different 

physiological conditions (Wilczynska and Bushell, 2015). Interestingly, cellular stressors like 

endoplasmic reticulum (ER) or oxidative stress have been known to impair miRNA biogenesis 

reducing overall miRNA expression (Emde et al., 2015). Many RNA-binding proteins during 

cellular stress are re-localized to stress granules, including TDP-43, FUS, TAF15, EWSR1, 

hnRNPA1, hnRNPA2B1 and ATXN2, which could explain the reduction in miRNA processing 

during cellular stress, as many of these proteins are involved with miRNA biogenesis (Alarcon et 

al., 2015; Andersson et al., 2008; Ballarino et al., 2013; Colombrita et al., 2009; Guil and 

Caceres, 2007; Kawahara and Mieda-Sato, 2012; Kim et al., 2013; Kim et al., 2014; Li et al., 

2015; Morlando et al., 2012; Nonhoff et al., 2007). Therefore, reduced miRNA levels, and by 

inference reduced activity, during periods of stress could result in accumulation of LCD-

containing proteins due to reduced miRNA-mediated silencing, indicating a potential negative 

feedback loop between miRNAs and RNA-binding proteins that is lost in ALS. Further, during 

periods of chronic or repeated stress, excessive protein accumulation due to low miRNA levels 

could result in the formation of insoluble aggregates.   

 Further, prolonged stress that alters the levels of miRNAs that target intermediate 

filaments would likely alter the stoichiometry of intermediate filament expression in a fashion 

that would promote their aggregation. Overall, changes to altered miRNA levels, as seen in ALS, 
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likely alters the regulation of RNA-binding protein and intermediate filament expression, thus 

contributing to the resulting pathology of these two protein groups in ALS.  

 

1.7 Hypothesis and Aims  

 

Taken together, the downregulation of miRNAs in ALS could be due to altered function 

and localization of RNA-binding proteins that would normally promote miRNA production, 

which in turn, leads to loss of miRNA regulation of ALS-associated RNA-binding proteins and 

intermediate filaments contributing to their pathogenesis. 

Hypothesis: A negative feedback loop between specific RNA-binding proteins and miRNAs is 

disrupted in ALS leading to changes in miRNA processing that contributes to RNA-binding 

protein and intermediate filament pathology.  

Aim 1: Determine if ALS-linked miRNAs contribute to the selective suppression of NEFL, 

PRPH, and INA intermediate filaments as seen in ALS motor neurons – Chapter 2. 

Aim 2: Determine if ALS-linked miRNAs regulate the expression of NEFM and NEFH, which 

may contribute to the loss of stoichiometry seen between intermediate filaments in ALS – 

Chapter 3.  

Aim 3: Determine if ALS-linked miRNAs regulate the expression of RNA-binding proteins 

(TARDBP, FUS, and RGNEF) associated with ALS – Chapter 4.  

Aim 4: Determine if TDP-43 and FUS are in a negative feedback network with ALS-linked 

miRNAs that is dependent on their nuclear localization – Chapter 5.   



52 
 

1.8  References  

 

Akten, B., Kye, M.J., Hao le, T., Wertz, M.H., Singh, S., Nie, D., Huang, J., Merianda, T.T., 

Twiss, J.L., Beattie, C.E., et al. (2011). Interaction of survival of motor neuron (SMN) 

and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl 

Acad Sci U S A 108, 10337-10342. 

Alarcon, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015). 

HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell 

162, 1299-1308. 

Ameres, S.L., Horwich, M.D., Hung, J.H., Xu, J., Ghildiyal, M., Weng, Z., and Zamore, P.D. 

(2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 

1534-1539. 

Amin, N.D., Bai, G., Klug, J.R., Bonanomi, D., Pankratz, M.T., Gifford, W.D., Hinckley, C.A., 

Sternfeld, M.J., Driscoll, S.P., Dominguez, B., et al. (2015). Loss of motoneuron-specific 

microRNA-218 causes systemic neuromuscular failure. Science 350, 1525-1529. 

An, H., Skelt, L., Notaro, A., Highley, J.R., Fox, A.H., La Bella, V., Buchman, V.L., and 

Shelkovnikova, T.A. (2019). ALS-linked FUS mutations confer loss and gain of function 

in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta 

Neuropathol Commun 7, 7. 

Andersen, P.M., and Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: 

what do we really know? Nat Rev Neurol 7, 603-615. 

Anderson, P., and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends Biochem 

Sci 33, 141-150. 

Andersson, M.K., Stahlberg, A., Arvidsson, Y., Olofsson, A., Semb, H., Stenman, G., Nilsson, 

O., and Aman, P. (2008). The multifunctional FUS, EWS and TAF15 proto-oncoproteins 

show cell type-specific expression patterns and involvement in cell spreading and stress 

response. BMC Cell Biol 9, 37. 

Asli, N.S., and Kessel, M. (2010). Spatiotemporally restricted regulation of generic motor neuron 

programs by miR-196-mediated repression of Hoxb8. Dev Biol 344, 857-868. 

Athlan, E.S., and Mushynski, W.E. (1997). Heterodimeric associations between neuronal 

intermediate filament proteins. J Biol Chem 272, 31073-31078. 

Aulas, A., Caron, G., Gkogkas, C.G., Mohamed, N.V., Destroismaisons, L., Sonenberg, N., 

Leclerc, N., Parker, J.A., and Vande Velde, C. (2015). G3BP1 promotes stress-induced 

RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 209, 73-84. 

Aulas, A., and Vande Velde, C. (2015). Alterations in stress granule dynamics driven by TDP-43 

and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 9, 423. 



53 
 

Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P., and Blelloch, R. (2008). Mouse ES cells 

express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-

dependent small RNAs. Genes Dev 22, 2773-2785. 

Baccarini, A., Chauhan, H., Gardner, T.J., Jayaprakash, A.D., Sachidanandam, R., and Brown, 

B.D. (2011). Kinetic analysis reveals the fate of a microRNA following target regulation 

in mammalian cells. Curr Biol 21, 369-376. 

Ballarino, M., Jobert, L., Dembele, D., de la Grange, P., Auboeuf, D., and Tora, L. (2013). 

TAF15 is important for cellular proliferation and regulates the expression of a subset of 

cell cycle genes through miRNAs. Oncogene 32, 4646-4655. 

Baradaran-Heravi, Y., Van Broeckhoven, C., and van der Zee, J. (2020). Stress granule mediated 

protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol 

Dis 134, 104639. 

Barbee, S.A., Estes, P.S., Cziko, A.M., Hillebrand, J., Luedeman, R.A., Coller, J.M., Johnson, 

N., Howlett, I.C., Geng, C., Ueda, R., et al. (2006). Staufen- and FMRP-containing 

neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 

997-1009. 

Barmada, S.J., Skibinski, G., Korb, E., Rao, E.J., Wu, J.Y., and Finkbeiner, S. (2010). 

Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation 

associated with familial amyotrophic lateral sclerosis. J Neurosci 30, 639-649. 

Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173, 20-51. 

Beaulieu, J.M., and Julien, J.P. (2003). Peripherin-mediated death of motor neurons rescued by 

overexpression of neurofilament NF-H proteins. J Neurochem 85, 248-256. 

Beaulieu, J.M., Nguyen, M.D., and Julien, J.P. (1999). Late onset of motor neurons in mice 

overexpressing wild-type peripherin. J Cell Biol 147, 531-544. 

Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E. (2006). 

mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and 

DCP1:DCP2 decapping complexes. Genes Dev 20, 1885-1898. 

Belzil, V.V., Valdmanis, P.N., Dion, P.A., Daoud, H., Kabashi, E., Noreau, A., Gauthier, J., 

team, S.D., Hince, P., Desjarlais, A., et al. (2009). Mutations in FUS cause FALS and 

SALS in French and French Canadian populations. Neurology 73, 1176-1179. 

Benigni, M., Ricci, C., Jones, A.R., Giannini, F., Al-Chalabi, A., and Battistini, S. (2016). 

Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from 

Amyotrophic Lateral Sclerosis Patients. Neuromolecular Med 18, 551-560. 

Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., and Lai, E.C. (2007). Mammalian mirtron 

genes. Mol Cell 28, 328-336. 



54 
 

Bergeron, C., Beric-Maskarel, K., Muntasser, S., Weyer, L., Somerville, M.J., and Percy, M.E. 

(1994). Neurofilament light and polyadenylated mRNA levels are decreased in 

amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53, 221-230. 

Bhinge, A., Namboori, S.C., Bithell, A., Soldati, C., Buckley, N.J., and Stanton, L.W. (2016). 

MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be 

Involved in Motor Neuron Degeneration. Stem Cells 34, 124-134. 

Bisby, M.A., and Tetzlaff, W. (1992). Changes in cytoskeletal protein synthesis following axon 

injury and during axon regeneration. Mol Neurobiol 6, 107-123. 

Boehringer, A., Garcia-Mansfield, K., Singh, G., Bakkar, N., Pirrotte, P., and Bowser, R. (2017). 

ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede 

mRNA Nuclear Export. Sci Rep 7, 14529. 

Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent 

dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-191. 

Borchert, G.M., Lanier, W., and Davidson, B.L. (2006). RNA polymerase III transcribes human 

microRNAs. Nat Struct Mol Biol 13, 1097-1101. 

Bose, J.K., Wang, I.F., Hung, L., Tarn, W.Y., and Shen, C.K. (2008). TDP-43 overexpression 

enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J 

Biol Chem 283, 28852-28859. 

Bose, M., and Bhattacharyya, S.N. (2016). Target-dependent biogenesis of cognate microRNAs 

in human cells. Nat Commun 7, 12200. 

Bramham, C.R., and Wells, D.G. (2007). Dendritic mRNA: transport, translation and function. 

Nat Rev Neurosci 8, 776-789. 

Braun, J.E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011). GW182 proteins directly 

recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44, 120-133. 

Brenner, D., Yilmaz, R., Muller, K., Grehl, T., Petri, S., Meyer, T., Grosskreutz, J., Weydt, P., 

Ruf, W., Neuwirth, C., et al. (2018). Hot-spot KIF5A mutations cause familial ALS. 

Brain 141, 688-697. 

Buchan, J.R. (2014). mRNP granules. Assembly, function, and connections with disease. RNA 

Biol 11, 1019-1030. 

Buchan, J.R., Kolaitis, R.M., Taylor, J.P., and Parker, R. (2013). Eukaryotic stress granules are 

cleared by autophagy and Cdc48/VCP function. Cell 153, 1461-1474. 

Buratti, E. (2015). Functional Significance of TDP-43 Mutations in Disease. Adv Genet 91, 1-

53. 



55 
 

Buratti, E., and Baralle, F.E. (2001). Characterization and functional implications of the RNA 

binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J 

Biol Chem 276, 36337-36343. 

Burghes, A.H., and Beattie, C.E. (2009). Spinal muscular atrophy: why do low levels of survival 

motor neuron protein make motor neurons sick? Nat Rev Neurosci 10, 597-609. 

Butovsky, O., Siddiqui, S., Gabriely, G., Lanser, A.J., Dake, B., Murugaiyan, G., Doykan, C.E., 

Wu, P.M., Gali, R.R., Iyer, L.K., et al. (2012). Modulating inflammatory monocytes with 

a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122, 3063-

3087. 

Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from 

capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-

1966. 

Campos-Melo, D., Droppelmann, C.A., He, Z., Volkening, K., and Strong, M.J. (2013). Altered 

microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation 

of NFL mRNA levels. Mol Brain 6, 26. 

Campos-Melo, D., Droppelmann, C.A., Volkening, K., and Strong, M.J. (2014). Comprehensive 

luciferase-based reporter gene assay reveals previously masked up-regulatory effects of 

miRNAs. Int J Mol Sci 15, 15592-15602. 

Carpenter, D.A., and Ip, W. (1996). Neurofilament triplet protein interactions: evidence for the 

preferred formation of NF-L-containing dimers and a putative function for the end 

domains. J Cell Sci 109 ( Pt 10), 2493-2498. 

Castanotto, D., Lingeman, R., Riggs, A.D., and Rossi, J.J. (2009). CRM1 mediates nuclear-

cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci U S A 106, 21655-

21659. 

Catapano, F., Zaharieva, I., Scoto, M., Marrosu, E., Morgan, J., Muntoni, F., and Zhou, H. 

(2016). Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and 

Their Response to Antisense Oligonucleotide Therapy. Mol Ther Nucleic Acids 5, e331. 

Cazalla, D., Xie, M., and Steitz, J.A. (2011). A primate herpesvirus uses the integrator complex 

to generate viral microRNAs. Mol Cell 43, 982-992. 

Chadan, S., Le Gall, J.Y., Di Giamberardino, L., and Filliatreau, G. (1994). Axonal transport of 

type III intermediate filament protein peripherin in intact and regenerating motor axons of 

the rat sciatic nerve. J Neurosci Res 39, 127-139. 

Chang, H.M., Triboulet, R., Thornton, J.E., and Gregory, R.I. (2013). A role for the Perlman 

syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244-248. 

Chen, J.A., and Wichterle, H. (2012). Apoptosis of limb innervating motor neurons and erosion 

of motor pool identity upon lineage specific dicer inactivation. Front Neurosci 6, 69. 



56 
 

Chen, K.W., and Chen, J.A. (2020). Functional Roles of Long Non-coding RNAs in Motor 

Neuron Development and Disease. J Biomed Sci 27, 38. 

Chen, S., Sayana, P., Zhang, X., and Le, W. (2013). Genetics of amyotrophic lateral sclerosis: an 

update. Mol Neurodegener 8, 28. 

Chen, Y.Z., Bennett, C.L., Huynh, H.M., Blair, I.P., Puls, I., Irobi, J., Dierick, I., Abel, A., 

Kennerson, M.L., Rabin, B.A., et al. (2004). DNA/RNA helicase gene mutations in a 

form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74, 1128-1135. 

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and 

Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA 

processing and gene silencing. Nature 436, 740-744. 

Cherkasov, V., Hofmann, S., Druffel-Augustin, S., Mogk, A., Tyedmers, J., Stoecklin, G., and 

Bukau, B. (2013). Coordination of translational control and protein homeostasis during 

severe heat stress. Curr Biol 23, 2452-2462. 

Choksi, D.K., Roy, B., Chatterjee, S., Yusuff, T., Bakhoum, M.F., Sengupta, U., Ambegaokar, 

S., Kayed, R., and Jackson, G.R. (2014). TDP-43 Phosphorylation by casein kinase 

Iepsilon promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet 23, 

1025-1035. 

Chou, C.C., Zhang, Y., Umoh, M.E., Vaughan, S.W., Lorenzini, I., Liu, F., Sayegh, M., Donlin-

Asp, P.G., Chen, Y.H., Duong, D.M., et al. (2018). TDP-43 pathology disrupts nuclear 

pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21, 228-

239. 

Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., 

Hannon, G.J., Lawson, N.D., et al. (2010). A novel miRNA processing pathway 

independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694-1698. 

Colombrita, C., Zennaro, E., Fallini, C., Weber, M., Sommacal, A., Buratti, E., Silani, V., and 

Ratti, A. (2009). TDP-43 is recruited to stress granules in conditions of oxidative insult. J 

Neurochem 111, 1051-1061. 

Conicella, A.E., Zerze, G.H., Mittal, J., and Fawzi, N.L. (2016). ALS Mutations Disrupt Phase 

Separation Mediated by alpha-Helical Structure in the TDP-43 Low-Complexity C-

Terminal Domain. Structure 24, 1537-1549. 

Cote, F., Collard, J.F., and Julien, J.P. (1993). Progressive neuronopathy in transgenic mice 

expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral 

sclerosis. Cell 73, 35-46. 

Couthouis, J., Hart, M.P., Erion, R., King, O.D., Diaz, Z., Nakaya, T., Ibrahim, F., Kim, H.J., 

Mojsilovic-Petrovic, J., Panossian, S., et al. (2012). Evaluating the role of the FUS/TLS-

related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21, 2899-2911. 



57 
 

Couthouis, J., Hart, M.P., Shorter, J., DeJesus-Hernandez, M., Erion, R., Oristano, R., Liu, A.X., 

Ramos, D., Jethava, N., Hosangadi, D., et al. (2011). A yeast functional screen predicts 

new candidate ALS disease genes. Proc Natl Acad Sci U S A 108, 20881-20890. 

D'Ambrogio, A., Gu, W., Udagawa, T., Mello, C.C., and Richter, J.D. (2012). Specific miRNA 

stabilization by Gld2-catalyzed monoadenylation. Cell Rep 2, 1537-1545. 

Dajas-Bailador, F., Bonev, B., Garcez, P., Stanley, P., Guillemot, F., and Papalopulu, N. (2012). 

microRNA-9 regulates axon extension and branching by targeting Map1b in mouse 

cortical neurons. Nature Neurosci 15, 667-669. 

Davidson, T.J., and Hartmann, H.A. (1981). RNA content and volume of motor neurons in 

amyotrophic lateral sclerosis. II. The lumbar intumescence and nucleus dorsalis. J 

Neuropathol Exp Neurol 40, 187-192. 

Davidson, T.J., Hartmann, H.A., and Johnson, P.C. (1981). RNA content and volume of motor 

neurons in amyotrophic lateral sclerosis. I. The cervical swelling. J Neuropathol Exp 

Neurol 40, 32-36. 

Davis-Dusenbery, B.N., and Hata, A. (2010). Mechanisms of control of microRNA biogenesis. J 

Biochem 148, 381-392. 

Davis, B.N., and Hata, A. (2009). Regulation of MicroRNA Biogenesis: A miRiad of 

mechanisms. Cell Commun Signal 7, 18. 

de Andrade, H.M., de Albuquerque, M., Avansini, S.H., de, S.R.C., Dogini, D.B., Nucci, A., 

Carvalho, B., Lopes-Cendes, I., and Franca, M.C., Jr. (2016). MicroRNAs-424 and 206 

are potential prognostic markers in spinal onset amyotrophic lateral sclerosis. J Neurol 

Sci 368, 19-24. 

De Felice, B., Annunziata, A., Fiorentino, G., Borra, M., Biffali, E., Coppola, C., Cotrufo, R., 

Brettschneider, J., Giordana, M.L., Dalmay, T., et al. (2014). miR-338-3p is over-

expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral 

sclerosis patients. Neurogenetics 15, 243-253. 

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., 

Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded 

GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 

9p-linked FTD and ALS. Neuron 72, 245-256. 

Del Gatto-Konczak, F., Bourgeois, C.F., Le Guiner, C., Kister, L., Gesnel, M.C., Stevenin, J., 

and Breathnach, R. (2000). The RNA-binding protein TIA-1 is a novel mammalian 

splicing regulator acting through intron sequences adjacent to a 5' splice site. Mol Cell 

Biol 20, 6287-6299. 

Deng, H.X., Chen, W., Hong, S.T., Boycott, K.M., Gorrie, G.H., Siddique, N., Yang, Y., Fecto, 

F., Shi, Y., Zhai, H., et al. (2011). Mutations in UBQLN2 cause dominant X-linked 

juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211-215. 



58 
 

Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of 

primary microRNAs by the Microprocessor complex. Nature 432, 231-235. 

Deshaies, J.E., Shkreta, L., Moszczynski, A.J., Sidibe, H., Semmler, S., Fouillen, A., Bennett, 

E.R., Bekenstein, U., Destroismaisons, L., Toutant, J., et al. (2018). TDP-43 regulates the 

alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic 

lateral sclerosis. Brain 141, 1320-1333. 

Dixon, D.A., Balch, G.C., Kedersha, N., Anderson, P., Zimmerman, G.A., Beauchamp, R.D., 

and Prescott, S.M. (2003). Regulation of cyclooxygenase-2 expression by the 

translational silencer TIA-1. J Exp Med 198, 475-481. 

Dobrowolny, G., Bernardini, C., Martini, M., Baranzini, M., Barba, M., and Musaro, A. (2015). 

Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription 

Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. 

Front Cell Neurosci 9, 463. 

Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., Hruscha, A., Than, M.E., 

Mackenzie, I.R., Capell, A., Schmid, B., et al. (2010). ALS-associated fused in sarcoma 

(FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29, 2841-2857. 

Droppelmann, C.A., Campos-Melo, D., Volkening, K., and Strong, M.J. (2014). The emerging 

role of guanine nucleotide exchange factors in ALS and other neurodegenerative 

diseases. Front Cell Neurosci 8, 282. 

Droppelmann, C.A., Keller, B.A., Campos-Melo, D., Volkening, K., and Strong, M.J. (2013a). 

Rho guanine nucleotide exchange factor is an NFL mRNA destabilizing factor that forms 

cytoplasmic inclusions in amyotrophic lateral sclerosis. Neurobiol Aging 34, 248-262. 

Droppelmann, C.A., Wang, J., Campos-Melo, D., Keller, B., Volkening, K., Hegele, R.A., and 

Strong, M.J. (2013b). Detection of a novel frameshift mutation and regions with 

homozygosis within ARHGEF28 gene in familial amyotrophic lateral sclerosis. 

Amyotroph Lateral Scler Frontotemporal Degener 14, 444-451. 

Duan, R., Pak, C., and Jin, P. (2007). Single nucleotide polymorphism associated with mature 

miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16, 1124-1131. 

Dum, R.P., and Strick, P.L. (2005). Frontal lobe inputs to the digit representations of the motor 

areas on the lateral surface of the hemisphere. J Neurosci 25, 1375-1386. 

Eichhorn, S.W., Guo, H., McGeary, S.E., Rodriguez-Mias, R.A., Shin, C., Baek, D., Hsu, S.H., 

Ghoshal, K., Villen, J., and Bartel, D.P. (2014). mRNA destabilization is the dominant 

effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56, 

104-115. 

Elden, A.C., Kim, H.J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., 

Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 intermediate-length 



59 
 

polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069-

1075. 

Emde, A., Eitan, C., Liou, L.L., Libby, R.T., Rivkin, N., Magen, I., Reichenstein, I., Oppenheim, 

H., Eilam, R., Silvestroni, A., et al. (2015). Dysregulated miRNA biogenesis downstream 

of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J 34, 

2633-2651. 

Ender, C., Krek, A., Friedlander, M.R., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., 

Rajewsky, N., and Meister, G. (2008). A human snoRNA with microRNA-like functions. 

Mol Cell 32, 519-528. 

Fabian, M.R., Cieplak, M.K., Frank, F., Morita, M., Green, J., Srikumar, T., Nagar, B., 

Yamamoto, T., Raught, B., Duchaine, T.F., et al. (2011). miRNA-mediated 

deadenylation is orchestrated by GW182 through two conserved motifs that interact with 

CCR4-NOT. Nat Struct Mol Biol 18, 1211-1217. 

Fallini, C., Rouanet, J.P., Donlin-Asp, P.G., Guo, P., Zhang, H., Singer, R.H., Rossoll, W., and 

Bassell, G.J. (2014). Dynamics of survival of motor neuron (SMN) protein interaction 

with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. 

Dev Neurobiol 74, 319-332. 

Fallini, C., Zhang, H., Su, Y., Silani, V., Singer, R.H., Rossoll, W., and Bassell, G.J. (2011). The 

survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD 

and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 

31, 3914-3925. 

Fareh, M., Yeom, K.H., Haagsma, A.C., Chauhan, S., Heo, I., and Joo, C. (2016). TRBP ensures 

efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat 

Commun 7, 13694. 

Farg, M.A., Soo, K.Y., Warraich, S.T., Sundaramoorthy, V., Blair, I.P., and Atkin, J.D. (2013). 

Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance 

FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22, 717-728. 

Farhan, S.M.K., Gendron, T.F., Petrucelli, L., Hegele, R.A., and Strong, M.J. (2017). 

ARHGEF28 p.Lys280Metfs40Ter in an amyotrophic lateral sclerosis family with a 

C9orf72 expansion. Neurol Genet 3, e190. 

Farhan, S.M.K., Howrigan, D.P., Abbott, L.E., Klim, J.R., Topp, S.D., Byrnes, A.E., 

Churchhouse, C., Phatnani, H., Smith, B.N., Rampersaud, E., et al. (2019). Exome 

sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding 

a heat-shock protein. Nat Neurosci 22, 1966-1974. 

Fecto, F., Yan, J., Vemula, S.P., Liu, E., Yang, Y., Chen, W., Zheng, J.G., Shi, Y., Siddique, N., 

Arrat, H., et al. (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral 

sclerosis. Arch Neurol 68, 1440-1446. 



60 
 

Figueroa-Romero, C., Hur, J., Lunn, J.S., Paez-Colasante, X., Bender, D.E., Yung, R., Sakowski, 

S.A., and Feldman, E.L. (2016). Expression of microRNAs in human post-mortem 

amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol 

Cell Neurosci 71, 34-45. 

Fitch, M.T., and Silver, J. (1997). Glial cell extracellular matrix: boundaries for axon growth in 

development and regeneration. Cell Tissue Res 290, 379-384. 

Forch, P., Puig, O., Kedersha, N., Martinez, C., Granneman, S., Seraphin, B., Anderson, P., and 

Valcarcel, J. (2000). The apoptosis-promoting factor TIA-1 is a regulator of alternative 

pre-mRNA splicing. Mol Cell 6, 1089-1098. 

Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in 

coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. 

Proc Natl Acad Sci U S A 105, 14879-14884. 

Fox, A.H., and Lamond, A.I. (2010). Paraspeckles. Cold Spring Harb Perspect Biol 2, a000687. 

Franzmann, T.M., and Alberti, S. (2019). Prion-like low-complexity sequences: Key regulators 

of protein solubility and phase behavior. J Biol Chem 294, 7128-7136. 

Fratta, P., Sivakumar, P., Humphrey, J., Lo, K., Ricketts, T., Oliveira, H., Brito-Armas, J.M., 

Kalmar, B., Ule, A., Yu, Y., et al. (2018). Mice with endogenous TDP-43 mutations 

exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. 

EMBO J 37. 

Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.H., Badders, N., 

Valentine, M., Miller, B.L., Wong, P.C., et al. (2015). GGGGCC repeat expansion in 

C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129-133. 

Freischmidt, A., Muller, K., Zondler, L., Weydt, P., Mayer, B., von Arnim, C.A., Hubers, A., 

Dorst, J., Otto, M., Holzmann, K., et al. (2015a). Serum microRNAs in sporadic 

amyotrophic lateral sclerosis. Neurobiol Aging 36, 2660 e2615-2620. 

Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Muller, K., Marroquin, N., 

Nordin, F., Hubers, A., Weydt, P., et al. (2015b). Haploinsufficiency of TBK1 causes 

familial ALS and fronto-temporal dementia. Nat Neurosci 18, 631-636. 

Fu, S.Y., and Gordon, T. (1997). The cellular and molecular basis of peripheral nerve 

regeneration. Mol Neurobiol 14, 67-116. 

Fukao, A., Mishima, Y., Takizawa, N., Oka, S., Imataka, H., Pelletier, J., Sonenberg, N., Thoma, 

C., and Fujiwara, T. (2014). MicroRNAs trigger dissociation of eIF4AI and eIF4AII from 

target mRNAs in humans. Mol Cell 56, 79-89. 

Fukaya, T., Iwakawa, H.O., and Tomari, Y. (2014). MicroRNAs block assembly of eIF4F 

translation initiation complex in Drosophila. Mol Cell 56, 67-78. 



61 
 

Funakoshi, H., Frisen, J., Barbany, G., Timmusk, T., Zachrisson, O., Verge, V.M., and Persson, 

H. (1993). Differential expression of mRNAs for neurotrophins and their receptors after 

axotomy of the sciatic nerve. J Cell Biol 123, 455-465. 

Giehl, K.M., and Tetzlaff, W. (1996). BDNF and NT-3, but not NGF, prevent axotomy-induced 

death of rat corticospinal neurons in vivo. Eur J Neurosci 8, 1167-1175. 

Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L.M., and Anderson, P. 

(2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol 

Cell 15, 5383-5398. 

Goulding, M. (1998). Specifying motor neurons and their connections. Neuron 21, 943-946. 

Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and 

Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of 

microRNAs. Nature 432, 235-240. 

Gu, J., Chen, F., Iqbal, K., Gong, C.X., Wang, X., and Liu, F. (2017). Transactive response 

DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: 

Implications for the pathogenesis of tauopathies. J Biol Chem 292, 10600-10612. 

Gubitz, A.K., Feng, W., and Dreyfuss, G. (2004). The SMN complex. Exp Cell Res 296, 51-56. 

Guil, S., and Caceres, J.F. (2007). The multifunctional RNA-binding protein hnRNP A1 is 

required for processing of miR-18a. Nat Struct Mol Biol 14, 591-596. 

Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs 

predominantly act to decrease target mRNA levels. Nature 466, 835-840. 

Guo, J., Lv, J., Liu, M., and Tang, H. (2015). miR-346 Up-regulates Argonaute 2 (AGO2) 

Protein Expression to Augment the Activity of Other MicroRNAs (miRNAs) and 

Contributes to Cervical Cancer Cell Malignancy. J Biol Chem 290, 30342-30350. 

Guthrie, S. (2007). Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8, 

859-871. 

Ha, M., and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 

509-524. 

Haase, A.D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz, W. 

(2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with 

Dicer and functions in RNA silencing. EMBO Rep 6, 961-967. 

Hadano, S., Hand, C.K., Osuga, H., Yanagisawa, Y., Otomo, A., Devon, R.S., Miyamoto, N., 

Showguchi-Miyata, J., Okada, Y., Singaraja, R., et al. (2001). A gene encoding a putative 

GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29, 

166-173. 



62 
 

Hagan, J.P., Piskounova, E., and Gregory, R.I. (2009). Lin28 recruits the TUTase Zcchc11 to 

inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16, 1021-

1025. 

Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 

complex in primary microRNA processing. Genes Dev 18, 3016-3027. 

Haramati, S., Chapnik, E., Sztainberg, Y., Eilam, R., Zwang, R., Gershoni, N., McGlinn, E., 

Heiser, P.W., Wills, A.M., Wirguin, I., et al. (2010). miRNA malfunction causes spinal 

motor neuron disease. Proc Nat Acad Sci U S A 107, 13111-13116. 

Hawley, Z.C.E., Campos-Melo, D., and Strong, M.J. (2017). Novel miR-b2122 regulates several 

ALS-related RNA-binding proteins. Mol Brain 10, 46. 

He, C.Z., and Hays, A.P. (2004). Expression of peripherin in ubiquinated inclusions of 

amyotrophic lateral sclerosis. J Neurol Sci 217, 47-54. 

Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the human miRNA 

interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665. 

Hendrickson, D.G., Hogan, D.J., McCullough, H.L., Myers, J.W., Herschlag, D., Ferrell, J.E., 

and Brown, P.O. (2009). Concordant regulation of translation and mRNA abundance for 

hundreds of targets of a human microRNA. PLoS Biol 7, e1000238. 

Hentati, A., Ouahchi, K., Pericak-Vance, M.A., Nijhawan, D., Ahmad, A., Yang, Y., Rimmler, 

J., Hung, W., Schlotter, B., Ahmed, A., et al. (1998). Linkage of a commoner form of 

recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. 

Neurogenetics 2, 55-60. 

Heo, I., Ha, M., Lim, J., Yoon, M.J., Park, J.E., Kwon, S.C., Chang, H., and Kim, V.N. (2012). 

Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 

microRNAs. Cell 151, 521-532. 

Heo, I., Joo, C., Cho, J., Ha, M., Han, J., and Kim, V.N. (2008). Lin28 mediates the terminal 

uridylation of let-7 precursor MicroRNA. Mol Cell 32, 276-284. 

Heo, I., Joo, C., Kim, Y.K., Ha, M., Yoon, M.J., Cho, J., Yeom, K.H., Han, J., and Kim, V.N. 

(2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-

microRNA uridylation. Cell 138, 696-708. 

Hinckelmann, M.V., Zala, D., and Saudou, F. (2013). Releasing the brake: restoring fast axonal 

transport in neurodegenerative disorders. Trends Cell Biol 23, 634-643. 

Hirokawa, N., Niwa, S., and Tanaka, Y. (2010). Molecular motors in neurons: transport 

mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. 

Houlden, H., and Singleton, A.B. (2012). The genetics and neuropathology of Parkinson's 

disease. Acta Neuropathol 124, 325-338. 



63 
 

Huang, V., Place, R.F., Portnoy, V., Wang, J., Qi, Z., Jia, Z., Yu, A., Shuman, M., Yu, J., and Li, 

L.C. (2012). Upregulation of Cyclin B1 by miRNA and its implications in cancer. 

Nucleic Acids Res 40, 1695-1707. 

Hubers, L., Valderrama-Carvajal, H., Laframboise, J., Timbers, J., Sanchez, G., and Cote, J. 

(2011). HuD interacts with survival motor neuron protein and can rescue spinal muscular 

atrophy-like neuronal defects. Hum Mol Genet 20, 553-579. 

Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). 

A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 

small temporal RNA. Science 293, 834-838. 

Ishtiaq, M., Campos-Melo, D., Volkening, K., and Strong, M.J. (2014). Analysis of novel NEFL 

mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS One 9, e85653. 

Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016). ATPase-

Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell 164, 487-

498. 

Jiang, Y.Q., Pickett, J., and Oblinger, M.M. (1994). Long-term effects of axotomy on beta-

tubulin and NF gene expression in rat DRG neurons. J Neural Trans Plast 5, 103-114. 

Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M., Trojanowski, J.Q., 

Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., et al. (2010). Exome sequencing reveals 

VCP mutations as a cause of familial ALS. Neuron 68, 857-864. 

Johnson, J.O., Pioro, E.P., Boehringer, A., Chia, R., Feit, H., Renton, A.E., Pliner, H.A., 

Abramzon, Y., Marangi, G., Winborn, B.J., et al. (2014). Mutations in the Matrin 3 gene 

cause familial amyotrophic lateral sclerosis. Nat Neurosci 17, 664-666. 

Kamenska, A., Lu, W.T., Kubacka, D., Broomhead, H., Minshall, N., Bushell, M., and Standart, 

N. (2014). Human 4E-T represses translation of bound mRNAs and enhances 

microRNA-mediated silencing. Nucleic Acids Res 42, 3298-3313. 

Kapeli, K., Pratt, G.A., Vu, A.Q., Hutt, K.R., Martinez, F.J., Sundararaman, B., Batra, R., Freese, 

P., Lambert, N.J., Huelga, S.C., et al. (2016). Distinct and shared functions of ALS-

associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat 

Commun 7, 12143. 

Kaplan, M.P., Chin, S.S., Fliegner, K.H., and Liem, R.K. (1990). Alpha-internexin, a novel 

neuronal intermediate filament protein, precedes the low molecular weight neurofilament 

protein (NF-L) in the developing rat brain. J Neurosci 10, 2735-2748. 

Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J., Longgood, 

J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence 

domains form dynamic fibers within hydrogels. Cell 149, 753-767. 



64 
 

Katoh, T., Sakaguchi, Y., Miyauchi, K., Suzuki, T., Kashiwabara, S., and Baba, T. (2009). 

Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the 

cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23, 433-438. 

Kaur, S.J., McKeown, S.R., and Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of 

Amyotrophic Lateral Sclerosis. Gene 577, 109-118. 

Kawahara, Y., and Mieda-Sato, A. (2012). TDP-43 promotes microRNA biogenesis as a 

component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 109, 3347-

3352. 

Kawamata, T., and Tomari, Y. (2010). Making RISC. Trends Biochem Sci 35, 368-376. 

Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J., and Anderson, P. (2002). 

Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation 

complexes are core constituents of mammalian stress granules. Mol Biol Cell 13, 195-

210. 

Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E., and Anderson, 

P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to 

mammalian stress granules. J Cell Biol 151, 1257-1268. 

Kedersha, N., Panas, M.D., Achorn, C.A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., 

Lieberman, J., McInerney, G.M., Ivanov, P., et al. (2016). G3BP-Caprin1-USP10 

complexes mediate stress granule condensation and associate with 40S subunits. J Cell 

Biol 212, 845-860. 

Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins 

TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian 

stress granules. J Cell Biol 147, 1431-1442. 

Keller, B.A., Volkening, K., Droppelmann, C.A., Ang, L.C., Rademakers, R., and Strong, M.J. 

(2012). Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence 

of a common pathogenic mechanism. Acta Neuropathol 124, 733-747. 

Kenna, K.P., van Doormaal, P.T., Dekker, A.M., Ticozzi, N., Kenna, B.J., Diekstra, F.P., van 

Rheenen, W., van Eijk, K.R., Jones, A.R., Keagle, P., et al. (2016). NEK1 variants confer 

susceptibility to amyotrophic lateral sclerosis. Nat Genet 48, 1037-1042. 

Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and Plasterk, R.H. (2001). 

Dicer functions in RNA interference and in synthesis of small RNA involved in 

developmental timing in C. elegans. Genes Dev 15, 2654-2659. 

Kim, B., Ha, M., Loeff, L., Chang, H., Simanshu, D.K., Li, S., Fareh, M., Patel, D.J., Joo, C., 

and Kim, V.N. (2015). TUT7 controls the fate of precursor microRNAs by using three 

different uridylation mechanisms. EMBO J 34, 1801-1815. 



65 
 

Kim, H.J., Kim, N.C., Wang, Y.D., Scarborough, E.A., Moore, J., Diaz, Z., MacLea, K.S., 

Freibaum, B., Li, S., Molliex, A., et al. (2013). Mutations in prion-like domains in 

hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467-

473. 

Kim, H.K., Prokunina-Olsson, L., and Chanock, S.J. (2012). Common genetic variants in miR-

1206 (8q24.2) and miR-612 (11q13.3) affect biogenesis of mature miRNA forms. PLoS 

One 7, e47454. 

Kim, K.Y., Hwang, Y.J., Jung, M.K., Choe, J., Kim, Y., Kim, S., Lee, C.J., Ahn, H., Lee, J., 

Kowall, N.W., et al. (2014). A multifunctional protein EWS regulates the expression of 

Drosha and microRNAs. Cell Death Differ 21, 136-145. 

Kim, W.J., Kim, J.H., and Jang, S.K. (2007). Anti-inflammatory lipid mediator 15d-PGJ2 

inhibits translation through inactivation of eIF4A. EMBO J 26, 5020-5032. 

Kim, Y.K., Kim, B., and Kim, V.N. (2016). Re-evaluation of the roles of DROSHA, Export in 5, 

and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A 113, E1881-1889. 

Klim, J.R., Williams, L.A., Limone, F., Guerra San Juan, I., Davis-Dusenbery, B.N., Mordes, 

D.A., Burberry, A., Steinbaugh, M.J., Gamage, K.K., Kirchner, R., et al. (2019). ALS-

implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth 

and repair. Nat Neurosci 22, 167-179. 

Kobayashi, N.R., Bedard, A.M., Hincke, M.T., and Tetzlaff, W. (1996). Increased expression of 

BDNF and trkB mRNA in rat facial motoneurons after axotomy. Eur J Neurosci 8, 1018-

1029. 

Kobayashi, N.R., Fan, D.P., Giehl, K.M., Bedard, A.M., Wiegand, S.J., and Tetzlaff, W. (1997). 

BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, 

stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal 

regeneration. J Neurosci 17, 9583-9595. 

Kooshapur, H., Choudhury, N.R., Simon, B., Muhlbauer, M., Jussupow, A., Fernandez, N., 

Jones, A.N., Dallmann, A., Gabel, F., Camilloni, C., et al. (2018). Structural basis for 

terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. 

Nat Commun 9, 2479. 

Kost, S.A., and Oblinger, M.M. (1993). Immature corticospinal neurons respond to axotomy 

with changes in tubulin gene expression. Brain Res Bull 30, 469-475. 

Koval, E.D., Shaner, C., Zhang, P., du Maine, X., Fischer, K., Tay, J., Chau, B.N., Wu, G.F., and 

Miller, T.M. (2013). Method for widespread microRNA-155 inhibition prolongs survival 

in ALS-model mice. Hum Mol Genet 22, 4127-4135. 

Koyama, A., Sugai, A., Kato, T., Ishihara, T., Shiga, A., Toyoshima, Y., Koyama, M., Konno, 

T., Hirokawa, S., Yokoseki, A., et al. (2016). Increased cytoplasmic TARDBP mRNA in 



66 
 

affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. 

Nucleic Acids Res 44, 5820-5836. 

Kriz, J., Zhu, Q., Julien, J.P., and Padjen, A.L. (2000). Electrophysiological properties of axons 

in mice lacking neurofilament subunit genes: disparity between conduction velocity and 

axon diameter in absence of NF-H. Brain Res 885, 32-44. 

Kroschwald, S., Maharana, S., Mateju, D., Malinovska, L., Nuske, E., Poser, I., Richter, D., and 

Alberti, S. (2015). Promiscuous interactions and protein disaggregases determine the 

material state of stress-inducible RNP granules. Elife 4, e06807. 

Kwiatkowski, T.J., Jr., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., 

Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the 

FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 

323, 1205-1208. 

Kwon, I., Xiang, S., Kato, M., Wu, L., Theodoropoulos, P., Wang, T., Kim, J., Yun, J., Xie, Y., 

and McKnight, S.L. (2014). Poly-dipeptides encoded by the C9orf72 repeats bind 

nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139-1145. 

Kye, M.J., Niederst, E.D., Wertz, M.H., Goncalves Ido, C., Akten, B., Dover, K.Z., Peters, M., 

Riessland, M., Neveu, P., Wirth, B., et al. (2014). SMN regulates axonal local translation 

via miR-183/mTOR pathway. Human Mol Genet 23, 6318-6331. 

Lagier-Tourenne, C., Polymenidou, M., Hutt, K.R., Vu, A.Q., Baughn, M., Huelga, S.C., 

Clutario, K.M., Ling, S.C., Liang, T.Y., Mazur, C., et al. (2012). Divergent roles of ALS-

linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat 

Neurosci 15, 1488-1497. 

Laird, A.S., Mackovski, N., Rinkwitz, S., Becker, T.S., and Giacomotto, J. (2016). Tissue-

specific models of spinal muscular atrophy confirm a critical role of SMN in motor 

neurons from embryonic to adult stages. Hum Mol Genet 25, 1728-1738. 

Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O'Day, E., Chowdhury, D., 

Dykxhoorn, D.M., Tsai, P., Hofmann, O., et al. (2009). miR-24 Inhibits cell proliferation 

by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR 

microRNA recognition elements. Mol Cell 35, 610-625. 

Le Ber, I., Camuzat, A., Guerreiro, R., Bouya-Ahmed, K., Bras, J., Nicolas, G., Gabelle, A., 

Didic, M., De Septenville, A., Millecamps, S., et al. (2013). SQSTM1 mutations in 

French patients with frontotemporal dementia or frontotemporal dementia with 

amyotrophic lateral sclerosis. JAMA Neurol 70, 1403-1410. 

Leblond, C.S., Gan-Or, Z., Spiegelman, D., Laurent, S.B., Szuto, A., Hodgkinson, A., Dionne-

Laporte, A., Provencher, P., de Carvalho, M., Orru, S., et al. (2016). Replication study of 

MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 37, 209 

e217-209 e221. 



67 
 

Lee, H.Y., Zhou, K., Smith, A.M., Noland, C.L., and Doudna, J.A. (2013). Differential roles of 

human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids 

Res 41, 6568-6576. 

Lee, M.K., Marszalek, J.R., and Cleveland, D.W. (1994). A mutant neurofilament subunit causes 

massive, selective motor neuron death: implications for the pathogenesis of human motor 

neuron disease. Neuron 13, 975-988. 

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 

encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. 

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., 

et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 

415-419. 

Lee, Y., Hur, I., Park, S.Y., Kim, Y.K., Suh, M.R., and Kim, V.N. (2006). The role of PACT in 

the RNA silencing pathway. EMBO J 25, 522-532. 

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA 

genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060. 

Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., 

Cruaud, C., Millasseau, P., Zeviani, M., et al. (1995). Identification and characterization 

of a spinal muscular atrophy-determining gene. Cell 80, 155-165. 

Lemon, R.N. (2008). Descending pathways in motor control. Annu Rev Neurosci 31, 195-218. 

Leung, A.K., and Sharp, P.A. (2013). Quantifying Argonaute proteins in and out of GW/P-

bodies: implications in microRNA activities. Adv Exp Med Biol 768, 165-182. 

Lewin, G.R., and Barde, Y.A. (1996). Physiology of the neurotrophins. Annu Rev Neurosci 19, 

289-317. 

Li, X., Lu, L., Bush, D.J., Zhang, X., Zheng, L., Suswam, E.A., and King, P.H. (2009). Mutant 

copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to 

adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'-

untranslated region. J Neurochem 108, 1032-1044. 

Li, Y., Collins, M., Geiser, R., Bakkar, N., Riascos, D., and Bowser, R. (2015). RBM45 homo-

oligomerization mediates association with ALS-linked proteins and stress granules. Sci 

Rep 5, 14262. 

Li, Y.R., King, O.D., Shorter, J., and Gitler, A.D. (2013). Stress granules as crucibles of ALS 

pathogenesis. J Cell Biol 201, 361-372. 

Liachko, N.F., Guthrie, C.R., and Kraemer, B.C. (2010). Phosphorylation promotes neurotoxicity 

in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 30, 16208-

16219. 



68 
 

Liang, H., Zhang, J., Zen, K., Zhang, C.Y., and Chen, X. (2013). Nuclear microRNAs and their 

unconventional role in regulating non-coding RNAs. Protein Cell 4, 325-330. 

Lin, H., Zhai, J., Canete-Soler, R., and Schlaepfer, W.W. (2004). 3' untranslated region in a light 

neurofilament (NF-L) mRNA triggers aggregation of NF-L and mutant superoxide 

dismutase 1 proteins in neuronal cells. J Neurosci 24, 2716-2726. 

Lin, M.Y., and Sheng, Z.H. (2015). Regulation of mitochondrial transport in neurons. Exp Cell 

Res 334, 35-44. 

Ling, S.C., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and 

FTD: disrupted RNA and protein homeostasis. Neuron 79, 416-438. 

Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., Vanderweyde, T., Citro, A., Mehta, T., Zaarur, N., 

McKee, A., Bowser, R., Sherman, M., et al. (2010). Tar DNA binding protein-43 (TDP-

43) associates with stress granules: analysis of cultured cells and pathological brain 

tissue. PLoS One 5, e13250. 

Lu, C.S., Zhai, B., Mauss, A., Landgraf, M., Gygi, S., and Van Vactor, D. (2014). MicroRNA-8 

promotes robust motor axon targeting by coordinate regulation of cell adhesion 

molecules during synapse development. Phil Transac Roy Soc Biol Sci 369. 

Lu, L., Zheng, L., Viera, L., Suswam, E., Li, Y., Li, X., Estevez, A.G., and King, P.H. (2007). 

Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis 

destabilizes vascular endothelial growth factor mRNA and downregulates its expression. 

J Neurosci 27, 7929-7938. 

Luisier, R., Tyzack, G.E., Hall, C.E., Mitchell, J.S., Devine, H., Taha, D.M., Malik, B., Meyer, 

I., Greensmith, L., Newcombe, J., et al. (2018). Intron retention and nuclear loss of SFPQ 

are molecular hallmarks of ALS. Nat Commun 9, 2010. 

Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of 

microRNA precursors. Science 303, 95-98. 

Luxenhofer, G., Helmbrecht, M.S., Langhoff, J., Giusti, S.A., Refojo, D., and Huber, A.B. 

(2014). MicroRNA-9 promotes the switch from early-born to late-born motor neuron 

populations by regulating Onecut transcription factor expression. Devel Biol 386, 358-

370. 

Ma, F., Liu, X., Li, D., Wang, P., Li, N., Lu, L., and Cao, X. (2010). MicroRNA-466l 

upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-

binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 184, 6053-

6059. 

Ma, Y., Tang, L., Chen, L., Zhang, B., Deng, P., Wang, J., Yang, Y., Liu, R., Yang, Y., Ye, S., et 

al. (2014). ARHGEF28 gene exon 6/intron 6 junction mutations in Chinese amyotrophic 

lateral sclerosis cohort. Amyotroph Lateral Scler Frontotemporal Degener 15, 309-311. 



69 
 

Mackenzie, I.R., Nicholson, A.M., Sarkar, M., Messing, J., Purice, M.D., Pottier, C., Annu, K., 

Baker, M., Perkerson, R.B., Kurti, A., et al. (2017). TIA1 Mutations in Amyotrophic 

Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter 

Stress Granule Dynamics. Neuron 95, 808-816 e809. 

Maharjan, N., Kunzli, C., Buthey, K., and Saxena, S. (2017). C9ORF72 Regulates Stress 

Granule Formation and Its Deficiency Impairs Stress Granule Assembly, 

Hypersensitizing Cells to Stress. Mol Neurobiol 54, 3062-3077. 

Maimon, R., Ionescu, A., Bonnie, A., Sweetat, S., Wald-Altman, S., Inbar, S., Gradus, T., Trotti, 

D., Weil, M., Behar, O., et al. (2018). miR126-5p Downregulation Facilitates Axon 

Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS. J 

Neurosci 38, 5478-5494. 

Majounie, E., Renton, A.E., Mok, K., Dopper, E.G., Waite, A., Rollinson, S., Chio, A., 

Restagno, G., Nicolaou, N., Simon-Sanchez, J., et al. (2012). Frequency of the C9orf72 

hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and 

frontotemporal dementia: a cross-sectional study. Lancet Neurol 11, 323-330. 

Majounie, E., Wardle, M., Muzaimi, M., Cross, W.C., Robertson, N.P., Williams, N.M., and 

Morris, H.R. (2007). Case control analysis of repeat expansion size in ataxia. Neurosci 

Lett 429, 28-32. 

Malik, A.M., Miguez, R.A., Li, X., Ho, Y.S., Feldman, E.L., and Barmada, S.J. (2018). Matrin 3-

dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic 

localization. Elife 7. 

Marcuzzo, S., Kapetis, D., Mantegazza, R., Baggi, F., Bonanno, S., Barzago, C., Cavalcante, P., 

Kerlero de Rosbo, N., and Bernasconi, P. (2014). Altered miRNA expression is 

associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp 

Neurol 253, 91-101. 

Markmiller, S., Soltanieh, S., Server, K.L., Mak, R., Jin, W., Fang, M.Y., Luo, E.C., Krach, F., 

Yang, D., Sen, A., et al. (2018). Context-Dependent and Disease-Specific Diversity in 

Protein Interactions within Stress Granules. Cell 172, 590-604 e513. 

Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., Kinoshita, Y., Kamada, 

M., Nodera, H., Suzuki, H., et al. (2010). Mutations of optineurin in amyotrophic lateral 

sclerosis. Nature 465, 223-226. 

Mathis, S., Goizet, C., Soulages, A., Vallat, J.M., and Masson, G.L. (2019). Genetics of 

amyotrophic lateral sclerosis: A review. J Neurol Sci 399, 217-226. 

McEwen, E., Kedersha, N., Song, B., Scheuner, D., Gilks, N., Han, A., Chen, J.J., Anderson, P., 

and Kaufman, R.J. (2005). Heme-regulated inhibitor kinase-mediated phosphorylation of 

eukaryotic translation initiation factor 2 inhibits translation, induces stress granule 

formation, and mediates survival upon arsenite exposure. J Biol Chem 280, 16925-16933. 



70 
 

McNeill, E.M., Warinner, C., Alkins, S., Taylor, A., Heggeness, H., DeLuca, T.F., Fulga, T.A., 

Wall, D.P., Griffith, L.C., and Van Vactor, D. (2020). The conserved microRNA miR-34 

regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and 

postsynaptic cells. Nat Commun 11, 1092. 

Meijer, H.A., Kong, Y.W., Lu, W.T., Wilczynska, A., Spriggs, R.V., Robinson, S.W., Godfrey, 

J.D., Willis, A.E., and Bushell, M. (2013). Translational repression and eIF4A2 activity 

are critical for microRNA-mediated gene regulation. Science 340, 82-85. 

Melamed, Z., Lopez-Erauskin, J., Baughn, M.W., Zhang, O., Drenner, K., Sun, Y., Freyermuth, 

F., McMahon, M.A., Beccari, M.S., Artates, J.W., et al. (2019). Premature 

polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent 

neurodegeneration. Nat Neurosci 22, 180-190. 

Mendonca, D.M., Chimelli, L., and Martinez, A.M. (2005). Quantitative evidence for 

neurofilament heavy subunit aggregation in motor neurons of spinal cords of patients 

with amyotrophic lateral sclerosis. Braz J Med Biol Res 38, 925-933. 

Menzies, F.M., Grierson, A.J., Cookson, M.R., Heath, P.R., Tomkins, J., Figlewicz, D.A., Ince, 

P.G., and Shaw, P.J. (2002). Selective loss of neurofilament expression in Cu/Zn 

superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem 82, 

1118-1128. 

Meyer, H., and Weihl, C.C. (2014). The VCP/p97 system at a glance: connecting cellular 

function to disease pathogenesis. J Cell Sci 127, 3877-3883. 

Migheli, A., Pezzulo, T., Attanasio, A., and Schiffer, D. (1993). Peripherin immunoreactive 

structures in amyotrophic lateral sclerosis. Lab Invest 68, 185-191. 

Miller, K.E., and Sheetz, M.P. (2004). Axonal mitochondrial transport and potential are 

correlated. J Cell Sci 117, 2791-2804. 

Mitchell, J.C., Constable, R., So, E., Vance, C., Scotter, E., Glover, L., Hortobagyi, T., Arnold, 

E.S., Ling, S.C., McAlonis, M., et al. (2015). Wild type human TDP-43 potentiates ALS-

linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with 

pathological features of ALS. Acta Neuropathol Commun 3, 36. 

Mitchell, J.C., McGoldrick, P., Vance, C., Hortobagyi, T., Sreedharan, J., Rogelj, B., Tudor, 

E.L., Smith, B.N., Klasen, C., Miller, C.C., et al. (2013). Overexpression of human wild-

type FUS causes progressive motor neuron degeneration in an age- and dose-dependent 

fashion. Acta Neuropathol 125, 273-288. 

Miura, P., Amirouche, A., Clow, C., Belanger, G., and Jasmin, B.J. (2012). Brain-derived 

neurotrophic factor expression is repressed during myogenic differentiation by miR-206. 

J Neurochem 120, 230-238. 

Mizuno, Y., Fujita, Y., Takatama, M., and Okamoto, K. (2011). Peripherin partially localizes in 

Bunina bodies in amyotrophic lateral sclerosis. J Neurol Sci 302, 14-18. 



71 
 

Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and 

Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule 

assembly and drives pathological fibrillization. Cell 163, 123-133. 

Moloney, C., Rayaprolu, S., Howard, J., Fromholt, S., Brown, H., Collins, M., Cabrera, M., 

Duffy, C., Siemienski, Z., Miller, D., et al. (2018). Analysis of spinal and muscle 

pathology in transgenic mice overexpressing wild-type and ALS-linked mutant MATR3. 

Acta Neuropathol Commun 6, 137. 

Moretti, F., Kaiser, C., Zdanowicz-Specht, A., and Hentze, M.W. (2012). PABP and the poly(A) 

tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 

19, 603-608. 

Moretti, F., Thermann, R., and Hentze, M.W. (2010). Mechanism of translational regulation by 

miR-2 from sites in the 5' untranslated region or the open reading frame. RNA 16, 2493-

2502. 

Mori, K., Arzberger, T., Grasser, F.A., Gijselinck, I., May, S., Rentzsch, K., Weng, S.M., 

Schludi, M.H., van der Zee, J., Cruts, M., et al. (2013a). Bidirectional transcripts of the 

expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat 

proteins. Acta Neuropathol 126, 881-893. 

Mori, K., Weng, S.M., Arzberger, T., May, S., Rentzsch, K., Kremmer, E., Schmid, B., 

Kretzschmar, H.A., Cruts, M., Van Broeckhoven, C., et al. (2013b). The C9orf72 

GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. 

Science 339, 1335-1338. 

Morlando, M., Dini Modigliani, S., Torrelli, G., Rosa, A., Di Carlo, V., Caffarelli, E., and 

Bozzoni, I. (2012). FUS stimulates microRNA biogenesis by facilitating co-

transcriptional Drosha recruitment. EMBO J 31, 4502-4510. 

Munoz, D.G., Greene, C., Perl, D.P., and Selkoe, D.J. (1988). Accumulation of phosphorylated 

neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J 

Neuropathol Exp Neurol 47, 9-18. 

Murakami, T., Qamar, S., Lin, J.Q., Schierle, G.S., Rees, E., Miyashita, A., Costa, A.R., Dodd, 

R.B., Chan, F.T., Michel, C.H., et al. (2015). ALS/FTD Mutation-Induced Phase 

Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels 

Impairs RNP Granule Function. Neuron 88, 678-690. 

Murray, D.T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., and Tycko, R. (2017). 

Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase 

Separation of Low-Complexity Domains. Cell 171, 615-627 e616. 

Nachev, P., Kennard, C., and Husain, M. (2008). Functional role of the supplementary and pre-

supplementary motor areas. Nat Rev Neurosci 9, 856-869. 



72 
 

Nagata, K., Hama, I., Kiryu-Seo, S., and Kiyama, H. (2014). microRNA-124 is down regulated 

in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. 

Neuroscience 256, 426-432. 

Nasser, M.W., Datta, J., Nuovo, G., Kutay, H., Motiwala, T., Majumder, S., Wang, B., Suster, S., 

Jacob, S.T., and Ghoshal, K. (2008). Down-regulation of micro-RNA-1 (miR-1) in lung 

cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to 

doxorubicin-induced apoptosis by miR-1. J Biol Chem 283, 33394-33405. 

Nesler, K.R., Sand, R.I., Symmes, B.A., Pradhan, S.J., Boin, N.G., Laun, A.E., and Barbee, S.A. 

(2013). The miRNA pathway controls rapid changes in activity-dependent synaptic 

structure at the Drosophila melanogaster neuromuscular junction. PLoS One 8, e68385. 

Neumann, M., Kwong, L.K., Lee, E.B., Kremmer, E., Flatley, A., Xu, Y., Forman, M.S., Troost, 

D., Kretzschmar, H.A., Trojanowski, J.Q., et al. (2009a). Phosphorylation of S409/410 of 

TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 

proteinopathies. Acta Neuropathol 117, 137-149. 

Neumann, M., Roeber, S., Kretzschmar, H.A., Rademakers, R., Baker, M., and Mackenzie, I.R. 

(2009b). Abundant FUS-immunoreactive pathology in neuronal intermediate filament 

inclusion disease. Acta Neuropathol 118, 605-616. 

Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, 

J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in 

frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-

133. 

Nicolas, A., Kenna, K.P., Renton, A.E., Ticozzi, N., Faghri, F., Chia, R., Dominov, J.A., Kenna, 

B.J., Nalls, M.A., Keagle, P., et al. (2018). Genome-wide Analyses Identify KIF5A as a 

Novel ALS Gene. Neuron 97, 1268-1283 e1266. 

Nishimoto, Y., Nakagawa, S., Hirose, T., Okano, H.J., Takao, M., Shibata, S., Suyama, S., 

Kuwako, K., Imai, T., Murayama, S., et al. (2013). The long non-coding RNA nuclear-

enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron 

during the early phase of amyotrophic lateral sclerosis. Mol Brain 6, 31. 

Nishimura, A.L., Mitne-Neto, M., Silva, H.C., Richieri-Costa, A., Middleton, S., Cascio, D., 

Kok, F., Oliveira, J.R., Gillingwater, T., Webb, J., et al. (2004). A mutation in the 

vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and 

amyotrophic lateral sclerosis. Am J Hum Genet 75, 822-831. 

Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M.L., Lehrach, H., and 

Krobitsch, S. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and 

interferes with P-bodies and stress granules. Mol Biol Cell 18, 1385-1396. 

Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, 

J., Hellings, P., Gorselink, M., Heymans, S., et al. (2001). Deletion of the hypoxia-



73 
 

response element in the vascular endothelial growth factor promoter causes motor neuron 

degeneration. Nat Genet 28, 131-138. 

Orlacchio, A., Babalini, C., Borreca, A., Patrono, C., Massa, R., Basaran, S., Munhoz, R.P., 

Rogaeva, E.A., St George-Hyslop, P.H., Bernardi, G., et al. (2010). SPATACSIN 

mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133, 

591-598. 

Orozco, D., and Edbauer, D. (2013). FUS-mediated alternative splicing in the nervous system: 

consequences for ALS and FTLD. J Mol Med (Berl) 91, 1343-1354. 

Ostrowski, L.A., Hall, A.C., and Mekhail, K. (2017). Ataxin-2: From RNA Control to Human 

Health and Disease. Genes (Basel) 8. 

Otaegi, G., Pollock, A., Hong, J., and Sun, T. (2011). MicroRNA miR-9 modifies motor neuron 

columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 31, 

809-818. 

Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S., and 

Fisher, D.E. (2008). Chromatin structure analyses identify miRNA promoters. Genes Dev 

22, 3172-3183. 

Parisi, C., Arisi, I., D'Ambrosi, N., Storti, A.E., Brandi, R., D'Onofrio, M., and Volonte, C. 

(2013). Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate 

genes linked to neuroinflammation. Cell Death Dis 4, e959. 

Park, J.E., Heo, I., Tian, Y., Simanshu, D.K., Chang, H., Jee, D., Patel, D.J., and Kim, V.N. 

(2011). Dicer recognizes the 5' end of RNA for efficient and accurate processing. Nature 

475, 201-205. 

Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, 

J., Saha, S., Franzmann, T.M., et al. (2015). A Liquid-to-Solid Phase Transition of the 

ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066-1077. 

Perrone, B., La Cognata, V., Sprovieri, T., Ungaro, C., Conforti, F.L., Ando, S., and Cavallaro, 

S. (2020). Alternative Splicing of ALS Genes: Misregulation and Potential Therapies. 

Cell Mol Neurobiol 40, 1-14. 

Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F.A., van Dyk, 

L.F., Ho, C.K., Shuman, S., Chien, M., et al. (2005). Identification of microRNAs of the 

herpesvirus family. Nat Methods 2, 269-276. 

Piazzon, N., Rage, F., Schlotter, F., Moine, H., Branlant, C., and Massenet, S. (2008). In vitro 

and in cellulo evidences for association of the survival of motor neuron complex with the 

fragile X mental retardation protein. J Biol Chem 283, 5598-5610. 



74 
 

Piecyk, M., Wax, S., Beck, A.R., Kedersha, N., Gupta, M., Maritim, B., Chen, S., Gueydan, C., 

Kruys, V., Streuli, M., et al. (2000). TIA-1 is a translational silencer that selectively 

regulates the expression of TNF-alpha. EMBO J 19, 4154-4163. 

Protter, D.S.W., and Parker, R. (2016). Principles and Properties of Stress Granules. Trends Cell 

Biol 26, 668-679. 

Raman, R., Allen, S.P., Goodall, E.F., Kramer, S., Ponger, L.L., Heath, P.R., Milo, M., 

Hollinger, H.C., Walsh, T., Highley, J.R., et al. (2015). Gene expression signatures in 

motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response 

and RNA processing functions. Neuropathol Appl Neurobiol 41, 201-226. 

Ratti, A., and Buratti, E. (2016). Physiological functions and pathobiology of TDP-43 and 

FUS/TLS proteins. J Neurochem 138 Suppl 1, 95-111. 

Reber, S., Stettler, J., Filosa, G., Colombo, M., Jutzi, D., Lenzken, S.C., Schweingruber, C., 

Bruggmann, R., Bachi, A., Barabino, S.M., et al. (2016). Minor intron splicing is 

regulated by FUS and affected by ALS-associated FUS mutants. EMBO J 35, 1504-1521. 

Rehwinkel, J., Behm-Ansmant, I., Gatfield, D., and Izaurralde, E. (2005). A crucial role for 

GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. 

RNA 11, 1640-1647. 

Reichenstein, I., Eitan, C., Diaz-Garcia, S., Haim, G., Magen, I., Siany, A., Hoye, M.L., Rivkin, 

N., Olender, T., Toth, B., et al. (2019). Human genetics and neuropathology suggest a 

link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 

11. 

Renaud, L., Harris, L.G., Mani, S.K., Kasiganesan, H., Chou, J.C., Baicu, C.F., Van Laer, A., 

Akerman, A.W., Stroud, R.E., Jones, J.A., et al. (2015). HDACs Regulate miR-133a 

Expression in Pressure Overload-Induced Cardiac Fibrosis. Circ Heart Fail 8, 1094-1104. 

Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., Schymick, 

J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide 

repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. 

Neuron 72, 257-268. 

Riva, N., Clarelli, F., Domi, T., Cerri, F., Gallia, F., Trimarco, A., Brambilla, P., Lunetta, C., 

Lazzerini, A., Lauria, G., et al. (2016). Unraveling gene expression profiles in peripheral 

motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Sci 

Rep 6, 39297. 

Robertson, J., Kriz, J., Nguyen, M.D., and Julien, J.P. (2002). Pathways to motor neuron 

degeneration in transgenic mouse models. Biochimie 84, 1151-1160. 

Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004). Identification of 

mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910. 



75 
 

Rogelj, B., Easton, L.E., Bogu, G.K., Stanton, L.W., Rot, G., Curk, T., Zupan, B., Sugimoto, Y., 

Modic, M., Haberman, N., et al. (2012). Widespread binding of FUS along nascent RNA 

regulates alternative splicing in the brain. Sci Rep 2, 603. 

Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., 

Goto, J., O'Regan, J.P., Deng, H.X., et al. (1993). Mutations in Cu/Zn superoxide 

dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-

62. 

Rubino, E., Mancini, C., Boschi, S., Ferrero, P., Ferrone, M., Bianca, S., Zucca, M., Orsi, L., 

Pinessi, L., Govone, F., et al. (2019). ATXN2 intermediate repeat expansions influence 

the clinical phenotype in frontotemporal dementia. Neurobiol Aging 73, 231 e237-231 

e239. 

Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha 

processing. Nature 448, 83-86. 

Russell, A.P., Wada, S., Vergani, L., Hock, M.B., Lamon, S., Leger, B., Ushida, T., Cartoni, R., 

Wadley, G.D., Hespel, P., et al. (2013). Disruption of skeletal muscle mitochondrial 

network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49, 107-117. 

Saito, Y., and Jones, P.A. (2006). Epigenetic activation of tumor suppressor microRNAs in 

human cancer cells. Cell Cycle 5, 2220-2222. 

Sapp, P.C., Hosler, B.A., McKenna-Yasek, D., Chin, W., Gann, A., Genise, H., Gorenstein, J., 

Huang, M., Sailer, W., Scheffler, M., et al. (2003). Identification of two novel loci for 

dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 73, 397-

403. 

Schwab, M.E. (1996). Molecules inhibiting neurite growth: a minireview. Neurochem Res 21, 

755-761. 

Scott, G.K., Mattie, M.D., Berger, C.E., Benz, S.C., and Benz, C.C. (2006). Rapid alteration of 

microRNA levels by histone deacetylase inhibition. Cancer Res 66, 1277-1281. 

Shenton, D., Smirnova, J.B., Selley, J.N., Carroll, K., Hubbard, S.J., Pavitt, G.D., Ashe, M.P., 

and Grant, C.M. (2006). Global translational responses to oxidative stress impact upon 

multiple levels of protein synthesis. J Biol Chem 281, 29011-29021. 

Shi, K.Y., Mori, E., Nizami, Z.F., Lin, Y., Kato, M., Xiang, S., Wu, L.C., Ding, M., Yu, Y., Gall, 

J.G., et al. (2017). Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion 

block nuclear import and export. Proc Natl Acad Sci U S A 114, E1111-E1117. 

Shi, Y., Chichung Lie, D., Taupin, P., Nakashima, K., Ray, J., Yu, R.T., Gage, F.H., and Evans, 

R.M. (2004). Expression and function of orphan nuclear receptor TLX in adult neural 

stem cells. Nature 427, 78-83. 



76 
 

Slack, F.J., Basson, M., Liu, Z., Ambros, V., Horvitz, H.R., and Ruvkun, G. (2000). The lin-41 

RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory 

RNA and the LIN-29 transcription factor. Mol Cell 5, 659-669. 

Solomon, S., Xu, Y., Wang, B., David, M.D., Schubert, P., Kennedy, D., and Schrader, J.W. 

(2007). Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and 

its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to 

cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell 

Biol 27, 2324-2342. 

Song, G., Wang, R., Guo, J., Liu, X., Wang, F., Qi, Y., Wan, H., Liu, M., Li, X., and Tang, H. 

(2015). miR-346 and miR-138 competitively regulate hTERT in GRSF1- and AGO2-

dependent manners, respectively. Sci Rep 5, 15793. 

Song, Y., Lin, F., Ye, C.H., Huang, H., Li, X., Yao, X., Xu, Y., and Wang, C. (2020). Rare, low-

frequency and common coding variants of ARHGEF28 gene and their association with 

sporadic amyotrophic lateral sclerosis. Neurobiol Aging 87, 138 e131-138 e136. 

Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, 

J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic 

amyotrophic lateral sclerosis. Science 319, 1668-1672. 

Strong, M.J. (2017). Revisiting the concept of amyotrophic lateral sclerosis as a multisystems 

disorder of limited phenotypic expression. Curr Opin Neurol 30, 599-607. 

Strong, M.J., Abrahams, S., Goldstein, L.H., Woolley, S., McLaughlin, P., Snowden, J., Mioshi, 

E., Roberts-South, A., Benatar, M., HortobaGyi, T., et al. (2017). Amyotrophic lateral 

sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. 

Amyotroph Lateral Scler Frontotemporal Degener 18, 153-174. 

Strong, M.J., Kesavapany, S., and Pant, H.C. (2005). The pathobiology of amyotrophic lateral 

sclerosis: a proteinopathy? Journal Neuropath Exp Neurol 64, 649-664. 

Sun, X., Zhou, Z., Fink, D.J., and Mata, M. (2013). HspB1 silences translation of PDZ-RhoGEF 

by enhancing miR-20a and miR-128 expression to promote neurite extension. Mol Cell 

Neurosci 57, 111-119. 

Sutton, M.A., and Schuman, E.M. (2006). Dendritic protein synthesis, synaptic plasticity, and 

memory. Cell 127, 49-58. 

Suzuki, H., Shibagaki, Y., Hattori, S., and Matsuoka, M. (2018). The proline-arginine repeat 

protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box 

RNA helicase-mediated ribosome biogenesis. Cell Death Dis 9, 975. 

Svetoni, F., Frisone, P., and Paronetto, M.P. (2016). Role of FET proteins in neurodegenerative 

disorders. RNA Biol 13, 1089-1102. 



77 
 

Swarup, V., Phaneuf, D., Dupre, N., Petri, S., Strong, M., Kriz, J., and Julien, J.P. (2011). 

Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-

mediated pathogenic pathways. J Exp Med 208, 2429-2447. 

Szaro, B.G., and Strong, M.J. (2010). Post-transcriptional control of neurofilaments: New roles 

in development, regeneration and neurodegenerative disease. Trend Neurosci 33, 27-37. 

Tada, M., Doi, H., Koyano, S., Kubota, S., Fukai, R., Hashiguchi, S., Hayashi, N., Kawamoto, 

Y., Kunii, M., Tanaka, K., et al. (2018). Matrin 3 Is a Component of Neuronal 

Cytoplasmic Inclusions of Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis. 

Am J Pathol 188, 507-514. 

Tadesse, H., Deschenes-Furry, J., Boisvenue, S., and Cote, J. (2008). KH-type splicing 

regulatory protein interacts with survival motor neuron protein and is misregulated in 

spinal muscular atrophy. Hum Mol Genet 17, 506-524. 

Takahashi, I., Hama, Y., Matsushima, M., Hirotani, M., Kano, T., Hohzen, H., Yabe, I., Utsumi, 

J., and Sasaki, H. (2015). Identification of plasma microRNAs as a biomarker of sporadic 

Amyotrophic Lateral Sclerosis. Mol Brain 8, 67. 

Tan, S.L., Ohtsuka, T., Gonzalez, A., and Kageyama, R. (2012). MicroRNA9 regulates neural 

stem cell differentiation by controlling Hes1 expression dynamics in the developing 

brain. Genes Cells 17, 952-961. 

Tang, Y., Fu, R., Ling, Z.M., Liu, L.L., Yu, G.Y., Li, W., Fang, X.Y., Zhu, Z., Wu, W.T., and 

Zhou, L.H. (2018). MiR-137-3p rescue motoneuron death by targeting calpain-2. Nitric 

Oxide 74, 74-85. 

Taylor, J.P., Brown, R.H., Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to 

mechanism. Nature 539, 197-206. 

Tetzlaff, W., Alexander, S.W., Miller, F.D., and Bisby, M.A. (1991). Response of facial and 

rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins 

and GAP-43. J Neurosci 11, 2528-2544. 

Tetzlaff, W., Leonard, C., Krekoski, C.A., Parhad, I.M., and Bisby, M.A. (1996). Reductions in 

motoneuronal neurofilament synthesis by successive axotomies: a possible explanation 

for the conditioning lesion effect on axon regeneration. Exp Neurol 139, 95-106. 

Therrien, M., Dion, P.A., and Rouleau, G.A. (2016). ALS: Recent Developments from Genetics 

Studies. Curr Neurol Neurosci Rep 16, 59. 

Thiebes, K.P., Nam, H., Cambronne, X.A., Shen, R., Glasgow, S.M., Cho, H.H., Kwon, J.S., 

Goodman, R.H., Lee, J.W., Lee, S., et al. (2015). miR-218 is essential to establish motor 

neuron fate as a downstream effector of Isl1-Lhx3. Nature Commun 6, 7718. 

Ticozzi, N., Vance, C., Leclerc, A.L., Keagle, P., Glass, J.D., McKenna-Yasek, D., Sapp, P.C., 

Silani, V., Bosco, D.A., Shaw, C.E., et al. (2011). Mutational analysis reveals the FUS 



78 
 

homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am J Med 

Genet B Neuropsychiatr Genet 156B, 285-290. 

Toivonen, J.M., Manzano, R., Olivan, S., Zaragoza, P., Garcia-Redondo, A., and Osta, R. (2014). 

MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral 

sclerosis. PLoS One 9, e89065. 

Trabucchi, M., Briata, P., Filipowicz, W., Rosenfeld, M.G., Ramos, A., and Gherzi, R. (2009). 

How to control miRNA maturation? RNA Biol 6, 536-540. 

Treiber, T., Treiber, N., Plessmann, U., Harlander, S., Daiss, J.L., Eichner, N., Lehmann, G., 

Schall, K., Urlaub, H., and Meister, G. (2017). A Compendium of RNA-Binding Proteins 

that Regulate MicroRNA Biogenesis. Mol Cell 66, 270-284 e213. 

Tsurudome, K., Tsang, K., Liao, E.H., Ball, R., Penney, J., Yang, J.S., Elazzouzi, F., He, T., 

Chishti, A., Lnenicka, G., et al. (2010). The Drosophila miR-310 cluster negatively 

regulates synaptic strength at the neuromuscular junction. Neuron 68, 879-893. 

Ustianenko, D., Hrossova, D., Potesil, D., Chalupnikova, K., Hrazdilova, K., Pachernik, J., 

Cetkovska, K., Uldrijan, S., Zdrahal, Z., and Vanacova, S. (2013). Mammalian DIS3L2 

exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632-1638. 

Valinezhad Orang, A., Safaralizadeh, R., and Kazemzadeh-Bavili, M. (2014). Mechanisms of 

miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific 

Upregulation. Int J Genomics 2014, 970607. 

Valsecchi, V., Boido, M., De Amicis, E., Piras, A., and Vercelli, A. (2015). Expression of 

Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model. 

PLoS One 10, e0128560. 

van Horck, F.P., Ahmadian, M.R., Haeusler, L.C., Moolenaar, W.H., and Kranenburg, O. (2001). 

Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor 

that interacts with microtubules. J Biol Chem 276, 4948-4956. 

van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007). 

Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 

316, 575-579. 

Vance, C., Rogelj, B., Hortobagyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., 

Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing 

protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211. 

Vasudevan, S., Tong, Y., and Steitz, J.A. (2007). Switching from repression to activation: 

microRNAs can up-regulate translation. Science 318, 1931-1934. 

Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007). The microRNA miR-124 

antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. 

Genes Dev 21, 744-749. 



79 
 

Volkening, K., Leystra-Lantz, C., and Strong, M.J. (2010). Human low molecular weight 

neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue 

(RGNEF) in humans. Amyotroph Lateral Scler 11, 97-103. 

Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., and Strong, M.J. (2009). Tar DNA 

binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide 

dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered 

RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305, 168-182. 

Vuppalanchi, D., Willis, D.E., and Twiss, J.L. (2009). Regulation of mRNA transport and 

translation in axons. Results Probl Cell Differ 48, 193-224. 

Waghray, S., Williams, C., Coon, J.J., and Wickens, M. (2015). Xenopus CAF1 requires NOT1-

mediated interaction with 4E-T to repress translation in vivo. RNA 21, 1335-1345. 

Wakabayashi, K., Mori, F., Kakita, A., Takahashi, H., Utsumi, J., and Sasaki, H. (2014). 

Analysis of microRNA from archived formalin-fixed paraffin-embedded specimens of 

amyotrophic lateral sclerosis. Acta Neuropathol Commun 2, 173. 

Wang, L.T., Chiou, S.S., Liao, Y.M., Jong, Y.J., and Hsu, S.H. (2014). Survival of motor neuron 

protein downregulates miR-9 expression in patients with spinal muscular atrophy. 

Kaohsiung J Med Sci 30, 229-234. 

Wee, E.J., Peters, K., Nair, S.S., Hulf, T., Stein, S., Wagner, S., Bailey, P., Lee, S.Y., Qu, W.J., 

Brewster, B., et al. (2012). Mapping the regulatory sequences controlling 93 breast 

cancer-associated miRNA genes leads to the identification of two functional promoters of 

the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone 

receptor status in advanced breast cancer. Oncogene 31, 4182-4195. 

Wei, C., Thatcher, E.J., Olena, A.F., Cha, D.J., Perdigoto, A.L., Marshall, A.F., Carter, B.D., 

Broadie, K., and Patton, J.G. (2013). miR-153 regulates SNAP-25, synaptic transmission, 

and neuronal development. PLoS One 8, e57080. 

Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., 

Urlaub, H., and Meister, G. (2009). Importin 8 is a gene silencing factor that targets 

argonaute proteins to distinct mRNAs. Cell 136, 496-507. 

Welniarz, Q., Dusart, I., and Roze, E. (2016). The corticospinal tract: Evolution, development, 

and human disorders. Dev Neurobiol. 77, 810-829. 

Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S.S., Shi, Y., Lin, S., 

Shneider, N.A., Monaghan, J., Pandey, U.B., et al. (2014). Antisense proline-arginine 

RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate 

in vitro and in vivo neuronal death. Neuron 84, 1213-1225. 

Wertz, M.H., Winden, K., Neveu, P., Ng, S.Y., Ercan, E., and Sahin, M. (2016). Cell-type-

specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy. 

Hum Mol Genet 25, 2168-2181. 



80 
 

Wheeler, J.R., Matheny, T., Jain, S., Abrisch, R., and Parker, R. (2016). Distinct stages in stress 

granule assembly and disassembly. Elife 5. 

Wilczynska, A., and Bushell, M. (2015). The complexity of miRNA-mediated repression. Cell 

Death Differ 22, 22-33. 

Williams, A.H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J.L., Bassel-Duby, R., 

Sanes, J.R., and Olson, E.N. (2009). MicroRNA-206 delays ALS progression and 

promotes regeneration of neuromuscular synapses in mice. Science 326, 1549-1554. 

Wirth, B., Brichta, L., and Hahnen, E. (2006). Spinal muscular atrophy: from gene to therapy. 

Semin Pediatr Neurol 13, 121-131. 

Wong, N.K., He, B.P., and Strong, M.J. (2000). Characterization of neuronal intermediate 

filament protein expression in cervical spinal motor neurons in sporadic amyotrophic 

lateral sclerosis (ALS). J Neuropathol Exp Neurol 59, 972-982. 

Wu, C.H., Fallini, C., Ticozzi, N., Keagle, P.J., Sapp, P.C., Piotrowska, K., Lowe, P., Koppers, 

M., McKenna-Yasek, D., Baron, D.M., et al. (2012). Mutations in the profilin 1 gene 

cause familial amyotrophic lateral sclerosis. Nature 488, 499-503. 

Wu, L., Fan, J., and Belasco, J.G. (2006). MicroRNAs direct rapid deadenylation of mRNA. 

Proc Natl Acad Sci U S A 103, 4034-4039. 

Xhemalce, B., Robson, S.C., and Kouzarides, T. (2012). Human RNA methyltransferase 

BCDIN3D regulates microRNA processing. Cell 151, 278-288. 

Xu, Y., An, B.Y., Xi, X.B., Li, Z.W., and Li, F.Y. (2016). MicroRNA-9 controls apoptosis of 

neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat 

acute spinal cord injury model. Brain Res Bull 121, 233-240. 

Xu, Y.F., Gendron, T.F., Zhang, Y.J., Lin, W.L., D'Alton, S., Sheng, H., Casey, M.C., Tong, J., 

Knight, J., Yu, X., et al. (2010). Wild-type human TDP-43 expression causes TDP-43 

phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in 

transgenic mice. J Neurosci 30, 10851-10859. 

Yamazaki, T., Chen, S., Yu, Y., Yan, B., Haertlein, T.C., Carrasco, M.A., Tapia, J.C., Zhai, B., 

Das, R., Lalancette-Hebert, M., et al. (2012). FUS-SMN protein interactions link the 

motor neuron diseases ALS and SMA. Cell Rep 2, 799-806. 

Yang, Y., Hentati, A., Deng, H.X., Dabbagh, O., Sasaki, T., Hirano, M., Hung, W.Y., Ouahchi, 

K., Yan, J., Azim, A.C., et al. (2001). The gene encoding alsin, a protein with three 

guanine-nucleotide exchange factor domains, is mutated in a form of recessive 

amyotrophic lateral sclerosis. Nat Genet 29, 160-165. 

Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of 

pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016. 



81 
 

Yin, H., Song, P., Su, R., Yang, G., Dong, L., Luo, M., Wang, B., Gong, B., Liu, C., Song, W., et 

al. (2016). DNA Methylation mediated down-regulating of MicroRNA-33b and its role in 

gastric cancer. Sci Rep 6, 18824. 

Yoda, M., Cifuentes, D., Izumi, N., Sakaguchi, Y., Suzuki, T., Giraldez, A.J., and Tomari, Y. 

(2013). Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved 

precursor microRNAs. Cell Rep 5, 715-726. 

Yu, Y., and Reed, R. (2015). FUS functions in coupling transcription to splicing by mediating an 

interaction between RNAP II and U1 snRNP. Proc Natl Acad Sci U S A 112, 8608-8613. 

Yuan, A., Rao, M.V., Sasaki, T., Chen, Y., Kumar, A., Veeranna, Liem, R.K., Eyer, J., Peterson, 

A.C., Julien, J.P., et al. (2006). Alpha-internexin is structurally and functionally 

associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26, 

10006-10019. 

Yuan, A., Sasaki, T., Kumar, A., Peterhoff, C.M., Rao, M.V., Liem, R.K., Julien, J.P., and 

Nixon, R.A. (2012). Peripherin is a subunit of peripheral nerve neurofilaments: 

implications for differential vulnerability of CNS and peripheral nervous system axons. J 

Neurosci 32, 8501-8508. 

Yuan, Z., Jiao, B., Hou, L., Xiao, T., Liu, X., Wang, J., Xu, J., Zhou, L., Yan, X., Tang, B., et al. 

(2018). Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral 

sclerosis and frontotemporal dementia. Neurobiol Aging 64, 160 e169-160 e112. 

Zarei, S., Carr, K., Reiley, L., Diaz, K., Guerra, O., Altamirano, P.F., Pagani, W., Lodin, D., 

Orozco, G., and Chinea, A. (2015). A comprehensive review of amyotrophic lateral 

sclerosis. Surg Neurol Int 6, 171. 

Zekri, L., Kuzuoglu-Ozturk, D., and Izaurralde, E. (2013). GW182 proteins cause PABP 

dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J 32, 

1052-1065. 

Zhang, K., Daigle, J.G., Cunningham, K.M., Coyne, A.N., Ruan, K., Grima, J.C., Bowen, K.E., 

Wadhwa, H., Yang, P., Rigo, F., et al. (2018a). Stress Granule Assembly Disrupts 

Nucleocytoplasmic Transport. Cell 173, 958-971 e917. 

Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P., Daley, 

E.L., Miller, S.J., Cunningham, K.M., Vidensky, S., et al. (2015). The C9orf72 repeat 

expansion disrupts nucleocytoplasmic transport. Nature 525, 56-61. 

Zhang, K., Liu, Q., Shen, D., Tai, H., Fu, H., Liu, S., Wang, Z., Shi, J., Ding, Q., Li, X., et al. 

(2018b). Genetic analysis of TIA1 gene in Chinese patients with amyotrophic lateral 

sclerosis. Neurobiol Aging 67, 201 e209-201 e210. 

Zhang, M., Xi, Z., Ghani, M., Jia, P., Pal, M., Werynska, K., Moreno, D., Sato, C., Liang, Y., 

Robertson, J., et al. (2016). Genetic and epigenetic study of ALS-discordant identical 



82 
 

twins with double mutations in SOD1 and ARHGEF28. J Neurol Neurosurg Psychiatry 

87, 1268-1270. 

Zhang, Y.J., Gendron, T.F., Ebbert, M.T.W., O'Raw, A.D., Yue, M., Jansen-West, K., Zhang, X., 

Prudencio, M., Chew, J., Cook, C.N., et al. (2018c). Poly(GR) impairs protein translation 

and stress granule dynamics in C9orf72-associated frontotemporal dementia and 

amyotrophic lateral sclerosis. Nat Med 24, 1136-1142. 

Zhao, C., Sun, G., Li, S., and Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 

and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16, 

365-371. 

Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-Binding Proteins in 

Amyotrophic Lateral Sclerosis. Mol Cell 41, 818-829. 

Zhou, F., Guan, Y., Chen, Y., Zhang, C., Yu, L., Gao, H., Du, H., Liu, B., and Wang, X. (2013a). 

miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. 

Int J Clin Exp Pathol 6, 1826-1838. 

Zhou, Y., Liu, S., Liu, G., Ozturk, A., and Hicks, G.G. (2013b). ALS-associated FUS mutations 

result in compromised FUS alternative splicing and autoregulation. PLoS Genet 9, 

e1003895. 

Zhou, Z., Licklider, L.J., Gygi, S.P., and Reed, R. (2002). Comprehensive proteomic analysis of 

the human spliceosome. Nature 419, 182-185. 

Zhu, Q., Couillard-Despres, S., and Julien, J.P. (1997). Delayed maturation of regenerating 

myelinated axons in mice lacking neurofilaments. Exp Neurol 148, 299-316. 

Zhu, Q., Lindenbaum, M., Levavasseur, F., Jacomy, H., and Julien, J.P. (1998). Disruption of the 

NF-H gene increases axonal microtubule content and velocity of neurofilament transport: 

relief of axonopathy resulting from the toxin beta,beta'-iminodipropionitrile. J Cell Biol 

143, 183-193. 

Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian, L., Chun, H.J., Pineda, 

G., Morris, S.R., Mason, C.N., Geron, I., et al. (2016). ADAR1 Activation Drives 

Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell 19, 

177-191. 

 

 

 

 

 

 

 

 

 



83 

 

Chapter 2 

 

MiR-105 and miR-9 regulate the mRNA stability of neuronal intermediate filaments. 

Implications for the pathogenesis of amyotrophic lateral sclerosis (ALS).  
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2.1 Abstract 

Intermediate filament aggregation within motor neurons is a hallmark of ALS 

pathogenesis. Changes to intermediate filament stoichiometry due to altered mRNA steady-state 

levels of NEFL, PRPH and INA is thought to drive protein aggregation, yet the exact cause of 

these changes is unknown. MicroRNAs (miRNAs)—master regulators of gene expression—are 

largely dysregulated within ALS motor neurons and are known to be major contributors to the 

disease. We show that miR-105 and miR-9 are downregulated within the spinal cord of ALS 

patients and target NEFL, PRPH and INA 3’UTRs to regulate gene expression. Further, both 

miR-105 and miR-9 were observed to regulate the mRNA stability of these three intermediate 

filaments endogenously within a neuronal-derived cell line. Our data demonstrates that miR-105 

and miR-9 can regulate the mRNA stability of these key intermediate filaments whose 

metabolism is dysregulated in ALS, and thus, these miRNAs likely contribute to their 

pathogenesis.  
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2.2 Introduction 

 
 Amyotrophic lateral sclerosis (ALS) is a fatal disease which is characterized by 

progressive degeneration of motor neurons (Strong, 2017). One major neuropathological 

hallmark of the disease is the formation of neuronal cytoplasmic inclusions (NCIs) containing 

intermediate filaments, which include neurofilament light, medium and heavy (NFL, NFM, and 

NFH, respectively), and peripherin (PRPH) (He and Hays, 2004; Hirano et al., 1984; Keller et 

al., 2012; Kondo et al., 1986; Xiao et al., 2006) 

 In general, intermediate filaments are essential proteins that make up the cytoskeleton 

and are needed for proper cellular structure and signaling within neurons. Neurofilament 

assembly requires NFL to form homopolymers, and as well as heteropolymers with NFM and 

NFH, to form a triplet protein structure (Carpenter and Ip, 1996; Szaro and Strong, 2010). 

Further, PRPH and α-internexin (INA) intermediate filaments are responsible for the formation 

of the early cytoskeleton within developing neurons, but both also interact with the 

neurofilament triplet protein structure within mature neurons (Yuan et al., 2006; Yuan et al., 

2012). Together these intermediate filaments maintain a specific stoichiometry that ensures 

appropriate cell structure, axonal transport, and overall neuronal health (Lariviere and Julien, 

2004; Szaro and Strong, 2010).  

Alterations to intermediate filament stoichiometry within motor neurons of mammalian 

ALS-models induces the formation of NCIs similar to those observed in ALS spinal motor 

neurons (Beaulieu et al., 1999; Kriz et al., 2000; Lee et al., 1994; Zhu et al., 1997). Further, in 

motor neurons of sporadic ALS (sALS) patients with no known genetic background, NEFL, 

PRPH and INA mRNA steady-state levels are selectively reduced with no effect on NEFM or 

NEFH (Wong et al., 2000), suggesting that the loss of intermediate filament stoichiometry results 
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from the loss of proper regulation of intermediate filament mRNA metabolism (Strong, 2010; 

Strong et al., 2004; Szaro and Strong, 2010; Thyagarajan et al., 2007).  

 While alterations in mRNA metabolism seem to be critical to the pathogenesis of ALS 

(Strong, 2010), it is still unclear the etiology of neuronal intermediate filament mRNA 

dysregulation. However, microRNAs (miRNAs)—critical regulators of gene expression 

generally through interactions with the 3’ untranslated region (UTR)—have been shown to be 

largely dysregulated within the spinal cord and motor neurons of sALS patients (Campos-Melo 

et al., 2013; Emde et al., 2015; Figueroa-Romero et al., 2016). Several of these ALS-linked 

miRNAs have been shown to regulate ALS-associated RNA-binding proteins (Dini Modigliani 

et al., 2014; Hawley et al., 2017b), suggesting that the loss of proper miRNA regulation is a 

contributing factor to the disease. Further, several miRNAs have been shown to regulate the 

mRNA levels of NEFL (Campos-Melo et al., 2013; Ishtiaq et al., 2014), which may explain the 

selective reduction of NEFL mRNA steady-state levels in sALS. However, the cause of PRPH 

and INA mRNA reduction, and whether the selective reduction of NEFL, PRPH and INA mRNA 

in sALS is caused by a common mechanism is still unknown. 

 In this study, we aim to identify a specific pool of ALS-linked miRNAs that may explain 

the selective reduction of NEFL, PRPH and INA mRNA steady-state levels. Our data revealed 

that within the pool of miRNAs that is dysregulated in sALS, miR-105 and miR-9 are critical 

regulators of neuronal intermediate filaments; however, only miR-105 directly interacts with the 

NEFL, PRPH and INA 3’UTRs to regulate mRNA levels, suggesting that its dysregulation is a 

key part to the etiology of altered intermediate filament mRNA expression in sALS.     

2.3 Methods and Materials  

 

2.3.1 Tissue Samples 
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ALS patient and neuropathologically healthy, age-matched control spinal cord tissue was 

collected and stored at -80oC, or formalin-fixed and paraffin-embedded (Table 2.1). All ALS 

cases used in this study were clinically and neuropathologically confirmed using the El Escorial 

Criteria (World Federation of Neurology Research Group on Neuromuscular Disease, 1994). The 

research was approved by “The University of Western Ontario Research Ethics Board for Health 

Sciences Research Involving Human Subjects (HSREB)”. Written consent for autopsy was either 

received from the patient antemortem, or the next of kin in accordance with the London Health 

Sciences Center consent for autopsy. All ALS patients were genetically screened and confirmed 

to have no mutations in SOD1, TARDBP, FUS, or expanded repeats in C9ORF72. 

2.3.2 MiRNA Selection 

 Candidate miRNAs were selected if they had predicted miRNA recognition elements 

(MREs) within the 3’UTRs identified in human spinal cord using miRanda software, and if they 

meant the criteria that we have previously reported (Hawley et al., 2017b).  

2.3.3 Real-time PCR 

 

 In order to determine miRNA changes in the spinal cord, total miRNA extraction was 

done on ventral lumbar human spinal cord using the mirVana miRNA extraction kit (Life 

Technologies Inc., Ambion, Carlsbad, CA, USA) in accordance with the manufactures protocol. 

Reverse transcription and real-time PCR was performed on miRNA extracts using miRCURY 

LNATM Universal RT microRNA PCR (Exiqon, Woburn, MA, USA) and ExiLENT SYBR 

Green master mix (Exiqon, Woburn, MA, USA) kits, respectively, in accordance with the 

manufacturer’s instructions. Candidate miRNA expression was normalized and examined 

between ALS patients and control subjects as previously described (Hawley et al., 2017b).  
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Table 2.1. Patient demographics. 

Cases Gender  Age of 

symptom 

onset 

Symptom 

onset 

Age of 

death 

Cause of Death 

Control  

F  - - 62 Heart Attack 

M  - - 74 Stroke 

F  - - 68 Unknown 

M  - - 68 Brain Tumor 

M  - - 75 Unknown  

F  - - 53 Pneumonia 

F  - - 74 Leukemia  

M  - - 67 Unknown  

ALS 

F  58 Unknown 60 Unknown 

M  69 
Upper/lower 

limbs 
72 Unknown 

F  40 Bulbar 41 Systemic Failure 

M  55 Unknown 61 Pneumonia 

M  64 
Upper/lower 

limbs 
67 

Respiratory 

Failure 

F  69 
Respiratory 

Symptoms 
71 

Respiratory 

Failure 

M  63 Unknown 64 Unknown 

F  47 Bulbar 49 
Respiratory 

Failure 
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Total RNA extraction from IMR-32 cells was done using TRIzol reagent (Life Technologies 

Inc., Ambion, Carlsbad, CA, USA) followed by cDNA synthesis using the SuperScript IV VILO 

reverse transcriptase according to the manufactures protocol (Invitrogen, Life Technologies Inc., 

Mississauga, ON, Canada). Changes to NEFL, PRPH, or INA mRNA levels were measured via 

real-time PCR using the TaqMan Fast Advanced Master Mix and TaqMan Gene Expression 

Assays (Applied Biosystems, Thermo Fisher Scientific). Intermediate filament expression levels 

were normalized to 18S, and then quantified using the 2-ΔΔCT method. 

2.3.4 Fluorescent In Situ Hybridization (FISH)  

 Neuropathologically intact human spinal cord was examined for candidate miRNA 

expression within motor neurons. Spinal cord tissue was formalin-fixed, paraffin embedded, and 

then cut into 7µm sections. Samples were UV treated overnight prior to experiment to reduce 

autofluorescent lipofuscin signaling. MiRNA FISH was performed as previously described (de 

Planell-Saguer et al., 2010).  MiRNA probes were double DIG tagged (Exiqon, Woburn, MA, 

USA), and were targeted using a DIG-HRP secondary antibody (1:100; Roche, Indianapolis, IN, 

USA) and Tyramide Signal Amplification tagged with a Cy3 fluorophore (PerkinElmer, 

Waltham, MA, USA). Spinal motor neurons were examined for positive expression of candidate 

miRNAs using the Olympus FV1000 confocal microscope.  

2.3.5 Cell Culture and Plasmid Construction 

 

HEK293T and IMR-32 cells were cultured in Dulbecco’s Modified Eagle’s Media 

(DMEM) and Eagle’s Minimum Essential Medium (EMEM), respectively, with 10% Fetal 

Bovine Serum (FBS) and incubated at 37oC with 5% CO2.  

NEFL, PRPH, and INA 3’UTRs identified in human spinal cord were individually cloned 

into the pmirGLO vector in between SalI and NheI restriction enzyme sites and downstream of 
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the firefly luciferase gene (Promega, Madison, WI, USA). Mutations made within the 3’UTRs 

were done as previously reported (Hawley et al., 2017b) using the Site-Directed Mutagenesis Kit 

II (Aligent Technologies Canada Inc., Missasauga, ON, Canada) in accordance with the 

manufacturer’s instructions. Cloned fragments and mutated sites were confirmed with Sanger 

sequencing.  

 

2.3.6 Luciferase Assay and Relative Quantitative RT-PCR  

 

 HEK293T cells were seeded 24 and 48 hours prior to transfection for luciferase and RT-

qPCR assays, respectively, as previously reported (Hawley et al., 2017b). PmirGLO vectors 

containing either the NEFL, PRPH, or INA 3’UTR were transfected into HEK293T cells either 

with or without miRNA mimics for luciferase and relative quantitative RT-PCR assays in 

accordance to what has been previously done (Campos-Melo et al., 2013; Hawley et al., 2017b) 

using the Lipofectamine 2000 protocol (Life Technologies Inc., Invitrogen, Burlington, ON, 

Canada). Luciferase activity was measured 24 hours post-transfection using the Dual-GLO 

Luciferase Assay System (Promega, Madison, WI, USA). For RT-PCRs firefly and renilla 

cDNAs were amplified and data was normalized in accordance to what has been previously 

described (Campos-Melo et al., 2013). Data for luciferase and RT-qPCR assays was quantified 

and plotted as relative difference of firefly expression from the control when in the presence of 

miR-105, miR-140-5p, miR-9, or let-7a (negative control) and is represented as mean ± SEM.   

 

2.3.7 Statistical Analysis 

  Student’s t-test was performed when comparing two conditions. One-way ANOVA 

followed by Tukey’s post-hoc was done when doing multiple comparisons between groups. Data 

was considered significant if p<0.05. 
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2.4 Results  

 
2.4.1 MiR-105 and miR-140-5p are downregulated in sALS and expressed in motor 

neurons.   

 

 Spinal cord obtained from neuropathologically intact subjects was used to identify NEFL, 

PRPH and INA 3’UTRs isoforms expressed within this tissue. We confirmed that already known 

3’UTRs of NEFL [1838 bases – GenBank NM_006158], PRPH [325 bases – GenBank 

NM_006262] and INA [1638 bases – GenBank NM_032727] were present in human spinal cord 

(data not shown).  

 Subsequently, using the miRanda prediction tool, 15 miRNAs were identified to have 

MREs within the NEFL, PRPH and INA 3’UTRs expressed in human spinal cord. However, we 

previously demonstrated that the expression of 6 of these miRNAs are not dysregulated in sALS 

(Campos-Melo et al., 2013). Thus, we focused on those 9 miRNAs that we previously reported 

to be dysregulated in sALS, or possessed MREs in the NEFL, PRPH or INA 3’UTR, but for 

which expression levels had not been characterized in sALS (Fig. 2.1). Of note, miR-9 has a 

non-canonical binding site within the PRPH 3’UTR (seed region is from +3 to +8, rather than +2 

to +7). Since miR-9 is predicted to regulate all intermediate filaments of interest, and several labs 

have shown its relationship to sALS (Campos-Melo et al., 2013; Campos-Melo et al., 2018; 

Emde et al., 2015; Haramati et al., 2010; Hawley et al., 2017a; Zhang et al., 2013), we decided 

miR-9 was critical to examine.    

 Our previous work has shown that miR-9 is expressed within motor neurons and 

significantly downregulated within the spinal cord of sALS patients (Campos-Melo et al., 2013; 

Campos-Melo et al., 2018), and others have shown this downregulation is specific to motor 

neurons (Emde et al., 2015). Thus, the remaining 8 miRNA candidates were further examined 

within the spinal cord tissue of sALS patients (n=8) and control subjects (n=5). Real-time PCR  
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Figure 2.1. MiRanda predicted 15 miRNAs to have MREs in NEFL, PRPH, and INA 

3’UTRs. A) Venn diagram showing 15 miRNAs that have MRE sites within the NEFL, PRPH 

and INA 3’UTRs according to miRanda software. However, we have shown previously that six 

miRNAs are not dysregulated in sALS (Campos-Melo et al., 2013). Thus, only those outlined in 

the black box were considered for further analysis. B) Schematic showing NEFL, PRPH and INA 

3’UTRs expressed in neuropathologically intact human spinal cord (n=3), and the location of the 

MREs of miRNA candidates within each 3’UTR.  
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confirmed our previous reports that miR-105 and miR-140-5p were significantly downregulated 

within the spinal cord tissue of sALS patients (Campos-Melo et al., 2013), while miR-185, miR-

1179, miR-1297, miR-3120, miR-4306 and miR-b4335 showed no significant change (Fig. 2.2).  

Since miR-105 and miR-140-5p were both downregulated in the spinal cord of sALS 

patients, we wanted to determine if these miRNAs were normally expressed within human motor 

neurons, as what has been seen with miR-9 (Campos-Melo et al., 2018; Emde et al., 2015). Both 

miR-105 and miR-140-5p are highly expressed within motor neurons (Fig. 2.3), suggesting that 

the observed downregulation of these two miRNAs is likely occurring in motor neurons. 

2.4.2 MiR-105 regulates a reporter linked to NEFL, PRPH and INA 3’UTRs. 

 

 NEFL, PRPH and INA 3’UTRs were individually linked to the firefly luciferase reporter 

gene to determine if candidate miRNAs altered the expression of the reporter gene. Both miR-

105 and miR-140-5p significantly increased luciferase activity when in the presence of the NEFL 

3’UTR strongly suggesting that miR-105 upregulates NEFL levels. Further, miR-105 

significantly increased or decreased luciferase activity when in the presence of either the PRPH 

or INA 3’UTRs, respectively, while miR-140-5p had no effect. Further, miR-9 significantly 

reduced luciferase activity when in the presence of either the NEFL, PRPH, or INA 3’UTR (Fig. 

2.4A). Let-7a was used as negative control and had no effect on luciferase activity when in the 

presence of any intermediate filament 3’UTR.  

Subsequently, we determined whether the changes observed in luciferase activity were 

due to changes at the mRNA level (Fig. 2.4B). Changes to luciferase mRNA levels when linked 

to either the NEFL, PRPH, or INA 3’UTR matched changes seen to luciferase activity when in 

the presence of miR-105. MiR-9 significantly reduced luciferase mRNA levels in the presence of 

either the NEFL or PRPH 3’UTR, but had no effect on the luciferase mRNA levels when in the 



95 

 

presence of the INA 3’UTR. MiR-140-5p had no effect on the mRNA levels of the luciferase 

gene when in the presence of either the NEFL, PRPH, or INA 3’UTR (Fig. 2.4B). Since miR-

140-5p had no effect on the mRNA levels when interacting with NEFL, PRPH or INA 3’UTRs, 

only miR-105 and miR-9 were further examined. 

 

2.4.3 MiR-105 directly interacts with the NEFL, PRPH and INA 3’UTRs to regulate 

reporter expression. 

 

 MREs of miR-105 and miR-9 were mutated at the +2 and +3 positions in the NEFL, 

PRPH and INA 3’UTRs to determine if these miRNAs needed to directly interact with the 

3’UTRs to regulate luciferase activity. Indeed, miR-105 had significantly reduced effects on 

increasing luciferase activity when the NEFL 3’UTR was lacking the miR-105 MRE; however, 

the effect was not completely abolished. This indicates miR-105 likely stabilizes NEFL by 

binding to the 3’UTR, but possibly also through an indirect mechanism by which miR-105 

regulates another target that stabilizes NEFL. Further, the PRPH 3’UTR lacking the miR-105 

MRE completely abolished the ability for miR-105 to upregulate luciferase activity (Fig. 2.5A). 

Interestingly, miR-105 has multiple MREs within the INA 3’UTR, and thus, we aimed to 

determine if miR-105 targeted a specific MRE to reduce luciferase activity. Indeed, mutations 

only in the MRE closest to the 5’end of the 3’UTR, or site 1 (S1), abolished the ability of miR-

105 to reduce luciferase activity. Mutations in the MREs closer to the 3’end, or sites 2 and 3 (S2 

and S3, respectively), had no effect on the ability of miR-105 to reduce luciferase activity, 

indicating the S1 MRE is critical for miR-105 function (Fig. 2.5A).   

MiR-9 has two MREs within the NEFL 3’UTR, but only one MRE in the PRPH and INA 

3’UTRs. Removal of the S1 MRE within the NEFL 3’UTR lead to a significant reversal in the 

reduction of luciferase activity via miR-9, but the effect was not completely abolished. It was   
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Figure 2.2. Differential expression of miRNA candidates within sALS spinal cord tissue. 

We examined the expression of candidate miRNAs in the spinal cord of sALS patients (n=8) 

compared to control subjects (n=5) using real-time PCR. MiR-105 and miR-140-5p are 

significantly downregulated in the spinal cord of sALS patients, while all other candidates 

showed no significant change in expression compared to the control population. Data was 

expressed miRNA fold-change (ALS/Control) ± SEM, and significance was determined using a 

Student’s t-test (* = p<0.05).  
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Figure 2.3. MiR-105 and miR-140-5p are expressed in human spinal motor neurons. FISH 

was used to examine the expression of both miR-105 and miR-140-5p within human ventral 

lumbar spinal cord. Both miRNAs showed strong expression within motor neurons of a control 

case (n=1). MiR-548c was used as a negative control. Motors neurons were identified based on 

size, as they are the only cells 50-70µm in size within the ventral spinal cord. Scale bar 

represents 10µm.  
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Figure 2.4. MiR-105 regulates luciferase activity and mRNA expression when it contains 

either the NEFL, PRPH, or INA 3’UTR.  HEK293T cells were transfected with the pmirGLO 

plasmid containing either the NEFL, PRPH, or INA 3’UTR, or cells were co-transfected with the 

pmirGLO plasmid containing the intermediate filament 3’UTRs and either miR-105, miR-140-

5p, or miR-9. A) Reporter gene assay showing changes in luciferase activity from control when 

either miR-105, miR-140-5p, or miR-9 interact with either the NEFL, PRPH or INA 3’UTR. B) 

Relative quantitative RT-qPCR showing changes in luciferase mRNA levels from control when 

either miR-105, miR-140-5p, or miR-9 interact with either the NEFL, PRPH or INA 3’UTR. 

Positive and negative values represent up- and downregulation, respectively. Let-7a was used as 

a negative control. Firefly luciferase expression was normalized to renilla luciferase expression, 

and then further normalized to account for the effect of the miRNA on the pmirGLO plasmid 

itself to determine the exact effect of the miRNA when it interacts with the respective 

intermediate filament 3’UTR. Data is represented as mean (n=3) ± SEM. Significance was 

determined using a Student’s t-test (*** = p<0.001; ** = p<0.01; * = p<0.05; NS = p>0.05).  
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only when the S2 MRE was removed that miR-9 no longer silenced luciferase activity (Fig. 

2.5B), indicating the S2 MRE within the NEFL 3’UTR is crucial for miR-9 mediated silencing. 

Mutations within the MRE of miR-9 in the PRPH 3’UTR lead to the eradication of the ability of 

miR-9 to reduce luciferase activity. However, elimination of the miR-9 MRE in the INA 3’UTR 

had no effect on its ability to reduce luciferase levels, indicating that miR-9 regulates INA 

expression through an indirect mechanism (Fig. 2.5B). Overall, these data indicate that miR-105 

directly binds to the 3’UTR of NEFL, PRPH and INA to regulate expression, while miR-9 only 

directly targets the NEFL and PRPH 3’UTRs.    

2.4.4 MiR-105 and miR-9 regulate the mRNA stability of endogenous NEFL, PRPH and 

INA. 

 The human neuron-derived cell line IMR-32, endogenously expresses NEFL, PRPH and 

INA, as well as miR-105 and miR-9 (Fig. 2.6). Therefore, we decided to determine whether miR-

105 and miR-9 regulated these intermediate filaments endogenously. Overexpression of miR-105 

lead to a significant increase in NEFL, while inhibition of miR-105 had a significant decrease on 

NEFL mRNA levels. Interestingly, overexpression of miR-105 was observed to have little effect 

on PRPH mRNA levels, yet its inhibition drastically reduced PRPH expression, which suggests 

that miR-105 is needed to stabilize the PRPH transcript. In contrast, miR-105 overexpression 

lead to a significant decrease, while miR-105 inhibition lead to a 2-fold increase (p = 0.08) in 

INA mRNA levels (Fig. 2.7A). This data indicates that miR-105 is a stabilizer of NEFL and 

PRPH, and a destabilizer of INA mRNA, consistent with what we observed in our luciferase 

assays.  

Further, overexpression of miR-9 within IMR-32 cells lead to a significant decrease in 

NEFL and PRPH mRNA levels which is consistent with alterations seen in the relative 

quantitative RT-PCR and the luciferase assay, while the inhibition of miR-9 lead to a significant 
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increase in NEFL and PRPH mRNA (Fig. 2.7B). As expected, based on our relative quantitative 

RT-PCR, overexpression of miR-9 had little effect on INA mRNA stability. However, inhibition 

of miR-9 within IMR-32 cells lead to a significant increase in INA mRNA. This could indicate 

that the indirect mechanism by which miR-9 suppresses INA expression, as suggested by our 

luciferase and site-directed mutagenesis assays, is lost upon inhibition of miR-9 (Fig. 2.7B).  

This data shows that both miR-105 and miR-9 regulate this network on intermediate filaments 

within a human neuronal-derived cell line, further emphasizing that alterations to these miRNAs 

is a major contributing factor to aberrant intermediate filament stoichiometry seen in sALS 

spinal cord.  

2.5 Discussion  

 
 In this study, we aimed to determine whether a specific pool of ALS-associated miRNAs 

contributes to changes in the mRNA metabolism of intermediate filaments that is observed in 

ALS spinal motor neurons. We identified two miRNAs—miR-105 and miR-9—to be central 

regulators of NFL, PRPH and INA, but only miR-105 binds directly to all intermediate filament 

3’UTRs. Further, we showed that miR-105 is highly expressed in motor neurons and has reduced 

levels within the spinal cord of sALS patients, suggesting that the regulation of these 

intermediate filaments in spinal motor neurons is disrupted in sALS via miR-105.  

Elucidating the mechanism that causes the selective reduction of NEFL, PRPH and INA 

has major significance in understanding ALS progression for several reasons. First, NFL is a 

necessary component of the neurofilament triplet protein structure, as NFM and NFH alone 

could not form a stable cytoskeleton (Szaro and Strong, 2010). Second, both INA and PRPH 

provide the early cytoskeleton for developing neurons, and thus, without the neurofilament triplet 

protein structure, INA and PRPH could potentially act as replacements for the neuronal 
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Figure 2.5. MiR-105 regulates firefly luciferase expression through direct interactions with 

the NEFL, PRPH, and INA 3’UTR.  HEK293T cells were co-transfected with either the 

pmirGLO plasmid containing the wild-type 3’UTR, or mutated form, and either with or without 

miR-105 or miR-9. A) Changes to luciferase activity from control when miR-105 either contains 

or lacks MREs within either the NEFL, PRPH, or INA 3’UTR. MiR-105 has three MREs within 

the INA 3’UTR, and thus each MRE was individually examined. B) Changes to luciferase 

activity from control when miR-9 either contains or lacks MREs within either the NEFL, PRPH, 

or INA 3’UTR. MiR-9 has two MREs within the NEFL 3’UTR, and thus each MRE was 

individually examined. Firefly luciferase expression was normalized to renilla luciferase 

expression, and then further normalized to account for the effect of the miRNA on the pmirGLO 

plasmid to determine the exact effect of the miRNA when it interacts with the respective 3’UTR. 

Data is represented as mean (n=3) ± SEM. Significance was determined using a one-way 

ANOVA followed by a Tukey’s post-hoc (*** = p<0.001; ** = p<0.01; * = p<0.05; NS = 

p>0.05).  
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Figure 2.6. Real-time PCR indicating expression of intermediate filaments and miRNAs of 

interest in IMR-32 cells. A) Expression of NEFL, PRPH and INA mRNA within IMR-32 cells. 

B) Expression of miR-105 and miR-9 in IMR-32 cells. Values represented as mean (n=3) CT ± 

SEM.  
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Figure 2.7. MiR-105 and miR-9 regulate the endogenous mRNA expression of NEFL, 

PRPH and INA. IMR-32 cells were transfected with either a miR-105 or miR-9, or let-7a 

(negative control) mimics, or inhibitors. Basal levels of intermediate filament mRNAs were 

measured in IMR-32 cells transfected with let-7a. Values above and below one represents either 

an increase or decrease in expression, respectively. Changes to the expression of intermediate 

filaments was measured using real-time PCR, and quantified using the 2-ΔΔCT method, where 

values were first normalized to 18S RNA levels prior to comparison. Data was represented as 

mean (n=5) ± SEM.  Significance was calculated using a one-way ANOVA followed by a 

Tukey’s post-hoc (*** = p<0.001; ** = p<0.01; * = p<0.05; NS = p>0.05). 
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cytoskeleton (Athlan and Mushynski, 1997; Kaplan et al., 1990; Yuan et al., 2006; Yuan et al., 

2012). In fact, there is an increase in INA and PRPH expression within injured neurons which 

allows for replacement of the cytoskeleton structure at the injured site (McGraw et al., 2002; 

Troy et al., 1990). However, since there is a selective reduction of NEFL, PRPH, and INA 

expression within spinal motor neurons of ALS patients (Wong et al., 2000), these motor 

neurons have no mechanism by which they can support and/or replace their cytoskeleton 

structure.  

 Reduction of miR-105 has generally been associated with tumor and cancer formation as 

it is responsible for regulating several tumor suppressor genes (Honeywell et al., 2013; Liu et al., 

2016; Lu et al., 2017; Zhang et al., 2017). However, this is the first time, to our knowledge, that 

miR-105 has been associated with the regulation of neuronal intermediate filaments. According 

to our results, reduced levels of miR-105 leads to decreased levels of NEFL and PRPH, and 

increased levels of INA mRNA. However, this does not match what is actually seen in sALS 

motor neurons, as all three intermediate filaments show decreased levels (Wong et al., 2000). 

Thus, while miR-105 appears to be a central regulator of ALS-linked intermediate filaments, the 

dysregulation of this miRNA in sALS is probably a contributing factor to the dysregulation of 

intermediate filaments, and not the sole cause.  

Beyond miR-105, we examined miR-9 given that it had previously been shown to be 

reduced in ALS spinal cord and motor neurons. We observed that miR-9 also was capable of  

reducing the expression of NEFL, PRPH and INA. Previous work has shown that miR-9 is a 

critical part of the intermediate filament pathway through the regulation of NEFH (Campos-Melo 

et al., 2018; Haramati et al., 2010). While Haramati et al. had also observed that miR-9 does not 

regulate mouse Nefl, it is noteworthy that miR-9 lacks MREs within the mouse Nefl 3’UTR. In 



111 

 

contrast, human NEFL 3’UTR has two sites for miR-9 binding. Further, our results suggest that 

loss of miR-9 expression in ALS would lead to an increase in all three of these intermediate 

filaments, which does not match what we have previously observed in sALS motor neurons 

(Wong et al., 2000). However, based on our data, loss of miR-9 expression would still alter the 

intermediate filament stoichiometry, which is the main factor that drives intermediate filament 

pathogenesis (Szaro and Strong, 2010). Overall, our findings indicate that miR-105 and miR-9 

are necessary components to maintain intermediate filament stoichiometry, and thus, loss of 

these miRNAs in sALS likely contribute to intermediate filament dysregulation.   

An intriguing finding in this study was the MRE site preference of miR-105 and miR-9 

within the INA and NEFL 3’UTRs, respectively. Despite having three MREs within the INA 

3’UTR, miR-105 only bound to one site (S1) to regulate mRNA stability, while miR-9 binds 

both MREs to reduce NEFL levels, with binding to the S2 MRE having a greater effect on NEFL 

downregulation than binding to the S1 MRE. It is a common phenomenon for a single miRNA to 

have multiple MREs within a transcript, where interactions with each MRE has either a 

synergistic or differential effect on transcript stability and translational output (Jangra et al., 

2010; Nasheri et al., 2011; Ott et al., 2011). For example, miR-122 has four MREs within the 

Hepatitis C Virus (HCV). When miR-122 binds to the S1 or S2 MRE it promotes viral 

translation (Jangra et al., 2010).  In contrast, interactions with the S4 MRE suppresses viral 

translation while binding to the S3 MRE has no effect on overall translational output of the virus 

(Henke et al., 2008; Nasheri et al., 2011). The exact reason why a miRNA binds to some MREs 

and not others or has differential effects on transcript stability at different MREs is unknown. 

Considering there are other trans-acting factors that regulate mRNA stability, how a miRNA 



112 

 

functions at a particular MRE is likely affected by the other trans-acting factors that are binding 

within that area.  

Further, while removing the miR-105 binding site from the NEFL 3’UTR reduced the 

stabilizing effect it had on the luciferase transcript, it did not completely abolish the effect. This 

could indicate that miR-105 regulates the expression of another target that is responsible for 

regulating NEFL stability. TDP-43 and RGNEF are two ALS-associated RNA-binding proteins 

known to regulate NEFL mRNA stability (Droppelmann et al., 2013; Volkening et al., 2009), 

and thus, it would be worth investigating whether the expression of these RNA-binding proteins 

are affected by changes to miR-105 levels.  

Both miR-9 and miR-105 downregulation in sALS likely contributes to the loss of 

intermediate filament stoichiometry, ultimately leading to intermediate filament aggregation and 

eventual neuronal death. MiRNAs are ideal therapeutic targets as they are known to regulate 

several genes within a network. For example, miR-506 and miR-146a are negative regulators of 

several genes involved in cancer metastasis and inflammation, respectively (Sun et al., 2015; Wu 

et al., 2015). Thus, rather than targeting individual genes that contribute to the disease, miRNAs 

offer an avenue in which we can target multiple genes involved in a disease process (Rupaimoole 

and Slack, 2017). Our data suggests that both miR-105 and miR-9 regulate a network of ALS-

associated neuronal intermediate filaments, and thus recovery of these miRNAs within sALS 

patients could slow disease progression by mitigating the alterations seen to intermediate 

filament stoichiometry. Further work within in vivo models is still needed to confirm this 

hypothesis.    
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3.1 Abstract  

 

Neurofilaments (NFs) are the most abundant cytoskeletal component of vertebrate 

myelinated axons. NFs function by determining axonal caliber, promoting axonal growth and 

forming a 3-dimensional lattice that supports the organization of cytoplasmic organelles. The 

stoichiometry of NF protein subunits (NFL, NFM and NFH) must be tightly controlled to 

avoid the formation of NF neuronal cytoplasmic inclusions (NCIs), axonal degeneration and 

neuronal death, all pathological hallmarks of amyotrophic lateral sclerosis (ALS). The post-

transcriptional control of NF transcripts is critical for regulating normal levels of NF proteins. 

Previously, we showed that miRNAs that are dysregulated in ALS spinal cord regulate the 

levels of NEFL mRNA. In order to complete the understanding of altered NF expression in 

ALS, in this study we have investigated the regulation of NEFM and NEFH mRNA levels by 

miRNAs. We observed that a small group of ALS-linked miRNAs that are expressed in 

human spinal motor neurons directly regulate NEFM and NEFH transcript levels in a manner 

that is associated with an increase in NFM and NFH protein levels in ALS spinal cord 

homogenates. In concert with previous observations demonstrating the suppression of NEFL 

mRNA steady state levels in ALS, these observations provide support for the hypothesis that 

the dysregulation of miRNAs in spinal motor neurons in ALS fundamentally alters the 

stoichiometry of NF expression, leading to the formation of pathological NCIs. 
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3.2 Introduction  

Neurofilaments (NFs) are unique neuron-specific intermediate filaments in 

vertebrates. They are highly dynamic structures that determine axonal caliber, promote 

axonal growth and organize the cytoplasm to form a stable 3-dimensional lattice that supports 

the organization of organelles and cytoplasmic proteins (Szaro and Strong, 2010; Walker et 

al., 2001).  

NF subunit proteins (low, medium and high molecular weight neurofilaments; NFL, 

NFM and NFH, respectively) form homo- and hetero-polymers following a specific 

stoichiometry and tight spatiotemporal regulation. Conserving NF stoichiometry by 

controlling the levels of expression of individual NF subunits is critical for the maintenance 

of healthy neurons. Alterations of NF mRNA steady stoichiometry and the associated 

formation of neuronal cytoplasmic inclusions (NCIs) composed of NF proteins are 

neuropathological markers of degenerating motor neurons in amyotrophic lateral sclerosis 

(ALS), a progressive neurodegenerative disease (Szaro and Strong, 2010; Thyagarajan et al., 

2007; Xiao et al., 2006). Although the exact mechanism by which NF NCIs exert toxicity is 

unknown, it has been suggested that they alter the internal structure of axons and disrupt 

axonal transport, in addition to impairing NMDA-mediated calcium influx, compromising the 

survival of neurons (Sanelli et al., 2004; Thyagarajan et al., 2007). 

Post-transcriptional control is crucial for preserving NF subunit expression in 

neuronal homeostasis and also during axonal outgrowth in development and regeneration 

(Ananthakrishnan et al., 2008; Ananthakrishnan and Szaro, 2009; Schwartz et al., 1994). 

MiRNAs are evolutionary conserved non-coding RNAs that control the expression of the 

majority of the mammalian transcriptome and have been increasingly linked to 

neurodegenerative disorders. We and others have described a profound dysregulation of 

miRNAs in spinal cord and motor cortex of ALS patients (Campos-Melo et al., 2013; Emde 
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et al., 2015; Figueroa-Romero et al., 2016; Wakabayashi et al., 2014). We previously 

demonstrated that a selective group of these miRNAs directly regulate NEFL mRNA stability 

(Campos-Melo et al., 2013), and postulated that this dysregulation of miRNA expression 

would contribute to the selective suppression of NEFL mRNA levels observed in ventral 

lateral spinal cord motor neurons in ALS (Bergeron et al., 1994; Wong et al., 2000). Proper 

control of the levels of the NF triplet is critical because the backbone of the NF is mainly 

formed by NFL (Leermakers and Zhulina, 2010) and the stoichiometry of NFL/NFM/NFH 

(4:2:1) has to be carefully maintained (Scott et al., 1985). The miRNAs responsible for 

regulating human NEFM and NEFH mRNA stability are however unknown. In this study we 

observed that a limited number of ALS-linked miRNAs that are expressed in spinal motor 

neurons directly regulate NEFM and NEFH mRNA levels, in a way that might explain the 

increase in NFM and NFH protein levels that we observed in ALS spinal cords and thus 

contribute directly to the formation of NF NCIs. 

3.3 Materials and Methods  

3.3.1 Tissue Collection  

Spinal cord samples from sALS patients and age-matched, neurologically intact 

control individuals were used. All ALS cases were both clinically and neuropathologically 

confirmed using the El Escorial Criteria (World Federation of Neurology Research Group on 

Neuromuscular Disease, 1994). Written consent for autopsy was obtained from the next of 

kin at the time of death or from the patient antemortem in accordance with the London Health 

Sciences Centre consent for autopsy. Cases were genotyped and confirmed to have no known 

mutations in SOD1, TARDBP, FUS or expanded repeats in C9ORF72 (Table 3.1). 
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Table 3.1. Patient demographics. 

Cases Gender  Age of 

symptom 

onset 

Symptom 

onset 

Age of 

death 

Cause of Death 

Control  

F  - - 62 Heart Attack 

M  - - 74 Stroke 

F  - - 68 Unknown 

M  - - 68 Brain Tumor 

M  - - 75 Unknown  

F  - - 53 Pneumonia 

F  - - 74 Leukemia  

M  - - 67 Unknown  

ALS 

F  58 Unknown 60 Unknown 

M  69 
Upper/lower 

limbs 
72 Unknown 

F  40 Bulbar 41 Systemic Failure 

M  55 Unknown 61 Pneumonia 

M  64 
Upper/lower 

limbs 
67 

Respiratory 

Failure 

F  69 
Respiratory 

Symptoms 
71 

Respiratory 

Failure 

M  63 Unknown 64 Unknown 

F  47 Bulbar 49 
Respiratory 

Failure 
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3.3.2 3’RACE PCR, cloning and miRNA target prediction  

NEFM and NEFH mRNA 3’UTRs were obtained using 3’RACE PCR. Briefly, 

TRIzol reagent (Thermo Fisher Scientific) was used for total RNA extraction from human 

spinal cord tissue. 3’RACE PCR was performed using SMARTer RACE 5’/3’ RACE Kit 

(Takara Bio. Inc., Clontech) and primers hNEFM_3RACE_F1D: 

5’CACTTCACACGCCATAGTAAAGGAAGTCACC3’ and hNEFH_3RACE_F2: 

5’GAGAAGGCCACAGAAGACAAGGCCGCCAAG3’ for NEFM and NEFH 3’UTRs, 

respectively. 3’UTR isoforms were cloned into pGEMT-Easy vector and sequenced. For 

luciferase assays, 3’UTRs were subcloned into pmirGLO vector between NheI and SalI sites 

and linked to the firefly luciferase coding region. Mutations in two nucleotides at the 3’end of 

each miRNA recognition element (MRE) within the NEFM and NEFH 3’UTRs were made 

using QuikChange Site-Directed Mutagenesis Kit II (Agilent) according to the 

manufacturer’s instructions. Mutations were carefully designed to ensure no changes were 

made in the secondary structures of the transcripts using the RNAFold WebServer 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Both TargetScan 

(http://www.targetscan.org/) and miRanda 

(http://www.microrna.org/microrna/getGeneForm.do) software programs were used to 

determine miRNAs with predicted MREs in either NEFM or NEFH 3’UTRs.  

3.3.3 miRNA extraction and real-time PCR  

Total miRNA extraction using the mirVana miRNA isolation kit (Thermo Fisher 

Scientific) was performed from human ventral lumbar spinal cord using 5 controls and 8 ALS 

tissue samples according to the manufacturer’s instruction. Yield and purity of the miRNA 

solution was determined using spectrophotometry while RNA integrity was measured using a 

bioanalyzer instrument.   

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://www.targetscan.org/
http://www.microrna.org/microrna/getGeneForm.do
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MiRNA extracts from the spinal cord of ALS patients or controls were reversed 

transcribed and then subjected to real-time PCR using the miRCURY LNATM Universal RT 

microRNA PCR (Exiqon) and ExiLENT SYBR Green master mix (Exiqon), according to the 

manufacturer’s instructions. PCRs were performed using the 7900 HT real-time PCR system. 

Relative expression of miRNAs was normalized to miR-16-5p, a miRNA previously 

demonstrated to have the same expression in sALS and controls (Campos-Melo et al., 2013). 

The analysis of the relative expression of candidate miRNAs between sALS and controls was 

done using the 2-ΔΔCT method. All experiments were run in triplicate and significance was 

determined using Student’s t-test. 

3.3.4 TaqMan real-time PCR 

To examine the expression levels of NEFM and NEFH mRNA, total RNA extraction 

was performed on ALS patient and control lumbar spinal cord tissue using TRIzol reagent 

(Ambion, Life Technologies). RNA samples were subjected to a cDNA synthesis reaction 

using the SuperScript IV VILO reverse transcriptase (Invitrogen, Thermo Fisher Scientific) in 

accordance to the manufacture’s instructions. Real-time PCR was done on the cDNA 

templates using the TaqMan Fast Advanced Master Mix and TaqMan Gene Expression 

Assays (Applied Biosystems, Thermo Fisher Scientific) targeting either NEFM or NEFH. 

Assays were performed in accordance to the manufacture’s instructions. TaqMan probes that 

targeted either NEFM or NEFH were designed with a FAM fluorophore. The expression of 

NEFM and NEFH was normalized to the expression of a reference gene (HPRT1), which was 

targeted by a TaqMan probe containing a VIC fluorophore. Changes in NEFM and NEFH 

mRNA expression between ALS patients and control subjects were determined using the 2-

ΔΔCT method. Experiments were run in triplicate and determined to be significantly different 

using a Student’s t-test. 

3.3.5 Fluorescent in situ hybridization (FISH)  
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To ensure that the miRNAs of interest are expressed in human motor neurons, 

neuropathologically normal lumbar spinal cord from control subjects was examined for 

miRNA expression. Tissue sections were formalin-fixed, paraffin embedded (FFPE) and cut 

into 7μm sections. Samples were UV treated overnight to reduce the lipofuscin-induced auto-

fluorescent signal. FISH was performed as described previously (Planell-Sauger et al 2010). 

LNA probes were designed with double DIG-labels that targeted the miRNA of interest 

(Exiqon). DIG-HRP secondary antibody, and Tyramide Signal Amplification (TSA) Systems 

tagged with a Cy3 fluorophore (PerkinElmer) were used to obtain a fluorescent signal of the 

miRNA target. Ventral horn of human lumbar spinal cord tissue was examined for positive 

staining within motor neurons using the Olympus FV1000 confocal microscope. 

3.3.6 Cell culture, luciferase assay and relative quantitative RT-PCR 

HEK293T cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% fetal bovine serum (FBS), at 37oC with 5% CO2. HEK293T cells were plated 

on 96-well plates with a density of 10,000 cells/well 24 hours prior to transfection. 100 nM of 

miRNA mimics (Thermo Fisher Scientific) and 3.47 fmol of pmirGLO containing NEFM or 

NEFH 3’UTR were co-transfected into the cells using Lipofectamine 2000 reagent (Thermo 

Fisher Scientific).  

Luciferase assays and relative quantitative RT-PCR were performed 24 hours post-

transfection as was described previously (Campos-Melo et al., 2014). Data show positive 

values as upregulation and negative values as downregulation. All experiments were run in 

triplicate, and significance was determined using a Student’s t-test or one-way ANOVA 

followed by Turkey’s post hoc test.  

3.3.7 Western blot  

Total protein extraction from ventral lumbar spinal cord of 3 controls and 7 ALS 

patients was performed using NP40 lysis buffer containing proteinase inhibitors. Samples 
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were sonicated, resuspended in loading buffer, denatured at 90°C and run on an 8% SDS-gel. 

After transfer, the nitrocellulose membrane was probed with either mouse anti-NFM (1:1000; 

Boehringer Mannheim, 814-334), mouse anti-NFH (1:1000; Boehringer Mannheim, 814-

342), or rabbit anti-GAPDH (1:5000; Abcam, ab9485) and later with HRP-secondary 

antibody (goat anti-mouse 1:3000, or goat anti-rabbit 1:5000; BioRad and Invitrogen, 

respectively).  Relative protein expression of NFM and NFH were normalized to GAPDH 

expression levels. Student’s t-test was used to determine statistical differences in endogenous 

protein expression. 

3.4 Results 

 

3.4.1 Only one 3’UTR isoform of either NEFM are NEFH is expressed in human spinal 

cord 

 

Considering that 3’UTR polymorphisms have been increasingly reported in the 

literature, we determined if 3’UTR variants of NEFM and NEFH mRNAs are expressed in 

human spinal cord. A single variant form of NEFM and NEFH 3’UTRs (486 and 583 nt, 

respectively) was detected in lumbar spinal cord control tissue (Fig. 3.1). Analysis of ALS 

patients showed no difference in the 3’UTR variants of NEFM and NEFH expressed in spinal 

cord compared to control samples (data not shown). 

3.4.2 Several ALS-linked miRNAs have MREs within the NEFM and NEFH 3’UTRs 

Prediction algorithms showed that NEFM and NEFH 3’UTRs have multiple MREs for 

different pools of miRNAs. However, for this study we only considered those miRNAs that 

we previously observed to be differentially expressed in ALS tissue versus controls using the 

TaqMan assay (Campos-Melo et al., 2013). We performed real-time PCR using SYBR green 

of 40 miRNAs to validate differential expression of 6 miRNAs that have MREs in NEFM or 

NEFH 3’UTRs (Fig. 3.2A). Each miRNA, (miR-92a-3p, miR-125b-5p, miR-9-5p, miR-20b- 
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Figure 3.1. Single NEFM and NEFH mRNA 3’UTR variants are expressed in human 

spinal cord. 3’RACE-PCR was performed from spinal cord tissue samples of control 

individuals using specific primers to amplify NEFM and NEFH 3’UTRs. 3’UTRs were 

cloned and sequenced. One 3’UTR variant for each NEFM (486 nt) and NEFH (583 nt) 

transcript was observed in human spinal cord. NEFM specific primer anneals to a region 40 

nt upstream the stop codon.      

  



128 

 

5p and miR-223-3p and miR-519d-3p) showed significant downregulation of expression in 

ALS spinal cord versus controls (Fig. 3.2B).  

Next, we examined the neuronal expression of the group of miRNAs that potentially 

regulate NEFM and NEFH transcripts in human spinal cord motor neurons of control tissue 

through FISH. MiR-92a-3p is almost exclusively expressed in motor neurons of the spinal 

cord. MiR-125b-5p, miR-9-5p, miR-20b-5p and miR-519d-3p showed higher expression in 

motor neurons than in other cell types within the spinal cord. MiR-223-3p showed similar 

expression in motor neurons and surrounding cells. MiR-548c-3p was used as a negative 

control and miR-124-3p, which is highly expressed in neurons, was used as positive control. 

In summary, we observed that the 6 ALS-linked miRNAs that are predicted to regulate 

NEFM and NEFH mRNAs are expressed in motor neurons of human spinal cord (Fig. 3.3). 

3.4.3 MiRNA candidates interact with NEFM and NEFH 3’UTRs to regulate gene 

expression 

 

Functionality assays of these 6 miRNAs showed that miR-92a-3p and miR-125b-5p 

downregulate the levels of a luciferase reporter linked to NEFM 3’UTR (Fig. 3.4A). MiR-9-

5p, miR-20b-5p, miR-92a-3p and miR-223-3p downregulate the levels of the luciferase 

reporter coupled to NEFH 3’UTR (Fig. 3.4B). We observed that most of these miRNAs also 

significantly downregulate mRNA levels of the luciferase reporter bound to either NEFM or 

NEFH 3’UTR (Fig. 3.4C and D), which implies that miRNAs are dysregulating the stability 

of NEFM and NEFH transcripts. Reporter gene assay using NEFM or NEFH 3’UTR MRE 

mutants showed a decrease in the downregulatory effect of each miRNA compared with the 

wild type, indicating that miR-9-5p, miR-20b-5p, miR-92a-3p, miR-125b-5p and miR-223-3p 

directly regulate NEFM or NEFH 3’UTRs stability (Fig. 3.5).  
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3.4.4 NEFM and NEFH mRNA and protein are increased in ALS spinal cord 

Finally, considering the reduced expression of this group of 5 miRNAs in ALS spinal 

cords and the downregulatory function they showed on NEFM and NEFH, we should expect 

an increase of NEFM and NEFH transcript and protein levels in ALS spinal cord tissue 

compared to controls. Consistent with this, we observed an increase in both NEFM and 

NEFH transcript and protein levels in ALS ventral lumbar spinal cords (Fig. 3.6). 

3.5 Discussion 

In this study, we have shown that a small group of miRNAs that are dysregulated in 

the spinal cord of ALS patients directly regulate NEFM and NEFH mRNA stability and that 

this is associated with an increase in NFM and NFH protein levels in ALS spinal cord 

homogenates compared to neurological intact control spinal cord homogenates.  

The post-transcriptional control of NF transcripts is critical for establishing, 

consolidating and maintaining normal levels of NF proteins. The stoichiometry of NF 

subunits has to be tightly controlled to promote axonal outgrowth, control axon caliber and 

avoid the formation of NF aggregates, axonal degeneration and neuronal death (Julien, 1999; 

Thyagarajan et al., 2007). The regulation of NF transcripts expression occurs at multiple 

levels. It has been reported that splicing of the last intron of Xenopus NEFM increases 

nucleocytoplasmic export of the transcript which allows for robust gene expression (Wang 

and Szaro, 2016). Another level of regulation is at the mRNA transport. One study observed 

that the mRNAs of each NF subunit are present and translated within intact and regenerating 

rat sciatic nerve, demonstrating that NF transcripts are transported through axons (Sotelo-

Silveira et al., 2000). At the final stage of mRNA regulation, it has been shown that the RNA-

binding protein HuB increases the translation of NEFM transcript (Antic et al., 1999). 
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Figure 3.2. MiRNAs that have MREs in NEFM or NEFH 3’UTRs are downregulated in 

the spinal cord of ALS patients. (A) MREs within NEFM and NEFH 3’UTRs of ALS-

linked miRNAs. (B) Real-time PCR using SYBR green. Validation of differential expression 

in ALS versus control spinal cords of 6 miRNAs that have MREs in NEFM or NEFH mRNA 

3’UTRs is shown. Experiments were performed in triplicate. Values below 1 indicate 

downregulation. Results are shown as mean (n=3) ± SEM (Student t-test: **** p < 0.0001, 

*** p < 0.001, ** p < 0.01, * p < 0.05. MiR-9-5p, p = 0.0229; miR-20b-5p, p = 0.0230; miR-

92a-3p, p = 0.0234; miR-125b-5p, p = 0.0412; miR-223-3p, p = 0.0215 and miR-519d-3p, p 

= 0.0232). 
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Figure 3.3. MiRNAs that have MREs within NEFM or NEFH 3’UTRs are expressed in 

motor neurons of human spinal cord control tissue. FISH was performed using FFPE 

control spinal cord tissue and LNATM-enhanced detection probes 5`-DIG and 3`-DIG labeled 

for miRNAs. Amplification was performed using anti-DIG-HRP and TSA Plus Cy3. MiR-

548c-3p, which is not expressed in human spinal cord, was used as negative control. MiR-

124-3p, which is known as highly expressed in neurons, was used as positive control. 
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Figure 3.4. A group of ALS-linked miRNAs regulate a luciferase reporter linked to 

NEFM or NEFH 3’UTRs. HEK293T cells were co-transfected with a reporter plasmid 

containing NEFM or NEFH 3’UTRs and miRNA mimics. (A, B) Reporter gene assays were 

performed 24 hours after transfection. Data are expressed as relative change and plotted in 

logarithmic scale. (C, D) Relative quantitative RT-PCRs were performed after RNA 

extraction, 24 hours post-transfection. Data are expressed as relative mRNA level change and 

plotted in logarithmic scale. All experiments were performed in triplicate. Results are shown 

as mean (n=3) ± SEM (Student t-test: **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 

0.05, relative to the pmirGLO vector control). Reporter gene assays: miR-92a-3p/NEFM, p < 

0.0001; miR-125b-5p/NEFM, p = 0.0005; miR-let-7a/NEFM, p = 0.6015; miR-9-5p/NEFH, 

miR-20b-5p/NEFH, miR-92a-3p/NEFH and miR-223-3p/NEFH, p < 0.0001; miR-519d-

3p/NEFH, p = 0.0723; miR-let-7a/NEFH, p = 0.0893. RT-PCRs:  miR-92a-3p/NEFM, p = 

0.0052; miR-125b-5p/NEFM, p = 0.0429; miR-9-5p/NEFH, p = 0.0431; miR-20b-5p/NEFH, 

p = 0.0518; miR-92a-3p/NEFH, p = 0.0003; miR-223-3p/NEFH, p < 0.001; miR-519d-

3p/NEFH, p = 0.0903). 
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Figure 3.5. MiRNAs directly regulate luciferase transcripts linked to NEFM or NEFH 

3’UTRs. HEK293T cells were co-transfected with a reporter plasmid containing mutant 

NEFM (A) or NEFH (B) 3’UTRs and miRNA mimics. Reporter gene assays were performed 

24h after transfection. Data are expressed as relative change and plotted in logarithmic scale. 

All experiments were performed in triplicate. Result are shown as mean (n=3) ± SEM (One-

way ANOVA followed by Tukey’s post hoc test: **** p <0.0001, *** p < 0.001, ** p < 0.01, 

* p < 0.05, relative to the pmirGLO vector control). MiR-92a-3p/NEFM, miR-125b-

5p/NEFM, miR-9-5p/NEFH, miR-20b-5p/NEFH, miR-92a-3p/NEFH and miR-223-

3p/NEFH, p < 0.0001). 
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Figure 3.6. NEFM and NEFH transcript and protein levels are increased in spinal cord 

of ALS patients. (A) Real-time PCR using TaqMan and (B) Western blots were performed 

using ventral lumbar spinal cord samples of 5 controls and 7 ALS patients. (C) Quantification 

by densitometry of Western blots in A. Protein levels were normalized to GAPDH. Data was 

expressed as the mean ± SEM (Student t-test: **** p < 0.0001, *** p < 0.001, ** p < 0.01, * 

p < 0.05. Real-time PCR: NEFM, p = 0.0027: NEFH, p = 0.0239. Western blot: NFM, p = 

0.0238; NFH, p = 0.4762).      
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mRNA stability is the regulatory process of NF transcripts most extensively studied in which 

multiple trans-acting factors participate. In mice, it has been shown that the RNA-binding 

protein p190RhoGEF stabilizes and that glycolytic isoenzymes aldolases A and C directly 

destabilize Nefl mRNA (Canete-Soler et al., 2005; Canete-Soler et al., 2001). Our previous 

studies have shown that the stability of NEFL is regulated by ALS-associated RNA-binding 

proteins. Mutant copper/zinc superoxide dismutase (mtSOD1) and Rho Guanine Nucleotide 

Exchange Factor (RGNEF; the human homologue of p190RhoGEF) mediate the 

destabilization and TAR DNA binding protein 43 kDa (TDP-43) the stabilization of NEFL 

mRNA (Droppelmann et al., 2013; Ge et al., 2005; Strong et al., 2007). In addition, fused in 

sarcoma/translocated in liposarcoma (FUS/TLS), another ALS-associated protein, has been 

shown to bind to murine Nefl, Nefm and Nefh transcripts (Lagier-Tourenne et al., 2012).  

The most prominent mechanism of RNA mediated gene silencing involves the 

interaction of miRNAs with their target mRNAs in which most, but not all, interactions 

between the miRNA and MREs leads to a degradation of the mRNA. Previously, we and 

others have observed a massive downregulation of miRNAs in ALS spinal cord (Campos-

Melo et al., 2014; Emde et al., 2015; Figueroa-Romero et al., 2016). We also showed that 

three miRNAs that are dysregulated in ALS, miR-146a*, miR-524-5p and miR-582-3p, 

regulate levels of NEFL mRNA (Campos-Melo et al., 2013). In this paper, we extended our 

study to miRNAs responsible for NEFM and NEFH post-transcriptional regulation. We 

created a list of miRNAs that are downregulated in ALS spinal cord and that also possess 

MREs within NEFM and NEFH 3’UTRs. From the published literature, we observed that two 

miRNAs of this group (miR-9 and miR-125b-5p) were confirmed to be reduced in ALS 

spinal cord (Emde et al., 2015; Figueroa-Romero et al., 2016). We established that a small 

group of ALS-linked miRNAs (miR-9-5p, miR-20b-5p, miR-92a-3p, miR-125b-5p and miR-

223-3p) directly downregulate human NEFM and NEFH mRNA levels, an effect that is 
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translated into a reduction of NFM and NFH protein levels within spinal cord homogenates. 

From this group of miRNAs that regulate NEFM and NEFH mRNA levels, only miR-9 has 

been reported to have a role in neuronal function. More specifically, by regulating several 

targets including OC1, FoxP1, MAP1B, and MCPIP1, miR-9 is critical for motor neuron 

development, function and survival (Hawley et al., 2017).  

As these group of miRNAs that regulate NEFM and NEFH are reduced in spinal cord 

of ALS tissue, we predicted that the net effect would be an increase of NFM and NFH protein 

levels in ALS-spinal cords. Several groups have shown that NFL, NFM and/or p-NFH levels 

are increased in biological fluids of ALS patients (Feneberg et al., 2018; Ganesalingam et al., 

2013; Haggmark et al., 2014; Rosengren et al., 1996; Xu et al., 2016), but there are no reports 

of NFs protein levels in spinal cord tissue. In this study we showed that both NFM and NFH 

levels are increased in ventral lumbar spinal cord of ALS patients compared to controls. This 

observation is in agreement with the increased in NEFM and NEFH transcripts in ALS 

ventral lumbar spinal cord homogenates that we observed here using real-time PCR and 

reported previously using RNase protection assay (Strong et al., 2004).  

A selective reduction of NEFL steady-state mRNA levels in spinal motor neurons of 

ALS patients has been well documented (Bergeron et al., 1994; Menzies et al., 2002; Wong 

et al., 2000) a finding that we have proposed is due to alterations in the expression of NEFL-

linked miRNAs (Campos-Melo et al., 2013). In concert with the observations of this study, 

we hypothesize that in ALS spinal cords the sustained dysregulation in time of the expression 

of groups of miRNAs that control NF levels fundamentally alters the expression of all three 

NF transcripts in a manner that induces an alteration in the stoichiometry of the individual NF 

proteins, favoring the formation of pathological NCIs.   

While this hypothesis supports the critical role of the alteration of miRNA expression 

in ALS, miRNAs alone are not the sole mediators of RNA stability. Indeed, understanding 
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the fundamental relationship between alterations in RNA-binding proteins and how this 

interacts with alterations in miRNAs expression will be critical to understanding the process 

of perturbed RNA-mediated gene silencing which appears to lie at the core of a majority of 

ALS cases.  
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4.1 Abstract 

Common pathological features of amyotrophic lateral sclerosis (ALS) include 

cytoplasmic aggregation of several RNA-binding proteins. Out of these RNA-binding proteins, 

TDP-43, FUS and RGNEF have been known to co-aggregate with one another within motor 

neurons of sporadic ALS (sALS) patients suggesting there may be a common regulatory network 

disrupted. MiRNAs have been a recent focus in ALS research, as they have been identified to be 

globally downregulated in the spinal cord of ALS patients. The objective of this study was to 

identify if there were miRNA(s) dysregulated in sALS that are responsible for regulating the 

TDP-43, FUS and RGNEF network. In this study, we identify miR-194 and miR-b2122 to be 

significantly downregulated in sALS patients, and were predicted to regulate TARDBP, FUS and 

RGNEF expression. Reporter gene assays and RT-qPCR revealed that miR-b2122 downregulates 

the reporter gene through direct interactions with either the TARDBP, FUS, or RGNEF 3’UTR, 

while miR-194 downregulates firefly expression when it contained either the TARDBP or FUS 

3’UTR. Further, we showed that miR-b2122 regulates endogenous expression of all three of 

these genes in a neuron-derived cell line. Also, an ALS-associated mutation in the FUS 3’UTR 

ablates the ability of miR-b2122 to regulate a reporter gene linked to the FUS 3’UTR, and sALS 

samples which showed a downregulation in miR-b2122 also showed an increase in FUS protein 

expression. Overall, we have identified a novel miRNA that is downregulated in sALS that 

appears to be a central regulator of disease-related RNA-binding proteins, and thus, its 

dysregulation likely contributes to TDP-43, FUS and RGNEF pathogenesis in sALS. 

  



149 

 

4.2 Introduction 

 

 Amyotrophic lateral sclerosis (ALS) is a progressive motor neurodegenerative disease 

resulting in paralysis and death within 2-5 years after diagnosis (Taylor et al., 2016; Zarei et al., 

2015). 5-10% of ALS cases are familial (fALS), while the remaining are sporadic (sALS) 

although ~10-12% of these latter cases also have a genetic basis (Al-Chalabi et al., 2017; Chen et 

al., 2013; Taylor et al., 2016). While our understanding of ALS pathogenesis has advanced 

significantly in recent years, this understanding, and in particular the relationship amongst the 

individual genetic defects and the associated formation of pathological intraneuronal inclusions 

which are a hallmark of the disease, remains in its early phases (Blokhuis et al., 2013; Keller et 

al., 2012; Xiao et al., 2006).  

Defects in mRNA metabolism have been suggested to be a major driver in the genesis of 

pathological inclusions in ALS (Cestra et al., 2017; Droppelmann et al., 2014; Freibaum et al., 

2010; Hideyama et al., 2012; Tsuiji et al., 2013).  Further, it has been shown that miRNAs, 

essential regulators of mRNA expression and protein synthesis, are globally downregulated 

within the spinal cord tissue of sALS patients (Campos-Melo et al., 2013; Figueroa-Romero et 

al., 2016). This downregulation of miRNA expression has been shown to be motor neuron 

specific (Emde et al., 2015), contributing to the concept that altered miRNA homeostasis is a 

major contributor to the pathogenesis of ALS (Hawley et al., 2017; Rinchetti et al., 2017). The 

finding of this global downregulation of miRNAs within sALS patients is intriguing, as TDP-43 

and FUS, two proteins often found to be dysregulated in sALS, are known to be essential 

components of miRNA biogenesis (Kawahara and Mieda-Sato, 2012; Morlando et al., 2012). 

Further, ALS mutations within the FUS 3’ untranslated region (UTR) have been shown to 

disrupt a negative feedback network between miR-141/200a and FUS, leading to an 



150 

 

accumulation of FUS within the cell (Dini Modigliani et al., 2014; Sabatelli et al., 2013). This 

suggests that there may be a disruption in the feedback networks between miRNAs and RNA-

binding proteins in ALS, including TDP-43 and FUS.  

Beyond TDP-43 and FUS, we have described RGNEF, another RNA-binding protein, 

that forms pathological aggregates within sALS spinal motor neurons and has mutations 

associated with ALS (Droppelmann et al., 2013a; Droppelmann et al., 2013b; Keller et al., 2012; 

Ma et al., 2014). Interestingly, we observed that TDP-43, FUS and RGNEF co-aggregate with 

each other within the motor neurons of sALS patients, suggesting a co-dysregulation of these 

three RNA-binding proteins (Keller et al., 2012). While miRNA biogenesis has been clearly 

shown to be affected in sALS, it is unclear the consequence of this mass downregulation, and 

how it may contribute to TDP-43, FUS and RGNEF pathogenesis.  

In the current study, we describe two miRNAs, miR-194 and miR-b2122, that are 

predicted to regulate TDP-43, FUS and RGNEF. The novel miR-b2122 is expressed in human 

spinal motor neurons, significantly downregulated in sALS patients, and regulates the expression 

of all three of these RNA-binding proteins. Further, an ALS-associated mutation within the FUS 

3’UTR located in the miRNA recognition element (MRE) of miR-b2122 disrupts its ability to 

suppress gene expression. Overall, our results suggest that the downregulation of miR-b2122 in 

sALS could result in altered levels of all three of these RNA-binding proteins, contributing to the 

pathological state of TDP-43, FUS and RGNEF observed within motor neurons of sALS 

patients.  

 

4.3 Materials and Methods  
 

4.3.1 Tissue samples 
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Spinal cord tissue was obtained from sALS patients and age-matched, neurologically 

intact individuals (Table 4.1). All ALS cases were both clinically and neuropathologically 

confirmed using the El Escorial Criteria (World Federation of Neurology Research Group on 

Neuromuscular Disease, 1994). All research was approved by “The University of Western 

Ontario Research Ethics Board for Health Sciences Research Involving Human Subjects 

(HSREB)”. Written consent for autopsy was obtained from the next of kin at the time of death or 

from the patient antemortem in accordance with the London Health Sciences Centre consent for 

autopsy. Cases were genotyped and confirmed to have no known mutations in SOD1, TARDBP, 

FUS, RGNEF or expanded repeats in C9orf72.  

 

4.3.2 3’ RACE  

 

 Total RNA extraction was performed on SH-SY5Y cells and spinal cord tissue from 

neurologically intact humans using TRIzol reagent (Life Technologies Inc., Ambion, Carlsbad, 

CA, USA). This was followed by cDNA synthesis and PCR with the SMARTer 5’/3’ RACE Kit 

(Takara Bio. Inc., Clontech, USA) to amplify the TARDBP, FUS and RGNEF 3’UTRs according 

to the manufactures instructions using the following forward primers: TARDBP 5’-TAG ACA 

GTG GGG TTG TGG TTG GTT GGT A-3’, FUS 5’- GCA GGG AGA GGC CGT ATT AAT 

TAG CCT-3’ and RGNEF 5’-GCC CCG AGG TAA TGG AAC TTA ATC G-3’. 3’UTRs were 

identified using a 1% agarose gel containing a SYBR Safe dye. 3’UTR bands were excised and 

extracted from the agarose gel, and then individually cloned into a pGEMT-easy vector 

according to manufactures instructions (Promega, Madison, WI, USA). All 3’UTRs were 

confirmed using Sanger sequencing.   

 

4.3.3 MiRNA selection  
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Table 4.1. Patient demographics. 

Cases Gender  Age of 

symptom 

onset 

Symptom 

onset 

Age of 

death 

Cause of Death 

Control  

F  - - 62 Heart Attack 

M  - - 74 Stroke 

F  - - 68 Unknown 

M  - - 68 Brain Tumor 

M  - - 75 Unknown  

F  - - 53 Pneumonia 

F  - - 74 Leukemia  

M  - - 67 Unknown  

ALS 

F  58 Unknown 60 Unknown 

M  69 
Upper/lower 

limbs 
72 Unknown 

F  40 Bulbar 41 Systemic Failure 

M  55 Unknown 61 Pneumonia 

M  64 
Upper/lower 

limbs 
67 

Respiratory 

Failure 

F  69 
Respiratory 

Symptoms 
71 

Respiratory 

Failure 

M  63 Unknown 64 Unknown 

F  47 Bulbar 49 
Respiratory 

Failure 
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MiRNAs predicted to target TARDBP, FUS and RGNEF 3’UTRs were selected using 

miRanda software. Further, the sequence of the miRNA had to be perfectly complementary to 

the miRNA recognition element (MRE) from +2 to +7. Novel miRNAs currently not found with 

the miRanda program were manually checked to see if their seed sequence had an MRE within 

the 3’UTR of TARDBP, FUS and RGNEF. We only considered those miRNAs for which we 

identified MREs within the 3’UTR isoforms of TARDBP, FUS and RGNEF in the spinal cord 

tissue.  

 

4.3.4 Real-time PCR 

 

Total miRNA extractions were performed on ventral lumbar spinal cord tissue using the 

mirVana miRNA extraction kit according to manufactures instructions (Life Technologies Inc., 

Ambion, Carlsbad, CA, USA). Yield and purity of the miRNA extracts were measured using 

spectrophotometry (Nanodrop, ThermoFisher Scientific, Burlington, ON, Canada), while 

integrity was measured using Bioanalyzer (Aligent Technologies Canada Inc., Missasauga, ON, 

Canada) analysis. MiRNA extracts were reversed transcribed and then subjected to real-time 

PCR using miRCURY LNATM Universal RT microRNA PCR (Exiqon, Woburn, MA, USA) and 

ExiLENT SYBR Green master mix (Exiqon, Woburn, MA, USA) kits, respectively, according to 

manufacturer’s instructions. To detect novel miRNAs, miRNAs extracts went under reverse 

transcription using the Taqman microRNA reverse transcriptase kit (Life Technologies Inc., 

Applied Biosystems, Forest City, CA, USA), and then were pre-amplified using the Taqman 

PreAmp Master Mix Kit (Life Technologies Inc., Applied Biosystems, Forest City, CA, USA) 

followed by real-time PCR with the TaqMan Universal PCR Master Mix (x2) no AmpErase 

UNG (Life Technologies Inc., Applied Biosystems, Roche, Branchburg, NJ, USA). The 7900 

HT Real Time PCR system was used to read PCR outputs. Relative expression of miRNAs was 
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normalized to an internal control (miR-16-5p), followed by comparison of the relative expression 

of candidate miRNAs between ALS cases and a control population using the 2-ΔΔCT method. 

Negative values show downregulation and positive values upregulation of the expression. 

Statistical significance was determined using Student’s t-test, and samples were considered 

significantly different if p<0.05. 

 

4.3.5 Fluorescent in situ hybridization (FISH) 

 

Neuropathologically normal human lumbar spinal cord tissue was formalin-fixed, 

paraffin-embedded and cut into 7µm sections. Samples were UV treated overnight prior to the 

experiment to reduce lipofuscin-induced autofluorescent signaling. FISH of miRNAs was 

performed as described before (de Planell-Saguer et al., 2010). Probes for miRNA detection were 

designed with double DIG labels (Exiqon, Woburn, MA, USA), and were targeted by a DIG-

HRP secondary antibody (1:100; Roche, Indianapolis, IN, USA) and Tyramide Signal 

Amplification tagged with a Cy3 fluorophore (PerkinElmer, Waltham, MA, USA). Olympus 

FV1000 confocal microscope was used to observe miRNA expression within spinal motor 

neurons. 

 

4.3.6 Cell culture and plasmid construction 

 

HEK293T and SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Media 

(DMEM) containing 10% Fetal Bovine Serum (FBS). Cells were incubated at 37oC with 5% 

CO2. 

3’UTR isoforms of RNA-binding proteins identified in the human spinal cord tissue were 

individually cloned into the pmirGLO vector in between SalI and NheI restriction enzyme sites 

and downstream from the firefly luciferase gene (Promega, Madison, WI, USA). Site-directed 



155 

 

mutagenesis assays were done by adding a two-nucleotide mutation within the +2 and +3 

positions of each miR-194 or miR-b2122 MRE using the Site-Directed Mutagenesis Kit II 

(Aligent Technologies Canada Inc., Missasauga, ON, Canada) according to the manufacturer’s 

instructions. Mutations were carefully designed to ensure no changes to mRNA secondary 

structure using RNAfold WebServer (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).    

 

4.3.7 Luciferase assay 

 

 HEK293T cells were seeded into 96 well plates (9,000 cells per well) 24 hours prior to 

transfection. Cells were co-transfected with 3.5 fmol of pmirGLO plasmid and 100 nM of 

miRNA mimics according to the Lipofectamine 2000 protocol (Life Technologies Inc., 

Invitrogen, Burlington, ON, Canada). Luciferase activity was measured 24 hours post-

transfection using the Dual-GLO Luciferase Assay System (Promega, Madison, WI, USA). 

Firefly activity was normalized to renilla activity. Experimental design and normalization of data 

was performed as previously described (Campos-Melo et al., 2014). Data was quantified as 

relative difference from the control and expressed as mean ± SEM. Statistical significance was 

determined by performing Student’s t-test, and was considered significantly different if p<0.05.  

 

4.3.8 Relative quantitative RT-PCR  

 

To determine the effects of miR-194 and miR-b2122 on the luciferase mRNA expression 

when it contained the 3’UTR of TARDBP, FUS or RGNEF, HEK293T cells were seeded into 24 

well plates (20,000 cells per well) 48 hours prior to transfection. Cells were co-transfected with 

20.6 fmol of pmirGLO plasmid and 100 nM of miRNA mimics according to the Lipofectamine 

2000 protocol (Life Technologies Inc., Invitrogen, Burlington, ON, Canada). 24 hours after 

transfection, total RNA extraction was performed using TRIzol reagent (Life Technologies Inc., 
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Ambion, Carlsbad, CA, USA) followed by first-strand cDNA synthesis (Life Technologies Inc., 

Invitrogen, Burlington, ON, Canada) and PCR amplification of firefly and renilla cDNA as 

previously described (Campos-Melo et al., 2013). Data was quantified as relative difference from 

the control and expressed as mean ± SEM. Statistical significance was determined by performing 

Student’s t-test and was considered significantly different if p<0.05.  

To identify whether miR-194 and miR-b2122 could regulate the endogenous mRNA 

expression of these three RNA-binding proteins within a neuronal-derived cell line, SH-SY5Y 

cells were seeded into 6-well plates (500,000 cells per well) 24 hours prior to the transfection. 

100 nM of miRNA mimics and anti-miRs were then either transfected individually or co-

transfected. 24 hours after transfection total RNA extraction was performed using TRIzol reagent 

(Life Technologies Inc., Ambion, Carlsbad, CA, USA) followed by cDNA synthesis (Life 

Technologies Inc., Invitrogen, Burlington, ON, Canada). Quantitative PCR (qPCR) to determine 

the relative change in endogenous mRNA expression of TARDBP, FUS and RGNEF was 

performed using following primers: TARDBP for: 5’-CAG GGT GGG TTT GGT AAC GT-3’ 

rev: 5’-AAA GCC CCC ATT AAA ACC AC-3’; FUS for: 5’-TCG GGA CCA AGG ATC ACG 

TC-3’ rev: 5’-ATC TGG TTT AGG GGC CTT ACA CTG-3’; RGNEF for: 5’-AGG AAC GCA 

ATA ACT GGA TGA GAC G-3’ rev: 5’-TTC CAC CTT CTC CCC TGC ATC AG-3’; 18S 

RNA for: 5’-AGT TGG TGG AGC GAT TTG TC-3’ rev: 5’-TTC CTC GTT CAT GGG GAA 

TA-3’. All expression profiles were normalized to 18S RNA levels prior to comparison. One-

way ANOVA followed by a Tukey’s post-hoc was used to determine statistical differences in 

endogenous mRNA expression, and samples were significantly different if p<0.05. 

 

4.3.9 Western blot analysis 
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SH-SY5Y cells were seeded into 6-well plates (500,000 cells per well) 24 hours prior to 

the experiment. 100 nM of miRNA mimics and inhibitors were then either transfected 

individually or co-transfected. 48 hours after transfection total protein extraction was performed 

using NP40 lysis buffer containing proteinase inhibitors (cOmplete, Roche, Indianapolis, IN, 

USA), followed by sonication. Samples were suspended in loading buffer and proteins were 

denatured at 90oC for 5 minutes. Samples ran on a 12% SDS-gel and transferred to a 

nitrocellulose membrane. To measure endogenous levels of TDP-43, FUS and RGNEF, the 

membrane was probed with either anti-TDP-43 (1:2500; Proteintech, 10782-2-AP), anti-FUS 

(1:3000; Proteintech, 11570-1-AP), or anti-RGNEF (1:1000; Abcam, ab157095) rabbit 

antibodies, respectively. Blots were then probed with an HRP-secondary antibody (goat anti-

rabbit; 1:5000; Life Technologies Inc., Invitrogen, Burlington, ON, Canada). Blots were stripped 

using stripping buffer (2% SDS, 62.5 mM Tris-HCl, 100 mM β-mercaptoethanol, pH 6.8) and re-

probed for GAPDH using anti-GAPDH rabbit antibody (1:2500; Abcam, ab9485). Relative 

protein expression of TDP-43, FUS and RGNEF were normalized to GAPDH expression levels. 

One-way ANOVA followed by a Tukey’s post-hoc was used to determine statistical differences 

in endogenous protein expression, and samples were significantly different if p<0.05. 

 

4.4 Results 

 

4.4.1 A small group of miRNAs contain MREs within the mRNA 3’UTR of TARDBP, FUS, 

and RGNEF. 

 

Spinal cord tissue from neurologically intact individuals was used to determine the 

3’UTR isoform(s) of TARDBP, FUS and RGNEF being expressed. TARDBP consistently 

showed one 3’UTR isoform across all human samples with a length of 1398bp (BC095435.1) 

(Fig. 4.1A) (Ayala et al., 2011). Subject two appeared to have a higher band, but we were unable 
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to confirm a longer 3’UTR through sequencing, and for that reason, we focused only on the 

transcript that was consistently expressed across all samples. 

FUS contained one 3’UTR isoform within three different control cases, which was 150bp 

in length (Fig. 4.1A) (NM_004960). While RGNEF appeared to have three 3’UTR isoforms in 

each control case, we were only able to confirm the top and bottom bands through sequencing. 

The two RGNEF 3’UTR isoforms that were confirmed had a length of 177bp and 981bp, which 

we termed RGNEF-short and RGNEF-long, respectively (Fig. 4.1A).  Both short and long 

3’UTRs of RGNEF have been previously described (NM_001244364.1 and NM_0010804079.2, 

respectively).  

Subsequently, we identified 5 miRNAs which had MREs within the 3’UTR of all three of 

these RNA-binding proteins. However, our previous work has indicated that miR-548d-3p was 

not dysregulated in sALS cases, and thus was eliminated from further analysis. We also 

previously observed that miR-194 is downregulated in sALS patients (Campos-Melo et al., 

2013), while miR-b2122, miR-sb659 and miR-548x have not been analyzed for dysregulation 

within sALS patients (Fig. 4.1B and C). The latter four miRNAs were thus of interest for further 

analysis.  

 

4.4.2 MiR-194 and miR-b2122 are downregulated in the spinal cord tissue of sALS 

patients.  

 

We characterized the relative expression of miR-194, miR-548x, miR-sb659 and miR-

b2122 within the spinal cord tissue of sALS patients compared to control subjects. Using real-

time PCR, we observed that miR-194 and miR-b2122 were significantly downregulated in sALS 

patients (Fig. 4.2). The downregulation of miR-194 is consistent with what we reported 

previously using TaqMan Array (Campos-Melo et al., 2013). Using FISH, we confirmed that  
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both miR-194 and miR-b2122 were strongly expressed within human spinal motor neurons of 

control samples with little to no non-motor neuronal expression, suggesting that the 

downregulation of these two miRNAs is likely motor neuron specific (Fig. 4.3).   

 

4.4.3 MiR-b2122 regulates a reporter linked to either TARDBP, FUS, or RGNEF 3’UTR. 

 

 A reporter gene assay was used to examine the effect of miR-194 and miR-b2122 on the 

regulation of firefly luciferase protein when it contained the 3’UTR of either TARDBP, FUS, or 

RGNEF that we identified within the human spinal cord. MiR-b2122 significantly reduced firefly 

protein activity when it contained either the TARDBP, FUS, RGNEF-short, or RGNEF-long 

3’UTR, whereas miR-194 downregulated firefly protein activity only when it contained either 

the TARDBP or FUS 3’UTR, and had no effect when it contained the RGNEF-long 3’UTR (Fig. 

4.4A). MiR-194 did not contain an MRE within the RGNEF-short 3’UTR and thus the 

interaction between these two components was not examined. Further, to determine if miR-194 

and miR-b2122 could also alter luciferase mRNA levels, we performed RT-PCR analysis. The 

results in the RT-PCR analysis matched the downregulation seen by these two mRNAs in the 

luciferase reporter gene assay, indicating that the effect of these miRNAs involves regulation of 

the levels of mRNA species (Fig. 4.4B).  

 To study if miR-194 and miR-b2122 were regulating firefly luciferase by directly 

interacting with the 3’UTR, we mutated two nucleotides within the MRE sites of miR-194 and 

miR-b2122. Mutating the miR-b2122 MRE sites within either the TARDBP, FUS, RGNEF-short, 

or RGNEF-long 3’UTR significantly abolished the ability of miR-b2122 to reduce firefly 

luciferase activity. Similarly, mutating the miR-194 MRE sites within either TARDBP or FUS 

ablated miR-194 downregulation of luciferase activity (Fig. 4.5). These findings indicate that 
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Figure 4.1. A small group of miRNAs have MREs within the 3’UTRs of TARDBP, FUS, 

and RGNEF. (A) 3’RACE PCR identified the 3’UTRs of TARDBP, FUS and RGNEF that are 

expressed in the human spinal cord tissue within three different control samples. One isoform of 

both TARDBP and FUS were identified with a length of 1,398 and 150 bases, respectively. Two 

isoforms of RGNEF, which we have termed RGNEF-short (RGNEF-S) and RGNEF-long 

(RGNEF-L) 3’UTRs, were identified in all three subjects running at 177 and 981 bases, 

respectively. Bands in figures appear higher than actual 3’UTR size, as primers were designed 

upstream from stop codon. (B) Five miRNAs were identified to have binding sites within the 

TARDBP, FUS and RGNEF mRNA 3’UTRs. MiR-548d-3p in previous work has shown to have 

no dysregulation in sALS, and thus, four miRNAs (outlined in the black box) went under further 

study. (C) Schematic of all TARDBP, FUS and RGNEF 3’UTRs identified within human spinal 

cord, and location of MREs for miRNA candidates. 
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Figure 4.2. Differential expression of candidate miRNAs within the spinal cord of sALS 

patients. Candidate miRNA expression was examined in ventral spinal cord tissue of sALS 

patients (n=8) and control subjects (n=5). MiR-194 and miR-b2122 were significantly 

downregulated in sALS patients, while miR-sb659 showed no difference and miR-548x was not 

expressed in the spinal cord tissue. Data was expressed as log10 (fold-change) ± SEM, and 

significance was determined using Students t-test (**=p<0.01, *p<0.05, NS=p>0.05).  
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Figure 4.3. MiR-194 and miR-b2122 are expressed in human spinal motor neurons. Ventral 

lumbar human spinal cord of control tissue (n=1) was analyzed using FISH to determine the 

expression of miR-194 and miR-b2122 within motor neurons. Both miRNAs showed strong 

positive staining within motor neurons. MiR-124 and miR-548c were used as positive and 

negative controls, respectively. Scale bar represents 10µm.   
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Figure 4.4. MiR-b2122 reduces firefly luciferase activity when it contains either the 

TARDBP, FUS or RGNEF 3’UTR. HEK293T cells were transfected with a pmirGLO plasmid 

containing the 3’UTR of one of the RNA-binding proteins of interest either with or without miR-

194 or miR-b2122. PmirGLO plasmid without any 3’UTRs were also transfected with or without 

miRNAs of interest to determine the miRNAs effect on the plasmid itself. (A) Reporter gene 

assay revealed miR-b2122 reduced firefly activity when it contained either the TARDBP, FUS, 

or RGNEF-short/long 3’UTR, whereas miR-194 downregulated firefly levels when it contained 

either TARDBP, FUS, but not RGNEF-long. MiR-194 has no MRE in RGNEF-short, and thus, 

the interaction between the two was not examined. (B) RT-qPCR results showed similar 

suppression of mRNA levels as observed in the reporter gene assay. Let-7a was used as a 

negative control for these experiments. Firefly was normalized to renilla luciferase, and then 

further normalized to account for the effect of each miRNA on the pmirGLO vector to determine 

the exact effect that each miRNA has on each 3’UTR. Each miRNA was compared to its own 

individual control based on the normalization of the data. Data is expressed as sample mean 

(n=3) ± SEM, and significance was determined using a Student’s t-test (***=p<0.001, 

**=p<0.01, *=p<0.05, NS=p>0.05). 
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Figure 4.5. MiR-b2122 and miR-194 directly interact with their 3’UTR targets.  HEK293T 

cells were co-transfected with either the pmirGLO plasmid containing the wild-type 3’UTR, or 

the 3’UTR mutant, and either with or without the miRNA of interest. Mutations within the MRE 

of miR-b2122 in the TARDBP, FUS, and RGNEF 3’UTRs, and the MRE of miR-194 in the 

TARDBP and FUS 3’UTRs abolished each miRNAs ability to reduce firefly activity. Firefly was 

normalized to renilla, and then further normalized to the effect of each miRNA on the pmirGLO 

vector to determine the miRNAs exact effect on the 3’UTR. Data is expressed as sample mean 

(n=3) ± SEM, and significance was determined using a student’s t-test (***=p<0.001, 

**=p<0.01, *=p<0.05).   
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both miR-194 and miR-b2122 directly interact with their 3’UTR targets to regulate gene 

expression.  

 

4.4.4 MiR-b2122 regulates endogenous TDP-43, FUS and RGNEF within a human 

neuronal cell line. 

 

 Next, we decided to determine if miR-b2122 and miR-194 regulate the endogenous 

mRNA expression of TARDBP, FUS and RGNEF within a human neuronal-derived cell line – 

SH-SY5Y cells. SH-SY5Y cells express the TARDBP, FUS and RGNEF 3’UTR isoforms we 

identified with in the spinal cord. SH-SY5Y cells showed multiple bands in the TARDBP lane, 

but we were not able to confirm the top two bands through sequencing, only the 1398 b 3’UTR 

isoform identified in spinal cord, which also appears to be dominantly expressed in SH-SY5Y 

cells (Fig. 4.6A).  Also, endogenous expression of miR-b2122 and miR-194 in SH-SY5Y cells 

was confirmed through real-time PCR (Fig. 4.6B).   

Transfection of miR-b2122 lead to a significant downregulation in TARBDP, FUS and 

RGNEF mRNA levels. Further, co-transfection of miR-b2122 with its anti-miR abrogates the 

downregulation of these transcripts via miR-b2122. Transfection of the anti-miR of miR-b2122 

alone lead to an upregulation in mRNA levels of all three genes (Fig. 4.7A). The upregulation 

observed with the addition of the anti-miR, suggests that miR-b2122 does regulate these RNA-

binding proteins endogenously within this neuronal cell line. Let-7a was used as negative 

control, as we showed it has no effect on the endogenous mRNA levels of these three genes (Fig. 

4.8).  

 Further, we also transfected miR-194 and/or its anti-miR into SH-SY5Y cells. Similar to 

the reporter gene assays, miR-194 only reduced TARDBP and FUS endogenous mRNA levels 
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with no effect on RGNEF mRNA levels, which was abolished when co-transfecting miR-194 

with its anti-miR (Fig. 4.7B). Also, only adding the anti-miR of miR-194 caused a strong trend 

towards upregulation of TARDBP mRNA expression, but no change in the FUS transcript levels, 

suggesting miR-194 might play a role in regulating TARDBP gene expression within SH-SY5Y 

cells. Overall, these results suggest that miR-b2122 is the central regulator of TARDBP, FUS and 

RGNEF mRNA expression. 

 To determine whether the alteration in mRNA levels was associated with alterations in 

protein expression, we examined protein levels of TDP-43, FUS and RGNEF post-transfection of 

miR-b2122 (Fig. 4.9A). MiR-b2122 alone had no significant effect on the protein levels of TDP-

43 within the cell, but when the anti-miR alone was added, there was a strong trend towards 

upregulation of TDP-43. This upregulation was significantly different from when miR-b2122 

was transfected alone, suggesting that endogenous miR-b2122 is likely participating keeping 

TDP-43 protein at steady-state levels, but loss of this miRNA leads to an increase in TDP-43 

protein output (Fig. 4.9B). Transfection of miR-b2122 alone showed a strong trend towards the 

downregulation in FUS protein levels, which was abrogated when the anti-miR was co-

transfected with miR-b2122. The transfection of the anti-miR of miR-b2122 alone did lead to a 

significant upregulation of FUS protein levels, indicating miR-b2122 regulates protein synthesis 

of FUS endogenously (Fig. 4.9B). 

Interestingly, miR-b2122 had the reverse effect on the protein levels of RGNEF as 

compared to the changes observed at the mRNA level (Fig. 4.9B). Transfection of miR-b2122 

alone lead to increased RGNEF protein levels, which was reduced to the control levels when   
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Figure 4.6. 3’UTR isoforms of RNA-binding proteins, and miR-194 and miR-b2122 are 

expressed in SH-SY5Y cells. (A) 3’RACE PCR showing TARDBP, FUS and RGNEF 3’UTR 

isoforms expressed in SH-SY5Y cells. FUS and RGNEF isoforms match those expressed in 

human spinal cord. TARDBP showed multiple isoforms, but only the 1398bp isoform identified 

in spinal cord could be confirmed by sequencing. (B) Real-time PCR indicating the expression of 

miR-194 and miR-b2122 in SH-SY5Y cells (n=3).   
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Figure 4.7. MiR-b2122 regulates mRNA expression of TARDBP, FUS and RGNEF in a 

human-derived neuronal cell line. SH-SY5Y cells were transfected individually with miR-194 

or miR-b2122, or co-transfected with miR-194 or miR-b2122, and their anti-miRs. Transfection 

of let-7a was used as a negative control. (A) Transfection of miR-b2122 significantly 

downregulates the mRNA levels of TARDBP, FUS and RGNEF, while co-transfection of miR-

b2122 with its anti-miR led to a recovery in the mRNA levels. Transfection of the anti-miR 

alone led to increased mRNA expression of all three RNA-binding proteins (B) Transfection of 

miR-194 alone resulted in reduction of TARDBP and FUS, which was abolished when it was co-

transfected with its anti-miR. No effect was observed on RGNEF when miR-194 and/or its anti-

miR were transfected. Data was expressed as the mean (n=3) ± SEM, and significance was 

determined using a one-way ANOVA followed by a Tukey’s post-hoc. 

(***=p<0.001, **=p<0.01 *=p<0.05).     
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Figure 4.8. Let-7a has no effect on mRNA levels of TARDBP, FUS, or RGNEF within SH-

SY5Y cells. Let-7a was transfected into SH-SY5Y cells to determine if it changed the basal 

mRNA levels of TARDBP, FUS or RGNEF, and was compared to a non-transfected control. The 

data indicated no significant change in the transcript levels of either TARDBP (p=0.64), FUS 

(p=0.51), or RGNEF (p=0.74) between the two conditions. Data is expressed as sample mean 

(n=3) ± SEM, and significance was determined using a Student’s t-test.  
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Figure 4.9. MiR-b2122 alters protein levels of TDP-43, FUS and RGNEF within a human-

derived neuronal cell line. Changes in protein levels of TDP-43, FUS and RGNEF were studied 

when SH-SY5Y cells were transfected with either miR-b2122, miR-b2122 plus its anti-miR, or 

the anti-miR alone. Transfection of let-7a was used as a negative control. (A) Western blot 

showing expression of TDP-43, FUS, RGNEF, and GAPDH (B) Quantification of Western blots 

for TDP-43, FUS and RGNEF protein levels. TDP-43 and FUS show small reductions in protein 

levels when transfected with miR-b2122 alone, while their protein levels increased when the 

anti-miR is added. Differences in protein levels when miR-b2122 or the anti-miR are added 

alone are significantly different for both TDP-43 and FUS. RGNEF has increased and decreased 

protein levels when either miR-b2122 or its anti-miR are added alone, respectively, and these 

differences are significantly different from one another. Protein levels were normalized to 

GAPDH. Data was expressed as the mean (n=3) ± SEM, and significance was determined using 

a one-way ANOVA followed by a Tukey’s post-hoc (**=p<0.01, *=p<0.05).      
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miR-b2122 was co-transfected with its anti-miR. Transfection of the anti-miR alone led to 

reduced levels of RGNEF compared with let-7a. While these results were not significantly 

different from the negative control, there was a significant difference in RGNEF protein levels 

between when either miR-b2122 or the anti-miR were transfected alone. All data was compared 

to let-7a (negative control), as we showed it, has no effect on the protein levels of these three 

genes (Fig. 4.10). Overall, these results indicate that miR-b2122 can regulate FUS protein 

expression, while having minor changes on TDP-43 and RGNEF protein levels. 

4.4.5 An ALS-associated mutation in FUS 3’UTR is located in miR-b2122 MRE. 

Previously, mutations within the FUS 3’UTR were found within ALS patients, all of 

which lead to the overexpression and increased cytoplasmic mislocalization of FUS protein 

(Sabatelli et al., 2013). Interestingly, one of these mutations (*c.108C>T) is located in the +2 

position of the MRE for miR-b2122 (Fig. 4.11A), suggesting this would critically affect the 

ability of miR-b2122 to bind and reduce FUS expression. We sought to investigate whether this 

mutation would affect the ability to regulate firefly expression when the firefly gene was linked 

to the FUS 3’UTR that contained the *c.108C>T mutation. Indeed, this mutation significantly 

abolished the ability for miR-b2122 to reduce the firefly expression, compared to when the 

firefly gene contained the wild-type FUS 3’UTR (Fig. 4.11B). This result implies that FUS 

would be overexpressed without proper regulation of miR-b2122 via direct interaction with the 

3’UTR. 

Based on the previous result, we decided to examine if sALS cases that showed a 

downregulation in miR-b2122 would have an increase in FUS expression. In sALS cases that 

showed a downregulation of miR-b2122 there was a 3-fold increase in FUS protein expression 
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(Fig. 4.11C and D), suggesting a relationship between reduced levels of miR-b2122 and increase 

FUS expression. 

4.5 Discussion  

 In this study, we identified miR-b2122 to be a central regulator of ALS-linked RNA-

binding proteins TDP-43, FUS and RGNEF. We showed that miR-b2122 was significantly 

downregulated within the spinal cord tissue of sALS patients, and specifically expressed within 

motor neurons. MiR-194, which was also found be downregulated in sALS patients, regulates 

the mRNA expression of TARDBP and FUS, but not RGNEF. Together, our data introduces a 

novel miRNA (miR-b2122) to sALS pathology and indicates that the downregulation of this 

miRNA in sALS could affect a regulatory network of RNA-binding proteins within motor 

neurons, contributing to the disease pathology.  

The 3’UTRs for TARDBP, FUS, and RGNEF identified in spinal cord match those that 

have been previously described; however, for TARDBP we were only able to describe one 

3’UTR isoform, while previous authors have described multiple. The TARDBP 3’UTR isoform 

we described matches the pA1 transcript isoform (Ayala et al., 2011). Whether this is the only 

isoform expressed in spinal cord, or a limitation of our technique, the pA1 isoform is known to 

be the dominant transcript expressed in steady-state conditions, and has been shown to be the 

main isoform for TDP-43 protein synthesis (Avendano-Vazquez et al., 2012; Bembich et al., 

2014; Koyama et al., 2016). Further, it has been hypothesized that the pA1 isoform is the one 

overexpressed in ALS (Koyama et al., 2016), providing another reason why we decided to focus 

on the pA1 isoform and its interactions with miR-194 and miR-b2122.  MiR-194 is a well-known 

tumor suppressor, and reduced levels of miR-194 has been linked to both cancer and diabetes 
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Figure 4.10. Let-7a has no effect on protein levels of TDP-43, FUS, or RGNEF within SH-

SY5Y cells. Let-7a was transfected into SH-SY5Y cells to determine if it changed the basal 

protein levels of TDP-43, FUS or RGNEF, and was compared to a non-transfected control. The 

data indicated no significant change in the protein levels of either TDP-43 (p=0.71), FUS 

(p=0.28), or RGNEF (p=0.87) between the two conditions. Data is expressed as sample mean 

(n=3) ± SEM, and significance was determined using a Student’s t-test.  
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Figure 4.11. ALS-associated mutation within FUS 3’UTR inhibits the ability for miR-b2122 

to reduce firefly activity. HEK293T cells were co-transfected with either the pmirGLO plasmid 

containing the wild-type FUS 3’UTR, or the mutated form, and either with or without miR-

b2122. (A) ALS-associated mutation (*c.108 C>T) affects the +2 binding site of the miR-b2122 

MRE. (B) ALS-associated mutation within the FUS 3’UTR inhibits miR-b2122 from reducing 

firefly activity. Firefly expression was normalized to renilla expression, and then further 

normalized to account for the effect miR-b2122 on the pmirGLO vector itself to determine the 

miRNAs exact effect on the 3’UTR (n=3). (C) Western blot of FUS protein expression in the 

spinal cord of 7 sALS cases versus 5 control subjects. (D) Quantification of western blot. Data is 

expressed as sample mean ± SEM, and significance was determined using a Student’s t-test 

(**=p<0.01; *=p<0.05).  
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(Bao et al., 2015; Dong et al., 2011; Latouche et al., 2016; Song et al., 2012; Zhang et al., 2016; 

Zhou et al., 2016). Interestingly, the dysfunctional pathways identified within both of these 

diseases relate to those described in ALS (Bao et al., 2015; Latouche et al., 2016). For example, 

miR-194 expression has been shown to be switched off by NF-kB - a proinflammatory 

transcription factor that has been associated with ALS progression via increase activation in 

astrocytes and microglia (Bao et al., 2015; Frakes et al., 2014; Swarup et al., 2011). Further, 

overexpression of TDP-43 has been related to an increase in NF-kB activation (Swarup et al., 

2011). In this study, reduction of miR-194 leads to increased levels of TARDBP mRNA, and 

thus, through its regulation of TDP-43, miR-194 may be part of an inflammatory regulatory 

network that contributes to ALS progression.   

Since miR-b2122 was a novel miRNA identified by our group previously [Ishtiaq et al., 

2014], this is the first pathway in which this miRNA has been implicated. Our data would 

suggest that the downregulation of miR-b2122 would lead to a significant increase in TARDBP, 

FUS and RGNEF mRNA levels in sALS patients. This is consistent with the increase of 

TARDBP mRNA and protein levels observed in sALS patients (Swarup et al., 2011). Further, 

rodent models overexpressing wild-type human FUS and TDP-43 do develop age-related motor 

deficiencies and cytoplasmic protein aggregation in motor neurons similar to that seen in ALS 

cases (Janssens et al., 2013; Mitchell et al., 2013; Wils et al., 2010; Xu et al., 2010). However, 

the latter models look at the overexpression of a single gene, when it is the dysregulation of both 

expression and localization of multiple RNA-binding proteins which contributes to the disease 

progression. This makes miR-b2122 an intriguing miRNA, as its downregulation in sALS would 

contribute to the overexpression and dysregulation of multiple RNA-binding proteins involved in 

the pathogenesis of ALS.  
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 While TDP-43, FUS and RGNEF protein levels showed discrete changes when compared 

to the negative control, there were significant changes between when miR-b2122 and its anti-

miR were transfected alone, suggesting that either overexpression, or reduced activity of miR-

b2122, does in fact alter protein levels. These noticeable changes to the TDP-43, FUS and 

RGNEF protein levels when miR-b2122 levels are increased or decreased, suggests that chronic 

changes to miR-b2122 activity might have more drastic effects on protein levels within the cell 

over-time.  

 Interestingly, RGNEF protein levels went in the opposite direction of the mRNA levels 

within our study. While rare to see inverse correlations between mRNA and protein levels of a 

single gene, it is not unprecedented (Marinova et al., 2015; Xiu et al., 2014). This could imply 

that when miR-b2122 binds to the RGNEF 3’UTR, its role is to maintain low levels of mRNA 

while keeping the transcript in a translationally stable state, and thus, loss of its binding stabilizes 

the mRNA molecule, but leaves the transcript in a translationally silent state. The latter 

phenomenon is a common one seen within stress and transport granules within neurons 

(Anderson and Kedersha, 2008; Buchan, 2014; Panas et al., 2016). However, this would suggest 

that there is competition between miR-b2122 and another miRNA, or RNA-binding protein at 

the RGNEF 3’UTR which would need further investigation.   

 We sought to determine whether an ALS mutation located in the MRE of miR-b2122 

within the FUS 3’UTR affected the ability of miR-b2122 to reduce gene expression. Clinically, 

the patient identified with this FUS 3’UTR mutation (*c.108C>T) had limb onset ALS with 

severe limb weakness and respiratory difficulties. Previously, fibroblast cells cultured from the 

ALS patient with this mutation showed an overexpression of FUS mRNA and protein and an 

increase in cytoplasmic localization – two factors believed to contribute to ALS development 
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(Sabatelli et al., 2013). Despite identifying these phenotypes there was no clear mechanism to 

why this may happen. In this study, we showed that loss of direct interaction between miR-

b2122 and the FUS 3’UTR may play a critical role in FUS overexpression. Further, we were able 

to show that reduce levels of miR-b2122 in sALS spinal cord seems to be related to an increase 

in FUS protein expression. In addition, reduction of the levels of miR-b2122 in a neuronal cell 

line (SH-SY5Y) using anti-b2122 hindered the ability for miR-b2122 to reduce endogenous FUS 

leading to an overall increase in both mRNA and protein levels.  

In this study, we have not only provided an explanation of the significance for reduced 

levels of miR-b2122 in sALS, but provide a molecular link showing the importance of the 

interaction between miR-b2122 and the FUS 3’UTR. Thus, dysregulation of miR-b2122 either 

through reduce levels or mutations within the MRE could be a major contributing factor to FUS 

dysregulation and pathogenesis in ALS. In a different study, a group examined another ALS-

related mutation within the FUS 3’UTR, which lead to an overexpression of FUS. This aberrant 

expression of FUS was attributed to the loss of its interaction with miR-141/200a due to the 

3’UTR mutation (Dini Modigliani et al., 2014). These findings emphasize the importance of 

examining mutations outside of the coding regions, as alterations within the 3’UTR can have 

drastic effects on both protein expression and localization (Berkovits and Mayr, 2015; Mayr, 

2016).  

 While it is interesting to note the relationship between the dysregulation of RNA-binding 

proteins and miRNAs, it is still unclear how miRNAs, like miR-b2122 and miR-194, become 

reduced in sALS. However, there is strong evidence suggesting that the miRNA biogenesis 

pathway is disrupted in sALS, as both TDP-43 and FUS are crucial parts of miRNA production 

(Kawahara and Mieda-Sato, 2012; Morlando et al., 2012).  More specifically, it appears that the 
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dysregulation in miRNA biogenesis happens at the level of DICER, as it is the mature miRNA 

form and not the pre-miRNA form showing a global downregulation in sALS (Emde et al., 

2015). Also, ALS-linked mutations in TDP-43 and FUS affects miRNA biogenesis specifically 

at the level DICER (Emde et al., 2015). Thus, it is plausible that TDP-43 and/or FUS could 

regulate the biogenesis of miR-b2122 and miR-194, suggesting a negative feedback loop 

between RNA-binding proteins and miRNAs exists and it is the loss of this negative feedback 

loop that drives, at least in part, sALS disease progression.  

 It has been previously shown that the pathogenesis of sALS patients likely does not rely 

on the dysregulation of a single RNA-binding protein, but a combination of TDP-43, FUS and 

RGNEF, as they co-aggregate with each other in motor neurons of sALS patients (Keller et al., 

2012).  In the current study, we have identified a single miRNA that regulates all three of these 

RNA-binding proteins. The observation that miR-b2122 is downregulated in sALS suggests that 

this miRNA may play an essential role in the pathogenic mechanism of sALS. As we further 

look at those miRNAs related to ALS, we start developing an understanding of a miRNA 

network critical for motor neuron function which we have previously termed MotomiRs (Hawley 

et al., 2017). Further, it would be intriguing to know whether these miRNAs play a role in 

closely related neurodegenerative diseases, including primary lateral sclerosis (PLS), spinal 

muscular atrophy (SMA), or frontotemporal dementia (FTD). Based on the current study, miR-

b2122 should be added to the already established list of MotomiRs, as it regulates a network of 

RNA-binding proteins essential for motor neuron function, and its regulation could potentially 

contribute to motor neuron degeneration in ALS. 
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TDP-43 nuclear localization 

 
Zachary C. E. Hawley, Danae Campos-Melo and Michael J. Strong  

 

 

A version of this chapter was published in the Journal of Molecular Biology 

 

 
Hawley, ZCE., Campos-Melo, D., Strong MJ. Evidence of a negative feedback network between 

TDP-43 and miRNAs dependent on TDP-43 nuclear localization. J. Mol. Biol. Accepted (2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



196 

 

5.1 Abstract  

 
 TAR DNA-binding protein 43 (TDP-43) and Fused in sarcoma (FUS) are DNA/RNA-

binding proteins that are integral to RNA processing. Among these functions, both play a critical 

role in microRNA (miRNA) biogenesis through interactions with either the DROSHA and/or 

DICER complexes. It has been previously shown that there is a global reduction in miRNA 

levels within the spinal cord and spinal motor neurons of amyotrophic lateral sclerosis (ALS) 

patients. The most common pathological feature of TDP-43 and FUS in ALS is a re-distribution 

from the nucleus to the cytoplasm in motor neurons where they form cytoplasmic inclusions. 

Among miRNAs dysregulated in ALS, several are known to regulate TDP-43 and FUS 

expression. In this study, we demonstrate that TDP-43 is in a regulatory negative feedback 

network with two miRNAs—miR-27b-3p and miR-181c-5p—that is dependent on its nuclear 

localization within HEK293T cells; however, we are unable to show FUS is in an similar 

network with the miRNAs it regulates. Further, we show that cellular stress which induces a 

redistribution of TDP-43 from the nucleus to the cytoplasm correlates with the reduced 

production of miR-27b-3p and miR-181c-5p. This suggests that reduced nuclear TDP-43 disrupts 

a negative feedback network between itself and miRNAs. These findings provide a further 

understanding of altered miRNA biogenesis as a key pathogenic process in ALS.   
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5.2 Introduction 

 
 TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS) are primarily 

nuclear DNA/RNA-binding proteins that are ubiquitously expressed in every cell, and both share 

a diverse set of functions which include: mRNA transcription, mRNA splicing, mRNA transport, 

microRNA (miRNA) and long non-coding RNA (lncRNA) processing, mRNA translation, and 

stress granule formation (Ratti and Buratti, 2016; Svetoni et al., 2016). Several of these functions 

have been identified as dysregulated within motor neurons of patients with amyotrophic lateral 

sclerosis (ALS) where both TDP-43 and FUS have been shown to re-locate from the nucleus to 

the cytoplasm resulting in the subsequent formation of pathological aggregates. In particular, 

TDP-43 pathology occurs in 97% of all ALS cases, while FUS pathology is only observed in 1% 

of cases (Campos-Melo et al., 2013; Fratta et al., 2018; Ling et al., 2013; Weskamp and 

Barmada, 2018).   

 Cellular stress can induce the re-localization of TDP-43 and FUS from the nucleus to the 

cytoplasm, where they can partition into stress granule structures (Baradaran-Heravi et al., 2020; 

Khalfallah et al., 2018; McDonald et al., 2011; Moisse et al., 2009). Accumulation of proteins 

with low-complexity domains (LCD’s), like TDP-43 and FUS, have been shown to phase 

separate into liquid droplets. However, if left to accumulate, LCD-containing proteins can form 

irreversible insoluble fibrils which is believed to cause the pathology of these proteins in ALS 

motor neurons (Kato et al., 2012; Molliex et al., 2015; Murakami et al., 2015). Evidence that 

stress granules may act as a seed for pathological cytoplasmic aggregates in ALS is that TIA-1—

an essential stress granule component—co-localizes with TDP-43 aggregates in ALS motor 

neurons (Liu-Yesucevitz et al., 2010; Volkening et al., 2009). Further, increased mRNA and 

protein levels of TDP-43 have been observed within both the spinal cord and motor neurons of 
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patients with ALS (Koyama et al., 2016; Swarup et al., 2011), suggesting that TDP-43 levels are 

being aberrantly regulated which may contribute to its accumulation into cytoplasmic aggregates. 

Further, overexpression of FUS in in vitro or in vivo models is associated with cytoplasmic 

inclusion formation similar to what is observed in ALS motor neurons (Mitchell et al., 2013; 

Patel et al., 2015). Interestingly, both TDP-43 and FUS have been observed to co-aggregate with 

each other in ALS motor neurons (Keller et al., 2012).   

 Our lab, and others, have shown that a large pool of miRNAs—small RNA molecules 

(20-22 nucleotides) that are generally responsible for post-transcriptional gene suppression 

(Bartel, 2018)—have reduced levels within ALS spinal cord and motor neurons (Campos-Melo 

et al., 2013; Emde et al., 2015). Further, we have shown that ALS-linked miRNAs suppress 

TDP-43 and FUS expression suggesting that loss of miRNA function could result in increased 

levels of TDP-43 and FUS in ALS motor neurons (Hawley et al., 2017). Given the observation 

that TDP-43 and FUS are involved in the miRNA biogenesis pathway through interactions with 

either DROSHA and/or DICER complexes (Kawahara and Mieda-Sato, 2012; Morlando et al., 

2012),  we postulated that TDP-43 and FUS regulates the production of miRNAs that in turn will 

suppress their expression. We further hypothesize that TDP-43 and FUS are in a negative 

feedback loop with a specific group of miRNAs and that this function is dependent on their 

nuclear localization. FUS has been shown to be in a negative feedback loop with ALS-linked 

miRNAs (miR-141/200a) previously (Dini Modigliani et al., 2014), and therefore, we sought to 

determine whether there are other miRNAs involved with this negative feedback loop.        

In this chapter, we explore the negative feedback network between TDP-43 and two 

ALS-related miRNAs, miR-27b-3p and miR-181c-5p, in HEK293T cells, and we show that this 

regulation is dependent on TDP-43 nuclear localization. Further, we show that TDP-43 regulates 
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the processing of these two miRNAs at different levels within the miRNA biogenesis pathway. 

In contrast, while we were able to determine two miRNAs (miR-2110 and miR-6804-5p) with 

MREs in the FUS 3’UTR whose expression was promoted by FUS, we were unable to show 

these miRNAs were in a negative feedback loop. 

5.3 Methods and Materials 

 
5.3.1 Plasmid Constructs  

 

SiRNA resistant plasmids (siRES) were either pC32-FLAG-TDP-43 wild-type or pC32-

FLAG-TDP-43 ∆NLS and were resistant to an siRNA that targets endogenous TARDBP (siTDP 

#2) (Deshaies et al., 2018).  

TARDBP and FUS  3’UTRs that are expressed in human spinal cord were linked to the 

firefly luciferase gene within the pmirGLO plasmid (Promega Cat. # E1330) as described 

previously (Hawley et al., 2017). Mutations were put into the +2 and +3 position of the miRNA 

recognition element (MRE) of either miR-27b-3p or miR-181c-5p of the TARDBP 3’UTR using 

the QuikChange Site-Directed Mutagenesis Kit (Agilent Cat. # 210219). Cloned sequences and 

mutants were confirmed using Sanger sequencing.  

5.3.2 Cell culture and transfection 

 

 HEK293T cells were maintained in Dulbecco’s Modified Eagles Media (DMEM; Gibco 

Cat. # 11965084) which contained 10% fetal bovine serum (FBS) at 37oC with 5% CO2. Sorbitol 

was added to cell media at a concentration of 400 mM to induce an osmotic stress. Media with 

sorbitol was then added to HEK293T cells with an 80% confluency. The osmotic stress was 

maintained for five hours prior to experimentation. 

HEK293T cells were seeded into a 6-well plate (150,000 cells/well) and incubated for 48 

hours. Cells were then either transfected with 100 nM of SCR (Sigma-Aldrich Cat. # SIC001) or 
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a custom siRNA targeting endogenous TARDBP (siTDP #2; Dharmacon) but not exogenous 

TARDBP cloned into siRNA resistant (siRES) plasmids as previously described (Deshaies et al., 

2018). 24 hours post-transfection of siTDP #2, cells were transfected again with 2.5μg of either 

pcDNA 3.1 (negative control), pC32-FLAG-TDP-43 wild-type or pC32-FLAG-TDP-43 ∆NLS 

siRES plasmids. Mature miRNA levels were examined 24 hours post-transfection of plasmids. 

Transfections were done using the Lipofectamine 2000 Reagent (Invitrogen Cat. # 11668019) 

protocol following the manufacturer’s instructions. 

 

5.3.3 Microarray analysis  

 

 HEK293T cells were seeded into a 6-well plate (150,000 cells/well) and incubated for 48 

hours. Cells were either transfected with an 100nM of siRNA SMARTpool targeting TARDBP 

(siTDP #1; Dharmacon Cat. # L-012394-00-0005), siRNA SMARTpool targeting FUS (siFUS; 

Dharmacon Cat. # L-009497-00-0005), or a scramble negative control (SCR; Sigma-Aldrich Cat. 

# SIC001) at a 60% confluency using the Lipofectamine 2000 Reagent (Invitrogen Cat. # 

11668019) protocol. Total RNA extraction was then performed 48 hours post-transfection using 

the RNeasy Mini Kit (Qiagen Cat. # 74106). RNA samples were tested for integrity using 

bioanalyzer analysis. Total RNA extracts were sent to the Center of Applied Genomics – TCAG 

Facilities at the University of Toronto for microarray analysis using the GeneChip miRNA 4.0 

Array (Applied Biosystems Cat. # 902412). Quality control and experimental data from the 

microarray was analyzed using the Transcriptome Analysis Console Software (ThermoFisher 

Scientific). 

 

5.3.4 Real-time PCR 
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 Samples from HEK293T cells underwent a small RNA extraction using the mirVana 

miRNA Isolation Kit (Invitrogen Cat. # AM1560) to obtain RNA molecules <200nts which 

allowed us to separate pri-miRNAs (>200nts) from pre-miRNAs (<200nts). Yield and purity of 

small RNAs was determined using spectrophotometry. When measuring mature miRNA levels, 

small RNA extracts went under cDNA synthesis using the TaqMan Advanced cDNA Synthesis 

Kit (Applied Biosystems Cat. # A28007), but when measuring the levels of pre-miRNAs, small 

RNA extracts went under cDNA synthesis using the SuperScript IV VILO Master Mix with 

DNease Enzyme (Invitrogen Cat. # 11766050) protocol. All cDNA synthesis protocols were 

done according to the manufacturers’ instructions. Real-time PCR for mature miRNAs and pre-

miRNAs was done either using the TaqMan Advanced miRNA Assay (Applied Biosystems Cat. 

# A25576) or the TaqMan Pre-miRNA Assay (Applied Biosystems Cat. # 4331182), 

respectively, and the Fast TaqMan Advanced Master Mix (Applied Biosystems Cat. # 4444965) 

in accordance to the manufactures protocol. Since microarray was normalized to an exogenous 

control, confirmation of changes to miRNA levels was done using an endogenous control (miR-

1296-5p) which showed no change in expression following TDP-43 knockdown. Candidate 

miRNA expression for the rest of the experiments was normalized to an RNA spike-in (cel-miR-

39b-5p). All real-time PCR data was quantified according to the 2^-∆∆CT method.    

 

5.3.5 Reverse transcriptase relative quantitative PCR (RT-qPCR) 

 

 HEK293T cells were either transfected with a SCR (Sigma-Aldrich Cat. # SIC001), miR-

27b-3p, miR-181c-5p, miR-2110 or miR-6804-5p human miRNA mimics (Invitrogen Cat. # 

4464066) to measure changes to either endogenous TARDBP or FUS mRNA levels, or cells were 

transfected with either SCR (Sigma-Aldrich Cat. # SIC001) or siTDP #1 (Dharmacon Cat. # L-

012394-00-0005) to measure changes in pri-miRNA levels using the Lipofectamine 2000 
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Reagent (Invitrogen Cat. # 11668019) protocol. Total RNA extraction using the RNeasy Mini 

Kit (Qiagen Cat. # 74106) was performed 48 hours post-transfection. Yield and purity of RNA 

was determined using spectrophotometry. RNA extracts went under cDNA synthesis using the 

SuperScript II Reverse Transcriptase (Invitrogen Cat. # 18064014) in accordance with the 

manufactures instructions which was followed by quantitative PCR using the Platinum Taq DNA 

Polymerase (Invitrogen Cat. # 10966018) protocol for amplification via primers outlined in 

Table 5.1. Expression levels were normalized to 18S rRNA levels prior to comparison.    

 

5.3.6 Luciferase assay 

 

 HEK293T cells were co-transfected with either SCR (Sigma-Aldrich Cat. # SIC001), or 

human miRNA mimics (miR-27b-3p or miR-181c-5p; Invitrogen Cat. # 4464066) and either an 

empty pmirGLO plasmid or a pmirGLO plasmid containing the 3’UTR of TARDBP using the 

Lipofectamine 2000 Reagent (Invitrogen Cat. # 11668019) protocol. Luciferase activity was 

measured 24 hours post-transfection using the Dual-GLO Luciferase Assay System (Promega 

Cat. # E2920). Firefly luciferase levels were normalized to renilla luciferase levels, and data was 

further normalized to account for the effect the miRNAs have on the plasmid itself prior to 

comparison as previously described (Campos-Melo et al., 2014).  

 

5.3.7 Western blot 

 

 All protein extractions were done from HEK293T cells using the NP40 lysis buffer with 

proteinase inhibitors followed by sonication. Protein lysates were resuspended in loading buffer 

containing 5% β-mercaptoethanol and denatured at 90oC for 5 minutes. Samples ran on an 10% 

SDS-page gel and then were transferred onto a nitrocellulose membrane. Blots were probed with 

either rabbit anti-TDP-43 (1:5000; Proteintech Cat. # 10782-2-AP), rabbit anti-FUS (1:5000;  
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Table 5.1. Primer Design for RT-qPCR and site-directed mutagenesis assays. 

Primer Name Sequence 

pri-miR-27b 

forward 

5’ AGGGATTACCACGCAACCACGACCTTG 3’ 

pri-miR-27b 

reverse 

5’ CCTTCTCTTCAGGTGCAGAACTTAG 3’ 

pri-miR-181c 

forward 

5’ GGTTTGGGGGAACATTCAACCTGTCG 3’ 

pri-miR-181c 

reverse 

5’ GAATGTTGATTGTGACCTCGGCTGTGG 3’ 

miR-27b 

mutant forward 

5’ CCCTTTGTCAACTGCTGTGTTTGCTGTATGGTGTGTGTTC 3’ 

miR-27b 

mutant reverse 

5’ GAACACACACCATACAGCAAACACAGCAGTTGACAAAGGG 3’ 

miR-181c 

mutant forward 

5’ GATAACCCACATTAGATGAATCCGTTAAGTGAAATGATACTTG 3’ 

miR-181c 

mutant reverse 

5’CAAGTATCATTTCACTTAACGGATTCATCTAATGTGGGTTATC 3’ 
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Proteintech Cat. # 11570-1-AP), mouse anti-FLAG (1:2500; Cedarlane Cat. # CLANT146-2), 

rabbit anti-DROSHA (1:1000; abcam Cat. # ab12286), rabbit anti-DCGR8 (1:1000; abcam Cat. 

# ab191875), mouse anti-XPO5 (1:1000; abcam Cat. # ab57491), mouse anti-DICER (1:1000; 

abcam Cat. # ab14601), mouse anti-AGO2 (1:1000; abcam Cat. # ab57113), rabbit anti-TRBP 

(1:1000; Proteintech Cat. # 15753-1-AP), or rabbit anti-GAPDH (1:5000; abcam Cat. # ab9485) 

and later with an HRP secondary antibody (goat anti-mouse 1:3000; Biorad Cat. # STAR207P, 

or goat anti-rabbit 1:5000; Invitrogen Cat. #  65-6120). Data was quantified using densitometry 

measured by ImageJ software. Relative protein levels were normalized to GAPDH expression 

prior to comparison.  

 

5.3.8 Fluorescent in situ hybridization (FISH) 

  

 Neuropathologically intact human spinal cord tissue was used to examine whether 

candidate miRNAs were expressed in human spinal motor neurons. Tissue was cut into 7μm 

sections. FISH was done as previously described (Hawley et al., 2019). MiRCURY LNA 

miRNA Detection Probes that targeted miRNA candidates contained 5’ and 3’ DIG labels 

(Qiagen Cat. # 339111), which were further targeted by an HRP secondary antibody (Sigma-

Aldrich Ca. # 11633716001) and a Tyramide Signal Amplification tagged with a Cy3 

fluorophore (PerkinElmer Cat. # NEL744001KT). Spinal cord samples were examined for 

positive expression of candidate miRNAs using the Leica TSC SP8 confocal microscope. 

 

5.3.9 Immunocytochemistry  

 

 Cells were fixed using 4% paraformaldehyde (PFA) and blocked with 8% Bovine Serum 

Albumin (BSA). Proteins of interest were targeted by either rabbit anti-TDP-43 (1:250; 

Proteintech Cat. # 10782-2-AP), goat anti-TIA-1 (1:100; Santa Cruz Cat. # sc-166247), or rabbit 
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anti-FLAG (1:100; abcam Cat. # ab49763) primary antibodies, which were targeted by Alexa 

488 goat anti-rabbit, Alexa 555 donkey anti-goat, and Alexa 488 goat anti-mouse, respectively, 

secondary antibodies (1:200; Life Technologies Cat. # A32721, A21432, and A32721, 

respectively). Samples were imaged using the Leica TSC SP8 confocal microscope.   

 

5.3.10 Fractionation 

 

 Nuclear and cytosolic protein and RNA fractionations was performed using the PARIS 

kit (Invitrogen Cat. # AM1921) in accordance to the manufacturer’s instructions. 100 U/ml of 

SUPERase IN RNase Inhibitor (Invitrogen Cat. # AM2694) was added to the cell fractionation 

buffer and cell disruption buffer within the PARIS kit to prevent RNA degradation.  

 

5.3.11 Statistics  

 
 Significance was determined either using a Students t-test when comparing two 

conditions, or one-way ANOVA followed by a Tukey’s post-hoc when comparing multiple 

conditions. Data was considered significant if p<0.05. 

5.4 Results  

 

5.4.1 Knockdown of either TDP-43 or FUS alters small RNA profile in HEK293T cells 

 

 Knockdown of either TDP-43 or FUS in HEK293T cells was accomplished using siRNA 

pools targeting either TARDBP (siTDP #1) or FUS (siFUS) mRNA, respectively (Fig. 5.1A & 

5.1E). MiRNA expression was then analyzed by microarray. The results showed that more than 

370 and 300 small RNAs (scaRNAs, snoRNAs, and miRNAs) were significantly dysregulated 

following knockdown of either TDP-43 or FUS, respectively, most of which were miRNAs (Fig. 

5.1B & 5.1F; list of small RNAs can be found in Appendix A). Interestingly, several miRNAs 

that were downregulated following knockdown of TDP-43 also contained a miRNA recognition 
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element (MRE) within the 3’untranslated region (UTR) of TARDBP (Fig. 5.1C) according to 

miRanda software. Further, we confirm reduction of miR-141-3p and miR-200a-3p following 

knockdown of FUS, but also identified two other miRNAs (miR-2110 and miR-6804-5p) 

downregulated with MREs in the FUS 3’UTR (Fig. 5.1G) according to miRanda software. 

However, we could not identify any upregulated miRNAs that had MREs in the TARDBP or 

FUS 3’UTRs. We selected five miRNA candidates with MREs in the TARDBP 3’UTR that had 

the greatest reduced fold-change following knockdown of TDP-43, and confirmed with real-time 

PCR that four of the five selected miRNAs (miR-27b-3p, miR-30a-5p, miR-181c-5p and miR-

425-3p) were significantly downregulated after knockdown of TDP-43, while miR-1260b 

showed a non-significant reduction (Fig. 5.1D).   

Since miR-141-3p and miR-200a-3p have already been shown to be in a negative 

feedback loop with FUS which is dependent on FUS nuclear localization (Dini Modigliani et al., 

2014), we decided to look at miR-2110 and miR-6804-5p to see if we could expand on this 

network. We confirmed reduced levels of miR-2110 and miR-6804-5p following knockdown of 

FUS via real-time PCR (Fig. 5.1H).  

In previous work, we had shown that out of the 4 miRNA candidates that we identified 

for TDP-43, miR-27b-3p, miR-181c-5p and miR-425-3p, but not miR-30a-5p, were significantly 

reduced in ALS spinal cord (Campos-Melo et al., 2013). Further, TargetScan 7.2 showed that 

only miR-27b-3p and miR-181c-5p had conserved MREs in the TARDBP 3’UTR giving them a 

high probability that they would affect TDP-43 expression, and therefore, we further examined 

these two miRNAs. However, miR-2110 and miR-6804-5p are not known to be affected in ALS 

and they do not have conserved MREs in the FUS 3’UTR. Despite this information we decided 

to further explore miR-2110 and miR-6804-5p to determine if there was a potential negative 
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feedback loop between these miRNAs and FUS. All four miRNA candidates (miR-27b-3p, miR-

181c-5p, miR-2110 and miR-6804-5p) were found to be expressed in human spinal motor 

neurons according to fluorescent in situ hybridization analysis (Fig. 5.2), and therefore, we 

decided to explore these miRNAs and their relation to either TDP-43 or FUS expression.   

5.4.2 MiR-27b-3p and miR-181c-5p reduce TDP-43 expression 

 

 To determine whether miRNA candidates regulated either TDP-43 or FUS expression, 

miRNA mimics of miR-27b-3p, miR-181c-5p, miR-2110 and miR-6804-5p were individually 

transfected into HEK293T cells. Transfection of either miR-27b-3p or miR-181c-5p led to a 

reduction of both endogenous TDP-43 protein and mRNA levels 48 hours after transfection (Fig. 

5.3A-C). However, transfection of either miR-2110 or miR-6804-5p had no effect on FUS 

protein/mRNA levels (Fig. 5.3E-G), indicating these two miRNAs were not in a negative 

feedback loop with FUS.  

Since miRNAs regulate gene expression generally by interacting with the 3’UTR of 

mRNA, we wanted to determine whether miR-27b-3p and miR-181c-5p regulated TARDBP 

expression via the 3’UTR. Reporter gene assays indicated that when TARDBP 3’UTR is linked 

to a firefly luciferase gene that this leads to a reduction in luciferase activity when in the 

presence of either exogenous miR-27b-3p or miR-181c-5p (Fig. 5.3D). Using the same assay, we 

examined whether miR-2110 or miR-6804-5p could regulate luciferase expression in the 

presence of the FUS 3’UTR. They had no effect (Fig.5.3H). Therefore, we decided to only 

continue to explore the relationship between TDP-43 and miR-27b-3p/miR-181c-5p.  

 Next, we determined whether miR-27b-3p and miR-181c-5p regulated TARDBP 

expression through direct interactions with its 3’UTR. Wild-type TARDBP 3’UTR, or TARDBP 

3’UTR containing mutations in the +2 and +3 position of either the miR-27b-3p or miR-181c-5p  
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Figure 5.1. Global change in miRNA expression following knockdown of either TDP-43 or 

FUS in HEK293T cells using siRNAs. (A)Western blot showing knockdown of TDP-43 via 

siRNA (siTDP #1). (B) Volcano plot indicating change in small RNA expression following 

knockdown of TDP-43 (n=3). Green and red represent downregulated and upregulated RNAs, 

respectively. (C) List of miRNAs that are downregulated following knockdown of TDP-43 and 

have binding sites within the TARDBP 3’UTR. (D) Real-time PCR was used to confirm the 

change in candidate miRNA expression following TDP-43 knockdown (n=3). (E) Western blot 

showing knockdown of FUS via siRNA (siFUS). (F) Volcano plot indicating change in global 

small RNA expression following knockdown of FUS (n=3). Green and red represent 

downregulated and upregulated RNAs, respectively. (G) List of miRNAs downregulated 

following FUS knockdown and have binding sites within the FUS 3’UTR. (H) Real-time PCR 

was used to confirm the change in candidate miRNA expression following FUS knockdown 

(n=3). Real-time PCR data was normalized to an endogenous control (miR-1296-5p).  Bars 

represent mean (n=3) fold-change (2^-∆∆CT) ± SEM in real-time PCR analyses. Student’s t-test 

was used to determine significance in microarray and real-time analyses (*p<0.05, **p<0.01, 

***p<0.001).   
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Figure 5.2. MiR-27b-3p, miR-181c-5p, miR-2110 and miR-6804-5p are expressed in human 

spinal motor neurons. A lumbar spinal cord from a neuropathologically intact individual (n=1) 

was used for fluorescent in situ hybridization (FISH) analysis in order to determine whether 

miRNA candidates were expressed in human spinal motor neurons. Red puncta indicate positive 

staining for miRNAs. MiR-548c was used as a negative control. Scale bar represents 25μm.

10μm 25μm 
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MREs were linked to a firefly luciferase gene (Fig. 5.4A). Reporter gene assays revealed that 

when the firefly gene contains the TARDBP 3’UTR with mutations in either the miR-27b-3p or  

or miR-181c-5p MREs, miR-27b-3p and miR-181c-5p are no longer able to effect luciferase 

activity, respectively (Fig. 5.4B). This indicates that both miR-27b-3p and miR-181c-5p must 

interact with the 3’UTR of TARDBP in order to reduce gene expression.       

 

5.4.3 Nuclear localization of TDP-43 is required to regulate miR-27b-3p and miR-181c-5p 

expression 

 

 Since cellular stress is known to alter TDP-43 localization from the nucleus to the 

cytoplasm, we wanted to determine whether stress would lead to a reduction in the levels of 

miR-27b-3p and miR-181c-5p similar to that observed following knockdown of TDP-43. After 

an induced cellular stress, levels of both miR-27b-3p and miR-181c-5p were significantly 

reduced concomitant with the expected reduction of nuclear localization of TDP-43 (Fig. 5.5). 

Based on this information, we next determined if the nuclear localization of TDP-43 is a 

requirement for the regulation of miR-27b-3p and miR-181c-5p expression. To do this, we used 

siRNA plasmids (siRES) resistant to a specific siRNA (siTDP #2) which contained either FLAG-

tagged wild-type TDP-43 (siRES pC32-FLAG-TDP-43 WT) or FLAG-tagged TDP-43 without 

its nuclear localization signal (siRES pC32-FLAG-TDP-43 ∆NLS), as previously described 

(Deshaies et al., 2018). Both plasmids had a transfection efficiency of ~70% (Fig. 5.6A-B). 

SiTDP #2 was able to knockdown endogenous TDP-43 (Fig. 5.7A) without affecting the 

expression of the siRES plasmids (Fig. 5.6C-E). The siRES pC32-FLAG-TDP-43 WT plasmid 

was primarily nuclear, while siRES pC32-FLAG-TDP-43 ∆NLS was primarily cytoplasmic (Fig. 

5.7B) as expected. 24 hours after transfection of either SCR (negative control) or siTDP #2, 

either pcDNA 3.1 (negative control), siRES pC32-FLAG-TDP-43 WT, or siRES pC32-FLAG-
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TDP-43 ∆NLS were transfected into HEK293T cells. Recovery of both miR-27b-3p and miR-

181c-5p to normal levels 48 hours post-knockdown of TDP-43 was seen only when cells were 

transfected with siRES pC32-FLAG-TDP-43 WT and not when either pcDNA 3.1 or siRES 

pC32-FLAG-TDP-43 ∆NLS plasmids were transfected (Fig. 5.7C), indicating that TDP-43 

nuclear localization is necessary for the expression of miR-27b-3p and miR-181c-5p.  

5.4.4 Knockdown of TDP-43 or cellular stress affect primary miRNA processing 

 Based on the reduction of mature miRNA levels of miR-27b-3p and miR-181c-5p 

following knockdown of TDP-43, we wanted to determine at what level in the biogenesis 

pathway of these two miRNAs TDP-43 was acting. When examining primary miRNA (pri-

miRNA) levels following knockdown of TDP-43, we observed that there was a significant 

increase in the amount of pri-miR-181c, while there was no change pri-miR-27b levels (Fig. 

5.8A) indicating that TDP-43 only regulates the levels of pri-miR-181c.  

 We next examined whether cellular stress would have a similar effect on the pri-miRNAs 

as observed with knockdown of TDP-43. We observed that there was a significant increase in 

pri-miR-27b and pri-miR-181c following a cellular stress (Fig. 5.8B). Taken together, the data 

suggest that reduced levels of mature miRNA levels either by knockdown of TDP-43 or cellular 

stress is not due to reduced pri-miRNA levels, but rather, later reduced processing of miRNAs. 

Given this, we next further investigated precursor structures of miR-27b and miR-181c. 

5.4.5 Knockdown of TDP-43 and cellular stress affects precursor miRNA processing  

 
 Knockdown of TDP-43 showed no change in the overall levels of pre-miR-27b or pre-

miR-181c (Fig. 5.9A), while cellular stress led to a significant increase in pre-miR-27b but had 

no effect on pre-miR-181c levels (Fig. 5.9B). Since precursor miRNA molecules are present in  
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Figure 5.3. Transfection of miR-27b-3p and miR-181c-5p decreased protein and mRNA 

expression of TDP-43, while transfection of miR-2110 and miR-6804-5p had no effect on 

FUS expression within HEK293T cells. (A) Western blot showing TDP-43 and GAPDH 

protein levels following transfection of either scramble control (SCR), miR-27b-3p and miR-

181c-5p. (B) Quantification of relative TDP-43 protein expression when normalized to GAPDH 

(n=3). (C) Change in mRNA expression of TARDBP when normalized to 18S rRNA following 

transfection of either SCR, miR-27b-3p, or miR-181c-5p (n=3). (D) Plasmids containing a 

reporter gene linked to the TARDBP 3’UTR were co-transfected in HEK293T cells with either 

SCR (control), miR-27b-3p, or miR-181c-5p to determine changes in reporter gene expression in 

the presence of either miR-27b-3p or miR-181c-5p. Data was normalized to renilla expression 

prior to comparison (n=3). (E) Western blot showing FUS and GAPDH protein levels following 

transfection of either scramble control (SCR), miR-2110 and miR-6804-5p. (F) Quantification of 

relative FUS protein expression when normalized to GAPDH (n=3). (G) Change in mRNA 

expression of FUS when normalized to 18S rRNA following transfection of either SCR, miR-

2110, or miR-6804-5p (n=3). (H) Plasmids containing a reporter gene linked to the FUS 3’UTR 

were co-transfected in HEK293T cells with either SCR (control), miR-2110, or miR-6804-5p to 

determine changes in reporter gene expression in the presence of either miR-2110 or miR-6804-

5p. Data was normalized to renilla expression prior to comparison (n=3). Bars represent mean ± 

SEM. Significance was determined using a one-way ANOVA followed by a Tukey’s post-hoc 

for multiple comparisons (B, C, F, and G) and a Student’s t-test was used to determine 

significance between two groups (D and H) (NSp>0.05, *p<0.05, **p<0.01, ***p<0.001). 

  



216 

 

   

  

A 

B 



217 

 

 

 

 

 

 

Figure 5.4 MiR-27b-3p and miR-181c-5p interact with the TARDBP 3’UTR to regulate 

gene expression. (A) Mutations were put in the +2 and +3 position of the miR-27b-3p or miR-

181c-5p MRE within the TARDBP 3’UTR. (B) Reporter gene assays showing the change in 

expression of the reporter gene when its linked to the either the wild-type (TDP WT) or mutated 

(TDP Mut.) TARDBP 3’UTR when in the presence of either miR-27b-3p or miR-181c-5p. Data 

was normalized to renilla prior to comparison. Bars represent mean (n=3) ± SEM. Significance 

was determined using a one-way ANOVA followed by a Tukey’s post-hoc for multiple 

comparisons (NSp>0.05, ***p<0.001) 
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Figure 5.5. Reduced expression of miR-27b-3p and miR-181c-5p that is concomitant with 

reduced nuclear TDP-43 levels five hours post osmotic stress. (A) HEK293T cells were either 

not treated (control) or treated with 400 mM of sorbitol to induce an osmotic stress. Cells were 

fixed and stained for TDP-43 (red) and TIA-1 (green) immunofluorescence. (B) MiR-27b-3p and 

miR-181c-5p expression between non-stressed and stressed cells was measured via real-time 

PCR. Expression levels were normalized to an exogenous control (cel-miR-39b-5p) prior to 

comparison. Bar represents mean (n=5) fold-change (2^-∆∆CT) ± SEM. Student’s t-test was 

used to determine significance (*p<0.05, **p<0.01).  
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Figure 5.6. SiRES plasmids have an ~70% transfection efficiency and are resistant to a 

specific TDP-43 siRNA (siTDP #2). (A) Immunofluorescence showing the expression of either 

pC32-FLAG-TDP-43 wild-type (TDP WT) or pC32-FLAG-TDP-43 ∆NLS (TDP ∆NLS) siRES 

plasmids following transfection within HEK293T cells. (B) Quantification of percentage of cells 

positive for either siRES TDP WT or TDP ∆NLS plasmids following transfection within 

HEK293T cells (n=3). (C) Western blot showing expression of endogenous GAPDH, TDP-43 

and siRES TDP WT after cells were transfected with either SCR (control) or siTDP #2. (D-E) 

Quantification of (D) siRES TDP WT or (E) endogenous TDP-43 expression when cells were 

transfected with either SCR or siTDP #2 (n=3). Expression levels were normalized to GAPDH 

prior to comparison. Bar represents mean ± SEM. Significance was determined using a Student’s 

t-test (NSp>0.05, ***p<0.001). 
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Figure 5.7. Nuclear localization signal of TDP-43 is required for the regulation of miR-27b-

3p and miR-181c-5p expression. (A) Western blot showing knockdown of TDP-43 following 

transfection of siRNA (siTDP #2). (B) Immunofluorescence showing localization of either pC32-

FLAG-TDP-43 wild-type (TDP WT) or pC32-FLAG-TDP-43 ∆NLS (TDP ∆NLS) siRES 

plasmids. (C) HEK293T cells were transfected with either SCR (control) or siTDP #2, and then 

transfected again 24 hours later with either pcDNA (control), TDP WT or TDP ∆NLS plasmids. 

MiR-27b-3p and miR-181c-5p levels were measured 24 hours after transfection of plasmids. 

Expression levels were normalized to an exogenous control (cel-miR-39b-5p) prior to 

comparison. Bar represents mean (n=3) fold-change (2^-∆∆CT) ± SEM. SCR+pcDNA samples 

were negative controls in which the bar representing their expression levels was set at one for 

comparison purposes. Significance was determined using a one-way ANOVA followed by a 

Tukey’s post-hoc for multiple comparisons (NSp>0.05, **p<0.01). 
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Figure 5.8. Knockdown of TDP-43 increases levels of pri-miR-181c, while cellular stress 

increases levels of the pri-miR-27b and pri-miR-181c. RT-qPCR of pri-miR-27b and pri-miR-

181c following (A) knockdown of TDP-43, or (B) an osmotic stress. Expression levels were 

measured using densitometry and were normalized to 18S rRNA prior to comparison. Bars 

represent mean (n=4) ± SEM. Significance was determined using a Student’s t-test (NSp>0.05, 

*p<0.05, **p<0.01). 
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the nucleus and cytoplasm, we wanted to determine the levels of pre-miR-27b and pre-miR-181c 

within both cellular compartments.  

We successfully fractionated samples into nuclear and cytosolic fractions (Fig. 5.10). 

Both knockdown of TDP-43 and an induced cellular stress caused a significant reduction in 

cytosolic pre-miR-181c, but no significant change in its nuclear levels, whereas there was no 

significant change in nuclear or cytosolic levels of pre-miR-27b in both conditions (Fig. 5.11). 

This suggests that the knockdown of TDP-43 and cellular stress can affect the levels of certain 

pre-miRNA molecules within the cytosolic compartment, specifically pre-miR-181c, while 

having no effect on other pre-miRNA molecules, such as pre-miR-27b.  

Despite showing that knocking down TDP-43 causes deficits at several levels of miRNA 

processing, there was no effect on the expression of the major proteins involved in the miRNA 

biogenesis pathway at the time we see changes to miRNA levels (Fig. 5.12). This suggests that, 

in this time frame, TDP-43 plays a critical role in the function of proteins within the miRNA 

biogenesis pathway when processing miR-27b-3p and miR-181c-5p.  

 
5.5 Discussion 

 

 We have provided evidence of a negative feedback regulatory loop in which TDP-43, 

miR-27b-3p and miR-181c-5p interact in a manner that is dependent on the nuclear localization 

of TDP-43. We show that TDP-43 regulates these two miRNAs differently within the miRNA 

biogenesis pathway, and that cellular stress that reduces TDP-43 nuclear localization had similar, 

but not the exact same effects on the processing of these two miRNAs as reduced TDP-43 levels.  

 In our experiments, we were unable to identify miRNAs in a negative feedback network 

with FUS. Although miR-2110 and miR-6804-5p contained MREs in the FUS 3’UTR, there was 

no evidence to suggest that these two miRNAs regulated FUS expression. Interestingly, two 



227 

 

miRNAs (miR-141-3p and miR-200a-3p) that had been previously shown to be in a negative 

feedback loop with FUS (Dini Modigliani et al., 2014), were significantly downregulated in our 

microarray analysis. Thus, while we were unable to expand on the potential miRNAs involved in 

a negative feedback network with FUS, we still believe that loss of the negative feedback loop 

between FUS and miR-141/200a could be a major driver of the disease pathogenesis, as both 

miR-141/200a have been shown to be reduced in ALS spinal cord (Campos-Melo et al., 2013).       

 TDP-43 has previously been shown to be involved in pri-miRNA and pre-miRNA 

processing within the DROSHA and DICER complex, respectively (Kawahara and Mieda-Sato, 

2012).  Interestingly, TDP-43 regulates miRNAs in different ways, including selectively 

promoting the processing of certain pri-miRNAs, or promoting or preventing the processing of 

certain pre-miRNAs (Kawahara and Mieda-Sato, 2012; King et al., 2014). However, the 

molecular reason for this selectivity is still unclear. In line with previous work, our data showed 

this diverse role of TDP-43 within miRNA biogenesis, where knockdown of TDP-43 led to 

reduced levels of cytoplasmic pre-miR-181c and mature miR-181c-5p levels but increases in pri-

miR-181c levels. Low levels of TDP-43 function likely reduce DROSHA processing, which 

could explain the accumulation of pri-miR-181c. The reduction of cytoplasmic pre-miR-181c 

either means that reduced TDP-43 levels impede pre-miR-181c transport or that it promotes the 

degradation of this pre-miRNA molecule in the cytoplasm. Regardless, it is clear that TDP-43 

promotes the production of miR-181c-5p at several levels within the miRNA biogenesis 

pathway. Further, knockdown of TDP-43 only caused a reduction of mature miR-27b-3p with no 

effect on the pri and pre-miRNAs, indicating that TDP-43 likely promotes DICER processing of 

pre-miR-27b. Since TDP-43 interacts with DROSHA and DICER in both an RNA-dependent 

and independent manner (Kawahara and Mieda-Sato, 2012), it is difficult to know   
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Figure 5.9. Knockdown of TDP-43 has no effect on overall pre-miR-27b or pre-miR-181c 

levels, while cellular stress increases levels of pre-miR-27b. Real time PCR of pre-miR-27b 

and pre-miR-181c following (A) knockdown of TDP-43, or (B) an osmotic stress. Expression 

levels were normalized to an exogenous control (cel-miR-39b-5p) prior to comparison. Bar 

represents mean (n=3) fold-change (2^-∆∆CT) ± SEM. Significance was determined using a 

Student’s t-test (NSp>0.05, *p<0.05, **p<0.01). 
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Figure 5.10. Fractionation protocol successfully separates protein and RNA nuclear and 

cytosolic fractions. (A) Western blot showing protein expression of Lamin A/C (nuclear 

protein) and GAPDH (primarily cytosolic protein) from nuclear and cytosolic protein extracts 

(n=3). (B) Agarose gel showing PCR amplicons of pri-miR-27b (a nuclear RNA species) 

expression in nucleus, but not cytosolic RNA extracts (n=3). Total RNA from whole cell extracts 

was used as a positive control.    
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Figure 5.11. Nuclear/cytosolic fractionation indicated reduced cytoplasmic levels of pre-

miR-181c following knockdown of TDP-43 or cellular stress. Real-time PCR showing levels 

of nuclear and cytosolic pre-miRNA levels of either miR-27b or miR-181c following (A) 

knockdown of TDP-43, or (B) osmotic stress. Expression levels were normalized to an 

exogenous control (cel-miR-39b-5p) prior to comparison. Bar represents mean (n=3) fold-change 

(2^-∆∆CT) ± SEM. Significance was determined using a Student’s t-test (NSp>0.05, *p<0.05). 
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Figure 5.12. Knockdown of TDP-43 has no effect on the levels of proteins associated with 

the miRNA biogenesis pathway. (A) Western blots showing the protein expression of TDP-43, 

DROSHA, DCGR8, XPO5, DICER, AGO2, TRBP and GAPDH within HEK293T cells when 

either transfected with SCR (control) or siTDP #1. (B) Quantification of DROSHA, DCGR8, 

XPO5, DICER, AGO2 and TRBP protein levels when cells were either transfected with SCR or 

siTDP #1. Expression levels were normalized to GAPDH prior to comparison. Bar represents 

mean (n=3) ± SEM. Significance was determined using a Student’s t-test (NSp>0.05). 
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whether TDP-43 needs to bind directly to either pri- and/or pre-miRNAs, DROSHA and/or 

DICER complexes, or both to assist in the processing of these two miRNAs, and therefore, 

warrants further investigation. 

  While TDP-43 has been shown to regulate several different miRNAs in multiple cell 

lines, this is the first study, to our knowledge, that shows TDP-43 in a negative feedback network 

with miRNAs. Similar networks have been identified between other RNA-binding proteins and 

miRNAs, such as FUS and miR-141/200a, and hnRNPA1 and miR-18a (Dini Modigliani et al., 

2014; Fujiya et al., 2014; Guil and Caceres, 2007). These negative feedback networks are likely 

critical biological mechanisms that regulate homeostatic levels of RNA-binding proteins and 

miRNAs.  

Our data suggests that the regulation of miR-27b-3p and miR-181c-5p, and hence the 

negative feedback network, are dependent on the nuclear localization of TDP-43 providing 

relevance for several neurodegenerative diseases that show accumulation of TDP-43 in neuronal 

cytoplasmic inclusions including ALS, FTD and Alzheimer’s Disease (Amador-Ortiz et al., 

2007; Arai et al., 2006; Tan et al., 2007).  In some cases, TDP-43 has been known to form 

intranuclear inclusions in FTD-ALS, FTD and Alzheimer’s Disease (Amador-Ortiz et al., 2007; 

Neumann et al., 2006), and in this case, it still likely that TDP-43 cannot perform its function in 

the miRNA biogenesis pathway due to it being trapped in these inclusions. Thus, both the loss of 

nuclear localization and the formation of TDP-43 inclusions likely results in miRNA 

dysregulation. 

 Both miR-27b-3p and miR-181c-5p have been shown to be reduced in the spinal cord of 

patients with ALS (Campos-Melo et al., 2013). We show here that these miRNAs are expressed 

in motor neurons (Fig. 5.2), providing a correlation between TDP-43 cytoplasmic re-localization 
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and the dysregulation of these two miRNAs within ALS. MiR-181c-5p has been shown to be 

reduced within the anterior temporal cortex and parietal lobe cortex of patients with Alzheimer’s 

Disease, and in cultures of primary hippocampal neurons from Alzheimer mouse models, 

indicating that miR-181c-5p may be critical for overall central nervous system and neuronal 

function (Schonrock et al., 2012; Schonrock et al., 2010). Previous work has already shown that 

TDP-43 regulates the mature levels of miR-27b-3p and miR-181c-5p, and other members of the 

miR-181 family (miR-181a-d) in several cell lines (Chen et al., 2018; Di Carlo et al., 2013; 

Kawahara and Mieda-Sato, 2012). Thus, TDP-43 regulation on the biogenesis of miR-27b-3p 

and the miR-181a-d family likely represents a broad phenomenon rather than a cell-specific one. 

 Further, we showed that an induced cellular stress which causes reduced TDP-43 nuclear 

localization alters miRNA processing leading to a reduction in miR-27b-3p and miR-181c-5p, 

similar to what was seen after knockdown of TDP-43. This is a critical finding as cellular stress 

has been shown to drive TDP-43 from the nucleus to the cytoplasm in both in vitro and in vivo 

neuronal models (Khalfallah et al., 2018; McDonald et al., 2011; Moisse et al., 2009), indicating 

that cellular stress, while not the only effect, results in the reduction of nuclear TDP-43 levels to 

regulate miRNA biogenesis. This may be a major component to the pathogenesis of ALS where 

an extensive reduction in miRNA levels in spinal cord and motor neurons is observed (Campos-

Melo et al., 2013; Emde et al., 2015).  

In conclusion, we propose a biological mechanism by which under normal conditions 

TDP-43 is in a negative feedback network with miRNAs (i.e. miR-27b-3p and miR-181c-5p), 

and that this is perturbed during cell stress due to reduced TDP-43 nuclear localization. Thus, 

reduction of nuclear TDP-43 reduces miRNAs levels resulting in a de-repression of the TARDBP 

transcript, and ultimately, increased TDP-43 cytoplasmic levels. This biological mechanism 
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could have important implications for the pathogenesis of neurodegenerative diseases, such as 

ALS, where the reduction of miRNA levels coincides with the upregulation and mis-localization 

of TDP-43 (Campos-Melo et al., 2013; Emde et al., 2015; Koyama et al., 2016; Swarup et al., 

2011; Tan et al., 2007). Further, enhancement of miRNA processing at the level of DICER has 

been shown to improve motor function of rodent models who carry ALS-related mutations in 

TDP-43 (Emde et al., 2015). Since we and others have shown that TDP-43 affects miRNA 

processing at multiple levels within the miRNA biogenesis pathway (Kawahara and Mieda-Sato, 

2012), an enhancement of both the DROSHA and DICER complexes may be necessary to have 

the greatest impact to slow ALS disease progression.  
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Chapter 6 

 

 Discussion and Conclusion 
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6.1 Summary of Results  

 

 In this dissertation, I aimed to elucidate the potential consequences of reduced miRNA 

levels as seen in ALS, and to understand the mechanism by which miRNAs may become 

dysregulated in the first place. Data presented showed that reduced miRNA expression may 

contribute to both RNA-binding protein and intermediate filament pathogenesis as many ALS-

linked miRNAs regulate these two protein groups as shown within in vitro cell models. Further, I 

identified a novel negative feedback network between TDP-43 and miRNAs in HEK293T cells 

which may provide insight into how miRNA levels become reduced in ALS motor neurons.  

 Chapters 2-3 highlighted several ALS-associated miRNAs that may contribute to the loss 

of intermediate filament stoichiometry in ALS. Previous work had shown that ALS-associated 

miRNAs could contribute to the suppression of NEFL mRNA—a common phenomenon 

observed in motor neurons of patients with ALS (Bergeron et al., 1994; Campos-Melo et al., 

2013; Wong et al., 2000). However, in mature motor neurons there are 5 main intermediate 

filaments expressed (NFL, NFM, NFH, PRPH and INA), and it is the overall loss of 

stoichiometry between these 5 intermediate filaments that drives intermediate filament pathology 

(Szaro and Strong, 2010). Therefore, I sought to determine the ALS-linked miRNAs that are 

involved in regulating overall intermediate filament stoichiometry. I identified two miRNAs 

(miR-105-5p and miR-9-5p) that showed reduced expression in ALS, that are expressed in motor 

neurons and that regulate the mRNA levels of NEFL, PRPH and INA. MiR-105-5p enhanced the 

expression of NEFL and PRPH but suppressed INA expression while miR-9-5p suppressed the 

expression of all three intermediate filaments of interest in the human neuronal-derived cell line 

IMR-32 (Hawley et al., 2019).  
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In chapter 3, a series of motor neuron expressing miRNAs that are reduced in ALS were 

identified to suppress the levels of a reporter gene when interacting with the 3’UTR of either 

NEFM (miR-92a-3p and miR-125b-5p) or NEFH (miR-9-5p, miR-20b-5p, miR-92a-3p, miR-

223-3p) providing more examples of miRNAs responsible for regulating intermediate filament 

stoichiometry (Campos-Melo et al., 2018). All this suggests that several miRNAs are responsible 

for the tight regulation of intermediate filament stoichiometry, and loss of these miRNAs, as seen 

in ALS, could contribute to intermediate filament pathogenesis.    

 Chapter 4 focused on ALS-linked miRNAs that are responsible for the regulation of three 

RNA-binding proteins—TDP-43, FUS and RGNEF—that are known to co-aggregate together in 

ALS motor neurons (Keller et al., 2012). I identified miR-b2122 to be a central regulator of 

TDP-43, FUS and RGNEF expression in SH-SY5Y cells—a human neuronal-derived cell line—

and further, provided evidence that miR-194-5p may be responsible for TDP-43 and FUS gene 

silencing. Further, I described an ALS-associated mutation in the FUS 3’UTR that was located in 

the MRE of miR-b2122. This mutation disrupted the ability of miR-b2122 to bind to the 3’UTR 

of FUS to regulate gene expression, providing a genetic link between miRNA regulation and 

ALS (Hawley et al., 2017b). Since TDP-43 has been shown to be overexpressed in ALS spinal 

cord and motor neurons and FUS overexpression has been known to cause ALS-like phenotypes 

within in vitro and in vivo models, it is clear that the loss of homeostatic levels of these proteins 

contributes to the disease pathogenesis (Koyama et al., 2016; Mitchell et al., 2013; Sabatelli et 

al., 2013; Swarup et al., 2011). Thus, the loss of miR-194-5p and miR-b2122 in ALS motor 

neurons could be a major contributor to the disease progression.      

 Finally, in Chapter 5, a negative feedback loop between TDP-43 and two ALS-linked 

miRNAs (miR-27b-3p and miR-181c-5p) that is dependent on TDP-43 nuclear localization was 
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identified in HEK293T cells, thus providing a biological mechanism that may be disrupted in 

ALS (Hawley et al., 2020). While I looked at both TDP-43 and FUS, I did not identify a negative 

feedback loop between FUS and miRNAs. However, previous work has shown that FUS is in a 

negative feedback loop with two other ALS-linked miRNAs (miR-141-3p and miR-200a-3p; 

Dini Modigliani et al., 2014), indicating that this biological mechanism does exist for FUS. 

Further, TDP-43 regulated the expression of miR-27b-3p and miR-181c-5p at different levels in 

the miRNA biogenesis pathway, as reduced TDP-43 levels led to increased pri-miR-181c and 

reduced cytoplasmic pre-miR-181c, while lowering mature miR-27b-3p levels with no changes 

to either miR-27b primary or precursor levels. This suggested that TDP-43 regulates miRNAs at 

several levels in the biogenesis pathway, consistent with what has been seen previously 

(Kawahara and Mieda-Sato, 2012).   

 Overall, the data presented in this dissertation demonstrates that reduced miRNA levels 

in motor neurons of patients with ALS likely contributes to both intermediate filament and RNA-

binding protein pathogenesis in ALS. Further, I have provided a biological mechanism that 

provides evidence that loss of TDP-43 nuclear localization, as seen in ALS, may contribute to 

the reduction of miRNAs seen in ALS motor neurons.  

 

6.2 Implications 

 

6.2.1 MiRNA network that regulates intermediate filament stoichiometry 

 

 Proper intermediate filament stoichiometry is considered necessary for the formation and 

maintenance of cytoskeleton structures in neuronal cells (Szaro and Strong, 2010). Alterations to 

this stoichiometry have been associated with the formation of intermediate filament aggregates 

that are observed in ALS motor neurons (Beaulieu and Julien, 2003; Beaulieu et al., 1999; Kriz 

et al., 2000; Lee et al., 1994; Wong et al., 2000; Zhu et al., 1997). Previous work has indicated 
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two ALS-related RNA-binding proteins (TDP-43 and RGNEF) and miRNAs play essential roles 

in regulating the levels of NEFL mRNA (Campos-Melo et al., 2013; Volkening et al., 2010; 

Volkening et al., 2009). The work presented here identified 8 miRNAs, in addition to the five 

miRNAs previously shown to regulate NEFL (Campos-Melo et al., 2013; Ishtiaq et al., 2014), 

that are responsible for regulating the transcript levels of the five main intermediate filaments 

(NEFL, NEFM, NEFH, PRPH and INA) expressed in mature neurons (Campos-Melo et al., 2018; 

Hawley et al., 2019).     

Identification of these interactions between miRNAs and intermediate filaments 

highlights the complex network of trans-acting regulatory elements that are required to maintain 

the appropriate spatiotemporal stoichiometry of these proteins. This fact paired with the evidence 

that these miRNAs are reduced in ALS shows that a highly sophisticated regulatory network 

between miRNAs and intermediate filaments is likely to be disrupted in ALS, thus contributing 

to the formation of intermediate filament cytoplasmic aggregates. Beyond miRNAs, we know 

that RNA-binding proteins play an integral role in post-transcriptionally regulating neurofilament 

stoichiometry, including TDP-43, RGNEF, hnRNPK, ALDOA, ALDOC, HuB, 14-3-3 and 

hnRNPE1/E2 (Antic et al., 1999; Canete-Soler et al., 2005; Droppelmann et al., 2013; Ge et al., 

2007; Stefanizzi and Canete-Soler, 2007; Thyagarajan and Szaro, 2004, 2008; Volkening et al., 

2010; Volkening et al., 2009). Amongst these proteins, TDP-43, RGNEF and 14-3-3 have been 

associated with ALS pathology, indicating that the dysregulation of these proteins could also 

contribute to loss of intermediate filament stoichiometry (Keller et al., 2012). It is still unclear 

how miRNAs and RNA-binding proteins work together to finely regulate intermediate 

stoichiometry and how their co-dysregulation in ALS contributes to overall intermediate filament 

pathology.   
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Further, there is evidence that long non-coding RNAs (lncRNAs), small nucleolar RNAs 

(snoRNAs), and circular RNAs (circRNAs) are increasingly associated with ALS (Dolinar et al., 

2019; Errichelli et al., 2017; Nishimoto et al., 2013; Riva et al., 2016; Salvatori et al., 2020). This 

provides even further complexity, as miRNAs, lncRNAs, snoRNAs, circRNAs and RNA-binding 

proteins work together to tightly regulate gene expression both transcriptionally and post-

transcriptionally (Salvatori et al., 2020). While it is still unclear how lncRNAs, snoRNAs and 

circRNAs contribute to ALS pathogenesis, it will be interesting to determine if these non-coding 

RNA molecules play an essential role in regulating neuronal intermediate stoichiometry and how 

that may be affected in ALS.  However, the understanding of the role of ALS-linked miRNAs in 

neuronal intermediate filament post-transcriptional regulation has allowed us to develop a deeper 

knowledge of the potential pathogenesis of these proteins in ALS. This has provided a 

foundation to further explore these networks in neuron models to determine how these miRNAs 

work with RNA-binding proteins, and potentially other non-coding RNA species, to regulate 

neuronal intermediate filament stoichiometry, and how this system may be manipulated to 

prevent the loss of intermediate filament stoichiometry in ALS motor neurons (Wong et al., 

2000).   

 

6.2.2 Potential contributions of miRNAs in RNA-binding protein pathogenesis 

 

 An overwhelming amount of evidence has shown that the simple accumulation of LCD-

containing proteins, like the RNA-binding proteins observed in ALS, can cause them to phase 

separate into irreversible insoluble aggregates (Conicella et al., 2016; Kato et al., 2012; 

Murakami et al., 2015; Murray et al., 2017). Thus, several research groups have searched for 

ways to prevent the toxic cytoplasmic accumulation of these proteins as potential therapeutics 

(Barmada et al., 2010; Tamaki et al., 2018; Tradewell et al., 2012). The work presented in this 
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dissertation provides a unique perspective in the potential use of miRNAs as a therapeutic target 

to prevent the accumulation of these proteins into cytoplasmic aggregates.  

  The data provided in this dissertation indicates that reduced miRNA levels, as seen in 

ALS, could contribute to the overexpression, and potentially the formation of cytoplasmic 

aggregates by RNA-binding proteins. MiR-b2122 was identified to silence the mRNA expression 

of three RNA-binding proteins (TDP-43, FUS and RGNEF) that co-aggregate with each other in 

ALS motor neurons (Hawley et al., 2017b; Keller et al., 2012). Overexpression of TDP-43 and 

FUS have both been shown to result in the formation of cytoplasmic aggregates in both in vitro 

and in vivo models, and further, both have been shown to have increased levels in the spinal cord 

of ALS patients (Dini Modigliani et al., 2014; Hawley et al., 2017b; Koyama et al., 2016; 

Mitchell et al., 2013; Swarup et al., 2011; Xu et al., 2010). In our work, we had identified a 

relationship between reduced levels of miR-b2122 and increased levels of FUS in the spinal cord 

of sALS patients, and an ALS-associated genetic variant in the FUS mRNA 3’UTR that prevents 

miR-b2122 from binding to the FUS 3’UTR to regulate gene expression (Hawley et al., 2017b). 

All this put together, suggests miR-b2122 may be a potential therapeutic target to reduce the 

RNA-binding protein expression via gene silencing and prevent the aggregation of all three of 

these proteins.  

 

6.2.3 Identification of novel negative feedback network 

  

A novel negative feedback network between TDP-43 and miRNAs was identified 

providing further insight biological mechanisms that may be affected in ALS motor neurons. The 

identification of this network not only has major implications for our understanding ALS disease 

progression, but as well our understanding of basic biological networks.   
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 Negative feedback networks are classic self-regulating biological systems designed to 

maintain homeostasis (Tsang et al., 2007). Since miRNAs have been described as the “master 

regulators”, it is not surprising that miRNAs are involved in several negative and positive 

feedback networks. Further, in a panel of over 70 pre-miRNA baits, researchers were able to 

pulldown over 180 RNA-binding proteins that preferentially bound to specific miRNA groups 

which demonstrated the vast network of RNA-binding proteins that participate in the biogenesis 

of a small subset of miRNAs (Treiber et al., 2017). Several RNA-binding proteins have been 

shown to be in negative, positive and double negative feedback networks with miRNAs 

indicating the importance of these two groups to work together to maintain homeostasis (Tsang 

et al., 2007).  

 Under physiological stress conditions, several RNA-binding proteins leave the nucleus 

and enter the cytoplasm to form stress granule structures, including TDP-43 (Protter and Parker, 

2016). Further, cellular stress has generally shown to cause a reduction in miRNA processing 

(Emde et al., 2015), as I showed with miR-27b-3p and miR-181c-5p. Therefore, one hypothesis 

may be that reduced miRNA processing during stress allows for de-repression of RNA-binding 

proteins needed for stress granule formation, but overaccumulation of LCD-containing RNA-

binding proteins—which are prone to aggregate—either through chronic or repeated stresses 

may induce the formation of insoluble cytoplasmic aggregates. Thus, while reduced miRNA 

processing may be beneficial for a rapid stress response, repeated or chronic stresses increase the 

risk of developing cytoplasmic aggregates that are toxic to the cell. 

 The identification of a negative feedback network between TDP-43 and miRNAs is the 

second negative feedback network that has been identified between ALS-related miRNAs and 

RNA-binding proteins. The first was identified between FUS and two miRNAs—miR-141/200a-
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3p (Dini Modigliani et al., 2014). Beyond TDP-43 and FUS, other ALS-related RNA-binding 

proteins have been implicated in the miRNA biogenesis pathway including TAF15, EWSR1, 

hnRNPA1, hnRNPA2B1, MATR3, TIA-1 and ATXN2 (Alarcon et al., 2015; Ballarino et al., 

2013; Guil and Caceres, 2007; Kapeli et al., 2016; Kooshapur et al., 2018; Ouyang et al., 2017; 

Sanchez-Jimenez et al., 2013; Weiss et al., 2019). Therefore, several regulatory networks 

between miRNAs and RNA-binding proteins may be disrupted in ALS. Identification of these 

regulatory networks, how they are disrupted in ALS, there contribution to ALS pathogenesis, and 

how to restore these networks will assist in our understanding of ALS development and potential 

therapeutic targets.  

 Further, TDP-43 forms cytoplasmic aggregates in 97% of all cases regardless of genetic 

background (Ling et al., 2013). Therefore, identification for pathways that may explain the 

accumulation of TDP-43 in the cytoplasm has become critical. Loss of a negative feedback 

between TDP-43 and miRNA due to loss of nuclear localization, as shown in Chapter 5, may 

contribute to the formation of TDP-43 cytoplasmic aggregates in ALS. Therefore, if we are able 

to identify this negative feedback loop in motor neuron models, and further, show it is disrupted 

in ALS motor neuron models, it will be necessary to target this pathway to see if we can restore 

homeostatic levels of miR-27b-3p and miR-181c-5p to lower levels of TDP-43 to hopefully 

alleviate ALS-like phenotypes.      

6.2.4 Development of therapeutics targeting miRNA pathways 

 

 In this dissertation, I have identified 10 ALS-linked miRNAs that could contribute to 

intermediate filament and RNA-binding protein pathogenesis. This is likely an 

underrepresentation of the total amount of miRNAs that are involved in in the disease 

pathogenesis. This data highlights that there is not a single miRNA that will ameliorate the 
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dysfunctional physiology observed in ALS motor neurons, but rather a whole host of miRNAs, 

each individually contributing to the disease process. This is critical to understand if we are 

going to develop therapeutics that target miRNA pathways.  

 Targeting individual miRNAs in ALS likely will have minimal effects in terms of a 

therapeutic. Rather we need to focus on developing drugs that are able to reboot the miRNA 

biogenesis pathway. In chapter 5 of this thesis, I showed that reduced nuclear TDP-43, as seen in 

97% of all ALS cases, can inhibit efficient processing of miRNAs at multiple levels in the 

biogenesis pathway. Thus, rather than targeting specific miRNAs, developing therapeutics that 

increase the efficiency of DROSHA and DICER to process pri- and pre-miRNAs, respectively, 

may be a better approach. Enoxacin is a drug that can enhance miRNA biogenesis by interacting 

with TRBP to enhance DICER pre-miRNA processing (Shan et al., 2008). In ALS transgenic 

mouse models containing ALS-causing mutations in either SOD1 or TDP-43, enoxacin has been 

proven to delay motor deficiencies that are developed in these models, thus providing some 

evidence that enhancement of the miRNA biogenesis pathway could be an effective therapeutic 

approach (Emde et al., 2015). However, many of the RNA-binding proteins that are involved in 

ALS also interact with DROSHA to promote miRNA biogenesis. Thus, a better therapeutic may 

be one that improves the efficiency of both DROSHA and DICER processing.   

 Two acetylase inhibitors—trichostatin A and nicotinamide—have been shown to increase 

levels of DROSHA and enhance miRNA processing (Tang et al., 2013). In particular, 

nicotinamide is derivative form of vitamin B3 which has been implicated as potential therapeutic 

for several neurodegenerative diseases, including ALS (Fricker et al., 2018; Naia et al., 2017; 

Schondorf et al., 2018; Xie et al., 2019; Zhou et al., 2020). Nicotinamide is a critical metabolite 

involved in converting NADH to NAD+, an important process for the production of ATP 
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(Poddar et al., 2019). Low levels of NAD+ has been seen in animal models of Alzheimer’s 

Disease, Parkinson’s Disease, Huntingtion’s Disease and ALS, suggesting that oxidation of 

NADH may be a deficient process in neurodegeneration (Fricker et al., 2018; Zhou et al., 2020). 

Further, nicotinamide has been shown to prevent DNA damage, apoptosis, maintain cell 

membrane structure and reduce oxidative stress, all of which has been associated with several 

neurodegenerative diseases (Surjana et al., 2010; Turunc Bayrakdar et al., 2014). Recent work in 

ALS SOD1 mouse models has shown that nicotinamide may be a potential for therapeutic for 

ALS patients who contain SOD1 mutations (Zhou et al., 2020). Therefore, while nicotinamide is 

already being considered for an ALS therapeutic, understanding whether these beneficial affects 

occur in part by restoring miRNA homeostasis will be essential to understand its therapeutic 

effect and whether it can be used for non-mtSOD1 ALS patients.      

 While further work in iPSC-derived motor neuronal cell lines and in vivo models still 

need to be done, restoring miRNA production may be a potential therapeutic avenue by 

combining nicotinamide and enoxacin to increase both DROSHA and DICER activity, 

respectively, and in turn, overall miRNA processing. 

 

6.3 Caveats 

 

 The data presented in this dissertation has identified critical ALS-linked miRNAs 

responsible for regulating intermediate filaments and RNA-binding proteins related to the 

disease, and a negative feedback network, that if lost, may contribute to driving the disease 

pathogenesis. Despite the significance of this work in developing our understanding of the 

biological networks that connect ALS-associated miRNAs, intermediate filaments and RNA-

binding proteins, there are some caveats that should be taken into consideration.  
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 First, the cell models in which these interactions were characterized limit our ability to 

determine how significant these interactions are to ALS. As previously mentioned, miRNA 

expression, regulation and function can be highly dependent on cell type, cell environment, and 

altered cell physiology (Berezikov, 2011; Hawley et al., 2017a). Therefore, if we really want to 

understand these networks of miRNAs that are associated with ALS, we need to study these 

interactions in motor neuron models. Research using human iPSC-derived motor neuron models 

has proven to be effective in understanding specific aspects of motor neuron biology that would 

otherwise be missed if looking in other cell models. For example, the regulation of TDP-43 on 

STMN2 expression and its significance to ALS was discovered only because researchers used 

human iPSC-derived motor neuron models. This would have not been identified looking in other 

non-neuronal models, as STMN2 has neuronal specific expression, and further, the addition of 

the cryptic exon, as seen in STMN2 when TDP-43 expression is suppressed, is a human specific 

affect (Klim et al., 2019; Melamed et al., 2019). All this indicates using the appropriate models 

are important when discussing disease. A major experiment in our work was the FISH analyses 

to ensure that the miRNAs we were studying in our models were also expressed in motor 

neurons, and hence, provide an increased likelihood that the biological pathways identified in our 

models also exist in motor neurons. However, while our models allowed us to find several 

pathways that are likely related to the disease, we need to move into more complex models, and 

start understanding the specific relationship between miRNAs, intermediate filaments and RNA-

binding proteins within motor neurons. 

 Second, while we have shown several miRNAs that likely contribute to the pathology of 

the disease, at this point we have no data to support that loss of miRNA expression can induce 

the formation of cytoplasmic aggregates similar to those seen in ALS motor neurons. Mutations 
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in the 3’UTR of FUS that disrupt miRNA binding and gene silencing can induce cytoplasmic 

aggregates of FUS protein (Dini Modigliani et al., 2014; Morlando et al., 2012). However, it is 

still unclear whether the resulting pathology from those mutations is caused from loss of miRNA 

regulation or other factors. Further, while several lines of work have shown loss of intermediate 

filament stoichiometry induces the formation of intermediate filament aggregates (Robertson et 

al., 2002), does loss of miRNA regulators that alter the stoichiometry enough to induce 

intermediate filament pathology is still in question. 

 Finally, our assays where miRNA expression was either overexpressed or inhibited could 

have technical experimental issues. This is because when you transfect a miRNA mimic, the 

amount of miRNA that is present within the cellular system could easily out compete other 

trans-acting molecules that would normally regulate your gene of interest, even if your miRNA 

candidate does not regulate it normally. Further, ablating miRNA function in a cell via an 

inhibitor does not necessarily represent the changes seen in ALS spinal cord where we generally 

see reduced levels and not complete loss of the miRNA. Thus, we need to determine the 

threshold in which the change of expression in our miRNA candidates results in a change in the 

expression of our genes of interest, and determine if that is representative of what is seen in ALS 

spinal cord and motor neurons.  

Studying how reduced expression of specific ALS-related miRNAs using in vitro and in 

vivo motor neuron models will be necessary to understand the contribution of miRNAs to disease 

pathology and whether loss of miRNA regulation alone can drive ALS-like proteinopathies and 

motor neuron death. These are critical caveats to consider when interpreting the data, and further 

experiments will need to be done in motor neuron models to more accurately understand 

MotomiR biology and how loss of these miRNAs may contribute to the pathology of the disease.     
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6.4 Future Directions 

 

 As mentioned in the previous section, a major future direction for this work is to 

determine whether the loss of miRNA function can induce intermediate filament and/or RNA-

binding protein ALS-like proteinopathies. For example, does reduction or loss of miR-105-5p or 

miR-9-5p—two miRNAs know to regulate NEFL, PRPH and INA mRNA expression—result in 

intermediate filament aggregation? Does loss of miR-b2122 lead to cytoplasmic aggregates of 

TDP-43, FUS and RGNEF? The answer to these questions will be necessary to understand the 

contribution these miRNAs have in the progression of the disease. Some evidence has shown 

that knocking out Dicer in mouse motor neurons can recapitulate loss of intermediate filament 

stoichiometry and induce motor neuron death (Haramati et al., 2010). However, knockout of 

Dicer would cause a global downregulation of miRNAs in motor neurons and does not provide 

any information on specific miRNAs. Therefore, further analyzing the miRNAs identified in this 

dissertation and whether loss of these miRNAs via knockdown or knockout models could 

contribute to both intermediate filament and RNA-binding protein dysregulation, ALS-like 

pathologies and motor neuron death will help us to understand their contribution to disease 

pathogenesis.  

 Another important factor to consider is that miRNAs are promiscuous molecules where 

one miRNA can have many targets, as seen in the work presented in this dissertation. While I 

focused on the affect miRNA candidates would have on RNA-binding proteins and intermediate 

filaments, there could be other pathways affected due to the loss of the miRNAs I studied. For 

example, miR-105-5p and miR-9-5p, two miRNAs shown to regulate intermediate filament 

expression in this dissertation (Hawley et al., 2019), have also been shown to suppress the 

expression of several cell-cycle genes to promote cell-cycle arrest (Zhang et al., 2017; Zhang et 
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al., 2019). One theory in ALS is that many of these cell-cycle genes that are normally suppressed 

in post-mitotic motor neurons are activated in ALS motor neurons, putting cells in a S phase 

rather than a G0 phase (Ranganathan and Bowser, 2003; Ranganathan and Bowser, 2010; Sharma 

et al., 2017). The re-entry of post-mitotic neurons into the cell-cycle has been shown to lead to 

activation of apoptotic pathways and subsequent neuron death (Sharma et al., 2017). Thus, 

reduced levels of miR-105-5p and miR-9-5p, as seen in ALS, may contribute to the re-entry of 

ALS motor neurons into the cell-cycle, triggering apoptotic pathways, rather than disrupting 

intermediate filament stoichiometry, or the loss of these miRNAs could be contributing to both. 

Moving forward it will be necessary to determine all the pathways in which these miRNAs are 

contributing to in motor neurons to understand the full impact of the loss of these miRNAs in 

ALS.  

 In chapters 2 and 4, miRNAs that were predicted to regulate all our intermediate 

filaments or RNA-binding proteins of interest but were previously shown to have no change in 

expression in ALS spinal cord were not considered for our study (Fig. 2.1 & 4.1). This does not 

mean these miRNAs are not important. This is because if they are unchanged, they may become 

the dominant regulators of our genes of interest when the other miRNAs are reduced. Therefore, 

it will be crucial to not only determine how miRNAs that have altered levels in ALS affect the 

expression of our genes of interest, but as well as those miRNAs that are unchanging in ALS 

spinal cord and motor neurons.   

 Genetic association studies focusing on miRNA encoding regions could have a massive 

impact on our understanding of the relevance of miRNAs in ALS pathogenesis. As previously 

mentioned, mutations within the FUS 3’UTR located in two MREs—miR-141/200a-3p and miR-

b2122—cause overexpression and cytoplasmic aggregates of FUS protein, like the pathology 
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seen in ALS motor neurons (Dini Modigliani et al., 2014; Hawley et al., 2017b; Morlando et al., 

2012). This gives us an indication that loss of miRNA regulation on critical genes could 

contribute to the disease pathogenesis, giving significance to the mass downregulation of 

miRNAs seen in the spinal motor neurons of ALS patient groups. More recently, several rare 

mutations were identified in the miR-218 gene of patients with ALS (Reichenstein et al., 2019). 

These are the first genetic variants to date that have been identified in miRNA regions of the 

genome that are associated with ALS. Mutations in miR-218 reduced its processing by DICER, 

and further, less of this miRNA led to reduce motor neuron activity (Reichenstein et al., 2019). 

More genetic studies like these could identify miRNAs critical to motor neuron function and 

disease, better enabling us to find therapeutic targets. Historically, genetic studies have focused 

on coding regions of the genome with little work done outside those regions. However, now 

knowing non-coding regions of the genome contain critical genetic information to regulate cell 

physiology, expanding our efforts to look at miRNA genetic material may further drive our 

understanding of miRNAs role in disease pathogenesis and which miRNAs are the most critical 

to disease development.        

6.5 Conclusion 

 The research presented in this dissertation provided a foundational understanding of the 

potential consequence and cause of miRNA dysregulation in ALS. With the use of in vitro 

models, several miRNAs were identified to be critical for the regulation of RNA-binding protein 

expression and intermediate filament stoichiometry, and thus, loss of these miRNAs, as seen in 

ALS, may contribute to the pathogenesis of these two protein groups (Fig. 6.1). Finally, a novel 

negative feedback network between TDP-43 and miRNAs was identified in HEK293T cell 

models which could have major implications in our understanding of not only ALS development, 
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but other neurodegenerative diseases that have TDP-43 proteinopathies. Knowing that reduced 

miRNAs may play a major role in ALS pathogenesis, it is now time to move forward into in 

vitro and in vivo motor neuron models, which is a critical step if we are to develop potential 

therapeutics that target these miRNA regulatory networks.        
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Figure 6.1. Hypothesis of miRNA contribution to ALS pathogenesis. (A) Healthy motor 

neuron. TDP-43 contributes to miRNA biogenesis by assisting in pri- and pre-miRNA 

processing with DROSHA and DICER complexes, respectively. Further, we provided evidence 

that TDP-43 potentially assists in pre-miRNA export. FUS also assists in pri-miRNA processing. 

Certain miRNAs, as identified in this thesis, target RNA-binding protein transcripts to suppress 

and limit their expression. We showed this creates a negative feedback loop between TDP-43 

and miR-27b-3p/miR-181c-5p and suggests that these regulatory networks are essential in 

maintaining homeostatic levels of RNA-binding proteins and miRNAs. Further, we showed that 

certain ALS-linked miRNAs target neuronal intermediate filament transcripts to promote or 

suppress their expression, which is essential in maintaining stochiometric levels of intermediate 

filament proteins (NFL [L], NFM [M], NFH [H], PRPH [P], or INA [A]) . This allows for proper 

cytoskeleton formation, which is necessary to maintain axonal integrity, and in turn, overall 

neuronal transport and function. (B) Diseased motor neuron. Due to the loss of TDP-43 and FUS 

nuclear (purple) localization and their formation into cytoplasmic (yellow) inclusions, reduced 

miRNA processing is observed. Lower miRNA levels result in de-repression of ALS-linked 

RNA-binding proteins such as TDP-43, FUS and RGNEF. This rise in production of RNA-

binding proteins results in increased formation of toxic cytoplasmic inclusions through phase 

separation. Further, lower miRNA levels will cause loss of intermediate filament stoichiometry 

due to either degradation or overexpression of intermediate filament transcripts. This results in 

intermediate filament cytoplasmic inclusions and loss of cytoskeleton formation, and 

subsequentially, loss of axonal integrity. Overall, I hypothesize that reduced miRNAs levels, as 

seen in ALS, results in the increased formation of toxic cytoplasmic inclusions and a loss of 

proper cytoskeleton formation leading to motor neuron death.      
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Appendix A 

 

Tables indicating significant changes to small RNA expression following TDP-43 or FUS 

knockdown in HEK293T cells  

 

 

Data was collected using a microarray (GeneChip miRNA 4.0 Array) and analyzed using the 

Transcriptome Analysis Console. See Methods & Materials in Chapter 5 for further details. 



 
Table A.1. Small RNAs significantly altered following TDP-43 Knockdown. 
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ID Transcript ID(Array 
Design) 

P-val Fold Change siTDP Avg (log2) SCR Avg (log2) FDR P-
val 

Chromosome 

20518879 hsa-miR-4485 0.000000134 3.74 8.81 6.9 0.0009 chr11 

20524036 hsa-miR-6126 0.0000171 1.92 8.24 7.29 0.0531 chr16 

20525395 hsa-miR-6723-5p 0.000024 4.26 5.97 3.88 0.0531 chr1 

20518834 hsa-miR-4454 0.0000491 -3.55 6.53 8.36 0.0795 chr4 

20535460 hsa-mir-1298 0.0000697 -1.4 1.58 2.07 0.0795 chrX 

20528733 hsa-miR-7704 0.000072 1.77 9.78 8.96 0.0795 chr2 

20534812 hsa-mir-29c 0.0001 1.42 1.88 1.37 0.1139 chr1 

20537518 hsa-mir-6775 0.0001 -2.69 1.4 2.83 0.107 chr16 

20509224 hsa-miR-1908-5p 0.0002 1.64 6.74 6.03 0.1518 chr11 

20518933 hsa-miR-4532 0.0004 1.98 7.02 6.04 0.2686 chr20 

20536775 hsa-mir-4500 0.0004 -1.84 1.21 2.09 0.2627 chr13 

20518892 hsa-miR-4497 0.0005 1.52 9.21 8.61 0.2724 chr12 

20532932 ENSG00000202449 0.0005 1.43 1.33 0.81 0.2724 chr4 

20504413 hsa-miR-663a 0.0006 1.84 6.84 5.96 0.2741 chr20 

20518431 hsa-miR-3910 0.0006 1.66 1.72 0.99 0.2741 chr9 

20504433 hsa-miR-421 0.0007 -1.73 5.99 6.78 0.2805 chrX 

20517942 hsa-miR-3682-5p 0.0007 1.59 1.66 0.99 0.2805 chr2 

20533897 ENSG00000252190 0.0008 1.5 1.89 1.31 0.2995 chr1 

20536814 hsa-mir-4534 0.001 1.39 1.82 1.35 0.3166 chr22 

20536889 hsa-mir-4664 0.001 -1.58 1.4 2.06 0.3166 chr8 

20537456 hsa-mir-6715b 0.001 1.43 2.23 1.72 0.3166 chr10 

20504408 hsa-miR-652-3p 0.0011 -1.35 6.84 7.27 0.3166 chrX 

20507742 hsa-miR-1469 0.0011 1.63 7.05 6.34 0.3166 chr15 

20501197 hsa-miR-361-5p 0.0012 -1.47 8.8 9.36 0.3166 chrX 

20538223 U68 0.0012 1.24 6.54 6.24 0.3166 chr19 

20538181 U43 0.0015 1.29 10.23 9.87 0.3694 chr22 

20536568 hsa-mir-3664 0.0016 1.63 1.75 1.05 0.3694 chr11 
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ID Transcript ID(Array 
Design) 

P-val Fold Change siTDP Avg (log2) SCR Avg (log2) FDR P-
val 

Chromosome 

20537538 hsa-mir-6795 0.0016 1.59 1.78 1.11 0.3694 chr19 

20525526 hsa-miR-6782-3p 0.0017 -1.42 1.21 1.71 0.3779 chr17 

20533168 ENSG00000221633 0.0019 1.63 1.91 1.21 0.4082 chr3 

20533189 ENSG00000223027 0.0019 -1.5 1.23 1.82 0.4082 chr10 

20518816 hsa-miR-4441 0.0021 -1.3 1.08 1.46 0.4174 chr2 

20533677 ENSG00000239033 0.0021 -1.32 0.91 1.31 0.4174 chr12 

20534818 hsa-mir-219a-2 0.0021 -1.45 1.35 1.89 0.4174 chr9 

20500170 hsa-miR-92a-1-5p 0.0023 2.69 3.1 1.67 0.4247 chr13 

20536757 hsa-mir-4485 0.0023 1.4 3.54 3.05 0.4247 chr11 

20538180 U43 0.0028 1.2 10.63 10.37 0.5084 chr22 

20536760 hsa-mir-4487 0.0029 1.74 2.08 1.28 0.5135 chr11 

20500489 hsa-miR-224-5p 0.0036 1.39 1.57 1.09 0.5519 chrX 

20515595 hsa-miR-3170 0.0036 -1.29 1.08 1.45 0.5519 chr13 

20500742 hsa-miR-137 0.0037 1.3 1.08 0.7 0.5519 chr1 

20518878 hsa-miR-4484 0.0039 1.42 8.13 7.63 0.5519 chr10 

20533980 ENSG00000252526 0.0039 -1.38 1.34 1.81 0.5519 chr16 

20538048 hsa-mir-8088 0.0039 -1.45 1.33 1.87 0.5519 chrX 

20525416 hsa-miR-6727-5p 0.004 1.38 7.92 7.45 0.5519 chr1 

20519441 hsa-miR-4656 0.0041 2.37 3.53 2.29 0.5519 chr7 

20515551 hsa-miR-3142 0.0042 1.23 1.35 1.05 0.5519 chr5 

20500137 hsa-miR-19b-3p 0.0044 -5.02 3.6 5.93 0.5519 chr13 

20525554 hsa-miR-6796-3p 0.0045 1.5 2.08 1.49 0.5519 chr19 

20500721 hsa-miR-23b-3p 0.0046 -1.13 9.32 9.49 0.5519 chr9 

20504552 hsa-miR-671-5p 0.0047 -1.44 5.07 5.59 0.5519 chr7 

20500148 hsa-miR-24-3p 0.0048 -1.51 7.33 7.92 0.5519 chr19 

20500465 hsa-miR-210-3p 0.0048 -2.36 3.71 4.95 0.5519 chr11 

20536929 hsa-mir-4698 0.0048 2.08 2.53 1.48 0.5519 chr12 
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Chromosome 

20506005 hsa-miR-936 0.005 -1.53 1.33 1.94 0.5519 chr10 

20519570 hsa-miR-4728-5p 0.005 2.38 4.65 3.4 0.5519 chr17 

20525633 hsa-miR-6780b-5p 0.005 1.79 6.13 5.29 0.5519 chr6 

20534879 hsa-mir-151a 0.005 -1.75 1.47 2.27 0.5519 chr8 

20536902 hsa-mir-4676 0.005 1.38 1.93 1.47 0.5519 chr10 

20504342 hsa-miR-602 0.0051 -1.6 2.03 2.7 0.5519 chr9 

20525668 hsa-miR-6853-3p 0.0051 1.39 1.63 1.15 0.5519 chr9 

20533715 ENSG00000239084 0.0053 1.36 1.42 0.98 0.5674 chr5 

20506878 hsa-miR-548p 0.0054 1.47 1.58 1.02 0.5674 chr5 

20501293 hsa-miR-331-3p 0.0057 -2.17 3.74 4.86 0.5674 chr12 

20536769 hsa-mir-4495 0.0057 1.24 1.5 1.19 0.5674 chr12 

20523019 hsa-miR-6087 0.0058 1.37 10.47 10.02 0.5674 chrX 

20532926 ENSG00000202374 0.0059 -1.59 1.44 2.1 0.5674 chr4 

20536497 hsa-mir-4277 0.0059 -1.71 1.85 2.63 0.5674 chr5 

20536870 hsa-mir-4650-1 0.006 1.34 1.65 1.23 0.5674 chr7 

20536871 hsa-mir-4650-2 0.006 1.34 1.65 1.23 0.5674 chr7 

20533228 ENSG00000238339 0.0065 1.31 1.98 1.59 0.6054 chr2 

20532651 ACA32 0.0066 1.63 2.66 1.95 0.6104 chr11 

20505608 hsa-miR-675-5p 0.0069 1.51 2.05 1.46 0.6264 chr11 

20533161 ENSG00000221398 0.007 -1.58 1.39 2.05 0.6264 chr21 

20525421 hsa-miR-6729-3p 0.0072 1.32 1.4 1 0.6264 chr1 

20532748 ENSG00000199666 0.0072 -1.48 1.24 1.8 0.6264 chr1 

20515591 hsa-miR-1260b 0.0073 -2.96 3.74 5.31 0.6264 chr11 

20501280 hsa-miR-342-3p 0.0075 -1.18 8.62 8.86 0.6379 chr14 

20536560 hsa-mir-3656 0.008 -2.07 1.66 2.71 0.6726 chr11 

20533973 ENSG00000252495 0.0083 1.25 1.64 1.31 0.6775 chr1 

20537204 hsa-mir-5692c-2 0.0083 1.43 1.79 1.27 0.6775 chr7 



 
Table A.1. Small RNAs significantly altered following TDP-43 Knockdown. 

273 
 

ID Transcript ID(Array 
Design) 

P-val Fold Change siTDP Avg (log2) SCR Avg (log2) FDR P-
val 

Chromosome 

20536728 hsa-mir-4468 0.0084 -1.5 1.34 1.92 0.6775 chr7 

20500448 hsa-miR-181c-5p 0.0091 -1.46 1.42 1.97 0.7253 chr19 

20500456 hsa-miR-196a-3p 0.0094 -1.52 1.56 2.16 0.7344 chr12 

20522039 hsa-miR-5703 0.0094 -1.88 1.22 2.13 0.7344 chr2 

20506898 hsa-miR-1306-5p 0.0097 -1.55 1.21 1.85 0.7474 chr22 

20537467 hsa-mir-892c 0.0099 1.86 2.22 1.33 0.7528 chrX 

20500191 hsa-miR-103a-3p 0.0102 -1.31 10.45 10.83 0.7542 chr20 

20533078 ENSG00000212391 0.0102 1.41 2.2 1.7 0.7542 chr2 

20533463 ENSG00000238696 0.0103 1.24 1.36 1.05 0.7542 chr2 

20533676 ENSG00000239033 0.0105 -1.26 0.94 1.28 0.7542 chr12 

20536313 hsa-mir-3194 0.0105 -1.33 1.39 1.8 0.7542 chr20 

20504582 hsa-miR-766-5p 0.0106 -1.75 1.6 2.4 0.7576 chrX 

20534302 HBII-85-11 0.0111 1.2 1.58 1.32 0.7791 chr15 

20500791 hsa-miR-188-5p 0.0112 -2.19 1.71 2.85 0.7791 chrX 

20512262 hsa-miR-2277-3p 0.0113 1.76 2.42 1.61 0.7791 chr5 

20504583 hsa-miR-766-3p 0.0116 -1.41 3.5 4 0.7791 chrX 

20537158 hsa-mir-5583-2 0.0116 -1.38 1.43 1.89 0.7791 chr18 

20534534 hsa-mir-217 0.0118 1.27 1.59 1.25 0.7791 chr2 

20533843 ENSG00000251974 0.012 1.15 1.07 0.87 0.7791 chr2 

20500194 hsa-miR-106a-5p 0.0121 -1.67 10.35 11.09 0.7791 chrX 

20501176 hsa-miR-99b-5p 0.0122 -1.26 7.57 7.9 0.7791 chr19 

20501312 hsa-miR-345-5p 0.0122 -1.88 4.28 5.18 0.7791 chr14 

20534858 hsa-mir-380 0.0122 -1.37 1.33 1.78 0.7791 chr14 

20537157 hsa-mir-5583-2 0.0128 -1.36 1.44 1.89 0.7791 chr18 

20505746 hsa-miR-874-3p 0.0129 -1.95 2.62 3.59 0.7791 chr5 

20518627 hsa-miR-548y 0.0131 -1.28 0.98 1.34 0.7791 chr14 

20500144 hsa-miR-22-3p 0.0132 -2.31 1.68 2.89 0.7791 chr17 
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Chromosome 

20518852 hsa-miR-4467 0.0133 1.51 4.79 4.2 0.7791 chr7 

20500196 hsa-miR-107 0.0136 -1.26 10.08 10.42 0.7791 chr10 

20517834 hsa-miR-3620-3p 0.0136 1.65 3.04 2.32 0.7791 chr1 

20519670 hsa-miR-4783-3p 0.0137 -1.61 1.32 2.01 0.7791 chr2 

20515607 hsa-miR-3178 0.0138 1.37 7.99 7.53 0.7791 chr16 

20534830 hsa-mir-361 0.0138 -1.22 7.2 7.5 0.7791 chrX 

20535688 hsa-mir-937 0.014 -1.61 1.57 2.26 0.7791 chr8 

20538244 U73a 0.0141 1.39 8.76 8.29 0.7791 chr4 

20500419 hsa-miR-129-1-3p 0.0142 1.36 1.31 0.87 0.7791 chr7 

20504310 hsa-miR-582-3p 0.0142 -1.17 1.09 1.32 0.7791 chr5 

20534042 ENSG00000252787 0.0142 -1.31 1.69 2.08 0.7791 chr3 

20500162 hsa-miR-30a-5p 0.0143 -2.17 1.99 3.11 0.7791 chr6 

20504374 hsa-miR-626 0.0143 -1.44 0.79 1.31 0.7791 chr15 

20535102 hsa-mir-450a-1 0.0143 1.58 1.54 0.89 0.7791 chrX 

20500454 hsa-miR-187-5p 0.0145 -1.46 2.03 2.57 0.7803 chr18 

20525731 hsa-miR-6885-5p 0.0146 -2.28 1.68 2.87 0.7803 chr19 

20534315 HBII-85-22 0.0149 -1.28 1.13 1.49 0.7857 chr15 

20533699 ENSG00000239063 0.0153 -1.24 1.08 1.39 0.7857 chr1 

20500182 hsa-miR-99a-3p 0.0154 1.36 1.52 1.08 0.7857 chr21 

20522031 hsa-miR-5696 0.0154 -1.5 1.12 1.7 0.7857 chr2 

20506886 hsa-miR-1288-3p 0.0156 -1.81 1.3 2.15 0.7857 chr17 

20537429 hsa-mir-548ay 0.0157 -1.34 1.2 1.62 0.7857 chr3 

20525479 hsa-miR-6759-5p 0.0158 -1.24 1.24 1.56 0.7857 chr12 

20503808 hsa-miR-193b-3p 0.016 -1.48 7.5 8.07 0.7857 chr16 

20533957 ENSG00000252433 0.0163 1.16 1.18 0.96 0.7857 chr1 

20529782 hsa-miR-8072 0.0165 1.47 7.11 6.56 0.7857 chr12 

20533570 ENSG00000238863 0.0165 1.21 1.16 0.88 0.7857 chr18 
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Chromosome 

20519468 hsa-miR-4670-5p 0.0168 1.22 1.75 1.46 0.7857 chr9 

20535131 hsa-mir-376b 0.0168 -1.61 0.85 1.54 0.7857 chr14 

20536884 hsa-mir-4662a 0.0168 1.46 1.66 1.12 0.7857 chr8 

20519591 hsa-miR-4740-3p 0.0169 -1.92 1.55 2.49 0.7857 chr17 

20535101 hsa-mir-450a-1 0.0169 1.21 1.18 0.91 0.7857 chrX 

20535879 hsa-mir-1263 0.017 -1.78 2.08 2.91 0.7857 chr3 

20532658 ACA35 0.0172 -1.23 1.38 1.68 0.7857 chr1 

20500723 hsa-miR-27b-3p 0.0173 -2 4.11 5.12 0.7857 chr9 

20532645 ACA2b 0.0174 1.43 1.31 0.79 0.7857 chr12 

20534091 ENSG00000253013 0.0175 -1.45 1.78 2.31 0.7857 chr4 

20537086 hsa-mir-5094 0.0176 1.47 2.5 1.94 0.7857 chr15 

20533733 ENSG00000239123 0.0177 -1.45 1.57 2.11 0.7857 chr7 

20506844 hsa-miR-1251-5p 0.0178 1.37 1.52 1.07 0.7857 chr12 

20519459 hsa-miR-4666a-5p 0.0178 -1.21 1.56 1.83 0.7857 chr1 

20534234 HBII-240 0.0178 1.28 1.31 0.96 0.7857 chr5 

20533793 ENSG00000251775 0.018 1.19 1.53 1.27 0.7863 chr2 

20536614 hsa-mir-3915 0.0182 -1.25 1.09 1.41 0.7863 chrX 

20501772 hsa-miR-196b-3p 0.0183 -2.06 2.98 4.02 0.7863 chr7 

20535671 hsa-mir-873 0.0183 1.53 1.65 1.04 0.7863 chr9 

20522537 hsa-miR-5787 0.0184 1.38 7.77 7.3 0.7863 chr3 

20518782 hsa-miR-1268b 0.0186 1.44 5.82 5.3 0.7921 chr17 

20533113 ENSG00000212558 0.0189 1.57 1.86 1.21 0.7967 chr2 

20500163 hsa-miR-30a-3p 0.0191 -1.86 2.64 3.53 0.8027 chr6 

20537639 hsa-mir-6893 0.0196 -1.49 1.63 2.21 0.8148 chr8 

20520195 hsa-miR-4999-3p 0.0199 -1.45 1 1.54 0.8148 chr19 

20533553 ENSG00000238841 0.0199 1.48 1.76 1.2 0.8148 chr7 

20536792 hsa-mir-4514 0.02 -1.28 1.29 1.65 0.8148 chr15 
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Chromosome 

20500130 hsa-miR-17-5p 0.0202 -1.62 10.53 11.23 0.8148 chr13 

20509227 hsa-miR-1909-3p 0.0204 2.06 3.17 2.12 0.8148 chr19 

20533041 ENSG00000212211 0.0204 1.39 1.67 1.2 0.8148 chr3 

20534125 ENSG00000262620 0.0204 1.39 1.67 1.2 0.8148 chrHG1091_PATCH 

20506837 hsa-miR-1246 0.0205 2.18 7.14 6.01 0.8157 chr2 

20500132 hsa-miR-18a-5p 0.0207 -1.81 7.22 8.07 0.8181 chr13 

20500779 hsa-miR-146a-3p 0.021 -1.3 1.44 1.82 0.8181 chr5 

20535199 hsa-mir-516a-1 0.0211 1.29 1.36 1 0.8181 chr19 

20535200 hsa-mir-516a-2 0.0211 1.29 1.36 1 0.8181 chr19 

20525423 hsa-miR-6730-3p 0.0215 -1.17 1.59 1.81 0.8235 chr1 

20535457 hsa-mir-762 0.0217 1.52 2.08 1.47 0.8235 chr16 

20538108 SNORA84 0.0218 -1.13 1.76 1.94 0.8235 chr9 

20537161 hsa-mir-5586 0.0219 -1.15 1.05 1.26 0.8235 chr14 

20536218 hsa-mir-3132 0.022 -1.33 1.48 1.88 0.8235 chr2 

20536616 hsa-mir-3914-2 0.022 1.42 1.47 0.96 0.8235 chr7 

20538300 mgh28S-2411 0.0221 1.13 8.7 8.52 0.8235 chr11 

20533286 ENSG00000238436 0.023 1.75 2.13 1.32 0.8278 chr12 

20500787 hsa-miR-185-5p 0.0233 -1.78 6.52 7.36 0.8278 chr22 

20537253 hsa-mir-6080 0.0234 -1.67 1.68 2.42 0.8278 chr17 

20535146 hsa-mir-493 0.0235 -1.84 1.57 2.45 0.8278 chr14 

20525515 hsa-miR-6777-5p 0.0236 1.62 3.26 2.56 0.8278 chr17 

20500142 hsa-miR-21-3p 0.0237 -1.19 1.5 1.75 0.8278 chr17 

20500446 hsa-miR-181b-5p 0.0239 -1.31 5.88 6.27 0.8278 chr1 

20515644 hsa-miR-3200-5p 0.0239 -1.57 1.17 1.82 0.8278 chr22 

20532737 ENSG00000199411 0.0239 -1.24 1.52 1.83 0.8278 chr9 

20517917 hsa-miR-3664-5p 0.024 1.13 1.35 1.17 0.8278 chr11 

20506787 hsa-miR-1237-5p 0.0243 1.4 7.38 6.89 0.8278 chr11 
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Chromosome 

20533253 ENSG00000238375 0.0243 -1.18 1.4 1.63 0.8278 chr6 

20538319 hsa-mir-4466 0.0243 1.38 2.67 2.2 0.8278 chr6 

20517909 hsa-miR-3658 0.0244 1.16 0.96 0.75 0.8278 chr1 

20533389 ENSG00000238581 0.0244 -1.69 2.48 3.23 0.8278 chr21 

20536546 hsa-mir-3620 0.0244 -1.79 1.37 2.21 0.8278 chr1 

20538019 hsa-mir-8061 0.0248 -1.53 1.16 1.77 0.8278 chr19 

20529568 hsa-miR-7977 0.0249 1.44 5.78 5.25 0.8278 chr3 

20536885 hsa-mir-4659b 0.0249 1.53 1.6 0.99 0.8278 chr8 

20534270 HBII-52-26 0.025 1.13 1.32 1.13 0.8278 chr15 

20535432 hsa-mir-758 0.0251 -1.52 1.71 2.31 0.8278 chr14 

20536865 hsa-mir-4645 0.0251 -1.51 1.5 2.09 0.8278 chr6 

20517955 hsa-miR-3691-3p 0.0252 -1.62 1.66 2.36 0.8278 chr6 

20519604 hsa-miR-4747-5p 0.0255 -1.4 1.24 1.73 0.8278 chr19 

20532859 ENSG00000201410 0.0255 -1.51 1.09 1.68 0.8278 chr3 

20536493 hsa-mir-4276 0.0256 -1.49 1.28 1.85 0.8278 chr4 

20518897 hsa-miR-4501 0.0257 -1.52 1.02 1.63 0.8278 chr13 

20515523 hsa-miR-3125 0.0262 -1.15 0.98 1.18 0.8278 chr2 

20537984 hsa-mir-4433b 0.0262 -1.11 1.14 1.29 0.8278 chr2 

20533462 ENSG00000238696 0.0265 1.37 1.45 0.99 0.8278 chr2 

20535899 hsa-mir-1277 0.0265 -1.19 0.93 1.17 0.8278 chrX 

20533115 ENSG00000212565 0.0266 1.23 1.25 0.95 0.8278 chr17 

20536766 hsa-mir-4492 0.0266 -1.46 1.67 2.22 0.8278 chr11 

20533756 ENSG00000239153 0.0268 1.42 1.92 1.42 0.8278 chr11 

20533606 ENSG00000238922 0.027 -1.8 1.09 1.94 0.8278 chr7 

20505747 hsa-miR-890 0.0272 -1.42 0.98 1.49 0.8278 chrX 

20517821 hsa-miR-3613-3p 0.0273 1.56 6.92 6.27 0.8278 chr13 

20518843 hsa-miR-3135b 0.0273 1.57 5.43 4.79 0.8278 chr6 
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Chromosome 

20534622 hsa-mir-138-1 0.0274 -1.19 1.59 1.84 0.8278 chr3 

20533190 ENSG00000223111 0.0275 -1.4 1.33 1.82 0.8278 chr10 

20533191 ENSG00000223182 0.0275 -1.4 1.33 1.82 0.8278 chr10 

20534172 ENSG00000265733 0.0275 -1.4 1.33 1.82 0.8278 chrHG1211_PATCH 

20535888 hsa-mir-1272 0.0276 1.61 1.68 1 0.8278 chr15 

20519517 hsa-miR-4701-5p 0.0279 1.56 2.26 1.62 0.8284 chr12 

20534238 HBII-295 0.0281 -1.39 1.52 1.99 0.8284 chr9 

20538489 gi:555853 0.0281 -1.14 13.45 13.63 0.8284 
 

20525026 hsa-miR-6512-3p 0.0283 -1.29 1.2 1.57 0.8284 chr2 

20538262 U85 0.0284 -1.92 1.38 2.32 0.8284 chr12 

20536900 hsa-mir-4674 0.0286 1.58 2.37 1.71 0.8284 chr9 

20533047 ENSG00000212229 0.0289 -1.15 1.41 1.62 0.8284 chr6 

20536970 hsa-mir-4734 0.0289 1.4 2.43 1.94 0.8284 chr17 

20521782 hsa-miR-4524b-3p 0.029 -1.27 1.22 1.56 0.8284 chr17 

20525453 hsa-miR-6746-5p 0.029 1.94 3.47 2.51 0.8284 chr11 

20525706 hsa-miR-6872-3p 0.029 -1.87 1.82 2.72 0.8284 chr3 

20501233 hsa-miR-373-5p 0.0291 -1.22 1.06 1.34 0.8284 chr19 

20535918 hsa-mir-1255b-2 0.0294 -1.41 1 1.5 0.8324 chr1 

20506788 hsa-miR-1237-3p 0.0297 -1.64 1.51 2.23 0.8331 chr11 

20535387 hsa-mir-638 0.0297 1.12 1.86 1.69 0.8331 chr19 

20536635 hsa-mir-676 0.0298 -1.35 1.28 1.71 0.8331 chrX 

20519611 hsa-miR-4751 0.0299 1.35 1.76 1.33 0.8331 chr19 

20521839 hsa-miR-5590-3p 0.0301 -1.22 0.89 1.18 0.8338 chr2 

20533114 ENSG00000212558 0.0302 1.52 1.87 1.27 0.8353 chr2 

20536437 hsa-mir-4293 0.0306 -1.86 1.49 2.39 0.8415 chr10 

20533384 ENSG00000238575 0.0307 -1.09 1.19 1.32 0.8415 chr18 

20538016 hsa-mir-8058 0.0309 1.49 1.9 1.32 0.8427 chr16 
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Chromosome 

20500751 hsa-miR-143-5p 0.0314 -1.55 1.83 2.46 0.8492 chr5 

20535453 hsa-mir-766 0.0315 1.33 1.7 1.28 0.8492 chrX 

20518803 hsa-miR-548ad 0.0316 -1.29 0.89 1.26 0.8492 chr2 

20533729 ENSG00000239111 0.0316 -1.26 1.42 1.75 0.8492 chr1 

20537586 hsa-mir-6841 0.0318 1.21 1.43 1.15 0.85 chr8 

20536796 hsa-mir-4518 0.0321 -1.29 1.68 2.05 0.8541 chr16 

20506869 hsa-miR-1273a 0.0324 -1.56 1.33 1.98 0.855 chr8 

20519679 hsa-miR-4787-5p 0.0324 1.29 9.22 8.85 0.855 chr3 

20502122 hsa-miR-422a 0.0326 -1.22 6.64 6.93 0.855 chr15 

20536615 hsa-mir-3914-2 0.0326 1.46 1.52 0.97 0.855 chr7 

20533707 ENSG00000239072 0.0332 1.43 1.95 1.44 0.8557 chr2 

20534829 hsa-mir-26a-2 0.0333 -1.25 1.38 1.7 0.8557 chr12 

20532669 ACA40 0.0334 -1.72 2.02 2.8 0.8557 chr11 

20532862 ENSG00000201465 0.0334 -1.19 1.17 1.42 0.8557 chr7 

20500469 hsa-miR-212-3p 0.0335 1.84 3.6 2.72 0.8557 chr17 

20535218 hsa-mir-509-1 0.0337 -1.43 1.15 1.67 0.8557 chrX 

20535638 hsa-mir-509-2 0.0337 -1.43 1.15 1.67 0.8557 chrX 

20535683 hsa-mir-509-3 0.0337 -1.43 1.15 1.67 0.8557 chrX 

20533559 ENSG00000238852 0.0339 -1.22 1.45 1.74 0.8573 chr2 

20536652 hsa-mir-374c 0.0343 1.13 1.74 1.56 0.8636 chrX 

20538460 spike_in-control-17 0.035 1.2 1.68 1.42 0.8659 
 

20533092 ENSG00000212445 0.0354 -1.56 1.59 2.23 0.8659 chr16 

20515564 hsa-miR-3150a-5p 0.0356 -1.45 1.58 2.12 0.8659 chr8 

20532765 ENSG00000199934 0.0358 -1.34 0.94 1.36 0.8659 chr1 

20534526 hsa-mir-210 0.0359 -1.59 1.82 2.5 0.8659 chr11 

20518882 hsa-miR-4488 0.0364 1.27 7.51 7.16 0.8659 chr11 

20506012 hsa-miR-941 0.0365 -1.61 4.5 5.2 0.8659 chr20 
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Chromosome 

20518628 hsa-miR-3939 0.0367 -1.31 1.42 1.81 0.8659 chr6 

20538044 hsa-mir-8084 0.0367 1.23 1.28 0.98 0.8659 chr8 

20517712 hsa-miR-4254 0.0369 1.79 2.44 1.6 0.8659 chr1 

20536805 hsa-mir-4525 0.037 -2.04 1.46 2.49 0.8659 chr17 

20536907 hsa-mir-4679-1 0.037 1.17 1.1 0.87 0.8659 chr10 

20532994 ENSG00000207130 0.0371 1.21 1.7 1.42 0.8659 chr3 

20536318 hsa-mir-3198-1 0.0374 -1.66 1.58 2.31 0.8659 chr22 

20536933 hsa-mir-3198-2 0.0374 -1.66 1.58 2.31 0.8659 chr12 

20500450 hsa-miR-182-5p 0.0375 -1.55 7.51 8.14 0.8659 chr7 

20500728 hsa-miR-124-5p 0.0375 1.33 2.22 1.81 0.8659 chr20 

20525690 hsa-miR-6864-3p 0.0376 1.22 1.48 1.2 0.8659 chr17 

20529133 hsa-miR-1273h-3p 0.0377 1.23 1.88 1.59 0.8659 chr16 

20538303 snR38C 0.0379 1.3 8.43 8.05 0.8659 chr17 

20533280 ENSG00000238428 0.0383 -2.4 1.17 2.43 0.8659 chr2 

20535144 hsa-mir-202 0.0383 1.33 1.61 1.2 0.8659 chr10 

20535822 hsa-mir-1285-2 0.0384 -1.18 1.14 1.37 0.8659 chr2 

20537608 hsa-mir-6862-1 0.0385 -1.53 1.27 1.89 0.8659 chr16 

20538092 hsa-mir-6862-2 0.0385 -1.53 1.27 1.89 0.8659 chr16 

20525466 hsa-miR-6752-3p 0.039 -1.4 0.86 1.35 0.8659 chr11 

20533988 ENSG00000252557 0.0394 1.11 1.17 1.02 0.8659 chr7 

20537594 hsa-mir-6849 0.0398 1.63 2.18 1.48 0.8659 chr8 

20535143 hsa-mir-146b 0.0399 -1.4 1.38 1.86 0.8659 chr10 

20504553 hsa-miR-671-3p 0.04 -1.57 2.19 2.84 0.8659 chr7 

20518856 hsa-miR-4471 0.04 1.21 1.46 1.18 0.8659 chr8 

20534845 hsa-mir-376c 0.0403 1.32 1.52 1.11 0.8659 chr14 

20533749 ENSG00000239141 0.0404 1.22 1.42 1.14 0.8659 chr3 

20536576 hsa-mir-3672 0.0404 -1.19 1.21 1.46 0.8659 chrX 
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Chromosome 

20536718 hsa-mir-4461 0.0404 1.41 1.96 1.47 0.8659 chr5 

20537236 hsa-mir-5739 0.0404 -1.13 1.14 1.31 0.8659 chr22 

20504328 hsa-miR-591 0.0405 -1.19 0.98 1.23 0.8659 chr7 

20518000 hsa-miR-3714 0.0407 -2.06 1.26 2.31 0.8659 chr3 

20536641 hsa-mir-3936 0.0408 1.47 1.89 1.34 0.8659 chr5 

20532585 14qII-17 0.0409 1.16 1.3 1.09 0.8659 chr14 

20533179 ENSG00000222185 0.0409 1.28 1.23 0.87 0.8659 chr14 

20536873 hsa-mir-4652 0.041 -1.34 1.16 1.59 0.8659 chr7 

20536028 hsa-mir-2116 0.0411 -1.25 1.39 1.71 0.8659 chr15 

20534577 hsa-mir-124-1 0.0414 1.27 1.31 0.97 0.8659 chr8 

20501155 hsa-miR-194-3p 0.0418 -1.89 1.32 2.23 0.8659 chr11 

20538236 U71a 0.0418 -1.22 2.21 2.5 0.8659 chr20 

20533593 ENSG00000238899 0.042 -1.53 1.15 1.76 0.8659 chr5 

20537563 hsa-mir-6819 0.042 1.43 2.46 1.95 0.8659 chr22 

20536695 hsa-mir-4441 0.0421 -1.37 1.3 1.75 0.8659 chr2 

20506004 hsa-miR-935 0.0422 -1.37 6.38 6.84 0.8659 chr19 

20515638 hsa-miR-3196 0.0422 1.79 9.31 8.47 0.8659 chr20 

20536509 hsa-mir-4289 0.0424 -1.24 1.61 1.92 0.8659 chr9 

20534362 hsa-mir-22 0.0426 -1.17 1.5 1.73 0.8659 chr17 

20519409 hsa-miR-4634 0.043 1.61 1.98 1.3 0.8659 chr5 

20533323 ENSG00000238494 0.0431 1.27 1.68 1.33 0.8659 chr15 

20533349 ENSG00000238535 0.0431 1.27 1.68 1.33 0.8659 chr15 

20500486 hsa-miR-222-3p 0.0432 -1.26 11.72 12.04 0.8659 chrX 

20533061 ENSG00000212309 0.0433 1.24 1.47 1.16 0.8659 chr2 

20519473 hsa-miR-4673 0.0434 -1.56 1.91 2.55 0.8659 chr9 

20500780 hsa-miR-149-5p 0.0435 -1.23 5.69 5.98 0.8659 chr2 

20506873 hsa-miR-1276 0.0435 1.39 1.3 0.82 0.8659 chr15 
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Chromosome 

20537227 hsa-mir-5704 0.0437 1.23 1.53 1.23 0.8659 chr3 

20525544 hsa-miR-6791-3p 0.0441 1.35 1.75 1.31 0.8659 chr19 

20532879 ENSG00000201701 0.0441 1.47 1.51 0.96 0.8659 chr3 

20533390 ENSG00000238582 0.0441 -1.4 1.14 1.63 0.8659 chr2 

20517938 hsa-miR-3680-5p 0.0442 1.51 1.79 1.19 0.8659 chr16 

20538307 ENSG00000199552 0.0443 -1.4 1.35 1.84 0.8659 chr5 

20536557 hsa-mir-3653 0.0444 -1.41 1.96 2.46 0.8659 chr22 

20538115 SNORD125 0.0444 -1.41 1.96 2.46 0.8659 chr22 

20537439 hsa-mir-6508 0.0445 1.49 1.77 1.19 0.8659 chr21 

20500399 hsa-miR-199a-5p 0.0447 -1.3 1.59 1.97 0.8659 chr1 

20532847 ENSG00000201316 0.0449 1.2 1.69 1.43 0.8659 chr8 

20534374 hsa-mir-28 0.0449 -1.12 1.6 1.77 0.8659 chr3 

20536552 hsa-mir-3648 0.0449 1.64 3 2.29 0.8659 chr21 

20507744 hsa-miR-1471 0.045 -1.52 1.37 1.97 0.8659 chr2 

20501157 hsa-miR-106b-5p 0.0451 -1.77 7.43 8.25 0.8659 chr7 

20536555 hsa-mir-3651 0.0451 1.24 3.15 2.84 0.8659 chr9 

20538106 SNORA84 0.0451 1.24 3.15 2.84 0.8659 chr9 

20537597 hsa-mir-6852 0.0452 1.53 2.05 1.44 0.8659 chr9 

20502452 hsa-miR-452-3p 0.0453 1.37 1.54 1.08 0.8659 chrX 

20519587 hsa-miR-4738-5p 0.046 1.22 1.55 1.26 0.8659 chr17 

20501201 hsa-miR-362-5p 0.0461 -2.41 3.84 5.11 0.8659 chrX 

20536268 hsa-mir-3161 0.0462 1.33 1.4 0.98 0.8659 chr11 

20536464 hsa-mir-4323 0.0464 -1.32 2.4 2.8 0.8659 chr19 

20533219 ENSG00000238328 0.0466 1.2 1.31 1.05 0.8659 chr2 

20535414 hsa-mir-656 0.0467 -1.12 1.34 1.51 0.8659 chr14 

20520197 hsa-miR-5000-3p 0.0469 1.4 1.43 0.95 0.8659 chr2 

20535306 hsa-mir-568 0.0469 1.24 1.37 1.06 0.8659 chr3 
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ID Transcript ID(Array 
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val 

Chromosome 

20538000 hsa-mir-548ba 0.047 1.25 1.21 0.89 0.8659 chr2 

20536435 hsa-mir-4297 0.0473 -1.47 2.57 3.13 0.8659 chr10 

20533067 ENSG00000212347 0.0474 1.35 1.2 0.77 0.8659 chrX 

20534199 ENSG00000268513 0.0474 1.35 1.2 0.77 0.8659 chrHG1435_PATCH 

20525420 hsa-miR-6729-5p 0.0475 1.23 8.67 8.38 0.8659 chr1 

20535180 hsa-mir-517a 0.0479 -1.18 1.13 1.37 0.8659 chr19 

20506811 hsa-miR-548j-3p 0.048 -1.54 1.16 1.78 0.8659 chr22 

20525525 hsa-miR-6782-5p 0.048 2.12 3.13 2.05 0.8659 chr17 

20533794 ENSG00000251778 0.048 -1.51 1.25 1.85 0.8659 chr21 

20533967 ENSG00000252458 0.048 -1.14 1.36 1.55 0.8659 chr5 

20537632 hsa-mir-6886 0.0481 -1.43 2.8 3.32 0.8659 chr19 

20538270 U90 0.0482 -1.35 1.85 2.28 0.8659 chr3 

20519410 hsa-miR-4635 0.0485 -1.44 3.96 4.48 0.8659 chr5 

20502130 hsa-miR-425-3p 0.0488 -2.24 2.64 3.8 0.8659 chr3 

20518790 hsa-miR-4421 0.0488 1.36 1.55 1.11 0.8659 chr1 

20536504 hsa-mir-4284 0.0488 1.27 1.91 1.56 0.8659 chr7 

20536541 hsa-mir-3616 0.0488 1.32 2.1 1.69 0.8659 chr20 

20538045 hsa-mir-8085 0.0492 -1.49 1.54 2.12 0.8659 chr19 

20533700 ENSG00000239063 0.0496 -1.35 1.21 1.65 0.8659 chr1 

20500152 hsa-miR-26a-5p 0.0497 -1.43 8.25 8.77 0.8659 chr12 

20502237 hsa-miR-20b-5p 0.0498 -1.59 6.18 6.85 0.8659 chrX 

20504550 hsa-miR-758-3p 0.0498 -1.59 1.18 1.84 0.8659 chr14 

20500139 hsa-miR-20a-5p 0.0499 -1.55 9.45 10.08 0.8659 chr13 

20536578 hsa-mir-3674 0.05 -1.19 1.07 1.32 0.8659 chr8 
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ID Transcript ID(Array 
Design) 

P-val Fold Change siFUS Avg (log2) SCR Avg (log2) FDR P-
val 

Chromosome 

20537518 hsa-mir-6775 0.0002 -2.34 1.61 2.83 0.8811 chr16 

20534818 hsa-mir-219a-2 0.0003 -1.49 1.31 1.89 0.8811 chr9 

20518818 hsa-miR-4443 0.0005 -1.46 6.5 7.04 0.8811 chr3 

20535460 hsa-mir-1298 0.0005 -1.3 1.68 2.07 0.8811 chrX 

20537592 hsa-mir-6847 0.0009 1.66 2.24 1.51 0.9953 chr8 

20536775 hsa-mir-4500 0.001 -1.69 1.33 2.09 0.9953 chr13 

20506005 hsa-miR-936 0.0011 -1.56 1.29 1.94 0.9953 chr10 

20535879 hsa-mir-1263 0.0017 -2.15 1.81 2.91 0.9953 chr3 

20522017 hsa-miR-548ax 0.0023 -1.63 0.95 1.66 0.9953 chrX 

20520348 hsa-miR-5095 0.0025 -1.49 1.31 1.88 0.9953 chr1 

20517909 hsa-miR-3658 0.0028 1.29 1.11 0.75 0.9953 chr1 

20529568 hsa-miR-7977 0.0029 1.9 6.18 5.25 0.9953 chr3 

20536752 hsa-mir-4480 0.003 -1.3 1.23 1.6 0.9953 chr10 

20533957 ENSG00000252433 0.003 1.29 1.33 0.96 0.9953 chr1 

20537586 hsa-mir-6841 0.0031 1.3 1.53 1.15 0.9953 chr8 

20532591 14qII-20 0.0032 1.28 1.53 1.18 0.9953 chr14 

20525669 hsa-miR-6854-5p 0.0033 1.5 1.58 1 0.9953 chr9 

20504582 hsa-miR-766-5p 0.0033 -1.91 1.47 2.4 0.9953 chrX 

20525546 hsa-miR-6792-3p 0.0039 1.51 1.59 0.99 0.9953 chr19 

20536018 hsa-mir-1976 0.0039 -1.9 1.51 2.44 0.9953 chr1 

20534091 ENSG00000253013 0.004 -1.82 1.44 2.31 0.9953 chr4 

20537456 hsa-mir-6715b 0.0041 1.36 2.16 1.72 0.9953 chr10 

20517821 hsa-miR-3613-3p 0.0052 1.81 7.13 6.27 0.9953 chr13 

20532932 ENSG00000202449 0.0053 1.32 1.22 0.81 0.9953 chr4 

20525569 hsa-miR-6804-5p 0.0054 -1.85 1.25 2.14 0.9953 chr19 

20518879 hsa-miR-4485 0.0054 1.5 7.49 6.9 0.9953 chr11 

20536268 hsa-mir-3161 0.0054 1.6 1.66 0.98 0.9953 chr11 

20535402 hsa-mir-652 0.0055 -1.48 1.49 2.06 0.9953 chrX 
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ID Transcript ID(Array 
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val 

Chromosome 

20533069 ENSG00000212363 0.0057 1.3 1.3 0.91 0.9953 chr5 

20536889 hsa-mir-4664 0.0059 -1.51 1.47 2.06 0.9953 chr8 

20518816 hsa-miR-4441 0.0071 -1.23 1.17 1.46 0.9953 chr2 

20537988 hsa-mir-7845 0.0073 -1.88 1.54 2.45 0.9953 chr2 

20536920 hsa-mir-4689 0.0075 -1.85 1.68 2.57 0.9953 chr1 

20536297 hsa-mir-3181 0.0076 1.48 1.88 1.31 0.9953 chr16 

20536025 hsa-mir-2110 0.0076 1.27 1.93 1.58 0.9953 chr10 

20525027 hsa-miR-6513-5p 0.0078 -1.59 1.41 2.08 0.9953 chr2 

20536800 hsa-mir-4521 0.0078 1.57 2.25 1.6 0.9953 chr17 

20500741 hsa-miR-135a-3p 0.008 -1.64 1.15 1.86 0.9953 chr3 

20532570 14qI-5 0.0082 1.4 1.46 0.97 0.9953 chr14 

20520197 hsa-miR-5000-3p 0.0083 1.53 1.56 0.95 0.9953 chr2 

20533763 ENSG00000239159 0.0084 -1.33 0.99 1.41 0.9953 chr5 

20537563 hsa-mir-6819 0.0085 1.57 2.6 1.95 0.9953 chr22 

20519451 hsa-miR-4659b-5p 0.0086 1.3 1.18 0.8 0.9953 chr8 

20518929 hsa-miR-4529-5p 0.0087 1.5 1.78 1.2 0.9953 chr18 

20534238 HBII-295 0.0088 -1.48 1.42 1.99 0.9953 chr9 

20535842 hsa-mir-1302-5 0.0092 -1.38 0.91 1.38 0.9953 chr20 

20500462 hsa-miR-205-5p 0.0094 1.44 1.57 1.04 0.9953 chr1 

20535432 hsa-mir-758 0.0094 -1.6 1.63 2.31 0.9953 chr14 

20536497 hsa-mir-4277 0.0106 -1.86 1.73 2.63 0.9953 chr5 

20537026 hsa-mir-4776-1 0.0107 1.59 2.13 1.46 0.9953 chr2 

20533253 ENSG00000238375 0.011 -1.27 1.29 1.63 0.9953 chr6 

20518834 hsa-miR-4454 0.0111 -1.51 7.76 8.36 0.9953 chr4 

20533431 ENSG00000238656 0.0112 1.11 1.02 0.87 0.9953 chr8 

20525731 hsa-miR-6885-5p 0.0114 -2.33 1.65 2.87 0.9953 chr19 

20535446 hsa-mir-1271 0.0114 1.4 2.05 1.57 0.9953 chr5 

20521804 hsa-miR-548ar-5p 0.0116 1.37 1.55 1.1 0.9953 chr13 
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ID Transcript ID(Array 
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P-val Fold Change siFUS Avg (log2) SCR Avg (log2) FDR P-
val 

Chromosome 

20510800 hsa-miR-1973 0.0121 -2.27 1.89 3.07 0.9953 chr4 

20536628 hsa-mir-3910-2 0.0122 1.52 1.99 1.39 0.9953 chr9 

20532626 ACA16 0.0125 1.68 2.58 1.83 0.9953 chr1 

20537565 hsa-mir-6821 0.0126 1.47 1.83 1.27 0.9953 chr22 

20533128 ENSG00000212604 0.0126 -1.61 1.17 1.86 0.9953 chr15 

20520565 hsa-miR-5187-5p 0.013 -1.63 0.92 1.62 0.9953 chr1 

20506771 hsa-miR-1227-5p 0.013 -1.77 2.91 3.74 0.9953 chr19 

20518893 hsa-miR-4498 0.0131 -1.31 2.24 2.63 0.9953 chr12 

20532926 ENSG00000202374 0.0132 -1.61 1.42 2.1 0.9953 chr4 

20522039 hsa-miR-5703 0.0133 -1.91 1.2 2.13 0.9953 chr2 

20537868 hsa-mir-7152 0.0133 1.53 2.13 1.52 0.9953 chr10 

20533760 ENSG00000239157 0.0134 -1.23 1.38 1.68 0.9953 chr20 

20519075 hsa-miR-3973 0.0137 -1.27 1.64 1.99 0.9953 chr11 

20533280 ENSG00000238428 0.014 -2.15 1.33 2.43 0.9953 chr2 

20538115 SNORD125 0.0142 -1.49 1.88 2.46 0.9953 chr22 

20536560 hsa-mir-3656 0.0142 -1.7 1.94 2.71 0.9953 chr11 

20536557 hsa-mir-3653 0.0142 -1.49 1.88 2.46 0.9953 chr22 

20536963 hsa-mir-4727 0.0145 -1.5 1.42 2.01 0.9953 chr17 

20537143 hsa-mir-3680-2 0.0148 1.53 1.83 1.21 0.9953 chr16 

20536583 hsa-mir-3680-1 0.0148 1.53 1.83 1.21 0.9953 chr16 

20533583 ENSG00000238888 0.0149 1.39 1.39 0.92 0.9953 chr2 

20520568 hsa-miR-5189-5p 0.015 -1.93 2.32 3.27 0.9953 chr16 

20500448 hsa-miR-181c-5p 0.0152 -1.37 1.51 1.97 0.9953 chr19 

20533980 ENSG00000252526 0.0153 -1.36 1.36 1.81 0.9953 chr16 

20519408 hsa-miR-4633-3p 0.0157 -1.56 1.26 1.9 0.9953 chr5 

20504553 hsa-miR-671-3p 0.0158 -1.74 2.04 2.84 0.9953 chr7 

20533810 ENSG00000251836 0.0158 1.55 1.92 1.29 0.9953 chr10 

20501274 hsa-miR-340-3p 0.0159 1.25 2.03 1.71 0.9953 chr5 



 
Table A.2. Small RNAs significantly altered following FUS Knockdown. 

287 

 

ID Transcript ID(Array 
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val 

Chromosome 

20500454 hsa-miR-187-5p 0.016 -1.53 1.96 2.57 0.9953 chr18 

20518943 hsa-miR-548an 0.0161 1.32 1.48 1.08 0.9953 chrX 

20506708 hsa-miR-1178-5p 0.0163 -1.26 1.06 1.39 0.9953 chr12 

20538215 U61 0.0165 1.28 3.24 2.88 0.9953 chrX 

20536605 hsa-mir-3909 0.0165 1.57 1.97 1.31 0.9953 chr22 

20537011 hsa-mir-4769 0.0166 -1.38 1 1.46 0.9953 chrX 

20538270 U90 0.0168 -1.45 1.74 2.28 0.9953 chr3 

20533654 ENSG00000238996 0.0168 1.46 1.65 1.1 0.9953 chr9 

20533156 ENSG00000221300 0.0169 1.31 1.36 0.97 0.9953 chr2 

20537517 hsa-mir-6774 0.017 -1.6 1.67 2.35 0.9953 chr16 

20537221 hsa-mir-5699 0.017 1.33 2.01 1.6 0.9953 chr10 

20533047 ENSG00000212229 0.017 -1.22 1.33 1.62 0.9953 chr6 

20537519 hsa-mir-6776 0.0171 1.47 4.53 3.97 0.9953 chr17 

20533594 ENSG00000238900 0.0171 1.26 1.31 0.98 0.9953 chr10 

20517819 hsa-miR-3612 0.0173 -1.25 0.89 1.21 0.9953 chr12 

20515608 hsa-miR-3179 0.0174 -1.41 1.15 1.65 0.9953 chr16 

20506789 hsa-miR-1238-5p 0.0175 -1.6 1.33 2.01 0.9953 chr19 

20535246 hsa-mir-545 0.0175 1.34 1.72 1.3 0.9953 chrX 

20524051 hsa-miR-6130 0.0177 -1.11 0.98 1.13 0.9953 chr21 

20521782 hsa-miR-4524b-3p 0.0184 -1.3 1.18 1.56 0.9953 chr17 

20534194 ENSG00000268145 0.0185 1.41 1.78 1.29 0.9953 chrHG1462_PATCH 

20533963 ENSG00000252441 0.0185 1.41 1.78 1.29 0.9953 chrX 

20519695 hsa-miR-4797-5p 0.0187 1.42 2 1.49 0.9953 chr3 

20533808 ENSG00000251830 0.0187 -1.38 1.42 1.89 0.9953 chr6 

20536580 hsa-mir-3677 0.0189 1.21 2.16 1.89 0.9953 chr16 

20533952 ENSG00000252405 0.0189 1.26 1.32 0.99 0.9953 chr16 

20525732 hsa-miR-6885-3p 0.0193 1.66 1.74 1.01 0.9953 chr19 

20518785 hsa-miR-4417 0.02 -2.11 1.94 3.01 0.9953 chr1 
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Chromosome 

20534360 hsa-mir-20a 0.02 1.21 1.47 1.2 0.9953 chr13 

20537226 hsa-mir-5692b 0.0204 1.36 1.4 0.95 0.9953 chr21 

20504374 hsa-miR-626 0.0209 -1.26 0.98 1.31 0.9953 chr15 

20505755 hsa-miR-889-3p 0.0211 1.16 1.18 0.97 0.9953 chr14 

20537538 hsa-mir-6795 0.0211 1.4 1.59 1.11 0.9953 chr19 

20536759 hsa-mir-4487 0.0212 -1.74 1.29 2.09 0.9953 chr11 

20532571 14qI-6 0.0214 1.17 1.53 1.3 0.9953 chr14 

20506008 hsa-miR-938 0.0216 1.35 1.41 0.97 0.9953 chr10 

20520217 hsa-miR-5009-3p 0.0218 1.29 1.26 0.89 0.9953 chr15 

20535360 hsa-mir-613 0.0218 1.21 1.76 1.48 0.9953 chr12 

20534083 ENSG00000252985 0.022 -1.25 1.46 1.78 0.9953 chr9 

20535393 hsa-mir-643 0.0225 1.48 1.49 0.93 0.9953 chr19 

20511549 hsa-miR-2110 0.0228 -2.23 3.11 4.26 0.9953 chr10 

20519564 hsa-miR-4725-5p 0.023 -1.52 1.35 1.96 0.9953 chr17 

20536853 hsa-mir-4633 0.023 1.89 2.45 1.53 0.9953 chr5 

20519432 hsa-miR-4650-3p 0.0231 -1.22 1.17 1.46 0.9953 chr7 

20535838 hsa-mir-1302-1 0.0232 1.18 1.21 0.98 0.9953 chr12 

20518928 hsa-miR-4528 0.0237 1.29 1.24 0.87 0.9953 chr18 

20535673 hsa-mir-374b 0.0242 -1.53 1.49 2.11 0.9953 chrX 

20538236 U71a 0.0244 -1.29 2.13 2.5 0.9953 chr20 

20536966 hsa-mir-4730 0.0247 -1.36 2.09 2.54 0.9953 chr17 

20518919 hsa-miR-4521 0.0248 2.76 5.28 3.81 0.9953 chr17 

20537229 hsa-mir-5706 0.0248 -1.36 1.18 1.62 0.9953 chr5 

20504421 hsa-miR-654-3p 0.0249 1.55 2.01 1.38 0.9953 chr14 

20506710 hsa-miR-1179 0.0251 1.42 1.18 0.67 0.9953 chr15 

20532880 ENSG00000201710 0.0251 -1.16 1.08 1.29 0.9953 chr14 

20517721 hsa-miR-4267 0.0257 1.12 1.51 1.34 0.9953 chr2 

20519587 hsa-miR-4738-5p 0.0258 1.42 1.77 1.26 0.9953 chr17 
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Chromosome 

20536602 hsa-mir-3689b 0.0258 -2.26 1.55 2.72 0.9953 chr9 

20532737 ENSG00000199411 0.026 -1.32 1.43 1.83 0.9953 chr9 

20536873 hsa-mir-4652 0.0261 -1.41 1.09 1.59 0.9953 chr7 

20535353 hsa-mir-606 0.0261 1.49 1.74 1.16 0.9953 chr10 

20533768 ENSG00000239172 0.0261 -1.19 1.32 1.57 0.9953 chr16 

20533626 ENSG00000238954 0.0261 -1.19 1.32 1.57 0.9953 chr16 

20533471 ENSG00000238712 0.0261 -1.19 1.32 1.57 0.9953 chr16 

20525747 hsa-miR-6893-5p 0.0262 -1.6 1.94 2.62 0.9953 chr8 

20535926 hsa-mir-1322 0.0262 1.39 1.44 0.97 0.9953 chr8 

20536327 hsa-mir-3201 0.0263 1.24 1.36 1.05 0.9953 chr22 

20537167 hsa-mir-5590 0.0264 -1.18 0.82 1.05 0.9953 chr2 

20505746 hsa-miR-874-3p 0.0265 -1.54 2.96 3.59 0.9953 chr5 

20501178 hsa-miR-296-5p 0.0265 -1.21 1 1.27 0.9953 chr20 

20534006 ENSG00000252646 0.0265 1.32 1.71 1.31 0.9953 chr1 

20501278 hsa-miR-328-3p 0.0266 -2.5 2.34 3.66 0.9953 chr16 

20501163 hsa-miR-200a-3p 0.0268 -1.13 1.17 1.35 0.9953 chr1 

20534534 hsa-mir-217 0.0268 1.19 1.5 1.25 0.9953 chr2 

20533092 ENSG00000212445 0.0268 -1.64 1.51 2.23 0.9953 chr16 

20504283 hsa-miR-562 0.0269 1.22 1.25 0.96 0.9953 chr2 

20538016 hsa-mir-8058 0.0269 1.6 2.01 1.32 0.9953 chr16 

20533869 ENSG00000252083 0.0269 1.49 1.9 1.32 0.9953 chr5 

20533068 ENSG00000212363 0.0269 1.28 1.24 0.89 0.9953 chr5 

20502446 hsa-miR-451a 0.027 -1.44 1.49 2.02 0.9953 chr17 

20519694 hsa-miR-4796-3p 0.0273 1.47 1.55 0.99 0.9953 chr3 

20506886 hsa-miR-1288-3p 0.0277 -1.62 1.46 2.15 0.9953 chr17 

20534829 hsa-mir-26a-2 0.0278 -1.33 1.28 1.7 0.9953 chr12 

20500794 hsa-miR-190a-3p 0.0282 -1.49 1.03 1.6 0.9953 chr15 

20533596 ENSG00000238902 0.0284 1.28 1.45 1.09 0.9953 chr3 
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20525421 hsa-miR-6729-3p 0.0286 1.19 1.25 1 0.9953 chr1 

20525706 hsa-miR-6872-3p 0.0297 -1.73 1.93 2.72 0.9953 chr3 

20537984 hsa-mir-4433b 0.0302 -1.09 1.18 1.29 0.9953 chr2 

20532729 ENSG00000199282 0.0302 -1.32 1.17 1.57 0.9953 chr13 

20533761 ENSG00000239157 0.0306 -1.46 1.16 1.71 0.9953 chr20 

20504313 hsa-miR-584-3p 0.0307 1.48 2.05 1.48 0.9953 chr5 

20535198 hsa-mir-527 0.0308 -1.25 1.28 1.6 0.9953 chr19 

20504429 hsa-miR-659-5p 0.031 -1.62 0.96 1.65 0.9953 chr22 

20535071 hsa-mir-196b 0.031 1.36 1.91 1.47 0.9953 chr7 

20532625 ACA16 0.031 1.37 2.68 2.22 0.9953 chr1 

20525605 hsa-miR-6822-5p 0.0311 -1.29 1.31 1.68 0.9953 chr3 

20529565 hsa-miR-7974 0.0312 -1.43 1.35 1.87 0.9953 chr19 

20506873 hsa-miR-1276 0.0316 1.41 1.31 0.82 0.9953 chr15 

20500779 hsa-miR-146a-3p 0.0317 -1.33 1.4 1.82 0.9953 chr5 

20536648 hsa-mir-3942 0.0319 1.63 1.97 1.26 0.9953 chr15 

20537228 hsa-mir-5705 0.0321 1.38 1.77 1.3 0.9953 chr4 

20519707 hsa-miR-4804-5p 0.0324 -1.15 1.15 1.34 0.9953 chr5 

20537444 hsa-mir-6513 0.0326 1.53 2.03 1.42 0.9953 chr2 

20536480 hsa-mir-4265 0.0326 1.29 1.64 1.28 0.9953 chr2 

20532963 ENSG00000206901 0.0328 1.33 1.82 1.41 0.9953 chr2 

20537464 hsa-mir-6722 0.033 1.17 5.32 5.08 0.9953 chr9 

20537446 hsa-mir-6515 0.033 1.34 1.81 1.39 0.9953 chr19 

20535324 hsa-mir-584 0.0332 -1.18 1.46 1.7 0.9953 chr5 

20501233 hsa-miR-373-5p 0.0334 1.24 1.65 1.34 0.9953 chr19 

20537219 hsa-mir-5697 0.0336 1.33 1.68 1.27 0.9953 chr1 

20536865 hsa-mir-4645 0.0336 -1.37 1.64 2.09 0.9953 chr6 

20524053 hsa-miR-6132 0.0337 -1.11 2.22 2.37 0.9953 chr7 

20537030 hsa-mir-4777 0.0337 -1.2 1 1.26 0.9953 chr2 
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20534582 hsa-mir-125b-1 0.0339 1.28 1.81 1.45 0.9953 chr11 

20537575 hsa-mir-6831 0.034 1.26 1.85 1.52 0.9953 chr5 

20537524 hsa-mir-6781 0.034 1.39 2.06 1.59 0.9953 chr17 

20525685 hsa-miR-6861-3p 0.0341 1.52 1.84 1.24 0.9953 chr12 

20519602 hsa-miR-4746-5p 0.0344 1.66 2.26 1.53 0.9953 chr19 

20533477 ENSG00000238722 0.0345 -1.32 1.38 1.79 0.9953 chr2 

20537213 hsa-mir-5692a-2 0.0347 -1.09 1.42 1.55 0.9953 chr8 

20537212 hsa-mir-5692a-1 0.0347 -1.09 1.42 1.55 0.9953 chr7 

20533729 ENSG00000239111 0.0359 -1.2 1.49 1.75 0.9953 chr1 

20500748 hsa-miR-141-3p 0.036 -1.21 1.1 1.37 0.9953 chr12 

20505788 hsa-miR-744-3p 0.0364 1.79 2.25 1.41 0.9953 chr17 

20533412 ENSG00000238620 0.0365 -1.41 1.15 1.64 0.9953 chr10 

20535310 hsa-mir-570 0.0369 1.55 1.56 0.93 0.9953 chr3 

20533821 ENSG00000251866 0.0369 -1.31 1.7 2.09 0.9953 chr1 

20500764 hsa-miR-9-3p 0.037 1.09 1.13 1.01 0.9953 chr1 

20535101 hsa-mir-450a-1 0.037 1.21 1.19 0.91 0.9953 chrX 

20533677 ENSG00000239033 0.037 -1.07 1.2 1.31 0.9953 chr12 

20533330 ENSG00000238506 0.0371 -1.39 1.23 1.7 0.9953 chr7 

20536506 hsa-mir-4287 0.038 1.31 1.74 1.36 0.9953 chr8 

20533179 ENSG00000222185 0.0381 1.27 1.22 0.87 0.9953 chr14 

20532897 ENSG00000201853 0.0381 1.24 1.53 1.21 0.9953 chr2 

20537083 hsa-mir-5091 0.0383 1.54 2.09 1.47 0.9953 chr4 

20521817 hsa-miR-548at-3p 0.0386 -1.23 1.27 1.57 0.9953 chr17 

20532798 ENSG00000200422 0.0387 -1.36 1.04 1.49 0.9953 chrX 

20504190 hsa-miR-544a 0.0391 1.17 1.11 0.88 0.9953 chr14 

20535684 hsa-mir-933 0.0392 -1.48 1.72 2.29 0.9953 chr2 

20536616 hsa-mir-3914-2 0.0393 1.34 1.39 0.96 0.9953 chr7 

20532598 14qII-26 0.0397 -1.11 1.24 1.39 0.9953 chr14 
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20515610 hsa-miR-3180-3p 0.0398 -1.35 2.67 3.1 0.9953 chr16 

20535453 hsa-mir-766 0.0404 1.27 1.63 1.28 0.9953 chrX 

20532748 ENSG00000199666 0.0406 -1.31 1.42 1.8 0.9953 chr1 

20505798 hsa-miR-543 0.0407 1.3 1.52 1.14 0.9953 chr14 

20519481 hsa-miR-4679 0.0409 1.25 1.41 1.09 0.9953 chr10 

20533532 ENSG00000238806 0.041 1.19 1.36 1.11 0.9953 chr17 

20535826 hsa-mir-1289-2 0.0411 -1.34 1.24 1.66 0.9953 chr5 

20529147 hsa-miR-7855-5p 0.0413 1.17 1.65 1.43 0.9953 chr14 

20500489 hsa-miR-224-5p 0.0413 1.29 1.46 1.09 0.9953 chrX 

20538460 spike_in-control-17 0.0414 1.21 1.7 1.42 0.9953 
 

20502455 hsa-miR-409-5p 0.0415 1.43 1.86 1.34 0.9953 chr14 

20534617 hsa-mir-126 0.0415 1.11 2.2 2.06 0.9953 chr9 

20518872 hsa-miR-548ak 0.0417 1.16 1.15 0.93 0.9953 chr10 

20501294 hsa-miR-324-5p 0.0417 -2.62 2.55 3.94 0.9953 chr17 

20535873 hsa-mir-1260a 0.0418 -1.4 1.54 2.02 0.9953 chr14 

20533695 ENSG00000239058 0.0418 1.19 1.29 1.05 0.9953 chrX 

20536748 hsa-mir-4479 0.0419 -1.65 1.18 1.9 0.9953 chr9 

20534005 ENSG00000252646 0.0419 1.42 1.64 1.14 0.9953 chr1 

20537591 hsa-mir-6846 0.0424 -1.41 1.37 1.86 0.9953 chr8 

20536702 hsa-mir-4449 0.0424 -1.36 4.46 4.91 0.9953 chr4 

20520580 hsa-miR-5197-3p 0.0425 1.14 1.08 0.89 0.9953 chr5 

20520219 hsa-miR-5010-3p 0.0426 -1.27 1.51 1.86 0.9953 chr17 

20537580 hsa-mir-6780b 0.0428 1.67 2.15 1.42 0.9953 chr6 

20506857 hsa-miR-1263 0.043 -2.57 2.45 3.81 0.9953 chr3 

20532771 ENSG00000200026 0.0431 -1.34 2.23 2.66 0.9953 chr9 

20535683 hsa-mir-509-3 0.0433 -1.37 1.22 1.67 0.9953 chrX 

20535638 hsa-mir-509-2 0.0433 -1.37 1.22 1.67 0.9953 chrX 

20535218 hsa-mir-509-1 0.0433 -1.37 1.22 1.67 0.9953 chrX 
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20536576 hsa-mir-3672 0.0435 -1.23 1.17 1.46 0.9953 chrX 

20538233 U70G 0.0438 1.33 1.55 1.14 0.9953 chr12 

20533088 ENSG00000212428 0.044 1.21 1.36 1.08 0.9953 chr15 

20533022 ENSG00000212144 0.0443 -1.18 1.12 1.35 0.9953 chr1 

20504296 hsa-miR-573 0.0444 1.39 1.57 1.1 0.9953 chr4 

20536893 hsa-mir-4668 0.0444 1.38 1.32 0.85 0.9953 chr9 

20519441 hsa-miR-4656 0.0446 1.98 3.27 2.29 0.9953 chr7 

20525673 hsa-miR-6856-5p 0.0447 -1.57 1 1.65 0.9953 chr9 

20504310 hsa-miR-582-3p 0.0447 -1.1 1.18 1.32 0.9953 chr5 

20520215 hsa-miR-5008-3p 0.0448 -2.41 2.29 3.55 0.9953 chr1 

20501240 hsa-miR-377-5p 0.0448 -1.52 1.22 1.83 0.9953 chr14 

20536757 hsa-mir-4485 0.0448 1.07 3.14 3.05 0.9953 chr11 

20537488 hsa-mir-6745 0.0452 1.56 1.99 1.35 0.9953 chr11 

20533534 ENSG00000238807 0.0452 1.33 2.01 1.6 0.9953 chr17 

20533007 ENSG00000207299 0.0452 1.33 1.61 1.19 0.9953 chr11 

20535131 hsa-mir-376b 0.0454 -1.4 1.05 1.54 0.9953 chr14 

20535350 hsa-mir-603 0.0455 -1.4 1.04 1.52 0.9953 chr10 

20533849 ENSG00000252000 0.0457 1.42 1.94 1.44 0.9953 chr2 

20536615 hsa-mir-3914-2 0.0459 1.3 1.35 0.97 0.9953 chr7 

20533958 ENSG00000252433 0.0459 1.36 1.41 0.96 0.9953 chr1 

20525492 hsa-miR-6765-3p 0.046 1.32 1.86 1.46 0.9953 chr14 

20520564 hsa-miR-5186 0.046 1.27 1.11 0.77 0.9953 chr3 

20515515 hsa-miR-3120-3p 0.0466 1.3 1.47 1.09 0.9953 chr1 

20515645 hsa-miR-3200-3p 0.0467 -1.48 2.23 2.8 0.9953 chr22 

20506833 hsa-miR-548f-5p 0.0467 1.21 1.44 1.16 0.9953 chr10 

20538031 hsa-mir-8072 0.0467 -1.05 1.94 2.01 0.9953 chr12 

20532576 14qII-10 0.0467 1.37 1.25 0.8 0.9953 chr14 

20533384 ENSG00000238575 0.0468 -1.09 1.19 1.32 0.9953 chr18 
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20532731 ENSG00000199321 0.0468 1.32 1.39 0.99 0.9953 chr10 

20533853 ENSG00000252016 0.0474 1.5 1.97 1.38 0.9953 chrX 

20536982 hsa-mir-4744 0.0478 -1.23 1.17 1.46 0.9953 chr18 

20537064 hsa-mir-5000 0.0479 -1.29 1.33 1.7 0.9953 chr2 

20532819 ENSG00000200891 0.0479 -1.41 1.39 1.89 0.9953 chr10 

20524999 hsa-miR-6500-5p 0.048 1.14 1.78 1.6 0.9953 chr1 

20535810 hsa-mir-1204 0.0481 1.23 1.93 1.63 0.9953 chr8 

20504551 hsa-miR-1264 0.0483 1.22 1.41 1.13 0.9953 chrX 

20536287 hsa-mir-3176 0.0483 -1.57 1.78 2.44 0.9953 chr16 

20500445 hsa-miR-181a-2-3p 0.0484 -2.11 1.72 2.8 0.9953 chr9 

20538234 U70G 0.0487 1.29 1.54 1.17 0.9953 chr12 

20500135 hsa-miR-19a-3p 0.0488 1.29 1.25 0.88 0.9953 chr13 

20532744 ENSG00000199566 0.0494 1.22 1.98 1.69 0.9953 chr12 

20537597 hsa-mir-6852 0.0495 1.58 2.1 1.44 0.9953 chr9 

20504356 hsa-miR-615-5p 0.0496 -1.28 2 2.35 0.9953 chr12 

20533762 ENSG00000239159 0.0498 -1.24 1.06 1.37 0.9953 chr5 

20533966 ENSG00000252448 0.0499 1.13 1.38 1.21 0.9953 chr1 

20533892 ENSG00000252170 0.0499 -1.2 1.53 1.79 0.9953 chr3 
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Amyotrophic lateral sclerosis (ALS) is a debilitating 

neurodegenerative disease that is defined by the progressive 

loss of motor function due to degeneration of upper and 

lower motor neurons in the brain and spinal cord tissue, 

respectively, with an average life-expectancy of 2–5 years 

post-diagnosis (1). Riluzole and edaravone are currently the 

only two FDA approved drugs for patients with ALS, but 

these drugs have minimal effect, extending life only for a 

matter of months (2).  

In 1993, the first causative mutations of ALS were 

identified in the SOD1 gene (3). Today, mutations in SOD1 is 

the second most common cause of genetic ALS (~5–6% of all 

ALS cases), only falling behind the hexanucleotide repeat 

expansions observed in C9ORF72 (~12–14% of all ALS 

cases). However, the vast majority of ALS cases (~80%) 

have no known genetic background giving no clear 

indication on the causative factor that results in the disease 

development (1). In the last decade, miRNAs have been 

increasingly implicated in the pathogenesis of ALS due to 

the mass dysregulation of these molecules observed in ALS 

spinal cord and motor neurons (4-8). 

MiRNAs are small RNA molecules (~22–25 nucleotides) 

that are primarily responsible for post-transcriptional gene-

silencing generally through interactions with the 3’  
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untranslated region (UTR) of messenger RNA (mRNA) (9). 

Their interactions are highly dependent on environmental 

cues. Therefore, cell development, cell type, cell stress, and 

aging all have an impact on mRNA post-transcriptional 

regulation via miRNAs. This is an especially true for 

neurons which have spatiotemporal needs within the cell 

where post-transcriptional regulation via miRNAs differs 

depending on soma, dendritic and axonal needs (9,10). 

Further, miRNAs are also regulated by other non-coding 

RNAs (i.e., long non-coding RNAs, circular RNAs, etc.) 

which work together to control the degree of expression of a 

gene (11), highlighting the sophistication of these noncoding 

RNA networks (Figure 1). Not surprisingly, because of 

miRNAs dynamic nature in these RNA networks, it has 

become increasingly of interest to determine the 

contribution of miRNAs in disease. 

As mentioned, miRNAs have become increasingly 

implicated in ALS pathogenesis. This has mainly stemmed 

from observations that in sporadic ALS (sALS) spinal cord 

and motor neurons there are pools of miRNAs that are 

reduced (4-6). In contrast, mutant SOD1 (mtSOD1) ALS 

cases and rodent models have observed that miRNAs are 

generally upregulated, suggesting inhibition of these 

miRNAs may have therapeutic effects (7,12,13). In 

particular, high levels of miR-155 in mtSOD1 rodent models 

has been reported to promote neuroinflammation. 

Interestingly, inhibition of this miRNA via antisense 

oligonucleotides (ASOs) has been shown to decrease  
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Figure 1 MiRNA biogenesis and regulation. The canonical biogenesis pathway (represented by bold arrows): MiRNAs are transcribed from 

the genome via RNA polymerase (RNA pol.) II/III producing a primary miRNA (pri-miRNA). Interestingly, both circular and long non-

coding RNAs (circRNAs and lncRNAs, respectively) are known to assist in RNA pol. II transcription indicating these class of non-coding 

RNAs may assist in miRNA transcription. Further, these pri-miRNAs can be transcribed into small nucleolar RNA (snoRNA) and transfer 

RNA (tRNA) transcripts. Once produced, pri-miRNAs are processed by the DROSHA/DCGR8 complex into a pre-miRNA which is shuttled 

from the nucleus to the cytoplasm via XPO5 and RAN-GTP. Both DROSHA processing and pre-miRNA nuclear export have been shown to 

be inhibited by lncRNAs. Cytoplasmic pre-miRNAs are then processed by DICER/TRBP/PACT complex to produce a miRNA duplex which 

is unwound via AGO1-4 creating a mature miRNA. Non-canonical biogenesis pathway: There are 3 major non-canonical pathways – I) pre-

miRNAs are produced directly from the spliceosome after pre-mRNA processing skipping DROSHA/DCGR8 processing; II) cytoplasmic 

pre-miRNAs need to get mono-uridylated by TUT2/4/7 proteins before being processed by DICER/TRBP/PACT; or III) cytoplasmic pre-

miRNAs get processed by AGO1-4/PARN rather than DICER/TRBP/PACT to produce the miRNA duplex. MiRNA regulation: Once 

produced miRNA are: (I) incorporated into the RNA-induced silencing complex (RISC) and generally target the 3’UTR of mRNA to suppress 

translation OR induce mRNA degradation. This represents the primary function of miRNAs; (II) bind to the 3’UTR of mRNA to promote 

translation and mRNA stability usually with proteins not associated with the RISC complex (non-RISC). However, this is far less common 

than gene silencing; (III) targeted by circRNAs and lncRNAs that act as sponges to prevent miRNAs from reaching their mRNA targets; 

(IV) MiRNAs can be incorporated into the AGO complex and transported back into the nucleus via IPO8 and XPO1 to either promote or 

suppress transcription by binding to promoter/enhancer regions of the genome. While presumed that GTP converts to GDP via IPO8 to 

allow entry of the miRNA in the nucleus, this has yet to be shown in the literature. This figure highlights this highly sophisticated RNA 

network between circRNAs/lncRNAs/snoRNAs/ mRNAs that are responsible for regulating miRNA biogenesis and function ensuring gene 

expression is tightly controlled.  

neuroinflammation and alleviate ALS-like phenotypes in 

rodent models (7). Others have used miRNAs to reduce 

SOD1 expression, and in turn reduce mtSOD1s toxic effects, 

by intrathecally delivering artificial miRNAs that were 

cloned into an Adeno-associated virus (AAV) and target the 

SOD1 transcript. Use of SOD1 targeting artificial miRNAs 

has been shown to have therapeutic effects in both rodent 

and macaque models (14,15). However, the effectiveness of 

theses therapeutics in humans is still unknown. This 

previous research provides evidence of the utility of 
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miRNAs as potential therapeutic targets, and further, 

highlights the use of either ASOs or AAV-miRNAs as ways 

to develop therapeutics that will potentially treat 

neurodegeneration. 

Recent work published by Loffreda et al., 2020 in 

Progress in Neurobiology highlights miR-129-5p as another 

upregulated miRNA in rodent models of mtSOD1 ALS 

which, if inhibited using an ASO, could have therapeutic 

effects for patients with ALS (16). The research group 

looked at mtSOD1 (SOD1 G93A) in vitro neuronal cell 

models in addition to in vivo mouse models and determined 

that mtSOD1 causes an increase in miR-129-5p levels. 

Further, they observed increased levels of miR-129-5p in 

peripheral blood mononuclear cell (PMBC) samples of 

sALS patients, suggesting that this phenomenon may be 

related to ALS more broadly rather than just those who 

contain mutations in SOD1. These researchers reported that 

increased levels of miR-129-5p in both their in vitro and in 

vivo models correlates with decreased levels of ELAVL4, 

otherwise known as HuD—a protein critical for neuronal 

cell identity, maturation, axogenesis, dendrite growth, 

plasticity and survival (17). Through robust experimental 

analyses, the authors were able to show that increased levels 

of miR-129-5p were directly responsible for the reduced 

levels of HuD, identifying the biological mechanism by 

which high levels of miR-129-5p may contribute to 

neurodegeneration. Having made this observation, the 

authors then examined the ability of an ASO targeting 

miR129-5p to reduce its levels in mtSOD1 rodent models. 

Administration of the ASO via intracerebroventricular 

injection at an early symptomatic stage (post-natal 80 days) 

led to increased survival, improved motor capabilities, and 

increased neuromuscular junction connections. However, it 

only had a mild effect on preventing motor neuron 

degeneration which was not statistically significant. The 

authors concluded that while reducing levels of miR-1295p 

may have some therapeutic effects, the most optimal 

approach may be to pair their ASO with another 

miRNAbased therapeutic currently in development—an 

ASO targeting miR-155 (7,18).   

ASO-based therapeutics have become popular as an 

approach to treat neurodegenerative diseases due to the 

success in treating Spinal Muscular Atrophy (SMA)—a 

juvenile neurodegenerative disease caused by loss of lower 

motor neurons —using an ASO targeting SMN2 (19). 

Several modifications to the nucleotide backbone of an ASO 

can be done to increase its affinity to its target and make it 

resistant to nucleases. For example, morpholino 

modifications were used to develop the SMN2 ASO and the 

miR-129-5p ASO (16,19). Morpholino modifications alter 

the sugar-phosphate backbone by changing the sugar ring 

from a five-membered to a six-membered ring and the sugar 

rings are linked to phosphoramidates groups rather than 

phosphate groups. These modifications have been proven to 

be beneficial to develop ASOs that either knockdown 

expression of a specific gene, as seen in Loffreda et al., 2020, 

or alter mRNA splicing as seen for the ASO that targets 

SMN2 (16,19). Moreover, the ASO produced in Loffreda et 

al., 2020 is called an antagomir—an ASO that targets a 

miRNA—and they have been increasingly shown to be 

effective therapeutics. For example, the drug miravirsen, 

which has completed phase II clinical trials, is an antagomir 

targeting miR-122 and has been shown to prevent 

propagation of hepatitis C virus (HCV) RNA in the liver 

highlighting the potential use of antagomirs in clinical 

practice (20). Despite these developments, ASOs still have 

their limitations which include their potential off-target 

affects, their expense to develop, and their inability to cross 

the blood-brain barrier; making them difficult to administer 

for neurological diseases (21). However, the current success 

of ASO treatments thus far has sparked more innovative 

research to determine whether further modifications to 

these oligos will allow us to overcome these limitations, 

offering new opportunities for therapeutic development.   

Loffreda et al., 2020 provides clear evidence that 

increased levels of miR-129-5p is caused by mtSOD1 and 

that lowering its levels in mtSOD1 mice has some 

therapeutic effects; however, it is unclear whether reduction 

of miR-129-5p would be a good ALS therapeutic more 

broadly (16). The authors identified increased levels of miR-

129-5p in sALS patient PBMCs, but not in human spinal 

cord or motor neurons (16). As mentioned previously, the 

environmental context matters when discussing miRNA 

regulation (9). Further, in the several studies that have 

examined miRNA expression in the spinal cord and motor 

neurons of sALS cases, upregulation of miR-129-5p has not 

been observed (4-6). Thus, it is unclear whether this 

observation of increased levels of miR-129-5p in PBMCs is 

relevant to the dysfunction of motor neurons, or more 

broadly, the central nervous system of the sALS patient 

group within their study.  

Further, the use of an ASO to suppress miR-129-5p 

expression should be approached with caution. In the 

central nervous system, miR-129-5p has been shown to 

suppress apoptosis and alleviate neuroinflammation (22). 

Low levels of miR-129-5p have been reported in the 

degenerating brain of patients with Alzheimer’s Disease, 

and lack of this miRNA creates an inflammatory response 
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that can be neurotoxic (23). Thus, too much or too little of 

miR129-5p could be damaging to the central nervous 

system. This is likely because miRNAs can target several 

transcripts to regulate a network of genes, which can make 

cells sensitive to fluctuations in miRNA expression. In this 

case, the authors showed that miR-129-5p regulates HuD 

levels, but miR-129-5p has also been shown to regulate 

critical neuronal genes involved in synaptic plasticity 

(FMR1) and neuroinflammation (HMGB1) (22,24). All this 

suggests that further work needs to be done to ensure 

reduction of this miRNA will not have long-term effects that 

may be more damaging than therapeutic. 

Loffreda et al., 2020 proposed that while their ASO had 

some beneficial effects in their mtSOD1 models, matching it 

with an ASO that inhibits miR-155 may have the greatest 

overall therapeutic effect (16). This points to the idea that 

simply targeting one miRNA may not be enough to 

ameliorate ALS. In fact, as mentioned previously, several 

miRNAs have been shown to be upregulated in mtSOD1 

models (7,12,13). Further, the article provides data 

indicating that mtSOD1 increased the levels of DICER, a 

critical protein in miRNA biogenesis, which may explain 

why miRNAs are upregulated in mtSOD1 models (16). 

Therefore, there seems to be a systemic issue with miRNA 

production in the presence mtSOD1. Thus, lowering levels 

of DICER might seem to be a better target to slow the 

production and reduce the toxicity of these upregulated 

miRNAs in mtSOD1 ALS cases. However, knockout of 

DICER in mouse motor neurons has been shown to lead to 

motor neuron degeneration, and thus, reducing levels of 

DICER should be approached with caution as well (25).  

Overall, while this latest work by Loffreda et al., 2020 

provides another interesting avenue for miRNAbased 

therapeutics for ALS, this work still has far to go before we 

can think about administering it to patients. Large-scale 

preclinical studies still need to be done to determine if 

inhibition of miR-129-5p prevents motor 

neurodegeneration, helps alleviate ALS-like phenotypes in 

several models of ALS or just SOD1-related models, and 

finally, determine whether downregulation of this miRNA 

has any potential negative long-term outcomes (i.e., chronic 

neuroinflammation). Further, we still do not know whether 

miR-129-5p is upregulated within the spinal cord or motor 

neurons of mtSOD1 ALS cases, which will be necessary to 

address to ensure development of this ASO as a therapeutic 

is not in vain. All this taken together, miR129-5p could be a 

potential therapeutic for ALS, but in agreeance with the 

authors, it is unlikely that targeting this miRNA alone will 

be enough to completely halt the disease progression (16). 

However, the mere identification of this miRNA, its 

biological network and its potential relevance to disease will 

be incredibly important to our understanding of 

mechanisms associated with ALS progression, opening more 

avenues for potential therapeutics.  
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