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Abstract

Medical object detection and segmentation are crucial pre-processing steps in the clinical
workflow for diagnosis and therapy planning. Although deep learning methods have achieved
considerable performance in this field, they impose several shortcomings, such as computa-
tional limitations, sub-optimal parameter optimization, and weak generalization. Deep rein-
forcement learning as the newest artificial intelligence algorithm has great potential to address
the limitation of traditional deep learning methods, as well as obtaining accurate detection and
segmentation results. Deep reinforcement learning has a cognitive-like process to propose the
area of desirable objects, thereby facilitating accurate object detection and segmentation. In this
thesis, we deploy deep reinforcement learning into two challenging and representative medical
object detection and segmentation tasks: 1) Sequential-Conditional Reinforcement Learning
(SCRL) for vertebral body detection and segmentation by modeling the spine anatomy with
deep reinforcement learning; 2) Weakly-Supervised Teacher-Student network (WSTS) for liver
tumor segmentation from the non-enhanced image by transferring tumor knowledge from the
enhanced image with deep reinforcement learning. The experiment indicates our methods are
effective and outperform state-of-art deep learning methods. Therefore, this thesis improves
object detection and segmentation accuracy and offers researchers a novel approach based on
deep reinforcement learning in medical image analysis.

Keywords: Deep reinforcement learning, Medical object detection and segmentation, Ver-
tebral body segmentation, Liver tumor segmentation, Teacher-student framework
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Lay Summary

Automatic medical object detection and segmentation based on artificial intelligence as computer-
assisted-diagnosis tools are significant for clinicians in the disease diagnosis and treatment
planning. Medical object detection and segmentation distinguish the object of interest from
the medical image, which provides clinicians with the location, shape, and size of the object,
thereby assisting clinicians to make a decision. Deep learning methods have achieved consid-
erable performance in this field by leveraging convolutional neural networks. However, as the
development of deep learning, it also imposes some limitations and its accuracy in some tasks
cannot meet clinical expectations. In this case, this thesis seeks to employ deep reinforcement
learning to address the limitations of deep learning methods and obtain accurate medical ob-
ject detection and segmentation. Particularly, this thesis deploys deep reinforcement learning
in vertebral body segmentation, where the newly-proposed Sequential-Conditional Reinforce-
ment Learning (SCRL) models the spine anatomy as a sequential decision-making process and
segments vertebral bodies along the spine. In another project, this thesis deploys deep rein-
forcement learning into a more challenging task. Particularly, this thesis proposes the Weakly-
Supervised Teacher-Student network (WSTS) to address liver tumor segmentation from the
non-contrast-enhanced image. WSTS leverages deep reinforcement learning to transfer tumor
spatial information for the contrast-enhanced image in the training stage, which plays as guid-
ance to determine the liver tumor location in the non-contrast-enhanced image. The results of
the above two methods outperform the results of existing deep learning methods. The success
of proposed methods in medical object detection and segmentation indicates the deep rein-
forcement learning can be a reliable computer-assisted-diagnosis tool and benefit to clinicians.
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CHAPTER 1

This chapter provides a general introduction to medical object detection and segmentation,

as well as concepts about deep learning and deep reinforcement learning. A literature re-

view of current development and challenges of deep learning in medical object detection and

segmentation are included in this chapter. The motivation and objectives of applying deep rein-

forcement learning algorithms in medical object detection and segmentation will be presented.

1 INTRODUCTION

1.1 Overview

Medical object detection and segmentation via Artificial Intelligence (AI) methods are vital
roles in computer-aid diagnosis (CAD) to assist radiological experts in clinical diagnosis and
treatment planning [1]. Image object detection and segmentation extract the region of interest
(ROI), divide a medical image into different areas in pixel-level based on a specified require-
ment, such as segmenting body organs/tissues in the medical applications for border detec-
tion, tumor detection/segmentation, and mass detection[2]. Nowadays, the vast investment and
development of medical imaging modalities such as microscopy, X-ray, ultrasound imaging,
magnetic resonance imaging (MRI), computed tomography (CT), and positron emission to-
mography (PET) generate a large amount of medical image data, which attracts researchers
to explore AI methods such as Deep Learning (DL) to develop automatic medical object de-
tection and segmentation methods. Applying AI methods to address medical object detection
and segmentation has several advantages in CAD: 1) Improving diagnosis efficiency. With the
support of high-performance computers, the speed of AI methods detecting and segmenting the
medical object from medical images is dozens or even hundreds of times faster than manual la-
beling by radiologists. AI methods thus speed up the diagnosis process and improve diagnosis
efficiency. 2) Increasing the diagnosis accuracy. AI methods process and segment the medical
image according to the image content objectively, which avoids inconsistent results caused by
observer subjectivity in manual segmentation. AI methods thus increase the diagnosis accu-
racy compared with manual methods. 3) Reducing the diagnosis cost. AI methods process
everything with computers and output the segmentation result automatically. AI methods get
rid of the need for experienced radiologists to some extent, which reduces the diagnosis cost
for some developing countries with poor medical conditions.
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1.2 Medical object detection and segmentation from images

1.2.1 Medical image acquirement

The main type of medical images focused on in this thesis is MRI, which is referred to as
cross-sectional slice images as it corresponds to what an object would express if it was sliced
open along a special plane. MRI images thus can display detailed information on the anatomy
inside the human body.

MRI images are generated by the exchange of radio frequency (RF) energy between the imag-
ing system and a patient’s body. This is possible because the most abundant hydrogen atom
(protons) within human tissue has unique magnetic properties. More specifically, a proton pos-
sesses an innate spin angular momentum rotating about its axis at a constant rate [3–7]. When
a strong static external magnetic field is applied, the protons’ rotational axes will change from
free to align with the magnetic field. Since protons possess an angular momentum, they will
precess about the applied field or rotate perpendicularly [8].

The proton’s precession rate is proportional to the strength of the magnetic field (see Fig. 1.1),
which is expressed by the Larmor (resonance) frequency equation:

ωo =
γBo

2π
(1.1)

Whereωo is the Larmor frequency expressed in megahertz (MHz), Bo is the main magnetic field
(in Tesla), and γ is the gyro-magnetic ratio expressed in radian per second per tesla (rad·s-1T-1)
or MHz/T for γ

2π [3, 4].

x

y

z

BO

RF

Figure 1.1. Precession of protons in a static magnetic field.
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When the MRI imaging acquisition procedure starts, the operator introduces an RF pulse to
place the protons into a strong magnetic field, which aligns spinning protons with long axis
(parallel/antiparallel).

When the protons’ precessing frequency matches the applied RF pulse’s frequency, the pro-
tons will begin to resonate and absorb some of the energy from the RF pulse, stimulating them
into an excited state, which also has an increase in electromagnetic energy. When the operator
removes the RF pulse, the protons in an excited state will realign with the magnetic field and re-
lease the absorbed electromagnetic energy along the way. This process is known as relaxation.
The transmitted electromagnetic energy is then captured by a receiver in the MRI scanner to
reconstruct into the MR images.

Because varying tissues in the internal structure of the body contain varying amounts of water,
more specifically, the concentration of protons. After the applied RF pulse is removed, MRI
detects the emission of the excess energy from the protons to automatically distinguish the in-
tensities of different tissues in the internal structure of the body.

Therefore, the relaxation time (or rate) is the most important factor to generate contrast in
different kinds of tissues in the MRI imaging system. It is worth mentioning that the image
quality is determined by the intensity of the RF signal.

There are two types of relaxation times T1 (longitudinal relaxation time) and T2 (transverse
relaxation time) in MRI. T1 is the time-constant for the spinning protons to realign with the
external magnetic field. That is to say, the time it takes for the longitudinal signal to regain
63% of its magnetization value. T2 is the relaxation time-constant for excited protons to lose
phase coherence with each other [4, 5, 9]. That is to say, the time it takes for the transverse
magnetization to decay to 37% of its original value [10].

MRI acquires image sequences by varying the RF pulses, based on the T1 and T2 relaxation to
enhance the quality of select tissues. The repetition time (TR) is the time between successive
pulse sequences applied to the same image slice[4, 5, 9]. The time to echo (TE) is the time
between the delivery of an RF pulse and receiving the signals emitted from the patient’s body,
which are referred to as echoes[4, 5, 9].

MRI sequences generate T1-weighted and T2-weighted scans based on the intrinsic T1 and
T2 relaxation properties. T1-weighted sequences have shorter TR and TE times, whereas T2-
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weighted have longer TR and TE times[4, 5, 9]. T1-weighted images emphasize T1 relaxation,
while T2W emphasise T2 relaxation. Fat has Short T1 and medium T2. So that fat shows up
bright in T1-weighted and intermediate in T2-weighted. Fluid has Long T1 and T2, so that
fluid shows up dark in T1-weighted and bright on T2-weighted.

1.2.2 Medical object detection and segmentation
Medical object detection and segmentation are complex and critical steps in the field of medi-
cal image processing and analysis. Their purposes are to detect the regions with certain special
meanings (such as lesions and vertebral bodies) from medical images and to classify pixels in
the regions into desirable objects, providing a reliable basis for clinical diagnosis and pathol-
ogy research to assist doctors to make a more accurate diagnosis [11]. The clinical significance
of medical object detection and segmentation is (take radiation therapy as an example) [12]:
(1) study anatomical structures; (2) identify regions of interest (i.e., locate tumors, lesions,
and other abnormal tissues); (3) measure the volume of desirable objects; (4) Observe the
growth of the tumor or the decrease of the tumor volume during treatment, and provide assis-
tance for the planning and treatment before treatment; (5) Calculation of radiation dose. To
address the medical object detection and segmentation, several methods have been proposed.
Traditional medical object detection and segmentation methods involve thresholding, edge de-
tection, region-based, and active contour model methods.

The basic principle of the thresholding method is to calculate one or more thresholds based on
the grayscale characteristics of the image, and then compare the image pixel by pixel with the
threshold, and finally divide each pixel into the correct category. The thresholding method is
based on an assumption of the grayscale image: the grayscale values between adjacent pixels
in the target or background are similar, but the pixels of different targets or backgrounds are
different in grayscale, which is reflected on the image histogram is that: different targets and
backgrounds correspond to different peaks. The selected threshold should be located in the val-
ley between the two peaks to separate the peaks. The disadvantage of the thresholding method
is that it is not suitable for multi-channel images and images with similar feature values. It is
difficult to obtain accurate object detection and segmentation result where there is no obvious
gray difference in the image or there is a large overlap in the gray value range of each object.
In addition, because it only considers the gray information of the image without considering
the spatial information of the image, threshold segmentation is very sensitive to noise and gray
unevenness. Several methods of threshold selection are histogram thresholding method [13],
iterative thresholding method [14], and adaptive thresholding method [15]. The most famous
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one is the Otsu threshold method (OTSU) [15], which obtains segmentation results by maxi-
mizing the variance between classes.

The basic principle of edge detection methods is to achieve segmentation by detecting edges
containing different regions. One of the main assumptions of this method is that the change in
pixel gray value on the edge between different regions is usually relatively strong. Therefore,
according to this assumption, the zero feature of the second derivative of the image and the
maximum value of the first derivative can be used to determine whether it belongs to the pixel
on the edge. The edge detection method has the advantages of accurate positioning and fast
speed, but it cannot guarantee the continuity and closure of the edge and is quite sensitive to
noise. Common edge detection algorithms are Canny [16] [17], Sobel [18], and Laplacian [16].

The region-based method is based on directly searching for image blocks, and includes region
growth and region separation and merging technologies [19]. The regional growth technique
first determines a seed point for each region to be divided as the starting point for growth, and
then merges the pixel points in the neighborhood of the seed point that are the same or similar
to the point into the area where the seed point is located, and updates the seed point to repeat
The above process until no new pixels that meet the conditions are merged. The whole pro-
cess starts from the seed point, and finally gets the entire area, and then finishes the detection
and segmentation task. Splitting and merging can be regarded as the inverse process of region
growth. It starts from the whole and continuously splits to obtain each sub-region, and then
gradually merges the target regions to achieve the purpose of detection and segmentation. The
region-based method is suitable for smooth and uniform images, and the algorithm is simple
and the calculation is fast. However, it requires manual selection of seed points, and has poor
anti-noise ability. For high-noise, non-uniform medical images, the detection and segmentation
results are often poor.

The active contour model uses curve fitting to achieve the purpose of detection and segmen-
tation. First, the contour information is initialized, and then the image information is used to
estimate the energy model. The energy is minimized to guide the contour change and gradu-
ally approach the target edge to obtain the segmentation result. Snake model [20] is a typical
active contour model method, which makes the curve gradually close to the edge under the
joint action of image information and the curve itself. It has the advantages of direct interac-
tion with the model, compact model expression and fast implementation speed, but it is very
sensitive to the curve initialization and it is difficult to deal with changes in the model topology.
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However, with the rapid development of AI, leveraging the artificial neural networks to detect
and segment medical objects from images is becoming more and more popular. Compared with
traditional methods, AI methods achieve higher precision, faster speed, and higher reliability.

1.3 Deep learning (DL)

Deep Learning (DL) is a subset of machine learning in AI, which imitates the human brain
working process to learn to build a non-linear mapping between inputs and the desired output.
The learning (or training) procedure of DL is an iterative process (as shown in Fig 1.2): a
convolution neural network (CNN) predicts an output according to the input(forward propa-
gation); then a loss function evaluates the error between the predicted output and the desired
output; DL adjusts the CNN’s parameters through back propagation based on the error to
enable its prediction to approach the desired output in next forward propagation. Repeating the
above training process, after the error between the predicted output and the desired output is
less than a threshold, DL is able to predict the output for a new same category input.

Forward propagation

Back propagation

Input Output

Loss 

function

Figure 1.2. The workflow of deep learning.

1.3.1 Convolutional neural network

Convolutional neural network (CNN) [21] assembles low-level features to build abstract high-
level features, thereby finding the distributed feature representation in the data. CNN is origi-
nated from the artificial neural network, which models human brain neuron network from the
perspective of information processing.

Artifical neural network takes neuron as the basic unit and constructs network architecture
via the interconnection between neurons. As shown in Fig 1.3, a neuron takes several input
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Figure 1.3. An artifical neuron model.

signals xi and outputs a weighted signal with a bias, which can formulated as follows:

y =

n∑
i

ωi ∗ xi + ε (1.2)

Thus a network made up by several neurons can be deployed to building the mapping between
an input and an output by learning suitable weights and biases. In imaging processing, convo-
lutions are deployed as neurons to build neural networks, i.e., Convolution Neural Networks
(CNNs). Compared with building neurons with pixels, CNN reduces the number of connection
weights in neural networks to a range that can be handled in practice. In detail, CNN consists
following three layers:

Convolution Layer extracts various image characteristics (such as boundary, texture, and
color) through convolution and Stacks convolution sequentially as a hierarchy pyramid to
achieve the high-level feature extraction. Convolution is a common mathematical operation
in a signal process. A convolution to a matrix is shown in Fig 1.4, the 5 ∗ 5 square in the left of
the figure is regarded as the image input. The 3∗3 white square in the middle with the numbers
1, 0, -1, and -2 are the convolution kernels. The convolution kernels have a step size of 1. The
sequence moves from the up left corner of the original input to the bottom right corner, and
the convolution kernel moves a total of 9-times. The position of the nine time corresponds to
the corresponding blue 3 * 3 grid on the right. The number in the grid is the convolution value
(here is the result of multiplication and accumulation of the elements in the area covered by the
convolution kernel). After 9 movements are calculated, the new matrix of 3 * 3 on the right is
the calculation result of this convolution.

In the actual calculation process, the input is an original image and a filter (a set of fixed
weights, which is the actual meaning of the convolution kernel mentioned above). After the
inner product is obtained, new two-dimensional data is obtained. Different filters will get dif-
ferent output data, such as contour and color depth. If you want to extract different features of
the image, you need to use different filters (convolution kernel) to extract the specific informa-
tion you want about the image. Fig 1.5 shows the process of convolution in a convolutional
layer. Through the convolution operation of two different convolution kernels above and be-
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Figure 1.4. A convolution process. The left matrix represents an image before the convolution,
the middle matrix represents the convolution kernel, and the right matrix represents the matrix
after the convolution.

low, the features of different images can be extracted. The new two-dimensional information
will be used as the input of the next convolutional layer in the CNN network. That is, when
the next convolutional layer is calculated, the image on the right will be used as the original
input image. The shallower (low-level) convolutional layer has a smaller perception domain
and learns the characteristics of some local regions; the deeper (high-level) convolutional layer
has a larger perception domain and can learn more abstract features. These abstract features
are less sensitive to the size, position, and orientation of objects, thereby helping to improve
recognition performance.

Figure 1.5. Two examples to show different convolution kernels result in different feature
maps.

Pooling layer decreases the parameter number of CNN without reducing the image quality.
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The feature obtained after convolution is a static feature of the image, which means that a fea-
ture useful in one area is likely to be useful in another. At this time, we can use the statistical
characteristics of the region to describe the region’s information. At the same time, consider-
ing that the model needs to have a certain degree of robustness to translation and rotation in
practical applications, it is beneficial to enhance the robustness by describing the region fea-
tures rather than the region itself. There are generally two types of pooling operations, one is
average pooling and the other is maximum pooling. The maximum pooling operation is using
a 2 × 2 filter, the maximum is to find the maximum value in each region, here the step size is 2,
and finally extract the main features in the original feature map. The method of average pool-
ing layer is to sum each 2 × 2 area element and divide by 4 to get the main features, Fig. 1.6
illustrates the maximum pooling.

1 1 2

1 1 2

1 2 2

1 1 0

1 1 0

1 0 0

Feature map Feature map

Maximum Pooling

1 2

1 2

1 1

1 1

eature map eature map

Figure 1.6. An example of pooling process. After the pooling, the new feature map keeps the
important information of the original feature map but reduces its size.

Fully Connected Layer is the ”classifier” in CNN. If the operations of the convolutional layer
and the pooling layer are to map the original data to the hidden layer feature space, the fully
connected layer plays the role of mapping the learned feature representation to the sample’s
label space. In detail, a fully connected layer flats the 2-dimensional feature into a single vec-
tor of values, each representing a probability that a certain feature belongs to a label. When
multiple fully connected layers are superimposed, a nonlinear relationship between object char-
acteristics and object categories can be constructed.
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1.3.2 Loss function & Back propagation

Loss function and back propagation usually work together to enable the CNN prediction to
approach the ground-truth. Particularly, loss function measures the distance between the CNN
prediction and the ground-truth, back propagation adjusts the CNN parameters based on the
loss function value to reduce the distance between the prediction and ground-truth.

Loss function contains following types in this thesis: MSE loss, i.e., mean square error, which
is usually deployed to measure the segmentation and regression quality. MSE loss calculates
the average squared difference between the estimated values and the actual value. If the vector
(or matrix) has N prediction ŷ and corresponding true value y, MSE loss can be formulated as
follow:

MS E =
1
N

N∑
i=1

(yi − ŷi)2 (1.3)

Dice loss which is usually deployed in small object segmentation evaluation. Dice loss calcu-
lates the Dice coefficient between the ground-truth and the prediction. Assuming there are a
2D segmentation X and a ground-truth Y , Dice loss is:

Dice =
2|X ∩ Y |
|X| + |Y |

(1.4)

Different from MSE loss, which focuses on the overall performance, Dice loss only pays at-
tention to the segmentation performance on the desirable object. Thus Dice loss is usually
employed in small object segmentation to improve the result precision.

Back propagation (BP) is the most common and effective method to train the ANN. The main
principle of BP is:

1) Inputting the training data into an ANN and getting the output, which is forward propagation.

2) Because there is an error between the output of ANN and the true label, calculating the error
and back-propagating the error to every layer until the input layer.

3) During back-propagation, adjusting the ANN parameters in every layer.

4) Repeating the above procedure iteratively until the error between the output and the true
label is less than a tolerance range, which is convergence. The complete formula derivation of
BP is shown in Appendix. A.

1.3.3 Types of learning

According to the provided label in a dataset, DL algorithms can be divided into the following
categories: fully-supervised learning, semi-supervised learning, and weakly-supervised learn-
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ing.

Fully-supervised learning: In the given dataset, the input and label are one-to-one correspon-
dence. Thus fully-supervised learning algorithms aim to train a mapping from the input to the
corresponding label. For instance, the label for binary segmentation in the fully-supervised
learning is a mask where every pixel is 1 or 0 to indicate the class (foreground or background)
of this pixel in the input image. Fully-supervised learning algorithms are the most common
training method because theoretically their performance is the best and their training proce-
dures are the simplest.

Unsupervised learning: In the given dataset, there is only input data without any labels. In
this case, unsupervised learning algorithms learn the inherent structure of the data from discov-
ering specific patterns through repetitive experiences, such as the gray scale difference between
the tumor and the normal tissue. Unsupervised learning algorithms are only suitable for some
specific tasks where the data has distinguishable inherent patterns.

Semi-supervised learning: In the given dataset, only partial inputs have corresponding labels,
the other partial inputs have unknown labels (or no labels). While semi-supervised learning
algorithms aim to make full use of all data in the dataset to learn a mapping from the input the
correct label. Generally, semi-supervised learning algorithms are usually used for some tasks
where the label is difficult to be annotated.

Weakly-supervised learning: In the dataset, every input has a corresponding weak label. The
weak label means it provides less information compared with the label. Weakly-supervised
learning algorithms aim to map the input to a more specific label. For instance, in a pixel-level
object segmentation tasks, the provided weak label is bounding-boxes of desirable objects.
Here, the label is not so accurate that indicates the class of every pixel, but it indicates the ob-
ject location and size. Thus, the weakly-supervised learning algorithms try to take advantage
from these weak labels to exploit the input inherent features, thereby accomplishing the task.

1.4 DL in medical object detection and segmentation

DL achieves great performance in medical object detection and segmentation, but it also ex-
poses many limitations along with the development. Compared with traditional machine learn-
ing methods which extract a limited number of image features with hand-crafted algorithms,
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DL leverages CNN to extract numerous image features and fully connected layers to regress
the object location. More importantly, DL adjusts the parameters of CNN and fully connected
layers through BP to extract more proper image features and reduce the distance between its
prediction and the ground-truth, thereby achieving great detection and segmentation results.
However, DL also has several limitations and cannot address some challenging medical object
detection and segmentation tasks.

1.4.1 DL methods for medical object detection and segmentation

DL methods for medical object detection and segmentation can be divided into two categories:
1) Fully convolutional network (FCN) methods; 2) proposal-based methods.

FCN methods are the pixel-to-pixel network in which every layer is a convolutional layer,
they input the medical image and output the same size segmentation directly. The most fa-
mous FCN method in medical image segmentation is U-Net[22]. Its encoder (downsampling)
- decoder (upsampling) structure is a remarkable design method. Particularly, U-Net extracts
high-level features from the low-level features through the encoder, and restores the size of
the feature to the same size as the input, thereby achieving pixel-level segmentation. More-
over, U-Net also employs skip-connections between the encoder and the decoder to convey the
low-level features from the encoder to the decoder directly, which avoids feature losing in the
downsampling effectively. There are many new convolutional neural network design methods
based on the core idea of U-Net, they add new modules into the encoder-decoder structure or
incorporate U-Net with other design concepts, such as Dense U-Net [23], MultiResUNet [24],
and Attention UNet [25]. Note that, in such methods, the detection result usually is determined
by the surrounding-box of the segmentation.

Proposal-based methods generate one or several Regions-of-Interest (RoIs) as proposals where
the desirable object may exist firstly and then segment the RoIs to obtain segmentation. A typi-
cal proposal-based method is Mask R-CNN [26], which proposes RoIs on the image, segments
each RoI and predicts the bounding-box of desirable objects. Based on the Mask R-CNN, there
are lots of proposal-based methods being proposed, such as HMR-Net [27] and Mask scoring
R-CNN [28].

1.4.2 Limitation of DL methods

A limitation that DL methods often impose is over-fitting due to their inability to incorporate
or discover intrinsic knowledge about the task at hand [29]. In detail, for DL methods, every
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aspect related to understanding the task at hand and ensuring the generality of the method
are the responsibility of the engineer. While the methods blindly learn to develop a mapping
between their input and their label according to the criteria defined by the engineer. As a
consequence, such methods often suffer from sub-optimal parameter optimization and weak
generalization.

1.5 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) as the newest AI technology has a great potential to ad-
dress the limitation of traditional DL methods. DRL has a sequential process to interact with
the task, which allows DRL to gradually understand the intrinsic knowledge about the task and
then complete the task effectively. Therefore, in medical object detection and segmentation,
compared with traditional DL methods, DRL can gradually approach the desirable object to
locate its location by sequentially interact with the image. This object location facilitates sub-
sequent object detection and segmentation much easier and more accurate.

DRL integrates the advantage of Reinforcement Learning and Deep Learning to achieve the
above sequential process. The details about Reinforcement Learning and Deep Reinforcement
Learning are introduced as follows.

1.5.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) uses a method similar to trial and error in human thinking to find
the optimal strategy. Its self-learning and online learning characteristics make it an important
part of the theoretical system of machine learning. In particular, RL deploys an agent to interact
with an environment in a proper manner and maximizes long-term rewards. Under an RL
situation, the agent is not taught to complete the task, but instead learns to accomplish a task
through the reward signal of the feedback. State, action, and reward are the basic element
compositions of RL. The state is used to describe the whole of the environment and the agent.
The action indicates the role the agent exerts on the environment. At this time, the environment
will give the agent a reward signal and a new state. As shown in Fig. 1.7, for the current state
st, the agent performs an action at, gets a reward rt, and gets a new state st+1. The core of
reinforcement learning is to learn the mapping from state s to action a, that is, what action
should be selected in the current state to maximize the reward, which is the policy (strategy).
Here, the policy (strategy) can be random, that is, the probability distribution of action to the
state, or it can be deterministic. In general, the goal of reinforcement learning is to learn a
suitable strategy π to maximize the total cumulative rewards obtained in an episode:
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Rt = rt + rt+1 + rt+2 + . . . . . . + rT =

T∑
i=t

ri (1.5)

Where T is the iteration number in the episode. Practically, we generally use the sum of rewards
with discounts, i.e.:

Rt = rt + γrt+1 + γ2rt+2 + . . . . . . + γT−trT =

T∑
i=t

γi−tri (1.6)

Where the discount factor γ ∈ (0, 1) guarantees the sum of rewards can converge when the
iteration number is infinite.

Agent

Environment

Reward

Action

State

rtst

at

rt+1

st+1

Figure 1.7. The principle of RL.

In RL, a state-value function Vπ(s) is defined to describe the expectation of the sum of
rewards that can be obtained by always executing strategy π under state s, namely:

Vπ (s) = E

 T∑
i=0

γiri+1|sT = s

 (1.7)

This formula shows the expectation of discounted rewards that can be obtained from the state
s, and is also called γ discount cumulative reward.

Similarly, an action-value function Qπ(s, a) is defined to describe the expectation of the sum of
rewards that can be obtained by always executing strategy π after taking action a under state s,
namely:

Qπ (s, a) = E

 T∑
i=0

γiri+1|sT = s, aT = a

 (1.8)

Based on their definitions, the state-value function and the action-value function can be con-
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verted to each other by:
Vπ (s0) =

∑
a∈A

π(a|s) ∗ Qπ (s, a) (1.9)

Value-based methods

Value-based methods firstly evaluate the action-value function Q(s, a) for every action, then
obtain the optimal policy π(a|s) based on the action-value. A typical value-based method is Q-
learning. In Q-learning, the action-value function can be obtained by Bellman Equation with
an iterative solution:

Qπ (st, at) = E
[
r + γQπ (st+1, at+1)

]∣∣∣
at+1=π(st+1) (1.10)

After knowing the optimal action-value function Qπ∗ (st, at) for every pair of state-action, the
optimal policy (strategy) is to select the action with highest Q value under a specific state,
namely:

π∗ (st) = arg max
a

Qπ∗ (st, at) (1.11)

In the beginning of training, Qπ∗ (st, at) or π∗ is unknown, thus the action-value function is
trained by iteratively updating the Bellman Equation to get the optimal Qπ∗ (st, at) or π∗. In
addition, there are also many methods estimate the state-value V(s) so that they can obtain the
optimal policy (strategy) based on the state-value function

Policy-based methods

Practically, there are infinitely many actions to choose from, it is not feasible to optimize the
action-value function (Q function) at this time. To overcome this difficulty, it is more effective
to directly learn a parameterized strategy than a value function, Thus, policy-based methods
are proposed. A very typical method is the policy gradient method. Policy gradient method
uses the derivative ∇wRt of the expected return Rt to the strategy parameters ω as a gradient
to directly optimize the strategy parameters. While the derivative ∇wRt can be estimated from
samples.
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Actor-Critic method
Actor-critic (AC) method combines the advantage of value-based methods and policy-based
methods. AC utilizes a parameterized strategy (actor) and a state value function estimator
(critic) for improving the strategy. A typical AC algorithm for learning deterministic strategies
is the deterministic policy gradient method. The deterministic policy gradient algorithm uses
a derivable action-value function approximator, and the policy gradient is obtained by using
the derivative ∂Q

∂a of the output Q value with respect to action a, namely, the policy gradient is
∇ωQ = ∇aQ · ∇ωπ.

In summary, RL accomplishes a task by interacting with the task environment iteratively
(namely, an agent selects actions to change the task environment, and the task environment
feedbacks the agent with reward). During the interaction, RL explores the task with various ac-
tions, and improves its strategy gradually. Such interaction enables RL to self-learn the optimal
strategy and make the optimal decision when dealing with any state of the environment.

1.5.2 DRL algorithms
Deep Reinforcement Learning (DRL) integrates the DL and the RL, thus it combines their ad-
vantages has great potential to be applied in medical image analysis. As mentioned above, the
performance of RL depends on the process of fitting action-value functions (value-based algo-
rithms) or strategy parameterization (strategy-based algorithms), where the widespread use of
function approximators enables RL to be used in more complex problems. While DL has been
deployed as function approximators in supervised learning and they are derivable. Thus the
DL enlarges the application range of the RL and improves its performance.

In the following part, we introduce two DRL methods: 1) Deep Q-learning Network (DQN)
[30], which is a value-based algorithm and has been employed in anatomical landmark de-
tection [29] and breast tumor detection [31]. 2) Soft Actor-Critic (SAC) [32], which is an
AC method. SAC is attracting more and more researchers because it is robust to the hyper-
parameters and performs stably.

Deep Q-learning
Deep Q-learning Network (DQN) is a value-based method, where the input is image informa-
tion and the output is discrete action (such as the tracking direction in subpixel neural tracking).
DQN employs a neural network Q(s, a|θ) to approximate the optimal action-value function
Q∗(s, a) (As shown in Fig. 1.8), where θ represents the network parameter. The optimization
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objective of Q∗(s, a) is yi = ri + γQ (si+1, π (si+1|θ
′) |θ′). The network parameter is adjusted by

minimizing its loss function L(θ), namely:

L(θ) = (ri + γQ (si+1, π (si+1|θ
′) |θ′) − Q (si, ai|θ))2

= (ri + γmaxa Q (si+1, a|θ′) − Q (si, ai|θ))2 (1.12)

However, since the training target of the action-value function (Q-function) depends on itself,
this will cause instability or even divergence in the training process. Here DQN deploys the tar-
get network method, that is, make a copy of the original Q-function to get the target Q-function.
Then, the original Q-function is trained and continuously updated with the target Q-function as
the target, and the target Q-function is copied from the original Q function every certain step.
In this way, the complementarity in the training process is removed, thereby greatly improving
the stability of the training process.

Another factor that causes training process unstable lies in the strong temporal correlation
among the data input to the network, which is because these data (namely (si, ai, ri, si+1)) is
sampled from the same trajectory. DQN solves this problem by experience replay mechanism.
As shown in Fig. 1.9, experience replay mechanism stores the exploration experiences into an
experience memory, and samples a minibatch of experiences randomly from the memory to
train the network. The experience replay mechanism breaks the temporal correlation among
input data. It also improves the utilization efficiency of the exploration experiences because
every experience is used multi-times.

In addition, a simple η-greedy strategy is employed to ensure the exploration is sufficient. η-
greedy strategy means selecting an random action with a probability η. The complete training
process can be seen in Appendix. B.

argmaxs Q a

q(a1)

q(an)

…

Figure 1.8. The schematic of Deep Q-learning.
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Figure 1.9. Experience replay in the DQN method.

Soft Actor-Critic

Soft Actor-Critic (SAC) [32] is a state-of-art DRL method, it performs much more stable than
other methods and is insensitive to the hyper-parameters. SAC employs the framework of
Actor-Critic and designs a new optimization objective to train the strategy π:

J(π) =
∑

t

E(st ,at)∼ρπ {r(st, at) + α[H(π(·|st))]} (1.13)

Where E(st ,at)∼ρπr(st, at) is the objective of original DRL, namely, the sum of obtained rewards.
Maximizing this item aims to guide the agent to approach and achieve the task goal. H(π(·|st))
represents the entropy of the strategy, maximizing this entropy aims to guide the agent to ex-
plore the liver image as random as possible. In other words, it guides the agent to approach the
target goal with different strategies, as well as avoids the agent sticking into sub-optimal.

The training procedure of SAC follows the actor-critic, where a state-value function and an
action-value function together play as a critic, a policy (strategy) function plays as an actor.
The critic evaluates the actor’s strategy according to the feedback of the reward function, the
actor improves the strategy according to the critic’s evaluation. With the training processing,
the critic evaluates the strategy (policy) more accurately, the actor develops a more optimal
strategy.

1.5.3 The great potential of DRL in medical object detection and
segmentation

DRL is believed to have the ability to understand the medical image through its cognitive-like
learning process [29], which can locate the desirable object effectively so that the detection and
segmentation can be executed easily. More importantly, its trial-and-error interactions with the
task render DRL distinct from traditional DL methods [33]. With a comprehensive exploration
to the image, it is promised to capture the intrinsic knowledge and overcome the limitation of
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DL methods [34]. More specifically, by combining the strong decision-making ability of RL
and the powerful perception of DL, DRL has a sequential process with changing attention-
focusing that gradually accumulate evidence of certainty when searching the desirable object
[35]. Therefore, in medical object detection and segmentation tasks, with the sequential pro-
cess, DRL can simultaneously both searching strategy and the appearance of the object of
interest to determine the location of the desirable object. With the object location as a prior, the
detection and segmentation method can focus on the specific area and obtain a more accurate
result. Compared with the traditional DL method which directly predicts the object location
with a mapping according to appearance, DRL can avoid falling into sub-optimal effectively. In
addition, DRL has shown its competence in other medical image analysis fields [29, 36]. These
DRL-based methods have greatly improved the result precision, some of them have become the
benchmark in their fields.

1.6 Thesis objective

The overarching topic of this thesis is to leverage the advantage of DRL technology to deter-
mine the medical object location and thus facilitate accurate object detection and segmenta-
tion. The expectation is to increase the detection and segmentation precision, thereby improv-
ing clinical workflow and assisting clinicians to make surgical plans. Therefore, from simple
to complex, this thesis deploys DRL into two challenging and representative medical object
detection and segmentation tasks: 1) accurate vertebral body segmentation. 2) liver tumor seg-
mentation in the non-contrast-enhanced image. The specific objective for each chapter in this
thesis is introduced as follows.

In chapter 2, the objective was to leverage DRL to model the spine anatomy and facilitate
vertebral body detection and segmentation from MRI images. The goal was to achieve higher
detection and segmentation accuracy than state-of-the-art methods.

In chapter 3, the objective was to leverage DRL to locate the barely-visible liver tumor and
facilitate the tumor segmentation in the non-contrast-enhanced image. The goal was to replace
traditional contrast-agent-enhanced methods and thus avoid the injection of contrast agents.

In chapter 4, an overview and a summary of the key findings and important conclusion in
Chapter 2 and Chapter 3 will be stated. The limitations and new challenges of the methods we
proposed will be discussed. The thesis is concluded with potential ideas to generalize DRL to
other medical object detection and segmentation tasks.
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CHAPTER 2
The contents of this chapter was previously published in the Medical Imaging Analysis.

2 SEQUENTIAL CONDITIONAL REINFORCEMENT LEARN-
ING FOR SIMULTANEOUS VERTEBRAL BODY DETEC-
TION AND SEGMENTATION BY MODELING THE SPINE
ANATOMY

2.1 Introduction

Accurate vertebral body (VB) detection and segmentation from spine images have become a
clinically important and frequently demanded research topic for diagnosis and identification
of spinal diseases. VB detection usually assists clinicians with the influence caused by VB
deformation to the surrounding anatomy, such as evaluating the spinal volume and evaluating
the compression of the spinal cord. For instance, VB detection enables clinicians to easily ob-
serve the narrowing of the spinal canal caused by VB deformation, thereby assisting clinicians
to diagnose the lumbar spinal canal stenosis [1]. VB segmentation usually assists clinicians
with VB morphology to diagnose VB-related diseases, such as vertebra collapses/fractures and
spondylolisthesis. For instance, a function of VB segmentation is measuring the vertebral body
height (VBH) and evaluating the level of vertebral fracture. VB segmentation enables clinicians
to easily measure the anterior, central and posterior heights of the observed VB, thereby clini-
cians can evaluate the difference between these three heights to diagnose the level of vertebral
fracture [2]. The same approach, VB segmentation also helps to diagnose the spinal fracture
risk for the osteoporotic patients [3, 4] and the diseases related to vertebral morphometry such
as crushed/wedged vertebrae [5]. Therefore, VB detection and VB segmentation are helpful to
assist clinicians and diagnose spine diseases.

In clinical practice, VB detection and segmentation are completed by radiologists manually de-
lineating a bounding-box and the boundary of VBs, which brings several problems to practical
diagnosis: 1) tedious repetition for radiologists caused by manual segmentation for numer-
ous patients. For instance, radiologists manually segment more than 140,000 spine images in
the US to diagnose vertebral fractures [6], which takes up a lot of radiologists’ time and en-
ergy. 2) the inconsistency of the detection or segmentation results caused by the subjectivity
of the clinician, especially for an inexperienced clinician. For instance, the clinician’s sub-
jective opinion plays a decisive role in the diagnosis of adolescent idiopathic scoliosis (AIS)
of 7,000,000 children in the United States [7], which requires correct VB segmentation. 3)
prolonged pain caused by delayed diagnoses of vertebral injuries [6]. For instance, 19%-50%
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of vertebral fractures of the thoracolumbar spine are associated with a neurological injury [8],
which causes great suffering to the patient when the diagnosis period is long.

There are three challenges when obtaining reliable and accurate VB detection and segmen-
tation due to the unique spine imaging and anatomy. Challenge 1: mis-detection (or/and
mis-segmentation) caused by similar background features from the surrounding tissues. Some
of the surrounding tissues in spinal images exhibit similar basic features to the VBs, such as
the abdomen region in Fig. 2.1(B) shows similar architecture as the VBs. The adipose tissue
is shown with a high pixel-intensity and the belly button possesses a low pixel-intensity, which
closely resembles the pixel intensity differences between the VB and intervertebral discs. These
similar architectures or appearances are strong enough to mislead the detection and segmen-
tation in medical images. Challenge 2: mis-identification caused by the adjacent VBs. Some
adjacent VBs are joined together because of some intervertebral disc lesions, such as inter-
vertebral disc degeneration. For instance, the L4 and L5 are jointed so closely in Fig. 2.1(D).
It is difficult to define the boundary between these joint VBs relying on the pixel-intensity and
prone to treat them as a whole when detecting and segmenting VBs, thereby mis-identifying
them as an individual VB. Challenge 3: inaccurate segmentation(and detection) caused by the
complex appearance and various spatial offsets of VBs. Image artifacts and pathological varia-
tions lead to complicated VB appearance and spatial offsets, which imposes great difficulty to
accurately detect and segment VBs. As shown in Fig. 2.1(F)-(K), these artifacts and patholog-
ical variations totally change the pixel-intensity of VBs in medical images, making it complex
to build a robust model and extract the representation features for these VBs. In this case, it is
prone to produce false-positive pixels in segmentation masks or deviated detection coordinates.

Although numerous methods have been proposed for VB detection and segmentation, they
cannot address the above challenges totally. These methods can be attributed into two types:
1. Proposal-based systems usually cause false-positive detection and segmentation results.
For this type of system, the VB detection and segmentation task is typically decoupled into the
proposing of candidate points (or candidate regions) and the analysis of these candidates. In
the first stage, these systems propose points (or regions) with a sliding window [9], sampling-
manually [10], super-pixels [11], Shannon entropy[12], or integrating two of the above methods
[13]. In the second stage, most of the methods in these systems focus on each candidate region
and determine which regions are VBs with a classifier, such as support vector machine (SVM)
[10], convolutional neural network (CNN) [9, 13] and random forest classifier (RFC) [11].
These methods only pay attention to the local information, namely the information in candi-
date regions, even if these regions are in the background. Thus these methods lead in many
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Figure 2.1. Challenges in the automatic vertebral body segmentation and detection. Our
method is robust to all these challenges. (A) Vertebral Body(VB); (B)(C) Some background
tissues present similar architecture or appearance as VBs (or spines), which misleads the detec-
tion and segmentation; (D)(E) Some adjacent VBs joints together because of some interverte-
bral disc lesions, which leads to these joint VBs being detected and segmented as an individual
VB; (F)-(K) Complex appearance and various spatial offsets of VBs caused by image artifacts
and pathological variations, which imposes great difficulty to accurately detect and segment
these VBs.

cases to false-positive detection and segmentation results. While other methods in candidate-
level systems, such as [12], uses a graph model to filter out the background and keeps true
candidates as VB center points. Such methods do not consider the influence of pathological
variations when generating candidate points (or candidate regions). Therefore, the detection
and segmentation results are deviated or false-positive. 2. FCN-based systems usually cause
mis-identification or mis-segmentation. FCN-based systems utilize fully convolutional net-
works to extract features from entire spine images and to predict every pixel that belongs to
the VBs or background, such as Feed-Forward Chain (FFC) proposed by [14], Spine-GAN
proposed by [15], and Progressive U-Net proposed by [16]. These methods learn the global
features of VBs, such as the S-shape presented by the vertebral column in spine images from
the sagittal view, and focuses attention to the vertebral column. As a result, these methods ef-
fectively avoid false analysis to the background tissues. However, because these methods lose
local-detailed information in the feature-extracting period, these methods cannot perceive the
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complex appearance of VBs caused by pathological variations or anatomic variants. Therefore,
it is difficult for these methods to separate the attached (joint) VBs [17].
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Figure 2.2. Deep reinforcement learning(DRL) has great potential to solve the challenges in
VB detection and segmentation: 1) DRL is capable of modeling the spatial sequence correla-
tion of VBs, which proposes an attention-region for each VB and facilitates subsequent detec-
tion and segmentation to concentrate on the desirable VB; 2) DRL can explore the surrounding
of VBs iteratively and ultimately provide optimal analysis-view for subsequent detection and
segmentation. This attention-region settles the VB appearance variation, enables subsequent
detection and segmentation networks to achieve unbiased results.

2.1.1 Deep reinforcement learning

Deep reinforcement learning (DRL) [18] has great potential to solve the aforementioned chal-
lenges (Fig. 2.2) to achieve accurate detection and segmentation results. 1) DRL has shown
great performance on intelligent search [19] and modeling the sequence correlation [20, 21]
with its strong decision-making ability, which highly inspires us to exploit DRL to model the
spatial sequence correlation of the spine. With modeling the anatomical correlation between
the VBs, DRL excludes the interference of the background, such as artifacts and adipose tis-
sue, thereby focusing the attention of subsequent detection and segmentation on the VBs. 2)
DRL is believed to gradually accumulate evidence of certainty during exploring its task and
ultimately achieves the optimal [22, 23]. Thus DRL can iteratively explore the spine image and
gradually understand the surrounding of VBs, thereby providing an optimal analysis view for
the subsequent detection and segmentation. The optimal analysis view enables the detection
and segmentation to achieve unbiased results.
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Figure 2.3. The principle of DRL, where the agent observes a state of the environment and
makes a decision to select an action from an action set. Each action produces a corresponding
reward signal, which acts as a supervised response from the environment. The experience-
replay stores these history interaction experiences and replays them to train the agent network,
thereby enabling the agent network to select the correct actions to maximize the obtained re-
ward.

Specifically, DRL models its task as a dynamic Markov Decision Process (Fig. 2.3). It consists
of: a state, an agent, an action, a reward function and an experience-replay. The state is
an observation of the task. The agent iteratively observes the state of the task and selects a
specific action to change the state of the task. The reward function evaluates the action and
feedbacks a reward, which guide the agent to select the correct actions and complete the task.
The experience-replay is a memory, which stores the these states, actions and rewards into an
experience pool, thereby sampling experiences and training the agent to select correct actions
to obtain the reward. Therefore, with the supervision of rewards, after iteratively dynamic in-
teraction, the agent can understand the task and select actions to achieve the target.

However, existing DRL methods have three issues when applying the detection and segmenta-
tion of VBs: Issue 1. Unbalanced-experiences. In spine images, the number of pixels in the
background is much larger than the pixels in VBs. Thus, most of the exploration is located in
the background(negative-experiences) rather than in the VBs(positive-experiences). This kind
of unbalanced-experiences leads to it is time-consuming to model the spatial sequence corre-
lation of spine and search the optimal analysis view. Issue 2. Reward-confusion. Because
the spine dataset is small compared with other datasets that can be explored infinitely, such
as video game data and driving video data. Therefore, with the DRL model training, the sum
of obtained rewards becomes complicated, which often causes DRL to struggle in local opti-
mal and training oscillation. Issue 3. Fixed-exploration. Because the appearance of VBs is
various and complex, it is difficult to apply a fixed exploration mode to handle all VBs in the
dynamic decision process. The fixed exploration mode is caused by the action step-size to be
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preset and fixed in current DRL methods. Therefore, this makes it difficult or impossible for
DRL model to obtain the optimal analysis view for all VBs.
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Figure 2.4. Different from traditional methods, our method models the sequential anatomical
correlation of the spine and proposes attention-regions for the VBs sequentially, then detects
and segments the VBs accurately. SCRL draws support from the spatial anatomical relation
of the VBs, SCRL excludes the interference from background tissues on VB detection and
segmentation. Simultaneously, SCRL also perceives the geometry and appearance of each in-
dividual VB precisely to handle the unpredictable pathological variations or anatomic variants.

2.1.2 Method overview
In this paper, we propose a Sequential Conditional Reinforcement Learning network (SCRL)
to tackle the problems of simultaneous detection and segmentation of VBs from sagittal view
spine images. SCRL innovatively models the detection and segmentation of VBs from top
to bottom in spine images as sequential dynamic interaction processes (Fig. 2.4). Particu-
larly, SCRL firstly proposes an Anatomy-Modeling Reinforcement Learning Network with a
novel reward function and an adaptive experience-replay mechanism. This network dynami-
cally models the spatial correlation between adjacent VBs and focuses an attention-region on
each VB. Then a new FC-ResNet learns rich global context information of the VB including
both the detailed low-level features and the abstracted high-level features to detect the accurate
bounding-box of the VB based on the above attention-region. Simultaneously, a new Y-Net
learns comprehensive detailed texture information of VB including multi-scale and coarse-to-
fine features to segment the boundary of VB from the attention-region. To address the three is-
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sues above, SCRL solves the Unbalanced-experiences by a newly designed Adaptive-Sampling
Experience Replay (ASER), which automatically samples and increases the difficulty of train-
ing data. SCRL solves the Reward-confusion by a newly proposed Consequence-Oriented
Reward Function (CORF), which stimulates DRL model to generate more positive experiences
by exponentially connecting the reward of DRL and the attention-focusing accuracy. SCRL
solves the Fixed-exploration by leveraging Soft Actor-Critic (SAC, Sec. 2.2.1) [24], where the
step-size of the action is adaptively decided by the practical distance between the attention-
region and the desirable VB.

2.1.3 Contributions
Our major contributions are summarized as follows:

• To the best of our knowledge, our method is the first that leverages DRL to detect and
segment VBs in spine images. This DRL-based method effectively models the spine
anatomical correlation, thereby achieving better performance than traditional methods.

• Our proposed Consequence-Oriented Reward Function (CORF) addresses the Reward-

confusion and stimulates DRL to propose an accurate attention-region on each VB. This
attention-region enables subsequent detection and segmentation to concentrate on the
desirable VB and achieve higher precision. CORF achieves the above goal by for the
first time building an exponential relation between the attention-region accuracy and the
DRL learning objective, which is inspiring for future work to exploit the continuous
action-space DRL method.

• Our new Adaptive-Sampling Experience-Replay (ASER) addresses the Unbalanced-

experiences, which is a long-standing problem that hinders DRL from applying to small
data tasks. ASER effectively promotes the interaction efficiency between DRL and tasks,
greatly boosting the convergence speed of the DRL model and increases the attention-
region accuracy. ASER achieves the above goals by adaptively increasing the difficulty
of the training-data according to the decision-making ability of the DRL model. It is
worth mentioning that, ASER can be easily applied to other frameworks where DRL is
applied to small medical image datasets.

2.2 Background review

2.2.1 Deep Reinforcement Learning
Deep reinforcement learning (DRL) integrates the powerful understanding ability of deep
learning (DL) in perception issues, as well as the powerful ability of reinforcement learning
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(RL) in decision-making. DL is one of the most important part of machine learning, by sig-
nificantly promoting the progress of medical image parsing [25–27]. DL mainly uses the deep
convolutional neural network (CNN) as an image feature extractor [28] and a universal non-
linear function approximator [29]. The architecture of CNN is inspired by the feed-forward
type of information processing in the early visual cortex of animals [30], it exploits local spa-
tial correlations of image voxels to capture discriminative image features [19].

Inspired by behavioral psychology, RL is a computational method that an artificial agent learns
to maximize the cumulative reward signal to reach predefined goals by interacting with an en-
vironment [31]. The agent observes a state in the environment and makes a decision to select
an action from an action set. Each action produces a corresponding reward signal, which acts
as a supervised response from the environment. This reward-based decision making can be
formulated as a Markov Decision Process (MDP, [31] M := (S,A,T ,R)), where: S repre-
sents a finite set of states; A represents a finite set of actions that allow the agent to interact
with the environment; T represents the state transition function, where T st+1

st ,a denotes the next
state st+1 ∈ S is performing the action at ∈ A in the current state st ∈ S. The objective
of standard reinforcement learning is to derive (or approximate) an optimal policy π(at|st) to
maximize the obtained amount of rewards

∑
t E(st ,at)∼ρπ[r(st, at)], where ρπ(st, at) denotes the

state-action marginal of the trajectory distribution induced by the policy π(at|st). Generally,
DRL defines two functions to obtain the optimal policy: 1) the state value function Vπ(s) rep-
resents the obtained amount of rewards of the policy π that starts from s. 2) the state-action
value function Qπ(s, a) represents the obtained amount of rewards of the policy π that starts
from s and performs action a. Therefore, the optimization objective of RL can be formulated
as π∗ = argmaxπ

∑
t Vπ(st) or π

′

= argmaxa∈A Qπ(s, a).

DRL combines DL with RL to utilizes DL to approximate the tabular function in RL, such as
the state value function and state-action value function. Because the action-space and state-
space in real-world implementations are high-dimensional, the tabular function in traditional
RL cannot characterize such difficult tasks.

Recently, DRL has been applied in some medical image analysis tasks. For medical image
registration, [32] casted the image registration problem as a strategy learning process and [33]
modeled it as a Markov decision process (MDP). For finding standardized view planes in 3D
image acquisitions, [34] utilized DRL to mimic the navigation processes.

Actor-Critic is a typical continuous action-space DRL method. As its name indicates, Actor-
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Critic consists of two networks, namely, an actor network learns the policy to select an action,
a critic network evaluates the action and gets the state-action value function for the actor to
update the policy. Particularly, the actor network approximates the policy function: πθ(s, a) =

P(a|s, θ) ≈ π(a|s). The critic network approximates the state-action value function: q̂(s, a, ω) ≈
qπ(s, a). With the state-action value function, the actor network updates its parameters with:

θ = θ + α∇θlogπθ(s, a)Q(s, a, ω) (2.1)

Soft Actor-Critic (SAC) [24] is a state-of-art DRL algorithm. SAC integrates Actor-Critic
framework and the maximum entropy reinforcement learning framework, which increases the
stability, robustness, and exploring ability. Its optimization objective is formulated as:

π∗ = argmax
π

Eπ

∑
t

r(st, at) − αlog(π(at|st))

 (2.2)

According to Equation 2.2, the optimal policy not only maximizes the expected sum of reward
(first summand) but also the expected entropy of itself (second summand), which encourages
the strategy decided by the policy to be as random as possible.

2.3 Method
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Figure 2.5. The process that SCRL segments and detects L3 vertebral body(VB) based on L2
VB. SCRL coordinates three major components (AMRL, Y-Net, and FC-ResNet) to detect and
segment the desirable VB with a coarse-to-fine approach: AMRL proposes an attention-region
to the desirable VB, which excludes background interference to subsequent detection and seg-
mentation. Y-Net and FC-ResNet draws support from the attention-region concentrating on
perceiving the feature of the desirable VB to detect and segment the VB accurately.

Sequential Conditional Reinforcement Learning (SCRL, Fig. 2.5) integrates three major com-
ponents to detect and segment VBs simultaneously with a coarse-to-fine approach from top to
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bottom along the spine:
Anatomy-Modeling Reinforcement Learning Network (AMRL, Sec. 2.3.1) innovatively
adopts DRL to propose an attention-region of the VB. This network accurately obtains an
attention-region that includes the VB through Consequence-Oriented Reward Function and
Adaptive-Sampling Experience-Replay to respectively effectively and stably model the spatial
relationship among the image, the spine, and VBs. The newly proposed Consequence-Oriented
Reward Function guides the agent network to explore the image and approach the VB effec-
tively. The newly designed Adaptive-Sampling Experience-Replay stably speeds up the net-
work training efficiency and robustness.
Fully-Connected Residual Neural Network (FC-ResNet, Sec. 2.3.2) learns a transformation
matrix, thereby transforming the tight bounding-box coordinate of the desirable VB accord-
ing to the above attention-region coordinate. FC-ResNet combines the deep abstract-feature
extracting of ResNet and the strong function-fitting of fully-connected layers. It perceives the
location and size of the desirable VB from low-level to high-level comprehensively, as well as
regresses the transformation matrix to obtain the accurate detection result. This accurate detec-
tion result is also employed as the start for AMRL when AMRL focuses the attention-region
onto the next VB.
Y-shaped network (Y-Net, Sec. 2.3.3) segments the VB mask from the above attention-region,
as well as determines the VB classes(lumbar or sacrum). Y-Net learns the texture and geometry
information of the VB from multi-scale to obtain the VB segmentation by taking advantage of
a U-Net architecture network. By extending the encode-path of U-Net, Y-Net also learns the
semantic information from coarse to fine to classify the VB category (lumbar or sacrum).

2.3.1 Anatomy-Modeling Reinforcement Learning (AMRL)
As formulated in Equation. 2.3, AMRL focuses an attention-region on the desirable VB by
training an agent network D with a MDP-based dynamic interaction process {S,A,R,E}. The
Multi-Channel State S (Sec. 2.3.1) is an observation set obtained from an adaptive attention-
region. The Continuous-Transforming Action A (Sec. 2.3.1) is the set to adjust the location
and size of the attention-region in the spine image freely. The agent network D is a DL-
based network, its input and output are the state s∈ S and action a ∈ A respectively. The
Consequence-Oriented Reward Function R (Sec. 2.3.1) evaluates that the contribution of the
action for focusing the attention-region on the desirable VB and feedbacks a reward r. The
Adaptive-Sampling Experience-Replay E (Sec. 2.3.1) is a memory, which stores the state s, the
action a and the reward r to refer the further agent network training. With a dynamic interaction
process (Fig. 2.6), the agent network iteratively observes the state of the attention-region and
selects actions to adjust the region location and size, as well as gets reward feedback. The
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Figure 2.6. AMRL iteratively interacts with the spine image and ultimately focuses the
attention-region on the desirable VB. Particularly, the Multi-Channel State of a region as the
input is iteratively fed to the agent network. Simultaneously the Continuous-Transforming
Action as the output of the agent network transforms the attention-region to a new location
and size. Consequence-Oriented Reward Function evaluates the value of the action to the VB
attention-region accuracy and feedbacks reward. Adaptive-Sampling Experience-Replay stores
the history interaction experiences with the experience pool and samples data to train the agent
network.

Adaptive-Sampling Experience-Replay samples training-date and updates the agent network
parameters. By combining the above four components dynamically, the agent network selects
actions to focus the attention-region on the desirable VB gradually.

at = D(st)

st+1 ← st
⊕

at

rt = R(st, at, st+1)

E ← E ∪ (st, at, st+1, rt)

D← U pdate(D, E)

(2.3)

Multi-Channel State

Multi-Channel State (Fig. 2.7) is the input of the agent network in AMRL. It conveys the agent
network with the location and size of the attention-region in the spine image in real-time, which
enables the agent network to flexibly interact with the spine image through the attention-region.
Multi-Channel State is specially designed as three channels. Channel 1) a spine image patch,
which contains the desirable VB and provides the agent network with comprehensive original
information of the VB and the VB surrounding. Channel 2) a feature map, which is extracted
from the third-last layer in a pre-trained adapted U-Net [35] (pretraining details see Sec. 2.4.3).
The feature map contains basic features of the VB and avoids the interference from background
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tissues, which improves the agent network learning efficiency. Channel 3) a region, which is
embedded in a binary image, where the pixel-intensity in the current region is set to 1 and
other pixel-intensity outside the region is set to 0. This region plays a role as the attention
mechanism, which allows the agent network to focus on a specific area in the spine image.
In addition, this region can be transformed to another location and size by the agent, thereby
allowing the agent network to focus on different regions in the image. Note that, to make the
feature map cooperate tacitly with the third binary region and provide extra VB information,
the pretraining of the adapted U-Net takes the binary region into account. By combining the
above three channels, our Multi-Channel State facilitates the dynamic interaction between the
agent and the spine image, which allows AMRL to understand the spine image comprehen-
sively and search the optimal attention-region.

Figure 2.7. Multi-Channel State in AMRL is a concatenation of a spine image patch and its
feature map, as well as a region mask. The spine image patch provides the agent network
with comprehensive original information of the VB and the VB surrounding. The feature map
contains basic features (especially the shape feature) of the desirable VB and avoids interfer-
ence from the background, which improves the agent network learning efficiency. Particularly,
the black purple area in the displayed feature map is background, the green area indicates the
attention-region, while the yellow area represents the VB area. The region mask provides the
attention-region information, which allows the agent network to focus on the spine image in
the attention-region and interact with the spine image.

Giving a spine image, AMRL divides the image into image-patches and initializes the attention-
region through following principles: 1) For the image-patch of the first VB, as shown in a)
in Fig. 2.8, AMRL takes the top-edge-midpoint of the spine image as a coordinate origin
and crops an 196*196 area and a 48*48 area respectively as the image patch and the initial
attention-region (selection principles for the above sizes in Sec. 2.4.4). As shown in b) in
Fig. 2.8, such image-patches allows the AMRL to transform the attention-region on the first
VB, thereby facilitating the further VB detection and segmentation. 2) For other image-patches
of other VBs, as shown in c), e) and g) in Fig. 2.8, the AMRL takes the top-edge-midpoint of
previous detection VB (the bounding-box) as coordinate origin and crops a 196*196 area as
the image-patch. The AMRL takes the bounding-box of previous VB as the initial attention-
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region. As shown in d) and h) in Fig. 2.8, such an image-patch and an initial attention-region
allow the AMRL to take advantages of the shape similarity between adjacent VBs and fo-
cus the attention-region from the previously detected VB on the next desirable VB, thereby
facilitating the VB detection and segmentation. Note that, the end signal of sequentially divid-
ing image-patches along the spine is the Y-Net classifies the desirable VB as sacrum because
sacrum is the last VB to be segmented and detected. Moreover, to avoid an infinitely sequential
dividing to the spine image caused by the error of the Y-Net, we set the maximum number of
image-patches is 9, because the maximum number of VBs in a spine image is 9 in our task.

Image patch
Initial

attention-region
Bounding-box

To be analyzed lumbar VB 

To be analyzed sacrum VB 

Lumbar VB mask

Sacrum mask

a) Image patch takes the top-

edge-midpoint of the spine 

image as the coordinate origin

b) The first lumbar VB is 

attention-focused, detected, 

and segmented

c) Image patch takes the top-

edge-midpoint of the first VB 

as the coordinate origin 

f) Sequentially dividing image-

patches along the spine

b) The second lumbar VB is 

attention-focused, detected, 

and segmented

e) Image patch takes the top-

edge-midpoint of the second 

VB as the coordinate origin 

h) The sacrum is attention-

focused, detected, and 

segmented

g) Image patch takes the top-

edge-midpoint of the sixth VB 

as the coordinate origin 

Figure 2.8. Giving a spine image, for the first VB, the image patch takes the top-edge-midpoint
of the spine image as a coordinate origin and crops a 196*196 area. For other VBs, the image
patch takes the top-edge-midpoint of previous VB (the detection bounding-box) as coordinate
origin and crops a 196*196 area.

Continuous-Transforming Action

Continuous-Transforming Action a ∈ A, as the output of the agent network in AMRL trans-
forms the attention-region to a new location and size(Fig. 2.9), thereby implementing the
decision-making of the agent network on the attention-region.

The advantages of our Continuous-Transforming Action is: 1) step-size of actions(both trans-
lation and size-changing) is adaptive and variable according to the respective distance between
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the attention-region and the desirable VB. This flexibility allows AMRL to balance the step-
number and the step-size of actions, and helps the agent network achieve the optimal efficiently.
2) different from traditional DRL methods, our action is multi-dimensional and it changes the
location and size of the attention-region simultaneously. This avoids AMRL from redundant
action steps when it focuses attention on the desirable VB.

Figure 2.9. Continuous-Transforming Action transforms the attention-region to a new location
and size. Continuous-Transforming Action contains four variables, which adjusts the location
and size of the region simultaneously. Therefore, the Continuous-Transforming Action imple-
ments the decision-making of the agent network.

Continuous-Transforming Action contains four variables: A =
{
ax, ay, aw, ah |Rax,ay

∈ [−6, 6],
Raw,ah

∈ [−4, 4]
}
. [ax, ay] translate the attention-region to a new location in horizontal and ver-

tical planes simultaneously, the translation step-size in each plane is |ax|, |ay| respectively, and
the translation direction (left/right and up/down) depends on sign(ax), sign(ay) respectively;[
aw, ah

]
adjusts the size of the attention-region, the step-size and direction are similar to the

above translations. Therefore, an attention-region
[
x, y,w, h

]
is transformed to a new status[

xn, yn,wn, hn
]

with action at =
[
ax

t , a
y
t , a

w
t , a

h
t

]
:


xn = x + ax

t

yn = y + ay
t

wn = w + aw
t

hn = h + ah
t

(2.4)

Agent network

Agent network learns to select actions according to the input state to focus the attention-region
onto the desirable VB. The agent network follows the composition modules of Soft Actor-
Critic [24], namely it consists of two modules. 1) A policy network approximates the policy
πθ(s, a). This policy outputs a specific action a when observing a state s. Thus the learning
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objective of this policy network is increasing the possibility of the actions that can increase
the VB attention-focusing accuracy. 2) A soft Q-function network boosts the policy network
learning by approximating the state-action value function and updating the network parame-
ter(Equation. 2.1). With the acceleration of the soft Q-function network, the policy network
converges to the optimal efficiently. The architecture of the policy network and soft Q-function
network are shown in Fig. 2.10.

a

b

Figure 2.10. (a) The architecture of the policy network, which consists of a ResNet and 4
fully-connected layers. The input and output of policy network are the state and the action
respectively. (b) The architecture of the soft Q-function network, which consists of a ResNet
and 4 fully-connected layers. The input of the policy network is the state and output is an
action. The input of the soft Q-function network are the state and the action obtained from
the policy network. The output of the soft Q-function network is the state-action value of the
action based on the state.

Consequence-Oriented Reward Function (CORF)

CORF is a specifically designed action evaluation function. It feedbacks the agent network
with rewards and guides the network to select correct actions to increase the attention-focusing
accuracy. It measures the attention-focusing accuracy difference between the attention-region
before and after an action, and creatively adds an exponential weight on those actions that
promote the attention-focusing accuracy. CORF is defined as follows:

Ra(s, s′) =

 eβ×Is′ ∆ > 0
0 ∆ ≤ 0

(2.5)
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where Is represents the measurement of attention-focusing accuracy when state s, which is the
intersection over union between the attention-region under state s and the VB bounding-box
from ground-truth. ∆ = Is′ − Is means the improvement of attention-focusing accuracy due to
the action a(s,s′). β is a weight coefficient to increase the importance of consequence-accuracy
in this reward function.

Since the learning objective of AMRL is to learn an optimal policy π to select the optimal
action, thereby maximizing the expected amount of rewards:

π = argmax
∑
E(st ,at)∼ρπ[r(st, at)]

= argmax
st ,at∼ρπ

∑
P(st)R(st−1, at−1) (2.6)

where P(st) is the possibility that state s appears, which is negatively related to the attention-
focusing accuracy it when st (Proof C). Thus, we assumes that:

P(st) = e−η×it , it ∼ st (2.7)

With above assumption and CORF equation, the right part of equation (6) has such relationship
with the attention-focusing accuracy:

P(st)R(st−1, at−1) = e−η×it × eβ×it , it ∼ st

= e(β−η)×it (2.8)

In equation (8), β is used to increase the weight of attention-focusing accuracy in the reward
function. Therefore, CORF increases the value of β until β > η can be formulated as follows:

P(st)R(st−1, at−1) ∝ eit (2.9)

According to equation (9), CORF enables the learning objective of the agent network to learn
an optimal policy π to improve the attention-focusing accuracy:

π = argmax
st ,at∼ρπ

∑
P(st)R(st−1, at−1)

= argmax
st ,it∼ρπ

∑
it (2.10)

Therefore, CORF has the ability to stimulate the agent network to select positive actions to
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increase the attention-focusing accuracy and address the Reward-confusion.

Adaptive-Sampling Experience Replay (ASER)

Adaptive-Sampling Experience Replay (ASER) samples the training-data of AMRL and adap-
tively increases the training-data difficulty as the decision-making ability of the agent net-
work increases. This not only addresses the Unbalanced-experiences but also improves the
attention-focusing accuracy. ASER achieves the above objective by two measures: 1) Experi-
ence stratified storing. ASER keeps a history experience pool Er like the regular DRL method,
namely stores all kinds of history experiences that the agent goes through (namely, the ob-
served state s, the selected action a, the resulted next state s′, the obtained reward r, and the
achieved attention-focusing accuracy i) in every iteration into an experience pool. This regular
pool mixes recent experiences and breaks the temporal correlations of experiences. In addition,
ASER also stores advanced experiences into an advanced experience pool Ea, where whether
an experience is advanced depends on whether its attention-focusing accuracy is higher than a
threshold γ. This advanced pool stores the experience with lower occurrence probabilities and
effectively neutralizes the influence of unbalanced-experiences(Equation. 2.11).

Er ← Er ∪ [s, a, s′, r, i]
Ea ← Ea ∪ [s, a, s′, r, i], i ≥ γ

(2.11)

2) Experience stratified sampling. ASER samples a mini-batch of training experiences from the
advanced pool and the regular pool with respective ratios α and 1−α to train the agent network.
The experience from the advanced pool is rare and positive for the agent network, thus these
experiences improve the decision-making ability of the agent network. The experience from
regular pool is redundant and less surprising, thus these experiences stabilize the training of
the agent network. In particular, ASER increases the accuracy threshold γ and the sample ratio
α gradually during training period to continually enable the agent network to become stronger:γ ← γ + n

N · θ1, θ1 ∼ N(0, 0.05)

α← α + (1 − n
N ) · θ2, θ2 ∼ N(0, 0.6)

(2.12)

Where n represents current training epoch and N represents the total training epochs. Since
the accuracy is corresponding to the decision-making ability of the agent (Proof. C), gradually
increasing the accuracy threshold γ can filter the experience that is more valuable for further
improving the ability of the agent. Increasing the sample ratio of α increases the amount of
rare and positive history experiences, which enables the decision-making ability of the agent
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network to become stronger and more robust.

A more detailed ASER implementation follows such procedure: 1) Building two empty expe-
rience pool (history experience pool Er and advanced experience pool Ea) before training; 2)
Storing every generated experience [s, a, s′, r] in every iteration during training into the pool
Er. If the experience is advanced (namely, the achieved attention-focusing accuracy i in this
experience is higher than a threshold γ), storing the advanced experience into the pool Ea. 3)
Sampling a buffer of regular experiences [S r, Ar, S ′r,Rr] randomly from the pool Er and a buffer
of advanced experiences [S a, Aa, S ′a,Ra] randomly from the pool Ea with ratio (1 − α) and α
to construct a minibatch of experiences [S , A, S ′,R] and train the agent network; 4) Replacing
the old experience in the two pools with new generated experience, increasing the attention-
focusing accuracy threshold γ and sample ratio α as training process.

2.3.2 Fully-Connected Residual Neural Network (FC-ResNet)

FC-ResNet embeds fully connected layers into ResNet to regress an accurate bounding-box in-
cluding the VB from the attention-region. For the network input, FC-ResNet concatenates the
spine image patch (same as the patch in Sec. 2.3.1) and the attention-region which is proposed
by AMRL. This input contains the original comprehensive VB information and the coarse lo-
cation of the desirable VB. For the network structure, FC-ResNet deploys a ResNet and three
fully-connected layers. Particularly, FC-ResNet adopts the architecture of ResNet without af-
fecting the detection result, where the numbers of bottlenecks are [3, 4, 4, 3] and the numbers
of convolution kernels are [64, 128, 128, 32] for each of the layers respectively. Such architec-
ture adoption prevents ResNet from over-fitting on our spine image dataset. For the regression
objective of fully-connected layers, since the attention-region has achieved a high detection
accuracy, FC-ResNet regresses the translation factors (tx, ty) and scale factors (tw, th) to predict
a bounding-box by linearly transforming the coordinates of the attention-region:

tx = (Gx − Rx)/Gw

ty = (Gy − Ry)/Gy

tw = log(Gw/Rw)

th = log(Gh/Rh)

(2.13)

Where (Gx,Gy,Gw,Gh) represents the bounding-box of the desirable VB from the ground-truth,
(Rx,Ry,Rw,Rh) represents the attention-region proposed by AMRL. During testing period, FC-
ResNet is able to transform the attention-region to the prediction bounding-box with the above
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4 transformation factors. Such transformation-factor regression method bounds the regression
range to [0, 1], which avoids gradient explosion and makes the FC-ResNet model training more
stable.

2.3.3 Y-Shaped Network (Y-Net)

Encode Decode

VB mask

VB category

(Lumbar/Sacrum)

Figure 2.11. The architecture of the Y-Net. Y-Net deploys an encode-decode structure to
predict the VB segmentation mask. Simultaneously, Y-Net compresses the encode path further
to classify the VB. If the VB is classified as sacrum, the total process to the spine image ends.

Y-Net is an encoder-decoder network with two parallel outputs (segmentation and classifica-
tion, as shown in Fig. 2.11), which is modified from the U-Net architecture [35]. Y-Net takes
advantage of the attention-region proposed by AMRL to exclude the interference from back-
ground tissues, and draws support from the strong detail-preserving ability of U-Net to handle
the various appearance of VBs. For the network input, Y-Net builds it the same as the FC-
ResNet’s. For the network architecture, Y-Net deploys an encode-decode architecture to get
the VB segmentation. The encode path improves the robustness of the network to disturbance
and noise, such as imaging artifacts and blurring. The decode path recovers the abstract fea-
tures to the original size and outputs the pixel-level segmentation result. The concatenation
between encode path and decode path effectively transmits the local features from low-level to
high-level, which prevents loss of details and enables Y-Net to handle various VB appearances.
In addition, Y-Net appends the encode path as further compression steps and determines the
class (lumbar VB or sacrum) of the desirable VB with fully connected layers, which determines
the terminal of the sequential segmentation and detection to a spine image because the sacrum
is the last VB in the entire process. This further compression to the encode path makes full use
of the semantic information extracted by the deep convolution layers since the encoding path
is commonly understood as the recognition path[36].
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2.4 Data and experiments

2.4.1 Data acquisition

The proposed SCRL has been intensively evaluated with a challenging dataset. The dataset
comes from 240 multi-center clinical patients including 80 males and 160 females with an
average age of 61 years the oldest being 98 years old, and the youngest being 29 years old.
Because these multi-center patients are examined by different vendor models, their MRI scans
have different parameters. The range of the repetition time (TR) is from 340 ms to 4,000 ms
with mean of 1509 ms; echo time (TE) from 8.072 ms to 147 ms with mean of 70.331 ms; flip
angle (FA) is between 90◦-180◦; slice thickness from 0.88 mm to 4 mm with mean of 2.8823
mm; and in-plane pixel spacing from 0.391 mm to 0.625 mm with a mean of 0.515 mm. For
each subject, a midsagittal lumbar MR images are selected manually to conduct VB detection
and segmentation. The dataset (121 T1 weight and 119 T2 weight) has 240 S1-L5 vertebrae,
170 T12 vertebrae, and 100 T11 vertebrae. The segmentation and detection ground truth is la-
beled by our lab tool according to the clinical criterion and double-checked by two experienced
spinal radiologists.

It should be noted that although we use the lumbar spine data to train and test SCRL, SCRL
is not limited to analyze the lumbar VB, i.e., as long as the data is a sagittal slice of the spine,
SCRL can detect and segment all VBs from top to bottom. Because SCRL models the anatomy
between adjacent VBs and sequentially approaches each VB, if the spine image contains more
VBs, this will promote the effectiveness of SCRL by providing more training data.

2.4.2 Data augmentation for AMRL

SCRL augments training data from the original spine image based on the ground-truth to sim-
ulate the practical VB attention-focusing to increase the robustness of AMRL. For the practical
attention-region proposing of AMRL, the start attention-region is the bounding-box of the pre-
vious detected VB. Therefore, in data augmentation, SCRL adds Gaussian noise N(0, 15) to
the center coordinates and size respectively for the above start attention-region, which makes
the start attention-region more complex and improves the decision-making ability of AMRL.

2.4.3 Pretraining U-Net for channel 2 in Multi-channel State

The U-Net is pretrained on image-patches cropped from our spine dataset (testing data not in-
cluded), where every image-patch attaches an attention-region. Therefore, the pretrained U-Net
is a VB feature extractor to focus on the attention-region and provide VB features. In detail,
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as shown in the left of Fig. 2.12, the input for the pretrain concatenates an image patch and an
attention-region, where the image patch is cropped along the spine and its top-edge-midpoint
is the same as every VB’s. The attention-region is a box generated randomly in the patch to
simulate the random exploration of AMRL, namely, in the practical training of AMRL, this
attention-region is the proposal of AMRL. The label for the pretraining is a VB mask-patch
cropped from the ground-truth, where the patch has the same size and location as the image-
patch and only the mask inside the attention-region is reserved. With such input and label,
the pretrained U-Net is highly sensitive to the VB inside the attention-region, which allows
AMRL to observe VB features through the attention-region, thereby transforming and focus-
ing the attention-region on the desirable VB.

The third-last layer in U-Net is marked as the red arrow in the right of Fig. 2.12. This layer
has the same size as the image-patch and combines multi-level VB information, the former
indicates this feature map reserves the spatial information, and the latter indicates this feature
map can provide detailed shape information compared with other two channels of our Multi-
channel State. Therefore, we decided to extract the feature map from this layer as a part of
our state to improve the attention-region-focusing accuracy. In detail, 1) this layer is in the last
block in the decode path, it has the same size as the input image-patch (channel one in the state).
The same size is the necessary condition that the feature map from this layer can be a part of
the state because it avoids resizing and reserves the spatial information. 2) This layer combines
low-level VB features from encode-path and high-level VB features from the bottleneck. Thus,
the feature map in this layer provides the AMRL agent with more accurate VB information than
that provided by the other two channels (image-patch and attention-region).

Conv 3*3, ReLU Copy and crop Max pool 2*2 Up-conv 2*2

2 64 64

128 128

256 256

512 512

1024

1024 512

512 256

256 128

128 1 1 1Third-last layer

Conv 5*5, ReLU

Attention-

region
Image-patch

Label:
VB mask inside

attention-region

Input:
Image-patch + 

attention-region

Mask-patch

Attention

-region

Attention--

region
ImageImage-patchatch

a) Pretraining data b) U-Net architecture

The image-patch and mask-patch are cropped along the spine

Figure 2.12. The architecture of the adapted U-Net and related training data. The third-
last layer is shown as the red arrow. The input is an image patch and a randomly generated
attention-region. The supervision is the VB mask inside the attention-region.
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2.4.4 Stated-related hyperparameter setting
The state-related size setting (including image patch size 196*196 and initial attention-region
size 48*48) are image-dependent. Following are the principle to determine these size values:
1) Image patch size (196*196). The image patch size decides the state space size and smaller
size results in stronger neural network robustness [37]. According to the clinical protocol, the
first VB usually locates on the mid-line. However, in some cases, the VB deviates from the
mid-line due to lordosis. Thus, as shown in the left of Fig. D.1), the experiment counts the
distribution of the first VB and selects 196 pixels as the image patch size, which can cover
all the first VB in our dataset. Some extreme examples are illustrated in Fig. D.2. 2) Initial
attention-region size (48*48). The average size (width and height) of the first VB is are 51.63
pixels for width and 45.48 pixels for height (right in Fig. D.1), so that 48*48 is selected as the
initial attention-region size, which allows the attention-region to be transformed to the first VB
size with few steps and improves the attention-focusing accuracy.

2.4.5 Training strategy for SCRL
The training period of SCRL is divided into two periods: 1)training AMRL, Y-Net, and FC-
ResNet respectively. This step enables AMRL the ability to propose an attention-region for the
desirable VB, as well as Y-Net and FC-ResNet to be able to segment and detect the desirable
VB with the support of an attention-region. 2) Fine-tuning Y-Net and FC-ResNet with the
attention-region proposed by AMRL. This step enhances the robustness of Y-Net and FC-
ResNet to the attention-region deviation, increasing the compatibility of AMRL, Y-Net, and
FC-ResNet.

2.4.6 Implementation details
All the input spine image to SCRL is re-sized to size 512*512 directly without manually crop-
ping. This resizing method causes different pixel spacing (physical size), thus in the late exper-
imental result evaluation, the related pixel spacing also is re-sized. The batch size in AMRL
is set to 1 considering the special iteration of AMRL and image normalization. Particularly,
to address the various spine image intensity distribution, SCRL uses Min-Max scaling to nor-
malize the image, where the min and max intensity values totally depend on this image instead
of the whole dataset. The training configurations which are existing in AMRL, Y-Net, and
FC-ResNet are listed in Table. 2.1. Other parameter configurations of AMRL mainly include
the capacities of regular experience pool and advanced experience pool are 20000 and 5000
respectively; The initial γ and α is 0.6 and 0.0 respectively. The target smoothing coefficient
is 0.005, the target update interval is 1. The code of SCRL is implemented with Python 3.6 on
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Algorithm 1 Training AMRL
1: Initialize parameters: α, γ
2: Build empty experience pools Ea, Er

3: Initialize Soft Actor-Critic: soft q net, policy net, value net
4: for each epoch do
5: for each spine image do
6: image patch initialization
7: for each image patch do
8: state s← initial state(image patch)
9: for each iteration do

10: action a← policy net(s)
11: reward r,accuracy i, new state s′ ← executing action(s, a);
12: if i > γ then
13: Ea ← Ea ∪ (s, a, r, s′)
14: end if
15: Er ← Er ∪ (s, a, r, s′)
16: S , A,R, S ′ ← sample a minibatch experiences(Er, Ea, α)
17: update soft q net(S , A,R, S ′)
18: update policy net(S , A,R, S ′)
19: s← s′

20: end for
21: end for
22: update α and γ
23: end for
24: end for

PyTorch 1.1.0. The parameters of SCRL is initialized using Glorot initialization [38] for fully
connected layers and He initialisation [39] for convolutional layers. The robustness of SCRL
is so strong that we tested various hyper-parameters and they all achieved great results. The
training of SCRL is implemented on 4 NVIDIA Tesla P100-SXM2 GPUs.

For evaluation and comparison, We divide the data set into a training set, a validation set, and a
test set in the ratio of 80%, 10% and 10%. Since the training time of the AMRL is much longer
than the training of traditional DL methods, cross-validation is inapplicable in this project. For
the training dataset, it is used for training all models in SCRL, including AMRL, Y-Net and
FC-ResNet. For the validation dataset, it is used to select the optimal model parameter after
training. For the test dataset, it is totally independent of the training process and only used for
the test.
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Table 2.1. Training configurations of the SCRL network

Network Name
AMRL Y-Net FC-ResNet

soft q-function net policy net segmentation classification detection
Loss function MSELoss - BCELoss CrossEntropyLoss SmoothL1Loss

optimizer Adam RMSprop Adam
Initial learning rate 1e-4 1e-5
End learning rate 1e-6 1e-6

Learning rate decay factor 0.95 0.96
Batch size 120 1

Number epochs per decay 1
Drop-out rate 0.2

2.4.7 Experimental setting

We evaluate SCRL from the aspect of VB detection, VB segmentation and attention-focusing
accuracy in the following experiments.

Detection evaluation for FC-ResNet

To illustrate the detection performance of FC-ResNet, three state-of-the-art metrics are com-
puted by comparing the detection result obtained from FC-ResNet detection result with the
ground-truth: Intersection-over-Union (IoU), Localization-Error (Loc-Err) [9] and Identifica-
tion Rate (IDR) [40].

Intersection-over-Union (IoU) is deployed to measure the overlap between the bounding-box
by FC-ResNet and VB bounding-box from ground-truth, which is defined as:

IoU =
p ∩ g
p ∪ g

where p represents the bounding-box by FC-ResNet for the desirable VB and g represents the
ground-truth bounding-box of the desirable VB.

Localization-Error (Loc-Err) is deployed to measure the deviation of the bounding-box by
FC-ResNet compared with the ground-truth, which is defined as the Euclidean distance be-
tween the prediction centroid and the ground-truth centroid:

Loc Err =

√
(xg − xp)2 + (yg − yp)2

where (xg, yg) and (xp, yp) are the centroids of ground-truth bounding-box and proposed bounding-
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box.

Identification Rate (IDR) is employed to measure the overall detection true positive rate,
which is defined as the rate between the number of correctly identified VBs and the total num-
ber of VBs:

IDR =

∑N
i=1 Loc Erri × Psi < τ

N

where N is the number of total VBs, τ is a threshold (the original value τ = 20 mm) that
determines whether the VB is detected correctly. Psi is the pixel spacing of this spine image.
By taking the various pixel spacing of spine images into consideration, Loc-Err makes the
detection evaluation fair and addresses the influence of pixel spacing difference.

Segmentation evaluation for Y-Net

To evaluate the segmentation performance of Y-Net, three typical metrics are calculated by
comparing the segmentation result obtained by Y-Net with the ground-truth: Pixel-level accu-
racy (PA), Dice coefficient (Dice), and Hausdorff distance (HD).

Pixel-level accuracy (PA) calculates the rate between the amount of right classified pixels and
the amount of total pixels, which is defined as:

PA =
p ∩ g

g

where p represents the segmentation mask of the desirable VB and g represents the ground-
truth mask of the desirable VB.

Dice is a measure of the extent of spatial overlap between the segmentation and the ground-
truth, which is defined as

Dice =
2T P

2T P + FP + FN

where T P is the true positives of the desirable VB, while FP and FN are false positives and
false negatives of the desirable VB respectively.

Hausdorff distance (HD) is a spatial distance-based metric widely used in the evaluation of
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segmentation boundary as a dissimilarity measure, which is defined as:

HD(P,G) = max(h(P,G), h(G, P))

where P, G denote the boundary point set of segmentation and ground-truth of the desir-
able VB. While h(g, r) is called the directed Hausdorff distance and is given by h(g, r) =

maxg∈Gminr∈R||g − r||, where ||g − r|| is Euclidean distance in our evaluation. Note that, here
the Euclidean distance is the physical distance instead of pixel distance. By taking the physi-
cal distance into consideration, HD makes the segmentation evaluation fair and addresses the
influence of pixel spacing difference in difference spine images.

Classification evaluation for Y-Net

To evaluate the classification performance of Y-Net and the overall classification of SCRL, two
typical metrics are calculated by comparing the classification result obtained by Y-Net with the
ground-truth: mean accuracy and image accuracy.

Mean accuracy (MA) as a common matrix to evaluate classification performance, which is
the ratio of number of correct predictions to the total number of input samples:

MA =
Numbero f correctpredictions
Totalnumbero f predictions

Image accuracy (IA) as a rather strict matrix [9], which measures the ratio of the correctly
classified image out of the all image. Here, the correctly classified image indicates an image
is considered as correctly classified only if all VBs in this image are correctly classified. IA is
defined as following:

IA =
Numbero f correctlyclassi f iedimage

Totalnumbero f images

Attention-focusing evaluation for AMRL

To tune the optimal action-related hyperparameter for AMRL action-related size setting (namely,
the number of actions/steps in an episode, the step-sizes of translation and size adjustment), we
set different hyperparameter settings according the task demand and compare the attention-
focusing accuracy of AMRL. Particularly, the step-sizes of action multiple the number of ac-
tions should be larger than the maximum task demand, where the maximum task demand for
displacement is 106 (Fig. D.3) and for size-adjustment is 67 (Fig. D.4). Under this condition,
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multiple experimental settings are deployed, where the number of actions are set as [15, 20, 25]
and the corresponding step-sizes of action are set as 8,6, 6,4, 5,3 respectively. These settings
totally meet the task demands.

To show the effectiveness of CORF and ASER in attention-focusing, we cross-combine CORF,
ASER, regular reward-function (RR) and regular experience-replay (RER) to train the AMRL
and record 1) the mean and minimum attention-focusing accuracy achieved by AMRL with
these 4 combinations in the validation dataset; 2) the sum-of-rewards obtained by AMRL when
ASER and RER combines CORF respectively in the validation dataset. The action-related hy-
perparameters are the above tuned hyperparameters. The attention-focusing accuracy is mea-
sured by the Intersection-over-Union (IoU, Sec. 2.4.7).

2.4.8 Results and discussion

Detection result

Vertebral 

body fracture

Deformable 

vertebral body

Deformable 

vertebral body

Vertebrae 

collapse

a) b) c) d)

Figure 2.13. Qualitative visualization shows that our SCRL network accurately detects all
VBs in the spine images. The green dashed box is the predicted bounding-box and the red
dashed box is the ground-truth bounding-box. 1) The IoU between these two kinds of boxes is
also provided. There is no mis-detection result on the background, which explains the spatial
sequence modeling of AMRL plays an irreplaceable role in VB detection. 2) All the detection
result achieves a high IoU, which explains FC-ResNet has the ability to handle various VB
appearances. 3) Although there are some deformation caused by the pathology, SCRL still
detects them with tight bounding-boxes.

Qualitative evaluation. Fig. 2.13 demonstrates that SCRL achieves excellent detection. The
detection results in Fig. 2.13 are of different VB appearance, image resolution and intensity
distribution from our validation dataset. The predicted detection boxes (dotted box) have high
overlaps with the ground truth boxes (solid box) despite the highly various characteristics of
spine images and complicated VB appearance caused by spinal diseases. SCRL is quite ef-
fective in the VB detection: 1) There is no mis-detection result on the background, which
demonstrates the anatomical correlation modeling of AMRL play an irreplaceable role in VB
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detection; 2) All the detection result achieved a high IoU, which shows that FC-ResNet has the
ability to handle various VB appearances caused by pathologies.

Quantitative analysis. Based on the quantitative results in the first row of Table. 2.2, the de-
tection of SCRL on average achieves 92.3% in IoU, 3.142 mm in Loc-Err, and 96.3% in IDR,
which indicates the predicted bounding-boxes have high overlaps with the ground truths and
the VB centers are predicted accurately.

Table 2.2. Performance comparison of the proposed SCRL with existing state-of-art VB detec-
tion methods and VB segmentation method. SCRL significantly outperforms its competitors
in all the cases

Methods
Detection Segmentation Classification

IoU Loc-Err IDR PA Dice HD image accuracy mean accuracy
SCRL 0.923 3.142 0.963 0.949 0.926 1.943 0.958 0.964
TDCN ([13]) 0.818 7.294 0.844 N/A N/A N/A 0.833 0.916
Hi-scene ([9]) 0.919 5.199 0.963 N/A N/A N/A 0.933 0.964
FFC
(Single-class, [14]) N/A N/A N/A 0.905 0.890 2.362 N/A N/A

Spine-GAN ([15]) N/A N/A N/A 0.922 0.917 2.406 0.917 0.961
SuperPixel-RFC
(Single-class, [11] ) N/A N/A N/A 0.879 0.841 4.260 N/A N/A

Based on the detection result of each kind VB(Fig. 2.14(a)(b)), SCRL has the ability to handle
all kinds of VBs and detect them accurately. For the first VB (such as T10, T11, and T12),
SCRL achieves the minimum IoU of 85% and mean IoU of over 92%, the maximum Loc-Err
of 5 pixels and mean Loc-Err of less than 3.5 pixels. This great detection result illustrates
SCRL is capable of modeling the spatial relation between the first VB and the spine image,
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Figure 2.14. (a) When evaluated by the IoU between the detection bounding-box and the
ground-truth bounding-box, SCRL achieves great overlap on all kind of VBs. (b) When eval-
uated by Loc-Err(namely, the centroid distance between the detection and the ground-truth),
SCRL accurately detects all kind of VBs. (c) SCRL achieves a great VB identification result.
SCRL achieves 96% IDR when the identification threshold is set to 3 mm.
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and regress the bounding-box accurately. For the middle VBs in the lumbar spine (i.e., L5-L1),
the average IoU for these VBs is higher than the sacrum by 2%. In Fig. 2.14(b), the average
Loc-Err for these VBs is lower than T10 by 1 pixel. Such a better result is mainly because these
VBs are spatially correlated to previous adjacent VBs. Thus, AMRL models this anatomical
correlation to focus the attention-region more accurately for these VBs. With more accurate
attention-region providing optimal analysis view, FC-ResNet is able to achieve a higher de-
tection accuracy [23]. For the sacrum, SCRL achieves 90% average IoU and 2.7-pixel mean
Loc-Err. This excellent result indicates that although the shape and data-size of the sacrum are
quite different and smaller compared with the other lumbar VBs, SCRL is robust to manage
these challenges.

Based on the IDR result under various identification threshold(Fig. 2.14(c)), SCRL totally sat-
isfies the condition of accurate VB detection. SCRL achieves 96% IDR when the identification
threshold is set to 3 mm. The above excellent performance fully demonstrates that SCRL
achieves a great VB identification result and has the ability to obtain the detailed representa-
tion of VBs and achieves accurate VB detection result to assist clinicians for spine analysis.

Comparison with existing methods. As shown in Table. 2.2 and Fig. 2.15, the performance
of SCRL is overall much better than these existing methods. SCRL significantly outperforms
TDCN [13] by 10.50% in mIoU, 4.152 pixels in Loc-Err, and 11.9% in IDR when the identifi-
cation threshold is 3 mm. TDCN gets 81.8% in IoU, 7.794 pixels in Loc-Err, and 84.4% in IDR.
Also, SCRL outperforms Hi-scene [9] by 0.4% in mIoU, 2.057 pixels in Loc-Err. Hi-scene gets
91.9% in mIoU, 5.199 pixels in Loc-Err and 96.3% in IDR. The above data proves SCRL is
more capable of excluding the influence (such as the fat tissue having a similar appearance to
VBs) and modeling the various representation of different VBs (such as scale variations and
pathological variations) to detect the accurate location of VBs. A visualized example is the
detection result of above methods for the patient 1 in Fig. 2.15, where the L5 VB is deformable
and SCRL’s detection is the best compared with other methods’ detection.

Effectiveness of FC-ResNet for detection. Benefiting from the attention-region proposal by
the AMRL, FC-ResNet further improves the detection accuracy effectively and achieves great
detection performance. According to Table. 2.3, the attention-region by AMRL achieves 83.6%
in IoU, 4.735 pixels in Loc-Err, and 91.7% in IDR. Based on the above coarse detection, FC-
ResNet further increases IoU by 8.7%, decreases Loc-Err by 1.593 pixels, and increases IDR
by 4.6%. The above increased detection accuracy demonstrates the effectiveness of FC-ResNet
for VB detection. AMRL proposes coarse location and size of the desirable VB by modeling
spine anatomy, FC-ResNet predicts more accurate VB location and size on the basis AMRL,
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where the detection improvement between AMRL and FC-ResNet is displayed in Fig. 2.15.

SCRL

TDCN

Hi scene

AMRL

Patient 1 Patient 2 Patient 3 Patient 4

Figure 2.15. Some visualization examples of VB detection, where the solid box and circle
indicate the bounding-box and centroid of every VB from the ground-truth, the dotted box
and ”x” indicate the bounding-box and centroid of every VB from the prediction of every
methods. Based on the overlap of predicted bounding-box to the ground-truth bounding-box
and the distance of the predicted centroid to the ground-truth centroid, the performance of
SCRL is best, especially when the VB is deformed. In addition, the high-overlapping between
the attention-region of AMRL and the ground-truth indicates the effectiveness of AMRL to
model the spine anatomy and transform the attention-region from the previous VB to the next
VB.

Advantages of FC-ResNet compared to the segmentation-based two-step method in VB
detection. FC-ResNet is more advantageous to predict the bounding-box compared with the
segmentation-based two-step method (i.e., obtaining the surrounding from the segmentation
mask by Y-Net). According to Table. 2.3, benefiting from the AMRL, both the bounding-
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Table 2.3. The detection performance among the attention-region by AMRL, the surrounding
of segmentation mask by Y-Net, and the bounding-box by FC-ResNet.

Methods IoU Loc-Err IDR (τ = 3mm)
AMRL 0.836 4.735 0.917

AMRL+Y-Net (surrounding) 0.914 3.268 0.951
AMRL+FC-ResNet (bounding-box) 0.923 3.142 0.963

box by FC-ResNet and the surrounding by Y-Net achieve great detection accuracy. However,
because of the cumulative error, the accuracy of the surrounding is a little lower than the ac-
curacy of the directly-predicted bounding-box. Considering more accurate VB detection pro-
vides a wider range of clinical assistance, such as measuring the narrowing level of the spinal
canal when diagnosing spinal stenosis[41], the SCRL reserves the FC-ResNet to predict the
bounding-box instead of taking the surrounding of the segmentation mask as the detection
result.

Segmentation result

Qualitative evaluation. SCRL completes an excellent segmentation despite the complex ap-
pearance and various spatial offsets of VBs. In Fig. 2.16, the segmentation visualization results
look reasonable and the boundary of each VB region was extracted nicely compared with the
ground-truth. Even there are some serious appearance changes caused by vertebrae diseases,
such as spondylolisthesis and vertebral collapse, SCRL effectively segments these spine images
accurately. For instance, in Fig. 2.16(c) the shape of L5 has changed because of spondylolis-
thesis, SCRL is robust to this geometry variation and segments these VBs accurately. L5 in
Fig. 2.16(b)(d) are deformed because of the vertebral fracture, SCRL captures this small dif-
ference and presents these deformations clearly on the segmentation mask.

Quantitative analysis. Based on the first row of Table. 2.2, SCRL achieves significant seg-
mentation accuracy. The first row of Table. 2.2 quantitatively demonstrates the effectiveness
of the segmentation result of SCRL. Overall SCRL achieves 94.9% in PA and 92.6% in Dice,
which means SCRL has a strong ability to classify each VB pixel correctly from the back-
ground. SCRL achieves 1.919mm in HD, which means SCRL is capable of finding the true
VB boundaries despite the complex VB shape and geometry.

Based on the segmentation result of each kind of VB(Fig. 2.17(a)(b)(c)), SCRL has the ability
to cope with all kinds of VBs and segment them accurately. For the first VBs (such as T10-
T12), the average PA, Dice, and HD of SCRL segmentation in these VBs are over 95%, 93%,
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Figure 2.16. Some visualizations of VB segmentation results by SCRL. Although there are
some appearance differences caused by vertebrae diseases, such as spondylolisthesis, vertebrae
collapse and vertebral fracture, SCRL is robust to these geometry variations and presents these
deformations clearly on the segmentation mask.

and below 2.5mm respectively. Such great performance indicates AMRL successfully searches
and focuses the attention-region on them and then Y-Net segments them accurately. For these
middle lumbar VBs, such as L5-L1, SCRL achieves better segmentation results. For instance,
in Fig. 2.17(a)(b), the average PA and Dice for these VBs are higher than the sacrum by 1.5%.
In Fig. 2.17(c), the average HD for these VBs is lower than T10 by 0.5 mm. Such great
improvement is because there are adjacent VBs for AMRL to model the spatial correlation to
focus the attention-region accurately. Thus, better attention-region provides Y-Net with a better
analysis view, which leads to more precise segmentation. For the sacrum, SCRL successfully
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Figure 2.17. (a) When evaluated by the PA of correctly classified VB pixel, SCRL achieves
high true-positive classification for each kind of VBs. (b) When evaluated by Dice, SCRL
obtains great overlap between the segmentation mask and ground-truth. (c) When evaluated by
HD, SCRL gets significant matching between the segmentation contour and the ground-truth
contour.
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Table 2.4. Segmentation performance comparison among AMRL+U-Net, AMRL+Y-Net, and
a separate U-Net

Methods PA Dice HD
AMRL+U-Net 0.951 0.925 1.731
AMRL+Y-Net 0.949 0.926 1.943

U-Net 0.930 0.914 2.363

copes with the different appearance and segments it accurately. According to Fig. 2.17(a)(b)(c),
the segmentation result gets average PA, Dice, and HD of SCRL segmentation in the sacrum
over 93%, 95%, and 2.0mm respectively. Thus, although the appearance of sacrum is totally
different from other lumbar VBs, SCRL effectively learns the texture feature from multi-scales
and outputs an accurate segmentation.
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Figure 2.18. ROC Curve and Precision-recall Graph for SCRL and other methods. The area
under the curve of SCRL is much bigger than the area under the other method curves, which
indicates SCRL has a stronger ability in classifying the positive pixel as VBs rather than clas-
sifying the negative pixel as VBs.

The influence of classification branch to segmentation. To obtain the influence of classifi-
cation branch to segmentation, the experiment deploys a U-Net parallel to the Y-Net (without
classification branch) after AMRL. According to Table. 2.4, AMRL + U-Net achieves 95.1%
PA, 92.5% in Dice, and 1.731 mm in HD. Benefit from the attention-region by AMRL, the
segmentation performance of AMRL+Y-Net and AMRL+U-Net is overall comparable. Partic-
ularly, the classification branch reduces the perception of Y-Net to the VB edge, which causes
the HD increasing and mPA increasing. The classification branch also makes Y-Net conserva-
tive, which causes the Dice increasing. Compared with the AMRL+U-Net, the segmentation
performance of Y-Net does not deteriorate but improves in certain aspects by combining the
segmentation and classification. In addition, considering the U-Net takes more GPU memory,
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Y-Net combining segmentation and classification into a single network is a better choice for
SCRL.

Ground-

truth

Patient 1 Patient 2 Patient 3 Patient 4

Spine-GAN

Images

FFC

(single-class)

Super-pixel+RFC

(single-class)

SCRL

Figure 2.19. Some visualization examples of VB segmentation. Note that, the segmentation
of FFC and Super-pixel+RFC is binary. After comparing with the results of other methods, the
result of SCRL is the best. In detail, the FFC cannot handle the size-variation of VBs, which
can be observed from the segmentation of patient 1 and patient 4. The Spine-GAN achieves
great instance segmentation result, but it misses the T12 VB in patient 2. The SuperPixel-RFC
overall performs better than FFC, but it leverages super-pixels, which causes it cannot handle
the VB boundary area effectively.
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The effectiveness of attention-regions to segmentation. To obtain the effectiveness of attention-
region to segmentation, the experiment also deploys a separate U-Net (independent from SCRL).
According to Table. 2.4, The separate U-Net achieves 93.0% PA, 91.4% in Dice, and 2.363 mm
in HD. According to this result, we find that without the attention-region as a priori, the seg-
mentation performance decreases in every aspect. In detail, compared with the result of Y-Net,
the mPA decreases by 1.9%, the Dice decreases by 1.2%, and the HD increases by 0.632 mm.
Thus, the attention-region is important for an accurate VB segmentation. In addition, the seg-
mentation result of the separate is binary segmentation instead of instance segmentation, which
also reduces its comparability to our Y-Net.

Comparison with existing methods. Based on the Table. 2.2, SCRL achieves more accurate
segmentation results compared with the other three existing methods. SCRL significantly out-
performs FFC by 4.4% in PA, 3.6% in Dice, and 0.619 mm in HD. FFC gets 90.5% in PA,
89.0% in Dice, and 2.362 mm in HD. Also, SCRL outperforms Spine-GAN by 2.7% in PA,
0.9% in Dice, and 0.663 mm in HD. Spine-GAN gets 92.2% in PA, 91.7% in Dice, and 2.406
mm in HD. SCRL outperforms SuperPixel-RFC by 7.0% in PA, 8.5% in Dice, and 2.517 mm
in HD. SuperPixel-RFC gets 87.9% in PA, 84.1% in Dice, and 4.260 mm in HD. Hence, SCRL
has a stronger perception of the appearance of the VBs and models the VB surroundings more
accurately to distinguish the true VB from surrounding tissues.

In addition, SCRL is stronger than other VB segmentation methods for pixel classification.
The AUC (Area Under the Curve) of SCRL is much bigger than AUCs of other methods in the
ROC Curves and Precision-recall Graph (Fig. 2.18). This means SCRL has a robust ability that
classifies the positive pixel (the pixel belongs to VBs) as VBs rather classifying the negative
pixel (the pixel belongs to the background) as VBs.

Classification result
Qualitive analysis. Table. 2.2 SCRL achieves excellent classification performance, where
SCRL gets 96.4% in mean accuracy and 95.8% in image accuracy. The former indicates that
96.4% VBs are classified correctly, and the latter indicates that all VBs are classified correctly
in 95.8% images. By checking the result, we find only one image is mis-labeled in the testing
dataset. In this mis-labeled image, the classification branch mis-classifies a sacrum as a lumbar
VB, which further causes all the VB in this spine image are mis-labeled. We analyze this is
because the imbalance between the number of the lumbar VB and the number of the sacrum,
which leads to the classification branch over-fitting.
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Comparison with existing methods. As shown in Table. 2.2, the classification performance of
SCRL is overall better than these existing methods. SCRL outperforms TDCN 12.5% in image
accuracy and 4.8% in mean accuracy, where TDCN only achieves 83.3% in image accuracy.
Compared with another state-of-art method Hi-scene, the image accuracy of SCRL is higher
than it by 2.5%. Hi-scene employs the mask-rcnn architecture, thus its classification ability
is strong enough as a baseline. The out-performance of SCRL to Hi-scene indicates SCRL is
quite competitive in classification. Compared with Spine-GAN, SCRL outperforms it 4.1% in
image accuracy, which illustrates the spine-anatomy-modeling of SCRL facilitates SCRL has
a stronger classification ability than Spine-GAN that employs a encode-decode architecture to
model spine spatial features.

Effectiveness of AMRL for attention-focusing
Action-related hyperparameters tuning. Based on the hyperparameter tuning experimental
result in Tab. 2.5, we find when the number of actions is set as 20 and step-sizes are set as
6, 4, the attention-region accuracy was the highest, which is 83.6%. Considering the action
prediction in Soft Actor-Critic (SAC) is symmetric about zero, we further set the step-sizes of
displacement and size-adjustment as [-6,6] and [-4,4] respectively. This setting is a balance of
other two settings. In detail, for the setting that number of actions is 15, the attention-focusing
accuracy is only 76.7%, where the small number of actions restricts the agent-exploration to
the image, and the large step-sizes also increases the action-prediction difficulty. For the setting
that number of actions is 15, the attention-focusing accuracy is 81.4%, where the large number
of actions causes too many explorations and thus may cause over-fitting of the decision-making.

Table 2.5. The attention-focusing results under different action-related hyperparameter-
settings

Action-related hyperparameters Attention-region
accuracy

Number of actions
step-size of action

{displacement, size ad justment}
15 {8, 6} 0.767
20 {6, 4} 0.836
25 {5, 3} 0.814

* Number of actions × Step-size of action ≥Max task demands(Max dis-
placement demand = 106, Max size-adjustment demand = 67). For instance,
15×8=120>106, 15*6=80>67.

Effectiveness of ASER and CORF for attention-focusing. According to the experiment
results in Fig. 2.20, the ASER and CORF have respective contributions in attention-focusing
accuracy and training stability. In detail:
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• AMRL has the ability to focus attention-regions on each VB. In Fig. 2.20(a)(b), AMRL
achieves 84.00% mean attention-focusing accuracy and 75.00% minimum attention-
focusing accuracy in the validation dataset during training. This excellent attention-
focusing result demonstrates AMRL’s ability to approach each desirable VB despite the
critical scale variations and pathological variations of VBs, and effectively propose ac-
curate attention-regions.

• CORF successfully stimulates AMRL to achieve higher attention-focusing accuracy.
Compared with the regular reward function(RR), as shown in Fig. 2.20(a)(b), CORF im-
proves the mean and minimum attention-focusing accuracy by 30% respectively. Such
significant accuracy improvement indicates that the exponential weight of CORF is really
beneficial in encouraging the agent network to select positive actions so as to increase
the attention-focusing accuracy.

• ASER effectively promotes attention-focusing accuracy. Compared with the regular
experience-replay (RER), ASER improves the mean and minimum attention-focusing
accuracy by 10% and 15% respectively(Fig. 2.20(a)(b)). In addition, ASER obtains al-
most twice the sum of rewards than RER(Fig. 2.20(c)) when they are under the same
reward function. This great improvement demonstrates the unique experience-sampling
method of ASER (namely, ASER increases the training-data difficulty as the compe-
tency of the agent network grows) increases the utilization efficiency of the history ex-
perience and the learning efficiency of the agent network. As a result, ASER increases
the decision-making ability of the agent network, thereby enabling the agent network to
select correct actions to increase the attention-focusing accuracy.

• ASER enhances the stability of AMRL compared with the regular experience-replay(RER).
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Figure 2.20. (a)(b) shows the attention-focusing accuracy of cross-combination experiments
(namely, i. ASER+CORF; ii. ASER+regular reward function (RR); iii. regular experience-
replay(RER)+CORF; iv. RR+RER) in validation dataset during training period; (c) illustrates
the reward obtained by ASER and regular experience-replay (RR) under CORF in validation
dataset during training period.
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In Fig. 2.20(a)(b)(c), the fluctuation frequency and amplitude of the curve with ASER is
much less than the fluctuation of the curve with RER. For instance, in Fig. 2.20(c), the
fluctuation amplitude of the ASER curve is less than 50, while the fluctuation amplitude
of the RER curve is more than 75. This stability enhancement indicates the experience-
sampling method is meaningful for gradually and stably improving the decision-making
ability of the agent network.
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neural networks and star convex cuts for fast whole spine vertebra segmentation in mri,”
Computer Methods and Programs in Biomedicine, 2019.

[6] J. Yao, J. E. Burns, H. Munoz, and R. M. Summers, “Detection of vertebral body frac-
tures based on cortical shell unwrapping,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention, pp. 509–516, Springer, 2012.

[7] B. CARLSON, “Scoliscore ais prognostic test personalizes treatment for children with
spinal curve,” Biotechnology healthcare, vol. 8, no. 2, p. 30, 2011.

[8] M. W. Smith, J. Reed, R. Facco, T. Hlaing, A. McGee, B. M. Hicks, and M. Aaland,
“The reliability of nonreconstructed computerized tomographic scans of the abdomen
and pelvis in detecting thoracolumbar spine injuries in blunt trauma patients with altered
mental status,” JBJS, vol. 91, no. 10, pp. 2342–2349, 2009.

[9] S. Zhao, X. Wu, B. Chen, and S. Li, “Automatic vertebrae recognition from arbitrary
spine mri images by a hierarchical self-calibration detection framework,” in International

Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 316–
325, Springer, 2019.



63

[10] Y. Cai, M. Landis, D. T. Laidley, A. Kornecki, A. Lum, and S. Li, “Multi-modal ver-
tebrae recognition using transformed deep convolution network,” Computerized medical

imaging and graphics, vol. 51, pp. 11–19, 2016.

[11] B. Gaonkar, Y. Xia, D. S. Villaroman, A. Ko, M. Attiah, J. S. Beckett, and L. Macyszyn,
“Multi-parameter ensemble learning for automated vertebral body segmentation in het-
erogeneously acquired clinical mr images,” IEEE journal of translational engineering in

health and medicine, vol. 5, pp. 1–12, 2017.

[12] M. Rak and K.-D. Tonnies, “A learning-free approach to whole spine vertebra localiza-
tion in mri,” in International Conference on Medical Image Computing and Computer-

Assisted Intervention, pp. 283–290, Springer, 2016.

[13] Y. Zhou, Y. Liu, Q. Chen, G. Gu, and X. Sui, “Automatic lumbar mri detection and
identification based on deep learning,” Journal of digital imaging, vol. 32, no. 3, pp. 513–
520, 2019.

[14] J.-T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K. P. Andriole, M. H. Michalski, R. G.
Gonzalez, and S. R. Pomerantz, “Deepspine: Automated lumbar vertebral segmentation,
disc-level designation, and spinal stenosis grading using deep learning,” arXiv preprint

arXiv:1807.10215, 2018.

[15] Z. Han, B. Wei, A. Mercado, S. Leung, and S. Li, “Spine-gan: Semantic segmentation of
multiple spinal structures,” Medical image analysis, vol. 50, pp. 23–35, 2018.

[16] A.-A.-Z. Imran, C. Huang, H. Tang, W. Fan, K. Cheung, M. To, Z. Qian, and D. Terzopou-
los, “Analysis of scoliosis from spinal x-ray images,” arXiv preprint arXiv:2004.06887,
2020.

[17] J. Yi, P. Wu, Q. Huang, H. Qu, and D. N. Metaxas, “Vertebra-focused landmark detection
for scoliosis assessment,” in 2020 IEEE 17th International Symposium on Biomedical

Imaging (ISBI), pp. 736–740, IEEE, 2020.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[19] F.-C. Ghesu, B. Georgescu, Y. Zheng, S. Grbic, A. Maier, J. Hornegger, and D. Comani-
ciu, “Multi-scale deep reinforcement learning for real-time 3d-landmark detection in ct
scans,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 1,
pp. 176–189, 2017.



64

[20] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Young Choi, “Action-decision networks for visual
tracking with deep reinforcement learning,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2711–2720, 2017.

[21] C. Huang, S. Lucey, and D. Ramanan, “Learning policies for adaptive tracking with deep
feature cascades,” in Proceedings of the IEEE International Conference on Computer

Vision, pp. 105–114, 2017.

[22] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual object de-
tection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 2894–2902, 2016.

[23] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, “Reinforcement cutting-agent learn-
ing for video object segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 9080–9089, 2018.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor,” arXiv preprint

arXiv:1801.01290, 2018.

[25] C. Xu, L. Xu, Z. Gao, S. Zhao, H. Zhang, Y. Zhang, X. Du, S. Zhao, D. Ghista, H. Liu,
et al., “Direct delineation of myocardial infarction without contrast agents using a joint
motion feature learning architecture,” Medical image analysis, vol. 50, pp. 82–94, 2018.

[26] R. Zhao, W. Liao, B. Zou, Z. Chen, and S. Li, “Weakly-supervised simultaneous evidence
identification and segmentation for automated glaucoma diagnosis,” 2019.

[27] C. Xu, J. Howey, P. Ohorodnyk, M. Roth, H. Zhang, and S. Li, “Segmentation and quan-
tification of infarction without contrast agents via spatiotemporal generative adversarial
learning,” Medical Image Analysis, p. 101568, 2019.

[28] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[29] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[30] D. H. Hubel and T. Wiesel, “Shape and arrangement of columns in cat’s striate cortex,”
The Journal of physiology, vol. 165, no. 3, pp. 559–568, 1963.



65

[31] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 135. MIT
press Cambridge, 1998.

[32] R. Liao, S. Miao, P. de Tournemire, S. Grbic, A. Kamen, T. Mansi, and D. Comaniciu,
“An artificial agent for robust image registration,” in Thirty-First AAAI Conference on

Artificial Intelligence, 2017.

[33] J. Krebs, T. Mansi, H. Delingette, L. Zhang, F. C. Ghesu, S. Miao, A. K. Maier, N. Ay-
ache, R. Liao, and A. Kamen, “Robust non-rigid registration through agent-based ac-
tion learning,” in International Conference on Medical Image Computing and Computer-

Assisted Intervention, pp. 344–352, Springer, 2017.

[34] A. Alansary, L. Le Folgoc, G. Vaillant, O. Oktay, Y. Li, W. Bai, J. Passerat-Palmbach,
R. Guerrero, K. Kamnitsas, B. Hou, et al., “Automatic view planning with multi-scale
deep reinforcement learning agents,” in International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pp. 277–285, Springer, 2018.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedi-
cal image segmentation,” in International Conference on Medical image computing and

computer-assisted intervention, pp. 234–241, Springer, 2015.

[36] N. Lessmann, B. van Ginneken, P. A. de Jong, and I. Išgum, “Iterative fully convolutional
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CHAPTER 3

The contents of this chapter was previously submitted in the Medical Imaging Analysis.

3 DRL-BASED WEAKLY-SUPERVISED TEACHER-STUDENT
NETWORK FOR LIVER TUMOR SEGMENTATION WITH-
OUT CONTRAST AGENT

3.1 Introduction

Accurate liver tumor segmentation is indispensable for clinicians to diagnose and treat the liver
tumor and improve the survival rate of patients [1]. 1) The liver tumor segmentation assists
clinicians to decide the stage of the tumor and make the liver surgical planning (e.g., oncologic
resections and liver transplantation). For instance, current all commonly used staging systems,
such as the Barcelona Clinic Liver Cancer staging system, take into account tumor size as well
as lesion multiplicity to select suitable candidates for surgical treatment or local-regional thera-
pies [2]. 2) The liver tumor segmentation assists clinicians to simplify the planning for surgical
resection. One of the main constraints for surgical resection planning is the lesion/liver ratio
after surgical resection[3]. The identification of the regions to be removed becomes easier as
tumors are well defined, the segmentation also provides a precise location of the tumors inside
the anatomical segments of the liver simplifying the preoperational planning[4]. 3) The liver
tumor segmentation assists clinicians to track the treatment response and evaluate the therapy
effect on tumors [5]. The quantitative assessment of tumor segmentation (e.g., volume and
diameter) helps physicians to determine whether the therapy is effective, which improves the
rehabilitation rate of patients and reduces the medication costs.

Almost all existing tumor segmentation methods are only suitable for enhanced images where
a contrast agent (CA) is used to improve tumor visibility (Fig. 3.1) and thus raises several is-
sues. 1) The high risk caused by the potential toxicity of CAs [6, 7]. For instance, about 1%
gadolinium-based CA is retained in the tissues after injection, which may cause 10%-15% of
the incidence of Contrast-Induced Nephropathy (CIN) [8]. 2) The time-consuming caused by
the CA injection and the imaging process after the injection. For instance, gadolinium dimeg-
lumine (Gd-BOPTA, MultiHance) requires 40-120 mins to point focal hepatic lesions out as
dark lesions in contrast to the enhancing normal liver [9]. 3) The expensive cost caused by CA
materials and image scanning. CA materials will be wasted if errors occur during the injection.
In addition, to obtain the enhanced image, it also needs a second scanning (namely Dynamic
Contrast-Enhanced Magnetic Resonance Imaging) and requires extra cost.
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Figure 3.1. Almost all existing tumor segmentation methods are only suitable for enhanced
images where a contrast agent (CA) is used to improve tumor visibility and thus raises several
issues (side-effect, time-consuming, and high cost). We propose a method to segment the liver
tumor from non-enhanced images, which is safe, quick, and economical because it avoids the
use of CAs.

Liver tumor segmentation from non-enhanced images can avoid the above disadvantages caused
by the CA, but it is challenging (Fig. 3.2): 1) Some tumors are barely visible to naked eyes
in the non-enhanced image, which usually causes that these tumors cannot be identified ac-
curately and segmented from non-enhanced images. Without contrast agents enhancing, the
contrast between the tumor and normal tissues is really low. Apparent tumor features thus
are difficult to be extracted from non-enhanced images to segment the liver tumor. 2) Normal
tissues in the liver area present a complex and tumor-like appearance, which often causes tradi-
tional Convolutional Neural Network (CNN) based methods to get false-positive segmentation
in the normal tissues. Because tumor features produced under the inherent down-sampling
mechanism are of low resolutions commonly, the strong feature of normal tissues is reserved
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Figure 3.2. Tumor segmentation from non-enhanced images facing the following challenges:
1) Some tumors are barely visible to naked eyes. 2) Normal tissues in the background present
complex and tumor-like appearance and thus may cause interference to the tumor segmentation.
3) The pixel-level-labeled data is limited and the box-level-labeled data is relatively abundant.
It is desirable but challenging to deploy the box-level-labeled data for tumor segmentation
training.

and the weak feature of tumors is lost. Therefore, in traditional CNN-based methods, the nor-
mal tissue is possibly classified as the tumor incorrectly. 3) Accurate pixel-level-labeled data
is limited, it is highly-desirable to leverage (bounding-)box-level-labeled data to improve seg-
mentation performance. The tumor is barely visible in the non-enhanced image and requires
deep networks to extract valuable features. Therefore, the deep network involves a huge num-
ber of parameters and requires a decent amount of training data [10]. However, it is expensive
and tedious to delineate reliable tumor contours by experienced experts, especially for those
tumors with small size and complex shapes. While the (bounding-)box-level-labeled data is
relatively easy to obtain because the label only indicates the tumor location and size. It is
helpful but challenging to exploit box-level-labeled data for raising tumor segmentation per-
formance.

Although RgGAN [11] has been proposed to segment the tumor from the non-enhanced im-
age, it cannot address the above challenges. RgGAN inputs the radiomics-features in contrast
images as additional knowledge into the discriminator to regulate the feature extraction of the
non-contrast image in the generator (segmenter). The radiomics-feature promotes the perfor-
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mance of discriminator, but the regulation from discriminator is too limited (a binary value
as feedback). Thus the radiomics-features have little effect on the generator (segmenter) for
pixel-level segmentation. In addition, RgGAN is a fully-supervised method and requires a
reasonable number of pixel-level-label data to support the training. It cannot make use of the
box-level-labeled data.

Training stage: Student receives knowledge from the Teacher as

guidance to learn the tumor segmentation

Non enhanced image Tumor segmentation

Tumor knowledge 

(spatial feature & 

shape feature)

Testing stage: Student segments the tumor independently

Non enhanced image Tumor segmentation

Teacher

Student

Enhanced image
Student

Ground truth

Figure 3.3. The teacher-student framework draws support from the enhanced image where
the tumor is high-contrast and clearly visible to enable the tumor segmentation in the non-
enhanced image. By deploying a teacher to impart the tumor knowledge (including tumor
spatial and shape features) from the enhanced image to a student in the non-enhanced image,
the teacher-student framework exploits the enhanced image to guide the tumor segmentation
learning in the non-enhanced image during the training stage. Thus during the testing stage,
the student is able to segment the tumor independently from the non-enhanced image.

Transferring tumor knowledge from the enhanced image as guidance has great potential to
address the tumor segmentation in the non-enhanced image. Namely, employing a teacher-
student framework to facilitate the tumor segmentation in the non-enhanced image. As shown
in Fig. 3.3, in the teacher-student framework, a teacher in the enhanced image learns and im-
parts the tumor knowledge (tumor spatial and shape feature) to a student in the non-enhanced
image. The tumor knowledge facilitates the student to deal with the low-contrast tumor and
complex backgrounds, thus the student is able to segment the tumor independently from the
non-enhanced image during the testing stage. However, there are two issues in such teacher-
student framework: 1) The data distribution differs between the enhanced and non-enhanced
image, i.e., these two kinds of images belong to each different domains. This distribution differ-
ence causes it is difficult for the teacher to select suitable tumor spatial feature in the enhanced
image to assist the student to identify and detect the tumor in the non-enhanced image. 2) The
box-level-labeled data lacks detailed tumor shape information because the label only indicates
the tumor location and size. Therefore, for the box-level-labeled data, it is hard to extract ac-
curate tumor shape features from the enhanced image to improve (instead of misleading) the
tumor segmentation effectively in the non-enhanced image.
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Figure 3.4. WSTS addresses the weakly-supervised tumor segmentation from the non-
enhanced image by taking advantage from the enhanced image during the training stage. In
detail, WSTS explores the tumor location to learn tumor spatial feature and predicts an accurate
pixel-level tumor mask for the box-level-labeled data as tumor shape feature, thus taking the
tumor spatial and shape features as guidance, WSTS learns to detect and segment the tumor in
the non-enhanced image.

In this paper, we propose a Weakly-Supervised Teacher-Student network (WSTS, Fig. 3.4) to
address the liver tumor segmentation in the non-enhanced image by additionally leveraging the
box-level-labeled data. To this purpose, WSTS employs a weakly-supervised teacher-student
framework (TCH-ST). In detail, in the training stage, WSTS explores the tumor location to
learn tumor spatial feature in the enhanced image and predicts an accurate pixel-level tumor
mask for the box-level-labeled data as tumor shape feature. With the tumor spatial and shape
features as guidance, WSTS learns to detect and segment the tumor in the non-enhanced image.
Thus in the testing stage, WSTS is able to detect and segment the tumor from the non-enhanced
image without the assistance of the enhanced image. To determine the tumor location and size
correctly (the detail motivation see Sec. 3.2.1), WSTS proposes Dual-strategy DRL (DDRL).
The DDRL develops two tumor detection strategies to jointly determine the tumor location in
the enhanced image by creatively introducing a relative-entropy bias in the DRL. By following
the detection strategies, WSTS is able to determine the tumor location in the non-enhanced im-
age. To predict the tumor mask precisely for the box-level-labeled data (the detail motivation
see Sec. 3.2.2), WSTS proposes an Uncertainty-Sifting Self-Ensembling (USSE). The USSE
utilizes the limited pixel-level-labeled data and additional box-level-labeled data to predict the
tumor accurately by evaluating the prediction reliability with a newly-designed Multi-scale
Uncertainty-estimation. By taking the tumor prediction as a pseudo label (additional to the
manual pixel-level-label), the tumor segmentation in the non-enhanced image is thus improved.
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Our main contributions can be summarized as follows:

• The new weakly-supervised teacher-student framework (TCH-ST) we proposed inte-
grates Deep Reinforcement Learning and Self-Ensembling, which for the first time achieves
liver tumor segmentation from the non-enhanced image by exploiting the additional
(bounding-)box-level-labeled data. This provides a new solution for exploiting differ-
ent imaging modalities in a weakly-supervised manner, and using machine learning to
retain the same level of information from the less risky one.

• For the first time, the Dual-strategy DRL (DDRL) develops two detection strategies to
locate the tumor jointly, which increases the DRL exploration range in the image and
avoids the situation that traditional DRL (single strategy) sticks into sub-optimal and
causes inaccurate tumor detection. To this purpose, DDRL adds a relative-entropy bias
in the DRL learning objective, which provides a novel solution for applying multiple-
strategies in object detection.

• The Uncertainty-Sifting Self-Ensembling (USSE) improves the tumor prediction relia-
bility in the enhanced image by integrating uncertainty-estimation with Self-Ensembling,
which prevents the error magnifying in the non-enhanced image segmentation. More-
over, the USSE introduces multi-scale attentions into the uncertainty-estimation. The
multi-scale attentions increase the observational uncertainty and thus improve the esti-
mation effectiveness to the uncertainty.

3.2 Motivations in the WSTS

3.2.1 Motivation for the DDRL

Deep Reinforcement Learning (DRL) [12] is a great candidate to transfer the tumor spatial
feature from the enhanced image to the non-enhanced image (issue 1 in the teacher-student
framework) via sharing detection strategies. However, traditional DRL method may cause
inaccurate detection so that it is highly required to propose the new DDRL to improve the
performance. 1) DRL has been applied in medical object detection [13, 14]. The detection
strategy self-learned by DRL demonstrates the process to approach and locate the tumor step-
by-step, it is a high-level understanding of the tumor spatial feature and thus independent of
the image data distribution. Thus the teacher can transfer the spatial feature to the student by
sharing the same tumor detection strategy to assist the tumor detection (Fig. 3.5). 2) With the
tumor detection as a prior indicating the tumor location and size, the interference from the
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Figure 3.5. DRL is a candidate to transfer the tumor shape feature from the enhanced image
to the non-enhanced image via a tumor detection strategy, thereby assisting the tumor detec-
tion in the non-enhanced image. While traditional DRL may stick into sub-optimal and cause
inaccurate tumor detection, which further causes adverse effects on the subsequent tumor seg-
mentation. SE is a candidate to transfer the tumor shape feature from the enhanced image to
the non-enhanced image by predicting pixel-level tumor masks for the box-level-labeled data,
thereby assisting the tumor segmentation in the non-enhanced image. While traditional SE
may produce unreliable and noisy masks, which is amplified after transferred to the student
and thus misleads the segmentation in the non-enhanced image.

background is removed. Thus the tumor segmentation is simplified a great extent (especially
for the box-level-labeled data). 3) However, because the tumor is low-contrast in the non-
enhanced image, traditional DRL may fluctuate around the optimal and thus cause inaccurate
tumor detection. This inaccurate detection further causes an adverse effect on the subsequent
tumor segmentation [15]. Therefore, WSTS proposes the DDRL to address this situation and
promote tumor detection and segmentation performance.

3.2.2 Motivation for the USSE

Self-Ensembling (SE) [16] is a great candidate to transfer the tumor shape feature from the
enhanced image to the non-enhanced image (issue 2 in the teacher-student framework) via
converting the box-level label to a pseudo-pixel-level label. However, traditional SE method
may mislead the tumor segmentation so that it is indispensable to propose the new USSE to pro-
mote the segmentation performance (Fig. 3.5). 1) Self-Ensembling (SE) as a semi-supervised
method has been used in pixel-level segmentation with a few labeled data and large amounts
of unlabeled data in medical image analysis, such as brain lesion segmentation [10] and skin
lesion segmentation [17]. Thus SE has the potential to exploit the box-level-labeled data and
limited pixel-level-labeled data to address the liver tumor segmentation. 2) With the tumor de-
tection from the DDRL indicating the tumor location and the visible tumor features, SE is able
to predict pixel-level tumor masks in enhanced images. For the box-level-labeled data, these
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tumor masks can improve the tumor segmentation in the non-enhanced image as a pseudo
label. 3) However, traditional SE may produce unreliable tumor prediction in the enhanced
image considering it is weakly-supervised. The unreliable tumor prediction is amplified after
transferred to the student and misleads the segmentation model training in the non-enhanced
image. Therefore, WSTS proposes the USSE to improve the prediction reliability and increase
the segmentation accuracy.

3.3 Related work

3.3.1 Existing work

Almost all existing work on liver tumor segmentation focuses on the enhanced image because
the enhanced image presents higher contrast and clearer tumor boundary. They are grouped
into the following two categories: manual methods and automatic methods.

Manual methods. Common hand-crafted feature-based methods are based on the statistical
shape model [18] and its deformations, which achieves great performance in the challenge of
liver disease segmentation in the 2008 MICCAI conference. Another type manual methods
introduces various interactions to facilitate the tumor segmentation, such as GraphCut-based
methods [19, 20], region-based threshold method [21], level set methods [22–24], B-spline
transformation method [25] and machine learning methods [26–28]. Region-based segmenta-
tion methods [29, 30] mostly employ the feature similarity within the same regions for tumor
segmentation. For instance, Sethi [29] proposes cancerous regions by selecting an appropri-
ate threshold and deploys region-growing to extract connected regions according to the pre-
defined criteria. This method makes up for the shortcomings that traditional threshold segmen-
tation methods lack the consideration of spatial relationship among regions. Level set methods
[31, 32] achieve excellent performance in tumor segmentation because they involve numerical
curve and surface calculation to constrain the tumor prediction. For instance, Amarajothi [32]
integrates the tumor shape and intensity as prior knowledge in level set model, thereby achiev-
ing more accurate segmentation to hepatocellular carcinoma. Machine learning methods also
obtains significant performance [26–28]. For instance, Huang [26] proposed an extreme learn-
ing machine (ELM) according to random feature subspace set for liver lesion segmentation.
Zhang [27] combined watershed transformation and support vector machine (SVM). Similarly,
Kuo [28] combined texture feature vectors and SVM to segment liver lesions.

Automatic methods. Deep learning has attracted researchers to develop a number of automatic
methods for liver tumor segmentation. These methods can be divided into three categories
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according to their dimensions: 1) 2D methods, which process each individual liver image and
segment the tumor, such as Cascaded-FCN [33] and multi-channel feature-fusing FCN [34].
2) 2.5D methods, which mainly refer to exploit the spatial consistency of adjacent slices with
convolutional neural network in volume images. For instance, Han [15] proposed a 2.5D FCN
model, which integrated UNet with residual blocks and achieved excellent result in the ISBI
LiTS challenge in 2017. 3) 3D methods, which take the whole volume image as input, such as
H-DenseUNet [35].

3.3.2 Algorithm background

Deep reinforcement learning

Deep Reinforcement Learning (DRL) is a branch of machine learning, which learns from inter-
action and achieves great performance in medical image analysis [13, 14, 36]. DRL generally
trains an agent to achieve the task goal with a Markov Decision Process: the agent observes
the current state st of the task and decides an action at; with the action at, the task will change
to the next state st+1 and feedbacks the agent with a reward r. The DRL objective in such an
iterative interaction process is training the agent to learn a strategy π(a|s) that allows the agent
to maximize the expected sum of reward in an episode. Eq. 3.1 shows the DRL objective,
where (st, at) ∼ ρπ represents the state that the agent observed and the action that the strategy
selected at time t respectively, T represents the iteration number in the episode. Moreover, the
reward is generally correlated to the task goal, namely, the agent receives the maximum reward
when the agent accomplishes the task. Thus after training, the agent is able to accomplish the
task goal.

π∗ = argmax
π

T∑
t

E(st ,at)∼ρπr(st, at)︸                  ︷︷                  ︸
J(π)

(3.1)

Practically, DRL pays more attention on future obtained rewards, so that DRL generally uses
the sum of rewards with a discount γ, i.e.:

π∗ = argmax
π

T∑
t

E(st ,at)∼ρπγ
T−ir(st, at) (3.2)

Where the discount factor γ ∈ (0, 1) guarantees the sum of rewards can converge when the
iteration number is infinite. And the sum of future rewards based on current state st is also
defined as return: Gt = rt+1 + γrt+2 + γT−t−1rT .
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Actor-Critic method

Actor-Critic (AC) method [37] is a type of deep reinforcement learning algorithm, which has
been employed in medical image analysis [38] because of its advancement. The main work-
flow of the Actor-Critic method is: a strategy function as an actor selects the most probable
action based on the action probabilities it estimates. A value function as a critic evaluates the
value of the selected action to the task goal achieving. Then the actor modifies the action prob-
abilities according to the evaluated value. Repeating the above procedure iteratively, the actor
is able to select more optimal actions, the critic is able to evaluate the action more accurately,
the Actor-Critic method is able to accomplish the task. To meet the objective of DRL, namely,
learn a strategy to maximize the sum of obtained reward (Eq. 3.1), the Actor-Critic method
approximates two functions with neural networks: 1) the strategy function:

π̂(s, a) = P(a|s) ≈ π(a|s) (3.3)

Where the strategy function π(s, a) predicts the action possibilities P(a|s) when state s and
outputs the action with the highest possibility. 2) the value function of strategy π (including the
state-value function v or the action-value function q, because they are connected by Bellman
Equation):

v̂(s) ≈ vπ(s) = Eπ[Gt|st = s]
q̂(s, a) ≈ qπ(s, a) = Eπ[Gt|st = s|at = a]
vπ(s) =

∑
π(a|s)qπ(s, a)

(3.4)

Thus the optimization objective of π is to select the action with optimal action-value (or reach
the state with optimal state-value) so that the agent can obtain the maximum sum of rewards,
namely:

J(π) = E(st ,at)∼ρπ

∑
γT−ir(st, at) (3.5)

= Eππ(a|s)[r(s, a) + γv(st+1|st = s)] (3.6)

= Eππ(a|s)q(s, a) (3.7)

The optimization objective of state-value function and action-value function are to minimize
the error between the predicted value and the true action value in Eq. 3.4. For instance, the
optimization objective of action-value function can be formulated as:

Jq =
1
2

[q(s, a) − q̂(s, a)]2 (3.8)
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With the actor (strategy function) and the critic (value function) updating their parameters alter-
nately, the actor selects more optimal action and the critic evaluates the action more accurately.
Thus the actor-critic method is able to accomplish the task.

Experience replay

Experience replay is an important training technique in DRL, which breaks the correlations
among training data (DRL exploration experience) and improves the utilization of the training
data. Instead of training the DRL with the exploration experience et = (st, at, rt, st+1) directly,
experience replay stores every exploration experience into an experience memory. When up-
dating the parameters, experience replay samples a batch of training data from the memory.
Thus the correlation among inputted training data is broken, and every experience can be uti-
lized multi-times.

3.4 Method

The WSTS leverages a Teacher Module to exploit the tumor knowledge in the enhanced im-
age as guidance to train a Student Module, so that the Student Module is able to detect and
segment the tumor from the non-enhanced image independently in the testing stage (Fig. 2.5).
In detail, 1) the Teacher Module (Sec. 3.4.1) deploys the Dual-strategy DRL (DDRL) and
the Uncertainty-Sifting Self-Ensembling (USSE) to obtain a tumor mask in the enhanced
image. The DDRL coordinates two newly-designed Relative-entropy-biased Actor-Critics
(RACs) to develop tumor detection strategies and determine the tumor location. The USSE
designs a Multi-scale Uncertainty-estimation (MU) and integrates it with the Self-Ensembling
(SE) to predict a pixel-level tumor mask for the box-level-label data. 2) The Student Module
(Sec. 3.4.2) employs a Student DDRL (SDDRL) and a Student DenseUNet (SDUNet) to learn
tumor segmentation under the guidance of the Teacher Module in the non-enhanced image.
The SDDRL imitates the DDRL to learn tumor detection strategies. The SDUNet utilizes the
USSE’s tumor mask as a pseudo-pixel-level label (additional to the manual pixel-level label)
to learn the tumor segmentation.

Advantages of the WSTS: 1) The WSTS employs the DDRL to exploit the tumor spatial fea-
ture in the enhanced image and transfer the feature to the SDDRL via the tumor detection strat-
egy. This spatial feature transferring guides the tumor detection learning in the non-enhanced
image. 2) The WSTS employs the USSE to exploit the tumor shape feature in the enhanced
image and transfer the feature to the SDUNet by converting the box-level label into a pseudo-
pixel-level label. This pseudo-pixel-level label (additional to the pixel-level-label) promotes
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the tumor segmentation in the non-enhanced image. 3) With above two points, the WSTS re-
tains the valuable information from the more risky modality (the enhanced image) and to assist
and facilitate the segmentation in the safer one (the non-enhanced image), thereby enabling the
tumor is segmented from the non-enhanced image directly.

DDRL (Sec. 3.1) coordinates two newly-designed Relative-entropy-biased 
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Figure 3.6. Our WSTS leverages a Teacher Module to train a Student Module so that the
Student Module is able to segment the tumor from the non-enhanced image independently.
The Teacher Module deploys a DDRL and a USSE to detect and segment the tumor in
the enhanced image. The DDRL coordinates two newly-designed Relative-entropy-biased
Actor-Critic (RAC) to develop tumor detection strategies and propose a tumor detection box.
The USSE designs a Multi-scale Uncertainty-estimation (MU) and embeds it into the Self-
Ensembling (SE) to predict the tumor mask in a weakly-supervised manner. The Student Mod-
ule employs an SDDRL and an SDUNet to learn tumor segmentation under the guidance of
the Teacher Module in the non-enhanced image. The SDDRL imitates the DDRL to learn the
tumor detection strategies. The SDUNet takes the USSE’s tumor mask as a pseudo-pixel-level
label to learn the tumor segmentation.

3.4.1 Teacher Module
The Teacher Module employs the Dual-strategy DRL (DDRL) and the Uncertainty-Sifting
Self-Ensembling (USSE) to detect the tumor in the enhanced image and predict a tumor mask
for the box-level-labeled data. Thus the Teacher Student is able to guide the Student Module to
detect and segment the tumor in the non-enhanced image. The DDRL cooperates two proposed
Relative-entropy-biased Actor-Critics (RACs) to self-learn the tumor detection strategies and
fuses their detection results to output the final optimal tumor detection. Specifically, the two
RACs are required to maximize the difference between their developed strategies to avoid the
inaccurate tumor detection that may be occurred in traditional DRL methods. The USSE em-
beds the Multi-scale Uncertainty-estimation (MU) into the SE to improve the reliability of the
tumor mask. Specifically, the MU introduces multi-scale attentions into uncertainty-estimation
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to increase the robustness of SE, thereby avoiding the misleading to the Student Module caused
by the inaccurate tumor mask.

Advantages of the Teacher Module: 1) The Teacher Module leverages the proposed DDRL
to develop the tumor detection strategy in the enhanced image. Thus the Teacher Module is
able to guide the Student Module to determine the tumor location in the non-enhanced image.
2) The Teacher Module leverages the proposed USSE to convert the box-level label into a
pseudo-pixel-level label (tumor mask). Thus the Teacher Module provides an accurate tumor
shape feature in the box-level-labeled data for assisting the Student Module to segment the
tumor.

Dual-strategy DRL (DDRL)
The DDRL (Fig. 3.7) learns to detect the tumor in the enhanced image by coordinating two
newly-proposed Relative-entropy-biased Actor-Critics (RACs), thereby teaching the Student
Module the image structural features to detect the tumor in the non-enhanced image. In par-
ticular, the DDRL makes the two RAC detect the same tumor with respective strategy and
then fuses their detection results as the ultimate detection. The DDRL avoids the occasion in
single strategy DRL that sticks into sub-optimal and leads to inaccurate tumor detection. To
this purpose, the DDRL stimulates each RAC to 1) explore various strategies by maximizing
the entropy of explored strategy distribution; 2) take the other RAC’s decision into considera-
tion when learning its own strategy by maximizing the relative entropy between the developed
strategies. Exploring various strategies increases the exploration to the liver image and the
RAC stability. Considering the other RAC’s strategy prevents the two RACs from falling into
the same sub-optimal and thus improves the data utilization effectiveness.

Environmental element design for the RAC. The DDRL builds respective environmental ele-
ments (state space S, action space A and reward/feedback scheme R) for the two RACs (RAC 1
& RAC 2) to allow them to learn respective tumor detection strategies π1(at|st) and π2(at|st).
The element composition for each RAC i, (i ∈ [1, 2]) is designed as follows:

– State st ∈ Si, (i ∈ [1, 2]) describes the surroundings and content of the adaptive box. In
the DDRL the state is a concatenation of the enhanced image and an attention map, where
the attention map is built by the adaptive box (hard attention). This state arrangement allows
the RAC to explore the liver image by transforming this box around the image and focus on
different liver anatomy through the box. Note that, for the initial state of the RAC 1, the adap-
tive box locates in the middle of the image upper part. For the initial state of the RAC 2, the
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Figure 3.7. The Dual-strategy DRL (DDRL) deploys two newly-proposed RACs to detect the
tumor with respective strategy and fuses their detection results as ultimate tumor detection. The
DDRL avoids tumor detection sticking into sub-optimal and resulting in inaccurate detection
in a single strategy DRL method. To this purpose, the DDRL stimulates each RAC to 1)
explore various strategies by maximizing the entropy of explored strategy distribution; 2) take
the other RAC’s decision into consideration when learning its own strategy by maximizing the
relative entropy between the developed strategies. Exploring various strategies increases the
exploration range in the liver image and stability of the RAC. Taking the other RAC’s strategy
into consideration prevents the two RACs from falling into the same sub-optimal and thus
improves the data utilization effectiveness.

adaptive box locates in the middle of the image bottom part. The two initial states located op-
positely enable the two RACs to detect the tumor with different strategies to the greatest extent.

– Action at ∈ Ai, i ∈ [1, 2] denotes the transformations of the adaptive box in the parametric
space. The action at is determined by the strategy πi(at|st) for a state st. In the DDRL, the action
is a vector indicates the direction and stride length to translate and scale the box horizontally
and vertically, and the action space Ai is continuous. Thus at has the ability to adjust the size
and scale of the adaptive box, which allows the RAC to translate and scale the adaptive box to
fit various-shaped tumors. The continuous action space means the stride length is any value in
the given range instead of a few preset discrete. The continuous action space allows the RAC
to select the stride length flexibly according to the relative distance between the adaptive box
and the tumor bounding-box.

– reward function r ∈ Ri encodes the feedback from the label to the action for the agent net-
work training. In the DDRL, both RACs have the same reward function formula. The reward
function formula denotes the reward as the exponent of the detection accuracy improvement
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caused by the action:

r(st, at) =

 e−dt ∆ > 0
0 ∆ ≤ 0

(3.9)

Where dt is the detection accuracy after the action at, which is evaluated by the sum of the Eu-
clidean distance between the adaptive box’s four vertices and the bounding-box’s four vertices.
∆ is the decreasing of d caused by the action, namely, ∆ = dt−1 − dt. When the adaptive box
coincides with the tumor bounding box, the reward is maximum (i.e., r = 1). Thus, to obtain
the maximum sum of rewards, each RAC learns to 1) transform the adaptive box with optimal
action to approach the tumor bounding-box, so that ∆ > 0 and r > 0; 2) transform the adaptive
box to match the tumor bounding-box, so that dt = 0 and r = 1.

Learning objective for the RAC. The DDRL designs following optimization objective for
each RAC to address the tumor detection (here taking RAC 1 as an example, the optimization
of RAC 2 follows the same principle):

J(π1) =
∑

t

E(st ,at)∼ρπ1

{
r(st, at) + α[H(π1(·|st)) +DKL1(π1(·|st)||π2(·|st))]

}
(3.10)

Where E(st ,at)∼ρπ1
r(st, at) is the objective of traditional DRL, namely, the sum of obtained re-

wards. Maximizing this item aims to guide the RAC 1 to approach and achieve the task goal.
H(π1(·|st)) represents the entropy of the strategy, which is inspired by the Soft Actor-Critic
(SAC) method [39]. Maximizing this entropy aims to guide the RAC 1 to approach the target
goal with different strategies. In other words, it guides the RAC 1 to explore the liver image as
random as possible, as well as improves the RAC 1 stability. DKL1(π1(·|st)||π2(·|st)) denotes the
relative entropy between RACs. Maximizing this item aims to stimulate the RAC 1 to develop
a distinct strategy from the RAC 2 developed. Maximizing the relative entropy prevents two
RACs from falling into the same strategy, thereby improving the tumor detection performance.
In particular, when optimizing the RAC 1, the DDRL takes the decision made by the RAC 2
into consideration and enables the RAC 1 to make a different decision from the RAC 2 made.
α is a temperature parameter that determines the relative importance of the entropy against the
reward. For the following derivation, we will omit writing the temperature explicitly, as it can
always be subsumed into the reward by scaling it by α−1.

Optimization procedure for the learning objective. To make each RAC achieve the above
learning objective, the DDRL refers to the actor-critic method. In particular, the DDRL con-
structs a new state-value function V1 and a new action-value function Q1 (as the critic) to
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evaluate and guide a strategy function π1 (as the actor) to develop the strategy. The state value
function V1 for the strategy π1 is trained to minimize the squared residual error:

J(V1) = Est∼D

{
1
2

(V1(st) − E[Qat∼π1(st, at) − logπ2(at|st)at∼π2])
2
}

(3.11)

where D is a replay buffer sampled from the replay-experience memory (refer to Sec. 3.3.2).
π2(at|st) acts as a bias term, which takes the action at made by π2 under the state st into con-
sideration. The derivation from Eq. 3.10 to Eq. 3.11 can be seen in E. Based on the Eq. 3.11,
the value functions of two RACs are optimized alternately. Namely, when updating one RAC,
the other RAC only provides a bias term instead of participating in updating. The action-value
function Q1 can be trained to minimize the Bellman residual:

J(Q1) = E(st ,at)∼D[
1
2

(Q1(st, at) − Q̂1(st, at))2] (3.12)

with
Q̂1(st, at) = r(st, at) + ζEst+1[V1(st+1)] (3.13)

The DDRL represents the strategy function π1 with the distribution of the action-value function
Q1 (refer to Eq. 3.5), namely:

π1(st, at) ∝ exp(Q1(st, at)) (3.14)

Thus the updating of strategy function π1 is to make the distribution of strategy closer to the
distribution of Q1. Here, refer to SAC[39], the DDRL employs and minimizes the Kullback-
Leibler divergence of the distributions, i.e., the DDRL aims to find the strategy when the KL
divergence of the strategy distribution and action-value distribution is minimum:

J(π1) = Est∼DDKL2(π1(·|st)||
exp(Q1(st, ·))

Z(st)
) (3.15)

where the partition function Z(st) normalizes the distribution, it does not contribute to the gra-
dient with respect to the new strategy and can thus be ignored. The networks to approximate
the state-value function, action-value function, and the strategy function can be seen in F.

Fusing the tumor detection from the dual RACs. After the dual RACs develop respective
tumor detection strategies and propose respective tumor detection boxes, the DDRL adopts the
union of two boxes as the ultimate detection result for subsequent tumor segmentation. Com-
pared with one detection box from a single strategy that usually covers most parts of the tumor
area instead of the complete tumor, the union of two detection boxes from two totally various
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strategies covers more tumor areas. Thus the DDRL improves the detection quality effectively
and outputs a more accurate tumor detection box for subsequent tumor segmentation.
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Figure 3.8. The Uncertainty-Sifting Self-Ensembling (USSE) builds an online model and a
target model to build the self-consistency loss and exploit the box-level-labeled data. The pre-
diction of the target model sifted by the Multi-scale Uncertainty-estimation (MU) is employed
as a reliable prediction to constrain the segmentation of the online model. The MU creatively
introduces multi-scale attentions into the uncertainty-estimation, which increases the obser-
vational uncertainty and thus improves the estimation effectiveness of the uncertainty to the
tumor prediction.

Uncertainty-Sifting Self-Ensembling (USSE)

The USSE (Fig. 3.8) predicts tumor masks for the box-level-labeled data by integrating the
Self-Ensembling (SE) with a proposed Multi-scale Uncertainty-estimation (MU), thereby con-
verting the box-level label into a pseudo-pixel-level label (additional to the manual pixel-level
label) to improve the Student Module. SE as a weakly-supervised method segments the tumor
with partial pixel-level-labeled data and partial box-level-labeled data. MU as a newly pro-
posed uncertainty-estimation method sifts the reliable segmentation from the unreliable and
improves the segmentation accuracy. The USSE consists of two models (an online model and
a target model). The target model’s parameter is the ensemble of the online model’s. Both
models take the enhanced image and the DDRL detection box as input, and output tumor seg-
mentation. Considering the ensemble segmentation from the target model is more accurate than
that from the online model [10], the online model learns from the target model by minimizing
the consistency between the two segmentation. However, without pixel-level ground-truth, the
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predicted segmentation may be unreliable and noisy. For this point, the USSE designs MU to
sift the reliable segmentation from the unreliable. Therefore, the training loss for the USSE is
formulated as:

L =

supervised loss︷             ︸︸             ︷
Ls[ f (x, η, δ), y] +γ

self-consistency loss︷                          ︸︸                          ︷
Lg[ f (x, η, δ), f (x, η′, δ′)] (3.16)

The first item in the above equation right part is the supervised loss. In particular, the USSE
builds the online model and the target model with the same Dense U-Net architecture [40] and
respective parameters δ and δ′. The δ′ is updated by an exponential moving average (EMA)
strategy every time after the parameters δ is updated (namely, δ′ = βδ′+ (1−β)δ, where β is the
EMA decay to control the updating rate). For an enhanced liver image with pixel-level label y,
the USSE concatenates the image and detection box as the input x, adds random noise η, and
feeds the input into the online model. Then according to the supervised loss Ls[ f (x, η, δ), y] to
update the online model’s parameters. Here, the supervised lossLs is Dice loss which performs
greatly in imbalanced-task (the imbalance between the tumor area and the background area). γ
is a ramp-up weighting coefficient [41] that controls the trade-off between the two items in the
above equation.

The second item in the above equation right part is self-consistency loss. No matter the inputted
data has a pixel-level label, the target model’s prediction f (x, η′, δ′) is deployed as a potential
target to restrict the online model’s prediction f (x, η, δ). Namely, the online model is also
updated by the self-consistency loss Lg[ f (x, η, δ), f (x, η′, δ′)]:

Lg[ f (x, η, θ), f (x, η′, θ′)] =

∑
Π(u < H)‖ f (x, η, θ), f (x, η′, θ′)‖2∑

Π(u < H)
(3.17)

Where ‖·‖2 is the pixel-to-pixel square distance to measure the self-consistency loss between
two predictions. More importantly, to increase the reliability of the self-consistency loss, an
indicator function Π(u < H) is deployed to filter the high-uncertainty prediction. u is the
Multi-scale Uncertainty-estimation (MU) to the prediction of every pixel and H is an adaptive
uncertainty threshold. In particular, considering different attentions lead to different segmenta-
tion [42], MU introduces multi-scale attentions into the uncertainty-estimation to increase the
observation uncertainty. As shown in Fig. 3.8, MU adapts the original detection box to nine
new attention boxes and builds nine different inputs ({xt}

T
t=1 ,T = 9). These nine boxes contain

three sizes (original size, original size *1.2, original size * 1.4), and three scales (1:1, 1:2, 2:1)
for each size. Then, MU introduces Gauss noise to these nine inputs ({xt}

T
t=1 ,T = 9) and feeds

them into the target model during forward propagation. These nine different inputs result in
nine tumor probability maps ({Pt}

T
t=1 ,T = 9). Then the uncertainty is evaluated according to
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the predictive entropy u and the average prediction µ (Eq. 3.18).

µ = 1
T

∑T
t=1 Pt

u = −µlogµ
(3.18)

For each input, H is determined adaptively by the overall uncertainty of this input, it can be
formulated as: H = β′umax + (1 − β′)umin. β′ is a time-dependent warming up function [16, 43]
to increase the uncertainty threshold gradually.

3.4.2 Student module

The Student Module consists of a Student DDRL (SDDRL) and a Student Dense U-Net (SDUNet)
to receive the guidance and assistance from the Teacher Module to learn to detect and segment
the tumor in the non-enhanced image. The SDDRL imitates the DDRL to learn the tumor de-
tection strategies and determines the tumor location in the non-enhanced image for subsequent
segmentation. The SDUNet learns to segment the detected tumor under the supervision of
the pseudo-pixel-level label from the USSE and the manual pixel-level label. After the above
learning process, in the testing stage, the Student Module is deployed to detect and segment
the tumor from the non-enhanced image independently without the assistance of the Teacher
Module.

Advantages of the Student Module: 1) The Student Module learns the tumor spatial feature
in the non-enhanced image under the guidance of the Teacher Module instead of self-exploring.
This guidance prevents the Student Module from divergence because the tumor feature is weak
and accelerates the detection strategies learning. 2) The Student Module learns to extract the
tumor shape feature under the guidance of the pseudo-pixel-level label instead of the super-
vision from the box-level label. This pseudo-pixel-level label enables the Student Module to
focus on the correct tumor area and avoid the interference from surrounding tissues.

Student Dual-strategy DRL (SDDRL)

The SDDRL is built based on the DDRL architecture to learn to detect the tumor in the non-
enhanced image. During the training stage, the SDDRL follows the DDRL’s strategies to
transform the adaptive box iteratively and determine the tumor location and size in the non-
enhanced image. Such iterative transforming allows the SDDRL learns to select optimal ac-
tions to approach the tumor when it observes different liver anatomy through the adaptive box.
Thus during the testing stage, the SDDRL is able to select actions step by step to detect the
tumor independently in the non-enhanced image. More importantly, because the weak features
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in the non-enhanced image usually cause repetitive and useless explorations. By following the
DDRL’s actions step by step to learn the tumor detection strategies instead of self-exploring
the non-enhanced image, the SDDRL is able to converge fast and avoids over-fitting.

For the framework and the environmental element design, the SDDRL builds the same dual
RACs as the DDRL and the same element compositions (the state, the action, and the reward
function). In detail, 1) the SDDRL concatenates the non-enhanced image and the adaptive
boxes when constructing the states for the two RACs, note that the initial adaptive boxes here
are the same as the initial boxes in the DDRL; 2) the RACs follows the DDRL’s every ac-
tion that transforms the adaptive boxes step by step to explore the non-enhanced image; 3) the
RACs obtains the same rewards as the DDRL after each action, because the same box and the
same action lead to the same tumor detection accuracy.

For the learning optimization objective and optimization procedure, the SDDRL learns to de-
velop the strategies from the DDRL in the non-enhanced image. In particular, the SDDRL
deploys a critic to estimate the state-value function and the action-value function, as well as
an actor to estimate the strategy function based on the observed information (state) and the
knowledge (action, and reward) from the DDRL. In our implementation, these three functions
are built and trained with the same process as the DDRL. However, the above critic and actor
in the SDDRL can be trained according to the principle of a traditional actor-critic method
(Sec. 3.3.2), because the DDRL has provided desirable strategies for the SDDRL.

For the fusing of detection results, the SDDRL follows the DDRL and adopts the union of
two detection boxes as the ultimate detection result for further tumor segmentation. Because
in the non-enhanced image the tumor is low-contrast, the tumor detection box predicted by a
single detection strategy usually has a little deviation compared with the optimal bounding-
box. This deviation causes that the tumor area outside the box is missed in segmentation since
the segmentation model focuses attention on inside the box, thereby reducing the segmentation
accuracy. Adopting the union of two detection boxes effectively expands the attention area, so
that the tumor segmentation is complete and high accuracy.

Student Dense U-Net (SDUNet)
The SDUNet learns to segment the tumor from the non-enhanced image based on the attention
from the SDDRL and the supervision from the USSE. The SDUNet builds a hard attention map
according to the tumor detection box proposed by the SDDRL, and concatenates the attention
map with the non-enhanced image together as the input. The SDUNet deploys a Dense U-Net
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[40] as the main segmentation model. The SDUNet learns to segment the tumor under the
supervision of the pseudo-pixel-level label from the USSE (in the box-level-labeled data) and
the manual pixel-level label (in the pixel-level-labeled data). The training loss for the SDUNet
is:

L = γ′
box level label︷                  ︸︸                  ︷

Lb[F(x, η), f (x, η)] +

pixel level label︷           ︸︸           ︷
Lp[F(x, η), y] (3.19)

Where γ′ is the ramp-up weighting coefficient [41] that controls the trade-off between the sup-
portive ground-truth (box-level-labeled data) and the manual ground-truth (pixel-level-labeled
data). Lb and Lp are Dice loss between the tumor segmentation (F(x, η)) and the ground-truth
( f (x, η) or y). Dice loss effectively addresses the imbalance between the area of background
and the area of the tumor [44]. Moreover, the Dice coefficient is one of the most important
matrices to evaluate the tumor segmentation performance, thus taking Dice as the loss function
promotes the model to improve segmentation accuracy.

With the tumor detection box from the SDDRL as hard attention, the SDUNet is able to focus
on the tumor region instead of being interfered by the background. Such attention-focusing is
crucial for the small and low-contrast tumor segmentation. With the pseudo-pixel-level from
the USSE and manual label as the supervision, the SDUNet is able to learn to extract the tumor
inconspicuous feature in the pixel-level from the non-enhanced image systemically. With the
Dense UNet that integrates two effective tools (the U-Net [45] and Dense Block [46]) as the
segmentation network, the SDUNet retains the information flow and gradient flow in the model
maximally to segment the tumor details.

3.5 Experiment

3.5.1 Data acquirement

In the validation, a total of 250 patients with liver axial MRI images are selected, which include
150 Hemangioma, 100 Hepatocellular Carcinoma. All subjects obeyed initial standard clinical
liver MRI protocol examinations. The non-enhanced liver MRI images (T2WI) were obtained
by a 3-T MRI system (GE Signa), where the image size is 256×256, the slice thickness is 6mm.
The enhanced liver MRI images (T1FS) using Fat Saturation sequence 20 seconds-10 minutes
after intravenous injection of a gadolinium-based contrast agent (0.1 mmol/kg; Bayer Schering
Pharma AG, Berlin, Germany), where the image size is 512×512, the slice thickness is 4mm.
A radiologist with 7 years of experience in MR Liver imaging analyzed the enhanced images
and labeled manual contour of the dominant index lesion in each scan as ground truth. WSTS
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randomly selects 200 patients for training, and uses the remaining 50 patients for independent
testing.

3.5.2 Implementation details

Input preprocessing. In the training stage, all the original non-enhanced T2WI images of
256×256 are fed into WSTS. The slice of the enhanced T1FS image and the ground-truth that
correspond to the non-enhanced image are selected and resized to 256×256. The box-level
label and the pixel-level label for tumor detection and tumor segmentation are deduced from
the manual contour. Namely, regarding the bounding-box of manual contour as the box-level
label and highlighting the inside of manual contour as the pixel-level label. In the testing stage,
only the non-enhanced T2 WI image is employed.

Hyper-parameter setting. The experience replay memory sizes for each Teacher RAC and
Student RAC are 20000 and 30000 respectively. For the learning rate, the initial rate in the
Teacher Module and Student Module starts with 1e−3 and 1e−4 respectively, ends with 1e−6

based on the decay coefficient 0.8. The replay buffer size in all DRL methods is 80. The it-
eration step in the DDRL and the SDDRL for each episode is 35. For the optimizer, all DRL
methods deploy Adam, other methods deploy SGD. The initial box size when building the state
in the DDRL and the SDDRL is 24∗24. The step sizes of translation and scale in the action are
[0−6] pixels and [0−4] pixels respectively. ζ in the DDRL is 0.99. The temperature parameter
in the DDRL α is set as 1.0. β in the EMA is 0.99 to update the target model parameters. The
range of Gauss noise in the USSE is [-0.1, 0.1]. Drop-out is deployed with rate of 0.1 in every
convolution layer and fully connected layer.

Software and hardware setting. WSTS is implemented with the PyTorch deep learning
framework (version 1.4.1) with 8 NVIDIA GTX 1080 GPUs and 48 Intel Xeon CPUs under
Ubuntu 16.04. The CUDA version is 10.0 and the GPU driver version is 410.78.

3.5.3 Evaluation criteria

Our experiments evaluate tumor segmentation results with the following criteria. The tumor
possibility threshold for every pixel is 0.75, namely, when the prediction possibility for a pixel
is higher than 0.75, this pixel is classified as a tumor pixel, otherwise it is classified as a back-
ground pixel.

Recall measures the rate that the prediction is correct out of the tumor segmentation. Recall is
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formulated as:
Recall =

T P
T P + FN

× 100% (3.20)

where T P is the number of pixels that are predicted as the tumor and consistent with the ground-
truth. FN is the number of pixels that are predicted as background but inconsistent with the
ground-truth, namely the pixels actually belong to tumors. Recall value locates between 0 to
1. The value is closer to 1 means more tumor pixels are classified correctly.

Dice coefficient evaluates the overlap between the tumor prediction and the ground-truth. Dice
is formulated as:

Dice =
2 × |P ∩G|
|P ∪G|

× 100% (3.21)

where |P ∩ G| counts the number of pixels that belong to the tumor prediction P and ground-
truth G. |P ∪G| counts the number of pixels that belong to the tumor prediction P or belong to
the ground-truth G. Dice value locates between 0 to 1. The value is closer to 1 indicates more
tumor pixels in the prediction are correct and fewer tumor pixels in the ground-truth are missed.

95% Hausdorff distance (95HD) evaluates the respective distance between the tumor bound-
ary in the tumor prediction and the tumor boundary in the ground-truth. Firstly, Maximum HD
is defined as:

HD(p, g) = max(h(p, g), h(g, p)) (3.22)

where p, g denote the tumor boundary point set respectively in the prediction P and the ground-
truth G. While h(g, r) is called the directed Hausdorff distance and is given by h(g, r) =

maxgi∈gminri∈r||gi − ri||, where ||gi − ri|| is Euclidean distance in our evaluation. 95HD is based
on the calculation of the 95th percentile of the maximum HD between boundary points in the
prediction and the ground-truth with the purpose of eliminating the impact of a very small sub-
set of the outliers. 95HD value is smaller indicates the prediction boundary is more consistent
with the ground-truth boundary, which means the tumor prediction is more accurate.

Cohen Kappa Coefficient (KAP) [47] is a measure of agreement between the segmentation
and the ground-truth. As an advantage over other evaluation matrices, KAP is more robust
because it takes into account the agreement caused by chance. KAP is given by:

KAP =
fa − fc

N − fc
(3.23)

Where N is the total number of observations, in our case it is the pixel numbers. fa and fc can
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be expressed in terms of four overlap cardinalities:

fa = T P + T N

fc =
(T N+FN)(T N+FP)+(FP+T P)(FN+T P)

N

(3.24)

Where T P and FN have been defined in the Recall. T N is the number of pixels which are
predicted as background correctly. FP is the number of pixels which are predicted as tumor
but actually belong to the background.

Receiver Operating Characteristic (ROC) curve is drawn based on the confusion matrix
(Specificity and Sensitivity), which are usually used to evaluate the classification ability of
deep learning methods to every pixel in a given dataset. ROC curve reflects the relationship
between the sensitivity and specificity, which is a comprehensive representation of segmenta-
tion accuracy. ROC curve is more convex or closer to the upper left corner, indicating that the
evaluation value of the ROC curve is greater. The Area Under Curve (AUC) can represent the
above ROC evaluation value quantitatively. ROC curves simply and intuitively illustrate the
segmentation performance, thus the clinical accuracy of segmentation method can be judged
by naked eyes directly.

3.5.4 Experimental setting

Control experiments

Considering that deploying a normal DRL and a normal SE to segment the tumor from non-
enhanced images directly as the baseline method, control experiments evaluate the efficiency
of newly-proposed innovations to the liver tumor segmentation. Particularly, our control exper-
iments 1) implement the baseline method and evaluate the segmentation result with the above
metrics; 2) employ the weakly-supervised teacher-student framework (TCH-ST) on the basis
of the baseline method, namely, exploit the enhanced image to assist during training, and eval-
uate the result with the above metrics. Specifically, both Teacher Module and Student Module
take a normal DRL to learn the tumor detection strategy, and the Teacher Module utilizes a
normal SE to assist the Student Module; 3) replace the normal DRL in the above TCH-ST
with the newly-proposed DDRL and evaluate the segmentation result with the above criteria to
investigate the effectiveness of the DDRL; 4) replace the normal SE in the above TCH-ST with
the newly-proposed USSE and evaluate the segmentation with the above criteria to investigate
the advantage of the USSE.
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Ablation experiments

Based on the WSTS framework, the ablation experiment firstly compares the influence caused
by different DRL methods to the ultimate segmentation. In particular, the experiment replaces
SAC in DDRL with Deep Q-learning (DQN [12]) and Advantage Actor-Critic (A2C) respec-
tively to display the advantage of SAC in this task. DQN is the most typical DRL method de-
ployed in medical image analysis ([13][36]). A2C is a continuous action space DRL method,
which is also employed in recent years[38]. The ablation experiment employs two DQNs and
two A2Cs to achieve the dual tumor detection strategies, where the relative-entropy maximiza-
tion is also deployed as the same as the DDRL.

Based on the WSTS framework, the ablation experiment also compares the effectiveness caused
by different semi-supervised methods to the ultimate segmentation, namely, compares the abil-
ity of different methods to exploit the box-level-labeled data. In particular, the experiment
deploys DAN [48], TCSE[17] and, MCSE [41] to replace the USSE. The DAN adopts two
adversarial networks to enable the tumor prediction in the non-pixel-level-labeled data to ap-
proach the correct segmentation. The TCSE utilizes segmentation consistency before and after
the image transformation. The MCSE embeds the Monte-Carlo uncertainty-estimation into a
normal SE to output a reliable prediction.

Inter-comparison experiments

Inter-comparison experiments compares our method with other two kinds baseline methods
(U-Net[45], Mask R-CNN[49]), and two state-of-art methods (RgGAN [11] & PSCGAN [50]).
U-Net and Mask R-CNN are used widely in medical image segmentation, they are trained and
tested only on the non-enhanced image. RgGAN and PSCGAN are assisted by the enhanced
image during the training stage. More particularly, PSCGAN is an advanced method to segment
the ischemic heart image, which synthesizes the enhanced image firstly and then inputs both
non-enhanced and synthesized enhanced images to get the segmentation. The inter-comparison
experiments train the above methods with all pixel-level-labeled data (200 patients) and half
pixel-level-labeled data (100 patients) respectively, and evaluate the validation result with the
criteria.
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Figure 3.9. Tumor segmentation visualization presents that WSTS achieves a high overlap
between the tumor prediction (green area) and the ground-truth (blue contour). In the non-
enhanced image, the tumor is low-contrast and barely visible compared with that in the en-
hanced image. The small size of some tumors aggravates the difficulty to identify and segment
the tumor from the non-enhanced image. However, the visualization shows that WSTS has
the ability to identify and segment the tumor from the complex background effectively and
accurately.

3.5.5 Experimental result

Comprehensive analysis

Qualitative evaluation of WSTS performance. Fig. 3.9 displays some segmentation sam-
ples visually compared against the ground-truth. The high overlap between the segmentation
(green mask) and the ground-truth (blue contour) demonstrates that WSTS effectively seg-
ments tumors from non-enhanced images with excellent accuracy. The displayed images from
two kinds of tumors (Hemangioma and HCC) cover various tumor contrasts, including clearly
visible, barely visible, and invisible to naked eyes. WSTS demonstrates great robustness by
overcoming the low-contrast of these tumors. In Fig. 3.9, every tumor is identified accurately,
which indicates that WSTS has the ability to develop the tumor detection strategy and deter-
mine the tumor location in the non-enhanced image. The high coincidence between the mask
contour and the ground-truth contour indicates that WSTS is capable to capture tumor features
and segment the tumor accurately.

Quantitative evaluation of WSTS result. Based on the quantitative result in the last row
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Table 3.1. Control experimental result.

Method label used Metrics
pixel-level box-level Dice[%] 95HD[mm] Recall[%] KAP [%]

Baseline 100 100 51.65±24.66 4.83±1.14 56.16±30.20 51.58±24.67
TCH-ST 100 100 74.93±19.93 4.28±1.06 82.48±22.67 74.86±19.94

TCH-ST+DDRL 100 100 79.68±18.44 4.16±1.07 84.69±15.71 79.64±18.45
TCH-ST+USSE 100 100 79.71±11.41 4.11±0.94 84.39±11.52 79.66±10.44

WSTS 100 100 83.11±12.11 3.96±0.96 85.12±12.46 83.07±11.12

of Tab. 2.1, WSTS overall obtains accurate tumor segmentation. In detail, WSTS achieves
83.11±12.11% in Dice, 3.96 ± 0.96 mm in 95HD, 85.12 ± 12.46% in Recall, and 83.07 ± 11.12
in KAP. The high Dice and Recall values indicate the SDDRL detects the tumor accurately, and
the SDUNet distinguishes most tumor pixels from the non-enhanced image correctly. The low
95HD value indicates that even in the weakly-supervised manner, the USSE facilitates WSTS
to predict the tumor boundary accurately. The high KAP value indicates the SDUNet has a
strong classification ability to classify every tumor pixel instead of predicting by chance. It
also illustrates the pseudo label from the USSE is effective. The ROC curve in the Fig. 3.10
illustrates the strong tumor segmentation ability of WSTS. The AUC of the ROC is close to 1.0,
which proves from another aspect that WSTS has a great ability to classify each pixel correctly.

Evaluation of control experiments

Based on the evaluation result in Tab. 2.1 and Fig. 3.10, the control experiment validates the
DDRL and the USSE improve the tumor segmentation accuracy and stability effectively.

The baseline method performs poorly to segment the tumor from the non-enhanced image di-
rectly. According to Tab. 2.1, the baseline method achieves 51.65 ± 24.66% in Dice, 4.83 ±
1.14 mm in 95HD, 56.16 ± 30.20% in Recall, and 51.58 ± 24.67 in KAP. The low mean Dice
and Recall values, high mean 95HD value and low KAP value indicate the baseline method has
no capability to segment the tumor from the non-enhanced image. In other words, almost half
of tumor pixels are classified falsely, and the segmentation contour coincides with the ground-
truth poorly. The gentle ROC curve in Fig. 3.10 also explains the segmentation ability of the
baseline method is weak, where the AUC (area under the curve) is only almost 0.6.

The weakly-supervised teacher-student framework (TCH-ST) addresses the tumor segmenta-
tion from the non-enhanced image by exploiting the enhanced image and assisting the seg-
mentation training in the non-enhanced image. Based on the Tab. 2.1 and Fig. 3.10, after
the TCH-ST is employed, the segmentation performance is greatly improved from all aspects.
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Dice value reaches 74.93±24.66%, 95HD decreases to 4.28 ± 1.06 mm, Recall value and KAP
value increases to 82.48 ± 22.67% and 74.86 ± 19.94% respectively, and the ROC curve also
becomes steep. The Dice, Recall and KAP improvements indicate that the TCH-ST is more
effective to distinguish tumor pixels correctly from the background. The decreased 95HD in-
dicates TCH-ST has a stronger capability to capture the tumor shape features by employing
SE in the enhanced image compared with employing SE directly in the non-enhanced image.
The standard deviation decrease for the above matrices also indicates the segmentation stability
increases.

The DDRL improves tumor segmentation accuracy by increasing the quality of tumor detec-
tion. After the DDRL is deployed in the weakly-supervised teacher-student framework (TCH-
ST), compared with the normal DRL, the mean Dice value increases by 4.75%, the mean 95HD
value decreases 0.08 mm, the mean Recall value increases 2.21%, and the mean KAP value
increases 4.78%. The ROC curve also becomes steeper. Such segmentation improvement indi-
cates the DDRL proposes a more accurate tumor detection box than the normal DRL. The dual
RACs in the DDRL explores larger image areas and proposes the detection box that is closer
to the tumor bounding-box. The accurate tumor detection enables the USSE (and the SDUNet)
to focus attention on the optimal tumor region and get more accurate segmentation.

The USSE improves the segmentation performance in the tumor edge area and the segmenta-
tion stability by increasing the tumor prediction reliability. After the USSE is deployed in the
weakly-supervised teacher-student framework (TCH-ST), compared with the normal SE, the
Dice value increases by 4.78%, the 95HD value decreases 0.17 mm, the Recall value increases
1.91%, and the KAP value increases 4.80%. The ROC curve also closer to the upper-left corner.
Compared with the DDRL, the USSE mainly improves the Dice and 95HD, which indicates
the Multi-scale Uncertainty-estimation (MU) in the USSE increases the tumor prediction reli-
ability in the tumor edge area. The standard deviation also declines more compared with the
TCH-ST and the DDRL, which demonstrates MU promotes model stability and robustness.

Evaluation of ablation experiments
According to Fig. 3.11, the SAC method that WSTS employed is the best to facilitate tumor
segmentation. In the ablation experiments, after DQN is deployed in the DDRL to learn the
detection strategy, the experiment result achieves 67.09% in Dice, 4.32 mm in 95HD, 71.00%
in Recall, and 68.97% in KAP, where Dice, Recall, and KAP decrease 16.02%, 14.12%, and
14.10% respectively, and 95HD increases 0.36 mm compared with the SAC. The reason for
such a poor result may be that the DQN is a discrete action-space method, its detection box
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Figure 3.10. The ROC Curves of control experiments (left) and inter-comparison experiments
(right) show every part of WSTS increases AUC to varying degrees and WSTS has the largest
AUC compared with other fully-supervised methods. In the left figure, compared with the base-
line method (without assisting of the enhanced image), the teacher-student framework (TCH-
ST), the DDRL, and the USSE improve the model segmentation performance respectively. In
the right figure, with the same amount of pix-level-labeled data, our WSTS has the largest AUC
compared with other fully-supervised methods by leveraging the additional box-level-labeled
data.

does not focus the segmentation attention on the tumor optimally and thus causes interference
to the tumor segmentation. After the A2C is deployed in the DDRL, the segmentation achieves
78.31% in Dice, 4.04 mm in 95HD, 82.91% in Recall, and 78.22% in KAP, where Dice, Re-
call, and KAP decrease 4.80%, 3.21%, and 4.85% respectively, and 95HD increases 0.08 mm
compared with SAC. Such accuracy decreasing may be caused by the delayed-reward in the
A2C method, which results in the detection box is less accurate than the box proposed by the
SAC.

According to Fig. 3.12, the proposed USSE is most capable to exploit the box-level labeled
data and improve the segmentation performance compared with the other three state-of-art
methods. Under the same amount of pixel-level-labeled data and the same tumor box provided
by the DDRL, the TCSE achieves 78.34% in Dice, 4.19 mm in 95HD, 80.80% in Recall, and
78.29% in KAP. The DAN achieves 68.77% in Dice, 4.35mm in 95HD, 73.74% in Recall, and
68.67% in KAP. The MCSE achieves 80.30% in Dice, 4.16 mm in 95HD, 84.68% in Recall,
and 80.25% in KAP. Based on the above results, SE-based methods (TCSE, MCSE, and USSE)
compared with DAN performs better in the tumor segmentation task, where the Dice value
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Figure 3.11. Ablation experimental result related to the DRL method shows the SAC method
the DDRL employed performs much better than the other two DRL methods. SAC method
achieves the highest Dice, Recall, and KAP, but the lowest 95HD compared with the other two
commonly used DRL methods.

achieved by SE-based methods is at least 10% higher than that achieved by the DAN. The
uncertainty-evaluation further improves the segmentation accuracy further. For instance, re-
garding the Recall value, the SE methods which combined with uncertainty-evaluation (MCSE
and USSE) is about 4% higher than the TCSE, thus uncertainty-estimation is necessary for such
weakly-supervised segmentation tasks. For the two SE methods integrated with uncertainty-
estimation, our USSE obtains higher segmentation precision than the MCSE, where the Dice
is improved by about 3%. This demonstrates the Multi-scale Uncertainty-estimation (MU)
which introduces multi-scale attentions into uncertainty-estimation is more capable to evalu-
ate the segmentation reliability and improve the segmentation accuracy than the Monte-Carlo
(MC) Uncertainty-estimation.

Evaluation of inter-comparison

Based on Tab. 3.2, Fig. 3.10, and Fig. 3.13, WSTS has the ability to exploit box-level-labeled
data and performs much better than fully-supervised methods under the same number pixel-
level-labeled data, as well as approaches the fully-supervised methods that are trained with
twice number of pixel-level-labeled data. Under 200 patient pixel-level-labeled training data,
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Figure 3.12. Ablation experimental result related to semi-supervised segmentation meth-
ods shows the USSE achieves the best performance. Our USSE that deploys Multi-scale
Uncertainty-estimation achieves the highest Dice, Recall and KAP, but the lowest 95HD com-
pared with other two state-of-art methods. In addition, SE-based methods (TCSE, MCSE, and
USSE) compared with DAN performs better in the tumor segmentation task. The uncertainty-
evaluation (MCSE and USSE) further improves the segmentation accuracy further. The Multi-
scale Uncertainty-estimation method (USSE) is more capable to improve the segmentation
accuracy than the Monte-Carlo Uncertainty-estimation method (MCSE).

U-Net achieves 73.31 ±12.19% in Dice, 4.16 ± 1.10 mm in 95HD, 83.44 ± 10.81% in Re-
call, and 73.30 ± 12.21% in KAP without the assisting of the enhanced image during training.
Under the same condition, Mask R-CNN achieves 87.43±10.42% in Dice, 3.82±0.93 mm in
95HD, 89.55±11.31% in Recall, and 87.41 ± 10.43% in KAP. With the enhanced image as
guidance during the training, RgGAN achieves 88.19 ± 10.57% in Dice, 3.72 ± 0.89 mm in
95HD, 89.76 ± 12.04% in Recall and 88.16 ± 10.58% in KAP. With the same condition as
RgGAN, PSCGAN achieves 89.31 ± 9.30% in Dice, 3.74 ± 0.87 mm in 95HD, 91.02 ± 9.83%
in Recall, and 89.30 ± 9.33% in KAP. Compared with two methods without enhanced image
assisting during training, RgGAN and PSCGAN perform much better, which also proves the
necessity that exploiting enhanced images to guide the tumor segmentation from non-enhanced
images. With half number of pixel-level-labeled data (100 patients) and half number of box-
level-labeled data (100 patients), WSTS achieves 83.11±12.11% in Dice, 3.96 ± 0.96 mm in
95HD, 85.12 ± 12.46% in Recall, and 83.07 ± 11.12 in KAP. WSTS’s performance approaches
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Table 3.2. Inter-comparison experimental result.

Method
Enhanced
assisting

in training

label used Metrics
pixel
-level

box
-level Dice[%] 95HD[mm] Recall[%] KAP[%]

U-Net No 100 0 66.85±22.87 4.35±1.16 73.83±23.31 66.73±22.88
Mask R-CNN No 100 0 65.70±15.36 4.42±1.02 70.60±15.17 65.65±15.37

RgGAN Yes 100 0 69.08±18.67 4.32±1.06 75.71±20.40 69.07±18.69
PSCGAN Yes 100 0 68.11±16.28 4.37±1.03 71.38±17.95 68.04±16.30

U-Net No 200 0 73.31±12.19 4.16±1.01 83.44±10.81 73.30±12.21
Mask R-CNN No 200 0 87.43±10.42 3.82±0.93 89.55±11.31 87.41±10.43

RgGAN Yes 200 0 88.19±10.57 3.72±0.89 89.76±12.04 88.16±10.58
PSCGAN Yes 200 0 89.31±9.30 3.74±0.87 91.02±9.83 89.30±9.33

WSTS Yes 100 100 83.11±12.11 3.96±0.96 85.12±12.46 83.07±11.12

these fully-supervised methods and even better than U-Net. Fig. 3.13 illustrates some tumor
segmentation results from the above methods. Where we can get following findings: 1) when
the tumor presents high contrast, five methods segment the tumor successfully; 2) when the
tumor is low-contrast and background tissue is complex, RgGAN, and U-Net are tend to be
misled by background; 3) the prediction of our method is usually small than the ground-truth,
while the predictions of PSCGAN are larger than the ground-truth, which is the reason that
PSCGAN achieves a high Recall value.

Under half pixel-level-labeled training data (100 patients), U-Net achieves 66.85 ±22.87% in
the Dice, 4.35 ± 1.16 mm in the 95HD, 73.83 ± 23.3‘% in the Recall, and 66.73 ± 22.88% in the
KAP without the assisting of the enhanced image during training. Under the same condition,
Mask R-CNN achieves 65.70 ± 15.36% in the Dice, 4.42 ± 1.02 mm in the 95HD, 70.60 ±
15.17% in the Recall, and 65.65 ± 15.37%. Under the assistance of the enhanced image during
the training stage, RgGAN achieves 69.08 ± 18.67% in the Dice, 4.32 ± 1.06 mm in the 95HD,
75.71 ± 20.40% in the Recall, and 69.07 ± 18.69% in the KAP. PSCGAN achieves 68.11 ±
16.28% in the Dice, 4.37 ± 1.03 mm in the 95HD, 71.38 ± 17.95% in the Recall, and 68.04 ±
16.30% in the KAP. The above results prove that exploiting the enhanced image is important
to improve the segmentation accuracy in such tasks, and exploiting the additional box-level-
labeled data promotes the segmentation performance greatly. Fig. 3.10 right part also proves
the superiority of our method, where the AUC of our method is much larger than the AUCs of
the other three methods.
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Figure 3.13. The tumor segmentation comparison of the WSTS and other methods shows
the performance of WSTS approaches these fully-supervised methods and even better than
the U-Net. The first and second row illustrates enhanced images and non-enhanced images
respectively, the third row shows the ground-truth, and the rest rows illustrate the segmentation
of five methods. By exploiting box-level-labeled data, WSTS achieves the segmentation result
that approaching the segmentation of fully-supervised methods (PSCGAN, RgGAN and Mask
R-CNN), and even better than U-Net.
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CHAPTER 4

The last chapter of this thesis reviews the motivation and research objectives and summarizes

the important findings and conclusions of Chapter 2 and Chapter 3, as well as discuss their

impacts on the field. The limitation of the work presented in this thesis is discussed along with

its inspiration regarding deep reinforcement learning to future studies.

4 CONCLUSION AND FUTURE DIRECTIONS

4.1 Overview of Rationale and Research Questions

Artificial Intelligence (AI), as one of the most innovative technologies in the new century,
has changed the human lifestyle significantly and brought great convenience to medical image
analysis. Deep Learning (DL), as the foundation of AI technology, is applied to automatic
medical image analysis is to provide clinicians a computer-assisting tool to diagnose diseases.
Medical object detection and segmentation, as the principal and initial step preceding other
image analysis tasks, is the targeted application of DL methods. Medical object detection pro-
poses the region of the desirable object in the medical image, thus it can provide the object’s
location. Medical image segmentation classifies every pixel into the desirable object or the
background, thus it can provide several properties of the desirable object, such as the object’s
size and boundary.

Although DL has evolved substantially, it also exposes several shortcomings. DL methods
completely rely on engineers and blindly executes the solution, they are decoupled from the
understanding of the task at hand. Because DL methods have no ability to discover the intrin-
sic knowledge about the task, they often suffer from computational limitations, sub-optimal
parameter optimization, and weak generalization due to over-fitting.

The design of leveraging Deep Reinforcement Learning (DRL) to segment medical images has
a great potential to address the limitations of traditional DL methods. By combining the strong
decision-making ability of RL and the powerful perception of DL, DRL has a sequential pro-
cess with changing attention-focusing that gradually accumulate evidence of certainty when
searching the desirable object. Therefore, in object detection and segmentation tasks, with the
sequential process, DRL can simultaneously both searching strategy and the appearance of the
object of interest to determine the object location. With the object location as a prior, the de-
tection and segmentation method can focus on the desirable object and obtain more accurate
results. Compared with the traditional DL method which directly predicts the object location
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with a mapping according to appearance, DRL can avoid falling into sub-optimal caused by
the repetitive or low-contrast object appearance, thereby determining the object location effec-
tively.

However, the medical object detection and segmentation cover a large and complex scope,
and no DRL methods have been employed in this field. Therefore, from simple to complex,
this thesis deploys DRL into two challenging and representative medical object detection and
segmentation tasks. The particular research objectives for the above two tasks include: 1)
Modeling the spine anatomy as a sequential decision-making process and Leveraging DRL to
facilitate accurate vertebral body segmentation (Chapter 2). 2) Utilizing the policy (strategy)
developed by DRL as guidance to determine the tumor location in the non-contrast-enhanced
liver image and then achieving liver tumor segmentation (Chapter3).

4.2 Summary and Conclusions

In Chapter 2, we developed a novel Sequential Conditional Reinforcement Learning network
(SCRL) to automatically detect and segment vertebral bodies from MRI images. Unlike the
existing techniques, SCRL models the sequential correlation of VBs with DRL and focuses
segmentation and detection on each desirable VB to obtain the final result. SCRL for the first
time leverages powerful DRL to exploit the anatomy of the spine to process VBs, thereby
handling the complex background in the spine image, as well as pathological variations or
anatomic variants of VBs. The experimental results demonstrate the effectiveness of SCRL to
achieve remarkable detection and segmentation accuracy (with overall 92.3% IoU in VB detec-
tion, 92.6% Dice in VB segmentation and 96.4% mean accuracy in VB classification). These
results demonstrate that SCRL can be an efficient and accurate computer aided-diagnostic tool
to assist clinicians when diagnosing spine diseases.

In Chapter 3, we proposed a Weakly-Supervised Teacher-Student network (WSTS) to segment
the liver tumor from non-enhanced images. WSTS creatively deploys a weakly-supervised
teacher-student framework to exploit the visible tumor feature in the enhanced image as guid-
ance and assist the segmentation in the non-enhanced images. In particular, WSTS proposes
DDRL to exploit the tumor spatial feature in the enhanced image and transfer the feature via
DRL strategies to guide the tumor detection in the non-enhanced image. WSTS also pro-
poses the USSE, which predicts tumor masks for the box-level-labeled enhanced image, thus
the mask is transferred as the tumor shape feature to improve tumor segmentation in the non-
enhanced image. The experiment confirms the effectiveness of WSTS, where WSTS achieves
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83.11% in Dice and 85.12% in Recall with the data from 200 patients (100 patients with pixel-
level label and 100 patients with box-level label). These results demonstrate WSTS can be an
efficient computer aided-diagnostic tool to assist clinicians when diagnosing liver tumors from
non-enhanced images.

4.3 Significance and Impact

As the development of DL-based methods, the limitations of DL in the medical object detec-
tion and segmentation gradually reveal. The traditional mapping-establishment based on CNN
cannot meet the clinical expectation in medical object detection and segmentation. Thus, re-
searchers are seeking a breakthrough to obtain more excellent performance in this field. DRL
as the newest AI technology has a totally-different principle as DL, it has shown its competence
in many other medical image analysis fields, such as in medical object detection. In medical
image analysis, DRL has a cognitive-like process, so that it has great potential to inject new
ideas to medical object detection and segmentation and address the limitations of traditional
DL methods.

This thesis has validated that deploying DRL in the VB detection and segmentation, as well as
the liver tumor segmentation achieved better performance than traditional DL-based methods.
For the VB segmentation, the proposed method for the first time modeled the spine anatomy
as a sequential decision-processing by taking advantage of the spine spatial architecture. It
offers researchers a new idea to address medical image analysis through modeling the anatomy
with DRL. For the non-enhanced liver tumor segmentation, the proposed method for the first
time to transfer tumor knowledge from the enhanced image to the non-enhanced image through
DRL strategy. It provides researchers a new solution to address the tumor segmentation in the
non-enhanced image by transferring knowledge from the enhanced image.

4.4 Limitations

4.4.1 Study Specific Limitations

Chapter 2: Sequential Conditional Reinforcement Learning for Simultaneous Vertebral Body

Detection and Segmentation with Modeling the Spine Anatomy

In Chapter 2, the proposed SCRL algorithm analyzed VBs along the spine and ended when
the classification branch outputs the terminal signal. Such a mechanism makes the VB clas-
sification accuracy depends heavily on the accuracy classification branch. Particularly, if the
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classification branch outputs the terminal signal too early (i.e., mis-classifies a lumbar VB as
the sacrum) or too late (i.e, mis-classifies the sacrum as a lumbar VB), all the VBs in this image
will be mis-classified. Thus, It is a limitation that overall classification accuracy relies heavily
on the accuracy of the classification branch.

Chapter 3: Weakly-Supervised Teacher-Student Network for Liver Tumor Segmentation from

Non-enhanced Images

In Chapter 3, the proposed WSTS algorithm conveyed tumor spatial features from the en-
hanced image to the non-enhanced image through the strategy, which is effective but still has
improvable space. In WSTS, the tumor-approaching strategy was regarded as a high-level un-
derstanding of DRL to liver image, thus it was taken as guidance to teach the tumor-detection
in the non-enhanced image, which is a kind of knowledge-transfer. Although the experiment
validated such a knowledge-transfer is effective, it is a sub-optimal way. Because as Deep
Transfer Reinforcement Learning, some advanced algorithms have been proposed. Integrating
these new algorithms into knowledge-transfer may achieve better performance.

4.4.2 General Limitation

The research that applying DRL in medical object detection and segmentation possesses a
limitation is that the object-area-proposal of DRL and the object-analysis (detection and seg-
mentation) of DL were optimized separately, which requires more experiments to tune their
hyper-parameters individually. In detail, in the current setting, the object-area-proposal of DRL
and the object-analysis of DL were firstly trained-separately, and then they were integrated to-
gether to fine-tune the object-analysis of DL. Therefore, it took a longer training period and
more training resources to obtain experiment results.

4.5 Future Directions

4.5.1 End-to-end framework design

For simplifying the training procedure and achieve better performance, it is highly-desirable
to design an end-to-end framework and integrate DRL-based object-proposal and DL-based
object analysis (detection and segmentation) together. In detail, in the end-to-end framework,
the reward should be allocated by the performance of detection and segmentation instead of
being allocated blindly according to the ground-truth. Such an end-to-end framework only
needs to be trained and tuned once instead of being training separately and then fine-tuning
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together. This would reduce the training time and training resources greatly. More importantly,
an end-to-end framework helps the machine to understand the whole medical object detection
and segmentation task instead of the only object-area proposal, which may facilitate the model
to achieve better performance compared with current setting.

4.5.2 Three-dimensional (3D) image segmentation
To meet future clinical needs, we seek to extend our DRL-based segmentation method to 3D
image applications. Since our object-region proposal in DRL performs action prediction with
four variables (center [x, y] and size [w, h]), the 3D object detection and segmentation would
increase the number of prediction variables (center [x, y, z] and size [w, h, l]). Such a change
would increase the demand for the training data and the training resource. However, if suc-
cessful, it would provide clinicians with more comprehensive information about the object of
interest.

4.5.3 Extension to other tasks
Considering this thesis has validated the effectiveness of DRL in two representative medical
object detection and segmentation tasks, it would be achievable to extend DRL to other med-
ical object detection and segmentation tasks, such as organ detection and segmentation. In
detail, the VB segmentation in this thesis modeled the spine anatomy, which indicates that
other tasks with special anatomical architecture can also deploy our DRL method to achieve
great segmentation performance. For instance, organs have a relatively-fixed location and size,
it is easy for DRL to model their spatial knowledge and propose their area accurately. The
liver tumor segmentation of non-enhanced images in this thesis leverages DRL for knowledge-
transferring, which can be extended to other segmentation tasks with uncertain location and
size. For instance, cancers usually have various locations and sizes because of pathology, it is
still achievable to adapt our DRL method in such a task.
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APPENDIX

APPENDIX A: Derivation of Back Propagation

a

Layer 1 Layer 2 Layer 3

Figure A.1. An ANN example for back propagation.

Fig. A.1 is a three-layer ANN, where wl
jk represents the weight of the k-th neuron in l − 1

layer connected to the j-th neuron in l layer. bl
j represents the bias of the j-th neuron in l layer.

zl
j represents the input of the j-th neuron in l layer, namely:

zl
j =

∑
k

ωl
jka

l−1
k + bl

j (A.1)

al
j is the output of the j-th neuron in l layer, namely:

al
j = σ(

∑
k

ωl
jka

l−1
k + bl

j) (A.2)

where σ is an activation function. We assume C is the error between the network output and
the true label. Thus the error caused by the j-th neuron in l layer is defined as:

δl
j =

∂C
∂zl

j

(A.3)

The error caused by the last layer is:

δL = ∇aC
⊙

σ′(zL) (A.4)

where
⊙

is Hadamard product for the point-to-point product between matrices (or vectors).
The derivation of Eq. A.4 is:
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∵ δL
j =

∂C
∂zL

j

=
∂C
∂aL

j

·
∂aL

j

∂zL
j

(A.5)

∴ δL =
∂C
∂aL

j

⊙ ∂aL
j

∂zL
j

= ∇aC
⊙

σ′(zL) (A.6)

From back to front, the error caused by every layer is:

δl = ((ωl+1)Tδl+1)
⊙

σ′(zl) (A.7)

The derivation of Eq. A.7 is:

∵ δl
j =

∂C
∂zl

j

=
∑

k

∂C
∂zl+1

k

·
∂zl+1

k

∂al
j

·
∂al

j

∂zl
j

(A.8)

=
∑

k

δl+1
k ·

∂(wl+1
k j al

j + bl+1
k )

∂al
j

· σ′(zl
j) (A.9)

=
∑

k

δl+1
k · w

l+1
k j · σ

′(zl
j) (A.10)

∴ δl = ((ωl+1)Tδl+1)
⊙

σ′(zL) (A.11)

The gradient of the error C on the weight ωl
jk is:

∂C
∂wl

jk

= al−1
k δl

j (A.12)

The derivation of Eq. A.12 is:

∂C
∂wl

jk

=
∂C
∂zl

j

·
∂zl

j

∂wl
jk

= δl
j ·
∂
(
wl

jka
l−1
k + bl

j

)
∂wl

jk

= al−1
k δl

j (A.13)

The gradient of the error C on the bias bl
j is:

∂C
∂bl

j

= δl
j (A.14)

The derivation of Eq. A.14 is:

∂C
∂bl

j

=
∂C
∂zl

j

·
∂zl

j

∂bl
j

= δl
j ·
∂
(
wl

jka
l−1
k + bl

j

)
∂bl

j

= δl
j (A.15)
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Thus, according to the gradient descent, the weight and bias can be trained:

wl → wl −
η

m

∑
x δ

x,l
(
ax,l−1

)T

bl → bl −
η

m

∑
x δ

x,l
(A.16)
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APPENDIX B: Training process of Deep Q-learning

[1] Initialize replay memory D
[2] Initialize state-action value function Q with random weights θ
[3] Initialize target state-action value function Q̂ with weight θ−

[4] For episode = 1, M do
[5] Initialize sequence s1

[6] For t = 1, T do
[7] With probability η select a random action at

[8] Otherwise select at = argmaxaQ(st, a|θ)
[9] Execute action at in emulartor and receive reward rt and observe new state st+1

[10] Store transition (st, at, rt, st+1) in D, set st = st

[11] Sample random minibatch of transitions (s j, a j, r j, s j+1) from D

[12] Set yi =

r j, if episode terminates at step j + 1
r j + γmaxa′ Q̂

(
φ j+1, a′|θ−

)
, otherwise

[13] Perform a gradient descent step on
(
y j − Q

(
φ j, a j; θ

))2
with respect to the network parameters θ

[14] Every C steps reset Q̂ = Q
[15] End For
[16] End For
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APPENDIX C: Proof of P(s|i) ∝ i−1
s

Assuming: in an episode, an agent selects actions to approach an target and increase accuracy:
Q = [S , A, I]; Where S represents various states, S = {st, st−1, ..., s1}; A represents the action
corresponding to S , A = {at, at−1, ..., a1}; I represents the accuracy corresponding to S , I =

{it, it−1, ..., i1}. According to the state transition relation, the probability of st can be achieved is:

P(st, it) = P(st−1 ⊗ at−1, it)

= P(st−1, it−1) ∗ P(at−1|st−1) (C.1)

Therefore, for the whole episode, the joint probability distribution of Q is:

P(st, it, st−1, at−1, ..., s1, a1) = P(s1, i1)
t−1∏
j=1

P(a j|s j) (C.2)

In equation (A.2), {P(ai|si), i ∈ [1, t − 1]} is a reflection of the decision-making ability of DRL.
Therefore: P(s1, i1) = 1

0 ≤ P(ai|si) < 1
(C.3)

With equation (A.2), (A.3) for one episode is obtained:

P(st, it, st−1, at−1, ..., s1, a1) < P(st−1, it−1, st−2, at−2, ..., s1, a1) < ... < P(s1, i1) (C.4)

Since the training data is sampled with lots of episodes, the expected probability of a state s

that gets reward i j in N episodes is:

P(s|i j) =
1
N

N∑
k=1

E
it=i j

(st ,it)∼Qk
P(st, it) (C.5)

where j indicates the value of reward i, i.e., i j > i j−1 > ... > i1. According to equation
(A.3)(A.4)(A.5) and the Law of Large Numbers (LLN), the following conclusion is drawn:P(s∗|i j) < P(s∗|i j−1) < ... < P(s∗|i1)

i j > i j−1 > ... > i1

(C.6)
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Thus the probability of the existence of a state s is negatively related to the accuracy i that state
s achieves:

P(s|i) ∝ i−1
s (C.7)
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APPENDIX D: Distributions for AMRL hyperparameter setting

196

Average side length: 48

a) The coordinates of the first VB for every patient b) The size of the first VB for every patient

Figure D.1. Left figure: The vertical direction coordinates of the first VB: the blue “x” and
pink circle represent the left and right coordinates of the first VB respectively; the dotted red
and black lines represent the coordinate of our first image patch (196*196). Right figure: The
side length of the first VB, where blue star is height and the orange circle is width. After
counting, the average side-length of the first VB is 48.

A regular case
(The first VB locates on the mid-line)

Three most extreme cases in our dataset

First VB

(The first VB deviates from the mid-line due to lordosis)

First VBFirst VB

The image-patch of the starting state covers the first VB in all these cases

First VB

Image-patch Image-patch Image-patch Image-patch 

Mid line Mid line Mid line Mid line

Figure D.2. Some examples to demonstrate that the image-patch in the starting state can cover
the first VB totally.
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106

81

44

Figure D.3. The location changes between adjacent VBs in vertical and horizontal direction.
The maximum location change between adjacent VBs is 106 in vertical direction.

67

33

29

45

Figure D.4. The size changes between adjacent VBs in vertical and horizontal direction. The
maximum size change is 67 in width.
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APPENDIX E: Derivation from Eq. 3.10 to Eq. 3.11

We first rewrite the Eq. 3.10 as follows,

π∗ = argmax
π

∑
t

E(st ,at)∼ρπ
{
r(st, at) + α[H(π(·|st)) +DKL1(π(·|st)||π′(·|st))]

}
(E.1)

In this case, the value function V(st) is

V(st) = Eat∼π[Q(st, at) − logπ(at|st) + log
π(at|st)
π′(at|st)

] (E.2)

During training V and optimizing the parameter ψ, the gradient of V is

JV(ψ) = Est∼D

{
1
2

(Vψ(st) − Eat∼π[Qθ(st, at) − logπ(at|st) + log
π(at|st)
π′(at|st)

])2
}

(E.3)

Then, JV(ψ) can be reformulated:

JV(ψ) = Est∼D

{
1
2

(Vψ(st) − Eat∼πφ[Qθ(st, at) − logπφ(at|st)

+(logπφ(at|st) − logπ′(at|st))])2
}

(E.4)

Thus, Eq. 3.11 is obtained:

JV(ψ) = Est∼D

{
1
2

(Vψ(st) − Eat∼πφ[Qθ(st, at) − logπ′(at|st)]2
}

(E.5)
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APPENDIX F: The networks in DDRL

Action value

Action

Concatenated

Fully connected layersResNet 18

Q Network for action value function estimation

Mean

Std

Fully connected layersResNet 18

P Network for strategy function estimation (the mean value and standard

deviation value of the strategy distribution)

State value

V Network for state value function estimation

Fully connected layersResNet 18

Figure F.1. The network architectures to approximate the state-value function, action-value
function, and strategy function
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