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PERSPECTIVES The Pathophysiology of COVID-19 and SARS-CoV-2 Infection
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INTRODUCTION

Pannexin 1 (PANX1) is a ubiquitously expressed, channel-
forming protein found in a number of tissues throughout the
body (e.g., lung, vasculature, liver, central nervous system,
immune system) that is important in many key physiological
and immune responses (18, 55). PANX1 channels passively
flux ATP (predominantly), multiple metabolites, and likely
other small anions (37, 39). PANX1 channels regulate inflam-
mation and host responses to several pathogens, including
viruses (36, 42, 53). While there is currently no evidence
suggesting novel severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) and PANX1 directly interact, there is an
urgent need for therapeutic strategies, especially those target-
ing the hyperinflammation and cytokine storm that occurs in
severe cases of COVID-19 (27, 41). Here we argue that
PANX1, and drugs known to target PANX1 (including the
FDA-approved drug probenecid), should be the focus of fur-
ther investigation in the context of SARS-CoV-2 infection and
its associated pathology in COVID-19 patients.

REGULATION OF INFLAMMATION BY PANX1 IN THE
CONTEXT OF COVID-19

COVID-19 patients frequently present with hypoxemia and
dyspnea requiring supportive oxygen therapy before reaching a
more severe hyperinflammatory phase of the disease and acute
respiratory distress syndrome (ARDS) (4, 11, 26). Control of
the early phase of innate immunity, enabling a productive
adaptive immune response, is critical to ensure patient recov-
ery (56). It has been suggested that immunosuppression treat-
ment for COVID-19 patients displaying hyperinflammation
could limit disease progression as well as limit viral entry (38,

65). There are several lines of evidence demonstrating that
PANX1 channel opening (and release of ATP) enhances in-
flammatory responses, including in the systemic endothelium
(lung microvasculature), lung epithelium, olfactory epithe-
lium, and the parenchyma of several tissues throughout the
body (13, 17, 22, 29, 31, 35, 51). Multiple studies have
shown that PANX1 signaling exacerbates inflammatory re-
sponses through: being activated and enhanced by TNF�-
receptor signaling, being implicated in the inflammasome,
involvement in leukocyte recruitment, and playing a role in the
production and secretion of proinflammatory cytokines such as
IL-1� and IL-6 by endothelial cells and other cell types (12, 22,
24, 35, 41, 51, 63). Given that disruption (both deletion and
inhibition) of PANX1 in endothelial cells significantly reduces
inflammation in several injury models (22, 28, 51, 59), PANX1
represents a potential target in reducing inflammatory burden
and the damaging effects of the cytokine storm in COVID-19
patients. With intense vascular inflammation observed in se-
vere cases of SARS-CoV-2 infection (14, 66), effective treat-
ments to dampen hyperinflammation represent an urgent treat-
ment need.

Of particular interest to SARS-CoV-2 infection, endothelial
PANX1 has been shown to play a key role in regulating lung
vascular inflammation and edema in response to ischemia/
reperfusion injury (51). Control of pulmonary edema is crucial
in limiting the severity of ARDS (58). In this light, TRPV4
channels in the alveolo-capillary unit were recently proposed to
be a pharmacologically tractable target for treatment of ARDS
associated with COVID-19 (30). In addition to direct control of
lung barrier function by TRPV4 inhibitors, there is evidence
that TRPV4 channels could induce PANX1 channel activity
(45, 49, 50), suggesting that PANX1 inhibitors might improve
the efficacy of TRPV4 channel inhibitors. Defining the molec-
ular basis for coordinated regulation of TRPV4 and PANX1Correspondence: B. E. Isakson (brant@virginia.edu).
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channels should facilitate the design of therapeutic approaches
attenuating this signaling axis in treatment of COVID-19.

In addition to its general role in inflammatory signaling,
PANX1 (either directly or pharmacologically) has been impli-
cated in host responses to viral infection and regulation of virus
life cycle [e.g., human immunodeficiency virus (HIV), hepati-
tis B, influenza, vesicular stomatitis virus (VSV), etc.]. PANX1
is expressed in key cells and tissues targeted by SARS-CoV-2,
including airway epithelium (46), lung endothelium (34, 51),
and neurons (7) (as well as many cell types and tissues
throughout the body). In the case of HIV (36, 42, 53), ATP
release via PANX1 channels following viral binding stimulates
purinergic signaling pathways that enhance viral binding, up-
take, and replication. Extracellular ATP has also been linked to
viral infection and sequelae: it triggers HIV-1 release from
cells (23), is released from cells following VSV infection (64),
and is linked to ARDS associated with adenoviral infection
(32). How extracellular ATP and purinergic receptors gener-
ally regulate entry of viruses has not yet been elucidated, and
no links have yet been made between extracellular ATP and
coronaviruses. Coronavirus membrane fusion can occur at the
plasma membrane or at endosomes (25, 54, 62). Coronaviruses
have been shown to enter cells via macropinocytosis, a clath-
rin- and caveolin-independent process (20, 57). Notably, ele-
vated extracellular ATP can also trigger interactions between
PANX1 and P2X7 receptors and their internalization to endo-
somes through a clathrin- and caveolin-independent process
reminiscent of micropinocytosis (6, 8). If direct links between
PANX1 and the SARS-CoV-2 life cycle are identified, target-
ing PANX1 could help mitigate the significant viral titers
observed with COVID-19 that result in endothelial damage and
neuronal tissue accumulation (33, 44, 68).

The above snapshot of PANX1 regulation of inflammatory
cascades and viral pathologies supports the need for further
study to explore potential direct links to COVID-19. From a
therapeutics standpoint for COVID-19, PANX1 also has some
intriguing preexisting ties and potential. For instance, nucleo-
tide antiviral drugs, of which remdesivir has shown some
effectiveness, may exhibit anti-PANX1 activity. Moreover,
probenecid is an FDA-approved drug that blocks PANX1,
often recapitulating the effects of PANX1 deletion. Given the
evidence described below, we argue PANX1 blockers should
be considered in COVID-19 preclinical drug repurposing stud-
ies.

PANX1 AND NUCLEOTIDE ANALOG ANTIVIRALS

Nucleotide analog antivirals are designed to compete for
incorporation into newly synthesized viral nucleic acid chains
thereby disrupting virus life cycles. In preliminary analyses of
ongoing clinical trials (1, 10), remdesivir, first described in the
treatment of Ebola, has shown modest effects in reducing time
to recovery (2). With respect to PANX1, tenofovir (not under
consideration for COVID-19 but a nucleotide analog antiviral),
used in the treatment of hepatitis B and HIV, inhibited
PANX1-mediated ATP release in a mouse macrophage cell
line (RAW264.7 cells) and a human liver cell line (HepG2
cells) (19). It is possible the inhibitory action of tenofovir on
PANX1 could be via an intracellular mechanism, due to the
fact that the drug is metabolized into a nucleotide analog inside
the cell. However, high concentrations of extracellular ATP

inhibit PANX1 and lead to PANX1 internalization (8), raising
another possibility: that the active form of the drug might
somehow be released into the extracellular space and block the
channel from an external site, like ATP. In light of these prior
findings, it could be valuable to determine whether, like teno-
fovir, remdesivir also impacts both PANX1 channel activity
and possibly PANX1-associated inflammatory signaling in
COVID-19. This work would be facilitated by the recent
advances in our understanding of the PANX1 structure, includ-
ing identification of key extracellular regulatory residues (16,
39). Remdesivir’s effects on PANX1 channels are not known
but would merit investigation in light of the blocking effect of
the related drug, tenofovir, and the established role of PANX1
in inflammation and regulation of virus life cycles.

REPURPOSED FDA-APPROVED DRUGS THAT BLOCK PANX1
FOR COVID-19 TREATMENT?

Probenecid (commercially known as Probalan, Benemid, or
Benuryl) is an FDA-approved treatment for gout that is also a
well-established PANX1 inhibitor (61). Influenza A viral in-
fection and lung viral load were attenuated following probe-
necid treatment both in vitro and in vivo (43). Probenecid also
decreased inflammasome-dependent IL-1� secretion from
macrophages in vitro (15), reduced the inflammatory response
in sepsis (55), and suppressed hyperinflammation resulting
from severe influenza A infection in mice (48). Additionally,
probenecid treatment lowered the required dose of another
antiviral medication, oseltamivir (43), likely due to probene-
cid’s ability to increase plasma levels of the antiviral drug (47).
Note that probenecid also inhibits P2X7 receptors (3), which is
also likely to contribute to the antiviral and anti-inflammatory
activity. Probenecid has also been shown to have a protective
effect in ischemia/reperfusion injury by inhibiting secretion of
the lysosomal cathepsin proteases (60). This suggests a mech-
anism of protection from SARS-CoV-2 infection, since cathe-
psins promote coronavirus infection through proteolytic cleav-
age of the spike protein (67). Thus, considering probenecid is

Fig. 1. Possible roles for Pannexin 1 (PANX1) in COVID-19 pathology.
Pannexin intracellular loop 2 peptide (PxIL2P) could potentially be commer-
cialized for specific PANX1 inhibition of inflammatory cues (e.g., IL-1�).
Probenecid, an FDA-approved drug used in the treatment of gout, could help
dampen the hyperinflammation observed in COVID-19 and could also have an
impact on the life cycle of the virus. In addition to affecting the life cycle of
the virus, remdesivir could potentially impact inflammation through blocking
PANX1.
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relatively well tolerated, has demonstrated action on viral
infection-associated inflammation, and decreases required
doses of other drugs, it could be of interest to investigate its
potential use for COVID-19.

Another PANX1 channel-inhibiting FDA-approved drug
with potential for the treatment of COVID-19 is spironolac-
tone, an aldosterone antagonist used initially as a diuretic for
the treatment of high blood pressure (21). In addition to its
potential benefit as a PANX1 blocker in the context of
SARS-CoV-2 infection, it was recently suggested that spi-
ronolactone may be useful in COVID-19-associated ARDS
patients with hypertension (9). It was postulated that spirono-
lactone might selectively increase plasma levels of the spike
protein receptor ACE2 (27, 52), increasing the proportion
of circulating to lung-endothelial cell-membrane-associated
ACE2 levels (thereby minimizing lung infection), as a safer
mechanism of action than ACE inhibitors that target cell-bound
ACE2 (9). Further investigation is needed to determine
whether this is the case and to determine whether there are
benefits of the PANX1-inhibiting action of spironolactone in
the context of COVID-19.

A POTENTIAL FOR THE DIRECT TARGETING OF PANX1
CHANNELS

Finally, if PANX1 is found to be involved in the primary
regulation of SARS-CoV-2 infectivity and inflammatory re-
sponses, it may also be worth considering direct targeting of
the channel functions. Currently there are no FDA-approved
PANX1-specific blockers, although a PANX1-specific inhibi-
tor peptide, pannexin intracellular loop 2 peptide (PxIL2P), has
shown promise in reducing inflammatory responses in vitro
and in vivo (35, 63). PxIL2P contains a short mimetic
sequence for the IL2 region of PANX1 attached to an
HIV-TAT transactivation protein (5) that binds to the second
intracellular loop of PANX1 and blocks channel release of
ATP, altering intracellular Ca2� flux (35, 63). Using PxIL2P in
cultured endothelial cells blocks PANX1-regulated expression
and release of cytokines including IL-1� and CxCL10 and
limits monocyte adhesion in the vasculature (35, 63). Thus
direct targeting of the PANX1 channel may have functionality
in reducing SARS-CoV-2 infectivity and vascular inflamma-
tory responses in COVID19 patients.

CONCLUSION

Although there are currently no direct lines of evidence
linking PANX1 to COVID-19, the central role of PANX1 in
regulating inflammation, and more generally viral infection,
provides a rationale supporting preclinical investigation of
PANX1 and repurposing of approved PANX1-targeting drugs
like probenecid as potential treatments. A summary of our
perspective is illustrated in Fig. 1. We postulate that evaluating
current COVID-19 treatment protocols for their effects on
PANX1 may lead to improved combination therapeutic ap-
proaches by including specific PANX1 inhibitors as part of a
treatment regimen.
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