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RESEARCH ARTICLE
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1 Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of
Western, Ontario, London, Ontario, N6A 5C1, Canada, 2 School of Dentistry and Department of
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Abstract
Low back pain is the most common musculoskeletal problem and the single most common

cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effec-

tive treatment is directly related to our limited understanding of the pathways responsible for

maintaining disc health. While transcriptional analysis has permitted initial insights into the

biology of the intervertebral disc, complete proteomic characterization is required. We there-

fore employed liquid chromatography electrospray ionization tandemmass spectrometry

(LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to character-

ize the protein content of intervertebral discs from skeletally mature wild-type mice. A total

of 1360 proteins were identified and categorized using PANTHER. Identified proteins were

primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex

(10%), extracellular region (9%). Molecular function categorization resulted in three distinct

categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural ac-

tivity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified

IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted

proteins. Immunohistochemical analysis confirmed distinct localization patterns of select

protein with the intervertebral disc. Characterization of the protein composition of healthy in-

tervertebral disc tissue is an important first step in identifying cellular processes and path-

ways disrupted during aging or disease progression.

Introduction
Non-specific low back pain has become one of the most common health problems worldwide,
with recent reports indicating a lifetime prevalence as high as 84% [1]. According to the most
recent Global Burden of Disease study [2] back pain is the single most common cause of dis-
ability, with a global prevalence of 23%, causing chronic disability in approximately 12% of the
population [1]. Alarmingly, while the prevalence of low back pain has increased over the past
three decades [3], current treatment options do not adequately provide improved outcomes
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[4]. Even though the etiology of low back pain remains unknown, the first manifestations are
thought to be a result of degeneration of the intervertebral disc (IVD).

The IVD is a specialized connective tissue structure located between the vertebrae of the
spine, permitting flexion, extension, lateral bending, and axial rotation. The IVD consists of
three interdependent tissues, the cartilage endplates (CEP), annulus fibrosus (AF) and nucleus
pulposus (NP)[5]. During aging and degeneration the IVD undergoes substantial changes in
tissue composition [6]. Biochemically, the CEP undergoes calcification [7,8] thereby impeding
nutrient flow to the IVD [7]. The elastin content increases in the AF [9], and increased proteo-
glycan degradation in the NP leads to decreased disc height and an inability of the IVD to
maintain turgor against compressive loading [10].

Recent studies have reported the transcriptional profile of IVD tissues in various animal
models including rat [11], bovine [12], canine [13] and rabbit [14]. In addition, a small panel
of transcripts [15] and microRNA [16] have been associated with IVD tissue in humans, and
novel genetic variants have been associated with pathological lumbar disc degeneration [17].
To date however, there are limited studies using unbiased proteomic strategies to define the
composition of the healthy IVD. Recent studies provided detailed compositional analysis of the
extracellular matrix of multiple human cartilaginous tissues, including the IVD [18] as well as
bone and cartilage tissue in zebrafish [19]. These studies highlight the value of global proteomic
analysis in establishing the composition of specialized skeletal tissues, and the need to expand
this analysis to model organisms commonly used to study development, aging or disease states.

Liquid chromatography coupled with mass spectrometry has emerged as an effective tool
for quantitative proteomic profiling of complex tissue extracts [20]. In the current study, we
employed a mass-spectrometry approach with a label-free method to decipher the proteomic
profile of the healthy murine IVD. We aimed to gain a more in-depth understanding of the
proteomic signature of the IVD, including intracellular proteins (transcription factors, meta-
bolic enzymes, etc) and secreted molecules (growth factors, cytokines and matrix components)
that regulate the complex microenvironment of IVD. This characterization enables a basic un-
derstanding of IVD biology which may ultimately contribute to the identification of targets to
modulate IVD health.

Materials and Methods

Animals
Animal care and handling procedures in this study were approved by the Animal Use Commit-
tee of the University of Western Ontario (AUP 2009–050) in accordance with the guidelines of
the Canadian Council on Animal. Fourteen-week-old (skeletally mature) male CD1 mice [21]
were sacrificed by CO2 asphyxiation. Spinal columns were dissected and cleaned of
surrounding tissue.

Intervertebral Disc Harvest, Protein Extraction and Tryptic Digestion
Intact IVDs (including NP, AF and CEP) were isolated from the thoracic regions by microdis-
section by shearing the IVD from the adjacent vertebral bone. IVDs were placed in phosphate
buffered saline (PBS) under a stereoscope and surrounding muscle, bone, and spinal cord tis-
sues were removed. Four to five thoracic IVDs from each mouse were minced with a scalpel,
transferred to a microcentrifuge tube and incubated in 4 M urea, 10 mM dithiothreitol and
50 mMNH4HCO3 (pH 8.6), for 2 h at room temperature with gentle agitation. Samples were
centrifuged at 3,000 g for 3 min, the supernatant was collected and total protein concentration
was assessed using the Micro Bicinchoninic Acid (BCA) assay (Pierce, Rockford, IL).

Mouse Invertebral Disc Shotgun Proteomics
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Equivalent amounts of protein (10 μg) were subjected to tryptic digest (2% trypsin per weight
of protein in 50 mMNH4HCO3, pH 7.8) for 18 h at 37°C.

Liquid Chromatography Electrospray Ionization TandemMass
Spectrometry (LC-ESI-MS/MS)
Peptide separation and mass spectrometric analyses were carried out with a nano-HPLC Prox-
eon (Thermo Scientific, San Jose, CA) linked to a mass spectrometer (LTQ-Velos, Thermo Sci-
entific) using electrospray ionization in a survey scan in the range of m/z values 390–2000
tandemMS/MS [22]. Samples were resuspended in 20 μl of 97.5% H2O/2.4% acetonitrile/0.1%
formic acid and then subjected to reversed-phase LC-ESI-MS/MS. The nano-flow reversed-
phase HPLC was developed with linear 80 min gradient ranging from 5% to 55% of solvent B
in 65 min (97.5% acetonitrile, 0.1% formic acid) at a flow rate of 300 nl/min with a maximum
pressure of 280 bar. Electrospray voltage and the temperature of the ion transfer capillary were
1.8 kV and 250°C respectively. Each survey scan (MS) was followed by automated sequential
selection of seven peptides for CID, with dynamic exclusion of the previously selected ions.

The resulting MS/MS spectra were searched against mouse databases (Swiss Prot and
TrEMBL, Swiss Institute of Bioinformatics, Geneva, Switzerland, http://ca.expasy.org/sprot/)
using the SEQUEST algorithm in the Proteome Discoverer 1.3 software (Thermo Scientific,
San Jose, CA, USA). Search results were filtered for a false discovery rate of 1% employing a
decoy search strategy utilizing a reverse database. An additional inclusion criterion for positive
identification of proteins was the presence of at least 2 different peptides from a protein and
the same protein passing the filter score from at least in four different MS analyses from a total
of six MS analyses [23,24].

Bioinformatic Analysis
Pathway analysis, molecular function, biological processes and cellular components of proteins
were obtained from GeneOntology and charts were created using the PANTHER (Protein
ANalysis Through Evolutionary Relationships) (http://pantherdb.org; version 9.0) classifica-
tion system [25]. The PANTHER database allows for high throughput functional analysis of
large datasets of protein sequences.

Validation using Previously Published IVD Markers
To validate the accuracy of the identified proteins, we specifically queried for the presence of
20 IVD-associated markers (proteins or genes) that were previously reported to be expressed
in the murine embryonic node [26], developing murine IVD [27], or human IVD [28]. Candi-
date markers were selected to include a range of protein classifications including extracellular
matrix proteins, transcriptional regulators, and secreted proteins representing all tissue types
of the IVD.

Histology and Immunohistochemistry. To minimize biological variability, immunohisto-
chemical validation was conducted on spine tissue from the same mice used for proteomic
analysis. Lumbar spines were fixed in 4% paraformaldehyde overnight at 4°C, washed in PBS,
decalcified for 5 days at room temperature in Shandon’s TBD-2 (Fisher Scientific), dehydrated
in a graded series of ethanol, cleared in xylene and embedded in paraffin. Samples were sec-
tioned sagittally at a thickness of 5 μm using a microtome (Leica Microsystems, Concord, ON).
Sections were then de-waxed in xylene and rehydrated by successive immersion in descending
concentrations of alcohol. Serial sections were processed with 0.1% Safranin-O/0.02% fast
green to detect sulphated glycosaminoglycans and imaged on a Leica DM1000 microscope
with Leica Application Suite. Serial sections were processed for immunohistochemistry

Mouse Invertebral Disc Shotgun Proteomics

PLOS ONE | DOI:10.1371/journal.pone.0117807 February 17, 2015 3 / 11

http://ca.expasy.org/sprot/
http://pantherdb.org


following antigen retrieval with 10 mM sodium citrate for 20 min at 95°C, with the exception
of sections processed for the localization of Sox9, where 1% Trition-X in PBS was used for 20
min at room temperature. Slides were then blocked with 5% donkey serum in PBS with 0.2%
Tween-20 (PBST) (Sigma), for 1 h and then incubated with primary antibody directed against
NFAT5 (1:50; Santa Cruz, SC-5499), versican (1:100; raised to the N-terminal 13-residue pep-
tide sequence of human versican [29]), Sox9 (1:200; Santa Cruz, SC17340) or BSP (1:250,
Renny Franceschi, University of Michigan, Ann Arbor, USA [30]) in a humidified chamber
overnight at 4°C. Slides were washed with PBST and incubated with species-specific secondary
antibody (1:200; Alexa Fluor 488, Life Technologies) for 60 min prior to mounting with VEC-
TASHIELDMedium with DAPI (Vector Laboratories, Burlingame, CA). Images were captured
with a Zeiss Axio Imager.M1 fluorescence microscope and processed with Northern Eclipse
(Empix) software.

Results
SEQUEST identified 1940 proteins in the tryptic digest of IVD tissues from 14-week-old, skele-
tally mature wild-type mice. Proteins were filtered by accession numbers and queried using the
UniProt database to identify peptides that were not annotated within the database at the time
of analysis (UniProt release 2013_06) or that were considered putative uncharacterized (580),
as well as any proteins that were derived from Ensembl automatic analysis pipeline and were
therefore considered preliminary (396 proteins) listed in S1 Table. This initial filter reduced
the list to 1360 proteins localized to the IVD, presented in S2 Table.

The PANTHER database was then used to classify the list of proteins into categories accord-
ing to cellular component, molecular function, biological processes and protein class. Based on
gene ontology terms, the identified proteins were found to be primarily associated with intra-
cellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), and extra-
cellular region (9%) (Fig. 1A). The list of total proteins was further classified by biological
process into 12 subgroups. The most abundant subgroups were metabolic process (27%), cellu-
lar process (20%), and developmental process (10%) (Fig. 1B). Following categorization by mo-
lecular function, proteins were mostly grouped into three categories: catalytic activity (33%),
binding (molecule interactions) (29%), or structural activity (13%) (Fig. 1C). Characterization
based on protein class was also performed, with proteins categorized into 27 classes, with nu-
cleic acid binding (11%) being the most common, followed by cytoskeletal proteins (11%), hy-
drolases (9%), enzyme modulators (9%) and receptors (7%) (Fig. 1D).

To validate the identified proteins, we queried for candidate IVD-associated genes previous-
ly identified based on transcriptional profiling and protein localization studies of the murine
and human IVD [26–28,31–33] (Table 1). Of the 20 markers selected, our proteomic approach
validated expression of 14 proteins, including the extracellular matrix proteins collagen alpha-
1(I), collagen alpha-2(I), and the proteoglycans aggrecan core protein, versican, decorin and
biglycan. We also confirmed the presence of both keratin, type I cytoskeletal 8 (cytokeratin 8)
and keratin, type I cytoskeletal 19 (cytokeratin 19) within the IVD, established as markers of
notochord cells. Members of the Sox family of transcriptional regulators known to be impor-
tant for cartilage development [34] were screened, with both of Sox5 and Sox9 detected within
the IVD. However, the secreted matricellular proteins CCN2 (CTGF) and CCN1 (Cyr61) were
not identified. While Tgf-β2 was not identified, Tgf-β3 a related member of the Tgf-β super-
family was detected.

Immunohistochemical analysis was performed to further confirm expression and tissue-
specific localization of a subset of IVD proteins (Fig. 2). NFAT5 was localized to NP and CEP
cells, with the expected nuclear and perinuclear subcellular localization. Versican staining was
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detected throughout the disc with high levels detected in the pericellular matrix of fibrocartila-
genous cells of the outer annulus. As expected, Sox9 was detected in NP, CEP, and inner AF
but was absent from cells of the outer AF. In contrast to previous reports [12] detection of
Bone sialoprotein (BSP) was limited to the CEP, localized to the pericellular matrix.

Discussion
In this study, we employed a shotgun proteomic approach to determine the proteomic signa-
ture of the healthy murine IVD. Our findings provide a comprehensive and efficient resource
for understanding the pathways responsible for maintaining disc homeostasis.

To validate the proteomic characterization of the IVD, we employed a candidate approach
to specifically query IVD-associated genes previously identified by transcriptional analysis of
murine [26,27], and human disc tissues [28]. This analysis identified 14 of 20 candidate genes,
as well as numerous additional peptides belonging to related protein superfamilies. Specific ex-
amples include Wisp1, Dusp1 and NFAT5 identified in our proteomic study which are related

Fig 1. Proteomic signature of the murine intervertebral disc. Pie chart depicting gene ontology (GO) analysis of proteins identified in the murine
intervertebral disc. Representation of the distribution of proteins according to their molecular function as (A) biological process, (B)molecular function, (C)
cellular component, and (D) protein class. Categorizations were based on information provided by the PANTHER classification system (www.pantherdb.org;
v9.0). A total of 10 groups for molecular function, 12 groups for biological process, 7 cellular components, and 27 protein classes were detected. Further
analysis of the intracellular classification revealed that the majority of proteins were characterized as cytoskeletal, followed by cytoplasmic, organelle and
protein-transport ATP synthase complex.

doi:10.1371/journal.pone.0117807.g001
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to Wisp2, Dusp27 and NFATC1, respectively, which were previously identified at the level of
gene expression in the developing mouse IVD [27]. This interesting trend may reflect temporal
changes in the expression of related proteins associated with skeletal development and maturi-
ty, or the co-expression of multiple related proteins within the IVD and differences in the reso-
lution or sensitivity of transcriptional and proteomic analysis. To further validate the list of
proteins identified in the current study, we compared our findings to recent datasets generated
from the proteomic analysis of human cartilaginous tissues, which included both NP and AF
[18]. Similar to the analysis of human IVD tissues, we identified well-characterized ECM pro-
teins (aggrecan, decorin, versican, lumican, type-I and type-II collagen) as well as intracellular
proteins such as phospholipase A2 and protein S100-A9. However, some discrepancies were
also noted. For example, high levels of lubricin expression were reported in human nucleus
pulposus tissues; however, lubricin was not identified in the murine IVD. These discrepancies
highlight the need for further investigation, specifically aimed at examining the proteomic sig-
nature of human and murine tissues at similar ages or stages of disc disease to more thoroughly
assess conservation between species relevant to the use of mouse models to study human disc
disease [35].

Our analysis also detected the expression of proteins previously found to be enriched in the
murine developing node at embryonic day E8.5, including Cnot1, Myom1 and CA3. These
findings validate studies by our lab and others that used lineage tracing to demonstrate that the
murine nucleus pulposus of the IVD is derived from the embryonic notochord [36,37]. Our
previous studies detected the presence of notochord cells within the mouse NP up to 9 months
of age, therefore we anticipate that a population of notochord cells would be present in the NP
at the time point examined in this study. The detection of notochord-specific markers in our

Table 1. Validation using previously identified genes and proteins in the murine intervertebral disc.

UniProtKB Accession no. Gene† Name† Presence/ Absence Reference

Q61838 A2M Alpha-2-macroglobulin + Minogue et al. [28]

Q61282 Acan Aggrecan core protein + Minogue et al. [28]

P28653 Bgn Biglycan + Johnstone et al [31]

Q6ZQ08 Cnot1 CCR4-NOT transcription complex subunit 1 + Tamplin et al. [26]

P29268 Ccn2 Connective tissue growth factor - Bedore et al. [32]

P11087 Col1α Collagen alpha-1(I) chain + Minogue et al. [28]

Q01149 Col2α Collagen alpha-2(I) chain + Minogue et al. [28]

P28654 Dcn Decorin + Johnstone et al [31]

Q61221 Hif-1α Hypoxia-inducible factor 1-alpha + Minogue et al. [28]

Q3TRM5 Ibsp Integrin-binding Sialoprotein - Minogue et al. [28]

P11679 Krt8 Keratin, type I cytoskeletal 8 + Minogue et al. [28]

P19001 Krt19 Keratin, type I cytoskeletal 19 + Minogue et al. [28]

Q14BI5 Myom2 Myomesin 2 + Tamplin et al. [26]

O88942 NFATc1 Nuclear factor of activated T-cells, cytoplasmic 1 - Sohn et al. [27]

P09084 Pax1 Paired box protein Pax-1 - Sohn et al. [27]

P35710 Sox5 Transcription Factor Sox-5 - Smits et al. [42]

Q8BSS6 Sox6 Transcription Factor Sox-6 + Minogue et al. [28]

Q04887 Sox9 Transcription Factor Sox-9 + Minogue et al. [28]

P27090 Tgfβ2 Transforming growth factor beta-2 - Sohn et al. [27]

Q62059 Vcan Versican core protein + Sohn et al. [27]

†Details obtained from UniProt database (www.uniprot.org/).

doi:10.1371/journal.pone.0117807.t001
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analysis validates our ability to capture the multiple cell types that constitute the mature IVD.
Further suggesting that our analysis included notochord or notochord-derived cells was the
identification of proteins annotated to the protein-transport ATP synthase complex. Recent
studies in the developing zebrafish demonstrated that vacuolated notochord cells require acidi-
fication, in the form of ATP/H+ complex to form and maintain vacuoles [38].

It is interesting to note that several proteins identified by our screen are associated with
IVD-specific or skeletal phenotypes in mutant mice, such as Sparc [39,40] and Npr3 [41].
Sparc (secreted protein, acidic, and rich in cysteine) is a matricellular protein important for
modulating interactions between cells and their ECM, including collagen deposition and re-
modeling, and growth factor efficacy. Targeted deletion of Sparc alters the cellular content and
ECM composition/organization of the annulus fibrosus, and results in disc wedging, endplate
calcification, and sclerosis [39], which lead to an increase in the detection of back pain-
associated behaviour [40]. Similarly, mutation of natriuretic peptide receptor C (Npr3) resulted
in thin or absent NP with calcification of the dorsal AF in mice at postnatal-day 21 [41]. Inacti-
vation of two paralogous genes is often required to observe a developmental phenotype in mu-
tant mice, as is the case with Sox5 and Sox6 [42,43]. Mice lacking expression of both Sox5 and
Sox6 demonstrated defects in notochord sheath formation, leading to notochord cell apoptosis

Fig 2. Immunohistochemical staining validating the localization of proteins in the murine intervertebral disc.Representative images demonstrating
the immunolocalization of NFAT5, versican, Sox9, and BSP within the murine IVD. Each protein demonstrates a distinct pattern of localization within specific
compartments of the disc. NFAT5 is localized to the NP and CEP, versican is present throughout the disc with high levels detected in the outer annulus, Sox9
is present in NP and CEP and BSP is only detected in the CEP. For each protein-specific antibody, sections corresponding to 3 IVDs were assessed for each
animal; n = 3 mice. Scale bar = 100 μm.

doi:10.1371/journal.pone.0117807.g002
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and the absence of NP within the IVD. We also detected IVD-enriched proteins such as
FoxA2/Hnf-3β, which has been implicated in notochord development in other model organ-
isms [44]. Other proteins detected in our study, such as Tgf-β, demonstrate general disruptions
in skeletal development in knockout mouse models [45]. This further exemplifies that our
proteomic characterization of the IVD provides insight into the homeostasis of the murine
IVD and a list of candidate proteins that can be further explored to determine their role within
this complex tissue.

Although accurate microdissection of distinct IVD tissue types is feasible in large animal
models or human tissue samples, this technique is difficult in the mouse given the small size of
the disc (2–4 mm in diameter) and the low yield of protein obtained from each tissue compart-
ment. As such, the current study was designed to assess the intact IVD. Furthermore, since we
aimed to examine cellular and extracellular proteins, experiments were designed with intact tis-
sues as the starting material in lieu of isolated cell populations. This experimental approach
also avoided potential misclassification of proteins to specific tissue types (i.e. NP vs AF vs
CEP) that may result from the technical challenges associated with accurately isolating one tis-
sue type from the other in the murine IVD. We acknowledge the limitations associated with
the analysis of the IVD as a whole; however, by immunohistochemistry we have validated the
tissue-specific patterns of protein expression thereby confirming that our list of identified pro-
teins reflects all tissues types within the IVD (NP, AF and CEP).

Conclusion
This study provides the first proteome database of IVD tissue from healthy, skeletally mature
mice. The identification and classification of the proteins present within the healthy IVD as a
whole is a critical first step in determining the pathways and processes that are required to
maintain IVD homeostasis. Such data will establish a solid foundation for better understanding
the complex microenvironment of the IVD, and provide a starting point from which to identify
and ultimately target the pathways that are altered during the process of disc degeneration that
contribute to back pain.

Supporting Information
S1 Table. Proteins from the murine intervertebral disc that were unidentified or classified
as preliminary according to UniProt analysis. List of identified proteins from a skeletally ma-
ture CD-1 mouse IVD that were not annotated within the database at the time of analysis or
that were considered putative uncharacterized (578), as well as any proteins that were derived
from Ensembl automatic analysis pipeline and were therefore considered preliminary (396 pro-
teins).
(PDF)

S2 Table. Proteins identified in the murine intervertebral disc. List of identified proteins
using the LC-ESI-MS/MS strategy from the IVD of skeletally mature (14 week old) wild-type
CD-1 mice.
(PDF)
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