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a b s t r a c t

Turbulent heat and mass transfer in packed beds of spheres is widely encountered in industrial and food
storage applications and, as such, modeling of such cases is of interest in design and development. Herein,
we propose a closure of the volume- and time-averaged (macroscopic) turbulence, and non-equilibrium
turbulent heat and mass transfer equations for randomly packed spheres, based on computational results
of flow and heat transfer for a unique geometric model. In this respect, the closure results are derived
from pore-level (microscopic) information obtained from numerical simulations of turbulent heat and
fluid flow. Turbulence is incorporated at both levels using the k–e model, and the dispersive effects of
turbulence are also considered. For the momentum equation, the closure is sought for the Darcy and
Forchheimer terms. For the non-equilibrium heat and mass transport equations, we obtain closures for
the dispersion, turbulent flux, turbulent dispersion, and interfacial heat and mass transfer terms. The
closure results are found to be dependent upon the porosity and Reynolds number. However, the mean
sphere diameter and its local variation inside the representative elemental volumes only weakly affect
the results. The closure results are presented as power law-based correlations, such that they can be
easily implemented in a volume-time-averaged framework.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Packed beds of spheres are widely encountered in engineering
applications related to the chemical processing industry, and the
food storage and processing industries. The convective drying of
produce stacks using warm airflow is one example of such
problems. In many such applications, the sphere size is significant
and heat and mass transfer are turbulent. Furthermore, it is often
necessary to couple the solid and fluid phases of the process, which
requires consideration of non-equilibrium heat and mass
exchanges. The complex nature of such problems makes numerical
modeling an attractive approach for gaining insight into the under-
lying physical phenomena. In this respect, turbulence modeling
inside beds of packed spheres becomes critical.

Two approaches are commonly used to model the aforemen-
tioned problems. In one approach, the bed of spheres is modeled
at the microscopic scale, which is characterized by the length scale
of spheres. At this scale, the transport equations are used in their
usual forms. However, extensive computational resources are

required to model the problem. The second approach is to model
the packed bed as porous continuum. By this approach, the bed
of spheres is up-scaled to the macroscopic level, and the domain
is considered to be comprised of solid and fluid phases with
parameters like porosity and permeability describing the resis-
tance to flow through the domain. The benefit of the macroscopic
approach is that it eliminates the necessity of modeling the
problem at the scale of spheres, which significantly reduces the
required computational effort. However, to use this approach, the
detailed information about the pore-level flow field and the energy
and mass exchanges have to be determined and provided via con-
stitutive models characterizing the porous region. The up-scaling
of the mathematical formulation is carried out by volume-
averaging the transport equations for mass, momentum, energy
and turbulence.

The macroscopic, or volume-averaged, approach for modeling
turbulent heat and mass transfer inside packed beds of spheres has
been widely used for applications related to food storage and
refrigeration. For example, Tapsoba et al. [1] and Moureh et al.
[2,3] modeled turbulent airflow inside and around slotted-
enclosures filledwith spheres to understand the airflowdistribution
of the problem. In another study, Delele et al. [4] simulated a cold
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storage room containing boxes loaded with spheres to predict
airflow, temperatureandhumiditydistribution. Similarly, thedistri-
bution of a gas used to control fruit ripening inside cold storage
rooms was numerically predicted by Ambaw et al. [5]. In addition,
the cooling process of packed food stacks was simulated by Alvarez
and Flick [6]. All of these studies considered porous media at the
macroscopic scale and modeled turbulence using eddy viscosity
based models or Reynolds stress models (RSM).

To better understand the difference between the modeling
approaches and the information required for the volume-averaged
approach, we shift our discussion briefly to turbulence modeling
using the eddy-diffusivity concept at the macroscopic scale of
porousmedia. At themacroscopic scale, themodeling of turbulence
generally involves volume- and time-averaging of the transport
equations. In the volume-averaging operation, a transport equation
is integrated over a Representative Elemental Volume (REV) of
porous material. The volume-averaged value of a quantity u, as
described by Whitaker [7], is defined as

hui ¼ 1
V

Z
Vf

udV ð1Þ

where, V refers to the volume over which the averaging process is
carried out, Vf is the fluid volume inside V, and hui is defined as
the extrinsic-average of u. Using a similar approach, an
intrinsic-averaged quantity huif is expressed as

hui f ¼ 1
Vf

Z
Vf

udV ð2Þ

The ratio hui/huif then defines the porosity / of porous media.
Moreover, hui can be split into uf and its spatial deviation ~u as [7]

u ¼ hui f þ ~u ð3Þ
Time-averaging can also be utilized in the porous region to

characterize the fluctuations of a quantity in time, similar to that
done in pure fluid regions. The time-averaging of a quantity u is
give as [8]

�u ¼ 1
Dt

Z tþDt

t
udt ð4Þ

Then, similar to that done for spatial deviations in Eq. (3), u can
be split into �u and its temporal deviation u0 as
u ¼ �uþu0 ð5Þ

To model a quantity fluctuating in time at the macroscopic scale
of porous media, both volume- and time-averaging operations are
required. In this respect, Pedras and de Lemos (PDL) [8] introduced
the concept of double decomposition, which involves volume-
averaging followed by time-averaging or vice versa. The group
showed that the order of averaging does not change the solution,

i.e. h�ui f ¼ h �ui f .
Existing literature on the macroscopic modeling of turbulence

inside porous regions mainly utilizes the k–e model, by which
turbulence is characterized by the energy (k) of an average energy-
containing eddy and its dissipation rate (e). The basic derivation of
the k–emodel is beyond the scope of this article, and the interested
reader is directed toWilcox [9] for a full mathematical treatment. In
general, existing k–e models can be classified based on the manner
theydefine turbulent kinetic energy k. In this respect, early attempts
made by Lee and Howell [10], Wang and Takle [11], and Antohe and
Lage [12] defined the macroscopic turbulent kinetic energy km as
[13]

Nomenclature

afs interfacial surface area of porous media, m2

Afs specific interfacial surface area of porous media, m�1

cE inertial coefficient of porous media
cp specific heat at constant pressure in fluid region, J/(kg.K)
cps specific heat in solid region, J/(kg.K)
C1e, C2e, Cl turbulence model constants
D mass diffusivity coefficient, m2/s
D deformation tensor
ds mean sphere diameter, cm
f body force per unit mass, m/s2

h specific enthalpy, J/kg
hfg latent heat of evaporation at 0 �C in fluid region, J/kg
hfs interfacial heat transfer coefficient in porous media,

W/(m2.K)
hfsm interfacial mass transfer coefficient in porous media,

m/s
I unit tensor
k turbulent kinetic energy per unit mass, m2/s2

K Darcy permeability of porous media, m2

L REV length, m
_m mass flow rate, kg/s
n unit vector normal to the surface
Nu Nusselt number
P pressure, Pa
Pr Prandtl number
R gas constant, J/(kg.K)
Re Reynolds number
S source in a transport equation
Sc Schmidt number
T temperature, �C
t time, s
U extrinsic velocity, m/s

v fluid velocity vector [=(u, v, w)], m/s
Y mass fraction
e dissipation rate of turbulent kinetic energy, m2/s3

lf dynamic viscosity, N.s/m2

lt turbulent eddy viscosity, N.s/m2

mf kinematic viscosity, m2/s
mt turbulent kinematic viscosity, m2/s
rT turbulent Prandtl number for energy equation
rk turbulent Prandtl number for k
re turbulent Prandtl number for e
qs density of solid, kg/m3

qf density of fluid mixture, kg/m3

kx thermal conductivity of x-constituent of porous media,
W/(m.K)

/ porosity
u a quantity
�u time-average of u
hui extrinsic volume-average of u
huxi intrinsic volume-average of u (x is fluid or solid-

constituent of porous media)
h�ui volume-time-average ofu

Subscripts and superscripts
a air
disp dispersive
eff effective property in porous media
f fluid
fs interfacial
t turbulent
v vapor
w water
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km ¼ 1
2
hv0i f � hv0i f ð6Þ

This quantity is derived by first carrying out volume-averaging of
the microscopic velocity fluctuation v0, then applying
time-averaging to the square of the volume-averaged velocity fluc-
tuation. This definition of turbulent kinetic energy was considered
incomplete by Nakayama and Kuwahara (NK) [14] and PDL, both
of whom defined turbulent kinetic energy kNK by first squaring v0

followed by time and volume-averaging operations. By this
approach, the Reynolds-averaged Navier–Stokes (RANS) equations,
along with the usual form of k and e equations, were volume-
averaged by NK and PDL to arrive at the macroscopic turbulence
model. In another study, Chandesris et al. [15] used a similar
approach to propose a k–e model that characterizes turbulence
inside porous media composed of pipe, channel, and rod bundles.
Mathematically, kNK is defined as [13]

kNK ¼ 1
2
hv0 � v0i f ð7Þ

Lastly, Teruel and Rizwan-uddin (TR) [16,17] proposed a
definition of turbulent kinetic energy that also includes the
dispersive kinetic energy. The total macroscopic turbulent kinetic
energy ktotal is then defined as [16]

ktotal ¼ kNK þ 1
2
h�~v � �~vi f ð8Þ

where the second term on the right-hand side accounts for the
dispersive kinetic energy, which is considered important by TR for
the porous domains having low porosity. In their work, TR applied
the concept of double decomposition to the usual Navier–Stokes
(N–S) equations to arrive at the velocity fluctuation in time and
space, ~v0, which was then utilized to derive k and e equations that
inherently include dispersive effects. The concept of including the
dispersive portion of k and e was taken forward by Drouin et al.
[18] when the group proposed transport equations for dispersive
k and e along with kNK to model turbulence.

Apart from the k–e model, other models have also been utilized
to simulate the macroscopic turbulence inside porous media. In
this respect, Kuwata and Suga [19] employed the RSM to capture
turbulence, especially at the fluid-porous interface. To avoid the
inherent complexity of the RSM, Kuwata et al. [20] proposed a mul-
tiscale turbulence model, which utilized the transport equations of
k and e at the microscopic and macroscopic scales of porous media.
Conversely, Soulaine and Quintard [21] employed a model similar
to the Darcy–Forchheimer model to simulate turbulent flow in
structured packings. Furthermore, a Large Eddy Simulation (LES)
study was carried out by Kuwahara et al. [22] to quantify the accu-
racy of the k–e model. The group found that the k–e model can be
effectively used to predict turbulent flow field inside porous media.

Based on the above discussion, it appears feasible to character-
ize the macroscopic turbulence inside porous media using the k–e
model. However, there is no universal form of the macroscopic k–e
model due to the presence of the additional terms that arise in the
volume-averaging operation. Similarly, additional terms also arise
in the volume-averaged momentum, heat and mass transport
equations. Simply stated, the terms that arise in all volume-
averaged equations account for the interactions between the fluid
and the specific porous structure under consideration. For accurate
simulation at the macroscopic level, these additional terms require
closure to complete a given set of the macroscopic transport
equations, and in general, this closure is achieved by simulating
the problem at the microscopic scale of porous media.

At the microscopic scale, problems involving turbulent flow and
heat transfer inside a bed of spheres have been extensively
simulated before for various interests. Many studies [23–26] have
modeled the entire bed of spheres by placing each sphere in

structured manner, along with the walls containing the bed. Utiliz-
ing this approach, Guardo et al. [23] employed the various eddy
viscosity based turbulence models to assess their influence on
solid-to-fluid heat transfer. In continuation of their work, Coussirat
et al. [24] utilized the RSM and found that it produced similar
results compared to the eddy viscosity based turbulence models.
Similarly, Logtenberg and Dixon [25], and Nijemeisland and Dixon
[26] used the k–e model to comprehensively examine flow and
temperature fields inside a bed of spheres. To reduce the computa-
tional domain size, Jang and Chiu [27] took the advantage of sym-
metry to simulate the cooling process of a sintered bed of spheres.

In reality, beds of spheres are usually randomly packed,
although in the existing literature very few studies consider ran-
dom packing. To this end, turbulent flow inside a bed of randomly
packed spheres was simulated by Ambaw et al. [5]. Similarly,
Delele et al. [28] conducted the study of turbulent airflow through
vented boxes containing randomly packed spheres. The group used
the Discrete Element Method (DEM) to model the random
arrangement of spheres. However, the aim of these studies was
not to close the macroscopic model, but, to examine the flow at
the pore-level.

At the microscopic scale, porous media are often modeled using
a REV to reduce the computational domain. However, few studies
have utilized the concept of the REV to model packed spheres at
the microscopic scale. Yang et al. [29] used a REV to simulate
packed beds composed of different sphere arrangements to
observe their effect on turbulent flow and heat transfer. In their
work, several REVs were stacked in line to produce spatially peri-
odic flow and heat transfer in the last few downstream REVs. In
another study, Gunjal et al. [30] used REVs composed of different
sphere arrangements and applied periodic boundary conditions
to examine the problem hydrodynamics and heat transfer.
Similarly, Mathey [31] modeled turbulence and heat transfer inside
a periodic domain (REV) composed of structurally packed spheres.
Mathey [31] also modeled packed beds of short cylinders arranged
in a random manner to achieve the more realistic packing.
However, the random packing was enclosed in the tubular cylinder
to mimic the case of tubular reactor.

In terms of macroscopic transport models for packed bed of
spheres, we should state that none of the aforementioned micro-
scopic scale simulation studies were focused on the closure of
macroscopic models. At present, the literature shows few attempts
to close such macroscopic models, even for simple two- and three-
dimensional REVs. With respect to the macroscopic k–e model, NK,
PDL, and TR used two-dimensional REVs composed of structured
arrays of circular and square rods. Chandesris et al. [15] and Drouin
et al. [18] considered three-dimensional circular rods and flat plate
arrays as their REVs. For the case of a packed bed of spheres, Alvarez
and Flick [6] closed the macroscopic turbulence model using their
own experimental data. Recently, Mathey [31] closed the macro-
scopic k–e model for the case of structurally packed spheres. In his
work, Mathey [31] also included the dispersive effects of k and e
using themodelprovidedbyTR.However, their results showthe clo-
sure for only a small range of Reynolds numbers and with constant
sphere packing porosity. The closure of the macroscopic energy
and mass transport equations for a two-dimensional array of circu-
lar, elliptical, and square rods was carried out by De Lemos [32].

To the authors’ knowledge, no existing study has proposed a
closure of the macroscopic k–e model for the case of a randomly
packed bed of spheres. Moreover, no study in the existing literature
has proposed a closure for the macroscopic non-equilibrium
turbulent heat and mass transfer model intended for the bed of
spheres. In the present work, we propose a complete closure of the
macroscopic turbulence and non-equilibrium turbulent heat and
mass transfer model for beds of randomly packed spheres for
applications in the food storage and refrigeration industries.

F.A. Khan, A.G. Straatman / International Journal of Heat and Mass Transfer 101 (2016) 1003–1015 1005



Macroscopic turbulence ismodeledusing the k–emodel, and disper-
sive effects of k and e are also considered. The macroscopic model is
closed by utilizing the microscopic scale information available
inside REVs of randomly packed spheres, where the REVs are
produced by a recently published three-dimensional approach.
The closure of the macroscopic model is extended by including
parametric variations of porosity, Reynolds number and sphere
diameters of practical interest. The paper is organized such that
the complete macroscopic volume- and time-averaged model is
presented first, followed by a discussion on the closure approach
and then the microscopic results and the closure operation itself.

2. The macroscopic model

As discussed earlier, the present work is focused on the closure
of a macroscopic k–e turbulence model. To make the required
turbulence closure generic, we focus on the k–e models proposed
by NK, PDL, and TR, all of which have a similar form. In general,
all these models propose additional source terms in the transport
equations to characterize porous region effects in the model. The
only difference lies in the closure of these additional source terms.
Therefore, we present a generic macroscopic k–e turbulence model
valid in the porous region.

Based on thework of NK, PDL, and TR, the volume-time-averaged
mass and momentum conservation equations take the form

/
@hqf i f
@t

þr: hqf i f hvi
� �

¼ 0 ð9Þ

@ hqf i f hvi
� �

@t
þ 1
/
r: hqf i f hvihvi

� �

¼ �/r hPi f þ 2
3
hqf i f hki f

� �
þr: lf þ lt

� �
2hDi

h i

þ /hqf i f bff �
/lf

K
hvi � /hqf i f cEffiffiffiffi

K
p hvij jhvi ð10Þ

and, D represents the deformation tensor defined as

hDi ¼ 1
2

rhvi þ rhvið ÞT
h i

ð11Þ

where, an overbar indicates a time-averaged quantity, and h i indi-
cates a volume-averaged quantity. It is interesting to note that the
application of volume- and time-averaging in a successive manner
produces additional terms from both operations. The momentum
equation, Eq. (10), uses the Boussinesq approximation to model
the Reynolds stresses that arise from time-averaging, resulting in
the addition of a turbulent eddy viscosity, lt. The last two terms
on the right-hand side of Eq. (10) are closure models for terms
arising from the volume-averaging operation. These two terms,
which are commonly referred to as Darcy and Forchheimer terms,
respectively, account for the viscous and form drag on the mean
flow through the porous media.

The macroscopic k�e equations are expressed as [8,14,16,17]

/
@ hqf i f hki f
� �

@t
þr: hqf i f hki f hvi

� �

¼ /r: lf þ
lt

rk

� �
rhki f

� �
þ Pk � /hqf i f hei f þ Sk ð12Þ

/
@ hqf i f hei f
� �

@t
þr: hqf i f e f hvi

� �
¼ /r: lf þ

lt

re

� �
rhei f

� �

þ C1ePk
hei f
hki f

� /C2ehqf i f hei f
hei f
k f

þ Se ð13Þ

where,

lt ¼ Clhqf i f hki f
hki f
hei f

ð14Þ

Pk ¼ �hqf i f hv0v0i : rhbfvi ¼ lt2hDi �
2
3
hqf i f hki f I

� �
: rhvi

ð15Þ
The terms Sk and Se in Eqs. (12) and (13) represent additional

sources of k and e, respectively, due to the presence of the porous
media. In addition, the k–e model constants rk;re;Cl;C1e; andC2e

have theusual values of 1.0, 1.3, 0.09, 1.44, and1.92, respectively [9].
At this point, we shift our focus to the modeling of

non-equilibrium turbulent heat and mass transfer inside the por-
ous region. We can consider moist air as a mixture of water vapor
and dry air (made of all the gaseous components). The turbulent
moist air flow is solved using the aforementioned mass, momen-
tum, and k and e transport equations. In addition, the moisture
content of the moist air is quantified by solving an additional
transport equation of water vapor mass fraction Yv . To account
for the moisture gain/loss of air in the numerical model, the
relevant transport equations constantly update the moist air
density qf by the following expression

qf ¼ qa þ qv ¼ Pa

RaT
þ Pv
RvT

ð16Þ

where, Pa is the dry-air partial pressure, Pv is the vapor partial
pressure, and Ra and Rvare the air and vapor gas constants, respec-
tively. The moist air temperature T is obtained by solving its energy
transport equation (see Khan et al. [33] for further details).

Since, the present work is intended for turbulent heat and mass
transfer in packed bed of spheres for food storage and refrigeration
applications, the present model incorporates non-equilibrium heat
and mass transfer inside porous region. The heat and mass transfer
of turbulent moist air flow, which forms the fluid-constituent of
the porous region, is modeled using its energy transport equation
and the vapor mass fraction Yv equation. The solid-constituent,
which is comprised of packed spheres, exchanges heat and mass
with the moist air flow by solving separate energy and moisture
transport equations. Since we consider that moisture resides in
the form of water inside the spheres (food or produce), the
moisture transport equation is solved for water mass fraction Yw.

The volume-time-averaged non-equilibrium moisture
equations can be expressed as

/
@ hqf i f hYv;f i f
� �

@t
þr: hqf i f hYv ;f i f hvi

� �
¼ r: hqf i f Deff ;frhYv ;f i f

� �
þ /Sv;f þ h _mfsi ð17Þ

1� /ð Þ @ hqsishYw;sis
	 


@t
¼ r: hqsisDeff ;srhYw;sis

	 
þ 1� /ð ÞSw;s � h _mfsi
ð18Þ

The interfacial mass transfer between the fluid and solid-
constituents is modeled by h _mfsi term appearing in Eqs. (17) and
(18). The h _mfsi term is quantified based on the quantity of water
available inside the solid-constituent. The maximum value of
h _mfsi is evaluated as [34]

h _mfsi ¼ hqf i f hfsmAfs hYvifs � hYv;f i f
� �

ð19Þ

where, hYfs
v i refers to the vapor mass fraction at the solid-

constituent surface, which is calculated by considering the surface
to be saturated with vapor; i.e. having 100% relative humidity. For
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the case where the available water content is less than the h _mfsi
computed using Eq. (19), h _mfsi is calculated based on the available
water content (see Khan et al. [33] for details).

The present work also considers both the sensible and latent
energy components of moist air. In this respect, the specific
enthalpy of each species is given as

hi ¼ cp;iT þ hfg;i ð20Þ
where, i is the species number. For the present work i = 1 (dry air)
and 2 (water vapor), and the component of latent energy for dry
air is hfg,1 = 0. Moreover, the summation of specific enthalpy of
dry air and water vapor provides the total specific enthalpy of the
air-vapor mixture. The volume- and time-averaged energy trans-
port equations for the fluid and solid-constituents, respectively,
are expressed as [33,35]

X
i

/cp;i
@ hqf i f hYi;f i f hTf i f
� �

@t
þ
X
i

/hfg;i

@ hqf i f hYi;f i f
� �

@t

þ
X
i

cp;ir: hqf i f hYi;f i f hTf i f hvi
� �

þ
X
i

hfg;ir: hqf i f hYi;f i f hvi
� �

¼ keff ;fr2hTf i f þ
X
i

r: hqf i f Deff ;frhYi;f i f cp;ihTf i f þ hfg;i

� �h i

þ /Se;f þ hfsAfs hTsis � hTf i f
� �

ð21Þ

X
i

1� /ð Þcps;i
@ hqsishYi;sishTsis
	 


@t

¼ keff ;sr2hTsis þ
X
i

r: hqsisDeff ;srhYi;sis cps;ihTsis
	 
� �

þ 1� /ð ÞSe;s � hfsAfs hTsis � hTf i f
� �

ð22Þ
We note that the latent energy terms are not included in

Eq. (22) because the solid-constituent is considered to be
composed of solid-structure and water. Similar to the
non-equilibrium mass transfer equations, the last two terms on
the right-hand side of Eqs. (21) and (22) account for the interfacial
heat transfer between the two constituents of the porous region.
The sensible energy of water before evaporation is included by
modeling the source term Se;f ¼ hwaterh _mfsi [36], where, hwater refers
to the water enthalpy at the local temperature.

3. Macroscopic model closure approach

Examination of the macroscopic model (Eqs. (9) and (10), (12),
(13), (17), (18), (21), (22)) presented in the last section shows that
terms arising due to volume- and time-averaging of the porous region
require closure to complete the model. To this end, mathematical
models have been introduced for the terms in question, but coeffi-
cients are required to characterize a particular porous material.
Herein, we provide a short description of the method of closure for
each of the constitutive relations appearing in themomentum, turbu-
lence, moisture and energy equations, and the information required.
All information required for closure is obtained frompore-level calcu-
lations on a REV that characterizes a randomly packed bed of spheres,
which will be discussed in detail in a subsequent section.

Closure of the Darcy and Forchheimer drag terms appearing in
Eq. (10) is achieved by considering the pore-level hydrodynamics
of the REV. The predicted pressure drop across the REV is utilized
to evaluate the permeability K and inertial coefficient cE as [37]

DP
L

¼ lf

K
hvi þ hqfifcEffiffiffiffi

K
p hvij jhvi ð23Þ

where, DP is the pressure drop across the length L of the REV. For
each geometric model, creeping flow (Red � 0.1) is considered first
to calculate K; then cE is evaluated for higher Red.

Hydrodynamic closure is completed by closing the macroscopic
k and e equations. To achieve this, models must be implemented

for the Sk and Se terms given in Eqs. (12) and (13), respectively. The
closures for these terms proposed by NK, PDL, and TR are given in
Table 1, which shows that each study has modeled them in a
slightly different manner. To better understand these models,
consider a REV with one-dimensional fully-developed flow and
zero-mean-shear. Under such conditions, the transport terms in
Eqs. (12) and (13) disappear and the equations reduce to a balance
of source and sink terms. For example, the k and e equations
proposed by NK reduce to [14]

0 ¼ �/hqf i f hei f þ /hqf i f e1 ð24Þ

0 ¼ �/C2ehqf i f hei f
hei f
hki f

þ /C2ehqf i f e1
e1
k1

ð25Þ

which, after simplifications yields

hki f ¼ k1 and hei f ¼ e1 ð26Þ
The model constants k1 and e1 can then be obtained as the

intrinsic-averaged value of k and e inside the REV. The closure of
Sk and Se proposed by PDL and TR can also obtained in the similar
manner. In addition, if one includes the dispersive effects of k and e,
then based on Eq. (8), the total turbulent kinetic energy ktotal and
its dissipation rate etotal can be written as [16,17]

ktotal ¼ hki f þ kdisp ð27Þ

etotal ¼ hei f þ edisp ð28Þ
where, kdisp and edisp are evaluated, using the expressions proposed
by TR, as

kdisp ¼ 1
2

v � hvif
� �2


 � f

ð29Þ

edisp ¼ mf
@v
@x

@v
@x

þ @v
@y

@v
@y

þ @v
@z

@v
@z


 � f

ð30Þ

Thus, the generic closure of the macroscopic k–e turbulence
model including the dispersive effects can be obtained from the
solutions of the pore-level, time-averaged turbulent flow field
inside the REV.

Closure of the macroscopic, non-equilibrium heat and mass
transfer equations requires determination of the interfacial heat
and mass transfer coefficients (hfs and hfsm) along with the effective
thermal conductivity keff and mass diffusivity coefficients Deff given
in Eqs. (17), (18), (21), and (22). Under fully-developed conditions
and constant surface temperature, hfs can be evaluated as [38]

hfs ¼ � _mcp
afs

ln
Ts � Tout

Ts � Tin

� �
ð31Þ

where, afs is the interfacial surface area of the REV, _m is the mass
flow rate though the REV, Ts is the constant surface temperature
of the solid-constituent, and Tin and Tout are the mass-averaged bulk
fluid temperatures at the inlet and outlet of the REV, respectively.

Table 1
Models of Sk and Se proposed by NK [14], PDL [8] and TR [16,17].

Turbulent model Sk Se

NK /hqf i f e1 /C2ehqf i f e1 e1
k1

PDL /Ckhqf i f hki fffiffiffi
K

p vj j /C2eCkhqf i f hei fffiffiffi
K

p hvij j
TR hvi /lf

K hvi þ /hqf if cEffiffiffi
K

p hvij jhvi
� �

/f ð/;KÞhqf i f hei fffiffiffi
K

p hvij j
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For evaluation of hfs, the value of Ts and Tin are set as boundary
conditions to determine Tout. However, under fully-developed
conditions, hfs is constant, and hence independent of Ts and Tin.

The effective thermal conductivity of the fluid-constituent, keff ;f ,
arises in Eq. (21) due to volume- and time-averaging. This quantity
represents the net thermal transport and is utilized in a gradient-
diffusion type closure model [35]. Volume-averaging of the energy
equation produces tortuosity and thermal dispersion terms, which
are modeled as [35]

Tortuosity : r:
1
DV

Z
afs

nkf Tf dA

" #
¼ ktor:rTf

f ð32Þ

Thermal dispersion :� cphqf i f /h~v~Tf i f
� �

¼ kdisp:rhTf i f ð33Þ

Following on, time-averaging of the volume-averaged energy
equation results in additional terms characterizing turbulent heat
flux and turbulent thermal dispersion, which are closed as [35]

Turbulent heat flux :� cphqf i f /hv0i f hT 0
f i f

� �
¼ kt :rhTf i f ð34Þ

Turbulent thermal dispersion :� cphqf i f /h~v0~T 0
f i f

� �
¼ kdisp;t:rhTf i f ð35Þ
The resulting keff ;f is then given as [35]

keff ;f ¼ /kf þ ktor þ kdisp þ kt þ kdisp;t ð36Þ
In the above expression, kf is the usual thermal conductivity of

the fluid-constituent. For the present work, the Tortuosity
coefficient ktor becomes zero due to the approximation of a
constant Ts, while, kdisp is evaluated as [32]

kdisp ¼ � cphqf i f/
rhTf i f

hvi � hvif
� �

hTf i � hTf i f
� � f

ð37Þ

where,

rhTf i f � DhTf i f
L

¼ hTf i fout � hTf i fin
L

ð38Þ

where, in the present case, hTf i fin and hTf i fout represent the
area-averaged temperature values at the inlet and outlet surfaces,
respectively, which are easily calculated from pore-level results of
the REV.

The microscopic simulation results cannot be utilized to
evaluate kt and kdisp;t . To this end, the eddy-diffusivity concept is
adopted to model these coefficients as [32]

kt þ kdisp;t ¼ cphqf i f/
mt
rT

ð39Þ

where, mt is the kinematic turbulent viscosity, and rT is turbulent
Prandtl number for the fluid-constituent energy equation. For the
present work, rT is fixed at 0.9 [35].

Compared to keff ;f , the modeling of keff ;s, which arises in Eq. (22),
is much more straightforward, and given as [35]

keff ;s ¼ ð1� /Þks þ ktor ð40Þ
With ktor equal to zero, for the same reason as discussed earlier,

keff ;s only requires solid-constituent thermal conductivity ks and /
for evaluation.

For closure of the non-equilibrium mass transport equations,
we take the advantage of heat and mass transfer analogy. In this
respect, the Chilton-Colburn heat and mass transfer analogy is
used to evaluate hfsm. This analogy was found to be valid for the
case of a packed bed of spheres by Gupta and Thodos [39]. The
analogy relates hfs and hfsm as [40]

hfsm ¼ hfs
Df

kf

� �
Sc
Pr

� �1
3

ð41Þ

where, kf and Df refer to the moist air thermal conductivity and its
moisture diffusivity, respectively, and Pr and Sc represent the moist
air Prandtl and Schmidt numbers, respectively.

Similar to keff ;f , the effective mass diffusivity of the
fluid-constituent Deff,f accounts for the usual moisture diffusion,
but also includes moisture dispersion, turbulent moisture flux,
and turbulent mass dispersion, which are modeled as [32]

Deff ;f ¼ /Df þ Ddisp þ Dt þ Ddisp;t ð42Þ
For evaluation of Ddisp, the heat and mass transfer analogy is

again utilized. Comparing the kdisp and Ddisp results presented by
De Lemos [32] for two-dimensional structured REVs, we can
propose the following approximate relation

keff ;f
kf

� Deff ;f

Df
ð43Þ

The eddy-diffusivity concept is again employed to model Dt and
Ddisp;t as [32]

Dt þ Ddisp;t ¼ mt
Sct

ð44Þ

where, Sct is the turbulent Schmidt number, which for the present
work is approximately 0.7–0.9 [41]. Finally, Deff ;s is evaluated as
Deff ;s ¼ ð1� /ÞDs.

4. The microscopic model

This section covers the details of the microscopic (pore-level)
simulations carried out to evaluate the closure coefficients using
the approach described in Section 3 for the macroscopic model
presented in Section 2. As mentioned earlier, closure is sought
herein for a randomly packed bed of spheres. From the computa-
tional perspective, geometric modeling of an entire bed of packed
spheres is not feasible. Therefore, we utilize REVs having random
arrangements of spheres that characterize a small portion of a
much larger packed bed. The approach adopted to create the REVs
used the formulation developed by Dyck and Straatman [42],
except using a modified contact law [43] that was suitable for
spherical particles as opposed to spherical voids. Their approach
produces three-dimensional domains of randomly packed spheres
using YADE [44], with spatial periodicity maintained in the x, y and
z directions. CAD models of the REVs are created using SolidworksTM

[45] and then discretized using the ANSYS� MeshingTM tool [46].
The approach to generating a particular REV is to specify the

number of spheres inside the REV along with their diameter
(and standard deviation in the case of non-equal sized spheres),
and the target porosity of the REV. The model places the spheres
(so-called ‘‘primitives”) inside of a three-dimensional box and then
compresses the box allowing the spheres to collide and reorient
until the target porosity is achieved. Though the approach can
build REVs where the spheres are rigid solids, slight deformation
was allowed to avoid having point contacts, which can cause issues
with mesh generation in the space between the spheres. It was
found that at least 50 spheres are required to ensure that the
CFD results for the REV are independent of the REV size. Fig. 1
shows a sample REV comprised of 50 spheres of equal size
randomly oriented to achieve a porosity of 0.47. Fig. 1a shows
the randomly oriented spheres and the box that represents the
REV. The spheres that are outside the box are those that penetrate
the boundaries on the opposite periodic face and are simply shown
to illustrate how the REV is trimmed out of the random packing.
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Fig. 1b shows the portion of the REV that requires discretization for
CFD simulation; i.e. the spheres are subtracted and the fluid space
between them remains.

The fluid space in the REV was discretized using the ANSYS
�

MeshingTM tool [46] and pore-level simulations of the REVs were
carried out using the commercial CFD software FluentTM [47]. To
improve the convergence and stability of the simulation, the
unstructured meshes generated using the ANSYS

�
MeshingTM tool

[46] were converted to polyhedral meshes using FluentTM. Since
the meshing volume of the REV varies with porosity and sphere
diameter, the grid convergence of the domain was based on the
ratio of mean sphere diameter ds to the meshing element size.
Table 2 shows that grid convergence based upon normalized

pressure difference, DP=L, and normalized hki f and hei f is achieved
to within 1% when the ratio is kept to approximately 36, which
required grids on the order of 2.2 � 106 cells.

For consistency, turbulence was modeled in the pore-level
(microscopic) simulations using the k–e model. As the robustness
of the macroscopic closure depends on the accuracy of the micro-
scopic simulations, different variations of the k–e model were
tested. The Realizable variation compared to the standard model
was found to improve the solution convergence as it is better sui-
ted to flows having rotation, separation, and recirculation [48].
Moreover, the effects of curvature were incorporated in the model
by applying the curvature correction, which modifies the turbulence
production term in the k and e equations [48]. Near-wall effects
were accounted for by employing Enhanced wall treatment, which
resolves the viscous sublayer in the finely meshed regions and
employs the law-of-the-wall in the coarsely meshed areas [48].
The use of Enhanced wall treatment is necessary in the microscopic
model because the meshed REVs have numerous regions of fine
mesh, which occur near the contact regions of the spheres. Heat
transfer was incorporated by solving the energy transport equa-
tion; mass transfer between and among the phases was not
included in the pore-level calculations. The advection scheme
QUICK was utilized for all the transport equations, and pressure–
velocity coupling was achieved by employing the SIMPLEC
algorithm. The convergence of the simulations was enhanced by
slightly modifying the default under-relaxation factors given in
FluentTM [47]. Air was defined as the working fluid with constant
thermophysical properties at standard temperature and pressure.
The steady-state problem was simulated until the scaled residuals
of all the transport equations dropped below 10�3.

Periodic boundary conditions were imposed on all pairs of faces
of the REV; i.e. x x!þ L; y y!þ L; z z!þ L. The mass flow rate along
the flow direction was used to impose a flow Reynolds number.

Though periodic boundary conditions are imposed on all pairs of
faces, we refer to the inlet and outlet faces to be those perpendic-
ular to the flow direction. The mass flow rate is evaluated as

_m ¼ qf L
2U ð45Þ

where, the side length L of the REV is obtained from YADE [44]
following geometry generation, and the extrinsic flow velocity U
is calculated from the Reynolds number, which is defined as

Red ¼
qf Uds

lf
ð46Þ

No-slip hydrodynamic conditions were imposed at the surfaces
of the spheres. In terms of energy, a mass-weighted bulk inlet
temperature Tin was specified, and the surface temperature of
the sphere surfaces inside the REV were maintained at Ts. In the
present work, Tin and Ts were set to 5 �C and 55 �C, respectively,
for all the simulations (see FluentTM Theory Guide [48] for the details
of periodic boundary condition implementation).

The developed microscopic model was validated using the
results of Yang et al. [49], which focused on forced convection heat
transfer in various structured beds of packed spheres. Their
experimental work provides measurements of pressure drop and
Nusselt number for packed beds composed of ellipsoidal and
spherical particles. Measurements were obtained during the
cooling process of initially heated particles. The packed bed was
composed of enough particles to ensure that fully-developed flow
and heat transfer occurred inside the bed. In addition, the
measurements were only taken for the central packed channel to
minimize the wall effects of the channel containing the bed.

To mimic this case, simple cubic packing (SC), shown in Fig. 2,
and body center cubic packing (BCC) REVs based on the informa-
tion provided by Yang et al. [49] were produced in SolidworksTM

[45]. To closely match the experimental conditions, periodic
boundary conditions were imposed on the REV faces normal to

Fig. 1. (a) Geometric model showing 50 randomly oriented spheres of constant ds and outline of REV box; (b) Resulting REV sample with porosity of 0.47.

Table 2
Variation of the key quantities with grid convergence.

ds/mesh
element size

Cell count
(million)

Normalized
D�P=L

Normalized

hki f
Normalized

hei f

10.0 0.32 63.87 2.13 25.43
23.5 0.70 65.27 2.91 37.17
28.6 1.10 65.87 3.07 39.76
33.3 1.70 66.26 3.18 41.38
36.4 2.20 67.11 3.25 42.64
40.0 2.7 67.26 3.27 42.96
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the flow, and symmetry boundary conditions were imposed on the
remaining REV faces. The flow and temperature boundary condi-
tions were set to match the conditions provided by Yang et al.
[49]. The transient problem of cooling was simplified to the
steady-state based on the fact that in the fully-developed region,
the Nusselt number does not change in time. The domain was
discretized using the approach described earlier. The predicted
pressure drop and Nusselt number for SC and BBC are shown in
Figs. 3 and 4, respectively. The plots show that the present
microscopic model predicts the hydraulic resistance and the heat
transfer with reasonable accuracy; trends of both quantities are
also correctly predicted as a function of Reynolds number. In this
manner, the present model formulation is considered to be suitable
and applicable to cases where the packing structure is random. In
addition, comparison of Figs. 1 and 2 clearly demonstrates the
inability of structured REVs (Fig. 2) to mimic the realistic random
packing of spheres.

5. Closure results

Results of the pore-level simulations of the REVs are used in this
section to close the macroscopic model presented in Section 2.
Results have been obtained for 20 different geometric cases by
parametrically varying the mean sphere diameter ds (along with
its statistical variation dvar), and porosity /. The variable dvar
defines the local variation of diameter in terms of percentage
(or fraction) of ds. For example, with dvar = 20%, spheres inside
the REV are uniformly distributed over the range ds ± 0.2ds. As
one target application of the present work is food and produce
storage industry, the mean sphere diameter was varied over the
range 1 6 ds 6 10 cm, which covers a wide variety of berries and
nuts to apples, oranges and potatoes. Specifically, REVs considering
ds 2 1 cm;5 cm;10 cmf g were constructed and discretized, with
local variations of sphere diameter of dvar 2 0%;20%;35%;50%f g.

The porosity of a bed of packed spheres is dependent upon the
arrangement of spheres within the packing. The thinnest or loosest
packing of spheres has porosity of around 0.476, while the packing
of highest density produces a minimum porosity of approximately
0.26 [50]. Based on these limits, the porosity of the randomly
packed REVs varied across the range 0:27 6 / 6 0:47, specifically
for the values: / 2 0:27;0:32; 0:37;0:42;0:47f g.

Table 3 gives a summary of geometric parameterization of the
REVs considered herein. The side length L and the interfacial

surface area afs of the generated REVs are required for various
calculations, and are included in Table 3. Note that the specific
interfacial surface area Afs can be calculated as Afs ¼ afs=L

3.
As YADE [44] produces random packings of spheres inside the

REV, each REV produced is slightly different in terms of its geom-
etry, and within a particular REV the structure in the x, y and z
directions are all slightly different, even though spatial periodicity
is enforced in all principle directions. In this manner, there is no
preferred direction for the prescribed flow, so each REV produced
was used to simulate three cases of flow and heat transfer; one
where the principle flow was prescribed in the x-direction, one
for the y-direction, and one for the z-direction. The results of the
three simulations were then averaged to obtain mean values for
all quantities.

Finally, as fully turbulent flow is found to occur inside a porous
media comprised of packed spheres when Red > 300 [8,34], to
provide a wide range of applicability of the closure, the considered
range of Reynolds number is 1000 6 Red 6 100,000, specifically for
the values: Red 2 1;5;10;25;100f g � 103. In addition, cases of

Fig. 2. (a) Box and spheres for simple cubic packing (SC); (b) Resulting SC REV sample with porosity of 0.47.

Fig. 3. Comparison of predicted pressure drop as a function of Reynolds number for
different sphere packings to the experimental results of Yang et al. [49].
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Red = 0.1 were simulated to obtain the permeability of porous
media. Accounting for the number of geometric models developed
(Table 3), the fact that each model is run in three directions, and
the range of Reynolds number considered, a total of 186 computa-
tional runs were made to produce results for the macroscopic
model closure. Note that post-processing of all the simulations
was also carried out using FluentTM [47].

Before discussing the closure results, in Fig. 5, we present the
distribution of temperature and velocity inside a typical REV to
inform the reader about the complex nature of flow and other
transports occurring inside the bed of packed spheres. The plot
shows considerable spatial deviation in fluid temperature due to
the presence of highly chaotic turbulent flow.

To obtain the closure of the volume-time-averaged momentum
equation, the permeability K and inertial coefficient cE for the
Darcy and Forchheimer models are computed using the procedure
described following Eq. (23). Plots of these quantities are given in
Figs. 6 and 7, respectively. The permeability is found to be

monotonically proportional to porosity. This trend occurs due to
the increasing gaps that allow the flow to pass between the
spheres more easily. On the other hand, cE reduces with increasing
porosity, due to a reduction in the intrinsic-velocity and pressure
drop of the flow. It can also be observed that cE is inversely
proportional to Red. In addition, K and cE are also found to be only
weakly dependent upon dvar. The evaluated permeability was
found to match well with the existing correlations for bed of
packed spheres [6].

We obtain closure of the macroscopic k–e model, given in Eqs.
(12) and (13) by determining the intrinsic-averaged and dispersive
components of k and e, as shown in Eqs. (27) and (28). For clarity,
the results of k and e given in Figs. 8 and 9, respectively, only con-
sider the parametric variation of porosity and Reynolds number.
The plot of k shows that the dispersive component is considerably
higher than the intrinsic-averaged component for all the cases.
Mathey [31] also found such differences in magnitude between
the dispersive and intrinsic-averaged components of k for the case
of structurally packed spheres. Similar observations were also
made by TR for two-dimensional array of square cylinders. They
attribute the dispersive component of k to the presence of recircu-
lation regions, which produce spatial deviations in velocity, and
result in a high level of dispersive k as evident from Eq. (29).
Conversely, the dispersive component of e remains low compared
to the intrinsic-averaged component. This observation is consistent
with that of TR. It can also be observed that both components of k
and e increase with reducing porosity. This occurs due to the
increasing intrinsic-averaged velocity, which ultimately increases
velocity fluctuations in space and time. However, k and e are found
to be reasonably independent of Reynolds number. Moreover,
these observed porosity and Reynolds number trends match with
the results of NK and TR.

The total turbulent kinetic energy and dissipation rate, ktotal and
etotal, are given in Figs. 10 and 11, respectively. The plots clearly
show that mean sphere diameter and its local variation have an
insignificant effect on the k and e distribution. Thus, ktotal and
etotal can be considered to be a function of porosity and Reynolds
number.

As described in Section 3, closure of the volume-time-averaged
non-equilibrium energy transport equations requires the
determination of hfs, kdisp, and mt . The kinematic turbulent viscosity
mt is obtained from the results of ktotal and etotal presented earlier. To
make the results generic, hfs is described by an interfacial Nusselt
number as Nufs ¼ hfsds=kf . Figs. 12 and 13 show the results of Nufs

and kdisp, respectively. As expected, the value of both quantities
increases significantly with the flow Reynolds number. However,
Nufs and kdisp show comparatively less dependence on porosity.
Moreover, kdisp is found to be only weakly affected by dvar . The eval-
uation of kdisp also shows that thermal dispersion is considerably
higher for all cases, which is similar to the higher values of kdisp
and edisp.

The analysis of velocity, turbulence, and temperature fields
inside the REVs reveal high spatial variations. As discussed earlier,
the main cause of such high spatial variations is the turbulent flow
inside the complex packed spheres domain, which produces
complex recirculation, separation, and reattachment regions.
Lastly, all the presented results are found to be independent of
the mean sphere diameter ds as shown in Figs. 6–13.

At this point, we propose a correlation for each closure variable
evaluated for the macroscopic model, such that the closure results
can be easily implemented in a volume-averaged porous media
framework. The correlations are proposed in the form of a power
law for porosity and Reynolds number because the results
presented in Figs. 6–13 show logarithmic trends. Where necessary,
a linear component is used to correlate dvar . To evaluate the

Fig. 4. Comparison of predicted Nusselt number as a function of Reynolds number
for different sphere packings to the experimental results of Yang et al. [49].

Table 3
Summary of geometric parameters for the REVs produced using YADE [44]. Side
length L and interfacial surface area afs are also given.

/ ds (cm) dvar (%) L/ds afs=d
2
s

0.27 10 0 3.26 114.65
0.32 10 0 3.36 129.24
0.37 10 0 3.45 139.31
0.42 10 0 3.56 147.81
0.47 10 0 3.67 150.72
0.27 5 0 3.26 114.65
0.37 5 0 3.45 139.31
0.47 5 0 3.67 150.72
0.27 1 0 3.26 114.65
0.37 1 0 3.45 139.31
0.47 1 0 3.67 150.72
0.27 10 20 3.32 123.28
0.37 10 20 3.51 141.90
0.47 10 20 3.73 156.97
0.27 10 35 3.41 125.29
0.37 10 35 3.61 147.76
0.47 10 35 3.83 160.33
0.27 10 50 3.54 131.10
0.37 10 50 3.75 156.55
0.47 10 50 3.97 168.16
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Fig. 5. Distribution of normalized fluid temperature and velocity vectors on planes inside a sample REV. Temperature is normalized as ðT � TsÞ=ðTin � TsÞ. Results are for the
case of Red = 104, ds = 10 cm, dvar = 0%, and / = 0.47.

Fig. 6. Variation of permeability K with porosity, mean sphere diameter, and its
local variation.

Fig. 7. Variation of inertial coefficient cE with porosity, Reynolds number, mean
sphere diameter, and its local variation.

 

Fig. 8. Comparison of the dispersive and intrinsic-averaged components of k as a
function of porosity and Reynolds number. The mean sphere diameter and its local
variation inside the REVs are equal to 10 cm and 0%, respectively.

Fig. 9. Comparison of the dispersive and intrinsic-averaged components of e as a
function of porosity and Reynolds number. The mean sphere diameter and its local
variation inside the REVs are equal to 10 cm and 0%, respectively.
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correlations, the MATLAB Curve/Surface Fitting ToolboxTM was used,
which utilizes the method of least squares to fit the data. The eval-
uated correlations are given in Table 4. For all the closure variables,
values obtained from the simulations are plotted as a function of
the value predicted from the proposed correlation in Fig. 14. The
plots show that power law-based correlations provide reasonable
predictions for all variables. Though in some cases, second degree
polynomial-based correlations more accurately predict the values,
power law correlations were selected because of their conciseness.

Heat transfer inside the packed beds has been extensively
studied. Since we have proposed a Nufs correlation, it is worth com-
paring the correlation and the obtained results against the existing
Nufs literature. In this respect, the correlations and their derived
results proposed by Wakao et al. [51], Gillespie et al. [52] and
Achenbach [53] were found to be in the similar range as proposed
by the present work.

6. Summary

The present study focused on the closure of the macroscopic
turbulence, and non-equilibrium turbulent heat and mass transfer
model inside porous media composed of randomly packed spheres.

Fig. 10. Variation of the total turbulent kinetic energy ktotal with porosity, Reynolds
number, mean sphere diameter, and its local variation.

Fig. 11. Variation of the total dissipation rate of turbulent kinetic energy etotal with
porosity, Reynolds number, mean sphere diameter, and its local variation.

Fig. 12. Variation of interfacial Nusselt number Nufs with porosity, Reynolds
number, mean sphere diameter, and its local variation.

Fig. 13. Variation of thermal dispersion coefficient kdisp with porosity, Reynolds
number, mean sphere diameter, and its local variation.

Table 4
Proposed correlations for ktotal; etotal;K; cE;Nufs; and kdisp .

Closure variable Proposed closure correlation

Total turbulent kinetic energy ktotal ktotal
U2 ¼ 0:424/�3:084Re�0:029

d

Total dissipation rate of turbulent
kinetic energy etotal

etotalds
U3 ¼ 0:818/�4:59Re�0:0916

d

Permeability of porous media K K
d2s

¼ 0:0335/3:58 þ 3:063� 10�6
� �

dvar

Inertial coefficient of porous media cE cE ¼ 0:103/�2:054Re�0:064
d � 0:001dvar

Interfacial Nusselt number Nufs Nufs ¼ 0:142/�1:07Re0:746d

Thermal dispersion coefficient kdisp kdisp
kf

¼ 1:59/0:8Re0:953d þ 10:0dvar
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The closures were required to model the additional terms that
arise due to volume- and time-averaging of the transport
equations. The closure of Darcy and Forchheimer terms appearing
in the momentum equation required determination of porous
media permeability and its inertial coefficient. For the
non-equilibrium heat and mass transport equations, interfacial
heat and mass transfer coefficients were needed to close the

interfacial heat and mass transfer terms, respectively. Using a
gradient-diffusion type model, closures were also obtained for
the heat and mass transfer terms for dispersion, turbulent flux,
and turbulent dispersion. The macroscopic turbulence inside
porous media was modeled using the k–e model. The dispersive
effects of k and e were also included to entirely capture the
turbulence flow field.

Fig. 14. Comparison of the correlations given in Table 4 versus the values of ktotal; etotal;K; cE;Nufs; and kdisp obtained from the numerical simulations.
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The macroscopic model closure was obtained by simulating the
problem at the pore-level or microscopic scale. In this respect, the
REVs composed of randomly arranged spheres were subjected to
turbulent flow and heat transfer. The conditions of fully-
developed unidirectional flow with zero-mean-shear were
employed to obtain the closure using the solution fields available
at the microscopic scale. The developed microscopic scale model
was validated using the experimental data of pressure drop and
Nusselt number. The parametric variation of porosity, Reynolds
number, mean sphere diameter and its local variation inside the
REVs was carried out to increase the applicability of the closure
results. In general, all the closure variables were found to be
dependent upon the porosity and Reynolds number. However,
the mean sphere diameter did not change the results. While, the
local variation in spheres’ diameter weakly effected the results.
Lastly, the closure results were fitted using the power law-based
correlations for ease of implementation into a volume-averaged
framework.
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