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Abstract

Radical prostatectomy (RP) is a common treatment for prostate cancer. We used RP whole-

mount tissue samples from 68 patients stained with haematoxylin and eosin to create cancer

maps using four pretrained networks: AlexNet, NASNet, VGG16 and Xception, to classify

regions of interest (ROIs) as cancer or non-cancer. Models were trained on either raw images

or as tissue component maps (TCMs) containing nuclei, lumina and stroma/other components

generated from a trained U-Net.

All models performed similarly; however, VGG16 trained on raw images performed with

the highest area under the receiver operating characteristic curve (AUC) of 0.994 (95% confi-

dence interval 0.992-0.996). Ensemble models using models trained on raw images performed

with the lowest false positive rates. All models had high false negative rate for Gleason 5

cancer and those trained on raw images performed with higher AUC than models trained on

TCMs.

Keywords: Prostate cancer, radical prostatectomy, histopathology, machine learning, ade-

nocarcinoma, cancer detection
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Summary for Lay Audience

Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Al-

though this is a very treatable disease, survival rates of those with aggressive cancer is much

lower than those with a less aggressive form. One treatment option available for those with

gland localized cancer is radical prostatectomy, where the entire gland is surgically removed.

Expert contouring and grading of the aggressiveness of cancer on tissue slides could pro-

vide valuable information on patient prognosis, as well as guide treatment plans after the

surgery. Unfortunately, detailed contours are incredibly time consuming and impractical to do

in a clinical setting, so there is an unmet need for an automated cancer contouring algorithm.

As a part of tissue processing, dyes are applied so the tissue is visible under a microscope.

Application of the dye and the tissue properties itself can affect how intensely the dye appears,

making it difficult for algorithms to be robust to the colour intensities.

In this thesis we use deep learning for cancer detection. Deep learning is a technique

that teaches an algorithm to find patterns in a set of data and is a relatively young field with

promising results in computer vision. Deep learning has been used to detect cancer in radical

prostatectomy histology, but the papers we surveyed had a limited number of patients, or only

tested one deep learning model. That is why we are comparing four deep learning models in

cancer detection.

We used these four deep learning models to generate cancer maps from tissue slides and

found that these models perform comparatively to each other. We produced accurate cancer

maps but further research is needed to analyze potential impact on the clinical and research

workflow.
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Chapter 1

General Introduction

1.1 Introduction

Prostate cancer (PCa) is one of the most common cancers in Canada, with 1 in 9 Canadian men

expected to be diagnosed in their lifetime [1]. It is a variable disease, where 5-year net survival

is 98% when accounting for all stages, but only 31% when counting metastatic cancer [2].

Although that is the case, PCa is often considered over-treated [3], so it is important to identify

patients who would benefit the most from a given treatment.

Radical prostatectomy (RP) is a common procedure, where the prostate gland is surgi-

cally removed. Pathology reports on RP are mostly qualitative and are important in predicting

post-surgery outcome through denoting cancer grading, positive margins and diagnosis of ex-

traprostatic extension (EPE). Currently these reports do not include annotated histology slides.

Detailed manual tumour annotations of whole slide images (WSIs) are currently too labour in-

tensive to be implemented clinically, but could provide important pathological information for

post-operative targeted radiotherapy [4]. An automated or assistive contouring program may

be useful.

Deep neural networks (DNNs) are a form of artificial intelligence that have been used for

cancer detection in RP WSIs [5, 6, 7], but these studies only test one DNN. In this thesis we
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use four DNNs to produce cancer maps from RP WSIs and compare their error metrics.

1.2 Background

1.2.1 Radical Prostatectomy

RP is generally done for those with suspected gland localized cancer and a life expectancy ≥ 10

years [8]. Biochemical recurrence-free survival rates are approximately 70% within 10 years

after surgery [9, 10]. Complications include wound infection, erectile dysfunction and urinary

incontinence [11].

1.2.2 Adjuvant and Salvage Radiotherapy

After surgery, patients may undergo adjuvant radiotherapy where they receive radiotherapy

immediately to reduce the risk of recurrence. Alternatively an active surveillance approach,

where the patient is monitored for biochemical recurrence and treatment is given when appro-

priate, may be suggested. If radiotherapy is only done after biochemical recurrence, it is called

salvage radiotherapy.

Complications related to radiotherapy include gastrointestinal and genitourinary toxicity [12].

Rates of urinary incontinence are generally similar for those who have and have not received

adjuvant radiotherapy, and the potential development of secondary malignancies post-RP are

inconclusive [12].

Numerous studies compare patient outcomes between adjuvant and salvage radiotherapy.

A meta-analysis done by Morgan et al. of patients post RP with either cancer extending be-

yond the prostatic capsule or in the resection margins, found adjuvant radiotherapy had not

shown improved overall survival when comparing to active surveillance, but shown to increase

biochemical progression-free survival [13]. In contrast, Wiegel et al. found that progression

free survival at 10 years was 56% for patients with adjuvant therapy and 35% for patients
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with active surveillance, where progression is defined as biochemical recurrence, clinical re-

currence or death [14]. Guidelines from the American Urological Association (AUA) and the

American Society for Radiation Oncology (ASTRO) in 2013, revised in 2019, concluded that

given a literature search of 48 adjuvant and 137 salvage radiotherapy studies, it was not pos-

sible to determine which treatment is superior due to different radiotherapy protocols, patient

stratification, definitions of failure and other factors across trials [12, 10].

1.2.3 Histology

After RP, the gland is processed into tissue slides. The process involves formalin fixation and

removal of the apex and base. The pieces are then embedded in paraffin and are processed

either as whole-mount or standard sections where the tissue is cut into quarters.

The tissue is then stained with haematoxylin and eosin (H&E), where haematoxylin stains

cell nuclei blue or purple and eosin stains the cytoplasm and extracellular matrix as pink. The

stained tissues are then mounted on slides and digitally scanned with a resolution dependent

on the digital scanner.

1.2.4 Staining Variability

Staining variation comes from a multitude of factors like specimen preparation, temperature

and age of solutions, slice thickness, scanner variation and inter-patient variation [15]. These

factors lead to variability in the colour intensity and saturation which make comparison be-

tween slides difficult—especially across centres.

Figure 1.1 shows staining variability between manually stained, whole-mount, whole slide

images (WSIs) collected from two same centre RP patients. Nuclei in Figure 1.1a is more

blue/purple than Figure 1.1b, which is more pink/red and is closer in colour to the cytoplasm.

Although nuclei are still identifiable with the human eye in Figure 1.1b, if a computer algorithm

was calibrated to segment nuclei on tissue with the staining intensity found in Figure 1.1a, the
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(a) Patient A (b) Patient B

Figure 1.1: H&E stained histology from whole-mount RP slides, showing the variation in
staining intensity. Slides were taken from different patients and at the same centre.

algorithm may not be able to segment differently stained tissue. Since staining intensity is

sensitive to small variations in the pathology process, there have been multiple studies done to

account for this variation.

Some of the studies use a colour correcting algorithm to standardize the staining intensity.

Many of these algorithms rely on stain deconvolution which requires prior knowledge of stain

vectors [16]. This includes a research paper published from our laboratory, which uses a stain

deconvolution algorithm and adaptive thresholding [17]. Manual approaches estimate the stain

vectors through a selection of representative sample pixels [16]. Unfortunately, when scaled

to large studies involving hundreds of slides, manual estimation is impractical. Some studies

account for this by using automatic stain vector generators [18, 19, 20].

1.2.5 Tissue Component Maps

Tissue component maps (TCMs) are histology slides broken down into its tissue composition.

For example, a TCM containing nuclei, lumen and all other tissue will be a three colour map

where each colour represents either nuclei, lumen or other. An example can be found in Figure
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1.2. If we can create a TCM segmentation algorithm that is invariant to staining intensity,

algorithms that use the TCMs do not have to adjust for staining variability.

(a) Tissue component map (b) Raw Histology

Figure 1.2: Raw histology and corresponding tissue component map where red is nuclei, blue
is lumen and green is all other tissue.

TCMs are a simplification of the original histology. When it comes to cancer detection,

simplification of raw histology into tissue components has been shown to produce accurate

results. Kwak et al. found that best performing models for cancer detection mostly used nuclei

seed maps instead of RGB raw images [21]. Han et al. also found that deep networks trained on

TCMs perform with a higher area under the receiver operator curve (AUC) than raw images [7].

By removing confounding information found in the tissue, cancer classification using TCMs

may perform with higher accuracy than those using raw images.

1.2.6 Gleason Grading

Tumour grading is done with the Gleason grading system. This method originated in the 1960s

before it was updated by the International Society of Urological Pathology (ISUP) in 2005 and

again in 2014 [22, 23, 24].

The Gleason grading system labels tissues into one of five grades from 1-5 based on tissue

pattern. Gleason 1 is defined by well differentiated and uniform glands while Gleason pattern

5 is defined by poorly-differentiated glands [23]. The system was updated in 2005 to better
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reflect treatment changes and a growing understanding of the disease in the years since the

original grading scheme was created [23]. Examples of the growth patterns of each grade from

the 2005 update is shown in Figure 1.3.

Along with the Gleason grades was the Gleason Score (GS). Tissues were given two grades,

indicating the primary and secondary grade. These two values were added to create the GS.

For example, if a tissue sample was predominantly G3 and the secondary pattern is G4 then

the Gleason score would be G3+G4 = GS7. If only one pattern was found, then the primary

and secondary grades would be considered identical. For example, a tissue with only Gleason

pattern 3 would have a Gleason score G3+G3 = GS6.

In the ISUP 2014 update, the grade groups were redivided into five. Grade group 1 is for

Gleason scores less than or equal to 6, grade group 2 is for G3+G4=GS7, grade group 3 is

for G4+G3 = GS7, grade group 4 is G4+G4=G8 and grade group 5 is GS9-10 [24]. One of

the most important updates in ISUP 2014 redefined grade pattern 3 to not include cribriform

pattern. These updates were done to more accurately stratify tumours, decrease the number of

grading categories and reduce over treatment which had become a concern [24].

Digitally grading and contouring the slide is a very time intensive process. In our lab,

it took an average of 70 hours for a physician to digitally contour and grade mid-gland whole

mount slides for a patient. The long time frame makes detailed contours impractical for clinical

use, but localizing where the cancer was may help for decisions on where to target radiotherapy

in the prostate bed.

1.2.7 Observer Variability

Pathologist reports, like anything that is reliant on human interpretation, are vulnerable to inter

and intraobserver variability. This can be compounded by staining variability. The 2005 and

2014 ISUP updates were partially done to reduce variability in Gleason grading.

Before the 2005 ISUP update, it was found that general pathologists had more disagree-

ments in Gleason scores than urological pathologists and a tendency to overgrade [25, 26, 27].
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Figure 1.3: Gleason patterns from the 2005 ISUP update [23]. Reproduced with permission.
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One study found intraobserver reproducibility to range from 65% to 100% [28]. After the 2014

ISUP update, interobserver agreement of Gleason grade groups using the 2014 ISUP guidelines

was 51.7% between two pathologists from biopsy cores [29].

Aside from Gleason scores, several studies have found notable interobserver variability

in EPE diagnosis between experienced and non-expert reviewers [30, 26]. Evans et al. also

studied interobserver variability in EPE in RP and concluded that interobserver variability was

related to the lack of clearly definable prostatic capsule [31].

An automated cancer detection algorithm may help the consistency of pathology grading,

for either inter and intraobserver variability. A recent paper has also shown that artificial intelli-

gence (AI) assistive program increased agreement between a panel of pathologists for Gleason

grading of prostate biopsies[32].

1.2.8 Deep Learning

Deep learning is a subset of the machine learning family. Origins of deep learning are often

attributed to Ivakhnenko and Lapa in their work featuring multilayer perceptrons in 1967 [33].

It was not until the development of graphics processing units (GPUs) in the early 2000s, did

advancement in DNN research accelerate. This meant that more complex deep learning models

can be trained in a feasible time span.

DNNs essentially create predictions based on a set of data called the “training” data, so the

quality of the model and data are closely linked. In classification problems, data are labelled

and the goal of a DNN is to predict the label correctly. When the model outputs an incorrect

classification, the model adjusts its parameters accordingly. If the model predicts correctly,

then it does not change. This way the model “penalizes” incorrect predictions and “rewards”

correct ones. A “validation” dataset, a dataset which has not been used for training, may be

used to assess how the model is preforming while it is training. After multiple iterations the

model eventually converges to a solution that may or may not perform at the desired accuracy.

The quality of the model can be assessed after training through the performance on a set of
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unseen data known as the “testing” data. Testing data must be kept separate from the training

and validation data to accurately measure the model performance and prevent bias. If the

training data was a poor representation of the population or had a lot of noise, then the model

may not be able to classify new data as it did not converge to a solution effective on both

datasets. It is for that reason DNN performances are highly dependent on its training data.

The large dataset generally required for deep learning makes applications in the medical

field difficult due to privacy concerns and expertise required to label data. Some innovations

have been made to decrease the required data size and training time. One of these techniques is

“transfer learning” where a model is trained on one data set for one purpose, then those param-

eters are used as the initial parameters before training for another problem. Transfer learning is

based on the theory that there are universal patterns used to identify images, regardless of the

problem. For example, detecting edges in an image may be important for both facial and nuclei

detection. By using a pretrained model, the model might be closer to converging to a solution

than if the model was initialized randomly. A very common database used for pretraining is

the open access ImageNet database that includes 14 million images of common objects [34].

1.2.9 U-Net

A very popular segmentation DNN model in medical imaging is the U-Net [35]. The U-Net

uses a series of deep learning layers that down-sample the input image, before it is up-sampled

to an output segmentation. The design resembles a “U” hence the name “U-Net”. It won the

International Symposium on Biomedical Imaging (ISBI) cell tracking competition in 2015 for

accurate and fast segmentations. In this thesis, we used the U-Net as a semantic segmentation

algorithm on histology to produce either lumen or nuclei maps. Figure 1.4 is a diagram of the

modified U-Net used in the thesis.
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Figure 1.4: U-Net architecture used in the thesis. The model has been modified from the
original to accept an input image size of 240 × 240 pixel images and output a segmentation of
the same size. Modified from Ronneberger et al. [35].

1.3 Previous work

1.3.1 Automated Cancer Detection Algorithms

There have been many studies that classify prostate histology as cancer or non-cancer. These

studies were reviewed and summarized in Table 1.1. Many of these studies detect cancer in

biopsy slides [36, 37, 21, 38, 39].

Due to the size of a biopsy core from a 18 gauge needle (1.27 mm outer diameter), many

of these studies process a smaller tissue area in comparison to those involving RPs. Biopsies

also have a positive sampling bias and serve a different purpose than RP. RP histology samples

the entire cross section of the prostate gland, while biopsies are diagnostic and sample a small

subsection of tissue.

Bulton et al. and Ström et al. train models for cancer diagnosis using several thousand

biopsy samples, resulting in a total processed tissue area comparable or greater than studies in-

volving RP [38, 39]. These two studies detect and grade cancer on a per biopsy basis rather than
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per region. In machine learning these problems are called multiple-instance-learning (MIL)

where the model must label a set of data, rather than each individual data point in a set of data.

Kwak et al. classified tissue micro arrays (TMAs) from biopsies as cancer or non-cancer

using nuclear seed maps [21]. Computation time was 10 minutes per sample, where majority

of the time is allocated to the production of nuclear seed maps. Given that one sample has an

area of approximately 0.55 mm2, scaling this technique to RPs which have an approximate area

of 1,200 mm2, is not very feasible.

In the context of RP, cancer maps may give information on the presence and location of

EPE, which is important for post surgery prognosis [40]. Several studies use RP as their train-

ing data [5, 6, 7, 41, 42, 43]. Han et al. and Gorelick et al. were papers produced by our

lab [7, 43].

Han et al. has the largest data set with 340,000 mm2 of processed tissue and Gorelick et al.

had the second largest at 60,000 mm2. The smaller datasets found in Monaco et al., DiFranco

et al., Gorelick et al., Xia et al. and Khan et al. limit generalizability of their models. In this

thesis, we have a data set with 340,000 mm2 of RP tissue.

Monaco et al. use gland based classification, which may cause issues detecting high grade

cancer as it commonly does not have clear glands [41]. The study uses gland lumen area and

a Bayesian estimator to classify the given gland as malignant or benign. DiFranco et al. used

ensemble learning to create cancer heat maps and achieved an AUC of 0.955 [42]. Gorelick et

al. used an AdaBoost-based classification to label regions of interest (ROIs) [43].

Interestingly, both Xia et al. and Khan et al. use the same technique for cancer detection.

They both pretrained a model using an open source breast cancer dataset from the Camelyon-

16 challenge containing WSIs of lymph nodes [44], before training for prostate cancer detec-

tion [5, 6]. In both studies, WSIs were cut into 256×256 pixel ROIs which were then classified

as cancer or non-cancer. Khan et al. achieves a slightly higher AUC of 0.924 and tests on a

larger dataset in comparison to Xia et al. which has an AUC of 0.918. Both studies found that

the pretrained model had a higher AUC than a model trained from scratch. Khan et al. found
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that pretrained model on the Camelyon-16 dataset performed better than a model pretrained on

the ImageNet. Xia et al. uses GoogLeNet (also known as InceptionV1) [45], while Khan et al.

uses InceptionV3 [46] which was built on the GoogLeNet model. These papers only test one

type of model.

As shown in Table 1.1, there are several studies involving cancer detection in prostate can-

cer tissue. Han et al. has the largest number of patients among the RP studies and reports an

AUC of 0.924 using AlexNet (a DNN published in 2012) [7, 47]. Since then numerous DNNs

were created and some have higher accuracy than AlexNet when tested on the ImageNet vali-

dation dataset [34]. Without other DNNs, it is difficult to draw conclusions comparing model

performance of traditional methods and DNNs. So, there is an unmet need to test multiple

DNNs.

1.4 Thesis Outline

Predicting post RP outcome is important in deciding post surgery treatment. These predictions

may influence the decision between adjuvant or salvage radiotherapy. Stamey et al. found tu-

mour volume to be a significant predictor in biochemical failure [48], but Epstein et al. found

that tumour volume is correlated with biochemical failure, but does not offer additional value

when Gleason score and other pathologic factors were given [49]. Since then, no consensus

has been reached on the significance of tumour volume on biochemical recurrence. Further

research in this field requires calculating tumour volumes, which can be calculated using auto-

mated cancer maps.

The location of EPE and positive margins have been found to be important details to include

in a pathology report [40, 50], therefore there is a need for automated cancer contours. These

cancer maps may provide important information for post-operative targeted radiotherapy [4].

Several studies use DNNs to classify RP histology as cancer or non-cancer, but each paper

only tests one type of DNN [5, 6, 7], thus there is an unmet need to training and comparing
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Year
1st Author

Results Validation Method Dataset Total
Processed
Tissue
(mm2)

Tissue
Form

2010
Monaco [41]

0.87 sensitivity, 0.90
specificity, pixel level

3-fold CV 40 slides
20 patients

∼ 48,000 RP

2011
DiFranco [42]

0.95 AUC, ROI level 2-fold CV 15 slides
14 patients

∼ 18,000 RP

2012
Doyle [36]

0.84 AUC, pixel level 3-fold CV 100 slides
58 patients

∼ 1,000 Biopsy

2013
Gorelick [43]

90% Acc., ROI level LOPO 50 slides
15 patients

∼ 60,000 RP

2015
Litiens [37]

0.96 AUC, 1.0 sensitiv-
ity, 0.4 specificity, ROI
level

10-fold CV 204 slides
163 patients

∼ 2,040 Biopsy

2017
Kwak [21]

0.974 AUC (95%
CI:0.961-0.985),
sample level

491 hold-out set 653 samples ∼400 TMAs
from
biop-
sies

2018
Xia [5]

0.918 AUC, 0.843
Acc., ROI level

4 patient hold-out set 16 slides
16 patients

∼19,200 RP

2019
Khan [6]

0.924 AUC, ROI level 6 patient hold-out set 28 slides
28 patients

∼33,600 RP

2020
Han [7]

0.964 AUC, ROI level LOPO 284 slides
68 patients

∼340,000 RP

2020
Bulten [38]

0.990 (95%CI: 0.982-
0.996), biopsy level

210 biopsies hold-out
set testing

5759 slides
1243 patients

∼57,590 Biopsy

2020
Ström [39]

0.986 (95%CI: 0.972-
0.996) AUC, biopsy
level

1631 independent test
set, 330 external vali-
dation set

6682 slides
976 patients

∼66,820 Biopsy

Table 1.1: Cancer classification studies. Acc. indicates accuracy and LOPO indicates leave
one patient out. Tissue processed area is estimated assuming 1,200 mm2 per RP slide, 10 mm2

per biopsy and 0.55 mm2 per TMA sample.

multiple DNNs in cancer/non-cancer RP histology classification.

To create cancer maps we automatically generated TCMs using U-Net and tested perfor-

mance across multiple centres. We then used four DNNs architectures as classification algo-

rithms on both raw images and TCMs. By using the same training data for all models, we are

able to compare model performances. We will address the questions: (1) can a DNN trained
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to segment slides into TCMs at one centre, accurately segment slides at another centre and (2)

how do the selected DNNs compare in cancer map production and cancer detection?
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Chapter 2

Cancer Detection on Digitized

Prostatectomy Slides using Convolutional

Neural Networks

Abstract

Purpose: Deep learning algorithms have been proposed as a tool to assist the pathol-

ogist with slide annotation. Before they can be used, several models should be compared

to identify which, if any, model performs better than others. Approach: We used a U-

Net to automatically segment tissue components (nuclei, lumina and stroma/other compo-

nents) from digitized radical prostatectomy haematoxylin and eosin stained whole-mount

tissue samples from 68 patients, using 2-fold and 5-fold cross validation. We trained

AlexNet, NASNet, VGG16 and Xception, all pretrained on the ImageNet database, to

classify regions of interest (ROIs) as cancer or non-cancer using either tissue component

maps (TCMs) generated by the U-Net, or raw images. We measured classifier performance

using leave-one-patient-out cross validation. Results: The U-Net segmented lumen and

nuclei with an area under the receiver operating characteristic curve (AUC) of 0.975 (95%

confidence interval 0.971-0.981) and 0.983 (0.981-0.985) respectively. On an open-source

dataset, the U-Net achieved an AUC of 0.985 (0.982-0.989) and 0.999 (0.999-0.999) for
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lumen and nuclei respectively. For cancer detection, VGG16 trained on raw images both

performed with the highest AUC of 0.994 (0.992-0.996) and the lowest false negative rate

of 0.048 (0.027-0.065). A voting scheme consisting of the four models trained on raw

images performed with the lowest false positive rate of 0.017 (0.012-0.020) and error rate

of 0.020 (0.013-0.026). Conclusions: The U-Net can be trained on images from one cen-

tre and then accurately segment images from another centre into TCMs. Multiple deep

neural networks can be trained to accurately classify ROIs as cancer vs. non-cancer with

minor differences in error metrics. A voting scheme consisting of multiple deep networks

reduces the false positive rate.

2.1 Introduction

Prostate cancer (PCa) is the third most frequently-diagnosed cancer globally [1]. One of the

treatment options is radical prostatectomy (RP), which is typically performed for those who

have organ-confined cancer. Post surgery information from tissue pathology is important in

predicting prognosis [2] through the location of extraprostatic extension (EPE) and positive

margins [3, 4], and has potential to guide post-operative targeted radiotherapy [5]. This means

pathology reports may benefit from including cancer maps created from histology slides.

Approximately 35% of patients experience biochemical recurrence after RP [6], thus it is

important to predict who would benefit from post surgery treatments. Tumour volume may be a

predictor of post surgery outcome but, a consensus has not been reached [7, 8]. Unfortunately,

tumour volume estimates using detailed contours are labour intensive which limits feasibility

of studies involving tumour volumes.

One treatment option is adjuvant radiotherapy, where radiotherapy is done immediately

post surgery. Another option is salvage radiotherapy, where the patient undergoes active

surveillance and radiotherapy is done if recurrence is detected. It is important to determine

which patients will most benefit from adjuvant radiotherapy, since radiotherapy can cause com-

plications like gastrointestinal and genitourinary toxicity, urinary incontinence, and a debated
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increase in risk for secondary malignancies [9, 10, 11]. Debate as to which treatment is most

beneficial is still ongoing. The American Urological Association (AUA) and the American

Society for Radiation Oncology (ASTRO) concluded after reviewing studies on adjuvant and

salvage radiotherapy, that there was not sufficient evidence to determine which treatment is

superior [9, 12].

Deep learning is a popular technique for computer vision problems and was used to classify

images as cancer or non-cancer in RP whole slide images (WSIs) [13, 14, 15]. Xia et al. and

Khan et al. used a smaller patient set than what is used in this paper. Han et al. used the same

dataset used in this paper, but only tests one deep neural network (DNN) called AlexNet [16].

AlexNet was published in 2012 and since then many DNN architectures were published. To

the best of our knowledge, there has not been a study that compares multiple DNNs trained to

classify cancer on RP WSIs.

Due to the layers of complexity found in deep networks, it is often difficult to interpret

the results. When we limit the amount of input information provided to the networks by using

tissue component maps (TCMs) and compare to performance of a model trained on raw images,

we can gain understanding as to the primary aspects of the tissue needed by the neural network

to determine if something is cancer or non-cancer. TCMs are simply the raw histology images

segmented into different tissues. Several studies have shown that nuclei maps or other tissue

component maps result in similar cancer detection accuracy to raw image inputs in a deep

learning context [14, 17].

In this work, we applied deep learning to: (1) segment tissue components from histology

slides and (2) compare error metrics of four DNN models trained to label regions of interest

(ROIs) as cancer or non-cancer.
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2.2 Methods

2.2.1 Materials

From 68 patients enrolled in our Image Guidance for Prostate Cancer (IGPC) trial, we ob-

tained 286 WSIs of whole-mount, mid-gland radical prostatectomy tissue sections, stained

with haematoxylin and eosin (H&E). The slides were scanned at 0.5 µm/pixel resolution using

an Aperio ScanScope at 20 ×magnification. We then downsampled to 2 µm/pixel using nearest

neighbour approximation and digitally cut into 240×240 pixel (480 µm×480 µm) ROIs, result-

ing in approximately 1.3 million ROIs. An example of the full resolution and downsampled

image can be found on Figure 2.1. These whole-mount images were contoured and graded at

full resolution by a trained physician—taking approximately 70 hours per patient. The con-

tours were then verified by one of two pathologists. Each ROI was classified as cancer if more

than 50% of the area was cancer, according to the ground-truth contours.

We also obtained open source slides from The Cancer Imaging Archive (TCIA) [18, 19],

which included 16 patients with a total of 114 digitally restitched psuedo-whole mount slides.

Of the slides, we excluded 4 as they were visually at a significantly lower resolution than the

ROIs used for training. The spatial resolution of these images was not provided and the cancer

was not contoured or graded. Therefore we used these 110 slides as an external dataset only to

validate the TCMs produced by the U-Net.

Our laboratory previously developed an adaptive thresholding based method to generate

TCMs by categorizing each pixel in the image as belonging either to a nucleus, lumen, or other

tissue region [20]. Although this method has demonstrated robustness to staining variability, it

is currently limited to the aforementioned three-way classification and depends on a per-slide

calibration step that requires computational time. In principle, a deep neural network (DNN)

trained to perform tissue component mapping could eliminate the calibration step and could

be readily extended to find a wider array of different tissue components, potentially supporting

more accurate cancer detection and grading. As a first step, we sought to train a DNN to create
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(a) Full Resolution (b) Down sampled

Figure 2.1: Full resolution and down sampled images using nearest neighbour approximation
where the resolution of (a) is 0.5 µm/px and (b) is 2 µm/px. Both images correspond to 480
µm by 480 µm area of tissue.

three-way TCMs, using TCMs generated from an adaptive thresholding approach as training

data. This approach has the advantage of generating a much larger number of training TCMs

than what would be possible to produce by manual annotation.

To create ground truth TCMs, we arbitrarily selected two ROIs per patient for the IGPC

validation dataset, and two ROI per slide for the TCIA dataset. This means there was a total of

136 ROIs used for validation from the IGPC dataset and 220 for the TCIA dataset. We validated

the segmentations against a subset of TCM ROIs generated by manual thresholding the blue

and green channels to segment the nuclei and luminal regions, respectively. These maps were

then manually updated using a paintbrush tool to remove any false lumina, or RBCs falsely

classified as nuclei. This was done by a graduate student.

Models were written using the Keras v2.2.4 library in Python 3.6.8, or MATLAB 2017a.

The network was trained on the GeForce GTX 1080 Ti, with NVIDIA Driver v419.67 and

CUDA Toolkit v10.0.130. Statistical analysis was done on Python using Scipy v1.4.1.
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2.2.2 Network Architecture

We trained a U-Net [21] to produce TCMs from unprocessed, H&E stained, histology images

from the IGPC dataset. Each U-Net was trained to create either nuclei or lumen maps. We then

combined the outputs of the trained networks to create three-tissue TCMs, containing nuclei,

lumina, or stromal/other tissue regions. If a pixel in the map was labelled as both nucleus and

lumen, then the pixel was labelled nuclei because the false positive rate (FPR) of nuclei was

lower than for lumen. This means a positive nucleus detection is more likely than a positive

lumen detection.

We used a weighted binary cross entropy as the loss function for the DNN trained to pro-

duce nuclei maps. In the original U-Net paper, a custom weighted loss function was used to

encourage separation of adjacent objects and to account for class imbalance. For our project,

nucleus separation was not an issue so we only applied a weighting factor to address the class

imbalance for nucleus pixels. The proportion of lumen to background was relatively balanced,

thus we did not add any weights to the binary cross entropy loss.

The weighted loss is defined in eq. 2.1, where y is the expected label and p(y) is the proba-

bility of getting the expected value. The weighting factors (W+ and W−) were calculated using

the number of positive pixels (N+), negative pixels (N−) and the total number of pixels (N)

found in each batch, where W+ = N+
N and W− = N−

N . When applied to the loss function we get

Lw(y) = − 1
N

N�

i=0

W+ · yi · log(p(yi)) +W− · (1 − yi) · log(1 − p(yi)) (2.1)

where W− is the weight of a negative category and W+ is the weight of a positive category.

Every misclassification of a nuclei pixel as a background pixel has a high cost to the loss

function, so the model is deterred from labelling the entire image as background.
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2.2.3 Training

We trained the U-Net using a 2-fold and 5-fold cross validation scheme to randomly separate a

set of patients for testing. The remaining set of patients were then randomly split into training

and validation, where 70% were put into the training and 30% to the validation set. We ensured

each patient only appears in one set. We chose a batch size of 16, an adaptive moment estimator

optimizer called Adam [22] and a learning rate of 1e-5. These hyperparameters were selected

to optimize for shorter training time and higher accuracy on the validation data.

To classify ROIs as cancer or non-cancer, we decided to use a range of pretrained networks

which use different model architecture. AlexNet [16], NASNet [23], VGG16 [24] and Xcep-

tion [25] were selected. These networks use different deep learning techniques where AlexNet

is one of the first DNNs that use convolutional kernels, VGG16 improves on the AlexNet model

by using smaller kernels, Xception uses modified depthwise separable convolutions and NAS-

Net uses neural architecture search. Since AlexNet was not available in Keras, MATLAB was

used instead. All four models were pretrained on the ImageNet dataset, an open-source project

containing 14 million images intended for image and vision research [26]. For the training

data, we randomly removed non-cancer ROIs, to ensure the number of cancer ROIs is equal to

non-cancer for each patient.

We trained VGG16 and Xception using 240×240×3 pixel sized ROIs, while the images

used to train AlexNet and NASNet were resized using bilinear interpolation to 227×227×3

pixels and 224×224×3 pixels respectively. AlexNet had a fixed input size due to limitations in

MATLAB’s deep learning implementation and NASNet was fixed due to architecture design.

We validated the cancer detection models using a leave-one-patient-out (LOPO) cross val-

idation scheme, where a patient is left out for testing. The remaining patients were then ran-

domly split into 70% training and 30% validation. Hyperparameters are summarized in Table

2.1 and were set using the validation dataset. For AlexNet, the learning rate was 1e-4 for

all layers except the last layer which had a learning rate of 2e-3. All networks used Adam

optimizer [22].
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Model Loss
Function

Optimizer Batch
Size

Epochs Input Size
(pixels)

AlexNet-TCM BC Adam, lr = 1e-4 200 10 227×227×3
AlexNet-RAW BC Adam, lr = 1e-4 200 10 227×227×3
NASNet-TCM BC Adam, lr = 1e-4 128 10 224×224×3
NASNet-RAW BC Adam, lr = 1e-4 32 10 224×224×3
VGG16-TCM BC Adam, lr = 1e-5 32 10 240×240×3
VGG16-RAW BC Adam, lr = 1e-5 32 10 240×240×3
Xception-TCM BC Adam, lr = 1e-4 32 10 240×240×3
Xception-RAW BC Adam, lr = 1e-4 32 10 240×240×3

Table 2.1: Model hyperparameters. Lr indicates learning rate and BC binary crossentropy.
Adam refers to the adaptive moment optimizer [22].

To compare TCMs against raw images, we trained the four networks (AlexNet, NASNet,

VGG16 and Xception) on raw images or TCMs generated from the 2-fold cross validation

scheme, resulting in a total of 8 trained networks. The same training, validation and testing

split was used across all networks to remove data distribution as a confounding factor when

comparing the models. These models will be referred to as AlexNet-TCM, NASNet-TCM,

VGG16-TCM and Xception-TCM for those trained on TCMs and AlexNet-RAW, NASNet-

RAW, VGG16-RAW and Xception-RAW for those trained on raw images.

These models were combined in a majority voting ensemble model. Predictions were given

on a majority vote (>50%) from all models trained on raw images. The same was done for

TCM models and for a combination of all eight models. We refer to them as voting-RAW,

voting-TCM and voting-All for majority voting with only models trained on raw images, only

on TCMs and all models respectively.

2.3 Results

2.3.1 Tissue Component Maps

Training a U-Net required approximately 12 hours of training time for lumen and 24 hours for

nuclei with GPU acceleration. Producing a TCM for an entire slide after the model is trained
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takes approximately 3 minutes with a GPU. An example of a final tissue component map can

be found at Fig.2.2.

(a) Histology (b) Training TCM (c) U-Net lumen (d) U-Net nuclei (e) U-Net TCM

Figure 2.2: TCM generated using U-Nets (e), compared against TCMs generated using adap-
tive thresholding (b). In (b) and (e) red indicates nuclei, blue lumen and green other. In (c) and
(d) black indicates background and white indicates the corresponding tissue.

In this paper we will use FNR for false negative rate, FPR for false positive rate and AUC

for area under the receiver operating characteristic curve. We will be reporting the mean and

95% confidence interval (CI) of each performance metric.

For the IGPC dataset, the AUC was 0.970 (0.965-0.976) for lumen and 0.967 (0.959-0.975)

for nuclei in the 5-fold cross validation, and 0.975 (0.971-0.981) for lumen and 0.983 (0.981-

0.984) for nuclei in the 2-fold validation. For the TCIA dataset, the respective AUCs were

0.980 (0.977-0.984) for lumen and 0.994 (0.993-0.996) for nuclei from a 5-fold validation,

and 0.985 (0.982-0.989) for lumen and 0.999 (0.999-0.999) for nuclei from a 2-fold validation.

TCIA had higher AUCs than for the IGPC dataset, despite the fact that the networks were

trained on the IGPC dataset. Other error metrics can be found in Table 2.2 and in Figure 2.3.

Since none of the TCIA data was used for training, we calculated error metrics per fold and

averaged as an overall mean per ROI.
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Model FNR FPR Error Rate AUC
5-fold cross validation

TCIA-lumen 0.003
(0.001-0.005)

0.086
(0.076-0.095)

0.073
(0.065-0.081)

0.980
(0.977-0.984)

TCIA-nucleus 0.084
(0.068-0.100)

0.021
(0.017-0.025)

0.029
(0.026-0.032)

0.994
(0.993-0.995)

IGPC-lumen 0.010
(0.006-0.013)

0.100
(0.087-0.113)

0.091
(0.078-0.103)

0.970
(0.965-0.976)

IGPC-nucleus 0.219
(0.193-0.243)

0.023
(0.018-0.028)

0.047
(0.041-0.053)

0.967
(0.959-0.975)

2-fold cross validation

TCIA-lumen 0.003
(0.001-0.005)

0.084
(0.075-0.093)

0.071
(0.063-0.079)

0.985
(0.982-0.989)

TCIA-nucleus 0.080
(0.063-0.096)

0.027
(0.022-0.032)

0.033
(0.029-0.037)

0.999
(0.999-0.999)

IGPC-lumen 0.010
(0.006-0.014)

0.097
(0.083-0.110)

0.088
(0.075-0.099)

0.975
(0.971-0.981)

IGPC-nucleus 0.210
(0.185-0.235)

0.024
(0.019-0.029)

0.046
(0.041-0.050)

0.983
(0.981-0.984)

Table 2.2: Segmentation mean and 95% CI of TCMs generated with a U-Net, validated against
validation ROIs segmentations generated by manual thresholding. 136 ROIs from TCIA and
220 from TCIA were used for validation.
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(a) Lumen (b) Nuclei

(c) Lumen (d) Nuclei

Figure 2.3: Error metrics for nuclei and lumen segmentation using 2-fold U-Net on either the
TCIA or IGPC data in a boxplot where error bars represent 95% CI. “*” indicates a p-value
less than 0.05 using a 2-tailed Mann-Whitney-Wilcoxon test.

2.3.2 Cancer Detection

The TCMs generated via the 2-fold cross validation U-Nets were then used for cancer vs.

non-cancer classification using a LOPO cross validation scheme. Training the classifiers took

approximately 2 hours per fold, for a total of 7 days per model. Labelling ROIs for one WSI

post training took approximately 2-4 minutes with GPU acceleration. Error values can be found

in Table 2.3 and Figure 2.4. Error metrics were also calculated using a majority voting scheme

from all of the models trained on either raw images, or TCMs or out of all eight models. The

ensemble models did not have AUCs, as their labels were binary. The model with the lowest

AUC was AlexNet-TCM with 0.976 (0.971-0.982) and the highest AUC was VGG16-RAW

with 0.994 (0.992-0.996).
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(a) FNR (b) FPR

(c) Error Rate (d) AUC

Figure 2.4: Error metrics of cancer classification from a 2-fold cross validation scheme.“*”
indicates a p-value less than 0.05 using a 2-tailed Mann-Whitney-Wilcoxon test. Error metrics
were calculated on a per-patient basis. Error bars indicate 95% CI.
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Network Input Error Metric
FNR FPR Error Rate AUC

AlexNet TCM 0.103 (0.067-0.134) 0.066 (0.053-0.077) 0.068 (0.056-0.079) 0.976 (0.971-0.982)
RAW 0.085 (0.050-0.115) 0.052 (0.034-0.066) 0.055 (0.038-0.070) 0.983 (0.978-0.988)

NASNet TCM 0.100 (0.068-0.128) 0.039 (0.029-0.047) 0.042 (0.032-0.050) 0.985 (0.981-0.990)
RAW 0.076 (0.045-0.101) 0.028 (0.020-0.036) 0.032 (0.022-0.040) 0.991 (0.988-0.994)

VGG16 TCM 0.070 (0.045-0.096) 0.033 (0.027-0.039) 0.036 (0.029-0.042) 0.989 (0.986-0.993)
RAW 0.048 (0.027-0.065) 0.024 (0.018-0.029) 0.026 (0.020-0.032) 0.994 (0.992-0.996)

Xception TCM 0.075 (0.040-0.103) 0.029 (0.023-0.034) 0.034 (0.023-0.042) 0.989 (0.985-0.995)
RAW 0.056 (0.043-0.068) 0.022 (0.019-0.025) 0.024 (0.021-0.027) 0.993 (0.992-0.994)

Voting TCM 0.085(0.053-0.113) 0.021(0.016-0.025) 0.025(0.018-0.031) —
RAW 0.064(0.035-0.088) 0.017(0.012-0.020) 0.020(0.013-0.026) —
All 0.060(0.030-0.084) 0.018(0.014-0.022) 0.022(0.015-0.027) —

Table 2.3: Cancer detection error metrics mean and 95% CI which were calculated on a per
patient basis. Bold-face indicates the measurement with the lowest mean of the columns FNR,
FPR and Error Rate and the highest for AUC.

2.4 Discussion

2.4.1 U-Net Segmentations

Examination of sample ROIs yields a better understanding of how the U-Net performs. The

U-Net tended to over-segment lumen, as is evident from the high number of false positives in

Figure 2.3 and Figure 2.6. This may be an artifact from the training data, since the training

data also over-segmented lumen as seen in Figure 2.6. In this example, there is a large amount

of false positives in both U-Net and adaptive thresholding based segmentations. The adaptive

thresholding technique used a dynamically selected threshold for nuclei, but a fixed global

threshold to separate lumen from all other tissue. Thresholding is unable to differentiate slide

background caused by tissue tears and slide background from lumina. Since this example is

lightly stained, portions where the tissue is lighter in colour are classified as lumina.

It is possible that the U-Net will be able to differentiate tissue tears from lumen if given

properly segmented training data. Unlike thresholding techniques, the U-Net may incorporate

the distribution and shape of nuclei and other tissue, to identify lumina.

By comparing Figure 2.5 and Figure 2.6, we can see differences between model perfor-

mance on examples with different staining intensities. The U-Net performs reasonably well
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Figure 2.5: Error maps of nuclei and lumen generated from U-Net and adaptive threshold-
ing where white is true positive, red is false positive, black is true negative and blue is false
negative. The segmentations were compared against manual thresholding.
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Figure 2.6: Error maps of nuclei and lumen generated from U-Net and adaptive threshold-
ing where white is true positive, red is false positive, black is true negative and blue is false
negative, for a lightly stained example. The segmentations were compared against manual
thresholding.
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for both examples, with the darkly stained example in Figure 2.5, performing with fewer false

negative nuclei and false positive lumen than the lightly stained example.

Figure 2.6 has more red blood cells (RBCs) that were falsely classified as nuclei in the

U-Net segmentation, compared to adaptive thresholding. The adaptive threshold technique

removed RBCs explicitly using hue-saturation-intensity thresholds. The U-Net also only mis-

classified a small portion of the RBCs in this example and does not require this second thresh-

olding step. It is possible that if the U-Net was trained to mask RBCs, its performance would

be comparable to adaptive thresholding.

The U-Net nuclei segmentation in Figure 2.5 had fewer false negatives than the adaptive

thresholding technique and fewer false positive lumen. The U-Net was trained to imitate the

adaptive thresholding technique, so we expected it to output segmentations nearly identical

to adaptive thresholding if given enough epochs. Since this model was only trained for 10

epochs, it is possible that if it was trained for longer, the model would perform nearly identi-

cally to adaptive thresholding. Instead, U-Net may have reached a compromise that balances

between the different staining intensities found in the training data, resulting in a more accurate

segmentation.

Validation on an external dataset showed that U-Net can provide equivalent performance

on images acquired at a different centre to that in which it was trained. Figure 2.7 is an example

ROI taken from the external dataset and its resulting output segmentations. Qualitatively, this

example performed similarly to the IGPC database. Only a portion of the RBCs were not

falsely classified as nuclei. Like Figure 2.6 which has a similar staining intensity, the U-Net

over segmented lumen.

Looking at Figure 2.3 we see that in general, error metrics from TCIA data are similar to

IGPC. There was no statistically significant difference between TCIA and IGPC in lumen AUC,

FPR and error rate, and nuclei FPR. TCIA data had a higher nuclei AUC, lower nuclei FPR,

error rate and lower lumen FNR. Since the IGPC dataset used whole-mount tissue samples, the

H&E staining was done manually rather than robotically, resulting in large staining variability.
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This may account for the larger variation in error metrics and poorer performance in compar-

ison to TCIA. Although information on the exact staining procedure was not provided for the

TCIA dataset, the tissue was cut into quadrants and the qualitative uniformity of the samples

imply robotic staining, as is normally conducted in clinical pathology labs for standard-sized

histology slides.
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(a) histology

(b) Manual TCM (c) U-Net TCM

(d) U-Net lumen error map (e) U-Net nuclei error map

Figure 2.7: TCM generated using U-Net, compared against TCMs generated using manual
thresholding for TCIA data. In (b) and (c) red indicates nuclei, blue lumen and green other in
the TCMs. In (d) and (e) white is true positive, red is false positive, black is true negative and
blue is false negative. The resolution of these images was not reported in the TCIA database.
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2.4.2 Cancer Detection

The error metrics for cancer detection have been plotted in Figure 2.4. Networks trained on

raw images performed similarly to those trained on TCMs, but raw image models consistently

performed with a lower FNR, FPR, error rate and a higher AUC.

AlexNet performed with the highest FNR, FPR, error rate and the lowest AUC of the four

networks, although not by a large margin. It is also the oldest network. Advancements in

network architecture may have resulted in the poorer performance of AlexNet in comparison

to newer networks. VGG16 uses a very similar structure to AlexNet but uses a smaller kernel

size. Xception relies on depth-wise separable convolutional layers, which uses convolution

in a method that reduces the number of parameters. NASNet optimizes network architecture

as a part of its training process. These changes may have improved performance. It is also

possible that the difference between AlexNet and the other models is caused by the differences

in MATLAB’s deep learning toolbox and Keras. Although both libraries use the ImageNet

dataset to pretrain the models, details in pretraining methods like batch size and number of

epochs may affect the resulting models.

VGG16-RAW performed with highest AUC of 0.994(0.992-0.996), while Xception-RAW

had the next highest AUC of 0.993 (0.992-0.994). The difference between AUCs is minimal

and not significant enough to show a clear preference for one model. Out of the eight DNNs,

VGG16-RAW had the lowest FPR at 0.048 (0.027-0.065).

When we include the majority voting schemes, voting-RAW had the lowest FPR at 0.017

(0.012-0.020) and error rate at 0.020 (0.013-0.026). The voting scheme likely reduces false

positives, as multiple networks have to agree for voting to output a positive. When we look

at Figure 2.9 and Figure 2.10, we see that cancer maps produced by the voting scheme have

fewer false positives.

The slide in Figure 2.9 has G5 grade cancer which was not found in any other patients in

the dataset. All networks had issues detecting cancer with this patient. There were many false

negatives, regardless of if the networks were trained on raw images or TCMs. Xception-TCM
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nearly labelled all cancer as non-cancer. We saw this reflected in Figure 2.11 where FNR is

shown to be is higher for G5 than G3 and G4 cancers for all models. This is likely because the

network was not trained with sufficient samples to identify G5 cancer, even though the training

data were balanced for cancer and non-cancer. If we increased the training dataset to include

multiple patients with G5 cancer, then the network may have a lower FNR. Receiver operating

characteristic curve (ROC) plots along with the AUC for this patient have been plotted in

Figure 2.8.

Figure 2.10 has fewer false negatives than Figure 2.9. AlexNet-TCM has a large number

of false negatives, which is not seen in other models. In this example, the location of false

positives tend to be consistent across models. For example, along the edge of the bottom right

of the gland, there tends to be a crescent of false positives seen across models and training data

modalities. In this situation, some false positives are in the same area of prostatic intraepithelial

neoplasia (PIN). PIN may be the confounding factor for this situation; however, this does not

explain all cases of false positives.
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Figure 2.8: ROC plots with AUC for patient with G5 cancer in Figure.2.9
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(a) WSI

(b) WSI Grades (c) Voting-RAW

(d) Voting-All (e) Voting-TCM

(f) AlexNet-RAW (g) NASNet-RAW (h) VGG16-RAW (i) Xception-RAW

(j) AlexNet-TCM (k) NASNet-TCM (l) VGG16-TCM (m) Xception-TCM

Figure 2.9: Whole mount histology slide cancer maps. The cancer maps were produced from
AlexNet, NASNet, VGG16, or Xception trained on either raw images or TCM. (a) is the WSI
raw slide, (b) is the grade legend for the WSI and (c)-(m) are cancer maps where red is false
positive, cyan is false negative, black is true positive and grey is true negative.
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(a) WSI

(b) WSI Grades (c) Voting-RAW

(d) Voting-All (e) Voting-TCM

(f) AlexNet-RAW (g) NASNet-RAW (h) VGG16-RAW (i) Xception-RAW

(j) AlexNet-TCM (k) NASNet-TCM (l) VGG16-TCM (m) Xception-TCM

Figure 2.10: Whole mount histology slide cancer maps. The cancer maps were produced from
AlexNet, NASNet, VGG16, or Xception trained on either raw images or TCM. (a) is the WSI
raw slide, (b) is the grade legend for the WSI and (c)-(m) are cancer maps where red is false
positive, cyan is false negative, black is true positive and grey is true negative.
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(a) AlexNet-TCM (b) AlexNet-RAW

(c) NASNet-TCM (d) NASNet-RAW

(e) VGG16-TCM (f) VGG16-RAW

(g) Xception-TCM (h) Xception-RAW

(i) Voting-TCM (j) Voting-RAW

(k) Voting-All

Figure 2.11: FNR of different cancer grades. Error bars indicate 95% CI. No error bars were
given for G5, G5+4 and G4+5 because labels were taken from only one patient.
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2.4.3 Limitations

The results of this study need to be considered in the context of its limitations. First, the U-Net

generated TCMs were validated using segmentations generated by a single person, yielding

the potential for bias toward under or over segmentation in the ground truth. Second, cancer

classification was done using a LOPO cross validation scheme and was not validated on an

external dataset; this will need to be performed in a future study as a critical step toward

clinical translation. Third, our IGPC dataset had a very limited amount of G5 cancer, limiting

our interpretation of the systems performance in classifying cancer of this grade.

2.5 Conclusions

In this work, we generated TCMs from H&E-stained radical prostatectomy specimens using

U-Net. In contrast to previous work, U-Net does not require any thresholds to be set by the

user. The system provided AUC values of greater than 0.96 for all tissue components, even

when tested on images obtained from a different centre, demonstrating that the U-net could

provide accurate TCMs for multiple centres without requiring retraining on data from each

centre.

We tested the performance of multiple deep learning methods for classifying cancer vs.

non-cancer using both TCMs and raw images. In general, models trained on raw images per-

formed better than those trained on TCMs, although in many instances the differences were

small and/or not statistically significant. That suggests the nuclei and lumina identified in the

TCMs provide the majority of the information required for the models to accurately classify

cancer vs. non-cancer. However, future work should include identifying the additional tissue

components required for the models to equal the performance of classification using raw im-

ages. This yields important insight into the aspects of the tissue the models are using to make

their classifications, potentially increasing pathologists confidence in the models and therefore

supporting clinical translation.
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Future work in this area includes user studies to assess whether cancer maps generated by

neural networks will improve pathologist efficiency or accuracy, and whether including cancer

maps in pathology reports will improve the decision to offer and target adjuvant therapy and

ultimately—patient outcomes.
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Chapter 3

General Discussion and Conclusions

3.1 Contributions of the Thesis

The thesis addresses questions proposed in Chapter 1. They are broken into two major ques-

tions outlined below.

(1) Can a U-Net trained to create tissue component maps at one centre, accurately seg-

ment slides at another? To answer this question, we trained U-Net to segment histology into

nuclei and lumen maps, before validating on an external dataset. The trained U-Net performed

similarly on both sets of data, showing that a U-Net can be used at a centre different than where

it was trained. The AUC calculated using data from the training centre was 0.975 (95% con-

fidence interval 0.969-0.980) for lumen and 0.983 (0.981-0.985) for nuclei. For the external

dataset, the AUC was 0.980 (0.977-0.984) for lumina and 0.994 (0.993-0.996) for nuclei.

(2) How do DNNs compare when used for cancer vs. non-cancer classification in RP

histology? We compared four deep learning models: AlexNet, NASNet, Xception and VGG16

trained on either raw images or TCMs. We found that AlexNet, NASNet and VGG16 trained

on raw images perform with higher AUC and lower FPR and error rate, than the same model

trained on TCMs. Xception models had no statistically significant difference between the two

training image types in error rate and FPR. All models performed similarly and were trained
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and tested on the same dataset. The majority voting ensemble model had the lowest FPR and

error rate—which is not surprising as outliers in one model would be removed if multiple

models were used.

Every model had a higher FNR when classifying G5, G4+5 and G5+4 as cancer in com-

parison to G3, G3+4, G4+3 and G4. Our dataset did not have a balanced representation of all

Gleason grading, where G5, G4+5 and G5+4 was only found in one patient. Consequently,

this suggests that a balanced distribution of Gleason grades must be included in the training set

and balancing for cancer vs non-cancer is not sufficient for cancer detection.

3.2 Limitations

We have not tested the cancer detection models on an external dataset, thus we do not have

information on how the models will perform at multiple centres. This limited dataset and

CV testing meant our data is subject to a positive bias. The U-Net was tested on external

data, but this was only from one other centre. Staining variation arises from differences in

tissue processing, but we have not tested how these models perform against a range of staining

intensities. Therefore, our conclusions are limited by our datasets.

Our study used supervised learning. To label the data, cancer maps were generated by one

physician and verified by one of two pathologists. Validation TCMs were generated by only

one person. Our data are therefore biased towards the annotator. With 68 patients, this method

of supervised learning using manual contours was feasible, but to scale this study to include

hundreds or thousands of patients, it is impractical to expect detailed contours. This is why

unsupervised or partially supervised models may be a more practical and scalable solution.

Our method is limited in its ability to scale.

In the thesis, we covered several DNNs but there are many architectures that were not

tested. Since we only sampled a small subset, this study can only reflect the performance of

the four DNNs and cannot represent all DNNs. This study also only covered three component
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TCMs at one resolution. It is possible that including certain components and excluding others

may train for better networks, so we cannot draw conclusions on TCMs as a whole.

3.3 Applications and Future Directions

One of our goals from Chapter 2 was to automatically generate cancer maps, which may build

towards our long-term goal of improving pathologist workflow. We analyzed FNR, FPR, error

rate and AUC of the cancer maps, but we have not measured the impacts of automatically

generated cancer maps on pathologist work-flow and on treatment decisions. Future research

in this topic may allow us to better understand how we should optimize cancer map generation

and if these cancer maps improve treatment outcomes.

To improve pathologists’ workflow, their perceptions of a DNN assistive program and how

the assistance should be provided, is important to research. A study surveying pathologists’

perspectives of artificial intelligence (AI) in pathology found 48% of respondents felt that di-

agnostic decisions should remain predominantly human, 25% found it should be an equal role

and 20% found AI should take a dominant role [1]. This brings up the question of how much

control a DNN assistive program should have. Campenella et al. argues that in a clinical set-

ting, difficult cases are often reviewed by multiple pathologists and it can be assumed that a

comprehensive centre has 100% accuracy, thus assistive algorithms that filter suspicious results

for a pathologist only need to have 100% sensitivity and an acceptable FPR [2]. Their work

suggests DNNs should act like a filtering program with the final decision made by the patholo-

gist, which is supported by the aforementioned survey. Initial work has been done studying AI

assistive programs effect on sensitivity and observer agreement in PCa biopsy, but to the best

of my knowledge this has not been done for RP [3, 4]. Therefore, it is important to implement a

user study to understand how machine learning (ML) can be incorporated and how pathologists

should interface with a DNN assistive program in RP histology.

The International Society of Urological Pathologist (ISUP) concluded it is important to
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provide information on where EPE is located and the location of positive margins [5, 6]. But,

we do not know if patient specific cancer maps, rather than a written description of where the

cancer is located, would better predict post surgery outcome or guide targeted adjuvant radio-

therapy to the prostate bed. Consequently, studying the impact of cancer maps on treatment

outcomes is a potential research project.

ML, in general, performs poorly on outliers. We saw this in Chapter 2 where G5 grade ROIs

(outliers in our dataset) had a larger FNR than G4 and G3 even when the problem was cancer

vs. non-cancer classification rather than Gleason grading. In the future, studies involving a

balanced set of Gleason scores may solve that issue but for other rare situations, balancing may

not be possible. Rare types of cancer, like large cell prostate cancer, are incredibly aggressive

and may be missed when using ML algorithms, leading to poor patient care. It is often difficult

to collect data on those types of cancer due to the rarity, so pipelines involving ML algorithms

should take these rare cases into consideration.

We also can consider ethics and legal issues surrounding machine learning in a clinical

setting. Schiff et al. outlines the issue of informed consent [7] relative to ML. They ask—

to what level of understanding should a physician have of ML theory to adequately inform a

patient for informed consent? Given the black box nature of ML and the poor performance

on outliers (like rare types of cancer), can ML models guarantee a 100% sensitivity suggested

by Campenella et al. [2]? What is an acceptable failure rate and who would be responsible

legally and ethically when/if it does? Sullivan et al. concludes that current legal models do

not adequately address situations in which AI results in injury [8]. Other concerns include

economic displacement due to AI tools where 18% of surveyed pathologists were concerned

and 2% were extremely concerned about job displacement, and 26% expressed concern that

AI would erode pathologists’ skills [1]. Ethical questions surrounding ML in medicine are

difficult to answer, but must be solved before clinical applications are made.

Some of these questions are not new and are required when any new technology is applied

to the medical field. Still, these questions surrounding the ethics of AI in healthcare are difficult
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to answer, but should be addressed before clinical implementation.
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Chapter 4

Table of Abbreviations and Symbols

AI Artificial Intelligence

ASTRO American Society for Radiation Oncology

AUA American Urological Society

AUC Area Under the Receiver Operating Characteristic Curve

CI Confidence Interval

CNN Convolutional Neural Network

CV Cross Validation

DL Deep Learning

DNN Deep Neural Network

EPE Extraprostatic Extension

FNR False Positive Rate

FP False Positive

FPR False Negative Rate

GS Gleason Score

GPU Graphics Processing Unit

H&E Hematoxylin and Eosin

IGPC Image Guidance for Prostate Cancer
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ISBI International Symposium on Biomedical Imaging

ISUP The International Society of Urological Pathology

LOPO Leave-One-Patient-Out

ML Machine Learning

NN Neural Network

PCa Prostate Cancer

PIN Prostatic Intraepithelial Neoplasia

RBCs Red Blood Cells

ROC Receiver Operator Curve

ROIs Region of Interest

RP Radical Prostatectomy

TCIA The Cancer Imaging Archive

TCM Tissue Component Map

TMA Tissue Micro Arrays

WSI Whole-Slide Images
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Appendix A

Permissions to Reproduce Previously

Published Material

Permission to reproduce published material in Figure 1.3 from Chapter 1.
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