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a b s t r a c t

Background: Wearable sensors permit efficient data collection and unobtrusive systems can be used for
instrumenting knee patients for objective assessment. Machine learning can be leveraged to parse the
abundant information these systems provide and segment patients into relevant groups without spec-
ifying group membership criteria. The objective of this study is to examine functional parameters
influencing favorable recovery outcomes by separating patients into functional groups and tracking them
through clinical follow-ups.
Methods: Patients undergoing primary unilateral total knee arthroplasty (n ¼ 68) completed instru-
mented timed-up-and-go tests preoperatively and at their 2-, 6-, and 12-week follow-up appointments.
A custom wearable system extracted 55 metrics for analysis and a K-means algorithm separated patients
into functionally distinguished groups based on the derived features. These groups were analyzed to
determine which metrics differentiated most and how each cluster improved during early recovery.
Results: Patients separated into 2 clusters (n ¼ 46 and n ¼ 22) with significantly different test completion
times (12.6 s vs 21.6 s, P < .001). Tracking the recovery of both groups to their 12-week follow-ups
revealed 64% of one group improved their function while 63% of the other maintained preoperative
function. The higher improvement group shortened their test times by 4.94 s, (P ¼ .005) showing faster
recovery while the other group did not improve above a minimally important clinical difference (0.87 s,
P ¼ .07). Features with the largest effect size between groups were distinguished as important functional
parameters.
Conclusion: This work supports using wearable sensors to instrument functional tests during clinical
visits and using machine learning to parse complex patterns to reveal clinically relevant parameters.
© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

While total knee arthroplasty (TKA) is a successful end-stage
treatment for osteoarthritis that commonly improves joint func-
tion and reduces pain, further investigation for treatment refine-
ment is needed to decrease the recovery time and economic burden
of this procedure. Preoperative function can be a predictor of
postoperative functional improvement [1,2]. Rapid functional re-
covery in the first 3 months following TKA can additionally affect
hospital funding, predict long-term recovery, and be used to adjust
patient expectations realistically [3]. Objective measurement is
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important for functional evaluation, but subjective patient-
reported outcome measures (PROMs) remain a more commonly
used tool. These self-reported surveys are convenient to deploy but
completion of multiple measures by patients requires significant
time and effort. Patients often do not complete the provided
questionnaires entirely, rendering the collected data incomplete or
inconsistent, and these measures have been shown to differ from
objectively assessed functional performance [4e6].

The emergence of wearable sensor systems has permitted more
efficient data collection providing objective measures that can be
compared across patient populations or multiple clinical time-
points of the same patient for recovery analysis. Functional tests
such as the timed-up-and-go (TUG) or 3-minute-walk test can be
completed by patients quickly in clinic and benefit from portable
instrumentation for objective measurement [7]. The TUG test is of
interest because it combines knee-relevant activities of standing
from a chair, walking to a 3-m goal, turning about the goal, and
returning to the seated start position, encompassing a variety of
weight-bearing joint stressors. This test has been previously used in
assessing TKA patients by timing the completion of the test, and
differences of more than 2.27 s represent a clinically meaningful
change in function [8]. Further analysis and joint measurement can
be leveragedwith the use of wearable sensors. As patient functional
data are abundantly available with numerous measured parame-
ters, patterns throughout individual patient recovery or across
patient populations become difficult to identify by an observer.
Unsupervised machine learning offers the ability to identify com-
plex multivariate patterns in data and can group similar patient
populations together without predefining group labels or mem-
bership criteria. Similarities and differences between patient
groups throughout their recovery can reveal functional parameters
prevalent in positive or negative outcomes.

The purpose of this study is to measure functional performance
of TKA patients before and during their short-term recovery
period and apply unsupervised machine learning to separate pa-
tients into different functional groups based on derived perfor-
mance to highlight parameters influencing short-term functional
improvement.

Methods

IRB approval was obtained for studies investigating patients
scheduled to undergo primary unilateral TKA as a treatment for
osteoarthritis. Patients were prescreened to ensure they did not
have inflammatory arthritis or alcoholism before being recruited at
their preadmission appointment and each patient provided
informedwritten consent before participation. Individuals who had
language and/or cognitive barriers, neuromuscular disorders, and
operative or nonoperative leg amputations or who required a
wheelchair for mobility were excluded. Demographic information
was obtained from an orthopedic database, and Short Form 12,
Western Ontario and McMaster Universities Osteoarthritis Index,
Knee Society Score (KSS), and University of California Los Angeles
(UCLA) Activity Score questionnaires were obtained at the preop-
erative, 6, and 12-week clinical appointments. Surgeons also
completed the Office Knee Evaluation at each of these timepoints.

At preoperative, 2, 6, and 12-week appointments, patients were
instrumented with a validated wearable sensor system consisting
of an iPod Touch and 4 lightweight inertial sensors (one mounted
above and below each knee) while completing 3 trials of the TUG
test [9]. A custom software application was used to extract the
recorded functional tests from the wearable sensor system and
segment the test into 5 phases: sit to stand, walking to the goal,
turning about the goal, walking back to the start, and sitting in the
starting chair. Observer bias was minimized using autonomous test

start, finish, and segment separation and a step detection algorithm
was used to extract steps for operative and nonoperative legs. A
total of 55 spatiotemporal and functional metrics were extracted
from raw test data including lower leg motions, upper leg motions,
joint movement in 3 dimensions, flexion/extension velocities and
accelerations, step range of motion (ROM), number of steps, turn
directions, and segment completion times.

Extracted functional and spatiotemporal metrics from preop-
erative tests were combined into feature rows and stacked. Each
feature column was standardized to have zero mean and unit
standard deviation, so all features varied on a similar scale. All
preoperative samples were fed into an unsupervised K-means
clustering algorithm which separated patients into 2 groups. This
algorithm is effective for finding groupings in unlabeled data that
may be otherwise difficult to identify. It iteratively separates data
points into k number of groups by comparing the similarity of data
samples across all features and rearranges the group membership
for maximum separation. Binary groups were not decided initially
but this ideal number of groups was validated by observing a
minimal Calinski-Harabasz index with k¼ 2, tested on a range of 2-
6 [10].

A 1-way multivariate analysis of variance (ANOVA) was used to
find PROM differences between the 2 separated clusters and
Anderson-Darlington tests were used to confirm the normality of
all preoperative PROM distributions (P < .05). One-way ANOVAwas
also used to find significant differences in the derived spatiotem-
poral and functional metrics between groups. Additionally, Cohen’s
Dwas computed for each feature to determinewhich of the derived
metrics had the largest effect size and contributed the most to
differentiating the 2 clusters.

The preoperative functional clusters were tracked forward to
their 12-week appointments and a mixed-effects ANOVA with
repeated measures test was performed on TUG total completion
times of both groups at the preoperative, 2-, 6-, and 12-week
timepoints. Derived metrics that remained significantly different
between groups at both preoperative and 12-week timepoints with
the largest effect sizes were observed as the most important
persistent functional differences and were also analyzed using a
mixed-effects ANOVA with repeated measures to compare
improvement between preoperative and 12-week trials.

Results

A total of 94 patients were eligible to participate in this study
but 18 were excluded because they missed/rescheduled their pre-
operative or 12-week appointments. An additional 8 patients were
excluded because they underwent alternate interventions from the

Fig. 1. Box and whisker plot of total TUG completion time of both groups preopera-
tively showing a large overlap in times between groups. TUG, timed-up-and-go.
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study protocol. The remaining 68 patients (male:female [M:F] ¼
34:34) were included in the study aged 67.5 ± 9.8 years with a body
mass index of 33.5 ± 6.0 kg/m2. Clustering feature rows for all
preoperative TUG trials (3 per patient) partitioned patients into 2
groups with sizes 46 and 22 (M:F ¼ 20:26 and M:F ¼ 14:8). Seven
patients had at least 1 TUG trial sorted into each group but were
separated into the group with majority membership. Comparison
of spatiotemporal metrics revealed the mean total TUG completion
time (the only traditionally recorded TUG metric) of the larger
group’s trials was significantly faster than the smaller group (12.6 s
vs 21.6 s, P < .001) but there was a large overlap in trial times be-
tween groups (Fig. 1). Despite the large group containing slow trials
and the small group containing fast trials, these 2 groups were
labeled “high function” and “low function,” respectively, due to
their mean total TUG time. The high function group was younger,
scored higher in UCLA, KSS Functional Activities, Office Knee
Evaluation Function (surgeon reported), and Office Knee Evaluation
Total (surgeon reported) questionnaires and had slightly higher
(KSS) expectations (Table 1). Most of the novel derived measures
(48/55) were also significantly different between groups (P < .05)
including all spatiotemporal metrics (Table 2) which is expected
because the K-means algorithm separates clusters to achieve a
maximum separation across all features equally. The 10 derived
metrics with the largest effect size can be seen in Table 3.

The mean total TUG time for sorted patients was not only
different between groups preoperatively, but also at the 6-week
(5.4 s, P ¼ .01) and 12-week (4.2 s, P ¼ .02) follow-ups. Total time
was not significantly different at 2 weeks (P ¼ .55) where the mean
patient time increased for both high and low function groups (by

9.2 s and 7.6 s, respectively). Mean total time of the high function
group improved 0.87 s (P ¼ .07) from preoperative to 12 weeks
(Table 4) while the low function group improved 4.94 s (P ¼ .005).
Of the patients in the high function group, 26% (12) had mean-
ingfully improved function (completion time decreased by >2.27 s
from preoperation to 12 weeks postoperation), 63% (29) main-
tained function, and 11% (5) had worsened function (completion
time increased by >2.27 s). Of the patients in the low function
group, 64% (14) had improved function, 27% (6) maintained func-
tion, and 9% (2) had worsened function. A comparison of individual
TUG segment times for all trials of both groups at each timepoint
can be seen in Figure 2. The most distinguishable features between
the 2 groups at 12 weeks and their effect sizes can be seen in
Table 5. The top 3 most distinguishable features at the 12-week
timepoint (top of Table 5) have been plotted alongside the same
dimensions of the 2 cluster centroids found using all 55 metrics to
visualize their strong influence on the preoperative group separa-
tion (Fig. 3). Six test samples from the low function group with
exceptionally low operative step motion are shown in Figure 3 due
to their operative leg function being too impaired to correctly
detect any distinct steps. A failure to detect these steps has resulted
in zero motion during steps but it is expected that this remains a
meaningful result. Early improvement of key metrics for both
groups can be seen in Table 6.

Discussion

The unsupervised clustering performed in this study success-
fully separated wearable sensor instrumented performance tests

Table 1
Mean ± SD Values of Patient Characteristics and Questionnaire Outcomes of High
and Low Function Preoperative Clusters.

Mean ± SD High Function Low Function P Value

Age (y) 65.6 ± 9.1 71.5 ± 10.3 .018
BMI (kg/m2) 32.8 ± 5.8 34.9 ± 6.3 .180
UCLA Activity Scoreb 4.9 ± 2.1 3.8 ± 1.6 .001
SF-12 Mental 53.3 ± 11.0 51.7 ± 9.8 .493
SF-12 Physical 33.1 ± 8.3 29.7 ± 8.9 .079
WOMAC Pain 46.6 ± 17.3 45.5 ± 17.9 .682
WOMAC Stiffness 41.2 ± 19.0 46.2 ± 24.3 .123
WOMAC Function 49.3 ± 18.7 49.8 ± 11.0 .838
WOMAC Total 46.1 ± 15.8 47.2 ± 13.8 .620
KSS Symptoms 16.0 ± 4.1 15.3 ± 3.8 .246
KSS Satisfaction 13.7 ± 7.6 14.5 ± 7.1 .506
KSS Expectations 14.0 ± 1.3 13.0 ± 2.0 <.001
KSS Functional Activities 37.9 ± 16.7 32.3 ± 12.5 .029
KSS Knee Objective Indicatorsa 34.4 ± 18.5 33.8 ± 17.8 .813
Knee Evaluation Functiona 50.7 ± 13.6 41.8 ± 23.1 .007
Knee Evaluation Total Kneea 43.0 ± 15.3 39.3 ± 16.1 .201
Knee Evaluation Totala 93.7 ± 25.4 78.1 ± 33.0 .003

Bolded items indicates the significant differences between groups (P < .05).
“a” Indicates surgeon-reported measures and “b” indicates distinctions above
minimal clinically important differences.
BMI, body mass index; KSS, Knee Society Score; SD, standard deviation; SF-12, Short
Form 12; UCLA, University of California Los Angeles; WOMAC, Western Ontario and
McMaster Universities Osteoarthritis Index.

Table 2
Mean ± SD of Spatiotemporal Metric Differences Between Preoperative Patient
Clusters.

Mean ± SD High Function Low Function P Value

Total time 12.7 ± 2.4 21.6 ± 5.7 <.0001
Sit to stand 1.1 ± 0.5 2.2 ± 1.3 <.0001
Walking to goal 3.8 ± 0.8 6.6 ± 2.0 <.0001
Turning at goal 0.6 ± 0.3 1.1 ± 0.5 <.0001
Walking to chair 4.8 ± 1.0 8.1 ± 2.0 <.0001
Stand to sit 1.8 ± 0.5 2.8 ± 1.5 <.0001

SD, standard deviation.

Table 3
Mean ± Standard Deviation of Top Distinguishable Functional and Spatiotemporal
Metrics Between Groups at Preoperation and Their Effect Size (D).

Metric Description High Function Low Function D

Time taken walking back to test
start after turning (s)

4.8 ± 1.0 8.1 ± 2.0 1.604

Mean additive operative lower
leg motion during steps (�)

124.5 ± 14.4 92.1 ± 12.0 1.601

Total test time (s) 12.6 ± 2.4 21.6 ± 5.7 1.591
Mean additive nonoperative

lower leg motion during steps (�)
128.7 ± 15.4 96.0 ± 11.2 1.571

Time taken walking from initial
stand to begin of turn (s)

3.8 ± 0.8 6.6 ± 2.0 1.510

Mean additive operative upper
leg motion during steps (�)

90.0 ± 14.7 63.4 ± 9.8 1.470

Mean additive nonoperative upper
leg motion during steps (�)

91.1 ± 14.9 65.1 ± 7.6 1.468

Mean nonoperative step peak
flexion velocity (�/s)

289.9 ± 57.2 196.2 ± 22.0 1.428

Mean nonoperative step peak
extension velocity (�/s)

282.3 ± 59.5 197.8 ± 37.6 1.271

Mean nonoperative step peak
flexion acceleration (�/s2)

5412.1 ± 1692.7 3129.9 ± 895.6 1.247

All features are significantly different between groups (P < .001).

Table 4
Mean Functional Group TUG Total Completion Time Changes and CI Between Pre-
operative Performance and Each Recovery Point (Negative Values Indicate a Total
Time Improvement).

Timepoint
Comparison

High
Function

95% CI PValue Low
Function

95% CI P Value

Preoperative
to 2 wk

þ9.2 s þ13.3 toþ5.1 <.001 þ7.6 s þ21.4 to þ6.1 .400

Preoperative
to 6 wk

þ0.4 s þ1.8 to �1.0 .472 �2.9 s þ2.1 to �7.9 .373

Preoperative
to 12 wk

�0.9 s þ0.1 to �1.8 .076 ¡4.9 s ¡ 1.3 to¡8.5 .005

Bolded items indicates the significant differences between groups (P < .05).
CI, confidence interval; TUG, timed-up-and-go.
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based on derived functional metrics into clinically relevant groups.
Literature has previously linked preoperative functional perfor-
mance to postoperative functional improvement; however, this
study has highlighted functional parameters that differentiate be-
tween patients who are likely to gain function [1,2]. Other work
predicting gait recovery following TKA has employed a different
method to first label samples as responders or nonresponders of
parameter improvement and train a classifier to make this pre-
diction. The authors suggest the unsupervised grouping and cluster
analysis performed in the present work is more effective for dis-
tinguishing important functional parameters and real-world
generalization because group membership is not defined, but
organically created based on the unbiased structure of the data [11].

The objective measures extracted from the short and easy-to-
implement TUG test have been able to distinguish function pre-
operatively with many significant differences between groups
whereas there are few differences in PROMs and overlapping TUG
completion times. It can be seen in Table 1 that despite several
PROMs being significantly different between groups, only the UCLA
Activity Score varied more than its minimal clinically important
difference of 0.92 [12,13]. This presents evidence that there are

functional performance differences that cannot be distinguished
using subjective self-reported measures when comparing patients
with different expectations.

Tracking the 2 functionally separated groups through to 3
months revealed that one group was much more likely to improve
relative to the other. Test results for new patients can be compared
to the 2 groups clustered in this study to determine the most
similar expected recovery path, and this information can be used to
provide realistic recovery expectations for patients. The analysis
performed has relied on total TUG time as a relatable overall per-
formance metric and tool for labeling groups but it should be
highlighted that other derived metrics had larger effect sizes be-
tween groups and were determined to be more relevant parame-
ters influencing the resulting group memberships (Table 3 and 5).
Identified features distinguishing the functional groups at 12weeks
included both operative and nonoperative leg metrics which sug-
gests test completion andmovement compensation strategies were
captured. The low function group had larger improvements in all
relevant additive motion metrics (Table 6) but these values never
exceeded those of the high function group. Increased ROMhas been
previously linked to better outcomes but the results of this study
indicate that the total additive amount of motion expended during
activities by both operative and nonoperative legs is also func-
tionally important [14,15]. Both groups improved these metrics
significantly during recovery which supports that the metrics are
influencing shorter TUG times, which did decrease for both groups
but not by a meaningful difference for the high function group.

Although it may be thought that higher functioning preopera-
tive patients have less possible function to regain and will likely
show less functional improvement, there is still a benefit of
including the instrumented TUG test at preoperative visits because
this functional differentiation was possible with the derived met-
rics and the current work has shown that PROMs alone cannot
reliably report function to this granularity. Additionally, it is
important to note in the preoperative groups that 7 patients in the
“low” function group had mean total TUG times faster than the
worst “high” function time. Similarly, there were 7 patients in the
“high” function group with times slower than the best “low”

function group time, indicating that total TUG time alonewould not
be enough to sort the groups in this way. Of the 7 patients in the
“low” function group with favorable times that have been labeled
likely to improve, 5 of them have improved their total time above
the TUGminimal clinically important difference of 2.27 s [8]. Of the

Fig. 2. Mean TUG segment times for each functional group over their early recovery
period.

Table 5
Mean ± Standard Deviation of Top Distinguishable Functional and Spatiotemporal
Metrics Between Groups at 12 wk Postoperation and Their Effect Size (D).

Metric Description High Function Low Function D

Mean additive operative upper leg
motion during steps (�)

96.1 ± 15.0 76.8 ± 18.9 1.043

Mean additive nonoperative lower
leg motion during steps (�)

135.0 ± 15.4 114.8 ± 22.2 1.004

Mean additive operative lower leg
motion during steps (�)

131.2 ± 16.3 109.5 ± 27.1 0.961

Time taken walking from initial
stand to begin of turn (s)

3.4 ± 0.7 4.7 ± 2.0 0.933

Mean additive nonoperative upper
leg motion during steps (�)

97.5 ± 15.1 81.6 ± 16.8 0.919

Total test time (s) 11.8 ± 2.7 16.0 ± 6.5 0.893
Time taken walking back to test

start after turning (s)
4.5 ± 1.2 6.1 ± 2.5 0.868

Time taken to stand from the seated
start position (s)

1.7 ± 0.7 2.1 ± 0.9 0.800

Mean additive operative flexion
during steps (�)

87.0 ± 16.1 73.9 ± 15.2 0.774

Mean operative flexion range
during steps (�)

42.4 ± 7.9 36.5 ± 7.5 0.714

All features were significantly different between groups (P < .001).
Bold indicates features that were also distinguished in the preoperative timepoint
analysis.

Fig. 3. Z-scores of the top 3 most distinguished metrics persisting to the 12-wk follow-
up appointments for each trial and their influence on initial preoperative clustering.
Solid crosses (x) represent group centroids found using all 55 derived metrics. Blue
squares and red triangles indicate high and low function group trials, respectively.
Nonop., nonoperative; Op., operative.
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7 patients in the “high” function group with less favorable times
labeled not likely to improve, only 3 of them have improved above
the same threshold. These patients who were sorted into the low
function group who had more favorable times have still shown
improvement despite a smaller possible improvement range while
patients sorted into the high function group who had less favorable
times have not improved despite a larger possible improvement
range. These special cases suggest the cluster separation better
indicates likelihood of improvement than overall functional level.

Some limitations were noted with the study performed. During
data collection, 7 patients repeated one of their trials sufficiently
different from the others that the samples were split between both
groups. Although a single patient cannot belong to multiple func-
tional groups, the separation of tests may be a valid result because
repetitions of the same test can be slightly different due to fatigue,
test familiarity, confusion, or perhaps a stumble or stiffness. During
clustering, it was decided to keep each trial as a separate sample to
best separate functional groups but when future data are compared
to find the most relatable path, it may be more practical to take an
average across multiple trials for more generalized predictability.

The follow-up time analyzed was limited to the early recovery
period of 12 weeks. Despite recovery following TKA usually lasting
1 to 2 years, the authors believe valuable information can be ob-
tained during the early recovery phase, and this time period can be
important for health economics [16]. As alternative joint replace-
ment payment models such as Medicare’s Bundled Payments for
Care Improvement Program are introduced, early outcome pre-
diction becomes valuable for allocating care costs. Under model 2 of
the Bundled Payments for Care Improvement Program, hospitals
will be reimbursed for costs saved in the first 90 days following
surgery and patients with early improvement will likely require
less frequent early care [17]. Fast functional improvement and early
ambulation reduces hospital length of stay which also reduces the
likelihood of costly readmissions due to infection [18e20]. A longer
follow-up will be necessary to determine how function changes in
each group until patients are fully healed.

The current work has shown that preoperative functional
assessment can benefit from the use of wearable sensor instru-
mentation and machine learning techniques can identify multivar-
iate patterns that would be otherwise difficult to see by an observer.
Groups of patients following similar short-term recovery paths have
been identified and future test data can be compared to similar path
prediction to better influence patient expectations. There was little
evidence that the PROMs collected in this study related to the results
found using the derived functional and spatiotemporal metrics.
Obtaining PROMs proved much more time-consuming for patients
and the process was more cumbersome when it became time to
store and digitize the measures, further motivating the use of an
automated sensor system that can record performance tests in only a
few minutes and provide instantaneous analysis.
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