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ABSTRACT 

Groundwater infiltration into underground sewer systems has long been a costly issue for 

municipalities. With reinforced concrete pipe (RCP) being a primary option for sewer systems, 

existing hydrostatic testing methods conducted by manufacturers to measure internal pipe pressure, 

as required by specifications, do not reflect in-situ external hydrostatic conditions. This thesis 

records the development of a novel testing method to evaluate the RCP joint performance for 

infiltration. The test is safe and easy to conduct by RCP producers at the factory. The test method 

mimics field conditions of possible RCP joint gap and joint offset. Over 100 tests were conducted, 

including 600 mm, 900 mm and 1200 mm RCP with conventional single offset self-lubricated 

gaskets. This study also evaluates the gasket performance for infiltration. Pipe joint performance 

curves were developed based on the test results. Comparison to laboratory load-deformation tests 

on gaskets was conducted, indicating that predictions of the sealing potential derived using gasket 

geometry agreed well with the results of infiltration tests. The study shows that the joint gap plays 

an important role in the sealing potential. The developed apparatus allows the observation of gasket 

movement under infiltration pressure against the gasket leading to failure.  The performance curves 

also allow the prediction of an infiltration potential leading to a practical applicational procedure 

to guide RCP installation. A case study of deep RCP pipe subjected to groundwater pressure 

illustrated the usefulness of the performance curves to derive maximum allowable joint gaps, which 

contractors could rely on during RCP installation. The findings should allow deducing technical 

guidance on how water tightness of RCP can be achieved at installation below the prevailing 

groundwater level. Two oversampling methods: Synthetic Minority Over-sampling Technique 

(SMOTE) and Density-Based SMOTE, were employed to address the unbalanced dataset. 

Accordingly, applying advanced machine learning techniques, the scale of variation in the test data 

can be analyzed and accurately predicted using tree-based supervised classification methods: 

random forest, extra trees and gradient boosting.  
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SUMMARY FOR THE LAY AUDIENCE 

Groundwater infiltration into sewer systems is a costly problem for many municipalities. With 

reinforced concrete pipe (RCP) being one of the most commonly used pipe options for sewer 

systems, existing hydrostatic testing methods conducted by manufacturers measuring internal 

pressure do not reflect in-situ external hydrostatic conditions. This thesis presents the development 

of a novel testing method to evaluate the RCP joint performance for infiltration. The test is safe 

and easy to conduct by RCP producers at the factory. The test also mimics the field conditions of 

possible joint gaps and joint offsets. The test procedure was repeated many times for 600 mm, 900 

mm and 1200 mm RCP. The performance of commonly used single offset self-lubricated gaskets 

and various alignments were evaluated. Performance curves were developed based on the testing 

results. Comparisons to the laboratory load-deformation tests on gaskets were also conducted, 

indicating that predictions of the sealing potential derived using gasket geometry agreed with the 

results of the infiltration tests. The study shows that the joint gap plays an important role in the 

sealing potential. The apparatus developed allows the observation of gasket movements under 

infiltration pressures against the gasket leading to failure.  The performance curves also allow the 

prediction of an infiltration potential leading to a practical applicational procedure to guide the 

installation of the pipe. A case study of deep RCP pipe subjected to groundwater pressure 

illustrated the usefulness of the performance curves to derive maximum allowable joint gap, which 

contractors could rely on during RCP installation. The findings should allow deducing technical 

guidance on how water tightness of RCP can be achieved at installations below the prevailing 

groundwater level. Lastly, with the application of advanced machine learning techniques, the scale 

of the variation in the test data can be analyzed and predicted using classification methods. The 

modeling technique, procedure and accuracy evaluation are presented.  
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PREFACE 

I spent the first half of my career in the precast concrete industry after graduating from my 

master’s degree, specifically, with a reinforced concrete pipe manufacturer. When hearing 

about the superior performance of concrete pipe and many marketing articles on the 

embarrassing news of its counterparts, the industry was very slow in developing effective 

solutions to tackle two of its main challenges: leaky joints and hydrogen sulphide corrosion. 

These challenges led to a decline in the sanitary market in many places across the United States 

and Canada. In some parts of the United States, the market had vanished and was replaced with 

flexible pipes. As an engineer, we are trained to solve technical problems by applying sound 

engineering principles. Our solutions are built on a concrete research foundation. With great 

encouragement from my supervisor Prof. Moncef L. Nehdi, and the financial support from the 

president of my ex-employer, Brian Wood, I enrolled in the Ph.D. program at Western in 2017. 

Being a full-time student with a full-time job, these years were not easy. My experience in the 

industry allowed me to fast track the research making this possible. Despite the challenges in 

machine learning, which put me out of my comfort zone, the outcome was enjoyable. The 

knowledge of machine learning creates unlimited possibilities in this field because the industry 

is so behind in adopting the advantages of emerging technologies. This degree started another 

new chapter of my career. 
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CHAPTER 1  

 

 

 

1 Introduction 

The ingression of groundwater into sewage pipeline systems, known as infiltration, has 

been a challenge for municipalities as early as the 1970s. Part of the issue was due to ageing 

infrastructure. However, many newly constructed pipe joints have exacerbated the 

problem. Research and development in the joint performance of reinforced concrete pipe 

(RCP) have been overlooked. Over the past century, the RCP industry has rather focused 

on material structural strength and design theory. Yet, the century-old RCP faced 

tremendous threats from emerging flexible synthetic pipe materials. Among many 

technical challenges, leaky joints and microbial induced concrete corrosion have been the 

most problematic. When dealing with hydrostatic joint performance, the industry does not 

have a standardized test to validate the capacity of the existing joint designs and joint 

materials against external pressure. The current hydrostatic test required by the standard is 

for quality control purposes; and is limited in measuring the ability of the joint to withstand 

the internal pressure for 10 minutes. The measurement is binary and is incorrectly 

interpreted by the end-user.   

This thesis records the development of a new method to evaluate the RCP joint hydrostatic 

performance for infiltration. It offers a standard testing method, not only as quality control 

for concrete pipe manufacturers but also provides a channel of further development for 

better hydrostatic performance. The second part of the study takes the data collected from 

the experiment further into the artificial intelligence world. Advanced machine learning 

(ML) techniques are explored to allow predictions of leakage given predefined conditions. 
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Using supervised tree-based ML models and methods to account for the imbalanced data 

results in the best predictive accuracy of experimental results.   

1.1 Research Needs and Motivation 

Technological breakthroughs are needed to rejuvenate the RCP industry. In order to preserve 

the value of RCP, the foremost step is to mitigate the shortcomings of the existing aged 

specifications that fail to tackle leaky joints, deficient load tests, and microbiologically 

induced concrete corrosion (MICC) by hydrogen sulphate attack. In 2017, a university-

industry research program via synergy between Western University and Con Cast Pipe was 

initiated to enhance the mechanical, hydrostatic, and durability performance of RCP. As an 

overall research scope, it aims at RCP production cost reduction, developing robust and 

unbiased specifications, mitigating biogenic corrosion problems, and better meeting end-user 

expectations. This thesis focuses on the specific issue of joint infiltration for newly installed 

RCP sewers. 

1.2 Research Objectives 

The research objectives are to provide a groundwork to the RCP industry so that the RCP 

infiltration potential can be better understood, evaluated and mitigated. These objectives 

can be achieved by pioneering a testing standard that can adequately evaluate the capacity 

of the RCP joint against infiltration in the factory setting, easy enough to be conducted as 

a satisfactory quality test, and reliable enough to reflect the in-situ hydrostatic conditions.  

1.3 Thesis Outline and Format 

This thesis has been prepared in accordance with the integrated-article format predefined 

by the Faculty of Graduate Studies at Western University, London, Ontario, Canada. The 

contents are presented in eight chapters. Substantial parts of the thesis have either published 

or submitted for publication in peer-reviewed technical journals (Wong and Nehdi, 2018, 

Wong and Nehdi, 2020, Wong et al., 2020). The outline of the chapters is as follows: 
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Chapter 1 provides an introduction, along with the research background and objectives of 

the study. 

Chapter 2 provides a comprehensive literature review on RCP development history, the 

challenges on inflow and infiltration, specifications for RCP hydrostatic performance and 

the knowledge gap between the standards and the practical challenges. Chapter 2 also 

reviews the recent experimental developments on similar topics conducted by other 

researchers. 

Chapter 3 details the experimental concept, physical setup, testing procedures and the 

anticipated results. Chapter 3 also provides descriptions of the pipe samples and gasket 

sample selections.  

Chapter 4 provides information on pipe joint design and mechanical properties of rubber 

gaskets. The sealing potential created by both the gaskets and the pipe joints, and influence 

factors are covered in this chapter.   

Chapter 5 reports the testing results and evaluates the ultimate and operating capacity. 

Other results obtained in the experimental program, such as joint gap monitoring, are also 

reported. This chapter also provides preliminary findings and experimental observations. 

Chapter 6 presents joint the performance curves of three selected RCP sizes developed 

using the data collected from the experimental program. This chapter links the 

experimental and practical construction challenges in jointing RCP with respect to the 

hydrostatic performance for infiltration. An illustrative case study is presented to support 

the application of the performance curves developed from the experiment.  

Chapter 7 presents the use of machine learning techniques to predict the experimental 

outcomes based on the data collected from the experiment. Several classification 

algorithms are reviewed. The ML model is developed to select the best algorithms for this 

application. 

The entire study is summarized in Chapter 8. The main conclusions and recommendations 

that emanate from this work are outlined in this Chapter. 
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1.4 Original Contribution 

This research bridges a major knowledge gap between existing industry standards in 

evaluating the hydrostatic performance of the RCP joint and the misunderstanding of the 

actual performance when the pipe is subjected to infiltration conditions from high 

groundwater tables in the job site. The reported research describes the development of a 

novel experimental set-up and an original database supporting the method of evaluation. 

The key influential parameters on joint performance, including joint gap, joint offset, 

gasket type, pipe size, and test duration, are revealed. The outcomes were further modelled 

using machine learning techniques to provide adequate predictions.  

The study is divided into five phases with the following original contributions: 

1. Providing critical analysis of pertinent existing codes and standards for RCP 

outlining the gap between standards and end-user expectations.  

2. Developing a novel testing method including the mechanical apparatus, varied 

alignment setups, and procedures to evaluate the suitability of existing RCP joint 

designs and jointing materials. 

3. Collecting a unique and versatile, capturing the key influential parameters to 

produce RCP joint infiltration performance curves. 

4. Developing application procedures to quantify the RCP installation quality against 

site-specific groundwater conditions in order to mitigate the infiltration potential. 

5. Developing, for the first time in the open literature, RCP infiltration prediction 

models based on machine learning methodologies in order to open the doors for the 

use of ML in such applications. 
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CHAPTER 2  

 

 

 

2 Literature Review 

This chapter provides a brief history of RCP development and critical analysis of existing 

RCP standards worldwide, focusing on the challenges faced by the RCP industry in joint 

performance and concrete corrosion. Greater concerns regarding inflow and infiltration 

demand the need for this research. A review of several existing specifications and RCP 

infiltration research provides a background understanding of the research. Substantial parts 

of this chapter have been published in the journal Infrastructures (Wong and Nehdi, 

2018). 

2.1 Inflow and Infiltration 

In-situ joint performance has routinely become a focal point for RCP performance and a 

source of concern for infiltration (Pipeline, 1999). Given that the pipe materials are sound, 

and pipe structural design is adequate, two conditions must be met for infiltration to take 

place: (a) presence of groundwater, and (b) path where the groundwater can ingress 

through. Gapped, defected and displaced joints in newly installed pipes commonly 

contribute to the occurrence of infiltration (Fenner, 1990). In a recent report (Norton 

Engineering Inc. 2017), poor pipe jointing was claimed to be the main reason for 

infiltration. Leaky pipe joints are not an acceptable outcome for the owner. Singh and 

Adachi (2013) presented a theoretical bathtub curve of buried pipe indicating that the 

failure rate was relatively high, not only in aged pipelines but also in its earlier stage before 

entering the prime service period. Failure occurring right after installation is common, 
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considering possible infiltration caused by deficient and displaced joints during 

construction. Visual inspection sometimes may not be completely reliable because the 

evidence of InI varies based on the time of the year (Robinson et al., 2019). Yet, it is often 

too late to make appropriate accommodations at the time of the pipe project closing 

inspection. When leaks occur, fine particle migration is likely to follow. According to the 

industry mandate, a leak should not be accepted by the owner and should be sealed. The 

role of the RCP joints was reported in a 40 km sample of the pipe network, which showed 

that it had a major influence on the hydrostatic performance (Buco et al. 2008).   

Figure 1 shows a typical case of a severe infiltration (Type 3 as per ASTM C1840) through 

an RCP joint in a newly constructed sewer line observed in closed-circuit television 

(CCTV) inspection. To repair this type of problem, trenchless technologies such as 

injection grouting can be deployed (Collection Systems Committee, 2017). The repair 

cost can be extremely high in comparison to the cost of the pipe material and construction, 

especially in smaller diameter pipes, e.g. 1200 mm or smaller, where human access is 

restricted. The repair will often cause construction delays, increased cost and prolonged 

social impacts. Any field repairs, such as chemical grouting or structural lining, could fix 

the problem, but generally, make RCP less attractive to the designer.  

  

Figure 1: CCTV showing Type 3 Infiltration as per ASTM C1840 (2017). 
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A typical concrete pipe joint is considered as a moment-release joint, where no moment 

transfer takes place (Moore and Sheldon, 2012). The joint can rotate and cause separation 

of one side with respect to the opposite side of the pipe. RCP sections can respond to 

external loading and ground movement, which may cause joint rotation and/or 

displacement. Changing construction practice from one pipe section to another and non-

uniform bedding conditions can lead to earth load effects with shear force and moment 

rotation across the joint. Current RCP design codes only consider in-plane stresses and 

strains, ignoring the longitudinal effects due to the condition of the surrounding soil. 

Under-performing RCP joints may cause infiltration and subsequent loss of surrounding 

soil support. Sewer pipe allowing ingress of water can affect the soil-structure under 

roadways. In the case of corroded steel pipes, sinkholes can be created, causing economic 

loss, possible injury and even life loss (CBC, 2012).  

The RCP industry has often focused on promoting the superior mechanical strength of RCP 

over that of emerging pipe materials. Indeed, the support of the surrounding soil usually 

plays a less important role in RCP than that in the flexible pipe installations due to the 

higher pipe stiffness than that of the surrounding soil. The field joint performance is 

generally perceived as the responsibility of the contractor, not the manufacturer or sealing 

material supplier. This is reflected in the existing method of joint evaluation using a 

factory-performed test. This common test, required by the standards to evaluate hydrostatic 

performance, only examines exfiltration over a very short time period (Wong and Nehdi, 

2018), while infiltration is not assessed (CSA A257, 2014). Hence, it does not evaluate 

true performance but is rather a go-or-no-go quality assurance check. This test does not 

capture actual in-situ performance when the pipe incurs infiltration of groundwater. The 

hydrostatic performance requirements of the joint are usually stated in regional or 

municipal standards (ASSHTO 2009, MTO 2014, York Region 2011). Owners also 

commonly require the RCP to be watertight, resisting infiltration and exfiltration, zero 

leakage, or any other means of protecting groundwater from entering the sewage system.  

Engineers are responsible for explaining how water tightness of the underground pipes and 

structures are to be achieved at elevations below the prevailing groundwater level, or at 

least how the risk of infiltration leakage due to groundwater is to be mitigated. 
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2.2 Reinforced Concrete Pipe Development 

2.2.1 History of RCP 

Archeological evidence shows that sewer type construction has existed for thousands of 

years (OCPA, nd.). The documented history of gravity sewer pipe using rigid materials 

such as concrete, clay and bricks in North America can be traced back to the late 19th 

century (Schladweiler, 2017). Through scientific research, engineers have continuously 

evolved the pipe’s strength, durability, and joint performance. For instance, Marston and 

Anderson (1931) were the first to develop a rational design approach for a rigid pipe. They 

discovered that the installation conditions influenced the load acting on the pipe. Orlander 

(1950) and Spanglar (1960) further enhanced Marston’s theory by better describing the 

stress distribution around the pipe.  

In the mid-1960s, Frank Heger (1963) studied the structural behaviour of reinforced 

concrete pipe (RCP) under the three-edge bearing test. This test is still being used today as 

a primary structural testing method for rigid concrete pipes. The use of welded deformed 

wire fabric as pipe reinforcement was also reported by Frank Heger. It enhanced crack 

control and offered better bonding between the concrete and reinforcing steel, resulting in 

a substantial reduction of the needed reinforcing steel (Heger 1967). With advancements 

in computational technology, finite element modelling was used to simulate the pipe-soil 

interaction, which provided a better approximation of the earth pressure envelope around 

the pipe. In the 1970s and 1980s, Heger developed earth pressure distribution based on four 

standard installation methods. This was later published by the American Society of Civil 

Engineering (ASCE) (1993), AASHTO LRFD (2009) and the Canadian Highway Bridge 

Design Code (2014). Going into the new millennium, fibre-reinforced concrete pipe was 

investigated by the industry. Steel fibre for pipe reinforcement was adopted in European 

Standard BS EN 1916 in 2002. The use of steel fibre as primary pipe reinforcement was 

first published in ASTM C1765 in 2013, followed by using synthetic fibre-reinforced 

concrete pipe (FRCP) (ASTM C1818) in 2015. Several studies of fibre-reinforced concrete 

in Canada were published between 2012 and 2016 (Mohamed et. al. 2012). 
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2.2.2 Industry Challenges 

 Competition from Flexible Pipe Industry 

Since the commercialization of polyvinyl chloride (PVC) pipe in the 1950s, its lightweight, 

longer lay length, chemical resistance and leak-free features made a significant impact on 

the concrete pipe industry. Subsequent developments of other flexible pipe materials, such 

as corrugated steel pipe (CSP), high-density polyethylene (HDPE), polypropylene (PP), 

fibreglass pipe, and steel-reinforced high-density polyethylene (SRHDPE) offered a 

multitude of options to engineers when selecting pipe materials to suit design criteria. CSP 

and SRHDPE can be designed to 3600 mm and 2400 mm, respectively (Table 1).  

Table 1: List of flexible pipe products. 

Pipe Materials 
Size Range 

(mm) 

Length 

(m) 
Introduced Joint Source 

Polypropylene 

Pipe 
300–1500 4–6 NA 10.8 psi @ 1000 h ADS SaniTite HP 

Corrugated 

Polyethylene 
100–1500  1987 Watertight ADS N-12WT 

HDPE 

100–900 6–10 
1960s  

(Lester, 2017) 
Soil-tight Armtec BOSS 1000, 2000 

600–1500 6 NA 
Pressure rated at 5 psi 

with 10 psi surge 
ADS N12 Low Head 

Steel Reinforced 

PE 
600–2400 

4.2 or 

6.6 
NA 

Welded joint leak-free 

Test to 15 psi–3 psi load 

head, soil-tight 

Armtec DuroMax 

Fiber Glass 

Reinforced 
450–3150 0.75–6 

1960s  

(Curran, 2013)  

Pressure classes  

0–250 psi 
Hobas 

PVC 100–1500 -- 
1950s  

(Walker 1990) 
Pressure rated at 50 psi Ipex Ring Tite PVC DR35 

Corrugated Steel 

Pipe 
150–3600 -- 

1896  

(Rinker Materials 

1994) 

Soil-tight Armtec—HelCor 

RCP 300–3600 2.4 
>100 year  

(OCPA, nd) 

Watertight, test to 15 

psi 
OCPA 

The difference between flexible pipes and concrete pipes is that the flexible pipe relies on 

the soil as part of the structural support. Flexible materials interact with the surrounding 

soil under overburden load by deformation. The stiffness of the surrounding soil resulting 

from the level of compaction provides resistance to the deformation of the pipe. This is 

also known as the positive arching effect. Consequently, the installation of flexible pipes 

is more stringent than that for concrete pipe in terms of the geometry of the trench and 



11 

 

compaction effort of the backfill materials. However, the common misunderstanding of the 

differences in installation requirements between flexible and rigid pipes often puts concrete 

pipe at a disadvantage.  

Going into the 21st century, many flexible pipe companies introduced various innovative 

wall profiles to improve the pipe stiffness and reduce its deformation. With improved 

technology, hybrid materials, stronger mechanical properties and effective marketing, the 

flexible pipe increased its size range significantly, reaching 2400 to 3000 mm in diameter. 

Table 1 provides a list of the flexible pipe materials currently available in the North 

American market, showing their advantages over the rigid concrete pipe. With strong 

marketing, flexible pipe materials pose a real challenge for concrete pipe, despite that the 

durability of such pipes is yet to be proven considering that, other than PVC, these products 

have been on the market for less than 25 years. 

 Hydrostatic Performance Challenges 

There is a need to preserve the advantages of reinforced concrete pipe through 

understanding the expectations of the end-user and the advent of technological 

advancements and innovations that can propel its performance and bridge the gap between 

the market needs and current standards. A pipeline is expected to resist the infiltration of 

groundwater or soil and resist the exfiltration of the flow (MTO, 2014). The pipe joint is 

expected to withstand movements of the pipe, such as deflections, without causing leakage. 

Profiled gaskets, O-ring gaskets or welded joints are needed where the groundwater level 

is above invert, and infiltration cannot be tolerated, especially in sanitary applications. The 

term “water-tightness” is commonly used by specifiers to describe this condition, but this 

is usually misinterpreted by the pipe manufacturers. Pipe manufacturers usually perform 

limited routine hydrostatic tests internally and assume that the joint performs equally to the 

corresponding external pressure. The watertightness of a joint is interpreted based on 

laboratory results from the gasket supplier. Hydrostatic pressure was quantified, for 

instance, by the Ministry of Transportation Ontario (MTO) Gravity Pipe Design Guideline 

(MTO 2014) at 10.5-m head for RCP and 7.5-m for HDPE and PVC without a leak. This 
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quantifies the hydrostatic performance expectations and conditions of any gravity sewer, 

including RCP. The joint performance of RCP was mentioned in several reports and 

publications (MTO 2014, Pratt et al. 2011). Joint failures were reported due to ground 

movement (e.g., soil settlement), infiltration and exfiltration caused by installation and 

joint sealant materials, and inadequate design and application.  

 Bio-Corrosion Challenges 

The challenges of microbiologically induced concrete corrosion (MICC) pose a significant 

threat to RCP used to carry sewage. Concrete corrosion due to the exposure to hydrogen 

sulphide in the sewerage environment was first reported by Parker (1945) in 1945. 

Hydrogen sulphide gas induced by bacteria growth on the interface between the sewage 

and the pipe forms sulfuric acid. The acidic environment rich in sulphate corrodes the upper 

part of the concrete pipe, causing peeling and reduction in wall thickness and subsequent 

reinforcing steel corrosion. Figure 2 exhibits a 40-year old pipe removed from its service, 

showing the level of the sewerage. The deterioration results in mechanical strength 

reduction and hence, service life reduction. Wu et al. (2018) recently reported a reduction 

in service life from 75 and 100 years to less than 20 years for a concrete tunnel segment in 

Edmonton, constructed in 2001. 50% reduction in the service life of concrete truck sewers 

were reported in their findings, indicating various deterioration due to the biogenic 

corrosion of concrete. In recent years, various researchers have explored developing 

prediction models for the concrete pipe wall reduction rate and service life span 

(Vollertsen et al. 2011, Sulikowski et al. 2016, Bielefeldt et al. 2017) by considering 

factors that influence MICC. New findings, however, still require implementation in 

concrete pipe standards so that innovative improvements can be introduced in full-scale 

RCP production.  
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Figure 2: A 40-year-old concrete pipe showing the level of sewage. 

2.3 Specification Review 

In order to develop technical solutions for the abovementioned challenges, the critical 

analysis was performed in the selected area by comparing existing RCP specifications. The 

manufacturing standards of RCP used in five concrete pipe consumption countries 

representing a quarter of the world’s population were compared. These include Canada, 

the United States of America (US), the United Kingdom (UK), Australia and New Zealand, 

and the People’s Republic of China (China). These countries are hereafter called the study 

area. The governing RCP standards in the study area are listed in Table 2. In addition to 

the geometry and tolerance requirements, the RCP acceptance criteria in the study area 

consist of structural strength, hydrostatic performance, and concrete quality. Table 3 

exhibits the similarities and differences between the various acceptance criteria.  
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 Table 2: List of RCP standards. 

Study Area 

Design 

Standard and 

Reference 

Materials and 

Manufacturing 

Specification 

Structural 

Strength Testing 

Standard 

Hydrostatic 

Performance 

Testing Standard 

Canada 

CSA S6  

OCPA Concrete 

Pipe Design 

Manual 

CSA A257.2 (RCP) CSA A257.0 CSA A257.0 

USA 

ASCE15  

ACPA Concrete 

Pipe Design 

Manual 

ASTM C76 (RCP)  

ASTM C1765 (SFRCP)  

ASTM C1818 (SynFRCP) 

ASTM C497 
ASTM C443  

ASTM C1628 

United 

Kingdom 
BS EN 1295 

BS EN 1916  

(RCP, SFRCP) 
BS EN 1916 BS EN 1916 

Australia & 

New 

Zealand 

AS/NZS 3725 
AS/NZS 4058 (RCP)  

AS4139 (FRCP) 
AS/NZS 4058 AS/NZS 4058 

China CECS 143 GB/T11836 (RCP) GB/T16752 GB/T16752 

Table 3: Acceptance criteria for RCP. 

Study 

Area 
Materials 

Durability 

Test  

Visual 

Inspection  

Concrete 

Strength 

Reinforcement 

Placement and 

Amount 

Load 

Test 

Hydrostatic 

Test 

Canada  Absorption Yes Yes  Yes Note 1 

USA 1 Yes Absorption Yes   Yes Note 2 

USA 2 Yes Absorption Yes Yes 
Cover and 

amount 
 Note 2 

UK  Yes Yes  Cover only Yes Yes 

Australia 

& New 

Zealand 

 Absorption Yes  Cover only Yes Yes 

China   Yes Yes Cover only Yes Yes 

Note 1—owner required; Note 2—joint conform to ASTM C443, C990, C1628 or other specifications. 



15 

 

The study area was selected to cover countries having well-established concrete pipe 

associations and/or related industrial, non-profit regulatory bodies. The US and Canada are 

selected as a representation of North American standards. The American Standards of 

Testing and Materials (ASTM) are widely adopted and referenced around the world. British 

Standards were selected as a representation for European countries and many 

Commonwealth Nations. Countries such as Malaysia also adopt British Standards for 

reinforced concrete pipe. Hong Kong, a former British oversea colony, also adopts British 

Standards for drainage design guides. Australia and New Zealand are part of the front end 

of pipe technology advancement and were also selected. China, with about 19% of the 

world’s population, is one of the fastest-growing economies in the world, was also selected. 

Its densely populated metropolises experience rapid urbanization along with high demand 

for infrastructure development, including drainage systems, and thus the rationale for 

including it in this study. Table 4 showed the total population in 2013 covered by the 

standards studied in this Chapter. 

Table 4: Population of studied area (Population Reference Bureau 2013). 

Study Area Population (Million) % 

Canada 35 0.5 

USA 316 4.4 

United Kingdom 64 (700) 0.9 (9.8) * 

Australia & New Zealand 27 0.4 

China 1357 19.0 

Total (Study Area) 1799 25.2 (34.1) * 

Total Population 7137  

* () population of Europe. 

The study endeavours to reveal the shortcomings of current standards and the discrepancy 

between them and the owners’ expectations, aiming at supporting the need for change and 

the potential development of standards that capture recent technological RCP 

advancements. In particular, hydrostatic pressure performance evaluation from those 

specifications is presented in subsequent sections. Full study focussing on comparing 

structural strength examination and concrete durability measurement provisions in current 

RCP standards was published by Wong and Nehdi (2018). 
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2.4 Specifications Review for Hydrostatic Performance 

2.4.1 General 

Three approaches were categorized in the specifications reviewed from the study areas 

(Table 5): joint quality tests, pressure rating evaluations, and commissioning tests. The 

first two methods are performed by pipe suppliers in the factory, while the latter method is 

completed by contractors in the field after installation of the pipeline. 

Table 5: Summary of Joint Performance Standards 

Standard 
Ori.

* 

No. 

of 

Pipe 

No. 

of 

Jt. 

Med. 

** 

Dir. 

*** 
Pressure Limit (kPa)# 

Test 

Duration 

Accept. 

Criteria 

Leak 

Exam. 

Joint Quality 

CSA A257 H 3 2 W I 103(A),90(D),35(O) 10 min No leak Visual 

ASTM C443 X 2 1 W I 90 (A), 70 (D) 10 min No leak Visual 

ASTM C990 V 2 1 W I 90 (A) 10 min No leak Visual 

ASTM C1628 X 2 1 W I 90 (A), 70 (D) 10 min No leak Visual 

ASTM C497 H 2 1 W E Owner spec. Owner spec. No leak Visual 

AS/NZS 4058 

H 4 3 W 
I 

90 (A) 60 min 
Limit 

Leakage 
Measure  

V/H 1 0 W 

I 90 
90 sec/10 

mm wall 

Limit 

Leakage 

  

Measure  

I 
50, +20% of Operating Visual 

BS EN 1916 H 2 1 W I 50 (A), 50 (D), 50 (O) 15 min   Visual 

GB/T 16752 V/H 1 0 W I 60 CL1, 100 CL2,3 10 min No leak Visual 

Pressure Rated 

AWWA C302 H 
2

+ 
1+ W 

I Operating 48 hours No leak Visual 

I 120 % of operating 20 min No leak Visual 

ASTM C361 X 2 1 W I 
120% of spec 75-300 

 375 (A), 375 (O) 

Not 

specified 
No leak Visual 

In-field Quality 

ASTM 

C1214 
H 

V

ar 

Va

r. 
A E Initiate at 23.7 (B) 

0.3 – 6 

min/100ft 

based on 

size 

Limit 

Leakage 
Measure 

ASTM C969 H 

< 

70

0ft 

Va

r. 
W I/E 

Min. 6 (B) 

(2ft or 0.6m head) 
  

Limit 

Leakage 
Measure 

ASTM 

C1103 
H 2 1 

A / 

W 
E 24 > GWT (B) 5 sec 

Limit 

Leakage 
Measure 

*Orientation: H – Horizontal, V – Vertical, X – Not specified,  

**Testing Media: W – Water, A- Air,  

***Pressure Direction: I – Internal pressure, E – External Pressure,  

# Testing Position: A – Aligned, D – Deflected, O – Offset, B – as built 
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2.4.2 Internal Pressure Tests for Joint Quality 

Standard practices such as CSA A257.2 (2019), ASTM C443 (2012), ASTM C1628 

(2017) and BS EN 1916 (2002), AS/NZ 4058 (2007) and GB/T 16752 (2006) evaluate 

the joint performance by internal hydrostatic pressure. Pipes are horizontally or vertically 

connected and plugged using bulkheads at each end. One to four test pipes are required in 

the setup. Figure 3 illustrates various hydrostatic test setups adopted in the study areas, 

and Table 6 summarized the internal hydrostatic performance requirements of each study 

area. This is a common method and is widely adopted by pipe manufacturers. The duration 

of the test varies from 2 min to 10 min, depending on the standard. The target pressure is 

maintained, and the technician is required to observe whether leakage occurs. This test also 

evaluates the performance with open joint, i.e. while deflecting the pipe alignment to force 

an open joint. CSA A257.2 and BS EN 1916 also evaluate the performance when the joint 

is subject to a shear force creating a joint offset. In the joint offset, the annular space (space 

in the joint), when maximized at one side, creates minimum compression in the rubber 

material, hence the worst hydrostatic performance. However, the main purpose of these 

tests conducted by the pipe manufacturer is mere quality assurance of the product. Most of 

these tests have a target pressure, e.g. 103 kPa for CSA A257.2 and 90 kPa for ASTM 

C443. The test results are binary: pass or fail, and rarely evaluate the true capacity of the 

joint. The tests also evaluate the ability of the joint to withstand internal pressure and do 

not correlate to external pressure. In addition, the duration of tests is short, and the pipe 

sizes are limited to smaller diameters in the interest of safety. No working pressure is 

determined from this group of testing methods, leading to some misinterpretation or misuse 

of the standards. 

2.4.3 Internal Pressure Tests for Pressure Rating 

Similar to the test methods described above, AS/NZS 4058 (2007), AWWA C302 (2016) 

and ASTM C361 (2014) adopt the same testing methodology and provide pressure ratings. 

Among these standards, AWWA C302 and ASTM C361 are technically considered to be 

used for examining pressure pipe. The pressure rating is determined by testing the pipe 
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assembly to a pressure higher than the specified level, usually 20%. These standards are 

more stringent and are sometimes being specified in gravity sewer applications that require 

an elevated joint performance. ASTM C361 requires evaluating the pressure rating under 

both aligned and offset positions. However, like those tests performed by the manufacturer 

described in the previous section, these tests only examine the internal pressure rating and 

do not correlate to field performance. 

Table 6: Hydrostatic performance test summary 

Study Area 

# of 

Test 

Pipes 

Test Ori. Straight Alignment  Deflection 
Differential 

(Shear) Load 

Joint 

Shear Test 

Other 

Requirements 

Canada 

(CSA A257) 
3 Horizontal 

103 kPa  

(10 min) 

90 kPa  

(10 min) 

35 kPa at  

10 min  

45 kN shear 

load 

Shear load 

during 

hydro 

Owner’s 

requirement 

Not required if size 

larger than 1200 

mm 

US 

(ASTM) 
2 

Horizontal 

or Vertical 

90 kPa  

(10 min) 

69 kPa  

(10 min) 
Not required 

Shear load 

without 

hydro 

Owner’s 

requirement 

UK 

(BS EN 1916) 
2 Horizontal 

50 kPa  

(15 min) 

50 kPa  

(15 min) 

50 kPa for 15 

min 

50 kPa for 

15 min 

Not required if wall 

is thicker than 125 

mm 

China 

(GB/T 16752) 
1 

Horizontal 

or Vertical 

60 kPa CL1 (10 min)  

100 kPa CL2 & 3 (10 

min) 

Not 

specified 
Not specified -- 

Not required if wall 

is thicker than 150 

mm 

Australia/New 

Zealand 

(AS/NZ 4058) 

1 
Horizontal  

Vertical 

90 kPa  

(90 s/10 mm wall 

thickness) 

Not 

specified 
Not specified -- -- 

Australia/New 

Zealand 

(AS/NZ 4058) 

4 Horizontal 

90 kPa ≤ 0.6 

mL/mm/m  

loss rate in 1 h 

Not 

specified 
Not specified -- -- 

Australia/New 

Zealand 

(AS/NZ 4058) 

4 Horizontal 

Pspec = pressure rating  

Ptest = 1.2 Pspec  

Pult = 1.5 Pspec for 30 s 

Not 

specified 
Not specified Yes 

Contract 

requirement 

2.4.4 In-field Tests for Infiltration 

In-field tests are far more effective in detecting leaks under service conditions. They allow 

the contractor to measure the amount of leakage using air or water after installation of the 

pipeline. These tests are part of sewer pipe acceptance requirements against infiltration. 

However, some of these tests can be cumbersome and time-consuming to perform. About 

69% of municipalities in Canada do not require these tests (Norton Engineering Inc., 

2017). For an infiltration test such as ASTM C1103 (2014), a certain level of groundwater 

is needed, which may not be available at the time of the test. Other standard tests, such as 
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ASTM C969 (2017) and ASTM C1214 (2013), allow pressure reduction over a long 

section of pipe. If the total leakage exceeds the limit, it is difficult to identify which joints 

are the source of the problem. In addition, these tests are usually difficult to execute during 

construction and only examine the pressure resistance for a short period. These tests are 

the only way to examine the quality of pipe installation, and many municipalities and 

regions adopt them for commissioning infiltration acceptance criteria. Criterial limits vary 

from location to another, as shown in Table 5. 

 

Figure 3: Illustration of various hydrostatic test setup standard configurations. 
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2.5 Gaps in Standard Specifications 

In the case of sanitary sewer applications, watertight joints are expected to provide flow 

continuity. A watertight joint is defined as one that provides zero leakage against water 

infiltration and exfiltration for a specific head or pressure (ASSHTO, 2009). The Ontario 

Ministry of Transportation (2007) specifies that all pipe joints shall provide resistance to 

infiltration of groundwater with specified pressure to match the typical exfiltration 

performance of 103 kPa (10.5 m of hydraulic head). In most municipalities, infiltration 

criteria are considered in designing pipelines, as shown in Table 7. For example, 

infiltration criteria in the York Region, Ontario, Canada (2011) and OPSS 410 (2012) are 

limited to 0.075 litres per millimetre of pipe diameter per 100 metres per hour. In the case 

of a 600 mm diameter pipe, the maximum permissible leakage due to infiltration is 

calculated to be 45 litres per 100 metres length per hour. Other municipalities have specific 

pipe joint requirements against infiltration. For instance, the City of Surrey, British 

Columbia, Canada (2016) requires an appropriate design of pipe joints for infiltration if the 

high groundwater table rises above the pipe obvert.  

To validate the performance of RCP against infiltration, in-situ testing after pipe 

installation is required to demonstrate the limit of infiltration and exfiltration. ASTM C969 

(2017) limits infiltration to 200 gallons per inch pipe diameter per mile in 24 hours (0.0927 

litres per millimetre diameter per 100 metres per hour). OPSS 410 (2012) limits leakage to 

0.075 litres/millimetre diameter per 100 metres of pipe per hour, which is less than the 

ASTM C969 requirement. Such performance requirements are referenced in designing the 

hydraulic capacity but usually have no relationship to the groundwater conditions, joint 

design, and installation quality. Moreover, the Region of Peel, Ontario, has recently 

updated its manhole design standards for new sanitary sewers to completely restrict the 

ingression of water by specifying multiple levels of joint protection and adopting the use 

of pressure pipes (Region of Peel, 2019). However, there is neither routine evaluation nor 

validation against infiltration being conducted by pipe manufacturers.   

The presence of groundwater is one of the performance criteria that should be adequately 

considered for RCP joints. Presently, design requirements generally neither consider nor 



21 

 

require validating infiltration performance by the pipe manufacturer. If the pipe is buried 

5 m, 9 m or 12 m below the groundwater level, the joint infiltration resistance shall be 

designed to withstand at least 50 kPa, 90 kPa, and 120 kPa, respectively. The groundwater 

level is maintained stable for a long duration, which puts the pipe under sustained pressure. 

Most existing hydrostatic tests and in-situ infiltration tests for system commissioning 

conduct measurements over a very short period. Existing practices do not warrant the long-

term hydrostatic performance of RCP under sustained pressure. This reveals a gap between 

end-user expectations and industry practices. Without proper standard validation of RCP 

infiltration prior to installation, the manufacturer and contractor are exposed to high risk, 

including litigation and financial obligations. 

Table 7: Infiltration Allowance for Sanitary Sewer 

Municipalities Location Reference  

Year 

Reference 

Section 

Infiltration Criteria 

Region of Peel Ontario, 

Canada 

July 2009 Section 2.3 0.0002 m3/s/ha  

(0.2 L/s/ha) 

City of 

Edmonton 

Alberta, 

Canada 

December 2014 Section 8.7.1 0.28 L/s/ha 

City of Toronto Ontario, 

Canada 

November 2009 Chapter 2 0.26 L/s/ha 

Region of York Ontario, 

Canada 

March 2017 Section 26.12.2 0.075 L/mm/100m/hr 

City of Surrey BC, 

Canada 

March 2008 

Kerr Wood Leidal 

Associated 

Engineering 

(2008) 

Section 4.1.4 

Section 4.3.2 

11200 L/day/ha  

(0.13 L/s/ha) 

OPSS 410 Ontario, 

Canada 

November 2012 Clause 07.16.03 0.075 L/mm/100m/hr 

ASTM C969 US 2017 
 

200 

Galloon/inch/mile/day  

(0.0927 

L/mm/100m/hr) 
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2.6 Recent Development for Infiltration Test 

A few non-standard methods for evaluating infiltration were developed by gasket suppliers. 

The concept was to use a secondary gasket to create a space in the joint for pressurization. 

These tests require horizontal alignment with visual examination during the test (Hamilton 

Kent, Ltd.). This test method was recently included in ASTM C497 (2019) as part of the 

standard test for infiltration. The test duration and pressure level are owners specific, and the 

test result is usually binary: “leak” or “no-leak”. Unlike exfiltration, where visual inspection is 

conducted from the outside of the pipe, it is nearly impossible to conduct visual inspection 

effectively on the inside of the pipe if the pipe is less than 1200 mm.  

Fenner (1990) developed a method to test a 300 mm clay pipe joint for infiltration by clamping 

the joint with the surrounding rubber sleeve (Figure 4). The maximum pressure exerted on the 

rubber seal was a 5-meter hydraulic head (50 kPa) equaling to the height of the water level in 

the standpipe. The leakage was monitored through the piezometer tube. Fenner also examined 

the joint performance under a vertical angular deflection between two pipes, similar to the 

deflected alignment and with the damaged joint. Despite the sample only limited to 300 mm, 

and the material was not reinforced concrete, this method was the earliest reported testing 

method for infiltration. 

 

Figure 4: Test setup for infiltration by Fenner (After Fenner, 1990). 
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A new testing protocol for a water tightness of culvert joints was proposed to AASHTO by Moore 

and Garcia (2015). The testing method was designed to accommodate any pipe and sealing material 

so as to have a universal method of evaluation. Two pipe sections plugged on both ends are 

evaluated horizontally with either an internal or external pressure. The testing frame allows the 

pipe joint to deflect or to be offset under shear load (Figure 5). The external pressure is applied 

with a partial vacuum, which may not truly examine infiltration. Leakage is visually observed 

externally. In their study, Moore and Garcia conducted a total of nine tests using 600 mm RCP, 

including eight tests with 90 kN to 100 kN applied shear force on the joint. Among those eight 

tests, three involved a combination of joint deflection up to 19 mm. One of the tests was pressurized 

internally with no shear force but an increasing joint gap. Leakage was observed when the gap 

reached 38 mm. This test can universally adopt any pipe materials; however, the size of the test 

set-up is costly, considerably large, and may only accommodate up to a certain pipe size. The test 

is also an internal test at low-pressure levels. Elevated pressures may create safety concerns. Eye 

witnessing of a leak is still the main step in the determination of the test.  

  

Figure 5: Test setup for joint alignment (top), offset (centre) and joint deflection 

(bottom) proposed by Moore and Garcia (2015). 

 

Joint Alignment 

Joint Offset 

Joint Rotation 
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A novel RCP joint infiltration test was developed and reported in this thesis based on a vertical 

setup of two pipe sample sections (spigot and bell). This simple test can easily be performed by 

RCP manufacturers in their production facilities. The detailed test setup and procedure will be 

described in Chapter 3. Table 8 compares the tests reported by Wong and Nehdi (2018), Moore 

and Garcia (2015), Fenner (1990) and the conventional CSA A257 exfiltration test. 

2.7 Summary 

In summary, this chapter provides a background understanding of RCP joints, industry 

standards related to hydrostatic performance, and the divide between existing standards and 

the water-tightness requirements set by the end-users. It concludes that: 

1. The standard tests do not effectively evaluate the external pressure induced by 

groundwater through infiltration. 

2. The standard tests do not meet the owner’s watertight requirement against infiltration. 

3. Infiltration is currently a major issue faced by most of the municipalities.  

4. An effective, reliable and robust RCP standard infiltration testing method is yet to be 

developed, standardized and adopted by RCP manufacturers. 

5. No literature was found that reports the hydrostatic performance of the RCP joint 

against infiltration.   

In order to preserve RCP products as a major drainage material, further research is needed to 

mitigate the weaknesses of the RCP joint performance against infiltration. It is important to 

develop a simple, user-friendly and reliable test for the industry to adopt.  
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CHAPTER 3  

 

 

 

3 Experimental Development 

This chapter provides details of the experimental developments, including the concept of the 

tests, the experimental apparatus, and the testing setup. Two testing procedures, for ultimate 

and operating joint capacities, and the results classifications are also detailed in this chapter. 

Later in the chapter, the selection of the pipe samples and gasket samples are provided. 

Substantial parts of this chapter have been published in Wong and Nehdi (2018). 

3.1 Testing Concept 

The tests developed in this study were to provide easy setup, safe operation and quantitative 

measurements of RCP joint leakage, to quantify the RCP short-term ultimate pressure and to 

evaluate its long-term performance during operation. Figure 6 shows the unique vertical setup 

with a section of the bell and spigot of a pipe that provides ease of access to the inside face of 

the pipe sample. Figure 7, an enlarged cut face of the test joint illustration, shows a small 

annular space between the primary and secondary gaskets to be pressurized. The pressure is 

created using compressed air to push the water into the annular space through a small inlet 

tube. The hydrostatic pressure variation inside the annular space is constant in the vertical setup 

because the joint gap is on the horizontal plane. Conversely, in the horizontal setup described 

in ASTM C497 (2019), the pressure varies inside the annular space due to the elevation 

differential. The primary gasket is used to seal the RCP after the pipe is placed in service. The 

purpose of the secondary gasket is to force failure in the primary gasket during the test; 

therefore, those gaskets are carefully selected based on the joint detail of the test RCP.  

Suppliers are consulted for the adequate gasket based on the target testing pressure, material 
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properties, and available space. Small inlet and outlet holes are drilled at 180 degrees through 

the pipe and in between the primary and secondary gaskets. Plastic tubes are sealed with epoxy 

before conducting the test to allow water to be introduced into the space.  To ensure a safe 

testing process, the equipment was designed to handle a maximum pressure of 685 kPa, 

equivalent to 68.5-m of hydraulic head. Unlike traditional hydrostatic tests, only a very small 

amount of water is used in the confined annular space and the testing system. Hence, the filling 

time is much shorter during the setup. In addition, the new test has no flooding hazard of the 

testing area when a failure occurs because the maximum amount of water that is possible to 

leak out is in the water supply connecting cylinder. The operator is expected to monitor and 

quantify leakage during the test in addition to visual inspection. 

    

Figure 6: Test Setup. 
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Figure 7: RCP Joint Test Detail. 

 

3.2 Mechanical Apparatus 

The mechanical apparatus shown in Figure 8 is used to control the compressed air pressure 

introduced into the annular space of the RCP joint. The pressurization scheme is shown in 

Figure 9. The apparatus includes an air inlet valve, pressure regulator, pressure gauge, water 

supply connecting cylinder (WSCC), connecting hoses, and a water outlet valve. The pressure 

regulator allows the operator to control the incoming pressure and maintain the required target 

testing pressure, which is displayed in the pressure gauge. The WSCC made of a 4-inch 

diameter semi-transparent fibreglass pressure cylindrical chamber contains enough water at 

the time of the test to supply the water demand in the annular space. The cylinder allows the 

water loss during the test to be monitored and measured if a system leakage and/or joint leakage 

occur. The water outlet valve is used to introduce water to the system during the setup process. 

When filling the annular space using the inlet valve, the space is considered filled when water 

escapes from the outlet valve. The outlet valve is then kept closed during the entire test. The 

design of the apparatus is included in Appendix A. 
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Figure 8: Pressurization Apparatus. 
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Figure 9: Pressurization Mechanical System Scheme. 

3.3 Testing Setup 

Two pipe sections consisting of a bell end and spigot end, as shown in Figure 10, are aligned 

and stacked vertically (Figure 6). These sections are saw-cut from the same random pipe 

sample. The total height of the combined pipe sections is between 700 and 1000 mm for ease 

of assessment and monitoring of the interior pipe face during the test. Figure 11 shows the 

interior of the test assembly setup. Shorter test pipe sections allow the operator to safely 

monitor the inside of the pipe during the test. The test joint is created by carefully joining two 

pipe sections sealed with a primary gasket and a secondary gasket. The primary gasket is seated 

in its design location, and the secondary gasket is placed between the shoulder of the pipe 

spigot, and the bell end face to create the confined space for pressurization. When a larger gap 

is required, a plastic spacer ring is sandwiched in between the pipe samples below the annular 

space. Both joined pipe sections are strapped down to the supporting steel base frame to create 

restraint from separation during the test. Due to the internal pressure generated, a large uplift 

force is expected. The number of tie-down straps and the strap rating are calculated based on 

the target testing pressure and the geometry of the annular space. The base frame is specially 

designed to carry the expected forces from the strap. In comparison to the field condition, the 
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restraints of the pipe joints are generated by groundwater pressure all around and in between 

the joint and any adjacent joints.  

Before the start of the test, water is introduced from the outlet of the system to the inlet and 

fills up the WSCC. This process is to ensure that the entire annular space is filled with water, 

and all air is expelled. It is suggested to pressurize the setup to a minimum of 50 kPa to detect 

any leaks associated with the setup before the formal start of the test. The frame used in this 

research was designed for a maximum pipe size of 1829 mm outer diameter tested up to 685 

kPa. However, the size of the frame does not limit the pipe size as it can be expanded to 

accommodate a larger pipe.   

   

Figure 10: Test Pipe Section (left) Bell End (right) Spigot End. 

  

Figure 11: Interior of Test Pipe Section. 



 

36 

3.4 Setup with Joint Gaps 

In the conventional test, the pipe alignment is deflected to examine the opened joint's hydrostatic 

performance. The deflected alignment is difficult to achieve because it creates a non-uniform 

annular space for the secondary gasket to work. Producing a non-uniform gasket is not cost-

effective. In order to examine the joint with open gaps under the infiltration condition, a plastic 

spacer ring is introduced in between the joint. The purpose of this additional ring spacer is to 

increase the annular space and provide a larger area for the gasket to move during the test. This 

simulates the joint gap described in the earlier section of this Chapter. Following the same testing 

procedure, different thicknesses of rings from 6 mm to 13 mm are used in the study to monitor the 

effect on the hydrostatic performance with respect to the joint gap.  Figure 12(a) shows a white 

plastic spacer ring below the secondary gasket that is sandwiched between the pipe samples in the 

joint. Figure 12(b) shows the placement of the spacer ring during the test setup.  

     

Figure 12: (a) A spacer ring is placed in between the pipe sample to create the desired 

joint gap. (b) The gap spacer ring is placed below the secondary gasket to open the gap 

of the pipe joint. 

Plastic spacer ring 
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3.5 Setup with Joint Offset 

RCP joints can be offset by external factors such as the differential settlement of bedding materials, 

differential loads from the backfill or other construction loads. When the joint is offset, the annular 

space is reduced on one side and increased on the opposite side. This leads to a reduction in 

hydrostatic performance on the side, having increased joint gap. The joint detail used in this 

research allows the joint to be offset by 3 mm. To simulate the joint offset, a lateral load is applied 

using a hydraulic jack on the upper test section with two reaction back supports on the lower test 

section. Figure 13 illustrates the test setup for offset joints. To provide a safe operating condition 

and maintain the offset during the test, a jacking post with a hydraulic pump is mounted on the 

base frame in addition to the typical setup described earlier. Two back support posts are mounted 

on the opposite side at about 30 degrees apart. The pump is then connected to a jacking device. 

Before offsetting the joint, the distance between the pump and the post is measured as a reference. 

Figure 14 shows the complete test setup with joint offset and the measurement of the offset joint.  

 

Figure 13: Illustration for offset joint. 
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3.6 Testing Procedure 

3.6.1 Measurements 

During the test, the following parameters are monitored and recorded: pressure, time, water 

level in the WSCC, and joint gap movement. The testing pressure is measured in kilopascal 

(kPa) at a minimum of 25 kPa intervals. Time measurements are conducted using a digital 

stopwatch displayed near the pressure gauge. The water level in the WSCC with respect to the 

starting point is measured in millimetres at each pressure interval using callipers. The change 

in water level is recorded and converted to litres based on the calculation of cylinder volumetric 

change, which indicates the loss of water in the WSCC, as discussed below. Joint gap and its 

movement are critical in the joint hydrostatic performance; therefore, the initial joint gap and 

its change are measured in millimetres using a ruler at a minimum of two points around the 

pipe. The change of the joint gap during the pressure test should be minimal.  

3.6.2 Ultimate Capacity 

The first target of the test is determining a short-term ultimate hydrostatic capacity of the RCP 

joint, which is when the joint can no longer hold the test pressure for 10 minutes. The test 

begins with a selected starting pressure based on the CSA A257 requirement of 105 kPa, the 

recommendation of the gasket supplier, or previous test experience, whichever is greater. As 

more test results are collected, higher starting pressure can be selected to reduce the duration 

of the test. The pressure is then gradually increased at intervals of 25 kPa or 50 kPa and held 

for a minimum of 10 minutes at each increment, followed by visual inspection for leaks. The 

measurement of the water level in the WSCC is also recorded. The duration of 10 minutes is 

selected based on similar evaluations from most hydrostatic standard tests. Any leakage 

observed at the inside of the pipe joint is considered a failure. The ultimate capacity is rated at 

the previous pressure level. All other leakage observed, such as outside the joint, inlet and/or 

outlet pipes or other locations, will not be considered as failure. If those leakages can be 

controlled and do not impact the test, the test can be continued. Adjustment of the straps can 
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also be made to mitigate exterior leakage during the test. The time for each incremental attempt 

is recorded by the operator using a stopwatch. Figure 15 (a) and (b) show two typical failures 

of primary gaskets. A test using 600 mm RCP failed at 250 kPa when water seeped down the 

inner face of the joint. A test using 900 mm RCP failed at 475 kPa when water suddenly shot 

out. 

 

(a) 600 mm RCP, 250 kPa, 

  

(b) 900 mm RCP, 475 kPa. 

Figure 15 Moment of Failure. 
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3.6.3 Operating Capacity 

The hydrostatic performance of the RCP joint is affected by the exposure to sustained 

groundwater pressure. Hence, to evaluate the RCP operating capacity, the annular space is 

subjected to sustained pressure for a minimum of 20 hours to allow the gasket and joint to be 

stabilized. The target operating pressure is set to 80% of the ultimate capacity; therefore, the 

test is usually completed after the ultimate capacity is determined. A new set of gaskets from 

the same lot are used in this test to avoid damage caused during the previous establishment of 

the ultimate pressure. It is recommended to begin the test by holding the pressure at 100 kPa, 

followed by 10 minutes at 70% of the ultimate pressure. This is to ensure that the test setup is 

performing as expected. If no leakage is observed, the pressure is then held at 80% of the 

ultimate capacity for the next 20 hours. Visual examination for leakage shall be made within 

10 minutes after reaching the 80% mark, followed by periodic inspection at 4-hour intervals. 

The water level in the WSCC versus time shall be recorded at each inspection. After 20 hours, 

full inspection for leakage is conducted, and the water level in the final WSCC is recorded. If 

no leak is observed from the inside of the pipe, the test is successful, and the operating capacity 

of the pipe joint is determined at 80% of the ultimate capacity.  

3.7 Test Results for Condition Classification 

More than 100 tests were conducted. For both the ultimate and operating performance 

conditions, the result of the test has four unique success conditions, as outlined in Table 9. The 

summary of the infiltration test count is provided in Table 10. For the ultimate capacity, a 

successful test terminated based on the failure of the primary gasket with minor or no external 

leak is categorized into Condition 1. The test is considered as Condition 2 when an external 

leak is observed during the test without a complete failure of the secondary gasket. In this case, 

the ultimate capacity of the primary gasket is considered when an interior leak occurs. The test 

is considered as Condition 3 when the secondary gasket is unable to hold the pressure in the 

annular space during the test. Here, the ultimate capacity of the primary gasket is not reached.  

For the operating capacity, Condition 1 considers a successful test with minor or no external 

leak, and the target duration is reached or exceeded. Condition 2 considers that external leak 
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is observed, the target pressure is maintained, and the target duration is reached. The test is 

considered as Condition 3 when the target duration is not reached due to external leak or other 

types of leakage. The test is considered unsuccessful, i.e. Condition 4, when the setup was 

unable to hold any pressure, or major leakage occurs at the early stage of the test setup. The 

tests categorized as Condition 4 are not included in this Chapter. 

Table 9: Infiltration Test Result Conditions  

Condition Description 

Ultimate Test 

1 • No significant external leak was observed during the test. A minor external leak 

can be eliminated by adjusting the tension of the straps.   

• The test is terminated based on the leakage or failure of the testing gasket.  

• The ultimate capacity of the test gasket is determined based on the failure of 

testing gasket or equipment capacity.  

2 • The external leak is substantial during the test, but the water tank is not fully 

drained at the end of the test. The test is terminated based on the leakage or failure 

of the testing gasket.  

• The Target pressure level can be maintained during the test.  

• The test is terminated based on the leakage or failure of the testing gasket.  

• The ultimate capacity of the testing gasket is determined based on the failure of 

testing gasket or equipment capacity. 

3 • External leak substantial during the test.  

• The test is terminated based on the leakage or failure of the secondary gasket.   

• The ultimate capacity of the test gasket is determined based on the pressure level 

prior to the termination of the test.  

4 • The test is not completed due to the setup issue.  

• No pressure data is collected. 

Operating Test 

1 Target pressure and duration are both reached with no external leak. A minor 

external leak, when observed during the test, is corrected.   

2 Target pressure and duration are reached despite the external leak. 

3 The test is terminated before the target duration is reached due to an external leak 

or testing gasket failure. 

 

 

 

 

Table 10: Infiltration Test Count Summary 
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Results Ultimate Operating Grand Total 

Condition 1 38 30 68 

Condition 2 19 12 31 

Condition 3 13 2 15 

Grand Total 68 44 114 

3.8 Sample Selection 

3.8.1 Pipe 

In the initial phase of developing this test method, conventional RCP sizes of 600 mm, 900 

mm and 1200 mm in diameter were selected. These three sizes were selected for this research 

partly because the cost of repair is relatively higher than that for the larger size pipes due to 

the restriction of operator entry, and partly because they are easier to handle compared to a 

larger size. In addition, the industry claims that these sizes have a higher competition from 

other emergent pipe materials. The pipe samples were made by the sponsor plant in Oakville, 

Ontario, Canada in compliance with CSA A257.2 using a vibration and pressing process, with 

a conventional dry cast concrete mixture that exceeded a compressive strength of 40 MPa at 

28 days and reinforced with a spiral cold drawn wire cage(s). The joint was comprised of a 

single offset spigot end jointing into a groove bell end, as shown in Figure 10. A detail of the 

joint cross-section is shown in Figure 16, and the geometry is listed in Table 11. 

Table 11: Pipe Joint Geometry 

Size  600 900 1200 

ID  610 914 1219 

S mm 8.3 8.3 7.6 

T mm 3.2 3.2 3.7 

jS mm 48.8 48.8 63.5 

jT mm 49.6 49.6 44.5 

J mm 98.4 98.4 108 

f mm 61.5 61.5 53 

As Annular Space mm2 564 564 882 

Spigot Diameter 

ID + 2f 

mm 733 1037 1325 

Spigot Circumference mm 2303 3258 4163 
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Figure 16: RCP Joint Profile and Annular Space 

 

3.8.2 Gasket 

The various models of primary gaskets tested are commonly used by the industry and were 

pre-lubricated and made of synthetic rubber, meeting requirements of ASTM C443, ASTM 

C425, ASTM C1619, and CSA A257. The secondary gaskets having profiles recommended 

by industry suppliers were used to provide sealing to contain the annular space for 

pressurization. The purpose of the study was to develop and validate the new test method and 

not to compare the performance of commercial gasket brands. Therefore, the actual gasket 

brands in Table 12 were not disclosed and are rather represented by a prefix letter “T” for 

primary testing gasket and “S” for the secondary gasket. For those primary testing gaskets, the 

mass and the unstretched cut length were measured prior to the test. When installing the gasket 

on to the pipe spigot, the gasket is stretched from its original cut length because the 

circumference of the pipe spigot is larger than the unstretched cut length. The increase in the 

stretched length varies between 10 % and 16%. The average stretched unit mass is calculated 
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by dividing the average mass measured by the spigot circumference or stretched length. The 

influence ratio, Ig, is defined in Eq. 1 as the ratio of the mass of the gasket to the effective 

annular space that confines the gasket, which provides an important explanation of the ultimate 

capacity of the gasket against the infiltration pressure. The effective annular space is shaded in 

Figure 16. In the case of the single offset joint of the test pipe, the annular space, As, is 

estimated using Eq. 2.  

Eq. 1   𝑰𝒈 =
average gasket mass (g)

effective annular space (mm2)
 

Eq. 2   𝐴𝑠 = 𝑆 × 𝑗𝑆 + 𝑇 × 𝑗𝑇 

Table 12: List of Gaskets Used in the Research 

Profile 

ID 

Type Supplier Design 

Capacity 

Remark 

S01 Wedge 1  Secondary 

S03 Wedge 2  Secondary 

S04 Wedge 2  Secondary 

T02 Self-lubricated 135 1 105 Primary 

T03 Self-lubricated 165 2 105 Primary 

T04 Self-lubricated 185 2 105 Primary 

T05 
Double Tilting Gasket 

with PP coupler 

3 250 Primary 

T06 Self-lubricated 135 2 105 Primary 

T07 Self-lubricated 185 1 105 Primary 

T08 Wedge Profiled 1 140 Primary 

3.9 Summary 

This chapter provides a detailed description of a novel infiltration testing method that RCP 

manufacturers can easily set up and conduct in a factory setting. The test is much safer to 

conduct owing to the much lower water consumption needed to achieve a much higher-

pressure target in comparison to conventional exfiltration tests. Although the pipe sizes and 

gaskets were listed, larger pipe sizes and other types of gaskets can be easily accommodated 

using the same setup and procedure. The test has been proven reliable based on the repeatability 

of the results in this research. 
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CHAPTER 4  

 

 

 

4 Pipe Joint Design 

This chapter discusses the properties of the rubber, the design of gaskets, and the properties of 

the gasket specimens in greater detail. Theoretic calculation of sealing pressure based on the 

load-deformation curve of the gasket sample is presented. The sealing potential based on the 

calculation is subsequently used to compare the results obtained by the infiltration test. 

4.1 Rubber Gasket 

The hydrostatic capacity of RCP depends on the properties of rubber gaskets, a primary material 

used in sealing RCP joints. Its mechanical properties, geometric dimensions, and the pipe joint 

design also contribute to the sealing potential. Rubber maintains its volume under applied load by 

deformation. The cross-section of the rubber increases when it is compressed and reduces when it 

is stretched. The mechanical properties in compression can be derived using ASTM D575 (2001). 

The ability to deform under applied load can be described in three phases: elastic, viscoelastic, and 

viscous phase (Czernik 1996). Figure 17 illustrates the relationship between the applied load and 

deformation due to the compression of a typical rubber. In the early stage of loading or elastic 

response, the deformation of a rubber specimen due to compression forces increases linearly and 

returns to its initial shape when the applied force is removed. When the applied load reaches the 

viscoelastic response phase, the change in deformation diminishes at the same load increment. The 

change in performance is time-dependent but is totally recoverable. However, if the load causes 

the rubber to deform into the viscous response phase, the deformation is no longer recoverable. In 

this Chapter, the rubber gasket samples were tested to the viscoelastic phase assuming that the 

rubber gasket is intended not to exceed the viscoelastic properties in its service life.  
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Figure 17: Typical load-deformation curve for rubber gasket (After Czernik, 1996). 

Rubber also relaxes under load over time, incurring stress relaxation or creep. The load-

deformation curve is empirically developed by measuring the actual deformation of the gasket 

sample in accordance with ASTM D575 (2001). Figure 18 displays a typical test conducted 

by gasket manufacturers to determine the load-deformation curve. The curve describes the 

material behaviour for a specific rubber compound and gasket design. However, the surface 

boundary and the actual media of the pressure are ignored in the test. The load-deformation 

behaviour of rubber also depends on the durometer, hardness of the material, in accordance 

with ASTM D2240 (2015). These properties also impact the sealing potential of the gasket.  
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Figure 18: Gasket deformation test. 

4.2 Joint Design 

In addition to the aforesaid material mechanical properties, the sealing potential of a rubber gasket 

also depends on its cross-sectional geometry. The face of the gasket in contact with the applied 

hydrostatic pressure determines the amount of frictional force required to keep the gasket in 

equilibrium. Figure 19 illustrates that the orientation of the gasket dictates the amount of contact 

area; and thus, affects the amount of frictional resistance provided. 

Gasket 

Applied Force 
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Figure 19: Illustration of gasket geometry withstands internal pressure. 

The amount of stretch at the time of loading and the ratio of the cross-sectional area to the confined 

space also determines the sealing potential. The confined space, also known as annular space, 

generates compression of the rubber, creating the sealing potential (ACPA, 2019). The joint design 

defined in the plant certification published by the American Concrete Pipe Association (APCA) 

provides a mathematical calculation for the minimum and maximum compression of two common 

RCP joints for confined circular gaskets and single offset profiled gaskets. These values can be 

used to calculate the maximum and minimum sealing potential based on the load-performance 

curve of the rubber.  

The joint design of the RCP in this experimental program is shown in Figure 20 (a) and Table 

13. This design has been commonly used by the RCP industry to offer self-balancing ability during 

pipe installation without manually equalizing the tension such as in traditional wedge or O-ring 

gasket. The female end of the pipe, known as the bell, receives the male end, known as the spigot, 

with a 2-degree taper in the wall of the slot. The spigot of the pipe has an offset, B, of 6.7 mm, 6.7 

mm and 7.6 mm for 600 mm, 900 mm, and 1200 mm pipes, respectively. This offset creates two 

sizes of annular space, S and T. The tapered face reduces the annular space, S, when the pipe is 

being jointed together, inducing compression in the sealing material. This is a common design for 

all concrete pipes. The tube section of the sample gasket is rolled into the annular space, denoted 

“T,” for its final resting position. The joint design has a taper angle, , for an easier homing process 

as illustrated in Figure 20. The effect of the taper angle on the sealing potential will be discussed 

later. The 600 mm and 900 mm pipes share the same gasket profile, while the 1200 mm pipe sample 

uses a different gasket profile due to its larger annular space.  

applied 

pressure 

Sealing 

pressure 

Sealing 

pressure 

friction 

friction 

applied 

pressure 

Sealing 

pressure 

Sealing 

pressure 

friction 

friction 



 

51 

 

(a) Ideal position by design 

 

(b) With joint gap 

Figure 20: RCP Single Offset Joint Detail. 

Table 13: RCP Single Offset Joint Detail 

 

 

 

 

 

 

Read this table in conjunction with Figure 20 

Unit of Measure: millimetre 

ASc – Circumference of annular space 

Size 600 900 1200 

jS 48.8 48.8 63.5 

B 6.7 6.7 7.6 

 (°) 2 2 2 

S 8.3 8.3 11.3 

T 3.2 3.2 3.7 

Ds 733 1037 1325 

ASc 2303 3258 4163 
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4.3 Gasket Specimens 

The gaskets used in this study are the self-lubricating, profiled type, that is designed for the single 

offset joint described above. The typical cross-section of an unstretched gasket, illustrated in 

Figure 21(a), consists of two sections: the deformation section and the rolling tube section. Figure 

21(b) shows the stretched cross-section after the gasket is placed onto the pipe spigot. There was 

a reduction in gasket height due to the increase in gasket length. The maximum stretch limit was 

20% in addition to the unstretched length (ACPA, 2019). The stretched height can be calculated 

using Eq. 3.  

Eq. 3  𝑯𝒔 =
𝑯𝒈

√𝒓𝒔
 

Where 𝐻𝑔: height of unstretched gasket; 𝐻𝑠: height of stretched gasket; 𝐻𝑐: Height of 

compressed gasket; 𝑟𝑠: a ratio of stretched length to unstretched length. 

Figure 21(c) shows the cross-section of the gasket after being compressed when two pipe sections 

were jointed. The rolling tube section was lubricated inside by silicone during gasket 

manufacturing to assist the jointing process of the concrete pipe. The rolling action during the 

homing process self equalizes the gasket tension along the entire length. Thus, additional 

equalization was not necessary compared to conventional profiled wedges or O-ring gaskets. The 

gasket height in the compressed state was limited to the available annular space shown in Figure 

21(c). The force required to compress the gasket from the stretched state into the compressed state 

creates the sealing potential, which is discussed in the next section. Gasket samples were also 

randomly selected in terms of dimension and weight. The number of samples, minimum, average 

and maximum values listed in Table 14 exhibit a certain degree of variations. The unstretched 

length and mass were plotted against each other, as shown in Figure 22(a)-(c), as well as the height 

and base width in Figure 22(d)-(f). The scale of the x-axis and y-axis were maintained similarly 

in the figures for ease of comparison. The degree of variation is believed to explain the variation 

of sealing potential. This will be discussed further in the later section. 
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Table 14: Gasket Properties 

Pipe Size   600 900 1200 600 900 1200 

Gasket Ref ID   T02 T02 T07 T06 T06 T03 

Supplier3   A A A B B B 

Spigot Dia. (mm)   733 1037 1325 733 1037 1325 

Spigot Cirf.2, Ls (mm)   2303 3258 4163 2303 3258 4163 

Annular Space, A (mm)   8.3 8.3 11.3 8.3 8.3 11.3 

Max limit of Annular Space (mm) 1.1  A 9.13 9.13 12.43 9.13 9.13 12.43 

Unstretched Length1, Lu  

(mm) 

Count 20 19 21 14 17 21 

Min 2088 2957 3591 1994 2854 3678 

Avg 2103 2971 3623 2030 2882 3707 

Max 2119 2987 3674 2056 2930 3749 

Max % 

Stretch 10.3% 10.2% 15.9% 15.5% 14.1% 13.2% 

Min % 

Stretch 8.7% 9.1% 13.3% 12.0% 11.2% 11.0% 

Mass1  

(g) 

Count 20 19 21 14 17 21 

Min 566 764 1456 590 852 1366 

Avg 577 805 1501 617 914 1442 

Max 590 826 1537 636 949 1472 

Var 24 63 81 46 97 106 

Unit Mass  

(g/m) 

Count 20 19 21 14 17 21 

Min 246 234 350 256 261 328 

Avg 251 247 361 268 280 347 

Max 256 254 369 276 291 354 

Var 11 19 19 20 30 26 

Unstretched Height, Hg*  

(mm) 

Count 7 6 17 3 11 16 

Min 15.3 15.8 18.5 16.1 16.2 18.9 

Avg 15.8 16.6 19.4 16.1 16.7 19.6 

Max 16.0 17.3 20.3 16.3 17.4 20.5 

Var 0.7 1.5 1.9 0.2 1.3 1.6 

Base Width, W1 

(mm) 

Count 7 6 17 3 11 16 

Min 17.1 17.2 21.0 16.8 16.5 18.9 

Avg 17.3 17.5 21.9 17.1 16.8 20.1 

Max 17.5 17.8 22.4 17.3 17.2 21.1 

Stretched Height, Hs 

(mm) 

Min 14.6 15.1 17.2 14.9 15.2 17.8 

Avg 15.2 15.9 18.1 15.1 15.7 18.5 

Max 15.3 16.5 19.0 15.4 16.5 19.4 

Var 0.7 1.4 1.7 0.5 1.3 1.6 

%Min 4.4% 4.7% 6.6% 7.0% 5.8% 5.8% 

%Max 4.3% 4.4% 6.6% 5.5% 5.2% 5.2% 

Reduction in Gasket Height 

or Compressed Height, Hc  

(mm) 

Hs-1.1S 

Min 5.50 5.95 4.81 5.81 6.08 5.37 

Avg 6.03 6.73 5.64 5.97 6.57 6.10 

Max 6.21 7.39 6.53 6.27 7.38 6.95 

% Min 37.6% 39.5% 27.9% 38.9% 40.0% 30.2% 

% Max 40.5% 44.7% 34.4% 40.7% 44.7% 35.9% 
1Value obtained by measurement; 2Also known as gasket stretched length; 3Durometer for Gasket A is 40D, and Gasket B is 45D 
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(a) Original unstretched shape 

 
(b) Stretched shape 

 
(c) Compressed shape 

Figure 21: Typical cross-section of self-lubricated single offset gasket. 
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(a) 600 mm RCP 

 
(d) 600 mm RCP 

 
(b) 900 mm RCP 

 
(e) 900 mm RCP 

 
(c) 1200 mm RCP 

 
(f) 1200 mm RCP 

Legend:  

Figure 22: Gasket Geometric Properties. 
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4.4 Sealing Potential Calculation 

The sealing potential was estimated based on the deformation properties of the rubber under 

the load, i.e. load-deformation behaviour obtained from ASTM D575. The compensation was 

made to account for the reduction in the cross-section area during the stretch, i.e. increase in 

length when installing the gasket on the spigot of the pipe. In the final compressed condition 

(Figure 20(c)), the reduction of the gasket height, Hc, was computed by subtracting the annual 

space, S, from the stretched height, Hs. The required force, Pf, to compress the gasket to have 

a reduction, Hc, can be empirically determined based on its load-deformation behaviour 

obtained from the load-deformation curve using Eq. 4. 20% factor was applied to the force in 

the load-deformation test to account for relaxation. In this study, when comparing to the short-

term ultimate test, the relaxation factor was omitted. The sealing pressure was computed by 

dividing the applied force by the sample contact area.  

Eq. 4  𝑷𝒇 =
𝑷

(𝟏−𝟐𝟎%)
 

4.5 Sealing Pressure and Joint Gap  

The sealing pressure is also impacted by the change in annular space due to the joint gap and the 

geometrical variation of the gasket itself. The spigot of the pipe sample has 2% taper angle on the 

conic surfaces of the bell and the outer surface of the spigot by design. This is typical as per ASTM 

C443, which limits the angle to be 3.5% measured from the pipe axis. As shown in Figure 20 (b), 

the 2% taper angle increases the annular space as the joint gap increases at the rate of the joint gap, 

G, multiplying the tangent of the taper angle,  (Eq. 5). 

Eq. 5  ∆𝑺 = 𝑮. 𝒕𝒂𝒏 

With 2% taper angle, the annular space increases by 0.87 mm when the joint gap increases to 25 

mm. For 600mm and 900 mm pipe sample, the increase is 10.5%; and for 1200 mm pipe sample, 

the annular space increases by 7.7%. This increase reduces the force required to compress the 

gasket; hence, reduce the sealing pressure. For the gasket samples used in this study, the reductions 

are ranged between 30% to 36% when the joint gap increases to 25 mm.  
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4.6 Sealing Pressure and Geometrical Variations 

The sealing pressure is also impacted by the geometrical variation of the gasket itself. Figure 22 

shows the mass of the gasket varies against the unstretched length, and the unstretched height varies 

against the base width. The variation of unstretched length for Gasket A in 1200 mm diameter pipe 

seems to be higher and that in 600 mm. So does Gasket B in 1200 mm pipe, when comparing to 

600 mm pipe and 900 mm pipe, the variation in unstretched length is higher. The amount of the 

gasket stretched, increase in length, after being positioned at the pipe spigot are ranged between 

8.7% and 15.9% (Table 14), smaller than the maximum stretch limit of 20% as per ACPA (2019). 

This increase results in a reduction in the gasket height by 4.3% to 6.6%. This variation of the 

compressed height varies between 27.9% and 44.7% of the stretched height. For non-circular 

gasket (i.e. single offset gaskets), the minimum and maximum compression should be within 15% 

and 40%. This large variation impacts the force required to compress the gasket in the annular 

space, which indicates that the sealing pressure is very sensitive to the geometric variation of the 

gasket.  

4.7 Sealing Pressure and Joint Alignment 

Practically speaking, the straight alignment describing the ideal installation does not usually govern 

the sealing capacity. The maximum predicted sealing potential depends on the joint gap, G, or joint 

offset, or a combination of both, as illustrated in Figure 23. The maximum allowable joint offset 

is the secondary annular space T. In this study, the maximum allowable joint offset is 3.2 mm, 3.2 

mm, and 3.7 mm for 600 mm, 900 mm, and 1200 mm pipes, respectively. By offsetting the joint, 

the annual space increases on one side and decreases on the other side (Figure 23 (a)). In other 

words, the sealing potential at the side with larger annular space is reduced. The minimum sealing 

potential at the location of maximum annular space is calculated using Error! Reference source not f

ound.. Figure 23 (b) illustrates a more extreme condition where the joint is offset with a joint gap. 

The maximum annual space, S’max, can be calculated using Eq. 7, which is rewritten from Eq. 6 

to account for both joint offset, T, and joint gap, G. 

Eq. 6  𝑺𝒎𝒂𝒙 = 𝑺 + 𝑻 

where 𝑇𝑚𝑎𝑥 = 2𝑇 when 𝑇𝑚𝑖𝑛 = 0 

Eq. 7  𝑺′
𝒎𝒂𝒙 = 𝑮𝒕𝒂𝒏 + 𝑺𝒎𝒂𝒙 = 𝑮. 𝒕𝒂𝒏 + 𝑺 + 𝑻 
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(a) With no gap                                       (b) With joint gap 

Figure 23: Offset joint. 

4.8 Summary 

This chapter provides a basic understanding of the behaviour of rubber gaskets in preparation 

for explaining the experimental observations. The theoretic calculation of the sealing potential 

further provides a baseline for experimental comparison. The influential parameters, such as 

geometric variation and joint alignment, are to be further studied based on the experimental 

measurements reported in the next chapter.  
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CHAPTER 5  

 

 

 

5 Testing Results 

This chapter reports results from a total of 122 infiltration tests, in which 114 tests were 

conducted at an industry scale manufacturing facility on standard pipe sizes of 600 mm, 900 

mm, and 1200 mm made at the same location. Eight tests were conducted using other pipe 

sizes and gaskets. The results exhibit the influence of the joint gap and other input variables. 

The observations of gasket movement under pressure and at failure are also reported. 

Preliminary findings provide insights into key parameters that influence the results. Substantial 

parts of this Chapter will be published in Wong and Nehdi (2020).  

5.1 Ultimate Hydrostatic Capacity 

A total of 68 tests were conducted to examine the ultimate hydrostatic capacity of the RCP 

joint against infiltration. The test results for the aligned position and offset position were 

presented in Table 15 and Table 16, respectively. Among these tests, 55 of those tests 

(Condition 1 and 2) were terminated due to the failure state of the primary gasket when water 

seeped through the joint from inside of the pipe (Figure 15a) or shot out from the testing 

pressure due to gasket displacement (Figure 15b). Twelve tests had a failure of the secondary 

gasket before the primary gasket, leading to termination of the test (Condition 3). A parallel 

objective of the testing was to examine the performance of the test apparatus. Accordingly, 

two tests were terminated without showing a failure state at 86% and 95% of the test set-up 

design capacity. The test of 600 mm diameter RCP reached 650 kPa (Test #9) for 10 minutes, 

followed by 20-hour at an operating pressure of 525 kPa with no sign of leakage for both tests. 
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Table 15: Summary of Test Result for Ultimate Capacity with Aligned Position 

Gasket Size Gasket 

ID 

Test ID Pressure 

(kPa) 

Gap 

(mm) 
Terminated Reason  

Data 

Points 

Result 

Condition 

A 600 T02 21 300 5.6 Failure of primary gasket 11 1 

   47* 105 6.0 Failure of primary gasket 5 1 

   46 150 6.3 Failure of primary gasket 5 1 

   1 225 8.6 Failure of test gasket 9 1 

   37 50 9.5 Failure of primary gasket 4 1 

   13 250 9.8 Failure of test gasket 11 1 

   48 50 12.9 Small leak at inside 6 1 

 900 T02 23 600 4.8 86% of equip. cap. 21 1 

   11 425 9.0 Failure of test gasket 11 1 

   71 175 10.1 Leak from primary gasket 15 1 

   66* 175 10.6 Leak from primary gasket 6 1 

   65 250 11.3 Leak from primary gasket 9 1 

   70 100 11.4 Leak from primary gasket 5 1 

   73 150 15.9 Leak from primary gasket 15 1 

 1200 T07 91 350 3.6 Leak from primary gasket 11 1 

   94 375 6.5 Leak from primary gasket 13 2 

   15 350 10.8 Leak from primary gasket 15 1 

   59 300 11.0 Failure of primary gasket 7 2 

   124 225 11.1 Leak from primary gasket 7 2 

   60 300 11.4 Leak from secondary 11 3 

   132 250 14.0 Leak from primary gasket 12 2 

B 600 T06 9 650 5.5 95% of equip. cap. 15 3 

   41 400 6.6 Failure of test gasket 11 1 

   31 450 6.9 Failure of primary gasket 13 1 

   40 350 10.0 Failure of test gasket 13 1 

   45 200 13.3 Failure of primary gasket 9 1 

   126 450 14.5 Leak from primary gasket 17 2 

 900 T06 7 550 8.1 2nd gasket displaced 10 3 

   62 550 9.7 Leak from secondary 18 3 

   69 250 11.0 Leak from primary gasket 9 1 

   75 325 14.3 Leak from primary gasket 24 1 

 1200 T03 89 450 4.3 Leak from secondary 16 3 

   3 480 7.3 Failure of Secondary 16 1 

   105 275 8.1 Leak from primary 15 2 

   98 9.03 175 Leak from secondary 6 3 

   92 475 9.8 Leak from primary gasket 19 2 

   125 275 9.8 Leak due to concrete's quality 7 3 

   131 400 11.2 Leak from primary gasket 15 2 

   61 350 11.3 Leak from secondary 7 3 

   58 350 12.4 Leak from secondary 13 3 

   103 225 13.0 Leak from primary gasket 7 1 

   133 450 14.1 Leak from primary gasket 14 2 

   99 325 14.4 Leak from secondary 13 3 

 1200 T04 5 500 8.0 Failure of Secondary 11 3 

* Tests were conducted under operating pressure. Leaks were discovered before the target duration was achieved 

but still meeting the ultimate test duration requirement. These two tests were considered an ultimate test. 
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Table 16: Summary of Test Result for Ultimate Capacity with Offset Position 

Gasket Size 
Gasket 

ID 

Test 

No. 

Gap 

(mm) 

Pressure 

(kPa) 
Terminated Reason  

Data 

Points 

Result 

Condition 

A 600 T02 35 4.72 150 Failure of primary gasket 6 1 

   117 8.83 350 Leak from primary gasket 17 2 

   119 10 250 Leak from primary gasket 13 2 

   121 13.63 250 Leak from primary gasket 12 1 

   55 16.41 150 Failure of primary gasket 11 2 

 900 T02 38 3.82 275 Failure of primary gasket 11 1 

   79 9 350 Leak from primary gasket 17 1 

   74 10.02 150 Leak from primary gasket 11 1 

   77 12.98 150 Leak from primary gasket 12 1 

 1200 T07 100 2.99 450 Leak from primary gasket 17 1 

   108 6.04 300 Leak from primary gasket 11 2 

   136 11.88 250 Leak from primary gasket 9 2 

   134 13.6 300 Leak from primary gasket 11 2 

B 600 T06 43 4.2 650 Equipment capacity 19 1 

   127 7.96 650 Leak from primary gasket 16 2 

   56 12.9 500 No Failure 21 1 

 900 T06 50 5.23 550 Failure of Secondary 13 3 

   83 5.53 300 Leak from primary gasket 10 1 

   82 6.63 200 Leak from primary gasket 5 1 

   84 8.61 400 Leak from primary gasket 15 1 

   87 11.53 225 Leak from primary gasket 9 1 

   110 16.62 500 Leak from primary gasket 23 2 

 1200 T03 107 3.38 500 Leak from primary gasket 20 2 

   54 7.3 375 Failure of secondary gasket 15 3 

   129 7.95 600 Leak from primary gasket 17 2 

   140 16.06 450 Leak from primary gasket 11 1 

5.2 Operating Hydrostatic Capacity 

A total of 44 tests were conducted for evaluating the operating hydrostatic capacity of the joint. 

Among those, 24 and 20 tests were examined under aligned and offset positions presented in 

Table 17 and Table 18, respectively. In the case of determining the hydrostatic capacity under 

sustained operating pressure, pressure from the previous test was first removed. The pipe 

sections were then taken apart for gasket inspection. Replacements were made to ensure that 

the subsequent operation pressure test was not conducted using damaged gaskets or pipe 

sections. A total of 30 tests (Condition 1) were completed for at least 20 hours of maintaining 
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80% of the established ultimate capacity. Twelve tests were completed for 20 hours with an 

external leak observed during the test (Condition 2). Two tests were terminated within the first 

10 min due to the failure of the primary gasket (Condition 3).  

Table 17: Summary of Test Result for Operating Capacity with Aligned Position 

Gasket Size 
Gasket 

ID 
Test No. 

Gap 

(mm) 

Pressure 

(kPa) 

Terminated 

Reason 

Data 

Points 

Result 

Condition 

Duration 

(min) 

A 600 T02 22 5.58 280 Completed 4 2 1200 

   2 8.6 180 Completed 4 1 1200 

   123 9.65 50 Completed 14 2 1200 

   14 9.8 175 
Test gasket 

displaced 
2 3 8 

 900 T02 24 4.8 480 Completed 2 1 1200 

   67 7.73 200 Completed 7 1 1200 

   72 11.8 140 Completed 10 1 1200 

   81 13.61 120 Completed 10 1 1200 

 1200 T07 93 3.12 320 Completed 13 1 1200 

   96 6.27 300 Completed 11 2 1200 

   147 9.97 180 Completed 12 2 1200 

   16 10.8 280 
Leak from 

primary gasket 
4 3 2 

   139 14.82 200 Completed 13 2 1200 

B 600 T06 10 5.5 525 Completed 4 1 1200 

   42 6.61 320 Completed 5 1 1200 

   128 14.11 360 Completed 8 1 1200 

 900 T06 64 9.8 480 Completed 19 1 1200 

   114 11.81 225 Completed 14 1 1200 

   116 16.32 295 Completed 11 1 1200 

 1200 T03 90 3.45 400 Completed 11 1 1200 

   4 7.34 414 Completed 2 1 1320* 

   95 7.48 420 
Leak from 

primary gasket 
12 3 120 

   138 16.51 360 Completed 11 1 1200 

  T04 6 7.8 414 Completed 2 1 1200 

* The duration exceeded 20 hour because the 20-hour target was reached before the office 

hour. 

 

 

 



 

63 

 

Table 18: Summary of Test Result for Operating Capacity with Offset Position 

Gasket Size 
Gasket 

ID 

Test 

No. 

Gap 

(mm) 

Pressure 

(kPa) 
Terminated Reason 

Data 

Points 

Result 

Condition 

Duration 

(min) 

A 600 T02 36 4.42 125 Completed 6 1 1200 

  T02 118 7.25 280 
Leak from primary 

gasket 
10 3 960 

  T02 120 9.21 200 
Leak from primary 

gasket 
11 3 1080 

  T02 122 13.26 160 
Leak from primary 

gasket 
9 1 30 

 900 T02 39 3.82 220 Completed 5 1 1200 

  T02 80 8.51 280 
Leak from primary 

gasket 
13 2 1200 

  T02 76 10.5 120 Completed 8 1 1200 

  T02 78 14.76 120 Completed 7 2 1200 

 1200 T07 146 3.29 240 Completed 12 1 1200 

  T07 101 3.3 360 
Leak from primary 

gasket 
7 1 1200 

  T07 106 3.38 360 Completed 10 2 1200 

  T07 148 9.71 200 Completed 11 2 1200 

  T07 144 13.34 240 Completed 12 2 1200 

B 600 T06 44 4.2 520 Completed 2 1 1200 

  T06 57 13.1 400 Completed 2 1 1200 

 900 T06 113 5.75 270 Completed 13 1 1200 

  T06 85 8.99 320 Completed 9 1 1200 

  T06 115 11.53 205 Completed 12 1 1200 

  T06 111 15.5 400 Completed 15 1 1200 

 1200 T03 142 3.77 400 Completed 10 2 1200 

5.3 Joint Gap Monitoring 

The joint gap is achieved by placing the wedge style secondary gasket in between the shoulder 

of the pipe and the end face of the spigot (Figure 7). The gasket was compressed, but complete 

jointing of the pipe sections was avoided. The maximum gaps achieved in the tests ranged 

between 3.9 mm and 10.8 mm. With an additional plastic spacer ring having a thickness of 6 

mm, 9 mm or 13 mm to be sandwiched in the joint, a maximum joint gap of 16.5 mm can be 

achieved (Test #138). This can simulate a large spectrum of in-field construction conditions of 

the resulting joint gap. Joint gaps at a minimum of three locations around the pipe were 

measured and monitored throughout the test. Variations and fluctuations of the joint gap 
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measurement observed during the test were minor and considered insignificant. These 

observed results were attributed to the flexible straps and degree of compression of the 

secondary gasket. If larger variations were observed during the test, or minor leakage was 

observed on the secondary gasket, adjustments of the straps were made to ensure proper 

restraint was provided to prevent further joint separation. The largest gap for each test is 

reported in Table 15. The ultimate hydrostatic pressure from each test is plotted against the 

maximum joint gap in Figure 24, Figure 25, and Figure 26 for 600 mm, 900 mm and 1200 

mm diameter RCP, respectively. The findings are further discussed below.  

 

Figure 24: Hydrostatic Infiltration Performance for 600 mm RCP. 

Ig = 0.42 

Ig = 0.45 
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Figure 25: Hydrostatic Infiltration Performance for 900 mm RCP. 

 

Figure 26: Hydrostatic Infiltration Performance for 1200 mm RCP. 

Ig = 0.48 

Ig = 0.44 

Ig = 0.40 

Ig = 0.41 
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5.4 Leakage Monitoring 

In addition to visual inspection for leakage, the use of the WSCC allows monitoring the amount 

of water leaving the system (Figure 27). The water level in the WSCC was marked as a datum 

before pressurization. At each pressure increment, the water level was measured at the 

beginning and at the end of the 10-minute holding period. Figure 28 shows minor leakage 

from outside of the pipe joint. Figure 29 exhibits typical leakage through the secondary gasket 

from the outside face of the pipe sections, while Figure 15 shows typical leakage through the 

primary gasket from the inside face of the pipe sections. Leakage usually starts when a 

watermark appears in between the joint gap and through the gasket. The intensity of water 

seepage increases until significant water is lost in the WSCC. Adjustment of the straps is made 

in some cases to reduce and/or stop the leakage from the secondary gasket, as long as the 

required pressure for the corresponding increment was not compromised. Other minor leaks 

from the inlet pipe connecting the WSCC and the joint can also be observed (Figure 30). The 

recorded water levels throughout the test at each pressure level are then plotted versus time. 

The rate of change in the water level is discussed below. 

           

Figure 27: Water Level Monitoring from WSCC.  
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Figure 28: Minor External Leak During Test (1200 mm RCP, 375 kPa). 

 

Figure 29: Leakage from Outside. 
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Figure 30: Leakage from Inlet Tube Caulking (600mm at 300 kPa). 

 

5.5 Additional Tests 

To demonstrate the validity of the testing method, eight additional tests were conducted, and 

the results are reported in Table 19. These tests use 675 mm and 750 RCP with self-lubricated 

gasket, 675 mm RCP with profiled wedge gasket, 1800 mm lined RCP with single offset joint, 

600 mm lined pipe with joint coupler and double tilting gaskets. Although the tests did not take 

the primary gasket to failure, the results show the infiltration pressure level reached, 

representing the target ultimate capacity of the joint and gasket combination. The purpose of 

these tests was to demonstrate that the developed test method could be used to test a variety of 

pipe joint profile and gasket combinations. These tests were outside the original scope of the 

research. Thus, the results were not included in developing the performance charts. The effects 



 

69 

of the added variation, including the liner, joint coupler, and new wedged profile may influence 

the performance. More control may be introduced for complete performance evaluation. 

Table 19: Summary of Test Result for Other Pipes and Gaskets 

Gasket Size 
Gasket 

Ref. ID 
Test 

ID 
Pressure 

(kPa) 

Joint 

Gap 

(mm) 
Term. Reason 

Duration 

(min) 

C 600* T05 18 250 NA Coupler drop (upper gasket) 10 

C 600* T05 19 200 NA Completed 1200 

B 750 T06 25 600 3.9 

Tube leak at 500kPa, reset 

the water level, 86% of 

equipment capacity 

10 

B 750 T06 26 480 3.9 Completed 1200 

B 675 T06 27 600 4.1 86% of equip. cap. 10 

B 675 T06 28 480 4.1 Completed 1200 

B 675 T08 29 500 4.4 Ball valve blew off 10 

B 1800! T04 104 200 7.7 Leaks from secondary 10 

* Lined concrete pipe with double tilting gasket and plastic coupler joint 

! Lined concrete pipe with single offset joint  

5.6 Preliminary Findings 

Figure 24, Figure 25, and Figure 26 exhibit the ultimate pressure reached during the tests 

versus the maximum joint gap for 600 mm, 900 mm and 1200 mm diameter pipes. Each figure 

contains two sets of data, i.e. two gasket sources with two different influence ratios, Ig, derived 

in Table 20. The scatter of data points indicates a moderate negative relationship, as shown 

via the best fit logarithmic curve. For 600 mm pipes (Figure 24), a capacity reduction of 200 

kPa was observed between a joint gap of 6 mm to 14 mm in Gasket Profile T06, while 140 kPa 

reduction between 6 mm and 12 mm was measured for Gasket Profile T02. For 900 mm pipes 

(Figure 25), 200 kPa capacity reduction was found between 9 mm and 13.5 mm joint gap for 

Gasket Profile T06, while 180 kPa capacity reduction was registered for Gasket Profile T02. 

For gasket profile T02, the capacity was estimated at 100 kPa when the gap exceeded 15 mm. 

For 1200 mm pipes (Figure 26), the data for both gasket profiles seemed to be overlap. The 

capacity reduction trends between 5 mm and 14 mm joint gap at 80 kPa were somewhat 

parallel.  

The larger the joint gap, the lower will be the ultimate hydrostatic infiltration pressure. Larger 

gasket profile (heavier average stretched unit mass) results in a larger difference in influence 
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ratios; hence higher ultimate pressure can be achieved with a given joint gap. The high 

variation observed is likely due to the gasket’s mechanical properties that are sensitive to the 

applied pressure and the condition of the concrete surface at the pipe joint. In addition, the 

lesser capacity reduction for 1200 mm pipes compared to its 600 mm and 900 mm counterparts 

is caused by bigger joint height, J. The pipe joint height for 1200 mm RCP was 108 mm, while 

it was 98 mm for 900 mm and 600 mm RCP. Longer single offset joint offers a longer distance 

for the gasket to travel before failure. The gasket movement under pressure during the test can 

be observed through monitoring the water level, as discussed later in this text.  

Table 20: Gasket Mass to Annular Space Influence Ratio, Ig 

Size 

Gasket 

Profile 

ID 

Spigot 

Dia. 

(mm) 

Spigot 

Circumf. 

(mm) 

Average 

unstretched 

length 

(mm) 

Average 

mass 

(g) 

Estimate 

Stretch % 

Average 

stretched 

unit mass 

(g/m) 

Annular 

space 

(mm2) 

Ig 

(g/mm2/m) 

600 T02 733 2303 2074 550 11% 239 564 0.42 

900 T02 1037 3258 2967 803 10% 247 564 0.44 

1200 T07 1325 4163 3616 1496 15% 359 882 0.41 

600 T06 733 2303 1994 590 16% 256 564 0.45 

900 T06 1037 3258 2885 885 13% 272 564 0.48 

1200 T03 1325 4163 3703 1452 12% 349 882 0.40 

5.7 Ultimate Pressure Capacity Varying by Pipe Size 

Figure 31 shows the ultimate pressure capacity against infiltration from the data collected on 

600, 675, 750, and 900 mm RCP using the same self-lubricated gasket profile 135 (T06). All 

pipe sizes had an identical joint profile with a joint height (J) of 98.4 mm, a joint step (jS) of 

48.8 mm by 8.3 mm (S) and 49.6 mm (jT) by 3.2 mm (T) (Figure 16). The data show a similar 

moderately negative relationship discussed earlier, as illustrated by the best fit logarithmic 

curve. The logarithmic trendline is used instead of the linear trendline because of the non-linear 

relationship between the gasket movement and joint gap under various pressure. When the 

joint gap is small, the gasket tends to be confined, resulting in higher sealing pressure. When 

the joint gap increases, the gasket relies on the friction between the concrete and rubber to 

maintain stationary position. This relationship between the ultimate pressure capacity and the 

joint gap is not believed to be linear. In addition, the reduction in capacity changed from 600 
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kPa at a 4 mm joint gap to 320 kPa at a 14 mm joint gap, indicating that it is more sensitive to 

the joint gap but less sensitive to the pipe size.  

 

Figure 31: Hydrostatic Infiltration Performance for Self-lubricated Single Offset 

Gasket Profile (T06). 

5.8 Water Level Reduction in Ultimate Pressure Evaluation 

Measurement of the water level reduction with respect to the datum was converted into volume 

(litres) and plotted against the progress of the applied pressure in Figure 32, Figure 33, and 

Figure 34 for 600 mm, 900 mm and 1200 mm diameter pipes, respectively. The trend was 

somewhat linear with a different rate, depending on the size of the pipe, pressure capacity and 

joint gap. The linear volumetric reduction rates in millilitres per 100 kilopascals of joint 

annular space from each test are listed in Table 21 for selected tests. In 600 mm diameter RCP 

(Figure 32), the volumetric loss from three tests was plotted against the hydrostatic pressure. 

A linear reduction rate of 20 mL per 100 kPa was observed for the test with a 5.5 mm joint 

gap. A higher rate of 33 mL per 100 kPa was observed for the test with a 9.8 mm joint gap due 

to the larger annular space. For the test with a 5.6 mm joint gap, the reduction should be 

comparable to that with a 5.5 mm gap. However, due to the leakage observed at the inlet tube 

caulking, the reduction rate was 33 mL per 100 kPa, higher than that with a 5.5 mm joint gap. 

In 900 mm diameter RCP (Figure 33), both tests with 8.1 mm and a 9.0 mm joint gap exhibited 
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a volumetric reduction rate of 40 mL per 100 kPa. The test with a 4.8 mm joint gap had a 

reduction rate of 28 mL per 100 kPa until 500 kPa, followed by an escalated reduction rate of 

260 mL per 100 kPa due to severe leak at the inlet tube. In the 1200 mm diameter RCP (Figure 

34), the test with an 8.0 mm joint gap exhibited a reduction rate of 30 mL per 100 kPa until 

350 kPa, where an exterior leak was observed. The test with a 7.3 mm joint gap showed a 

somewhat linear trend until 200 kPa, followed by a severe escalation in the reduction rate due 

to exterior leak. Similarly, the test with a 10.8 mm joint gap exhibited a reduced rate of 100 

mL until 350 kPa, followed by a higher rate caused by an exterior leak.    

Table 21: Estimated Volumetric Change in Annular Space 

Pipe 

Size 

(mm) 

Primary 

Gasket 
2nd 

Gasket 
Gap 

(mm) 
kPa Vol. Chg. mL/ 100 kPa! 

Test 

ID 

600 T02 S01 8.6 225 33 21 

600 T02 S01 10.0 250 27 13 

600 T06 S03 5.5 650 20 9 

750 T06 S03 3.9 600 16 25 

675 T06 S03 4.1 600 33 27 

900 T02 S01 9.0 425 43 11 

900 T06 S03 8.5 550 40 7 

1200 T07 S01 11.0 350 30 23 

1200 T04 S04 7.3 500 56 17 

1200 T03 S03 8.0 480 33 5 
! Volumetric change in mL / 100 kPa at the initial linear behaviour of the gasket movement 

Reduction of the water volume is attributed to various reasons: (a) volume reduction of water 

under pressure, (b) absorption of concrete, (c) increase in joint gap causing an increase in 

annular space, (d) compression of rubber causing an increase in annular space, (e) displacement 

of the primary gasket, and (f) leakage. The reduction of water volume under pressure between 

0 kPa and 685 kPa at room temperature is trivial. The change in the joint gap was found to be 

within 1 mm in most cases. The change in water level in the WSCC due to (a), (b) and (c) was 

not found to be a primary cause of the measured water loss. 

The observed differences in water reduction rates are likely related to compression of rubber 

followed by displacement of the primary test gasket in its annular space. Figure 31 shows the 

water reduction rate impacted by the joint gap. Other than one outlier, there is a linear trend 

indicating that the reduction rate increased when the joint gap increased. Figure 35 indicates 

that the gasket was visible at the failure state in between the joint gap for the 900-mm diameter 
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pipe tested to (a) 475 kPa and (b) 525 kPa, indicating that significant movement has taken 

place during the test. The single offset pre-lubricated gasket is designed to roll into the 

narrower gap from the step of the spigot during the jointing process of the pipe. This leaves 

space behind the gasket from the inside of the pipe bell. The existing design of the joint is more 

favourable to withstand internal pressure when it pushes the gasket outward into the narrower 

annular space. However, it is not favourable in resisting external pressure since it pushes the 

gasket towards the wider part of the annular space to the bell. Therefore, the primary cause of 

the reduction in the water level is the gasket displacement into the volumetric increase of the 

annular space.  

It was also observed in the case of the 900 mm RCP with T02 and T03 gaskets that the joint 

failed when the joint gap was greater than 9 mm and 9.8 mm, respectively. At the time of 

failure, the gasket in both cases had left the annular space. The amount of displacement is 

related to the mechanical properties and size of the rubber, the friction between the gasket and 

the concrete, the degree of compression resulting from the joint gap, the joint and concrete 

conditions. However, a more quantitative assessment needs a dedicated investigation. Leakage 

observed during the tests is often progressive at the beginning, but sudden at the time of 

imminent failure. This behaviour can easily be observed and measured using the test method 

proposed herein, indicating its potential value for consideration into relevant standard 

guidelines.   
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Figure 32: Water Reduction Chart for 600 mm RCP. 

 

Figure 33: Water Reduction Chart for 900 mm RCP. 
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Figure 34: Water Reduction Chart for 1200 mm RCP. 

  

(a) Test #11 900 mm RCP, 475 kPa, Gasket Profile T02, 9 mm gap 
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(b) Test #92 900 mm RCP, 525 kPa, Gasket Profile T03, 9.8 mm gap 

Figure 35: Primary Gasket Displacement at Failure.  

5.9 Water Level Reduction in 20-hour Operation Test 

The water level was monitored for a total of 20 hours duration for three tests using 900 mm 

RCP (Test # 67, 81, and 114). The results are plotted in Figure 36. The rate of reduction in 

water level reached up to 2.5 mL in the first 10 minutes, but diminished thereafter, indicating 

that the movement of the gasket slows down with time. The measurement taken at the end of 

the 20-hour duration for Tests #67 and #81 were 2.8 mL and 3.1 mL, respectively. For test 

#114, the final reading was 4.4 mL, higher than tests #67 and #81. This was attributed to the 

method of measurement using a calliper on the marked water level. The accuracy of this 

method is rather modest when the water level remains unchanged over a long period. In 

general, the position of the gasket under pressure over time stabilized, based on the trend 

observed over 20 hours. 

Based on the observation of the gasket movement reported earlier, one would question the 

behaviour over a longer period. Few operation tests for 900 mm pipe with various joint gaps 

were selected to include additional measurement of the water level from the WSCC. No 

apparent leakage from neither inside nor outside of the pipe joint was observed.  The 

measurement was reported in Figure 36. The reduction in water level has a logarithmic 

relationship with the duration under sustained pressure. The water reduction was reported as 

1.1 mm, 3 mm, and 7.2 mm for the joint gaps 7.7 mm, 9.3 mm and 11.8 mm, respectively, 
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indicating that the larger the gap, the more severe is the movement. The level of the movement 

reduced over time. Gasket movement tended to stabilize in a longer duration compared to the 

conventional 10-minute test.  If the joint gap was relatively large at the beginning, under 

sustained high pressure, the leakage was expected to eventually occur.  

 

  

Figure 36: Water Level Reduction for 20-hour Operation Test (T06). 

5.10 Summary 

This chapter reports the testing results based on the ultimate and operating hydrostatic 

capacities and their failure modes. It was observed that the capacity decreased as the joint gap 

increased. During the test, the leakage could be visualized and monitored through the water 

level in the WSCC. Additional tests also showed that the test could be used for a larger diameter 

pipe, e.g. 1800 mm. The water level reduction charts could signify the severity of leakage 

during the tests. The gasket monitoring over 20 hours also revealed the behaviour of the gasket 

movement with respect to the joint gap.  
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CHAPTER 6  

 

 

 

6 Joint Hydrostatic Performance Curves and Application 

This chapter presents the real-world challenges in maintaining minimum RCP joint gaps during 

in-situ installation. Performance curves were developed using the data collected from the 

infiltration tests to provide quantified guidance to mitigate the risk of leakage due to the 

infiltration of groundwater.   

6.1 Hydrostatic Performance Implications 

An ideal installation of RCP requires the contractor to minimize the joint gap during 

installation. The minimum joint gap, by design, is when the end face of the pipe is completely 

in contact with the adjacent pipe. In this position, the annular space created by the joint is 

minimized, implying that maximum compression of the rubber gasket can be achieved, and 

hence maximum sealing potential. Based on experimental testing completed thus far in this 

research, the conventional RCP and single offset gaskets can reach up to 600 kPa and 360 kPa 

for Gasket A in the aligned and offset positions, respectively. For Gasket B, the ultimate 

capacity can reach 650 kPa regardless of the alignment. CSA A257.2 reduced the target 

hydrostatic test pressure from 105 kPa under straight alignment to 35 kPa under offset 

alignment (67% reduction) to account for the potential influence of offset joints. In the 

infiltration test, the offset did influence the capacity, but not in a systematic manner. The joint 

gap seemed to be more influential on the sealing potential. Minimizing the joint gap also 

prevents the gasket from displacing and escaping from the annular space. Figure 37 (a) shows 

a typical gasket displacement captured by closed-circuit television (CCTV), which is 

comparable to the observation in the infiltration test of Figure 37 (b).  
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Figure 37: (a) Left: Displaced gasket captured by CCTV and (b) Right: observed in the 

infiltration test. 

6.2 Reality Challenges in Maintaining Minimum Joint Gap 

The main reasons that RCP joint gaps cannot be minimized include site conditions, pipe alignment, 

gasket position, and manufacturing tolerances. Jointing the pipe is an important step in the 

installation process. FDOT (2019) specifies 16 mm (5/8”), 22 mm (7/8”) and 25 mm (1”) for 300 

mm to 525 mm, 600 mm to 1650 mm, and 1800 mm or larger RCP with a minimum hydrostatic 

pressure resistance expectation of 35 kPa (5 psi) to be considered as a watertight joint. In Canada, 

CSA A257.1 requires a 13 mm deflection in the horizontal setup for RCP hydrostatic test to 90 kPa 

(CSA, 2019). This implies that the maximum permissible gap is 13 mm. In addition, the installation 

guide (OCPA, 2012) requires proper equipment and methods to create an acceptable RCP joint. 

The maximum sealing potential requires a resultant compression of the sealing material to be 

developed during the jointing process. Proper positioning of the gasket, as per its original design, 

implies proper development of such compression. Failure to follow the original design intent will 

result in inadequate jointing.  

Also, the preparation of the bedding material, including levelling and compaction, is important to 

create conditions that mitigate potential differential settlements. For smaller diameter RCP with 

flared bells, a void must be created to house the larger bell section. This prevents a potential bridge 

effect that may cause longitudinal bending and joint rotation. Moreover, pipe alignment is one of 

the main causes of opened joints. Many contractors use joint gaps as their allowable deviations in 

installations without considering the potential implication to the hydrostatic performance. Inquiries 
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from contractors about how large a joint they can leave open are common.  Figure 38 shows a 

joint gap that was purposely created by inserting a piece of wood to maintain alignment of the pipe 

run. The offset of the joints is also common, but it is hard to determine because its main causes are 

the differential settlement of bedding materials, uneven backfill, surcharge loading from 

construction equipment, and possible live loads from traffic in shallow buried depths. 

Furthermore, the permissible manufacturing tolerances can affect the joint quality, in addition to 

the construction alignment tolerances. Figure 37(a) and (b) show the lay length measurements of 

2425 mm and 2445 mm from the inside of the pipe on the left and right sides of an installed pipe, 

respectively. The design lay length of this pipe is 2438 mm. The measurement reaches the 

maximum variation of lay length on the opposite side that is permitted by CSA A257.2. Wong and 

Nehdi (2018) synthesized the maximum variation permitted by several standards around the world. 

CSA A257 (2014) and ASTM C76 (2016) allow a 6 mm to 20 mm difference between opposite 

sides for various pipe sizes, while AS/NZ 4058 (2007) allows 2 to 10 mm for corresponding pipe 

sizes. This tolerance may be too large, considering the risk of infiltration. Nonetheless, the lack of 

understanding of the importance of joint gaps in relation to the hydrostatic performance and its risk 

implications cannot be overstated. 

6.3 Performance Curve Development 

Figure 39, Figure 40, and Figure 41 illustrate the gasket performance against infiltration for 

600 mm, 900 mm and 1200 mm RCP joints, respectively. Three groups of information for the 

data collected from the hydrostatic infiltration tests for 600 mm, 900 mm and 1200 mm 

diameter RCP were plotted against the joint gap. The ultimate pressure data points, their 

logarithmic trend lines, and the sealing potential based on the load-deformation performance 

for each gasket material were presented in the graphs. The ultimate pressure data were 

determined from each hydrostatic test setup. The sealing potential curves were derived based 

on the calculation described in the previous section. This figure is intended to compare the 

sealing potential derived from the gasket geometric calculation to the actual hydrostatic 

performance from the RCP joint infiltration test with respect to the various joint gaps. 
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Figure 38: Joint gap on the (a) left, and (b) right side of the pipe created in the job site to 

account for the manufacturing tolerance to maintain sewer alignment. 

 

 

Figure 39: 600 mm RCP infiltration Joint Test Performance Curves. 
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Figure 40: 900 mm RCP infiltration Joint Test Performance Curves. 

 

 

Figure 41: 1200 mm RCP infiltration Joint Test Performance Curves. 

6.4 Test Results 

Figure 39 shows the joint performance versus infiltration for the 600 mm pipe specimens. The 

actual capacity indicated a downward trend for both gasket specimens. Gasket B generally had 

approximately twice the capacity of Gasket A. In the aligned condition, Gaskets A and B had 

70% and 30% reduced sealing potential at a 12 mm gap in comparison to that at a 6 mm gap, 

respectively. Although results from the offset condition showed a similar downward trend, the 

gasket specimens seem to have been less affected by the offset orientation. Moreover, 
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according to CSA A257.2, the target for the hydrostatic test with a deflected joint, i.e. joint 

with a 13 mm opening, is 90 kPa. Based on the infiltration test results, Gasket A had a sealing 

capacity for infiltration below 90 kPa when the joint gap exceeded 11 mm; hence, it failed to 

meet this requirement. 

Figure 40 shows the joint performance against infiltration for the 900 mm pipe specimens. 

Results for Gasket A were more consistent comparing to Gasket B, following a downward 

logarithmic trendline. The sealing capacity for infiltration decreased by 230 kPa between the 

joint gap of 6 mm and 12 mm. Gasket B had larger fluctuation resulting from a larger variance 

of the influence of the ratio of stretched unit mass to annular space. For gasket A, the offset 

alignment seemed to affect the infiltration performance, while Gasket B was more substantially 

affected by the offset alignment.   

Figure 41 shows the joint performance versus infiltration for the 1200 mm pipe specimens. 

Gasket A had better consistency following a downward trend. An 80 kPa reduction in sealing 

potential for infiltration was observed between the joint gap of 6 mm and 12 mm. Gasket B 

exhibited a higher reduction of 160 kPa between a joint gap of 6 mm and 12 mm. In addition, 

a larger variance was observed for Gasket B, resulting from a larger variance of the influence 

ratio in comparison to Gasket A. The offset alignment influenced the results for Gasket A more 

than for Gasket B. 

In conclusion, the infiltration performance of the gasket is in agreement with the prediction derived 

from the gasket geometry. However, the prediction of the sealing potential decreased less 

drastically with increasing joint gap than in the case of the hydrostatic performance in the 

infiltration test. 

6.5 Prediction Using Gasket Load-deformation Tests 

Laboratory predictions are obtained through a theoretical estimate based on the material load-

deformation tests described in the earlier section of this Chapter. The curves show a somewhat 

linear reflection in its elastic response in the load-deformation behaviour. The sealing potentials 

from the load-deformation test are plotted in Figure 39, Figure 40, and Figure 41  using solid 

lines for 600 mm, 900 mm and 1200 mm, respectively.    
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For 600 mm gasket specimens, predictions with zero gap were 335 kPa and 334 kPa, 

decreasing linearly to 267 kPa and 281 kPa, with a 13 mm gap for Gaskets A and B, 

respectively. This indicates that Gasket B had slightly higher sealing potential under laboratory 

conditions with a larger gap than Gasket A. In addition, increasing the joint gap from 6 mm to 

12 mm decreased the sealing potential in laboratory tests by 34 kPa and 26 kPa for Gaskets A 

and B, respectively, which is substantially less than that in the hydrostatic infiltration 

experiments. This is because the rubber gasket sample does not experience a frictional force 

perpendicular to the applied load in the load performance test, whilst the pressure 

perpendicular to the joint face can be substantial in the infiltration test. For the 900 mm gasket 

samples, laboratory predictions were somewhat similar because the gasket profiles were 

identical to that of the 600 mm samples. With a slight difference in strength length, a similar 

reduction in sealing potential comparisons would be expected.  

For the 1200 mm gasket samples, the average widths of the gasket were 21.9 mm and 20.1 

mm, 4.4 mm and 3.0 mm larger than that in the 600 mm for Gaskets A and B, respectively. 

Larger base areas resulted in higher frictional resistance when subjected to similar infiltration 

force. Gasket B had less profile size than that of Gasket A, resulting in a lower sealing potential 

in the laboratory test given the same annular space. Compared to the infiltration test, the 

laboratory results seemed to overestimate the results for Gasket A and underestimate it for 

Gasket B.  

In conclusion, as illustrated in Figure 19, the load-deformation test does not account for the 

slippage of the gasket, does neither consider the actual boundary (i.e. concrete and rubber), nor the 

load that is applied normally to the contact surface. The actual infiltration pressure was exerted on 

the gasket parallel to the boundary surface. The gasket tended to slip when the frictional resistance 

was exceeded.  The actual sealing potential needs to consider the frictional resistance caused by 

the gasket movement. This also indicates that the hydrostatic performance curves for infiltration 

may not be linear.  

6.6 Discussion on Uncertainty of Data 

The general overview of the test data shows significant scatter and spread larger than what was 

expected despite the downward trends, e.g. Figure 26. The scatter may result from other 
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hidden or exogenous variables, which will be addressed in the machine learning modelling 

approach in Section 7. It may also be attributed to the non-quantifiable assumptions. The gasket 

sample was lubricated inside the tube section to allow self-equalization during the installation. 

However, it is not certain whether the gasket is completely equalized. It is also not certain that 

the lubrication was applied evenly covering the entire gasket. Moreover, during the jointing 

process, the top bell end of the pipe sample was lowered and inserted into the spigot end of the 

pipe by a forklift. It was assumed to be level, and the joint was evenly closed. It was, in fact, 

impossible to make it perfectly level. These may contribute to the spread of the test results. To 

obtain the actual infiltration performance data for the RCP joint, the results are a first attempt 

in this research to reach rational behavior. Despite the scatter and data spread, it provides a 

starting point for future research. The results can also provide a support to the future 

development of guidelines and acceptance criteria after conducting a wider scope of 

experiments that resolve the limitations of this study, the uncertainty of the assumptions, and 

more robust control of the experimental setup to reduce data scatter. 

6.7 Application of Performance Curves 

6.7.1 Process 

The extent of pipe infiltration is usually site-specific. For new sewers, the quantifiable factors 

include the pipe material standards and methods, quality of workmanship (i.e. installation), 

ground conditions, and, more importantly, the height of the groundwater level and its seasonal 

variation (Butler and Davies, 2004). Part of the quantifiable measures to associate the quality 

of installation and expected performance against infiltration is to associate the RCP joint 

hydrostatic performance test for infiltration through the performance curves developed earlier. 

This should provide a practical tool to mitigate potential infiltration into new sewer pipes that 

could result from a specific site condition. Such an assessment could further provide 

installation guidance based on the selected gasket and pipe material to minimize leakage after 

installation. Figure 42 presents an assessment flow chart to relate field conditions to testing 

results. This model consists of three components: inputs, analysis and outputs. The process 

takes the hydrostatic pressure from the high groundwater level compared to the hydrostatic 

performance curves for infiltration and the gasket load-deformation curves of the gasket 
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materials. An infiltration potential factor is introduced to relate the field condition and the 

experimental results. The maximum allowable joint gap can be derived for the hydrostatic 

performance curve from the infiltration test. The information can be used for quality control 

when jointing the RCP during installation. The assessment procedure should: (i) determine the 

maximum pressure head from the high groundwater condition; (ii) apply infiltration potential 

factor to account for the statistical variance of the gasket and pipe materials; and (iii) Obtain 

the maximum allowable joint gap from the hydrostatic performance curve. 

 

Figure 42: Infiltration Potential Assessment Model. 

6.7.2 Infiltration Potential Factor 

Similar pressure predictions with different reduction scale with respect to the joint gap based 

on material tests and infiltration tests were observed. This is due to the different loading models 

used in the tests. The pressure reduction was faster when increasing the joint gap than that 

predicted using material testing. This is because the gasket was forced to slip under the 

infiltration pressure pushing towards the inside joint face. The direction of movement is 

parallel to the face of the concrete. The frictional coefficient between rubber and wet concrete 

ranges between 0.45 and 0.75; and between 0.6 and 0.85 for dry concrete (The Engineering 

Toolbox, 2004). This also explains why the pressure reduction was faster when the joint gap 

increased. The contact face was wetter due to less pressure between concrete and rubber, 

resulting in lower pressure. The surface roughness may also contribute to the frictional 

resistance (El-Sherbiny et al. 2012). 
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A potential infiltration factor is recommended to be introduced to relate the findings from the 

test and the field expectations. For example, the Ontario Ministry of Transportation requires 

the pipe to withstand 10.5 m pressure head equivalent to 105 kPa (MTO, 2014). The 

performance from the gasket material tests reported herein ranged between 250 kPa to 350 

kPa. It is suggested that a factor of 3:1 can be used related to the experimental results to the 

field expectation. The factor may further increase to account for the omission of the slippage 

between the bearing surface and the gasket sample in the material test. 

In addition, long term performance factor should also be considered. In the 20-hour hydrostatic 

test for operation conditions, 80% of the ultimate capacity is used as the test target. Therefore, 

in interpreting the infiltration potential factor, an additional 20% should be reduced from the 

performance curves.  

Figure 43 exhibits the infiltration potential factor in a performance model of the RCP joint. 

The tested ultimate performance is represented by the upper curve, followed by a reduction 

trend reflecting the reduction potential in long-term performance due to the rubber relaxation 

and gasket movement. The final in-field capacity is illustrated by an offset curve accounting 

for the specification deficiency, manufacturing tolerances, construction tolerances and the 

design of the joint and gasket. The actual design requirements ought to be based on the 

maximum groundwater table obtained by a geotechnical investigation. The difference between 

the ultimate test capacity and the design requirement is considered to be the infiltration 

potential factor. As the long-term performance is progressively reduced, the difference 

between the ideal long-term factor of safety and the design requirement is considered to be the 

required factor of safety. However, the actual performance is lower than the design 

requirement, leading to infiltration potential.  
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Figure 43: Infiltration Potential Assessment Illustration. 

6.7.3 Illustrative Case Study 

A sample pipe installation project located in West Gwillimbury in the Region of York, Ontario, 

Canada, included a 600 mm concrete sanitary sewer with an average buried depth of 12 to 13 

m from the finished grade to the underside of the pipe. The 100-year high groundwater level 

was found at 235 m to 236 m above sea level. The stormwater pipe was designed to match its 

crown to the high groundwater level, whilst the 600 m sanitary trunk line was designed to be 

deeper at about 228 m. The sanitary sewer was submerged in the groundwater after installation 

and exposed to potential infiltration. Figure 44 shows a simplified illustration of the profile 

view of the ground condition and pipe design. The high groundwater table located at 235 m to 

236 m measured above sea level was expected to exert approximately 8.0 m (80 kPa) to 8.5 m 

(85 kPa) of hydrostatic pressure against the RCP. To apply a 3:1 infiltration potential factor, 

the 600 mm concrete pipe supplier needed to demonstrate that the joint can withstand 

infiltration pressure of 255 kPa under operating condition. Considering that 255 kPa was 80% 

of the ultimate capacity requirement, the maximum permissible joint gaps that can withstand 
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320 kPa (255 kPa divided by 0.8) of infiltration pressure based on the performance curves are 

4 mm and 13 mm for Gaskets A and B, respectively.  

Gasket B was recommended for use in this project partly because the testing results showed 

high variation for Gasket A, and partly because the 4-millimetre allowable joint gap is difficult 

to achieve in the field. In addition, the maximum allowable joint gap of 13 mm when using 

Gasket B can be controlled by the contractor during the installation. It is critical to validate the 

joint gap during the installation process and correct the gap if, for any reason, the maximum 

joint gap cannot be maintained. It would be much less costly to repair the joint during 

installation than afterwards. 

 

Figure 44: Profile View of a Potential Infiltration Case. 
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6.8 Summary 

The actual challenges in maintaining minimum RCP joint gaps include construction conditions 

and manufacturing tolerances, indicating that the ideal joint is difficult to achieve. Performance 

curves developed based on the test results quantify the influence of the joint gap. The 

infiltration potential requires consideration of not only the joint itself but also the groundwater 

conditions. An illustrative case study was presented to assess the infiltration potential based on 

a suggested infiltration potential factor to mitigate the risk of infiltration using the performance 

curves developed. 
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CHAPTER 7  

 

 

 

7 Hydrostatic Performance for Infiltration Prediction Using 
Machine Learning Techniques  

Concrete Pipe, the most commonly used product in sewage systems, faces a challenge in 

dealing with inflow and infiltration (InI) since the quality of the pipe joint relies not just on the 

joint materials and design, but also on the installation quality. Existing testing methods 

generally do not proactively capture the infiltration risk. Thus, a novel, simple and robust 

hydrostatic test for RCP infiltration was developed and presented in the previous chapters. A 

comprehensive testing program using the new test has collected hundreds of data points on the 

infiltration performance of RCP joints using existing joint designs and sealing materials.  

The experimental procedure and dataset were aimed to capture multiple influential parameters 

in the design of RCP joints. Due to the nonlinear relationship between such design parameters, 

conventional statistical models failed to provide a comprehensive and reliable predictive tool 

to propose design guidelines. Therefore, advanced modelling techniques are required to 

capture all the underlying effects of different parameters. Substantial parts of this Chapter have 

been submitted for publication to the ASCE Journal of Pipeline Systems Engineering and 

Practice. 

7.1 Recent AI Applications 

The evolution of artificial intelligence (AI) algorithms and soft computing techniques allowed 

solving diverse, complex engineering problems (Reich, 1997, Reich and Barai, 1999, Koch 

et al., 2015). Accordingly, supervised learning methods, namely regression and classification, 

demonstrated the potential to predict the behaviour of various engineering materials and 
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systems. A significant number of research studies have deployed robust supervised algorithms 

to model different civil engineering problems. Table 22 presents some studies regarding the 

application of machine learning (ML) algorithms in various civil engineering areas. Regression 

tools, which are widely used in civil engineering, can be effectively applied to predicting the 

mechanical properties of concrete. (Nehdi et al., 2001, Yaseen, et al., 2018). 

Table 22: Recent Applications of Machine Learning in Civil Engineering 

Topic Method Ref. 

The failure mode of concrete bridge 

columns 

KNN, ANN, 

Tree-based methods, etc. 
Mangalathu, 2019 

Self-compacting concrete ANN Nehdi et al., 2001 

Lightweight foamed concrete Extreme learning machine Yaseen, et al., 2018 

Failure of beam-column joints 
KNN, ANN, 

Tree-based methods, etc. 
Mangalathu, 2018 

Pavement crack detection Deep learning Zhang et al., 2017 

High-rise building structures 
Hybrid machine learning 

model 
Rafiei and Adeli, 2017 

Crack classification in concrete SURF, CNN Kim et al., 2019 

Streamflow forecasting ANN Zealand, 1999 

Classification techniques can also be used to investigate the complex behaviour of civil 

engineering systems. Prediction of the failure mode of structures, as well as defect detection 

in civil engineering infrastructure using classification problems, have been extensively 

investigated. For instance, Melhem and Cheng (2019) used the K-nearest neighbours (KNN) 

algorithm to predict the remaining service life of bridge decks and reported that larger datasets 

could result in higher predictive accuracy. Mangalathu and Jeon (2019) explored the failure 

mode of bridge columns using various ML algorithms such as KNN, decision trees, random 

forests, quadratic discriminant analysis, and artificial neural network (ANN). They reported 

that ANN achieved 11% higher accuracy in predicting the failure mode compared to existing 

models in the literature. They predicted the failure mode of beam-column joints using a dataset 

containing 536 examples of experimental tests (Mangalathu and Jeon, 2019). Similar studies 

in the literature exhibit how developing predictive ML models can help engineers propose 

rational guidelines for the design of complicated infrastructures. 
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Therefore, the present study explores several ML techniques, including gradient boosting, random 

forest, extra trees coupled with data oversampling methods to develop intelligent models for 

prediction of hydrostatic pipe infiltration. The proposed models demonstrated high accuracy in the 

prediction of joint performance, considering the design parameters included in the experimental 

data collection process. It is anticipated that robust predictive models could allow developing 

design charts that aid municipalities in proactively averting sewage system infiltration problems at 

low cost, instead of the current costly reactive approach to this problem. 

7.2 Machine Learning Literature Review 

This section captures the state-of-the-art classification techniques used in model development. 

Among all major types of classifiers, tree-based ensembles, including Random Forest, Extra 

trees, and Gradient Boosting, achieved higher performance, and thus are outlined below. The 

sampling techniques for handling imbalanced data, such as the Synthetic Minority Over-

sampling Technique (SMOTE) and Density-Based SMOTE, are also discussed in this section. 

K-nearest neighbors (KNN), which is also deployed in the process of generating synthetic data, 

is elaborated on herein. 

7.2.1 Tree-based classifiers 

Supervised learning methods have been widely implemented in various engineering fields in 

the form of regression and classification algorithms, as mentioned earlier. Many classification 

algorithms can be employed to predict either binary-class or multi-class outputs. Decision trees 

are one of the algorithms that have been employed for various classification problems in recent 

decades (Mangalathu and Jeon, 2018, Mangalathu and Jeon, 2019). The decision tree 

recursively splits the dataset into several smaller subsets. Each decision tree is composed of a 

root node that contains all the data, a group of internal nodes called splits for decision making 

in feature space, and a group of terminal nodes called leaves for the final decision (Figure 45).  

Using a decision tree classification algorithm, a dataset is classified by subdividing it in a 

sequential manner based on the decision criteria defined by the tree. Consequently, each 

observation in the dataset is assigned with a class label according to the corresponding leaf 

node (Friedl and Brodley, 1997). Furthermore, the capability of the decision tree algorithm 
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in modelling complex problems is improved by the emergence of tree-based ensemble methods 

(Quinlan, 2006, Breiman, 1996, Breiman et al., 1984, Liaw and Wiener, 2002). Boosting 

and bagging are the major ensemble methods used for classification and regression problems. 

Each ensemble method is composed of several single decision trees as multiple predictors that 

are aggregated to obtain the final output. More details on the bagging and boosting ensembles 

can be found in (Breiman, 1996, Breiman et al., 1984, Liaw and Wiener, 2002). Various 

well-known ensembled algorithms, such as random forest (RF), extra trees (ET), and gradient 

boosting (GB) have been utilized in different engineering problems. In this study, RF, ET, and 

GB classifiers are used to model the RCP joint performance for infiltration.  

   

Figure 45: Decision Tree Scheme. 

 Random Forest Classifiers (RFC) 

RFC is among the most promising and powerful ensemble models even for high-dimensional 

or skewed classification problems. Random forest is an ensemble of decision trees considered 

as a robust classifier having several weaker classifiers (Rodriguez-Galiano et al., 2012). In 

other words, RFC is a combination of several single decision tree classifiers with one vote to 

predict the class of each input observation. Accordingly, every single classifier is created 

considering a random vector that is independently driven from the input vector. Bootstrap 

aggregation, i.e. bagging, is employed to enhance the performance of the weak learners by 

means of generating a group of classifiers. Using RFC, the training of each estimator is 

performed using a training subset sampled from the original training set in a random manner. 

Consequently, each estimator assigns a vote to classify the input vector (Breiman, 1996, 

Breiman et al., 1984, Liaw and Wiener, 2002, Rodriguez-Galiano et al., 2012, Azar et al., 

2014).   
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 Extra Trees Classifier (ETC) 

The extra trees algorithm is a tree-based ensemble model that has recently been used for many 

classification and regression problems. The algorithm was proposed by Geurts et al. (2006) 

as a modified version of the random forest algorithm in which any single decision tree is trained 

based on a randomly selected subset of the data (Geurts, 2006, John et al., 2015). In contrast 

to the random forest, the training subset for each decision tree in the extra trees algorithm is 

not selected using the tree bagging method, and thus, all the decision trees in the ensemble are 

trained using the entire training dataset. Moreover, ETC selects the best feature and its 

associated value in a random manner to split the node. Therefore, the extra tree algorithm has 

a more robust performance in terms of avoiding overfitting (Ahmad et al., 2018, Geurts, 

2006). More details on the algorithm and its performance can be found in Ahmad et al. (2018), 

Geurts (2006), and John et al. (2015). 

 Gradient Boosted Classifier (GBC)  

Gradient boosting (GB) is a tree-based machine learning algorithm that has demonstrated high 

efficiency and accuracy in many prediction problems such as binary and multi-class 

classification (Ke et al., 2017, Torres-Barran, 2019, Liu et al., 2017). GB is a boosting 

ensemble method in which weak predictors are combined iteratively. The boosting iterations 

are optimized according to the gradient descent method to result in a robust predictor (Torres-

Barran, 2019, Mason, 2000).  

7.2.2 Oversampling 

Imbalanced datasets are often inevitable in real-world problems. Consequently, imbalanced 

classification problems have been emphatically addressed by data scientists in recent years. 

From a technical point of view, an imbalanced classification problem is formed based on a 

binary or multiclass dataset in which the size (i.e. number of observations) of one of the classes 

is significantly lower compared to the others. Yet, the minority class in the imbalanced dataset 

represents the desirable concept to predict in nearly all cases.  In this study, the observation of 

leakage in the conducted tests is considered a minority class, leading to the collection of an 
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imbalanced dataset. The crucial issue associated with such classification problems is the likely 

biased prediction performance of the learning algorithm toward the majority class. 

One prevalent approach to overcome the imbalanced nature of biased datasets is to resample 

them in the preprocessing stage (Cordon et al., 2018). The resampling can be conducted using 

either under-sampling, which is the elimination of some majority class observations, or 

oversampling in which new instances of the minority class are appended to the training dataset 

using oversampling methods. Oversampling is preferred for rebalancing data considering that 

no relevant example in the dataset is eliminated. Moreover, the concept represented by the 

minority class is reinforced after oversampling such that the trained model would not 

misclassify the minority observations. There have been a great number of oversampling 

methods proposed to mitigate imbalanced datasets. The basics of two popular methods are 

briefly discussed herein. 

2.4.1 K-Nearest Neighbours (KNN) 

KNN is a non-linear technique that has been widely used for binary and multi-class 

classification problems owing to its simplicity and efficiency (Melhem and Cheng 2019). The 

number of observations to be considered for decision making, i.e. the number of neighbours is 

the most influential parameter in the algorithm that needs to be tuned. Indeed, the number of 

neighbours, k, demonstrates the complexity of the decision boundary between the classes 

(Varmuza 2014). The optimal number of neighbours is greatly dependent on the dataset; 

however, a large value of k mitigates the noise effect while making the classification 

boundaries more complicated.  

 Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE was first proposed by Chawla et al. (2002) as a state-of-the-art oversampling 

technique to mitigate the imbalanced nature of real-world datasets in classification problems. 

The key idea of this method was to oversample the minority class by means of generative data 

examples called “synthetic” rather than using the replacement method. They created the 

synthetic examples over the manner of operating in “feature space” instead of in “data space,” 
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which is referred to as an application-specific manner. In this procedure, each minority class 

observation is taken into account, and the synthetic samples are introduced over the line 

segments considering either any or all the k minority class nearest neighbours (Chawla et al. 

2002). The number of k nearest neighbours are selected in a random manner based on the 

amount of the required oversampling, i.e. proportion (Chawla et al. 2002). Therefore, the 

proportion of the required synthetic data and the number of nearest neighbours are key 

parameters in the performance of the SMOTE method. More details on this method can be 

found in (Chawla et al. 2002). 

 Density-Based SMOTE (DBSMOTE) 

Bunkhumpornpat et al. (2012) introduced DBSMOTE to improve the performance of the 

SMOTE method. Over-generalization harmfully influence the SMOTE method since it blindly 

generalizes the oversampling over the minority class while the majority class is not considered. 

This is more highlighted in overlapping regions (Bunkhumpornpat et al., 2012). Using 

DBSMOTE, the new data are synthesized within a distance of the center of the cluster called 

eps (Bunkhumpornpat et al., 2012, Wong et al., 2016). Therefore, synthetic samples do not 

fall into the majority class. Bunkhumpornpat et al. (2012) reported that the DBSMOTE 

algorithm had better performance results compared to the SMOTE method. 

7.3 Model Development 

7.3.1 Data Preparation 

The dataset used for the modelling purpose is an exclusive comprehensive design-wise data 

collected by the author of this thesis from a real novel test facility, as mentioned earlier. The 

testing program included nine input parameters: pipe size, gasket model, gasket length, gasket 

mass, pressure, pressure duration, joint gap, and setup alignment. In total, 1338 pressure data 

points were collected.  Therefore, the dataset used for ML models has nine input features along 

with a binary-class output. Table 23 summarizes the data parameters used in this analysis. The 

pipe size captures a discrete value of the nominal pipe diameter size in millimetre. The gasket 

models capture five unique profiles of single offset gaskets commonly used by the industry. 
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Gasket length is the unstretched length being measured before the test. Gasket mass is a unit 

mass in gram per metre. The pressure is recorded in kilopascal. Duration is measured in a 

minute during which the pressure was maintained. For the 20-hour operational pressure test, 

the duration is recorded as 1200 minutes. The water level was measured in millimetre with 

respect to a datum. The internal diameter of the water supply connecting cylinder is 100 mm; 

hence, each millimetre reduction in the cylinder corresponds to 7853 mm3 or 7.853 mL 

reduction. The joint gap is measured in millimetre and is taken as maximum during each test, 

where it usually occurs at maximum applied pressure. The data containing pressure at zero kPa 

when time is zero was removed from the dataset. In addition, the gasket model is identified by 

separating into fields with a Boolean option of 0 and 1 to identify its model.  

Table 23: Data Parameters for ML 

Parameters Input / Output Type Unit 

Pipe Nominal Size Input Value mm 

Gasket Model Input Boolean 1 / 0  

Gasket Length Input Value mm 

Gasket Mass Input Value gram / metre 

Pressure Input Value kPa 

Duration Input Value Minute 

Water level Input Value mm 

Joint Gap Input Value mm 

Setup Input Option 1 / 2 

Leakage Output Boolean Yes / No 

7.3.2 Data Statistical Distribution 

Based on the known behaviour of rubber used as a jointing sealant illustrated in Figure 46, a 

smaller joint gap minimizes the annular space; thus, it maximizes the sealing potential. 

Conversely, a larger joint gap maximizes the annular space; thus, minimizes the sealing 

potential. The testing program consisted of 123 successful tests that collected a total of 1338 

data points. The pressure level at ultimate capacity and the corresponding operating capacity 

is plotted in Figure 47. Using conventional regression analysis, the distribution showed 

significantly large variation with a coefficient of determinations, R2, equal to 0.072 and 0.081 

from the linear (Eq. 8) and logarithmic regression (Eq. 9), respectively. The reason for using 

logarithmic regression is that when the rubber is under a completely confined condition, the 

sealing pressure is way beyond the testing range. This is due to the fact that the confined space 
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allows the rubber to develop viscoelastic behaviour where the same amount of deformation 

requires an incremental amount of applied pressure. The linear regression is also being used 

for comparison purposes. R2 is calculated by subtracting from a value of one the ratio between 

the sum of the square of regression error and the sum of the square of total error (Eq. 10). 

These coefficients indicate that two variables: pressure and joint gap, were poorly related and 

close to independence. The upper and lower 95% confidence level presented a gradual decline 

at a rate of 25 kPa and 10 kPa per millimetre joint gap increase. The linear and logarithmic 

trendlines, and the 95% upper and lower confidence levels are plotted in Figure 47. 

Eq. 8  𝒚 = 𝒎𝒙 + 𝒃 

Eq. 9  𝒚 = 𝒎𝒍𝒏(𝒙) + 𝒃 

where y – output value, x – input value, m – slope, b – constant 

Eq. 10  𝑹𝟐 = 𝟏 −
∑(𝒚𝒊−𝒚̂)𝟐

∑(𝒚𝒊−𝒚̅)𝟐 

where R2 – the coefficient of determination, yi – output value, 𝑦̂ = f(xi) fitted output value, 𝑦̅ =
∑ 𝑦𝑖

𝑛
 – mean output value 

The coefficients of determination for linear and logarithmic regression were very small, 

indicating that the joint pressure capacity and joint gap do not have a clear relationship. By 

grouping and categorizing the data based on data parameters, the coefficients of determination 

were substantially increased. In the case of the dataset with various joint gaps under offset 

alignment for Gasket Model T07, the coefficient of determinations was higher = 0.77, 

indicating that the hydrostatic performance of the gasket profile under that setup and duration 

was predictable.   
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Table 24 summarizes the coefficients of determination for linear and logarithmic regression 

analysis. The order of variables introduced is based on the parameters known to be most 

impactful on the outcome.  Figure 48 plots the coefficients against the number of variables, 

which shows an increase in predictability with an increase in the number of variables. In 

conclusion, traditional regression models were unable to predict the performance boundary due 

to multi-variables that influence the output. Machine learning could yield a better method of 

analysis by utilizing all the data, including both success and failure conditions. The 

classification models were thus more suitable to determine the performance boundary. 

  

 

Figure 46: Behaviour of Rubber used as RCP Joint Sealant. 
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Figure 47: Statistical Distribution and Trends of RCP Infiltration Test Results. 
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Table 24: The Summary of Coefficient of Determination from the Regression Analysis 

No. of 

Variables 
Variables 

Number 

of Data 

Point 

Linear 

Regression 

Logarithmic 

Regression 

1 Joint Gap 113  0.0723  0.0805 

2 Joint Gap, Aligned 67 0.107 
0.0799 

0.118 
0.0905  Joint Gap, Offset 46 0.041 0.050 

3 

Joint Gap, Aligned, Ultimate 41 0.148 

0.100 

0.156 

0.117 
Joint Gap, Aligned, Operating 26 0.092 0.124 

Joint Gap, Offset, Ultimate 26 0.055 0.067 

Joint Gap, Offset, Operating 20 0.071 0.095 

4 

Joint Gap, Aligned, Ultimate, T06 10 0.367 

0.266 

0.402 

0.249 

Joint Gap, Aligned, Ultimate, T07 7 0.482 0.400 

Joint Gap, Aligned, Ultimate, T02 12 0.339 0.401 

Joint Gap, Aligned, Ultimate, T03 12 0.037 0.062 

Joint Gap, Aligned, Operating, T06 6 0.298 0.321 

Joint Gap, Aligned, Operating, T07 5 0.585 0.582 

Joint Gap, Aligned, Operating, T02 10 0.376 0.456 

Joint Gap, Aligned, Operating, T03 4 0.630 0.380 

Joint Gap, Offset, Ultimate, T06 9 0.006 0.023 

Joint Gap, Offset, Ultimate, T07 4 0.612 0.771 

Joint Gap, Offset, Ultimate, T02 8 0.084 0.040 

Joint Gap, Offset, Ultimate, T03 4 0.032 0.026 

Joint Gap, Offset, Operating, T06 6 0.028 0.088 

Joint Gap, Offset, Operating, T07 5 0.421 0.469 

Joint Gap, Offset, Operating, T02 8 0.143 0.074 

 

Figure 48: Regression Analysis. 
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7.3.3 Machine Learning Model 

A classification model framework (Figure 49) was developed to predict leakage of the pipe 

setup using the dataset explained earlier. For this purpose, three different ML algorithms were 

initially applied to the imbalanced original dataset, including random forest classifiers (RFC), 

extra trees classifier (ETC), and gradient boosting classifier (GBC). Each model was tuned to 

acquire the best performance while avoiding potential overfitting. 80% of the dataset was used 

for model training, known as original training data; and 20% was used for model testing, 

known as original testing data. The performance of each model on the original testing data was 

evaluated using well-known classification metrics introduced below. 

RandomizedSearchCV from scikit-learn in Python, along with 5-Fold cross-

validation, were implemented to tune the most influential hyperparameters of the 

aforementioned algorithms (Pedregosa et al., 2011). Subsequently, oversampling methods 

were implemented to mitigate the biased trend in the dataset and avert overfitting in the 

classifiers.  

Among the tuned models, the best model achieved using the original testing data was selected 

for the oversampling step. Due to the imbalanced number of classes in the dataset, two 

oversampling methods: SMOTE and DBSMOTE, were applied to the training dataset to avoid 

misclassification of the minority class. The oversampled datasets are called SMOTE data and 

DBSMOTE data, respectively.  These data were randomly split into 80% for training and 20% 

for testing, known as SMOTE training and testing data, as well as DBSMOTE training and 

testing data, respectively. For this purpose, the smote-variants package in Python was 

implemented. Kovács (2019) developed the smote-variants package using 85 different 

minority oversampling methods proposed in the literature. In this study, SMOTE and 

DBSMOTE were utilized, as explained earlier. Furthermore, to prevent the biased performance 

of the model toward any classes after oversampling, the parameters of each method were tuned 

so as to maintain the most desirable accuracy of prediction using the original testing data. The 

prediction accuracy of the models after implementing each oversampling algorithm on the 

original testing data was evaluated using different classification metrics further explained 

below.  
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Figure 49: Classification ML Model Framework for RCP Joint Performance Data. 

7.3.4 Classification Performance 

The evaluation of classification algorithms is a crucial stage in the development of predictive 

models using different classifiers. The purpose of an ML classifier model is to learn using 

training data so that it can predict the class label for new unseen data, called testing data 

(Tharwat, 2018). A confusion matrix is a preliminary metric to evaluate the predictive 

performance of a predictive classifier. In a binary classification model, assume P for positive 

class and N for negative class. The confusion matrix presents the four possible outputs after 

the prediction, as shown in Figure 50. The blue cells in the matrix indicate correct predictions 

for both classes, i.e. True Positive and True Negative, while the red cells represent false 
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predictions. If the output of the observation is positive, and it is predicted as positive (correctly 

classified observation), it is considered as a true positive (TP). If it is misclassified as negative, 

it is counted as false negative (FN). By the same token, if the example is negative and correctly 

predicted as negative, it is true negative (TN); if it is negative and misclassified as positive, it 

is regarded as false positive (FP). The confusion matrix is the basis for the calculation of many 

classification metrics (Tharwat, 2018). Accuracy, precision, and recall are among the most 

widely used measures to assess the performance of classification models. These three metrics 

can be calculated using the following equations (Tharwat, 2018, Sokolova et al., 2006): 

 

Figure 50: Confusion Matrix. 

Eq. 11:  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Eq. 12:  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Eq. 13:  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

According to Tharwat (2018), all of the aforementioned metrics can be used to evaluate the 

performance of imbalanced classification problems. However, some other measures have 

proven to be beneficial in assessing classifiers. 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 is a metric that demonstrates the 

harmonic mean of precision and recall (Tharwat, 2018, Sokolova et. al., 2006). 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 

can be calculated using Eq. 14. The score can vary from zero to one, with one indicating the 

supreme performance. 
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Eq. 14   𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃+0.5𝐹𝑁+0.5𝐹𝑃
  

Two other important metrics for evaluating classification models are sensitivity metrics, i.e. 

true-positive rate (TPR) and false-positive rate (FPR). TPR indicates the ratio of the positive 

samples that are classified correctly to the total number of positive examples. Similarly, FPR 

denotes the ratio of negative examples classified incorrectly to the total negative observations 

(Tharwat, 2018). Accordingly, they can be calculated using Eq. 15 and Eq. 16. 

Eq. 15  𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Eq. 16   𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

TPR and FPR are generally used to create a useful graphical metric called receiver operating 

characteristic (ROC) curve (Figure 51). This graph plots the TPR (y-axis) versus FPR (x-axis) 

by changing the prediction thresholds in the feature spaces. It correspondingly has four important 

points. Point 1 (0,0) in the lower-left corner of the curve shows that there is no positive 

classification in the classifier, while all negative examples are predicted correctly. In other 

words, both TPR and FPR are zero at point 1. Similarly, Point 2 (0,1) in the top left corner of 

the graph indicates the best performance of the classifier, where all positive and negative 

observations are classified correctly. Point 3 (1, 0) in the bottom right corner indicates the 

worst performance of the classifier, where all positive and negative observations are classified 

incorrectly. Lastly, Point 4 (1,1) in the top right corner indicates that there is no negative 

classification in the classifier, while all positive examples are predicted correctly. Using the 

ROC curve, any classifier that lies within the upper left space of the graph has a better 

performance compared to those located at the lower right domain of the graph (Tharwat, 

2018). A very important metric to quantify the ROC curve for a better understanding of the 

classifiers’ performance is the area under the ROC curve, known as AUC. This score is always 

between 0 and 1, while the ideal performance occurs at AUC=1. Figure 51 illustrates a 

schematic ROC curve along with its important points. Curve B has a higher AUC than Curve 

A, thus has better performance. More details on the evaluation criteria for classification 

algorithms can be found in (Tharwat, 2018). YellowBrick package in python was 

employed to plot the results reported herein (Bengfort, 2019). 
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Figure 51: Scheme ROC Curve. 

7.4 Results and Discussions 

7.4.1 General 

The prediction performance of different classification models explained earlier was first 

evaluated. The best classification algorithm was distinguished using the original dataset. 

Subsequently, the oversampling techniques were applied to the original training dataset based 

on the framework presented in Figure 49, and the performance of the best classification model 

was measured to achieve the best model for further studies using the original testing data.   

7.4.2 Performance of Tree-based Models Before Oversampling 

To evaluate the predictive performance of the three tree-based ensemble models, different 

classification metrics discussed earlier were used to assess the performance of each model 

applied to the original dataset. Figure 52 (a), (b) and (c) show the classification reports for the 

RFC, ETC, and GBC models, respectively, using original training data without resampling, 
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including precision, recall and F1-score for both classes of “Leakage” and “No Leakage.” 

These classifiers reported excellent performance in learning the “No leakage” cases. In the 

case of ETC, the false positive was zero, indicating that no error was made in predicting the 

“No leakage” cases, leading to 100% precision. However, the recall shows the lowest value 

among all classifiers, indicating that the ability to detect “Leakage” was only 42.9%. It is 

important to accurately detect leakage, therefore among the classifiers, GBC performed the 

best and was thus used for further development.  

In evaluating the classifiers using the original testing data, as shown in Figure 53 (a), (b), and 

(c) for RFC, ETC, and GBC respectively, all models demonstrated robust performance in 

predicting the “No Leakage” class, whilst they had a poor performance in predicting the 

“Leakage” class. This can also be visualized in Figure 54. This performance was due to the 

imbalanced nature of the dataset. Indeed, the original dataset was biased towards the “No 

Leakage” class, and thus, the models were overfitted in predicting the “No Leakage” class. 

This trend is better distinguishable in confusion matrices of the models. As mentioned earlier, 

20% of the dataset, i.e. 146 instances, was allocated for testing, which was called original 

testing data. Among these, only ten observations were labelled with the “Leakage” class. 

According to the confusion matrices, the RFC and ETC models predicted only 3 and 1 

examples correctly, respectively, while and GBC predicted 5 data observations correctly. 

Therefore, the models were not capable of predicting the leakage of the pipelines accurately. 

However, the GBC model exhibited better performance compared to the RFC and ETC models. 

It should be noted that the confusion matrix is more rationale for evaluating the performance 

of classifiers due to the imbalanced dataset. Moreover, the results reported in Figure 53 (a), 

(b), and (c) are from tuned models. Tuning was carried out using the RandomizedSearchCV 

package with 5-fold cross-validation, as mentioned earlier. The AUC was monitored as the 

evaluation metric. Table 25 presents the best values for each model after tuning.  
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Figure 52: Classification Report and Confusion Matrix from: (a), (b) and (c) Original 

Training Data; (d) SMOTE Training Data; and (e) DBSMOTE Training Data 
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Figure 53: Classification Report and Confusion Matrix from the Original Testing Data 
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Figure 54: Performance Comparison Among Tree-based Classifiers on Testing Data 

 

Table 25: Hyperparameters for Tuning ML Learning Models 

Model RFC ETC GBC 
n_estimator 100 100 245 
learning_rate   0.35 
max_depth 6 8 1 

min_samples_split 9 10 27 
min_samples_leaf 1 1 19 

subsample   0.37 
max_features 8 9 9 

7.4.3 Oversampling Methods 

To overcome the imbalanced feature of the dataset, oversampling techniques were employed 

to generate synthetic data points belonging to the minority class, i.e. “Leakage.” For this 

purpose, the SMOTE and DBSMOTE oversampling methods were applied to mitigate the 

biased distribution of the data. Figure 55 shows a comparison of the synthetic data created for 

the minority class between SMOTE and DBSMOTE. The percentage of the minority class was 

increased from 8.4% to 21% and 45% of total data using the SMOTE and DBSMOTE 

approaches, respectively. GBC found earlier to have better prediction accuracy was used for 

modelling using the oversampled training dataset. Purposefully, the parameters of each 
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oversampling method were tuned to acquire the highest performance in terms of accuracy and 

AUC. Furthermore, the GBC model was tuned again using the oversampled training dataset. 

Hence the results presented here are extracted from the tuned hybrid models to ensure the best 

predictive performance.  

 

Figure 55: Comparison of data counts between oversampling techniques 

7.4.4 SMOTE 

The predictive performance of the GBC model after oversampling was highly dependent on 

the parameters of the SMOTE, including n_neighbors and proportion. The high 

values of proportion resulted in many synthetic data points in the new dataset. Therefore, 

an excessive tendency towards the “Leakage” class could have emerged. Moreover, the high 

number of neighbours considered for generating new data points led to poor representation of 

the minority class. Accordingly, several models having different parameters were executed to 

achieve the best performance considering the classification metrics explained earlier.  
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Figure 56 indicates the variation of accuracy and AUC of the GBC-SMOTE model with respect 

to the n_neighbors for both original testing data and the SMOTE testing dataset.  The 

optimum values for n_neighbors and proportion for SMOTE were 7 and 0.2, 

respectively, as per a trial-and-error approach. It should be noted that the AUC score based on 

5-fold cross-validation was monitored for obtaining the best values of the SMOTE parameters. 

Figure 53 (d) (left) displays the classification report of the GBC-SMOTE model for the 

original testing dataset. Accordingly, the precision for the “Leakage” class was reduced 

compared to the GBC model before oversampling, whilst the recall score was increased 

significantly. Regarding the definitions of the precision and recall explained earlier, the 

obtained trend demonstrated that the GBC-SMOTE was less overfitted towards the “No 

Leakage” class due to lower values of TP, FN, and FP, as shown in the confusion matrix 

(Figure 53 (d) (right)).  

The original testing data used for the preparation of classification reports and confusion 

matrices of GBC-SMOTE and GBC models were equal. It can be observed in Figure 53(c) and 

(d) that the number of “Leakage” observations in the original testing data predicted correctly 

was increased from 5 to 7 in the GBC-SMOTE model compared to the GBC. This illustrates 

the less biased performance of the GBC-SMOTE model in predicting the “Leakage” class. 

Meanwhile, the accuracy of the model in predicting the “No Leakage” class was slightly 

decreased in the GBC-SMOTE model, as evidenced in classification reports and confusion 

matrices. Therefore, the GBC-SMOTE model was less overfitted and provided more reliable 

predictions. It is worth mentioning that the confusion matrix was the best metric for evaluating 

the predictive performance of each model since the original dataset was highly biased towards 

the majority class, and thus, models were extremely prone to overfitting. 
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Figure 56: Accuracy and AUC Comparison between Original Testing Data and 

Oversampled Data using SMOTE. 

7.4.5 DBSMOTE 

DBSMOTE is an improved version of the SMOTE method. Similar to SMOTE, the tuning of 

the DBSMOTE parameters has a noticeable effect on the predictive performance of the 

classification model. This method is available in the smote-variants package of Python 

and has tunable parameters, including proportion, eps, and min_samples. eps 

(maximum distance between two samples in the neighbourhood of each other) and 

min_samples (number of samples in the neighbourhood of the core point). After several 

trials, the optimum values for proportion, eps, and min_samples were found to be 0.8, 

0.1, and 3, respectively. Figure 57 and Figure 58 display changes of the AUC and accuracy 

of the GBC-DBSMOTE model with respect to eps and min_samples, respectively. With 

the increase in the values of eps and min_samples, both accuracy and AUC of the model 

considering the original testing data decreased. Meanwhile, the AUC and accuracy of the model 

increased for the case of the DBSMOTE testing dataset. Such performance demonstrates that 

high values of these two parameters could lead to model overfitting towards the synthetic data. 

However, owing to the density-based generation of synthetic data in the most suitable places, 

it is possible to generate a higher proportion of data representing the minority class.  

The classification report of the GBC-DBSMOTE model over the original testing data is 

indicated in Figure 53 (e) (left). Accordingly, the GBC-DBSMOTE model had superior 



 

116 

prediction performance compared to that of GBC and GBC-SMOTE considering precision, 

recall, and F1-score metrics. Moreover, among 136 and 10 “No Leakage” and “Leakage” 

observations in the original testing data, 129 and 9 were predicted correctly by the GBC-

DBSMOTE model, respectively, as shown in the confusion matrix (Figure 53 (e) (right)). 

Therefore, the GBC-DBSMOTE model achieved less biased predictions using the original 

testing dataset. As mentioned earlier, the developed models were tuned again after 

oversampling, and Table 26 presents the tuned hyperparameters of the GBC-SMOTE and 

GBC-DBSMOTE models using the oversampled training dataset. 

 

   

Figure 57: Accuracy Measurements Against eps Using DBSMOTE. 

 



 

117 

 

Figure 58: Accuracy Measurements Against min_samples Using DBSMOTE. 

Table 26: Hyperparameters for Tuning SMOTE and DBSMOTE Models 

Model GBC-
SMOTE 

GBC-
DBSMOTE 

n_estimator 190 190 
learning_rate 0.21 0.215 
max_depth 1 1 

min_samples_split 2 2 
min_samples_leaf 1 10 

subsample 0.68 0.74 

7.4.6 Comparison between different models 

Figure 59 shows the precision, recall, and F1-score comparison for the minority class along 

with the accuracy and AUC using gradient boosting classifiers trained by the original, SMOTE 

and DBSMOTE training data. Precision is not a good measure of imbalanced data because it 

is affected by the incorrectly predicted negative class, i.e. majority class. Recall, on the other 

hand, reflects the reality of the positive class because it only considers the positive class, i.e. 

minority class. Among these three models, GBC-DBSMOTE had a recall value of 0.9, and 

AUC had 0.92 and was the best performer in handling the leakage class.  
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Figure 59: Comparison of performance using gradient boosting classifiers trained by 

the original, SMOTE and DBSMOTE training data. 

To have a rational comparison between the predictive performance of the GBC, GBC-SMOTE, 

and GBC-DBSMOTE models considering various splits of the original dataset, the performance 

of each model was assessed using three different seeds of data split. Table 27 presents the 

confusion matrix, accuracy, and AUC of each seed (i.e. data split) for all models developed 

herein. GBC-DBSMOTE demonstrated better performance in predicting the class of 

observations in the original testing data compared to GBC and GBC-DBSMOTE. Accordingly, 

the GBC-DBSMOTE was less overfitted towards any class of the dataset, whereas GBC was 

extremely overfitted towards the majority class, and GBC-SMOTE was slightly biased towards 

the synthetic minority class. It is noted that the accuracy of the models after oversampling is 

slightly lower compared to the GBC model, which indicates that it was overfitted. Thus, 

accuracy alone is not adequate to assess the predictive performance of the model. Nonetheless, 

the AUC of the models after oversampling was significantly improved in all cases of data split. 

Moreover, the superior performance of GBC-DBSMOTE was evident from the confusion 

matrices so that a high portion of the testing data examples were predicted correctly in all split 

cases. 
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Table 27: The Confusion Matrix, Accuracy, And AUC using Various Splits of the 

Original Dataset 

Model 
Case 1 Case 2 Case 3 

Confusion 
matrix 

Accuracy AUC 
Confusion 

matrix 
Accuracy AUC 

Confusion 
matrix 

Accuracy AUC 

GBC 
134 2 

5 5 
 

95.21 0.74 
 

135 5 

6 3 
92.47 0.65 

 

132 1 

9 4 
93.15 0.65 

GBC-
SMOTE 

125 11 

3 7 
 

90.41 0.81 
 

118 19 

2 7 
85.62 0.82 

 

81 52 

1 12 
63.7 0.77 

GBC-
DBSMOTE 

 

129 7 

1 9 
94.52 0.92 

 

125 12 

2 7 
90.41 0.85 

 

122 11 

3 10 
90.41 0.84 

7.4.7 Feature Importance 

Figure 60 exhibits the feature importance based on DBSMOTE. The feature importance 

evaluation is a technique to examine how useful the input features are impacting the output. 

The feature importance score plays an important role in providing insight on what to further 

investigate, feature selection and providing the basis for dimensional reduction. In the case of 

this research, joint gap, applied pressure, and gasket length are the three most impactful 

features, followed by pipe size and gasket mass. The water level and duration exhibit a lower 

impact on the output.  

 

Figure 60: Feature Importance Using DBSMOTE 
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7.4.8 Design Approach: Recommendations for Future Work  

The exclusive and comprehensive data collected from the novel experimental procedure 

developed in this thesis captures the influential parameters in the design of RCP joints. The 

nonlinear relationship between different attributes of the data resulted in poor performance of 

conventional statistical methods for predicting the performance of various RCP joint 

configurations. Nevertheless, the proposed intelligent data-driven GBC-DBSMOTE model 

achieved high accuracy in predicting the failure of RCP joints. The model distinguished the 

most influential parameters in the design of joints in great agreement with experimental 

findings. As observed in real-world practice, the proposed intelligent model recognized the 

“pressure” and “joint gap” as the attributes having higher feature importance. This predictive 

tool is aimed to serve as a new guideline for deigning durable RCP joints under InI condition. 

Using the hybrid model developed in this study, comprehensive design charts respecting 

various configurations, i.e. pipe size, gasket type, joint gap, etc., can be proposed. Moreover, 

design failure thresholds for different RCP configurations could be identified in future work. 

InI performance-based optimization of RCP joint configurations using the ML framework 

introduced here is a vital design step to be pursued in future work.  

7.5 Summary 

This chapter demonstrates the successful application of machine learning to model hydrostatic 

infiltration in reinforced concrete pipe joints where conventional regression analysis 

techniques have failed to produce reliable predictions given the complex inter-relationships of 

a multitude of input parameters. An exclusive experimental dataset was collected from a 

comprehensive test procedure containing 9 design-wise input features. Tree-based supervised 

machine learning techniques: RFC, ETC and GBC were deployed in this study. Considering 

that the experimental dataset was extremely imbalanced, two oversampling techniques, 

SMOTE and DBSMOTE, were adopted to mitigate the biased performance of classifiers. 

Accordingly, the conclusions below can be drawn from this study: 
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1. Among the different classifiers considered, GBC had the best predictive performance 

according to several classification metrics, including accuracy, recall, F1-score, and 

AUC. 

2. After being turned, all the basic classifiers indicated overfitted performance towards 

the majority class in the dataset, i.e. “No Leakage,” due to the imbalanced dataset 

3. The oversampling techniques mitigated the bias in the dataset and thus, improved the 

prediction performance. 

4. DBSMOTE demonstrated better predictive performance compared to SMOTE 

according to various classification metrics, such as confusion matrix and AUC. 

5. The tuning of the oversampling algorithms resulted in considerable improvement in 

their predictive performance. 

6. Using DBSMOTE, more synthetic data could be appended to the dataset for training, 

i.e. higher values of proportion, without overfitting the dataset towards synthetic data 

compared to SMOTE. 

7. The GBC-DBSMOTE hybrid model provided the most promising and reliable results 

over different splits of the original datasets compared to GBC and GBC-SMOTE. 

8. The proposed hybrid model proved to be a reliable predictive tool for providing design 

guidelines for different pipe joint configurations. 

In conclusion, this ML model framework developed in this Chapter could provide a foundation 

for developing design RCP joint hydrostatic performance charts against infiltration for various 

models of sealing gaskets, duration and level of pressure, pipe size and other influential input 

parameters, which should be pursued in further study. 
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CHAPTER 8  

 

 

 

8 Summary, Conclusions and Recommendations 

Sanitary sewage networks are key infrastructure assets in today’s civilization. Undesirable 

inflow and infiltration (InI) into piped drinking and/or sewage flows mixed with flows from 

the natural environment can cause a huge financial burden to municipalities. InI is among the 

top challenges for municipalities and results primarily from stormwater percolating into the 

ground and finding its way into sanitary sewer systems. This tremendously escalates the 

operating costs of water treatment facilities. RCP, the most commonly used product in sewage 

systems, faces a challenge in dealing with InI since the quality of the pipe joint relies not just 

on the joint materials and design, but also on the installation quality.  

Chapter 2 reviewed the deficiencies of existing standards in many places around the world, 

which generally do not proactively capture the infiltration risks. The state-of-the-art practice 

of manufacturers for testing the water tightness of reinforced concrete pipe does not provide 

useful results regarding performance under in-situ groundwater pressures.  The true 

performance requirements for RCP joints are to resist the external hydrostatic pressures 

resulting from high groundwater tables. Combined with previous research efforts, the situation 

demands a simple method to evaluate the capacity of the RCP joint performance for infiltration. 

Accordingly, a novel testing method was introduced in Chapter 3 to allow RCP manufacturers 

to conduct an in-factory test in a safe and efficient way. The testing apparatus, setup, and 

procedures were described in detail. A comprehensive testing program, presented in Chapter 

4, using the new test, has collected hundreds of data points on the infiltration performance of 

RCP joints using existing joint designs and gasket materials.  
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Chapter 5 provided a comprehensive analysis of the testing data and reviewed the influence 

factors. Performance charts for those gaskets were developed in Chapter 6 from these data 

points. An illustrative case was used to connect the experimental data to a real-life case where 

a high groundwater table above the obvert of the pipe posed an infiltration potential. A safety 

factor can be derived from the performance chart providing quantified guidance in permissible 

joint gaps in the construction quality.  

Furthermore, the novel experimental dataset is influenced by multiple nonlinear factors. Thus, 

several advanced machine learning (ML) techniques were used to create a rational predictive 

model. Those techniques, presented in Chapter 7, consist of Gradient Boosting with 

DBSMOTE, addressed the imbalanced data challenges and provided the best accuracy model. 

8.1 Conclusions 

Based on the research work reported in this thesis, the main emanating conclusions can be 

categorized into three parts: existing standards and literature, experimental developments, and 

ML modelling techniques as follows.  

8.1.1 Existing Standards and Literature 

Standard provisions for precast concrete pipe around the world regarding RCP hydrostatic 

performance evaluation do not provide a true evaluation of the joint performance against 

infiltration. There has been little effort to critically analyze the international experience gained 

in this field, to compare performance criteria, and to derive the best international practice 

guidelines. This effort has exposed various knowledge deficiencies along with deviations 

between the standards and the end-user expectations in terms of infiltration. There is a clear 

need for improvement to bridge the gap between true hydrostatic performance requirements 

and current testing procedures. 
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8.1.2 Experimental Development 

This study developed a simple and safe method to examine the capacity of RCP joints for 

infiltration. Over 100 tests were conducted, and the test procedure was successfully repeated. 

The proposed test methodology is concluded to be able to provide consistent and reliable 

measurements, controls and outputs. Eight additional special tests were conducted with gasket 

and pipe samples beyond the ones selected for the research program. The results demonstrated 

that the procedure is able to accommodate a larger variation of the samples. These include 

precise pressure measurements, joint gap monitoring, and capture of water consumption values 

in the system during the test. Based on the experimental observations and findings, the 

following conclusions can be drawn: 

1. Current pipe joint designs and gaskets used by industry can withstand significantly 

higher pressure than the commonly accepted pressure rating of 105 kPa (13 psi) as per 

CSA A257. With tighter and restrained joint gaps, experiments demonstrated the 

possibility of achieving 480 to 680 kPa against infiltration. The results of the current 

study indicated that, with better control of the joint gap during pipe installation, the 

joint would not be the weakest link of a drainage network.  

2. Traditional pipe hydrostatic performance tests generally rely on visual inspection for 

leakage. In the current proposed test, a more rational approach is used where WSCC 

measures the volumetric water loss during the test. During testing, leakage was first 

detected by observing an increase in the water reduction rate. This eliminates 

guesswork and helps the operator focus on the quantitative aspects of the test.  

3. The test results provided a relationship between the pressure and movement of the 

gasket. This revealed that the current design of the pipe joint is driven by providing 

better performance under existing standards. Such designs can be perceived as a reverse 

of what is actually needed to withstand the infiltration of groundwater. It also reflects 

a misunderstanding of the end-user expectations and incorrect assumption that the pipe 

joint design and gasket would perform equally regarding both exfiltration and 

infiltration.  

4. The hydrostatic capacity of the RCP joint is predominantly influenced by the joint gap. 

In conventional hydrostatic testing, CSA A257, ASTM C443, ASTM C1628, and BS 
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EN 1916 require the joint to remain watertight with a 13-mm deflection on one side. 

There is no maximum acceptable joint gap defined in these specifications. Accordingly, 

engineers expect similar performance under a 13-mm joint gap in the field. ACPA 

(2009) states that the manufacturer shall define the maximum allowable joint gap. 

However, there is no research in the open literature that relates actual hydrostatic 

performance to the joint gap. Hence, the results obtained in this research provide a trend 

showing that the capacity of the pipe joint to withstand infiltration pressure decreases 

as the joint gap increases.  

5. Based on the findings, the maximum allowable joint gap should be a variable based on 

the type of the gasket, applied pressure, and the joint type. However, 13 mm can be an 

acceptance criterion for a target pressure defined in the specifications given that the 

pipe producers can demonstrate it using the infiltration test.  

6. The ultimate infiltration pressure is a function of the influence ratio, Ig, the ratio of the 

mass of the gasket, to the effective annular space. The higher the influence ratio, the 

higher the infiltration pressure capacity the gasket can achieve. 

7. High variations in the pressure-joint gap curve likely result from other factors such as 

the mechanical properties of the rubber gasket. Further studies on these factors are 

recommended.  

8. The ultimate infiltration pressure is not sensitive to the pipe size given the same gasket 

profile and joint profile. However, larger size of the pipe will require different joint 

height and thickness for providing shear transfer, thus the gasket profile design varies 

based on the size of the pipe. The ultimate infiltration pressure may be affected with 

different gasket and joint profile. 

9. The proposed 20-hour test provides evidence of the essential steps for evaluating the 

operating pressure when the pipe is placed in service. Gasket movement tends to 

stabilize in a longer duration compared to the conventional 10-minute test.  The larger 

the joint gap, the more severe is the movement. 

10. The new test method introduced in the current study demonstrated operational 

advantages, including a much higher level of safety compared to conventional pressure 

tests such as ASTM C361 and AWWA C302 since only a limited amount of water is 

needed in the test. The minimum water volume required also shortens the filling time 

compared to conventional pressure tests.  
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11. In the new test, unlike existing exfiltration tests, failure does not pose safety hazards to 

the operator nor to anyone near the testing area. Moreover, the height of the pipe allows 

the operator to easily access the inside of the pipe for visual examination. Water level 

monitoring in the WSCC can be used to quantify the leak, unlike current tests that rely 

on qualitative assessment. 

12. The hydrostatic behaviour of the RCP joint serves a critical function in drainage 

networks. By providing a method to evaluate the ability of the joint to withstand 

infiltration, the present study opens many possibilities for innovation and improvement 

to add value to RCP advantages, including strength, durability, sustainability, and 

resiliency.  

13. The preliminary results benchmarked the hydrostatic performance of existing RCP 

joints and gasket designs. Hence, the proposed testing method can allow a better 

understanding of the relationship between joint hydrostatic performance and joint gap, 

with the potential to develop enhanced RCP installation guidelines. This would 

empower contractors to mitigate infiltration risks and make sounder decisions based on 

actual field conditions.  

14. The discovery of the time-dependent gasket movement in the annular space can lead to 

improvements in existing single offset joints. In the subsequent phase of this research, 

additional parameters, including joint gap, joint offset, and various gasket and pipe 

materials, will be considered to make a more reliable evaluation.   

15. The eight additional tests conducted beyond the original scope evaluated 675 mm, 750 

mm and 1800 mm RCP, wedged profile gasket, and lined pipes. The test method was 

found suitable to cover a wide variety of different pipe joints, pipe types, and gasket 

types.  

16. The spacer ring and lateral hydraulic jack added to the originally developed test method 

can reasonably simulate field conditions and installation quality. The hydrostatic 

performance under various joint gaps and joint offsets can be quantified using this 

method. 

17. The study effectively relates the material behaviour of RCP joint and field conditions, 

such that an assessment factor can be suggested for a rational engineering decision 

process.  
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18. There are some differences in the sealing potential predictions between material tests 

and infiltration tests. The material tests do not reflect the real sealing potential scale; 

indeed, comparison tests indicated that their results might be biased. The pressure 

reduction was faster in the infiltration test with an increased joint gap than that in the 

material testing. This is due to the different loading schemes in those tests.   

19. The gasket height influences the hydrostatic performance. It affects the infiltration test 

more than it does for the material load test. The effect was more severe when the joint 

gap increased. 

20. The infiltration performance of the gasket agrees with the prediction derived from the 

gasket geometry. However, the prediction of the sealing potential decreased less 

drastically with increasing joint gap than in the case of the hydrostatic performance in 

the infiltration test. 

8.1.3 Machine Learning Modeling 

The following conclusions can be drawn from ML modelling using the experimental data: 

1. ML models can be used to provide reasonable predictions of RCP infiltration. 

2. Among the different ML classifiers considered, GBC had the best predictive 

performance according to several classification metrics, including accuracy, recall, F1-

score, and AUC. 

3. The modelling procedure requires tuning of the model to avoid overfitting performance 

towards majority class in the dataset, i.e. “No Leakage,” due to the imbalanced dataset 

4. The oversampling techniques used mitigated the bias in the dataset and thus, improved 

the prediction performance. DBSMOTE demonstrated better predictive performance 

compared to SMOTE according to various classification metrics, such as confusion 

matrix and AUC. 

5. The tuning of the oversampling algorithms resulted in considerable improvement in 

their predictive performance. Using DBSMOTE, more synthetic data could be 

appended to the dataset for training, i.e. higher values of proportion, without overfitting 

the dataset towards synthetic data compared to SMOTE. 
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6. The GBC-DBSMOTE hybrid model provided the most promising and reliable results 

over different splits of the original datasets compared to GBC and GBC-SMOTE. 

8.2 Recommendations 

This research has emphasized the critical analysis of existing standards, including the necessity 

to review and update concrete pipe standards in order to capture modern developments in 

concrete technology and to bridge the performance evaluation gap in the context of joint 

performance for infiltration. The testing method proved to be simple, robust, and repeatable 

for measuring the infiltration capacity of RCP joints. One observation related to the uncertainty 

may require further investigation where under higher level of applied infiltration pressure, the 

result seemed to have larger spread with respect to the joint gap. In addition, further, increase 

of the joint gap beyond the threshold will allow the data to reveal the complete performance 

spectrum. One of the limitations at the beginning of the research was to select the parameters 

that influence the output. With assistance from machine learning, the feature importance was 

revealed providing insight into those parameters that may require further investigation. The 

actual material properties being tested, such as rubber hardness to the infiltration test, may be 

considered. These allow the acceptance criteria for routine quality control tests to be 

established. Lastly, the testing method can also be used in RCP joint and gasket profile 

development for better sealing potential. 

Further study is recommended to evaluate the factors that influence the long-term performance, 

i.e. 20 hours or longer, such as gasket relaxation and movement under sustained infiltration 

pressures. A joint effort between the gasket and precast RCP manufacturers to develop 

performance curves for their products and combinations thereof is needed. These curves can 

then be used to evaluate the risks associated with actual field conditions. 

The improvement of secondary gaskets can increase the efficiency of the test. The effect of the 

secondary gasket type, properties and profile were not detailed and investigated. In some tests, 

it caused certain challenges in holding the pressure. The use of external steel bands to create 

the space for pressurization could be an option. More advanced instrumentation, such as water 

levels and joint gap measurements, as well as linking to an applied pressure using datalogger, 

can be an option to increase accuracy. 
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The machine learning model framework developed in this Chapter could provide a foundation 

for developing design RCP joint hydrostatic performance charts against infiltration. These 

could include various models of sealing gaskets, duration and level of pressures, pipe sizes and 

other influential input parameters, which should be pursued in further study. 
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Appendix B – Testing Results 

The content of Appendix B can be found in Supplemental Content. 
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