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Prediction of air flow in the human lung is of great interest for many physiological applications. Recent advances
in modeling such flows using computational fluid dynamics have included the development of porous media-based
approaches that consider the small-scale airways and alveoli as a porous domain. This article presents a derivation of
the governing equations relevant to flow in an alveolated duct based on the theory of volume-averaging as well as their
closure. It is shown that the momentum closure problem reduces to that of a steady-state problem which is solved over
a representative unit cell of an alveolated duct to predict its permeability. The modeling approach is validated against
permeability predictions coming from transient simulations of flow in an expanding and contracting duct. Finally,
analytical expressions for the velocity and pressure in an alveolated duct are derived and presented.

KEY WORDS: respiratory flow, alveoli, closure modeling, permeability

1. INTRODUCTION

Simulation of flow in the human lung is of interest because it can provide details of the flow that cannot be measured
in vivo. Knowledge of the flow patterns within the lung are of practical importance because of the potential impacts
on respiratory drug delivery, particle deposition, and our general understanding of the relationship between lung
structure and function (Tawhai and Lin, 2010). The internal structure of the lung consists of a network of bifurcating
airways that become smaller in both length and diameter with each subsequent bifurcation (or “generation”). The first
sixteen generations are known as the conducting airways which take no part in the gas exchange process, but lead the
air to the respiratory region of the lung (West, 2008). Gas exchange occurs by passive diffusion through the thin walls
of small sacs, known as alveoli, which line the airways in the respiratory region, defined as the 17th generation and
beyond (Weibel, 1963; West, 2008).

Simulating flow in the lung is particularly challenging due to the large number of flow paths and the wide range
of length scales spanned by the various components of its structure. Airway diameters range from about 2 cm at the
trachea to a fraction of a millimeter in the most distal airways (Weibel, 1963). There are approximately 300 million
alveolar sacs in the human lung, each of which are about 0.3 mm in diameter (Weibel, 1963). Many computational
fluid dynamics (CFD) studies have been conducted to study flow and particle deposition, as well as heat and mass
transfer in the upper airways (Comerford et al., 2010; Gemci et al., 2008; Lin et al., 2009; Luo and Liu, 2008; Saksono
et al., 2012; Tawhai and Lin, 2010; Walters and Luke, 2010, 2011; Yin et al., 2010; Zhang and Kleinstreuer, 2002,
2003; Zhang et al., 2008). Similarly, in the respiratory region, CFD simulations have been conducted to investigate
the flow and particle transport in alveolated ducts (Harding and Robinson, 2010; Karl et al., 2004; Kumar et al., 2009,
2011; Lee and Lee, 2003; Li and Kleinstreuer, 2011; Ma and Darquenne, 2011; Sznitman et al., 2007, 2009; Tsuda
et al., 2008). Although some attempts have been made to couple computational models of flow in the upper airways
to models of flow in the lower airways (Comerford et al., 2010; Ma and Lutchen, 2006), the lower airway models
employed in these studies are typically quite simplified.
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NOMENCLA TURE

Afe area in the fluid region on the boundary
of an averaging volume (m2)

Afs area at the intersection ofVf andVs (m2)
A area (m2)
DH hydraulic diameter (m)
d vector used in momentum closure (m)
D tensor used in momentum closure (m2)
K scalar permeability of porous medium (m2)
K permeability tensor for porous medium (m2)
ℓ length scale of pore (m)
L length scale of porous domain (m)
ṁ mass flux (kg/s)
nfs unit-normal vector directed from the

fluid to solid phase
p pressure (Pa)
p̃ pressure deviation (Pa)
t time (s)
u fluid velocity vector(= [u, v, w]) (m/s)
ũ fluid velocity deviation vector

(= [ũ, ṽ, w̃]) (m/s)
U characteristic velocity (m/s)
V volume (m3)

Wo Womersley number
x position vector (m)
⟨ ⟩ denotes extrinsic volume-average
⟨ ⟩f denotes intrinsic volume-average with

respect to the fluid constituent

Greek Symbols
∆ denotes a change in a quantity
ε porosity (=Vf/V )
Λ amplitude
µ dynamic viscosity (kg/m·s)
ρ density (kg/m3)
ϕ generic scalar quantity
ω angular frequency (rad/s)

Subscripts and Superscripts
0 initial value
∗ denotes dimensionless quantity
f fluid
in inlet of periodic domain
s solid
w wall

It has been proposed by Owen and Lewis (2001), in their theoretical work on high-frequency ventilation, that
the lung parenchyma can be modeled as a porous continuum. Using homogenization and volume-averaging, they
developed a model to describe the flow and tissue deformation for small uniform samples of lung parenchyma.
While the theoretical development of their model was well founded, it depended on several effective properties of the
porous lung parenchyma that were only roughly estimated and only select one-dimensional results were obtained for
the flow and tissue deformations. However, it was suggested that such a macroscopic description could be coupled
with models for the upper airways. This provides a convenient way to simulate transport processes in the whole lung
since full resolution in the upper airways can be obtained, while a coupled porous media model is used to account
for the remainder of the airways and parenchyma. DeGroot and Straatman (2016) used this modeling concept and
the method of volume averaging to develop a conjugate fluid-porous CFD model for the whole lung, where the upper
airways were considered as a pure fluid region and the remainder of the lung volume was considered to be porous.

The goal of this work is to build upon the porous media concept for modeling air flow in the lung by considering
the development and closure of the associated governing equations using the method of volume-averaging (Gray,
1975; Whitaker, 1967), which is then relatively straightforward to couple with models for the upper airways, as in
DeGroot and Straatman (2016). The geometry of interest for this study is an expanding and contracting alveolated
duct, as shown schematically in Fig. 1. Ultimately, it will be shown that the permeability of the duct is the only
required closure parameter and that it can be obtained using a similar approach to Whitaker (1996). Results are
presented to verify the model with respect to direct CFD calculations on the moving duct, followed by some one-
dimensional results. The key outcomes of this work are the systematic development of the governing equations valid
for an expanding/contracting porous medium relevant to respiratory flows and the permeability of the alveolated
duct which can subsequently be used in combination with the governing equations to perform large-scale three-
dimensional simulations of flow in the lung.
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FIG. 1: A schematic diagram of an idealized geometric model of an alveolated duct

2. THEORETICAL MODEL

2.1 Governing Equations

Flow in the airway tree and alveoli is governed by the standard continuity and Navier-Stokes equations for an incom-
pressible fluid, given by

∇ · u = 0 (1)

and

ρf

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µf∇2u, (2)

respectively, whereu is the fluid velocity vector,p is the pressure,ρf is the fluid density,t is time, andµf is the fluid
dynamic viscosity. Since there are far too many alveolar ducts in the human lung to consider directly, we average
the above equations over a representative element of the lung parenchyma to obtain equations that can be solved for
averaged quantities. For a porous medium composed of fluid and solid constituents, the definition of the extrinsic
volume-average of a quantityϕk is given by

⟨ϕk⟩ =
1
V

∫
Vk

ϕkdV, (3)

wherek ∈ {f, s} denotes the phase in which the quantityϕk is defined withf ands indicating the fluid and solid
phases, respectively. Note thatVf andVs are the fluid and solid volumes, respectively, contained within the averaging
volumeV . The averaging volumeV is considered fixed in space and of constant volume; however, the components
Vf andVs are free to change with time. For the purposes of this work, the air within the alveolated ducts represents
the fluid phase while the tissue represents the solid phase. In addition to the extrinsic average, the intrinsic average is
defined as

⟨ϕk⟩k =
1
Vk

∫
Vk

ϕkdV, (4)

which is an average over a single phase only. For the purposes of the theoretical development to follow, it is assumed
that the porosity,ε = Vf/V , of the porous region may vary in both time and space. Following the procedure of Gray
(1975) for the conditions outlined, the volume-averaged counterparts to Eqs. (1) and (2) are

∇ · ⟨u⟩ = − 1
V

∫
Afs(t)

u · nfsdA (5)
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and

ρf

[
∂⟨u⟩
∂t

+∇ ·
(

1
ε
⟨u⟩⟨u⟩

)]
= −ε∇⟨p⟩f + µf∇2⟨u⟩

+
1
V

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA− ρf∇ · ⟨ũũ⟩,
(6)

respectively, whereAfs(t) is the area of intersection between the fluid and solid volumes,Vf andVs. The unit-normal
vector directed from the fluid to solid phase onAfs(t) is denotednfs. Spatial deviations are denoted, for a generic
scalarϕ, asϕ̃ = ϕ − ⟨ϕ⟩f . Note thatAfs is taken as a function of time since the walls of an alveolated duct are
in motion as they expand and contract through the breathing cycle. For further details on the method of volume-
averaging and the associated closure problem, see DeGroot and Straatman (2011a, 2012); Gray (1975); Kaviany
(1995).

At this point, the forms of Eqs. (5) and (6) limit their use in practice due to the presence of surface integrals as
well as terms depending on the pore-level spatial deviationsp̃ andũ. In the sections to follow, these terms will be
simplified such that the governing equations are closed; that is, they are cast in a form that is independent of pore-level
quantities and all terms depend only on volume-averaged quantities.

2.2 Closure of Continuity Equation

The integral term appearing in the volume-averaged continuity equation, Eq. (5), may be treated simply on the basis
that both the fluid and solid constituents are incompressible. First, let the fluid be bounded by the moving surface
Afs(t) ∪ Afe(t), whereAfe(t) is the portion of the fluid volume boundary which is not adjacent to the solid region
and can therefore permit inflow and outflow. In terms of these bounding surfaces, the integral form of the continuity
equation is given as ∫

Afs(t)

u · nfsdA+

∫
Afe(t)

u · nfsdA = 0, (7)

which expresses a balance between the changing size of the volumeVf due to the motion of the surfaceAfs and the
fluid that must be drawn in or expelled from the volume throughAfe in order to conserve mass. The second term on
the left side of Eq. (7) represents the volume flux of fluid required to maintain a mass balance, with outflow being
positive. This results in the expression ∫

Afs(t)

u · nfsdA =
∂Vf

∂t
. (8)

Noting thatVf = εV and recalling that the averaging volume,V , is fixed in size, Eq. (8) may be combined with
Eq. (5) to obtain the closed form of the continuity equation, given as

∇ · ⟨u⟩ = −∂ε

∂t
. (9)

2.3 Closure of Momentum Equation

To close Eq. (6), we follow the general approach of Whitaker (1996) in which transport equations for the spatial
deviations are derived by subtracting the volume-averaged equations, appropriately scaled by porosity, from the con-
tinuum equation. In this case, however, there are additional terms arising from the fact that the porosity is allowed to
vary in space and time, which will need to be considered.

The transport equation for the velocity deviations arising from the continuity equation is derived by subtracting
Eq. (9), divided byε, from Eq. (1). The result after some rearrangements is given as

∇ · ũ =
1
ε

∂ε

∂t
+

1
ε2

∇ε · ⟨u⟩. (10)
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Compared to the equation of Whitaker (1996), Eq. (10) is quite complicated; however it can be shown through
various scaling arguments that it can be simplified substantially, such that it is equivalent to that of Whitaker (1996),
which is a desired outcome. The assumptions that are made for this analysis are summarized as follows:

(i) Variations in the velocity deviations,̃u, occur over the length scale of the averaging volume with length
scaleℓ, while variations in the volume-averaged velocity,⟨u⟩, and porosity,ε, occur over the length scale
of the porous domain with length scaleL; the length scaleℓ corresponds to the size of an alveolus, which
has a length scale of approximately 0.3 mm (West, 2008) andL corresponds to the size of the lung which is
O(10−1 m).

(ii) The velocity deviations and the volume-averaged velocity are of the same order, that isũ ∼ O(U) and
⟨u⟩ ∼ O(U), whereU is a characteristic velocity; the characteristic velocity within an alveolated duct is
O(10−3 m/s) (Ma and Darquenne, 2011).

(iii) The average porosity of the lung parenchyma is within the rangeε = 0.7 to 0.9 (Gehr et al., 1978; Kam-
schulte et al., 2013; Weibel, 1963), such thatε ∼ O(1) andthe deviation from this value is small (∆ε ≪ 1).

(iv) The time scale of a breath cycle,tb, is of the order of seconds; the time scale of the porosity variations is the
same.

With these assumptions, which are all physiologically based, the order of magnitude of each of the terms in
Eq. (10) may be estimated. On this basis of these assumptions it can be said that

∇ · ũ ∼ O

(
U

ℓ

)
∼ O

(
10s−1

)
, (11a)

1
ε

∂ε

∂t
∼ O

(
∆ε

εtb

)
, (11b)

1
ε2

∇ε · ⟨u⟩ ∼ O

(
∆εU

ε2L

)
. (11c)

The order of magnitude of the term listed in Eq. (11b) is proportional to the ratio∆ε/ε, divided by the time
scale,tb, which is of the order of seconds according to assumption (iv). It has already been stated that the variation
in porosity,∆ε, is much less than 1 and that the average porosity,ε, is close to 1. Provided∆ε is at least one order
of magnitude smaller thanε it can be shown that the order of magnitude of this term is no more than 10−1 s−1, or at
least two orders smaller than the term listed in Eq. (11a). As a result, the term on the left side of Eq. (10) has been
found to be much larger than the first term on the right, given the assumptions above, and may be neglected in this
analysis.

Based on the magnitude of the velocity given in assumption (ii) and the characteristic length given in assumption
(i), the order of magnitude of the term given in Eq. (11c) is of the order 10−2 s−1 multiplied by the ratio∆ε/ε2,
which is also smaller than 1. Therefore it is clear that the term given in Eq. (11c) is much smaller than the term given
in Eq. (11a). As a result, the last term on the right side of Eq. (10) may also be neglected in comparison to the term
on the left.

With these simplifications, the transport equation for the velocity deviations, arising from the continuity equa-
tions, is

∇ · ũ = 0, (12)

as in the analysis of Whitaker (1996) for rigid porous solids.
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The transport equation for the spatial deviations arising from the momentum equations is derived by subtracting
Eq. (6), divided byε, from Eq. (2). This results in

ρf

(
∂ũ

∂t
− 1

ε2

∂ε

∂t
⟨u⟩+ u · ∇ũ+ ũ · ∇⟨u⟩f − ∇ε

ε
· ⟨u⟩f ⟨u⟩f

)
= −∇p̃+ µf∇2ũ

− µf ⟨u⟩
(
∇2ε

ε
− 2∇ε · ∇ε

ε2

)
− µf

2∇ε

ε
∇⟨u⟩ − 1

Vf

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA

+
ρf

ε
∇ · ⟨ũũ⟩,

(13)

after much algebraic simplification. Let us first examine the orders of magnitude of the terms on the left side of
Eq. (13), under the assumptions listed previously. These are listed as

∂ũ

∂t
∼ O

(
U

tb

)
, (14a)

1
ε2

∂ε

∂t
⟨u⟩ ∼ O

(
∆εU

tb

)
, (14b)

u · ∇ũ ∼ O

(
U2

ℓ

)
, (14c)

ũ · ∇⟨u⟩f ∼ O

(
U2

L

)
, (14d)

∇ε

ε
· ⟨u⟩f ⟨u⟩f ∼ O

(
∆εU2

L

)
. (14e)

Sinceℓ ≪ L and∆ε ≪ 1, the terms given in Eqs. (14d) and (14e) are negligible in comparison to the term given
in Eq. (14c). As stated previously,U/ℓ is of the order of 10 s−1 and the characteristic time scale,tb, is of the order of
1 s. Thus, the term in Eq. (14a) is an order of magnitude smaller than the term in Eq. (14c), which is deemed small
enough that it may be neglected. Since∆ε ≪ 1, the term in Eq. (14b) is much less than the term in Eq. (14a), so this
term may also be neglected in comparison to that in Eq. (14c). Therefore, of all the terms on the left side of Eq. (13),
only the third survives. Then, since

1
ε
∇ · ⟨ũũ⟩ ∼ O

(
U2

L

)
, (15)

thefinal term on the right side of Eq. (13) may be neglected in comparison to the surviving term on the left side.
The additional viscous terms, arising from the fact that the porosity is assumed to be spatially varying, can also

be simplified. Since we have

∇2ũ ∼ O

(
U

ℓ2

)
, (16a)

⟨u⟩∇2ε

ε
∼ O

(
U∆ε

L2

)
, (16b)

⟨u⟩∇2ε

ε
∼ O

(
U(∆ε)2

L2

)
, (16c)

∇ε

ε
∇⟨u⟩ ∼ O

(
U∆ε

L2

)
, (16d)
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and sinceℓ ≪ L and∆ε ≪ 1, we can neglect all but the first viscous term, which is listed in Eq. (16a). With these
simplifications, the transport equation for the velocity and pressure deviations given by Whitaker (1996) is recovered.
This is given as

ρfu · ∇ũ = −∇p̃+ µf∇2ũ− 1
Vf

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA. (17)

The fact that the transport equation for steady problems with constant porosity is recovered is significant because it
means that one may neglect any time dependence as well as any porosity variations when considering the pore-scale
closure problem, under the assumptions given previously for air flow in an alveolated duct. This is quite advantageous
since these additional terms would be quite challenging to deal with in a general way. Fortunately, under these limiting
conditions, the transport equations for the spatial deviations reduce to those of Whitaker (1996) and we may use the
closure method proposed in that work. In fact, since the Reynolds number in alveolar flows is very low, one can
further show that the convective term on the left side of Eq. (17) may also be neglected, resulting in the final form of
the transport equation for the velocity and pressure deviations, given as

0 = −∇p̃+ µf∇2ũ− 1
Vf

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA. (18)

Next, the boundary conditions on Eqs. (12) and (18) must be considered. On the moving walls of the alveolated duct,
the velocity deviation is expressed asũ = u − ⟨u⟩f . Since the wall displacement over a breath cycle isO(10−5 m)
over a time scale that isO(1 s), the wall velocity can be estimated asO(10−5 m/s), which is considered negligible in
comparison to the bulk velocity which is typicallyO(10−3 m/s). Additionally, although the velocity field is not strictly
periodic due to the volume flow into the expanding alveoli, a periodic condition can still be considered appropriate
since the volume flow rate into the alveoli is typically less than 1% of that in the alveolar duct (Kumar et al., 2009).
Thus, it has been shown that wall motion can be neglected within the context of the pore-level closure problem. In
summary, the boundary conditions on the velocity and pressure deviations are given as

ũ = −⟨u⟩f , onAfs, (19a)

ũ(xin +∆x) = ũ(xin), onAfe, (19b)

p̃(xin +∆x) = p̃(xin), onAfe, (19c)

where the conditions given in Eqs. (19b) and (19c) express the periodicity of the flow between an inflow pointxin on
Afe(t) and the corresponding outflow locationxin +∆x. Figure 2 shows a periodic unit of an alveolated duct upon
which the boundary conditions above may be applied. Note thatAfs andAfe are no longer considered functions of
time since it has been shown that the boundary motion can be neglected within the closure problem.

To derive the closure problem, which is to be solved on the appropriate periodic unit cell, we first redefine the
additional integral term remaining in Eq. (6) in terms of the permeability tensorK according to

1
V

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA = εµfK
−1 · ⟨u⟩. (20)

Then, based on a series of variable transformations that are further described in Whitaker (1996) and DeGroot
and Straatman (2012), the following closure problem is derived, to be solved on the periodic unit cell.

∇ ·D = 0, (21a)

−∇d+∇2D+ I = 0, (21b)

subject to the boundary conditions,
D = 0, onAfs, (22a)

D(xin +∆x) = D(xin), onAfe, (22b)
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FIG. 2: A schematic diagram of a periodic unit cell of the idealized geometric model of an alveolated duct

d(xin +∆x) = d(xin), onAfe. (22c)

Now, Eqs. (21a) and (21b) may be solved along with the conditions listed in Eqs. (22a)–(22c) to determine the
permeability tensor as

K = ε⟨D⟩f . (23)

Note that for a general deforming domain,K is a function of the pore geometry and thus a function of time. For
general motions, this would require evaluation ofK for each required configuration; however, as will be seen, the
characterization ofK as a function of time is simplified for motions where the domain is simply scaled as is typically
assumed for alveolated duct flows.

With the definition of the permeability, the closed form of the volume-averaged momentum equation is then
given by

ρf

[
∂⟨u⟩
∂t

+∇ ·
(

1
ε
⟨u⟩⟨u⟩

)]
= −ε∇⟨p⟩f + µf∇2⟨u⟩ − εµfK

−1 · ⟨u⟩, (24)

where the final term in Eq. (6) has been neglected due to periodicity. Note that although it was found that transient
and porosity gradient effects may be neglected at the pore level, such effects may still be taken into account at the
volume-averaged level through the closed volume-averaged momentum equation, Eq. (24).

3. RESULTS AND DISCUSSION

3.1 Permeability Tensor

For flow in a duct where the bulk flow is in thex direction and the walls are impermeable, the permeability tensor
takes on the general form

K =

 K 0 0
0 0 0
0 0 0

 , (25)
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whereK is the scalar permeability in thex direction, since bulk flow transverse to the duct axis is not permitted. From
a numerical perspective, however, this form poses a problem since the matrix given in Eq. (25) is clearly noninvertible.
Thus, we assume that the diagonal elements which take on a value of zero are instead equal to 1/a, wherea is an
arbitrarily large value. Thus, the inverse of the permeability tensor may be computed as

K−1 =

 1/K 0 0
0 a 0
0 0 a

 , (26)

which, according to the closed volume-averaged momentum equation given in Eq. (24), prevents any bulk flow trans-
verse to the axis of the duct through the very large Darcy term in these directions. Note that some care must be
taken in selectinga to ensure that it is sufficiently large to serve its purpose, but not so large that it causes numerical
difficulties.

Results for the permeability tensor are obtained by numerically solving Eqs. (21)–(22) using an in-house finite-
volume-based computational fluid dynamics code (DeGroot and Straatman, 2011b, 2012) and integrating the results
according to Eq. (23). The domain under consideration is a periodic unit cell representing the idealized alveolated
duct geometry shown in Fig. 1, which was previously used by Kumar et al. (2009, 2011). The unit-cell geometry,
taking into account the symmetry about a central plane, is shown in Fig. 2. Note that to solve the permeability using
the proposed model requires only a single numerical solution of Eqs. (21) and (22). A grid resolution study indicated
that a computational grid containing 244,331 tetrahedral volumes, refined towards walls, was sufficient to obtain a
permeability tensor that is independent of the grid to less than 1% upon doubling the total number of control volumes
in the domain.

To promote generality of the results, the computed scalar permeabilityK is presented in dimensionless form as
K/(εD2

H), whereDH is the hydraulic diameter of the central duct. Scaling the results by the hydraulic diameter is
convenient because it allows the time-varying nature of the volume-averaged flow to be simplified as a time-varying
permeability where the dimensionless permeability is constant but the hydraulic diameter of the duct changes. The
permeability is also scaled by the porosity since we do not wish to specify a particular porosity for this model, since
the choice of porosity depends on the nature of the system being modeled at a volume-averaged level. Numerical
results confirm the form of the permeability tensor given in Eq. (25) and show thatK/(εD2

H) = 9.46× 10−3.

3.2 Verification of the Porous Media Model

In order to verify the proposed porous media model of flow in an alveolated duct and the validity of the assumptions
underlying the theoretical basis of the model, transient simulations were conducted using ANSYS® CFX, Release
13.0, to compare the model predictions with direct CFD calculations in an expanding and contracting alveolar duct
geometry. A one-dimensional version of Eq. (24), neglecting any macroscopic velocity gradients, results in

ρf
∂⟨u⟩f

∂t
= −∂⟨p⟩f

∂x
− εµf ⟨u⟩f

K
, (27)

whereall averages have been converted to intrinsic averages and a constant porosity is assumed for the purposes of
this verification exercise. Multiplying Eq. (27) byD2

H and solving forK/(εD2
H) results in

K

εD2
H

=
µf ⟨u⟩f

D2
H

[
−d⟨p⟩f

dx
− ρf

∂⟨u⟩f

∂t

]−1

, (28)

where the terms on the right side of Eq. (28) may be obtained directly from CFD calculations to verify that the results
match the modeledK/(εD2

H) expression, and that the averaging procedure is correctly capturing the hydrodynamics.
The CFD calculations are conducted using the full alveolated duct geometry shown in Fig. 1. At the inlet a

uniform velocity profile was specified such that the Reynolds number based on the hydraulic diameter of the duct
was ReDH

= 0.01 in the initial undeformed geometry. At the outlet a specified average static pressure of zero was
imposed. At all other walls, the velocity was taken to be the velocity of the walls, i.e., a no-slip, no-penetration

Volume 21, Issue 5, 2018



414 DeGroot& Straatman

condition relative to the walls. All boundary surfaces were moved as a simple sinusoidal scaling of the domain,
according to

x(t) = x0[1+ Λw sin(ωt)], (29)

wherex(t) is the position of a point at timet, x0 is the location of the corresponding point in its initial configuration
at timet = 0,Λw is the dimensionless amplitude of the wall motion, andω is the angular frequency of the motion. At
this juncture, it is useful to relate the dimensionless amplitudeΛw to the relative change in the fluid volume, which is
more easily related to physiological measurements. Since the overall dimensions of the alveolated duct, according to
Eq. (29), will change by a factor of(1+Λw)/(1−Λw) from its fully contracted to fully expanded states, the relative
change in fluid volume is given as

Vf,max

Vf,min
=

(
1+ Λw

1− Λw

)3

, (30)

whereVf,min andVf,max are the minimum and maximum amounts of fluid present within the breath cycle, respec-
tively. For the cases considered here, the dimensionless amplitude of the motion is taken to beΛw = 1/2n where
n ∈ {2,3,4,5,6} which results in relative volume changes,Vf,max/Vf,min, in the range 1.10–4.63. This range is
selected such that it encompasses the typical physiological value of approximately 15% volumetric expansion during
the breath cycle (Harding and Robinson, 2010) and extends far beyond this value to explore the range of applicability
for the modeling assumptions introduced. The angular frequency is taken such that the Womersley number is Wo =
0.01 (Wo= DH,0/2

√
ρfω/µf , whereDH,0 is the hydraulic diameter of the main duct in its initial configuration at

time t = 0). This value is motivated by the fact thatDH,0 ∼ O(10−4 m) and thatω ∼ O(1 rad/s), along with the
viscosity of air, which results in an order of magnitude Wo∼ O(0.01).

Note that the choice of parameters for these verification cases is not motivated by the study of a specific physi-
ological process, rather we seek to choose parameters that are of the correct magnitude for the process of breathing
to test the modeling assumptions. For example, we do not claim that a constant velocity imposed at the entrance
of the alveolated duct necessarily represents the breathing process as it occurs physiologically, rather it represents a
simplified problem with the correct magnitude of the key parameters such that the assumptions of the model may be
tested.

To compare the predicted value of the dimensionless permeability coming from the solution of the closure prob-
lem with those coming from the direct CFD calculation, Eq. (28) is evaluated at each time step of the CFD simulation
by appropriately averaging the solution field. The differences between the value predicted from the closure problem
in comparison to those obtained from the transient CFD simulations are summarized in Table 1 in terms of an average
error and a maximum error across all time steps. These results indicate that the value of the dimensionless perme-
ability calculated from the closure problem matches well with the value obtained directly from the transient CFD
simulations conducted in the alveolated duct, even for amplitudes of motion that are far in excess of what would be
observed physiologically. In all cases, the average percent error is less than 2%. For the cases within the expected
physiological range for the amplitude of motion, the average percent error is less than 1%. The maximum percent er-
ror is found to be less than 2% for the cases within the expected physiological range ofΛw. For the higher-amplitude

TABLE 1: Summary of the maximum and average percent errors
between the modeled value ofK/(εD2

H) and the value obtained using
transient simulations in an alveolated duct and Eq. (28)

Λw Max. % Error Avg. % Error
1/64 1.4 0.71
1/32 1.5 0.79
1/16 1.6 0.91
1/8 2.5 1.0
1/4 4.5 1.9
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cases, the error increases, but given the combined discretization errors of the permeability calculation and the direct
CFD calculation, and the fact that the amplitude of motion is so large, this agreement is in fact quite satisfactory.
Note that the second term on the right side of Eq. (28), i.e., the transient term, was generally found to be negligible in
the CFD simulation; therefore the verification exercise has effectively shown that the pressure gradient estimated by
direct CFD calculations matches with that predicted using the proposed permeability model, and that the averaging
procedure is valid.

Overall, considering that the simplified porous media model, which requires only fairly basic calculations to
solve, is able to match the results of a complex CFD calculation to within less than 5%, even for an excessively
large amplitude of motion, the utility of this method of analysis is clear. Taking these results together implies that the
theoretical development proposed in this work is indeed sound and that transient effects can be neglected within the
closure problems. Further it shows that the impact of the alveolar expansion on the permeability is conveniently char-
acterized through nondimensionalization by the hydraulic diameter such thatK/(εD2

H) is a constant value throughout
the transient expansion/contraction process asDH changes.

3.3 Validation of the Porous Media Model

Complete validation of the porous media is complicated, due to the complexities of taking experimental measurements
of pressure and velocity in the lung parenchyma. That being said, the model has been partially validated to show
that when implemented into a full porous media model of the human lung, the total pressure drop is of the correct
order of magnitude. The permeability model described in this work has been previously implemented in conjugate
simulations of airflow in the human lung by DeGroot and Straatman (2016). In that work it was shown that the overall
pressure drop from inlet to the most distal airways was just more than 0.5 cm H2O which compared reasonably
well with a value of 1 cm H2O for normal breathing reported by West (2008). It should be taken into consideration
that the simulations of DeGroot and Straatman (2016) were conducted for about 80% of the normal tidal volume
for breathing, so the pressure drop would be expected to be somewhat smaller. Other factors that should be further
investigated include the specification of the diaphragm motion and the porosity distribution.

3.4 One-Dimensional Results for Flow in an Alveolated Duct

In this section, results are presented for one-dimensional flow in an alveolated duct, up to a terminal alveolus. In one
dimension, the volume-averaged continuity equation, Eq. (9), reduces to

∂⟨u⟩
∂x

= −∂ε

∂t
, (31)

while the volume-averaged momentum equation, Eq. (24) reduces to

ρf

[
∂⟨u⟩
∂t

+
2⟨u⟩
ε

∂⟨u⟩
∂x

]
= −ε

∂⟨p⟩f

∂x
+ µf

∂2⟨u⟩
∂x2

− εµf ⟨u⟩
K

, (32)

wherethe porosity is considered to be a function of time, but constant in space for the purposes of this analysis.
Defining the dimensionless groups,

x∗ =
x

DH,0
, (33a)

u∗ =
⟨u⟩

ωDH,0
, (33b)

p∗ =
⟨p⟩f

ρfω2D2
H,0

, (33c)

t∗ =
ωt

2π
. (33d)
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Equations (9) and (32) become
∂u∗

∂x∗ = − 1
2π

∂ε

∂t∗
(34)

and
1

2π
∂u∗

∂t∗
+

2u∗

ε

∂u∗

∂x∗ = −ε
∂p∗

∂x∗ +
1

4Wo2

∂2u∗

∂x∗2
− 1

4Wo2K0

(
DH,0

DH

)2

u∗, (35)

respectively, where

Wo =
DH,0

2

√
ρfω

µf
(36)

is the Womersley number andK0 = K/(εD2
H) is the value of the dimensionless permeability obtained from the

pore-level closure problem. To solve the problem described above, the porosity and hydraulic diameter of the duct
must be known as functions of time in order to properly define all of the parameters appearing in Eqs. (34) and (35).
In accordance with the scaling given by Eq. (29) the hydraulic diameter varies according to

DH(t∗)

DH,0
= 1+ Λw sin(2πt∗), (37)

whereDH,0 is the hydraulic diameter att = 0, corresponding to the mean length scale. To estimate the variation of
porosity with respect to time, we begin with the assumption that the solid (tissue) volume does not change since it is
incompressible (Owen and Lewis, 2001) which leads to the conclusion that the solid volume is given as

Vs = Vf,0

(
1− ε0

ε0

)
(38)

for all time, whereε0 is the porosity at the mean length scale. Noting that the fluid volume varies according to
Vf = Vf,0[1+ Λw sin(2πt∗)]3 and using this in the definition of the porosity results in

ε(t∗) =
ε0(1+ Λw sin(2πt∗))3

ε0 [(1+ Λw sin(2πt∗))3 − 1] + 1
(39)

and
∂ε

∂t∗
= − 6πε0 (ε0 − 1) Λw cos (2πt∗) [1+ Λw sin (2πt∗)]2[

3ε0Λw sin (2πt∗) + 3ε0Λ2
w (sin (2πt∗))2

+ ε0Λ3
w (sin (2πt∗))3

+ 1
]2 (40)

Results are to be obtained for an alveolated duct, where atx∗ = 0 there is a terminal alveolus such thatu∗ = 0
and the pressure is the alveolar pressurepa, which is referenced to zero. Solving Eq. (34) with the boundary condition
u∗ = 0 atx∗ = 0 results in a solution foru∗ as

u∗(x∗, t∗) = − 1
2π

∂ε

∂t∗
x∗, (41)

where∂ε/∂t∗ is obtained from Eq. (40). This result shows that the velocity is linear inx∗ such that the viscous term
in Eq. (35) is zero, and the equation for∂p∗/∂x∗ can be reduced to

∂p∗

∂x∗ = −1
ε

[
1

2π
∂u∗

∂t∗
+

2u∗

ε

∂u∗

∂x∗ +
1

4Wo2K0

(
DH,0

DH

)2

u∗

]
, (42)

whereall quantities on the right side of Eq. (42) are known for a given time, such that it can be numerically integrated
to obtain pressure profiles for given instants in time. The initial Womersley number, i.e., the Womersley number at
timet∗ = 0, is taken to be Wo = 0.01, which roughly corresponds to a normal breathing rate and average alveolar duct
dimensions. The initial porosity is taken to beε0 = 0.8, which is a typical value for the lung parenchyma (DeGroot
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and Straatman, 2016; Gehr et al., 1978; Kamschulte et al., 2013; Weibel, 1963). The amplitude of the wall motion
is taken to beΛw = 0.02329, yielding a typical 15% expansion in the fluid volume (Harding and Robinson, 2010;
Sznitman et al., 2009). Using these parameters, the dimensionless velocity profile can be obtained from Eq. (41) and
the pressure profile can be obtained by integrating Eq. (42) with respect tox∗. In this case, integration is performed
using a variable-step Runge-Kutta method, although numerical experiments revealed that only the last term in Eq. (42)
was significant for the parameters chosen for these cases. Therefore, subsequent results were simply obtained using
the analytical expression for the pressure, given by

p∗ = (16πεWo2K0)
−1

(
DH,0

DH

)2
∂ε

∂t∗
(x∗)

2
. (43)

Although in this case only the permeability term contributed to the pressure profile because of the relatively low
Womersley number for normal breathing, the full form of Eq. (42) may be required for high-frequency breathing or
perhaps in other applications where an expanding and contracting duct flow may be treated using the porous media
approach described herein.

The velocity profiles are plotted in Fig. 3 with Fig. 3(a) showing line plots of the data for discrete time points
and Fig. 3(b) showing a surface plot of the data over a complete breath cycle. Here it can be seen that at the time
pointst∗ = 1/4 andt∗ = 3/4, the velocity profile is zero everywhere since these times correspond to the maximum
and minimum expansions, respectively, where the flow is in the process of reversing its direction. Att∗ = 0 and
t∗ = 1/2 the velocity magnitudes are maximum since these times correspond to the peak expansion and contraction
rates, respectively. Since outward flow is denoted as being positive, the velocity is negative att∗ = 0 and positive at
t∗ = 1/2. It is also observed that all profiles are linear with respect tox∗ as implied by Eq. (41).

The pressure profiles are plotted in Fig. 4. These show a parabolic dependence ofp∗ onx∗ as implied by Eq. (43).
As would be expected, the same pressure profiles are observed att∗ = 1/4 (maximum duct size and porosity) and
t∗ = 3/4 (minimum duct size and porosity), since the fluid velocity is zero. Similarly, at the maximum expansion and
contraction rates, occurring att∗ = 0 andt∗ = 1/2, respectively, the maximum pressure magnitudes are attained.

Physically, these results show that under the present assumptions for alveolar expansion and contraction, the
volume-averaged velocity profile is linearly related to the distance from the terminal alveolus, while the pressure is
quadratically related. The shape of each profile is influenced by the instantaneous rate of change of porosity. The
pressure profile is also influenced by the instantaneous duct size, as well as the dimensionless permeability and
Womersley number.

3.5 Comparison to Poiseuille Flow Solution

Often, the pressure drop in airways is estimated based on the Poiseuille flow solution for flow in a circular cross-
section duct (Kuwahara et al., 2009). Such models do not generally take into account the influence of alveoli, so it is
of interest to determine the differences between this approach and the proposed model that does take into account the
alveoli. According to the Poiseuille solution,

d⟨p⟩f

dx
= −128µfṁ

ρfπd4
, (44)

whereṁ is the mass flow rate through the duct of diameterd. For one-dimensional flow with average velocity⟨u⟩
over the cross section of the duct, the mass flow is

ṁ =
ρf ⟨u⟩πd2

4
. (45)

CombiningEqs. (44) and (45) results in
d⟨p⟩f

dx
= −32µf ⟨u⟩

d2
. (46)

Volume 21, Issue 5, 2018



418 DeGroot& Straatman

(a)

(b)

FIG. 3: Plots of the dimensionless velocity as a function of the dimensionless coordinatex∗ and the dimensionless timet∗ for
initial Womersley number Wo= 0.01,ε0 = 0.8, andΛDH = 0.02329

Equation (46) may be rewritten in dimensionless form using similar dimensionless variables as before except using
the actual duct diameter in place of the hydraulic diameter. This results in

dp∗

dx∗ = − 8

Wo2

(
d0

d

)2

u∗. (47)
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(a)

(b)

FIG. 4: Plots of the dimensionless pressurep∗ as a function of the dimensionless coordinatex∗ and the dimensionless timet∗ for
initial Womersley number Wo= 0.01,ε0 = 0.8, andΛDH

= 0.02329

The equation for the dimensionless pressure gradient using the proposed model, assuming the permeability term to
be dominant, is

∂p∗

∂x∗ = − 1

4εWo2K0

(
DH,0

DH

)2

u∗. (48)

Volume 21, Issue 5, 2018



420 DeGroot& Straatman

Comparing the two equations, we find a similar direct proportionality between the pressure gradient and the
factor(DH,0/DH)2u∗/Wo2, where in the case of the circular duct the hydraulic diameter is simply the duct diameter.
Comparing the two equations further, it can be seen that the Poiseuille model would predict a value ofK0 equal to
(32ε)−1 which would not be a constant value due to the changing porosity. At an average porosity value ofε = 0.8, the
Poiseuille model would predictK0 ≈ 0.039, which is substantially different from the valueK0 = 0.00946 predicted
in this work. Therefore, this work suggests that the presence of alveoli surrounding a duct serves to decrease the
permeability of the duct, which also corresponds to an increase in pressure drop. For an average porosity, this increase
is more than fourfold. From a physical perspective it is believed that the increase in pressure drop arises from the
increased energy dissipated within the recirculation zones that are maintained within the alveoli.

4. CONCLUDING REMARKS

A theoretically based closure model has been applied to the study of air flow in an alveolated duct. The closure model
is based on the derivation of transport equations for the spatial deviations of velocity and pressure and the use of
constitutive equations to transform these pore-level quantities into volume-averaged quantities. The transient nature
of the flow as well as the spatially and temporally varying porosity causes some challenges; however, it is shown
using rigorous scaling arguments that these factors may be ignored at the closure level and that the closure problem
reduces to that for a fixed, constant porosity medium. The closure problem has been solved to obtain the permeability
of the alveolated duct geometry, the scaling assumptions were verified using direct simulation of flow in an expanding
and contracting alveolated duct, and some one-dimensional results for flow in an alveolated duct were presented. The
key outcomes of this work are the permeability of the alveolated duct, which enables volume-averaged simulations
to be conducted in large, three-dimensional regions of the lung parenchyma, as well as the simplified closure method
which allows the permeability to be obtained for alveolated ducts in a straightforward manner.
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