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Abstract 

Hydrogels are of significant interest for cell encapsulation and delivery in regenerative medicine. 

Poly(ester amide)s (PEAs) are a class of biodegradable polymers that exhibit promise for 

biomedical applications due to the degradability of the ester and amide linkages in their 

backbones, their preparation from biomolecules such as amino acids, and the ability to readily 
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tune their properties through a modular synthesis approach. Water-soluble PEAs containing 

cationic arginine moieties have previously been developed, but to the best of our knowledge, 

neutral water-soluble PEAs based on non-charged amino acids have not been reported. Using a 

poly(ethylene glycol) (PEG)-based macromonomer, we described here the syntheses of water-

soluble amino acid-containing PEAs containing crosslinkable alkenes in their backbones. These 

PEAs were converted into hydrogels through photoinitiated crosslinking and their properties 

were compared, including gel content, water content, swelling, and Young’s moduli. Subsequent 

cell culture studies on a subset of hydrogels confirmed that human adipose-derived stromal cells 

(ASCs) showed >75% viability at 24 hours post-encapsulation. To explore the potential of the 

hydrogels as cell delivery systems for applications in soft tissue regeneration, adipogenic 

differentiation of the encapsulated ASCs was probed in vitro at 7 days. Analysis of glycerol-3-

phosphate dehydrogenase (GPDH) enzyme activity and intracellular lipid accumulation indicated 

that the hydrogels provided a supportive environment for ASC adipogenesis. Overall, these PEAs 

provide a new platform that warrants further development for regenerative medicine applications.  

Keywords 

Poly(ester amide), hydrogel, regenerative medicine, adipose-derived stromal cell 

 

Introduction 

Hydrogels are commonly used as scaffolds for cell delivery and tissue engineering due to their 

high water content resembling that of soft tissues and high permeability to oxygen, nutrients and 

metabolites [1-3]. Biopolymers such as collagen [4], alginate [5], chitosan [6], hyaluronic acid 

(HA) [7] and chondroitin sulfate [8] have been extensively investigated for the preparation of 

hydrogels. These materials can be degraded enzymatically, and can have favorable biological 
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properties, as they are found naturally within or mimic components of the native extracellular 

matrix (ECM) within human tissues. However, challenges for natural materials include batch-to-

batch reproducibility in their isolation and processing, as well as limitations in the extent to 

which one can tune their chemical and mechanical properties [9].  On the other hand, synthetic 

materials can offer a high degree of chemical and mechanical tunability. Polymers including 

poly(ethylene glycol) (PEG) [10, 11], poly(lactic acid) [11, 12], and poly(N-isopropylacrylamide) 

[13] have been widely explored in hydrogel scaffolds for cell culture and delivery, but without 

functionalization these polymers lack the innate biological cues offered by biopolymers.  

 Poly(ester amide)s (PEAs) are a class of polymers containing ester and amide linkages in 

their backbones, which offer advantages of both polyesters and polyamides, including the 

biodegradability of polyesters and high mechanical strength and thermal stability of polyamides 

[14, 15]. In particular, PEAs derived from amino acids, diols, and dicarboxylic acids have been 

investigated for biomedical applications as they offer advantageous aspects of both natural and 

synthetic polymers. The incorporated amino acids can be recognized by biological systems and 

their enzymatic biodegradation leads to metabolically-degradable building blocks, while their 

properties can be readily tuned by varying their monomer components [16-18]. Most of the 

incorporated amino acids, diols, and dicarboxylic acids are hydrophobic and the backbone esters 

and amides do not impart water-solubility. Consequently, a vast majority of the investigated 

amino-acid containing PEAs have been insoluble in aqueous solution and were processed to form 

particles [19-21], coatings [22-26], or porous scaffolds by electrospinning [27-30] or particulate 

leaching methods [31-33]. However, water-insoluble PEAs cannot be used to prepare hydrogels 

capable of encapsulating cells during the gelation process.  

 Thus far, only a few examples of water-soluble PEAs have been reported. We reported 

PEA-PEG graft copolymers that self-assembled into micelles with PEA cores and PEG coronas 
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for drug delivery applications [34-36]. However, this structural design did not allow for 

crosslinking to form hydrogel networks, as required for cell delivery applications.  Chu and 

coworkers developed cationic water-soluble PEAs based on L-arginine (Arg) [37] and by 

introducing crosslinkable fumaramide moieties into their backbone, they were able to incorporate 

these PEAs into hydrogels with poloxamer-diacrylate [38], methacrylate-functionalized HA [39], 

glycidyl methacrylate chitosan [40], and gelatin [41]. Alternatively, pendent allyl groups could 

also be incorporated as crosslinkers [42]. While cationic Arg moieties are effective in solubilizing 

PEAs in water, and can lead to favorable cell attachment in some cases [38], cationic polymers 

can be toxic at high concentrations [43] and Arg in particular can interact with phospholipids 

through bidentate hydrogen bonding and electrostatics, potentially leading to membrane 

disruption or pore formation [44]. To the best of our knowledge, neutral water-soluble PEAs have 

not yet been reported.  

 Here, we report the development of the first non-charged water-soluble PEAs with 

crosslinkable moieties to enable hydrogel formation and cell encapsulation. Water solubility was 

achieved by the incorporation of a PEG-based macromonomer into the PEA backbone, while 

crosslinking capabilities were introduced using fumaramides. The amino acid and diol 

components were varied. Properties including gel content, water content, swelling, and Young’s 

moduli of the hydrogels fabricated from the different PEAs, and those prepared from the PEAs 

with PEG or chondroitin sulfate crosslinkers were studied. Subsequently in vitro culture studies 

were performed to investigate the potential of the PEA hydrogels as a cell encapsulation 

platform. Human adipose-derived stromal cells (ASCs) were used in these studies, as they 

represent an abundant and readily-accessible pro-regenerative cell source [45]. In particular, the 

delivery of ASCs within hydrogels has shown promise in adipose tissue engineering strategies 

seeking to restore defects caused by trauma, disease or aging [46, 47]. As such, human ASCs 
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were encapsulated into the hydrogels through UV crosslinking and their viability and density 

were assessed at 24 hr post-encapsulation and at 7 days following the induction of adipogenic 

differentiation in culture. In addition, analysis of glycerol-3-phosphate dehydrogenase (GPDH) 

activity, a key enzyme involved in lipid biosynthesis, and intracellular lipid accumulation were 

performed to determine whether the adipogenic differentiation of the encapsulated ASCs was 

impacted by the composition of the PEAs.      

 

Materials and Methods 

General Materials. Monomers 1a (L-phenylalanine-1,4-butanediol diester) [48], 1b (L-

phenylalanine-1,8-octanediol diester) [48], 1c (L-alanine-1,8-octanediol diester) [49] and 3 (di-p-

nitrophenyl fumarate) [48] were synthesized as previously reported. Macromonomer 2 (diamino 

PEG, 2000 g/mol) and PEG-dimethacrylate (PEG-DMA, 2000 g/mol) were synthesized as 

described in the supporting information (Schemes S1-S2). Methacrylated chondroitin sulfate 

(MCS) with 17% methacrylation was prepared as previously reported [50]. PEG diol (2000 

g/mol) was purchased from Alfa Aesar (Haverhill, MA, USA). 4-Dimethylaminopyridine 

(DMAP) and p-toluenesulfonyl chloride were purchased from AK Scientific Inc. (Union City, 

CA, USA). Chondroitin sulfate (50,000 g/mol) was purchased from LKT Laboratories (St. Paul, 

MN, USA). Toluene, NH4OH, MgSO4, Et3N, CH2Cl2, and N,N-dimethylacetamide (DMA) were 

purchased from Caledon Laboratories Inc. (Georgetown, Canada). All other chemicals were 

purchased from Sigma Aldrich (St. Louis, MO, USA). All chemicals were used as received 

unless otherwise noted. Under a nitrogen atmosphere, toluene was distilled over sodium, while 

Et3N, CH2Cl2, and DMA were distilled over CaH2.  
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General procedures. Dialysis was performed using Spectra/Por 6 dialysis tubing from Spectrum 

Laboratories (Rancho Dominguez, CA, USA) with molecular weight cutoff (MWCO) of 10 

kg/mol. 1H nuclear magnetic resonance (NMR) spectra were recorded on either a 400 HMz 

Bruker AvIII HD instrument or a 600 MHz Varian INOVA instrument (Figures S1-S7).  

Chemical shifts (d) are reported in parts per million with the residual protonated solvent signals 

of CDCl3 (d 7.26), D2O (d 4.80) or DMSO-d6 (2.50) as references. Fourier-transform infrared 

(FT-IR) spectra were obtained using a Perkin Elmer FT-IR Spectrum Two instrument in 

attenuated total reflectance (ATR) mode (Figure S8). Size exclusion chromatography (SEC) was 

performed using an instrument equipped with a Waters 515 HPLC pump, a Waters In-Line 

Degasser AF, two PLgel mixed D 5µm (300 x 1.5 mm) columns connected to a corresponding 

PLgel guard column, and a Wyatt Optilab Rex RI detector operating at 658 nm (Figure S9). 

Samples were dissolved in DMF containing 10 mM LiBr and 1% v/v Et3N at a concentration of 

~5 mg/mL. Samples were filtered through 0.22 µm polytetrafluoroethylene (PTFE) syringe 

filters, and then injected using a 50 µL loop. Samples were run at a flow rate of 1 mL/min for 30 

min at 85 °C. The number average molar mass (Mn), weight average molar mass (Mw), and 

dispersity (Đ) were determined relative to poly(methyl methacrylate) (PMMA) standards.  

 

Synthesis of Phe-PEA. Monomer 1a (0.30 g, 0.42 mmol, 0.30 equiv.), macromonomer 2 (2.0 g, 

0.98 mmol, 0.70 equiv.), and monomer 3 (0.50 g, 1.4 mmol, 1.0 equiv.) were dissolved with 

stirring in dry DMA (8.0 mL) at 60 °C. Et3N (0.43 mL, 3.1 mmol, 2.2 equiv.) was added 

dropwise to the solution, and then it was stirred at 70 °C for 6 hr. The resulting solution was 

concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (250 mL). The crude 

product was purified by dialysis against DMF (500 mL) for 48 hr. The solution was then 
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concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (250 mL). The product 

was centrifuged, the liquid decanted, and then the solid was dried in vacuo to yield a white solid. 

Yield: 70%. 1H NMR (400 MHz, DMSO-d6): δ 8.92-8.87 (m, 0.69H), 8.50-8.46 (m, 1.64H), 

7.30-7.19 (m, 4.29H), 6.86-6.83 (m, 2.00H), 4.58-4.52 (m, 0.78H), 3.98 (s, 1.44H), 3.70-3.66 (m, 

1.46H), 3.51 (s, 190H) 3.07-2.89 (m, 2.92H) 1.45 (s, 1.48H). FT-IR: 3510, 3295, 2880, 1740, 

1640, 1550 cm-1. SEC: Mn = 19.9 kg/mol, Mw = 49.2 kg/mol, Đ = 2.46. 

 

Synthesis of Phe-8-PEA. Monomer 1b (0.066 g, 0.084 mmol, 0.30 equiv.), macromonomer 2 

(0.40 g, 0.19 mmol, 0.70 equiv.), and monomer 3 (0.10 g, 0.28 mmol, 1.0 equiv.) were dissolved 

with stirring in dry DMA (2.0 mL) at 60 °C. Et3N (0.10 mL, 0.61 mmol, 2.2 equiv.) was added 

dropwise to the solution, and then it was stirred at 70 °C for 6 hr. The resulting solution was 

concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (100 mL). The crude 

product was purified by dialysis against DMF (200 mL) for 48 hr. The solution was then 

concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (100 mL). The product 

was centrifuged, the liquid decanted, and then the solid was dried in vacuo to yield a white solid. 

Yield: 58%. 1H NMR (400 MHz, DMSO-d6): δ 8.89-8.85 (m, 0.69H), 8.50-8.45 (m, 1.58H), 

7.29-7.18 (m, 4.23H), 6.85-6.82 (m, 2.00H), 4.56-4.51 (m, 0.66H), 4.00-3.97 (m, 1.36H), 3.69-

3.67 (m, 1.25H), 3.51 (s, 187H), 3.07-2.89 (m, 2.70H), 1.46 (s, 1.49H), 1.19 (s, 3.61H). FT-IR: 

3520, 3300, 2880, 1730, 1630, 1550 cm-1. SEC: Mn = 20.1 kg/mol, Mw = 56.6 kg/mol, Đ = 2.81. 

 

Synthesis of Ala-PEA. Monomer 1c (0.26 g, 0.42 mmol, 0.30 equiv.), macromonomer 2 (2.0 g, 

0.98 mmol, 0.70 equiv.), and monomer 3 (0.50 g, 1.4 mmol, 1.0 equiv.) were dissolved with 

stirring in dry DMA (8.0 mL) at 60 °C. Et3N (0.43 mL, 3.1 mmol, 2.2 equiv.) was added 
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dropwise to the solution, and then it was stirred at 70 °C for 6 hr. The resulting solution was 

concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (250 mL). The crude 

product was purified by dialysis against DMF (500 mL) for 48 hr. The solution was then 

concentrated, re-dissolved in CH2Cl2 and precipitated in cold diethyl ether (250 mL). The product 

was centrifuged, the liquid decanted, and then the solid was dried in vacuo to yield a white solid. 

Yield: 77%. 1H NMR (400 MHz, DMSO-d6): δ 8.82-8.78 (m, 0.59H), 8.51-8.45 (m, 1.46H), 

6.89-6.83 (m, 2.00H), 4.34-4.29 (m, 0.64H), 4.08-3.97 (m, 1.41H), 3.71-3.65 (m, 1.98H), 3.51 (s, 

177H), 1.54 (s, 1.41H), 1.31-1.22 (m, 5.12H). FT-IR: 3521, 3296, 2880, 1737, 1639, 1546 cm-1. 

SEC: Mn = 18.9 kg/mol, Mw = 56.1 kg/mol, Đ = 2.96. 

 

Fabrication of hydrogels. Pure (Phe-PEA or Ala-PEA alone) and hybrid (Phe-PEA/Ala-PEA + 

PEG-DMA/MCS) hydrogels were fabricated without ASCs for physical characterization studies. 

All hydrogels were made with a polymer solution concentration of 10% (m/v) in PBS. For the 

hybrid hydrogels, the prepolymer solutions contained 7.5% (m/v) of Phe-PEA or Ala-PEA and 

2.5% (m/v) of PEG-DMA or MCS. The photoinitiator, 2-hydroxy-4’-(2-hydroxyethoxy)-2-

methylpropiophenone (Irgacure 2959, Sigma-Aldrich) was added last to the solution at a 

concentration of 0.15% (m/v). The prepolymer solution was then transferred to a 1 mL syringe 

(Thermo Scientific, Waltham, MA, USA), and photo-crosslinked with long-wavelength 

ultraviolet light (365 nm) at an intensity of 16 mW/cm2 for 4 min (2 min on each side of the 

syringe).  

 

Measurement of gel content and equilibrium water content. Gel content and equilibrium 

water content (EWC) were measured in cell-free hydrogels (n = 3). After photo-crosslinking, the 
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initial mass (mi) of each hydrogel was recorded and the theoretical mass (mt) of polymers 

involved in crosslinking was calculated as mi x 0.1 based on 10 m/v % in the formulation. The 

hydrogels were then swollen in PBS for 24 hr, and the swollen mass (ms) was recorded to 

determine the EWC. Then, the hydrogels were rinsed three times successively in distilled water 

for 3 hr to remove remaining non-crosslinked materials and salts from PBS. Following the rinses, 

the hydrogels were frozen in liquid N2, lyophilized, and their dry masses (md) were measured. 

The gel content and EWC were calculated using equations (1) and (2) respectively:  

Gel	content = 	!!
!"
	x	100%                              (1) 

EWC = 	!#"	!!
!#

	x	100%                               (2) 

 

Measurement of mass swelling ratio. After the hydrogels were prepared, their masses (mi) were 

recorded. The hydrogels were then swollen to equilibrium in PBS at 37 °C for 24 hr, and the 

swollen mass was recorded (ms). The mass swelling ratio was calculated according to the 

following equation:  

Mass	swelling	ratio = 	!#"	!$
!$

	x	100%           (3) 

 

Measurement of the Young’s moduli under unconfined compression. Cylindrical samples 

with diameters of ~5 mm and heights of ~10 mm (n = 3) were prepared in 1 mL syringes as 

described above and equilibrated in PBS for 24 hr. Before compression testing, the dimensions of 

the swollen hydrogels were accurately measured using calipers. Unconfined stress-strain 

measurements were conducted using a UniVert system (CellScale, Waterloo, ON, Canada), 

equipped with a 0.5 N load cell. During the measurement, the samples were immersed in a 37 °C 
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PBS bath, preloaded at 0.01 N at every cycle, and compressed to a total strain of 20% at a rate of 

0.6%/s. The nominal stress was calculated by dividing the applied force by the initial cross-

sectional area of the sample. The compressive modulus was determined from the slope of the 

linear region of the stress-strain curve between 10 and 15% strain.  

 

Human adipose-derived stromal cell isolation and culture. Adipose tissue was obtained with 

informed consent from female patients undergoing elective lipo-reduction surgeries at the 

University Hospital and St. Joseph’s Hospital in London, ON, Canada, with Human Research 

Ethics Board approval from Western University (Protocol #105426). Within 2 hr of extraction, 

the samples were transported to the lab on ice in sterile phosphate buffer saline (PBS) 

supplemented with 20 mg/mL bovine serum albumin (BSA). Human ASCs were isolated within 

2 hr of procurement using previously published methods [51, 52]. The cells were cultured in 

proliferation medium comprised of DMEM:Ham’s F-12 medium (Wisent Bio Products, 

Montreal, QC) supplemented with 10% fetal bovine serum (FBS; Wisent Bio Products) and 100 

U/mL penicillin and 0.1 mg/mL streptomycin (1% pen-strep; Wisent Bio Products). Fresh 

proliferation medium was provided every 2-3 days. The cells were passaged at 80% confluence 

using 0.25% trypsin/0.1% EDTA (Wisent Bio Products) and re-plated in new flasks at 6,000-

7,000 cells/cm2. Passage 4 (P4) ASCs were used for all cell encapsulation studies, and each study 

was repeated with three different donors (N = 3).  

  

ASC encapsulation and culture within Phe-PEA/Ala-PEA based hydrogels. The polymer 

solutions of Phe-PEA or Ala-PEA were prepared as described for the fabrication of the 

hydrogels. ASCs at P4 were suspended in proliferation medium at a concentration of 1 x 107 
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cells/mL and combined with the polymer solution for hydrogel encapsulation. The final solution 

volume contained 80% polymer solution and 20% ASC suspension by volume and was then 

photo-crosslinked as described above. Immediately after crosslinking, the hydrogels were cut into 

25 µL volume disks, each containing ~2.5 x 105 cells, transferred into 12-well inserts (Greiner 

Bio-one, Germany), and cultured in proliferation medium at 37 °C with 5% CO2. After 24 hr, the 

hydrogels were transferred into serum-free adipogenic differentiation medium comprised of 

DMEM:Ham’s F-12 nutrient mixture supplemented with 1% pen-strep, 33 µM biotin, 17 µM 

pantothenate, 10 µg/mL transferrin, 100 nM hydrocortisone, 66 nM insulin, and 1 nM 

triiodothyronine, with 0.25 mM isobutylmethylxanthine and 1 µg/mL troglitazone included for 

the first 72 hr [53]. Fresh medium was provided to all samples every 2-3 days.   

   

Cell viability. Viability of the encapsulated ASCs in the Phe-PEA and Ala-PEA hydrogels was 

assessed at 24 hr after encapsulation and at 7 days after the induction of adipogenic 

differentiation (n = 3 replicate scaffolds/trial, N = 3 trials with different ASC donors) using the 

LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells (Cat. # L-3224; Life Technologies 

Inc., Burlington, ON, Canada). During preparation, the hydrogels were rinsed twice in PBS 

before incubation in 1X staining solution for 45 min at 37 °C. Next, the hydrogels were rinsed 

two times with PBS before imaging using a Zeiss LSM 800 confocal microscope (Zeiss Canada, 

Toronto, ON, Canada). The complete cross-sectional area of each hydrogel was imaged at 10X 

magnification and mosaic images were generated using the Zen software (Zeiss Canada) stitching 

command.  A total of 5 layers, separated by 75 µm, were imaged for each hydrogel sample. 
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Image J analysis software was used to quantify the number of live and dead cells in each layer in 

order to calculate the average cell viability and density for each group.  

 

Glycerol-3-phosphate dehydrogenase (GPDH) activity. Quantitative assessment of ASC 

adipogenesis was conducted by measuring intracellular GPDH enzyme activity in the Phe-PEA 

and Ala-PEA hydrogels at 7 days after adipogenic induction (n = 3, N = 3) using a GPDH 

Enzyme Activity Measurement Kit (Kamiya Biomedical Corporation, Cat. # KT-010, Seattle, 

WA, USA) following published methods [54, 55]. ASCs cultured on tissue culture polystyrene in 

6-well plates in proliferation medium (non-induced) or adipogenic differentiation medium 

(induced) for 7 days were included as assay controls. To normalize the GPDH activity levels, the 

total cytosolic protein content for all samples was measured using the Pierce 660 Protein Assay 

Kit (Thermo Scientific, Waltham, MA, USA) with an albumin standard. Total protein content 

and GPDH activity were measured using a CLARIOstar® spectrophotometer (BMG Labtech, 

Ortenberg, Germany).  

  

BODIPY staining. Qualitative assessment of ASC adipogenesis was performed using BODIPY® 

493/503 staining (Thermo Scientific, Waltham, MA, USA) to visualize intracellular lipid 

accumulation in the ASCs encapsulated in the Phe-PEA and Ala-PEA hydrogels at 7 days after 

adipogenic induction (n = 3, N = 3). The BODIPY® was reconstituted in DMSO at 1 mg/mL and 

diluted in PBS by a factor of 1:500. The hydrogels were rinsed two times in PBS and then 

incubated in the staining solution at 37 °C for 1 hr. Following incubation, the hydrogels were 

rinsed twice in PBS before imaging with the Zeiss LSM 800 confocal microscope at 25X 

magnification.  
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Statistical analysis. Data are reported as the mean ± standard deviation (SD), and the statistical 

analyses were performed using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA) by 

two-way ANOVA with a Tukey’s post-hoc test (Figures 3, 5) or t-test (Figure 4g, 6). Differences 

were considered statistically significant at p < 0.05.  

 

Results and Discussion 

Polymer synthesis and characterization. The initial objective was to synthesize water-soluble 

PEAs containing crosslinkable moieties in their backbones to allow for hydrogel formation in 

aqueous conditions for ASC encapsulation. Monomers 1a, 1b, and 1c (Scheme 1) were 

synthesized as previously reported from L-phenylalanine or L-alanine and 1,4-butanediol or 1,8-

butanediol via Fischer esterification [48, 49]. The aim was to compare the effects of the different 

amino acids and diols on the properties of the resulting PEA hydrogels. However, the monomer 

composed of L-alanine and 1,4-butanediol could not be prepared in acceptable yield and purity 

for polymerization. Diamino PEG macromonomer (2) (2000 g/mol) was prepared as described in 

the supporting information via tosylation and subsequent amination of PEG diol. The role of 

macromonomer 2 was to impart water-solubility to the resulting PEAs. Di-p-nitrophenyl 

fumarate (3) was synthesized as previously reported [48] to provide crosslinkable moieties along 

the PEA backbone for hydrogel preparation.  
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Scheme 1. PEA synthesis from different monomer combinations. 

 

 The monomers were polymerized under solution polycondensation conditions in DMA at 

70 ºC using NEt3 as a base to deprotonate the ammonium salts 1a-c (Scheme 1). Unlike previous 

PEA syntheses under similar conditions [49], it was necessary to reduce the polymerization time 

from 48 hr to 6 hr to avoid undesired crosslinking of the resulting PEAs, which resulted in 

insoluble gels, presumably due to crosslinking reactions of backbone alkenes from the 

fumaramide units by Michael-type additions of remaining diamine monomers such as 1 or 2 or 

due to radical generation upon prolonged heating. Three different ratios of monomers 1:2 were 

examined: 50:50, 40:60 and 30:70. While higher ratios of 1:2 led to water-insoluble PEAs, at 
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30:70 monomers 1:2 both Phe-PEA and Ala-PEA were soluble. However, Phe-8-PEA was not 

water-soluble for any of the prepared ratios. 

 The molar masses of the polymers were determined by SEC (Table 1). All of the PEAs had 

Mn values close to 20 kg/mol and Đ values ranging from 2.5 – 3.0. The absence of unreacted 

macromonomer 2 was confirmed by the absence of a peak in the SEC trace at the location 

expected for 2000 g/mol PEG (Figure S9). The Đ values were higher than expected for a step-

growth polymerization, where they should approach 2.0. This result can likely be attributed to a 

small degree of crosslinking, which was not a concern as the PEAs were designed to be 

incorporated in subsequent steps into a network.  

 

Table 1. Molar mass data for the PEAs, as measured by SEC.   

Polymer Mn (kg/mol) Mw (kg/mol) Đ 

Phe-PEA 19.9 49.2 2.46 

Phe-8-PEA 20.1 56.6 2.81 

Ala-PEA 18.9 56.1 2.96 

 

 1H NMR and FT-IR spectroscopic analyses were consistent with the structures of the 

proposed polymers. 1H NMR spectra had peaks at ~8.8 and 8.5 ppm corresponding to the amide -

NH- protons adjacent to monomers 1 and macromonomer 2 respectively (Figure 1, S5-S7). The 

spectra also had peaks at ~6.8 ppm corresponding to the =CH fumaramide units along the 

backbone and peaks at 3.5 ppm corresponding to PEG. The spectrum of Phe-PEA was 

differentiated from that of Ala-PEA by the presence of peaks corresponding to the pendent 

phenyl groups of phenylalanine from 7.3 to 7.2 ppm, and the peaks from 3.1 – 2.9 ppm due to the 
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-CH2- moieties adjacent to the phenyl groups (Figure 1a). In contrast, Ala-PEA had peaks at ~1.3 

ppm corresponding to the backbone octyl chain and pendent methyl groups on alanine (Figure 

1b). Overall, the integrations of the peaks corresponded closely to the feed molar ratios of 

monomer 1:2:3 at 0.3:0.7:1.0 (Figures S5-S7). The FT-IR spectra were also consistent with the 

successful synthesis of PEAs with characteristic peaks corresponding to the amide N-H stretch at 

3300 cm-1, the ester C=O stretch at 1740 cm-1, the amide C=O stretch at 1640 cm-1, and the amide 

N-H bend at 1550 cm-1 (Figure S8).  

  

Figure 1. 1H NMR spectra of a) Phe-PEA and b) Ala-PEA in DMSO-d6 (400 MHz).  

 

Fabrication and characterization of hydrogels. After the successful synthesis of the water-

soluble PEAs Phe-PEA and Ala-PEA with backbone alkenes for crosslinking, their gelation was 
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investigated. Irgacure 2959 was used as a photoinitiator at a concentration of 0.15% (m/v). In 

addition to formulations incorporating only the PEAs (10 % m/v) and initiator, formulations 

incorporating PEG-DMA or MCS at 2.5% (m/v) (Figure 2) in addition to PEA at 7.5% (w/v) 

were also investigated to tune the hydrogel properties. PEG-DMA was selected because PEG 

tends to be well tolerated in vivo and has been extensively used for hydrogel formation [10, 56]. 

MCS was selected as it has previously been shown to provide a microenvironment that supports 

the viability and adipogenic differentiation of encapsulated human ASCs [54, 55], and increased 

production of soluble and cell-associated chondroitin 4-sulphate proteoglycans has also been 

linked to adipogenesis in the murine 3T3-L1 preadipocyte cell line [57]. Crosslinking was 

performed in syringes and was induced by irradiation with 365 nm light for 4 min (2 min per side 

of syringe). These conditions were previously found to be well tolerated by ASCs when 

encapsulated into MCS-based hydrogels [58]. 

  

Figure 2. Chemical structures of a) PEG-DMA and b) MCS.  

 

 To understand the effects of the different hydrogel compositions on their properties, all of 

the hydrogels were characterized by the measurement of their gel content, EWC and mass 

swelling ratio.  Gel content is the mass percentage of material successfully incorporated into the 

network, while EWC represents the swelling degree of the crosslinked network with water 

relative to the dry weight of gel. For gel content, there was a common trend that all Phe-PEA-

based systems had a higher gel content than the Ala-PEA-based systems (Figure 3a). However, 
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the difference was only statistically significant for the systems with PEG-DMA incorporated. The 

incorporation of PEG-DMA or MCS generally decreased the gel content relative to that of the 

pure PEA, but again the difference was only statistically significant when comparing pure Ala-

PEA to Ala-PEA + PEG-DMA. The results suggest that the additives disrupted the crosslinking 

to a small extent, perhaps due to phase separation with the PEA or due to poor compatibility of 

the methacrylates with the fumaramides in the polymerization reaction. There were no significant 

differences in the EWC across the examined hydrogels. Although the differences were not 

statistically significant, the Ala-PEA hydrogels tended to swell more than the Phe-PEA 

hydrogels. Higher swelling may be attributed to the trend towards lower gel content for the Ala-

PEA hydrogels, as lower gel content would suggest a lower density of crosslinks in the network. 

However, it could also relate to the relative hydrophilicities of the PEAs. Although the alanine-

based monomer 1c has a longer aliphatic diol chain than the phenylalanine monomer 1a, the 

methyl side chains on alanine are much less hydrophobic than the phenyl side chains of 

phenylalanine. Overall, the hydrogels with PEG-DMA and MCS incorporated tended to swell 

more than those prepared from pure PEAs. This result may relate to their lower gel content, and 

also to the presence of charges on MCS, which results in an influx of water through osmosis.  
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Figure 3. a) Gel content of the hydrogels; b) Equilibrium water content of the hydrogels; c) Mass 

swelling ratio of the hydrogels. The experiments were performed in triplicate and the data are 

presented as the mean, with error bars corresponding to the SD. Data were analyzed by two-way 

ANOVA with a Tukey’s post-hoc comparison of the means (p < 0.05). *denotes a statistically 

significant difference between groups. 

  

 The Young’s moduli of selected hydrogels were evaluated under unconfined compression. 

These efforts focused on hydrogels composed of the pure PEAs as hybrid hydrogels containing 
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PEG-DMA or MCS were very brittle and tended to fracture (Figure 4a-f), making compression 

testing impossible and prohibiting their inclusion in the cell encapsulation studies. Similar to their 

lower gel contents, the poor mechanical properties of the hydrogels containing PEG-DMA or 

MCS can likely be attributed to the disruption of crosslinking due to polymer phase separation or 

incompatibilities between crosslinking moieties.  

  

Figure 4. Representative images of the hydrogels after removal from the syringe mold: a) Phe-

PEA, b) Phe-PEA + PEG-DMA, c) Phe-PEA + MCS, d) Ala-PEA, e) Ala-PEA + PEG-DMA and 

f) Ala-PEA + MCS. Scale bar: 5 mm. Hydrogels prepared with PEG-DMA and MCS tended to 

fracture. g) Comparison of the Young’s moduli of Phe-PEA and Ala-PEA measured under 

unconfined compression.  The experiments were performed in triplicate and the data are 

presented as the mean, with error bars corresponding to the SD. Data were analyzed by a t-test (p 

< 0.05). *denotes a statistically significant difference between groups.  

 

 For the pure PEAs, Phe-PEA had a modulus of 106 ± 11 kPa and Ala-PEA had a modulus 

of 44 ± 13 kPa. The higher moduli for the Phe-PEA hydrogels may result from their trend 

towards lower EWC and swelling relative to the Ala-PEA systems, as this would result in a 

higher density of polymer in the network, leading to higher stiffness. Hydrophobic interactions 

between the phenyl groups in Phe-PEA, may also contribute to higher stiffness. The moduli of 
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both hydrogels were higher than that of adipose tissue, which is ~ 2-4 kPa, but in the range of 

other soft tissues such as muscle, bladder, and cornea [59] and similar to previous chitosan- and 

chondroitin sulfate-based hydrogels that have been shown to support the viability and adipogenic 

differentiation of ASCs [54]. 

 

Cell viability. To assess the capacity of the hydrogel scaffolds to support ASCs during 

encapsulation and adipogenic induction, the viability of ASCs encapsulated in the Phe-PEA and 

Ala-PEA hydrogels was assessed at 24 hr post-encapsulation, as well as at 7 days after 

adipogenic induction, through LIVE/DEAD® imaging analysis by confocal microscopy (Figure 

5). Visualization of the cell distribution across the complete cross-section of the hydrogels 

revealed that there was a more homogenous distribution of ASCs in the Ala-PEA hydrogels, 

which was particularly evident at 24 hr (Figure 5a). Notably, the Phe-PEA polymer solution was 

more viscous, which made mixing to combine it with the ASC suspension more challenging and 

likely resulted in the observed regions that were devoid of cells.  
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Figure 5. Viability analysis of ASCs encapsulated in the Phe-PEA and Ala-PEA hydrogels. 

Representative images of the encapsulated ASCs at a) 24 hr after encapsulation and b) 7 days 

after adipogenic induction displaying the distribution of live (green; calcein-AM+) and dead (red; 

ethidium homodimer-1+) cells. Higher magnification images of the boxed regions in each 

complete hydrogel cross-section (scale bar: 500 µm) are shown on the right (scale bar: 50 µm). 

c) Percent viability and d) average number of viable ASCs per xy plane in the Phe-PEA and Ala-

PEA hydrogels. Data are presented as the mean with error bars corresponding to the standard 
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deviations (n = 3 hydrogel replicates/trial, N = 3 trials with different ASC donors). Data were 

analyzed by two-way ANOVA with a Tukey’s post-hoc comparison of the means. No significant 

differences were observed between any of the groups.  

 

 Quantification of the staining at 24 hr post-encapsulation indicated that the ASC viability in 

both the Phe-PEA and Ala-PEA hydrogels was > 75%, with no significant differences observed 

between the systems (Figure 5c). These findings are similar to previous levels observed with 

human ASCs encapsulated into MCS or methacrylated glycol chitosan (MGC) hydrogels via 

light-initiated crosslinking [54]. Overall, the viability results at 24 hr support that the 

encapsulation process was well-tolerated by the human ASCs. While not statistically significant, 

lower ASC viability was observed after 7 days of culture in adipogenic differentiation medium 

for both hydrogel groups. Again, these results are consistent with previous levels reported for the 

ASCs encapsulated in the MCS and MGC hydrogels, where a decline in viability was observed 

after 14 days of culture in adipogenic differentiation medium [54]. While favorable for inducing 

growth arrest in order to stimulate ASC adipogenesis, the lack of serum within the adipogenic 

differentiation medium may have contributed to the trend for declining viability over time in 

culture. To try to mitigate these effects, in the future it would be interesting to explore the 

incorporation of ECM components, such as decellularized adipose tissue (DAT) particles, which 

were previously shown to enhance the long-term viability and adipogenic differentiation of ASCs 

within the MCS and MGC hydrogels [54].  Similar to the viability results, there were no 

significant differences observed in the viable cell density per plane for either of the hydrogel 

groups at both time points studied  (Figure 5d), indicating that differences in ASC density were 
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not a confounding factor in comparing the levels of adipogenic differentiation between the two 

systems [55]. 

 

Assessment of adipogenesis. The capacity of the hydrogels to support the adipogenic 

differentiation of the encapsulated ASCs for potential adipose tissue engineering applications was 

also assessed. Quantification of GPDH enzyme activity, which is upregulated during ASC 

adipogenesis, indicated that there were no significant differences between the Phe-PEA and Ala-

PEA groups at 7 days post-induction of differentiation, with both groups showing enhanced 

levels compared to the non-induced tissue culture controls (Figure 6a). The GPDH activity levels 

observed were similar to those previously reported for the human ASCs encapsulated in the MCS 

and MGC hydrogels at 7 days [54]. The enhanced GPDH activity in the induced tissue culture 

controls relative to the hydrogel groups may be related to the high levels of cell-cell contact 

achieved in the high-density 2-D cultures as compared to the distribution of single cells that was 

observed within the hydrogels [55, 60]. Consistent with the GPDH results, BODIPY staining 

revealed a qualitatively-similar and abundant number of lipid-loaded cells in both the Phe-PEA 

and Ala-PEA hydrogels (Figure 6b), confirming that both systems were supportive of ASC 

adipogenesis. In the future, it would be worthwhile to explore the effects of increasing the cell 

density within the hydrogels, as well as extending the studies to longer timepoints, to elucidate 

whether there may be subtle differences in the capacity of the two PEA formulations to promote 

the adipogenic differentiation of the human ASCs that could be detected under varying culture 

conditions.  
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Figure 6. In vitro analysis of ASC adipogenesis within the hydrogels at 7 days post-induction of 

differentiation. a) GPDH enzyme activity for ASCs encapsulated in either Phe-PEA or Ala-PEA 

hydrogels. Data are presented as the mean with error bars corresponding to the standard 

deviations (n = 3 hydrogel replicates/trial, N = 3 trials with different ASC donors). Dotted and 

dashed lines represent the mean values for the induced (cultured in adipogenic differentiation 

medium) and non-induced (cultured in proliferation medium) tissue culture control groups 

respectively. The hydrogel groups were compared with a t-test and no significant differences 

were observed. b) Representative images of BODIPY-stained (green) ASCs encapsulated in the 

Phe-PEA and Ala-PEA hydrogels showing qualitatively similar numbers of differentiating ASCs 

containing intracellular lipid droplets after 7 days of culture in adipogenic differentiation 

medium. Scale bar: 50 µm    
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Conclusions  

New water-soluble PEAs with crosslinkable moieties in their backbones were successfully 

synthesized from a phenylalanine-based monomer, alanine-based monomer, p-nitrophenyl 

fumarate and a PEG diamine. The PEAs were only water soluble when a 70:30 ratio of 

PEG:amino acid monomer was used and for Phe-PEA and Ala-PEA, but not Phe-8-PEA. Using 

365 nm light and a photoinitiator, hydrogels were prepared from the pure PEAs (10% w/v) and 

from the PEAs (7.5% w/v) with either PEG-DMA (2.5% w/v) or MCS (2.5% w/v). The Phe-PEA 

hydrogels tended to exhibit higher gel content, lower EWC and less swelling than the Ala-PEA 

hydrogels, though the differences were small and not statistically significant in many cases. The 

incorporation of PEG-DMA or MCS tended to decrease the gel content, increase the EWC, 

increase the swelling, and made the hydrogels brittle. Hydrogels composed of pure Phe-PEA and 

Ala-PEA had Young’s moduli of 106 and 44 kPa respectively. Human ASCs were successfully 

encapsulated within the Phe-PEA and Ala-PEA hydrogels via light-initiated crosslinking, with 

viabilities higher than 75% at 24 hr. While there was a trend towards declining viability over time 

in culture, the Phe-PEA and Ala-PEA hydrogels were shown to similarly support the adipogenic 

differentiation of the encapsulated ASCs, with an abundant number of lipid-loaded cells observed 

after only 7 days of culture in adipogenic differentiation medium. Overall, the findings support 

the further investigation of these novel water-soluble PEAs as an ASC delivery platform for 

applications in adipose tissue regeneration.     
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