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Abstract 

 

Over the past few years, a variety of clinical procedures aiming at tissue repair and other 

relevant therapies have been under active investigation [1]. Success of procedures aimed at soft 

tissue repair depends on the combined response of biochemical and biomechanical properties 

of organs neighboring the tissue [2]. Using human or animal cadaveric tissue for this purpose 

is very challenging due to issues pertaining to biodegradability and infection or biohazard risk 

factors [3, 4]. As such, tissue mimicking materials (e.g. polyvinyl alcohol cryogel (PVA-C) 

have been investigated to satisfy the need for the said clinical applications.  Advantages of 

using tissue-mimicking materials include (a) biocompatibility, (b) being not biodegradable and 

preserving shape in long-term and (c) having similar biomechanical properties to human tissue 

[5, 6]. 

 

To assess biomechanical compatibility of tissue-mimicking materials, various mechanical 

testing techniques have been proposed. Among them, indentation testing has shown great 

potential for this purpose, and it has been used broadly for tissue biomechanical 

characterization [7]. This method has become more popular because it allows for cost effective, 

non-destructive, quick, and quantitative assessment of soft tissue biomechanics [8, 9]. Soft 

tissue is idealized as nonlinear [10], isotropic [11] and incompressible [12] material. Given its 

interesting properties and biocompatibility, PVA-C has attracted a great deal of attention as a 

biocompatible material suitable for clinical applications such as tissue repair, tissue engineering 

etc. As such, many studies have been conducted to understand this material’s mechanical 

properties and its suitability for fabricating artificial cornea replacement [5], heart valve [13], 

lung [14], breast [15], kidney [16], brain [17], bladder [18], prostate [19] and articular cartilage 

[20]. This stems from the material having similar characteristics to human soft tissue [21, 22]. 

 

Similar to biological tissues, the internal structure of PVA-C leads to nonlinear behavior [23, 

24]. This nonlinearity becomes predominant while it undergoes large deformation [25]. Several 

analytical, semi-analytical and computational models have been proposed to understand tissue 

mechanical behavior, including its linear and nonlinear behavior, under indentation tests [26]. 

These include the methods proposed by Boussinesq [27], Sneddon [28], Hayes [29] and Cao 

[30]. This thesis aims at gaining in-depth insight into the mechanical behavior of PVA-C 



 

ii 

 

 

specimens under indentation testing. To this end, it presents development of an inverse finite 

element (FE) technique solved using numerical optimization to characterize the mechanical 

properties of PVA-C specimens. The investigation reported in this thesis includes numerical 

analysis where displacement influence factor was employed in conjunction with linear elastic 

model of finite thickness. In the analysis, effects of Poisson’s ratio, specimen aspect ratio and 

relative indentation depth were investigated, and a novel mathematical term was introduced to 

Sneddon’s equation. Finally, a robust optimization algorithm was developed in MATLAB 

which utilized FE modeling for parameter estimation before it was rigorously validated. 
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Summary for Lay Audience 

 

 

A variety of clinical procedures for assessing structural and functional damage of 

tissues and treating the effectiveness of tissue therapeutics are under active 

investigation. Therapeutics of soft tissues depends on the mechanical response of the 

organs and neighboring tissues. Indentation techniques can be used to probe the local 

mechanical properties of soft tissues and tissue mimics. Although there are some 

distinct advantages of using indentation testing, the interpretation of the force-

displacement behavior of very soft materials is less straight-forwards. Non-linear, 

hyper-elastic models have been used previously to characterize sources of non-

linearities (ie. material and geometrical) in this type of problem but have presented 

some problems. Indentation responses from cylindrical indenters are investigated in 

this study using numerical methods to develop and optimize new techniques for 

characterizing nonlinear material properties using an Ogden and Mooney Rivlin hyper-

elastic models. 
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Chapter 1 

 

Introduction 

 

Indentation testing is a widely used method to characterize diverse mechanical properties, e.g. 

stiffness, plastic deformation and hardness. This technique is applied to a wide range of 

material types, such as natural biological tissues, plastics, wood, metals, and food [40]. It is 

predominantly used for the determination of the strength of the materials [41]. Many previous 

researchers have used analytical models to understand indentation mechanics, including the 

effect of indenter geometry on the indentation process [4]. The geometries investigated include 

cylindrical, spherical, and conical indenters that are applicable to these common tests.  

Flat-ended cylindrical indentation is one of the most popular techniques used to assess the 

mechanical response of materials [25, 29]. For cylindrical indentation, the contact region 

between the indenter and test sample is fixed. The contact pressure increases linearly upon 

activating the concentrated indentation load [40].  

Spherical indenters can be used to investigate the limit of the elastic stress in brittle materials 

[42]. The main advantage of using a spherical indenter is that it does not create any stress 

singularity. The contact radius of the spherical indenter increases proportionately with the 

indentation load. During the indentation process, the contact stresses are initially small and 

produce only elastic deformation [19]. As the depth of penetration increases, a conical crack 

can occur in brittle materials outside the contact area [19, 31]. Interpreting the interaction 

problem of such non-conforming elastic bodies requires fundamental understanding of the
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contact. Such contact problems can be categorized using (i) the shape of the indenter: circular, 

flat or curved, (ii) the type of indentation: rotation or translation about one or other axis (iii) 

the type of contact: friction or frictionless [43]. Load-depth relationship for axisymmetric 

punch has been the subject of numerous investigations previously. Elastic analysis of contact 

problems of two spherical bodies was first developed by Hertz [44] as the basis for his 

indentation technique for material characterization [31, 45]. In 1904 Huber provided analytical 

solutions for the stress field associated with indentation of a flat surface with a spherical 

indenter [46]. In 1913 Fischer [47] and in 1914 Huber and Fuchs [46] also provided analytical 

solutions pertaining to contact mechanics. 

An elastic half-space is a mathematical concept in which only one boundary exists, all others 

being infinitely far away. For elastic materials, Boussinesq established other theoretical 

solutions for elastic half-spaces, known as Boussinesq's solutions. A classic point-load analysis 

for pressure distribution of an elastic half-space acting on a closed surface was described by 

Boussinesq [27]. He used the potential theory method to solve the computational problem and 

therefore was unable to use this solution for practical interest [27, 40]. The solutions for 

stresses and deformations in an elastic half-space was partially resolved by Carothers and Love 

[40, 48], but their solution was only valid for cylindrical and conical indenters. 

To find a complete solution of Boussinesq's problem, in 1945, Harding and Sneddon used 

Hankel transformations of dual integral equations to reduce this problem [43]. In 1962, Ahlvin 

and Ulery solved Love's equations and presented influence value and tables of coefficients. 

Using the equation together with the coefficients from the tables shown in Appendix, stresses 

and deformations can be calculated [27, 37, 49, 50]. In 1946, Sneddon developed the integral 

transform method for a variety of indenters [49] and derived load-displacement relations for 

an axisymmetric cylindrical punch [49]. In 1958, Lebedev and Ufland studied the 

axisymmetric contact problem for an elastic layer on a rigid smooth base [29, 51]. The vertical 

compressive stress σz at any depth directly beneath the centerline of a circular area can also be 

obtained by integrating Boussinesq's equation, where, a is the radius of the loaded area: 
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σz = 𝑃 [1 − (
1

1 + (
𝑎
𝑤)

2
)

3/2

] 

 

(1.1) 

   

The equations for vertical deformation at any point of interest underneath the indenter surface 

can be calculated using Boussinesq’s equation. The vertical deformation for the case of a 

uniform pressure p, influence factor, IF applied over a circular area of radius a, is given by: 

 
ΔZ = Pa

2(1−ʋ2)

𝐸
IF 

(1.2) 

The influence factor equals 1.00 beneath the center of the plate and 0.637 beneath the edge. 

The table of the influence factor is provided by Ahlvin and Ulery [37] as given in the Appendix. 

In 1965, Sneddon introduced the integral transform method to obtain an analytical solution for 

an elastic half-space. He used cylindrical, spherical, parabolic and conical punches to conduct 

indentation tests, to obtain the relationship between the load and penetration depth [28, 52]. 

After an extensive mathematical treatment provided by Gladwell [43], Jonson introduced 

practical application-oriented stress field analysis [53]. Due to lack of appropriate constitutive 

models, computational accuracy from indentation responses for soft tissues have been con- 

strained. In 1968, Burstein and his co-workers conducted spherical and cylindrical indentation 

under three-layered geometry and calculated stress distribution and displacements [54].  

Previous studies reported that a frictionless punch causes two types of problem: (i) pressure 

caused by the complete contact between indenter and the specimen generates an algebraic 

singularity at the contact boundary and (ii) incomplete contact of the contact region causes a 

reduction of zero pressure at the contact boundary for spherical punch [32]. Hayes and his co-

workers investigated an indentation of an infinite thick elastic layer bonded to a rigid half space 

[29]. They considered this case as a mixed boundary value problem and calculated 

displacements, shear modulus and friction [29]. Mesarovic and his co-workers reported that 

friction between the indenter and specimen has a significant effect on the contact size of the 
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indenter and is a function of indentation depth. They also stated that the friction coefficient 

strongly affects the strain field beneath the indenter [55]. 

The indentation of plastic materials has also been reported by many researchers for the 

determination of plasticity properties, yield strength and strain hardening [40, 56]. These 

properties can be obtained from force-deformation curves measured during indentation [57]. 

Badrick and his co-workers reported that the nature of the elastic-plastic material properties in 

solids de- pends both on the material and the type of indenter used during indentation [58]. In 

common with elastic materials, to test the robustness of the elasto-plastic properties, different 

geometries of indenters have been used such as cylindrical, spherical, conical, and uniaxial 

[57]. 

 

1.2 Soft Tissue and Artificial Materials 
 

Biological soft tissue is a complex material composed of elastin, actin, resilin, abductin and 

collagen [36]. However, elastin and collagen are the most important structural components of 

biological soft tissues [36]. Soft biological tissues are often inhomogeneous, anisotropic and 

can be subjected to large deformations [30]. Many previous researchers have found that the 

mechanical properties of soft tissues can be highly nonlinear [11]. Hence, soft tissues can 

exhibit widely different stiffness under different physiological conditions.  

The mechanical properties of soft tissues also vary depending on whether the measurement 

condition is in vivo or in vitro [29]. Due to this stiffness variation, it can be challenging to 

obtain the biomechanical properties of soft tissue [59]. To characterize the mechanical proper- 

ties of soft biological tissues through standard compression or tensile test a significant problem 

arises. This is due to specimen geometrical irregularities and difficulties in cutting intact and 

appropriately sized test samples [60]. 

There are a number of nonlinearities that can have a significant impact on the deformation of 

soft tissues (i) nonlinear elasticity of the solid phase (ii) geometrical nonlinearity arising from 

finite deformation, and (iii) nonlinear material parameters such as permeability, and porosity 

[60–62]. Working with biological tissue in the engineering domain is very difficult. Firstly, 
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availability of human organ requires many protocols to fulfill [63]. Secondly, biological organ 

degenerates rapidly. Without personal protective equipment and maintaining occupational 

hygiene the risk of infections may increase. PVA hydrogel can be used in biomedical 

applications as it exhibits excellent biocompatibility and has similar mechanical properties as 

soft tissues [5].  

From material characterization to surgical training, tissue-mimicking materials are widely 

reported to be an important tool in biomedical applications. These materials have been used 

for the development and performance testing of many diagnostic techniques [34, 64], material 

characterization through different indentation techniques [39], numerical modeling and 

validation exercises. 

The mechanical properties of soft biological tissues and hydro-gels such as polyvinyl alcohol 

cryogel (PVA-C) [5, 6, 34], PVA hydrogel [65], polydimethylsiloxane (PDMS) [6], Bovine 

gelatin (BoGe10), porcine gelatin ( PoGe-10X) [26], PEG hydrogel materials synthesized from 

polyethylene glycol, di-methacrylate (PEGDMA) and monomer [66], have been studied by 

many researchers using various test methods and established procedures for usage in 

biomedicine [67]. 

Polyvinyl alcohol (PVA) hydrogel is a promising biomaterial, which is a hydrophilic, 

biodegradable and biocompatible synthetic polymer appropriate as a tissue-mimicking 

construct. This material has been widely used already in biomedical applications [65]. The 

formation of PVA is through the combination of an appropriate ratio of PVA and water, which 

is then treated in various ways to create cross-linkage between the polymer filaments [65].  

The mechanical properties of hydrogels are particularly well controlled by a freezing and a 

thawing process creating what is known as PVA-C (PVA cryogel) [13, 65]. This is due to the 

fact that PVA hydrogels have similarities with human soft tissue structure [10, 21, 22]. When 

a load is suddenly applied to a PVA-C hydrogel, free water inside the pores of the sample is 

unable to migrate immediately, this results in the volume of the hydrogel to remain essentially 

conserved and the Poisson’s ratio to stay close to 0.5 [68]. This number has been found to be 

related to materials visco and poroelastic characteristics. The physical properties of PVA-C are 

very similar to those of a wide range of biological tissues [4, 69]. Many previous researchers 
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reported that, PVA hydrogels have a wide range of applications in tissue engineering [65, 70] 

including cornea [71], heart valve [13], lung [14], breast [15], kidney [16], brain [17], stomach 

[72], bladder [18], prostate [19] and articular cartilage [20]. 

Many previous researchers have reported difficulties involved in conducting in ”vivo” 

measurements due to (i) setting proper instrument alignment on sizable specimens, (ii) fixing 

boundary conditions, (iii) small deformation, (iv) limited data sets, (v) complexities from 

physiological noise, and (vi) inability to control the internal condition of the organs makes it 

difficult to interpret the data. [59, 63, 82]. To avoid the complexity involved in in” vivo” 

measurement and the risk of using human organs in the engineering environment, material 

characterization of human tissue mimic through indentation experiment is essential [29, 39]. 

In order to overcome all the complexities listed above, there is an urgent requirement for the 

development of a new method including the use of PVA-C data set that can be used to evaluate 

non-linear soft materials. 

 

1.3 Material Models 
 

Many previous researchers reported that nonlinear materials undergo large deformation [83] 

that requires constitutive models and iterative solver such as Newton-Raphson or Quasi-

Newton for the convergence of the numerical solution [29, 30]. For the robustness of the 

nonlinear solution, solution convergence is achieved through mesh refinement. Biological soft 

tissues and artificial materials are the present challenges that needs to be characterized and 

accurately interpreted through numerical validation and optimization for future biomedical 

applications. 

 

1.3.1 Linear and Nonlinear Elasticity 
 

Linear elasticity (LE) is a mathematical concept characterizing linearly Proportional  

deformation of materials due to external loading conditions. The constitutive law for LE related 

to applied force and resulting deformation is known as Hooke’s Law, where, tensile stress σ is 

linearly proportional to its fractional axial deformation or strain ε by the modulus of elasticity 

E: 
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 σ =  Eε (1.3) 

Some materials including biological tissues, do not obey Hook’s law as they exhibit nonlinear 

behavior specially under loading causing large deformation. In such materials, mathematical 

models need to be considered that incorporate sources of nonlinearity into the mechanical 

behavior. Nonlinearities can be explained in two ways. First, type of nonlinearity called geo- 

metric nonlinearity caused by significant change in the geometry. As a result of this change in 

geometry, forces are redistributed leading to alteration in the force equilibrium equations. The 

second type of nonlinearity is called intrinsic nonlinearity, which is a manifestation of changes 

in the internal structure of the material [84]. A typical indentation load-displacement relation- 

ship for non-linear elastic and linear elastic model are shown in Figure: 1.1 and Figure: 1.2. 

  

Figure 1.1: Nonlinear force displace 

relationship of an indentation test plotted 

using experimental and simulated data of 

PVA-C 5%, 2FTC. 

Figure 1.2: Linear force displacement      

relationship of indentation test plotted using 

experimental and simulated data PVA-C 5%, 

2FTC. 

Many mathematical models have been developed [27, 28] to characterize soft tissues. 

Unfortunately, it is not possible to describe the mathematical model for nonlinear soft 

biological tissue without numerical verification [89]. Indentation is not only used for 

characterizing solids [40] but also employed as an ideal candidate for investigating various 

biological tissues [96, 97]. The effect of various parameters, including relative indentation 
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depth, aspect ratio, Poisson’s ratio and dimensionless parameter (k) on the indentation response 

of soft tissues needs to be investigated. 

 

1.3.2   Hyperelastic Models 
 

A hyperelastic or Green type elastic material [85] is a type of material that follows constitutive 

models where the stress-strain behavior is defined by a strain energy density function [86]. 

They are considered to be truly elastic as they store energy during loading and dissipate equal 

amounts of energy during the unloading process. These materials experience large strains 

which are mostly recoverable [87, 88]. To define hyperelasticity many mathematical models 

have been developed and different aspects of non-linear elastic material behavior explained 

[11, 89]. These types of model have been very successfully applied to soft materials and tissues. 

In 1948 Ronald Rivlin and Melvin Mooney introduced the first hyper-elastic relationship 

named the” Neo-Hookean” and” Mooney-Rivlin” model. To date, a number of other hyper- 

elastic models have been developed. Based on observed mechanical responses of tissue 

behavior among others, Ogden shows improved behavior [90]. 

A considerable amount of work has been carried out using finite element method (FEM) to 

investigate the linear and nonlinear behavior of soft tissues. In recent years, characterizing 

hyperelastic material properties of soft tissues using indentation tests has attracted considerable 

attention. For the development and characterization of soft tissue with the inverse analysis, 

optimization algorithm plays an important role in developing a physical model for biomedical 

application [93].  

Many previous researchers have reported on the accuracy of the extracted hyperelastic 

parameters from indentation data [95]. Instead of extracting unknown material properties 

Namani and Simha extracted elastic modulus from the indentation [31, 95]. Despite of all the 

development in this domain, still there is no gold standard for characterizing the material 

properties of soft tissues. Therefore, there is an urgent need for inverse analysis to extract the 

hyperelastic material properties of soft tissues from in dentation responses. 
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Inverse analysis is used to extract unknown material properties. But there is no straight for- 

ward method to extract material properties from experimental data. To overcome this issue, 

we introduced a technique that requires no external data to validate the extracted parameter. 

The technique utilizes the Ogden and Mooney-Rivlin hyperelastic model, where Ogden and 

Mooney-Rivlin parameters are determined using an inverse problem framework. 

The motivation of this dissertation work is to provide more detailed understanding of 

indentation testing of soft tissues and to develop methods for interpretation of the results of 

this test for biomedical application. The specific objectives are stated below: 

 

1.4 Objectives 

 

1. To investigate the mechanical properties of finite and infinite thickness soft tissue 

samples in a simulated environment and compare the results with analytical and 

numerical published results. 

2. To improve understanding of the contribution of interface friction, Poisson’s ratio and 

elastic stiffness on the observed load-deformation indentation response of a soft tissue 

for linear and non-linear behavior. 

3. To develop a novel analytical model for nonlinear elastic solution to investigate the 

effect of friction coefficient, Poisson’s ratio and thickness on geometric parameters 

such as relative indention depth and aspect ratios. 

4. To develop and optimize new methods of determining the non-linear material 

parameters of an Ogden and Mooney-Rivlin hyper-elastic model capable of describing 

a variety of PVA-C material. 
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1.5 Methods  

The calibration and validation of the numerical approaches in this study have been 

accomplished using a robust dataset of experimental stress-strain tests on PVA cryogel 

conducted by Zakeri [61]. The finite element method has been used successfully to model 

biomechanical problems previously, and it is used in this study to simulate the indentation tests 

in soft materials. To achieve the above-mentioned objectives, the following methods have been 

undertaken: 

1. The experimental force-displacement results for PVA-C 5%, 10%, 15% and 20%    (w/w) 

obtained from indentation test [98] have been compared with analytical and simulated 

results [25, 29, 30]. 

2.  An axisymmetric indentation model was developed with the finite element method 

(Abaqus). Materials with finite and infinite thickness were considered in the simulation. A 

rigid, flat ended, cylindrical indenter modeled. Simulated displacement values were 

compared with Hayes’, Zhang’s and Cao’s models [25, 30]. 

3.  A novel analytical solution was developed by modifying Zhang’s solution. The simulated 

results were used in the newly developed analytical solution. The novel solution provided 

a new way of understanding the thickness effect of soft biological tissues. 

4. An axisymmetric finite element model was developed to calculate the influence factor; 

This factor is used to calculate stress at any point under the indenter using the linear elastic 

model. 

5. An optimization algorithm was used in conjunction with MATLAB for obtaining un- 

known hyperelastic parameters based on minimizing the discrepancy between 

experimental and model predicted results. Unknown parameters for the constitutive models 

were determined. And sensitivity analysis was performed to validate the accuracy of the 

experimental data. 
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1.6   Novelty of the Current Research 

 

The novelty of the current research is the numerical material model developed to characterize 

the biomechanical properties of soft tissue and mimics. It was found that the results obtained 

from this numerical model performed well with a novel analytical model developed by 

modifying Zhang’s model [25]. Also, an optimization algorithm was developed in MATLAB 

in conjunction with FEA for error minimization and parameter estimation, which verifies and 

validates experimental hyperelastic results. 

 

1.7  Contribution to the Knowledge 
 

The research provides: 

 

1. A literature review that can benefit research in the indentation and soft tissue mechanics 

field. Valuable information is presented and discussed. 

 

2. Investigation of the fundamentals of indentation experiment on tissue-mimicking 

phantoms. Experimental results provide an important insight into the possibility of 

developing artificial organs based on material thickness and biomechanical properties. 

 

3. Explanations of displacement influence factor on linear elastic model based on 

conducted numerical analysis on finite thickness structures. This new technique is 

suitable for thin samples. 

 

4. Discussion of the impact of axisymmetric cylindrical, spherical indentation and 

uniaxial test on hyperelastic model. 

 

5. Introduction of the newly developed analytical solution can potentially provide a new 

way of understanding the indentation response of soft tissues. 
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6. Improved inverse algorithm for Ogden and Mooney-Rivlin hyperelastic model using 

MATLAB which also compares FE predicted material properties with MATLAB 

optimized results. This robust technique is very effective for the determination of 

material properties of soft tissues or mimics. This novel technique is a potential 

candidate for use in the development of patient specific artificial organs. 

 

1.8  Scope of the Study 

The objectives of this research were to characterizes the material properties of polyvinyl 

alcohol cryogel (PVA-C) through indentation testing. In order to achieve that goal, three 

approaches were combined and used in this dissertation. 

First, the indentation test responses from a range of PVA-C samples were simulated and results 

were compared with analytical solutions and numerical results available in the literature. These 

results confirmed the accuracy of the test material based on comparison of experimental and 

FE simulated force- displacement data. 

Secondly, I developed an axisymmetric indentation model for cylindrical, spherical and 

uniaxial testing to investigate the mechanical responses of PVA-C. Models were meshed using 

proper finite elements before loading and boundary conditions were applied. Mesh 

convergence analysis was also performed to ensure numerical accuracy. A friction coefficient 

was introduced to an analytical solution introduced in the literature and its impact on observed 

indentation responses of PVA-C were evaluated. 

Furthermore, a robust optimization algorithm was employed using Ogden and Mooney-Rivlin 

models for determining the non-linear material properties that minimized a cost function 

representing the difference between experimental and model predicted results.  

Finally, the optimized material properties obtained using the present robust technique were 

cross validated with published results. This technique can be effectively used to characterize 

material properties where optimized materials can be considered as candidates for various 

biomedical applications. 



 

13 

 

 

1.9  Outline of the Dissertation 

 

This thesis contains six chapters. All the chapters are written in the form of monograph. 

 

Chapter 1: Introduction  

 

Introduces the research topic, objectives, methods and scope of the research. It also states the 

contributions of the research to indentation experiment using finite element model and its 

application.  

 
Chapter 2: Literature Review 

 

Presents literature review, discusses Hertz, Sneddon, Cao’s model, strain-strain theory for 

linear elastic model. Due to the soft tissues load bearing capacity of soft tissue, indentation of 

biological tissues is quite different than engineering materials. Non-linearity is a major 

consideration for materials undergoing large deformation This chapter discussed nonlinear 

elasticity for hyperelastic material. It also discusses the effect of influence factor, friction and 

frictionless contact region for non-linear material in the simulated environment with a rigid 

cylindrical indenter. 

 

 

Chapter 3: Development and Validation of Numerical Model 

 

This chapter describes the development and verification of finite element modeling of soft 

tissues. This chapter also discusses contact interaction, choice of element, methods of load 

applied, coefficient of friction and indenter size effect. A numerical model is verified and 

validated by Hertz, Boussinesq’s and Sneddon’s solutions as a proof of the principle. This 

chapter also incorporates constitutive relations from the above-mentioned models into 

numerical analysis for stress distribution of soft tissues. 
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Chapter 4: Characterization of PVA-C Material Behavior using FEM 

This chapter discusses the indentation responses of non-linear transversely isotropic materials 

and presents a numerical analysis with FEM for soft tissue specimen with finite and infinite 

thickness. It examines the uniqueness of Sneddon’s, Cao’s, Zhang’s models and presents FE 

simulated results through comparison with their published results. It also Investigates the 

association between relative indentation depth and aspect ratio. It further analyzes 

dimensionless functional “k” values from indentation force-depth curves that have sufficient 

influence on the friction and frictionless environment. Moreover, it employs displacement 

influence factor on linear elastic model and conducted numerical analysis on finite thin 

structures. It also introduces a newly developed novel analytical technique for linear elastic 

materials validated by numerical analysis and laboratory provided data. This chapter is 

concluded by presenting the effect of Poisson’s ratio, aspect ratio and relative indentation 

depth on friction coefficient with a short summary. 

 

Chapter 5: Soft Tissue Mechanical Characterization Using Finite Element 

 

This chapter presents a hyperelastic model to conduct inverse analysis for the extraction of un- 

known material parameters. Experimental load displacement data is used as an input parameter 

for the hyperelastic model. During the parameter estimation process the simulated data is com- 

pared with the experimental deformation data. The sum of the squared differences between the 

two sets of data used to find an optimal set of material parameters. A trust region algorithm is 

used in MATLAB to extract optimized parameters from a set of guess values. A stability 

analysis is also presented by adding different noise levels to the input data to examine the 

robustness of the estimated parameter. 

 

Chapter 6: Contribution and Conclusion  

 

Presents a general discussion and concluding remarks.
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Chapter 2 

 

 

Literature Review 

Understanding and measurement of the mechanical properties of soft tissues or tissue mimics 

is necessary for the development and improvement of medical devices. Conventional testing 

methods includes tensile, compressive and shear loading. While effective for materials that can 

be cut into reasonably large samples with regular geometry, conventional methods cannot be 

used with small specimens with irregular geometry (e.g. tissue excised surgically as a part of 

medical intervention procedures). In the latter case, indentation testing can be used as an 

effective technique for characterizing the mechanical properties. This mechanical testing 

method is similar to indentation hardness tests [99].  

Indentation testing can offer accurate, nondestructive measurements of penetration depth from 

nanometer to macro-meter scale. Previously, numerous published literatures have discussed 

indentation testing methods on biological soft tissues and tissue mimics. However, influence 

of relative indentation depth, specimen aspect ratio, Poisson’s ratio and friction coefficient in 

the mechanical response and how those parameters need to be incorporated in estimating tissue 

properties is not well understood. 

Interpretation of experimental results from indentation based on empirical or semi-empirical 

formulas can be challenging [99].  Due to the complexity of using biological soft tissues in the 

engineering domain and to interpret mechanical testing results accurately, finite element 

method has been introduced for analysis of experimental data taking into account the simulated 
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environment. Non-linear materials cannot be explained by the linear theory of elasticity where 

(Hooke’s law) is applicable. For this reason, many articles have been reviewed to under- stand 

how experimental indentation testing of nonlinear materials is simulated using continuum 

mechanics [99]. To characterize material properties accurately choosing the appropriate model 

is essential. After an extensive review, it can be concluded that Ogden hyperelastic model is 

the best fit for nonlinear biological soft tissues or tissue mimics [26, 100]. This review aims at 

better understand of indentation testing used for characterization of soft tissues forwards 

biomedical applications. In this chapter an extensive literature review related to the current 

study will be presented.  

 

2.1  Indentation Testing  

 

2.2.1 General  

For over a century, indentation tests have been a common practice for the characterization of 

materials in many areas of engineering. Nowadays, biomedical engineering and health-care 

industries has benefited greatly from the vast applications of indentation technology. 

Indentation testing is a widely used procedure to characterize diverse mechanical properties, 

e.g. stiffness, plastic deformation and hardness for a range of material, such as natural and 

artificial tissues, steels and food [101]. It is also a quantitative method used to determine the 

strength of the materials [102, 103].  

There are various indentation test methods such as Hertzian, Vickers, Rockwell and Brinell 

that have been routinely used to measure material properties including elastic modulus and 

hardness using various standard indenter geometries such as cylindrical, spherical, conical and 

pyramid [30, 101, 104–106]. There are two ways of predicting the uniaxial mechanical 

properties of material in FEM, these include (i) load control where indenter is pushed into the   

test specimen at a constant rate and (ii) displacement control where an indenter is allowed to 
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move into the test specimen under some constant force [24]. In conjunction with these tests, 

instruments have developed to obtain force displacement measurements instantaneously [104]. 

2.1.2    Hertzian Model for Elastic Contact 

Indentation on an elastic body is one of the problems of contact mechanics [107]. Linear small 

strain theory of elasticity is used for non-conforming elastic bodies whose dimensions are 

small compared to the radius of curvature of the deformed surface [108]. Near the contact 

region the contact stresses are highly concentrated, and the stresses decrease rapidly from the 

contact point towards the distance it travels. The stress can be calculated as a semi-infinite 

solid, bounded by a plane surface know as elastic-half space [31]. 

Interpreting indentation testing of two non-conforming elastic bodies requires fundamental 

understanding of the contact problem which was first developed and introduced by Hertz [40]. 

Such contact problems can be categorized by (i) type of the punch: circular, flat or curved, 

(ii) type of the indentation: rotation or translation about one or other of the axis, and (iii) 

type of contact: frictionless complete or incomplete contact, adhesive or in limiting friction 

[43]. Gladwell reported that the mathematical tool of, Hankel transforms of the, dual integral 

equation can be used to solve these contact problems [43]. 

In the early 1880, Hertz introduced “theory of elastic deformation” that works with the geo- 

metrical effects on local elastic deformation properties in contact mechanics. In 1882, Hertz 

introduced a solution to the elastic contact problem for a flat-ended cylindrical punch and 

elastic half space made of a homogeneous, isotropic, linearly elastic material. A rigid sphere 

in contact with an elastic half-space shown in Figure: 2.1 
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Figure 2.1: A rigid sphere in contact with an elastic half space modified from [31]. 

 

He made the following assumptions:  

 

1. Strains are small, and within elastic limit a ≤ R. 

2. The surfaces are continuous and non-conforming: a ≤ R. 

3. Each solid can be considered as an elastic half space a ≤ R. 

4. The surface is frictionless. 

 

The distribution of pressure P, P0, contact radius “a” and Uz, vertical displacement proposed 

by Hertz are given by: 

 

 𝑃 = 𝑃0[1−(𝑟/𝑎)
2]1/2 (2.1) 

 

 
𝑼𝑧  =  (

1 − 𝛾2 

𝐸
)𝜋𝑃0  (2𝑎

2 − 𝑟2), 𝑟 ≤ 𝑎 
 

(2.2) 

Based on Hertz’s theory, flat surface indentation responses from spherical indenter produces 

compressive stress underneath the indenter and tensile stress at the edge of the contact circle 
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that creates cone-shaped, fractures [31, 45, 109]. The maximum tensile stress of the material 

at the contact circle is given by: 

 
𝜎𝑦  =  (1 − 2ν) 

𝑃 

2𝜋𝑎2
 

(2.3) 

Where, a is the contact radius, P is the normal load and ν is the Poisson’s ratio of the specimen. 

Many previous researchers have used analytical models to understand the effect of indenter 

geometry on indentation [25]. Typical geometries include cylindrical, spherical and conical 

indenters. Spherical and cylindrical indentation have been discussed below: 

 

2.2  Boussinesq’s Solution 

 

In 1885, Boussinesq first considered “The problem of determining the distribution of stress 

within an elastic half space when it is deformed by normal pressure against its boundary of a 

rigid punch” [27, 28]. This problem is known as Boussinesq’s problem discussed in Chapter 

1. 

 

2.3  Sneddon’s Solution 

 

The Boussinesq limitation for the arbitrary shaped axisymmetric punch was resolved by 

Sneddon analytically. A solution was derived from the top of the flat-ended cylindrical punch 

where the total load is applied to achieve displacement [28, 40, 110]. In 1929, Love [110] used 

constant pressure, constant displacement and Hertzian pressure to solve Boussinesq’s problem. 

Due to the complexity of potential theory method, Boussinesq’s solution was difficult to 

implement for the problem of interest, hence it was partially solved by Love [40] for cylindrical 

and conical indenters. To reduce the mixed boundary problem of Boussinesq’s solution, 

Sneddon uses the theory of Hankel transforms to define the axisymmetric solution of the 
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equation of elastic equilibrium [28]. He introduced cylindrical coordinates at the tip of the 

punch, and the solution is suitable for frictionless cylindrical, spherical or conical indentation 

on an elastic-half space [28, 49]. The relationship between load and deformation for an 

axisymmetric punch has been subject to numerous investigations [43]. 

 

2.3.1  Cylindrical Indentation 

Cylindrical indentation offers an attractive candidate for investigating material properties. For 

cylindrical indentation, the contact region between the indenter and test sample is fixed. 

Contact pressure linearly increases upon applying concentrated indentation load [40].  

Consider a flat-ended cylindrical profile of radius a indented on an elastic solid of thickness h. 

A concentrated force P is applied through the top of the indenter and creates a deformation D. 

Where μ and ν are the shear modulus and the Poisson’s ratio of the material. Cylindrical polar 

coordinates (r, θ, z) are used where the indenter axis coincides with the z-axis, r is 

perpendicular to z, and θ represents the angular distance between a reference line and r. 

The analysis is carried out without the influence of any friction on elastic half space [28, 40]. 

The analytical solutions are derived by using the resources of [28, 29, 52]. A new function f 

defined to solve Boussinesq’s problem by the systemic use of Hankel transform and the theory 

of dual integral equation, then using Sneddon’s formula for total depth of penetration: 

 
𝑤 =  ∫

(𝑥)𝑑𝑥

√1 − 𝑥2

1

0

 
 

(2.4) 

The total load required to calculate the penetration is given by the equation where 𝜒  

𝑃 =  −2𝜋∫ 𝜒𝜎𝑧𝑧(𝜒, 0)𝑑𝜒
𝑎

0

 
 

    (2.5) 

  

For isotropic elastic half-space, the axisymmetric displacement field w(r) in the region r ≤ a 

and stress 𝜎𝑧𝑧 corresponding to (r, θ, z) satisfies the following equations [107, 111]. In this 

solution, the test sample is bounded on equipment surface and shear traction between the 
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indenter and test sample are assumed to be negligible. A typical rigid flat ended cylindrical 

indentation of radius “a” and soft tissue with thickness h is shown in Figure:2.2. 

 

Figure 2.2: Rigid flat cylindrical indentation of radius “a” and thickness h modified from 

[25]. 

The boundary conditions underneath the indenter in z direction at the test specimen:   

Case 1: There is no normal stress acting on the free surface outside the contact region 𝜎𝑧. 

𝜎𝜒𝑧 =  0  (2.6) 

 

𝑤(𝜒) =  𝑓(𝜒/𝑎)  (2.7) 

 

𝜎𝑧(𝜒, 0) =  0;   𝑟 ≤ 𝜒 ≤  𝑎  (2.8) 

 

Case 2: The contact region between the indenter and the elastic half space (test specimen) are 

frictionless [12, 107]. 

𝜎𝑧𝑧(𝜒, 0) =  0;   𝑟 > 𝑎     (2.9) 
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Case 3: The force should be consistent for displacement in the z direction Uz. Due to sharp 

edge of the cylindrical indenter σz → ∞; when r = a 

𝜎𝑟𝑧(𝑟, 0) =  0;   𝑟 ≤ 𝑎     (2.10) 

 

By solving the integral [28], the total load P required for deformation w of a 

cylindrical punch is   given below: 

 

 
𝑃 =  

2𝐸𝑎𝑤

1 − 𝜈2
  

(2.12) 

The distribution of stress under the punch is given by: 

𝜎𝑧𝑧(𝜒, 0) =
2𝜇𝑎𝑤

𝜋(1 − 𝜈)
(𝑎2 − 𝜒2), 0 ≤  𝜒 ≤  𝑎 

  (2.13) 

 

And deformation is given by: 

𝑼𝑧 (𝜒, 0)  =  
2𝑤

𝜋
 sin−1(𝑎/𝜒),   𝜒 >  𝑎   

(2.14) 

Where, 𝜇 is shear modulus, E is Young’s modulus and 𝜒 is a function of deformation w. 

 

2.3.2 Spherical Indentation 

A spherical indenter solution was first developed in 1900 and Brinell hardness test was used 

for indentation. 
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Figure 2.3: Schematic of spherical indentation of radius “a” and specimen of thickness h 

modified from [32]. 

Let us consider a sphere of radius R pressing upon an elastic solid and reaching equilibrium 

over a circle of radius a such as shown in Figure 2.3. Under such conditions, the displacement 

w is given by the equation 

𝑤 =
1

2
𝑙𝑜𝑔 

𝑅 + 𝑎

𝑅 − 𝑎
 

  (2.15) 

 

𝑃 =
𝜇

1 − 𝜇
(𝑎2 ++𝑅2)𝑙𝑜𝑔 

𝑅 + 𝑎

𝑅 − 𝑎
 𝑎𝑅 

  (2.16) 

 

Where, 𝜇 𝑎𝑛𝑑 𝜈 are the shear modulus and Poisson’s ratio. 

The equations for stress and deformation in a half space can be derived from by Boussinesq’s 

solution. In 1962, Ahlvin and Ulery [37] introduced an influence diagram and table of 

coefficients to solve Love’s equation. There has been a great interest to use this solution in 

biomedical applications. The vertical compressive stress at any depth directly underneath the 
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centerline of a circular area subjected to a radially symmetric distribution of stress for point 

load can be calculated by integrating Boussinesq’s equations [27]. For a uniform pressure, the 

vertical compressive stress at a depth z beneath the centerline is stated below as follows: 

 

σz = 𝑃

[
 
 
 

1 − (
1

1 + (
𝑅
𝑧)

2)

3/2

]
 
 
 

 

 

 

 

 

 

   

(2.17) 

 

For the case of a uniform pressure, P, applied over a circular area of radius R, Boussinesq 

introduced the influence factor I to find the deformation at any point within a circular plate. 

Underneath the center of the plate, the influence factor (IF) is 1.0 and decreases towards its 

edge, where it becomes 0.637 [27]. For a circulate plate, the Poisson’s ratio is assumed to be 

0.5. 

𝑈z = 𝑃𝑅 
2(1 − 𝜈2)

𝐸
𝐼𝐹 

  (2.18) 

 

In 1951, Timoshenko and Goodier reported that when a vertical force P is applied on an 

axisymmetric rigid circular plate, Boussinesq’s stress distribution follows the equation below 

where R and r is the radius of the circular area and variable radial distance “a” respectively and 

P is the contact pressure. 

𝑃 =  
𝑃

2𝜋𝑅√𝑅2 − 𝑎2
 

 

 

2.4  Biomechanics of Soft Tissues  

Biomechanics seeks to understand the effects of forces that act on living tissues. Organs are 

composed of soft tissues that are combined to support biology and protect the human body and 

structure [24]. Soft tissues make up organs such as the heart, lung, kidney, and skin. The 
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mechanical behavior of soft tissue is highly influenced by the concentration of collagen and 

elastin. Collagen is the main component of extracellular matrix of connective tissue which is a 

protein of about 280 nm in size that runs in parallel to form oriented fibers [24]. Soft tissue is 

approximated as non-linear [10], isotropic [11] and incompressible [12].  

Biological tissues are soft and typically have large deformability, PVA a good candidate to 

mimic their mechanical behavior. PVA is a promising biomaterial suitable for tissue 

mimicking phantoms. Due to its hydrophilic, biodegradable and biocompatible characteristics 

PVA has been chosen as a number one candidate for biomedical research [65, 70]. PVA has 

com- mon mechanical properties with human soft tissue structure. As such many studies have 

been performed to understand the fundamentals of the indentation problem applied to 

biological soft tissue mimics with polyvinyl alcohol cryogel (PVA-C). They are constructed 

based on properties obtained through mechanical testing including indentation with different 

standard indenter geometries such as cylindrical, spherical, conical [40] and Nano indenter 

[112–114].  

Table 2. 1 Mechanical properties of soft tissues [39] and their associated biochemical data 

[21, 24] 

Material Ultimate 
Tensile 

Strength(kPa) 

Ultimate 
Tensile 

Strain (%) 

Collagen 
(% dry weight) 

Elastin 
(% dry weight) 

Tendon 50-100 10-15 75-85 < 3 

Ligament 50-100 10-15 70-80 10-15 

Aorta 0.3-0.8 50-100 25-35 40-50 

Skin 1-20 30-70 60-80 5-10 

Articular 

Cartilage 

9-40 60-120 40-70 0 
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2.5 Continuum Mechanics of Soft Tissues 

 

Continuum mechanics studies the mechanics of a class of materials referred to as continuum, 

which includes solids, and fluids. Continua are assumed to consist of continuously distributed 

material within its volume. While in general continua has a heterogenous microstructure, this 

heterogeneity is ignored. Continuum differential equations are developed to govern the 

material’s forces and deformation. These equations are introduced in this thesis based on 

fundamental laws of continuum physics [115]. 

To understand the biomechanics of soft tissue subjected to different loads is crucial. As the 

biological material undergoes large deformation, it is important to characterize the soft tissue 

behavior using continuum mechanics theory [39, 116]. Let us consider a particle on the body 

which is initially located at x = (x1, x2, x3) and displaced to a position y = (y1, y2, y3) The 

displacement vector u is described by the equation:  

𝐮 =  𝒚 −  𝒙    (2.20) 

 

Figure 2.4: Schematics of the general motion in the neighborhood of a particle within a 

continuous deformable body. This image has been modified from [33]. 
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                                          ui (x1, x2, x3, t) = yi − xi   (2.21) 

 

2.5.1  Linear Elastic Model 

The linear elastic model is used to approximate the indentation response of soft tissues 

characterization. The linear material exhibits a linear relationship between stress and strain. 

For an ideal linear elastic material under quasi-static conditions where the strain is less than 

5%, Hooke’s law which is given below, is valid: 

                                               σ𝒊𝒋     = Cijklεkl   (2.30) 

Here, Cijkl stands for tensor of elastic constants. For an isotropic solid the above equation is 

simplified to the following equation: 

                    σ𝒊𝒋     = 
𝐸

(1 + 𝜈)
{ε𝒊𝒋  +  

𝜈

(1 −  2𝜈)
ε𝒌𝒌𝜹𝒊𝒋   

  (2.31) 

Using a vector representation of the stress and strain tensors, they can be related via the 

following matrix equation. 

σ    =  𝑴𝜺   (2.32) 

 

2.5.2  Hyperelasticity  

Hyperelastic materials are explained in terms of a “strain energy potential” W, which describes 

the stored strain energy per unit volume as a function of the strain at that point in the material 

[16]. Hyperelastic materials are considered to be truly elastic as they store energy during 

loading and dissipate equal amount of energy during the unloading process. These materials 

experience large strain values as high as 500% for rubber, which are mostly recoverable. 

George Green (1793−1841), introduced the strain-energy function into elasticity for which 

such a function is referred to as Green elastic or hyperelastic [91, 117]. Incompressible material 

does not change their volume during deformation. This is described by their Poisson’s ratio of 
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0.4 or shear modulus (µ) approaching infinity. Hyperelastic material exhibits nonlinear stress-

strain behavior. Such materials are widely used in many biomedical applications such as 

artificial organs, implantable surgical devices etc. [64]. 

Consider a hyperelastic material undergoing stress. The total work done during deformation in 

a continuum deformable body depends on the initial configuration at time t0 and present con- 

figuration at time t. Deformation of a hyperelastic material does not depend on deformation 

history and path. A material is called Cauchy-elastic in which the stress in deformed con- 

figuration at each point is determined only by the current state of deformation relative to the 

undeformed configuration. Cauchy stress is independent of deformation history [85]. 

Stress is determined from the derivative of W with respect to the Lagrangian strain tensor and 

right Cauchy-Green deformation tensor. The internal strain of a body corresponds to elastic 

strain energy potential function is represented as a function of Green-Lagrange strain. The 

conjugated stress of Green-Lagrange strain and the second Pialo-Kirchhoff stress S, is 

expressed as the partial derivative of strain potential energy with respect to Green-Lagrange 

strain: 

𝑆 =
𝜕𝑤

𝜕𝐸
(𝐸)  

  (2.22) 

where, W is the elastic strain energy potential. The Cauchy-Green deformation tensor is 

reformed by the following equation: 

𝑆 = 2
𝜕𝑤

𝜕𝐶
(𝐶)  

  (2.22) 

Where, 

S = Second Piola-Kirchhoff stress tensor W = Strain energy function 

E = Green Lagrangian strain 

C = Right Cauchy-Green deformation tensor  
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F = Deformation gradient tensor. 

J = Jacobian matrix 

The Jacobian is related to volume change of a material due to deformation. For an ideal             

incompressible material, J = detF = (λ1λ2λ3) = 1 given: 

                                               F= [
λ1 0 0
0 λ2 0
0 0 λ3

] 

The Right Cauchy Green deformation tensor C is given by the equation: 

  (2.24) 

𝐂 = 𝐅𝐓𝐅    (2.25) 

The Left Cauchy Green deformation tensor C is given by the following equation: 

𝐁 = 𝐅𝐓𝐅    (2.26) 

Cauchy stress σ can be calculated by inverse full Piola transformation as given below: 

 

σ =  𝐽−1
 

𝐹𝑆 𝐹𝑇    (2.27) 

The equation of Cauchy stress becomes: 

σ = 𝐽−1[
𝜕𝑤

𝜕𝐸
(𝐸) ]𝐹𝑆 𝐹𝑇 

  (2.28) 

σ = 2𝐽−1[
𝜕𝑤

𝜕𝐶
(𝐶) ]𝐹𝑆 𝐹𝑇 

  (2.29) 

 

2.6  Hyperelastic Model 

 

In general, a hyperelastic material is an elastic material that returns to its original shape after 

releasing the force, and the stress strain relationship is calculated from strain energy density 

function. This strain energy density function is explained by materials hyperelastic behavior 
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[118]. Based on mechanical responses of material behavior different constitutive laws are 

introduced [119]. Chagnon and his co-workers reported that an effective hyperelastic model 

will be explained by the following [89]: 

 

• The model will be able to replicate the whole” S” shaped response. 

• The deformation model will be simple. For example, if the model works in uniaxial 

tension, it must be the same with shear tension. 

• They consider that, the number of fitting material parameters should be small. 

• For numerical performance of the model, mathematical formulation should be simple. 

 

To define hyperelasticity many mathematical models have been developed and different 

aspects of material behavior are explained [117]. Rivlin and Saunders introduced even powered 

series of the principal stresses to explain strain energy function [118, 120]. Later Ogden 

introduced a strain energy function which provides precise results expressed as a series of 

positive and negative real powered principal stresses [85, 121] The second invariant of the 

Cauchy-Green deformation tensors C is defined by (I = 𝐼1𝐼2𝐼3) stated below: 

𝐼1(𝐶)    =  𝑡𝑟(𝐶)   (2.33) 

I2(C)    =
1

2
[  (trC) 2 − tr(C) 2 ]  

  (2.34) 

I3(C)    =  det(C) 
  

 (2.35) 

The strain-energy function of isotropic hyperelastic material in terms of invariants is denoted 

by: 

W = ∫ (  I1I2I3)   (2.36) 

where I1, I2, and I3 are the three invariants of each of the two Cauchy-Green deformation 

tensors. In terms of the principal extension ratios λ1, λ2, and λ3 they are expressed by: 
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I1= λ1
2 + λ2

2 + λ3
2   (2.36) 

I2= λ1
2 λ2

2 +λ2
2 λ3

2 + λ3
2λ1
2   (2.37) 

I3= λ1
2 λ2

2λ3
2    (2.38) 

The strain energy function per unit volume in hyperelastic model is defined by W, and it de- 

pends symmetrically on principle strains λ1, λ3, λ3. These principle strains can be calculated 

with the square root of right Cauchy deformation tensor and left Cauchy deformation tensor. 

𝑊 (λ𝟏, λ𝟐,λ𝟑) =  𝑊 (λ𝟏, λ𝟑,   λ𝟐)  =  𝑊 (λ𝟐, λ𝟏,   λ𝟑)   
  (2.39) 

Again, we can define the strain energy (W) in terms of invariants (I1,   I2, and  I3). The left 

Cauchy Green deformation tensor (Bij) expressed in terms of principle strains. 

(λ1, λ2 ,   and    λ3). 

𝑊 (𝐹) = 𝑊 (𝐼1,   𝐼2, 𝐼3) =  𝑊 (𝐼1,   𝐼2, 𝐽)  =  𝑊 (λ1, λ2,   λ3)     (2.40) 

 

2.7     Previous Studies 

 

2.7.1     Soft Tissue and Tissue Mimic 

For the last few decades there has been increasing interest of characterizing the mechanical 

properties of soft tissues specially in biomedical research such as needle insertion techniques 

[5], robotic surgery [125], surgical simulation and training [126]. Numerous studies have been 

conducted to determine the mechanical properties of soft tissues using tissue mimicking 

phantoms. To characterize material properties using soft tissue, tissue mimicking phan- toms 

have been widely described to be an appropriate tool for research and development [64].  

The mechanical properties of soft tissue have been investigated in variety of techniques such 

as uniaxial testing, biaxial testing and different forms of indention testing techniques. 
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Biological soft tissue is a complex material and it is composed of elastin, actin, resilin, abductin 

and collagen [36]. Many previous investigations postulated that soft tissues undergo large 

deformation due to their low stiffness, hence exhibiting material non-linearity [11, 30]. Out of 

all soft tissue constituent’s elastin and collagen are the most important component of biological 

soft tissues [36, 59]. 

Biological soft tissues are inhomogeneous, anisotropic and are often subjected to large de- 

formations [30] and often exhibit viscoelastic behavior. Generally, the mechanical behavior of 

biological soft tissues is more complex than engineering materials [19, 127]. The mechanical 

properties of soft tissues have been estimated in vivo, ex vivo, or using soft tissue mimic (e.g. 

PVA-C) by employing (i) stretch tests [128], (ii) aspiration experiments [129], (iii) 

compression tests and, (iv) needle insertion, for linear [130] and non-linear bio-mechanical 

models [94]. This complex mechanical behavior of such tissues is also often characterized by 

using indentation testing based on resulting tissue response to applied load [39]. 

It is very difficult to use human and animal cadaveric tissues to develop medical devices be- 

cause of its biodegradability and hygienic or biohazard risk factor [5, 131]. Advantages of 

using tissue-mimicking materials include (i) biodegradability and steady shape preservation 

(ii) having similar mechanical properties of human tissues [5]. It is also a proven to be a good 

choice as bio-compatible material for preparing tissue mimicking phantoms [34, 72, 76]. 

The mechanical properties of soft biological tissues and hydro-gels such as polyvinyl alcohol 

cryogel (PVA-C) [5, 6, 34], PVA hydrogel [65], polydimethylsiloxane (PDMS) [6], Bovine 

gelatin (BoGe10), porcine gelatin ( PoGe-10X) [26], PEG hydrogel materials synthesized from 

polyethylene glycol, dimethyl methacrylate (PEGDMA) and monomer [66], have been studied 

by many researchers using various test methods and established procedures for usage in 

biomedicine [67].  

Table: 2.1 A List of papers describing mechanical properties of human organ/tissues modified 

from [38]. 
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Polyvinyl alcohol (PVA) is a commercially available water-soluble powder. Hydrogels are 

called chemical gels when they are covalently cross-linked [132]. The concentration of this 

hydrogel is determined by its application. At a higher concentration 25 (w/w%) the hydrogel 

becomes sticky and extremely difficult to work with [34]. Hoffman and his co-workers 

successfully used PVA hydrogels to cultivate living cells as hydrogels have large pores and 

are capable of degradation [69]. The use of hydrogel structure depends on freeze–thaw cycle 

[5, 6, 13, 69]. Due to its excellent biocompatibility, chemical stability and appropriateness 

PVA hydrogels have become a major candidate for various biomedical applications [4–6]. 

PVA hydrogel has been used in many biomedical applications. In 1990, Kita et al.  developed 

hydrogel for contact lens material. They compared their developed contact lens with 

commercially available contact lens material like polyhydroxy-ethyl-methacrylate (PHEMA) 

and copolymers of methyl-methacrylate (MMA) and N-vinyl pyrrolidone (N- VP) [79]. They 

also reported that PVA hydrogel showed higher tensile strength and elongation before breaking 

than any other commercially available materials. 
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Tanabe and Nambu introduced a unique method of crosslinking aqueous PVA by applying 

freeze-thaw cycling [133]. Stauffer and his co-worker reported that hydrogels formed by the 

freezing and thawing cycles can be elongated up to 5 to 6 times their original shape. They also 

reported that this rubbery and elastic nature is a strong indication of the formation of a new 

material with high mechanical strength [134]. Jiang and his co-workers reported that the 

structure and mechanical properties of PVA hydrogels changed significantly with the increase 

of freeze-thaw cycle. They found that at 5 freeze-thaw cycle the hydrogel’s Young’s modulus 

increased from 3.6 kPa to 11.4 kPa, which is very similar to porcine liver tissues [65]. 

 

Li and his group (2015) developed a pelvic model with transparent polyvinyl alcohol hydrogel 

as a substitute for human soft tissue. In the process of building prostate tissue mimicking phan- 

tom they used 7 freeze-thaw cycle. They used insertion force comparison between organ and 

tissue mimicking phantom and found the same mechanical properties between the two [80]. 

 

In 2009, Wang et al. experimented on PVA-C to mimic natural lumbar intervertebral disc [76]. 

They used PVA-C due to its high-water content, excellent biocompatibility, and versatile 

mechanical properties [6, 76, 79]. They found unique results with 3% 3 FTC, PVA-C, which 

became the number one candidate for tissue mimicking artificial nucleus pulposus. Their work 

helped to fill the gaps in replacing the human lumbar IVD with PVA-C. 

PVA cryogel is used to mimic human soft tissues (cornea, sclera, vitreous humor) [13]. PVA- 

C construct can mimic human tissue as it can be built to have similar biomechanical properties 

[6, 34]. PVA-C has increased mechanical strength while it exhibits no toxic effect when 

prepared in an appropriate ratio of PVA and water in repeated freeze thawed cycle of freezing 

at 22◦C and thawing at a room temperature [6]. PVA hydrogels are popular in “tissue 

engineering” for reconstructing and regenerating tissues and organs [65]. A typical tissue 

mimicking eye construct is prepared at six freeze-thaw cycle along with a block diagram of its 

preparation are shown in Figure: 2.5 and Figure: 2.6, respectively. 
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Figure 2.5: A tissue mimicking eye (PVA-

C) at 6 freeze-thaw cycles modified from 

[34]. 

Figure 2.6: Preparation of tissue 

mimicking eye construct with PVA-C 

hydrogel [5]. 

Soft tissue mimics can help medical residents and trainees get surgery training to enhance their 

skills for safer and more accurate surgical procedures. This state-of-the-art development will 

improve patient care and reduce health care cost significantly. For a researcher, understanding 

material properties of soft tissues is vital for the development of artificial organ and tissues. 

This novel work will help researchers to develop artificial organs which is biocompatible and 

has similar mechanical properties to biological soft tissues. 

 

2.7.2     Indentation Studies on Soft Tissue Mimics 

The existing literature on indentation on soft tissue can be categorized into two general groups. 

The first one includes numerical indentation studies on soft tissue and mimics, and the second 

one includes experimental indentation studies on soft tissue and mimics. A number of studies 

of numerical and experimental indentation on soft tissue and mimics have been published 

earlier, and some of those which are more relevant to this dissertation are discussed below: 

The mechanical properties of soft tissues and mimics have been investigated by many 

researchers previously.  

Table 2.2: List of some papers based on material and material characterization techniques 

modified from [38]. 
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Each type of soft tissue forming an organ has unique functionality, and while they are 

composed of very similar constituents, but have different structure and exhibit various 

properties [127]. They tend to be highly nonlinear, anisotropic and inhomogeneous [29, 30].  

To quantify and characterize non-linear, non-homogeneous and anisotropic soft tissue behavior 

accurately [94] many indentation techniques have been introduced previously [3, 30, 59, 92, 

94]. Due to the complexity involved in obtaining accurate data using indentation testing, 

interpreting such data towards characterizing mechanical properties of soft tissues used to be 

very challenging [94]. 

In 2011, Carson et al. conducted ex vivo spherical indentation tests for characterization of 

prostate tissue. They used 4.5 mm thick tissue specimens and reported that the Young’s 

modulus of diseased prostate was significantly higher than the surrounding normal tissue [19]. 

In 2008, Cox et al. reported that bioprosthetic heart valve offers promising alternative for 

current treatment and replacement of heart valves [10]. Heart valve leaflets are composed of 

collagen fiber networks and their mechanical properties are highly nonlinear, anisotropic and 

inhomogeneous [10, 13]. Indentation test provides sufficient information for characterization 

of nonlinear, and anisotropic soft tissue properties. In order to avoid complexities of using 

heart valve leaflet, they used polydimethylsiloxane (PDMS) for its low stiffness and similarity 

to soft biological tissue.  
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Firstly, they conducted indentation test with varying indenter sizes and compared their results 

to results obtained from tensile tests on the same specimens [13]. Secondly, they used uniaxial 

or biaxial statically constrained conditions for tissue engineered specimens, while they are used 

digital image correlation method to measure the anisotropy of tissue construct. After validation 

optimization algorithm was used to extract the specimen material parameter though 

minimizing the difference between experimental and simulated data [10]. 

In 2016, Delalleau et al. examined the mechanical properties of soft biological tissue using 

unconfined compression [135]. Based on limited previous studies, they reported that adipose, 

breast, livers, kidney and prostate tissues mainly exhibit compressive behavior [136] while 

most common form of indentation testing involved compression [137]. They also used flat- 

ended cylindrical indentation for mechanical properties of soft tissue specimens and to 

calculate their elastic moduli. In order to validate their results, they developed correlation 

factors and compared their results with uniaxial compression values [135]. 

Hertzian (spherical) indentation technique was the first kind to solve contact problems 

associated with elastic stress field where contact radius increases with applied load [31]. With 

Cylindrical (flat ended) indentation where contact radius is fixed with applied load a closed 

form solution is available [45]. Hayes et al. [29] developed a mathematical model for 

indentation test on articular cartilage. They considered it as a mixed boundary value problem. 

An axisymmetric flat ended cylindrical indentation was modeled as an infinite elastic layer 

bonded to a rigid half space. They reported that for a linear elastic flat-ended cylindrical 

indenter with a fixed contact area, the deformation is directly proportional to the applied load. 

In 1997, Zhang et al. performed a numerical study on soft tissue indentation to estimate the 

effective Young’s modulus [25]. They developed a nonlinear FE analysis to investigate the 

influence of friction and large deformation on the calculation of the effective Young’s 

modulus. A layered soft tissue on bone was also modeled as an indentation of an infinite elastic 

layer bonded to a rigid boundary. E = 100 kPa and ν = 0.499 was considered in the respective 

FE analysis. 
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In 2008, Cao et al. conducted a computational study of axisymmetric cylindrical indentation 

on a compressible elastic layer to solve axisymmetric frictional contact problem [30]. They 

further verified their results with numerical analysis. Based on Lebedev and Ulfiand [138], 

they developed a numerical technique to solve Boussinesq’s problem. The radius to thickness 

(a/h) ratio varies from (0~20). They introduced a dimensionless function Π which was 

normalized by a function [30]. When (a/h) approaches 1 solution degenerates to Sneddon’s 

equation. When (a/h) approaches infinity the load-depth curve converges to Jaffar’s solution 

[98]. 

To understand the effect of indenter geometry and soft tissue thickness Final et al. (2014) 

carried out a numerical analysis on cylindrical, spherical and rounded cylinder indentation. For 

a cylindrical indenter, the effect of finite thickness was significant, and it increased the in- 

fluence of large strains and friction between the indenter and sample. Even though for shallow 

indentations, the effect of finite thickness on cylindrical indenter cannot be neglected. For a 

spherical indenter, they found that there was a significant effect of finite thickness in shallow 

indentations because, the contact area depends on indentation depth [9, 29]. 

In 2005, Choi and Zheng investigated the effect of finite deformation on soft tissues [92]. They 

used different sized indenter to estimate Poisson’s ratio and Young’s modulus. They 

constructed two axisymmetric modeled with a flat ended rigid indenter of radius 5.5 mm and 

9 mm. High grid density was introduced underneath both indenter for simulation. The modeled 

soft tissue was considered a linearly elastic and isotropic material. 

A number of mathematical models have been developed [27, 28] to explain the behavior of 

soft tissues. Unfortunately, it is not possible to describe mathematical models for nonlinear 

materials without restoring to numerical models [89]. Indentation testing is not only used for 

characterizing solids [40] but also it is an ideal tool for investigating tissue mimics and their 

developments in tissue engineering applications [96, 97]. 

To avoid the stress singularity, they also introduced a round edge cylindrical indenter with a 

radius of 10 µm. They considered the material as isotropic and used Ogden hyperelastic 

constitutive law with Ogden parameters, µ = 2.553 kPa and α = 1. They reported that when the 
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ratio of the sphere of the indenter radius to the internal radius of the indenter less than one, the 

rounded cylindrical indenter behaved like a cylindrical indenter. They also reported that there 

was a significant thickness effect on Poisson’s ratio and non-dimensional value k. 

In 2004 Samani and his co-worker developed a measurement method to characterize material 

parameters of breast tissue. They developed a tissue indentation technique to obtain the force- 

displacement response of breast tissue. They used a tissue specimen of (15x15x10) mm3 and 

constrained it within a cylinder to minimize tissue motion and deformation. A cylindrical 

indenter of diameter 5 mm connected with a servomotor used for indentation response and 

output was recorded via a LabVIEW. They used data inversion technique and forward analysis 

for tissue characterization. [15]. 

Zhang and his co-workers conducted an extensive study of hyperelastic material with spherical 

indentation through theoretical, computational, and experimental work [118]. They used 

constitutive models including neo-Hookean, Mooney-Rivlin, Fung, and Arruda-Boyce models. 

Based on hyperelastic load-displacement results, they examined the applicability of Hertzian 

solution to the measurement of the initial shear modulus. They have conducted tests on 

synthetic tissue made of polydimethylsiloxane to validate their theoretical analysis. They 

reported that the hyperelastic indentation response on soft materials is an ill-posed problem. 

They stated that an inverse problem is ill-posted if (i) a solution to the problem does not exist 

(existence) (ii) more than one solution exists (uniqueness) and (iii) the stability of the solution 

is violated [139, 140]. In order to investigate the solution of the inverse problem, they also 

mentioned the importance of the above-mentioned properties since there is no straightforward 

method of characterizing the hyperelastic material properties of soft tissue. 

Naimani and Simha conducted an axisymmetric finite element analysis to investigate hyper- 

elastic parameters of soft tissue layers [95]. They used Mooney-Rivlin, polynomial (POLY), 

exponential (EXP) hyperelastic material model for hyperelastic parameter extraction. They 

reported that these parameters are independent of E. They used optimization algorithm for 

parameter extraction then conducted R2 test for convergence accuracy and sensitivity analysis 
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by adding percentage of error. They validated their results with Samani et al. [137] and Cox et 

al. [10]. 

Mesamunera and co-workers [90] experimented and modeled brain tissue using anisotropy 

assumption. They also implemented FEA parameter estimation algorithm for material 

characterization [91, 129]. Previous researchers reported that the stiffness of brain is very low, 

and it is about eight orders of magnitude less than engineering material [142]. Samani and his 

coworker worked on characterizing the nonlinear behavior of breast tissues. They mentioned 

that breast tissue has low stiffness and undergoes large deformation [15]. Simha and his 

coworker reported that the nonlinear elastic parameters of breast tissue is an indicator of breast 

cancer [143]. Based on experimental analysis, Kruskop discussed the dependency of Young’s 

modulus of breast tissue with the level pre-compression which further demonstrates breast 

tissue nonlinearity [137, 144]. 

 

In 2016, Isvilanonda et al. conducted experimental work and FE simulation on sub calcaneal 

soft tissue [91]. They used inverse FE analysis to identify the first order and second-order 

Ogden hyperelastic material properties of the tissue. They followed Pai and Ledoux [141] 

testing protocol and method for the preparation of test specimen. They used displacement 

control triangle waves of frequencies (1Hz) to compress the tissue to an average of 48% strain. 

They averaged the data from three consecutive loading and unloading load-displacement 

cycles be- fore and using them as input data in their inverse FE analysis. 

 

They reported that, at 30% compression the simulated deformation was within 3.6% of the 

peak deformation of the analytical solution [91]. They used inverse analysis for error 

optimization and parameter estimation and found consistency with experimental results. They 

suggested that the force-displacement response from the model was highly sensitive to 

Poisson’s ratio and Ogden coefficient α. 
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2.8    Summary  

 

In this chapter, an extensive literature review was conducted regarding indentation 

biomechanics of soft tissues. The objective of this chapter was to investigate the biomechanics 

of polyvinyl alcohol cryogel (PVA-C). Human tissues are nonlinear, anisotropic, and 

heterogenous. Due to the complexity involved in obtaining accurate experimental data, 

characterizing mechanical properties of soft tissues is challenging. 

Many previous researchers discussed about large strain rate and materials intrinsic 

nonlinearity. Based on the available literature, it may be hypothesized that, despite of the 

understanding of the tissue responses from indentation test, still there is still a huge gap of 

understanding between the distribution of stress at any point within the specimen. 

FE software Abaqus will be used for characterizing mechanical properties of soft tissue 

phantom. The experimental data provided by [38] would be used in the next chapter for 

numerical analysis. 
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Chapter 3 

 

 

 

Development and Validation of Numerical 

Model 

 

3.1 Introduction  

 

Finite element method (FEM) was introduced in the mid-nineteenth century to solve elastic 

structural analysis problems in civil and aeronautical engineering where a system of partial 

differential equations that govern the problems needs to be solved. This method has been used 

to solve numerous complex problems such as stress analysis, heat transfer, wave propagation 

and many other problems in the engineering domain where analytical solutions cannot be 

obtained. FEM is regarded as the gold standard for providing numerical solutions to 

challenging problems arising in engineering, applied mathematics, biomedical Engineering. 

There are many powerful commercial simulation packages readily available for structural 

analysis which have been developed based on FEM. They include Solid Works, ANSYS, 

MATLAB, Abaqus and others. Abaqus uses iterative solution techniques for solving nonlinear 

problems. It runs in two simulation environments, standard and explicit. Abaqus version 6: 13 

− 4(2013) has been used as a simulation tool as part of algorithm developed for characterizing 

material property in this thesis. 
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This chapter introduces the development and validation of a numerical model using (FEA) 

developed to simulate indentation. The main objectives of this chapter are stated as follows: 

• Developing a numerical model for the cylindrical indentation test using finite             

element analysis implemented in Abaqus to predict the behavior of linear and non-

linear materials. 

 

• Assessing the effects of contact interaction, choice of elements, methods of applied 

loads friction coefficient and sample thickness on indentation response. 

 

• Evaluating various constitutive relations used for linear and non-linear elastic models 

used for matching experimentally acquired stress and strain data of soft tissues with 

their simulated counterpart obtained through FEA. 

 

• Evaluation of the finite element models based on experimental results for the 

indentation problem. 

The first section of this chapter describes a general technique for solving a solid mechanics 

problem using FEM Abaqus version 6:13−4(2013). This section also describes the steps 

involved in the simulation, including the mathematics behind solving non-linear finite element 

equation using the Full Newton method. The second section of this chapter discusses the 

development and implementation of the numerical model, the third section of this chapter 

discusses non-linear hyperelastic models and finally the fourth section addresses validation of 

the model. This chapter is concluded with a brief validation exercise followed by a summary. 

 

3.2    Procedure for Solving a Numerical Problem 

In order to characterize the mechanical properties of soft biological tissue by Finite Element 

Method, a detailed understanding of the numerical problem is essential. To solve the system 

of equations, knowledge of the global stiffness matrix formulation is essential. A detailed 
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theoretical understanding of the problem is crucial to validate results in the simulated 

environment. 

3.2.1    Finite Element Analysis 

This section discusses the approach for the finite element analysis. A commercially available 

software Abaqus completes the following tasks.: 

1. Pre-processing: this task defines geometry including discretization using finite 

element meshing, material property, boundary condition and loading. 

 

2. Simulation: in this section, the solver involves forming the problem’s stiffness matrix 

based on approximations to the governing equations and the FE mesh before solving 

the equations and providing a solution for the discretized domain. This is the main 

processing unit. 

 

3.  Post-processing: In this section, the solutions are interpreted, visualized and presented 

either in a tabular or graphical form. 

 

3.2.2    Numerical Model Algorithms 

The solution criteria of numerical problems fall under two methods: (i) implicit method and 

(ii) explicit methods. Both these methods are discussed below: 

 

Full Newton Method: The Newton Raphson method, also known as the Newton Method or 

the Full Newton Method, is another method for solving nonlinear finite element equations. 

The Full Newton equation can be written in terms of the discretized equilibrium equations: 

                             

                                δeϑT K.u = −δϑT r                                                               (3.1) 

where δeϑ are the arbitrary virtual velocities, K is denoted as the stiffness matrix and r is the 

residual vector. The discretized Full Newton equation is stated below: 

                                        K(xk). u = −r(xk)                                                          (3.2) 
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                                           Xk+1 = Xk + u                                                                       (3.3) 

For each iteration k, both the residual vector and the stiffness matrix are re-evaluated, and a 

displacement increment u is calculated by pre-multiplying an inverse of the stiffness matrix 

both sides of Equation (3.2). This iteration continues until a convergence criterion is satisfied. 

Full Newton is a computationally expensive method which requires considerable processing 

time. 

 

3.2.3    Explicit Method 
 

The explicit FEM method calculates the incremental procedure at a later time = tn+1 and 

updates the stiffness matrix based on geometry and material changes. It calculates a linear 

change in displacement over each time step. Explicit method provides accurate results due to 

the small-time step. A major drawback of this method is the small increment increases the 

computation time and insufficient increment cannot provide correct solutions. 

 

3.3    Development of the FEA Model 
 

For the last few decades, numerical modeling has been a very popular tool for investigating 

structural analysis in simulated environment. Although there are some distinct advantages with 

indentation testing, the interpretation of the force-displacement behavior of very soft materials 

is not straight-forwards. A number of techniques have been developed for interpreting 

indentation using elastic theoretical models, namely: Hertz [45], Boussinesq [27], Love [48], 

Sneddon [28] and Hayes [29]. These techniques can be employed to characterize mechanical 

properties of soft tissues [26].  

Analytical models provide accurate solutions of mathematically defined problems. However, 

such models tend to rely on material and geometric simplifications, such as linear elasticity 

and isotropy, etc. Numerical methods, such as FEM use an approximation approach to convert 

partial differential equation to algebraic equations valid within each element domain. 
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Numerical methods can provide sufficiently accurate solutions in comparison with analytical 

methods and are now commonly used in science and engineering applications.  

Finite element analysis (FEA) is currently the most widely used numerical method that allows 

us to process theoretical and experimental models to solve boundary value problems in 

engineering domain [40]. FEA has been widely used in biomedical engineering application 

including development of artificial biocompatible tissue and characterizing their properties. 

Numerous investigations have tackled indentation testing and its simulation using FEM. 

Anderson and his coworkers [145] worked on structural analysis tools to improve the 

understanding of the mechanical behavior of soft tissues. Many investigations conducted on 

soft tissue indentation have used flat-ended rigid indenter where non-linear response was found 

[30, 31, 59]. Cao et al. reported that most of the material obeys Hooke’s law at low strain but 

at higher strains, tissues exhibits non-linear behavior [30]. 

 

3.3.1    Constitutive Models 
 

ABAQUS/CAE is the complete simulation package used in this thesis. This package works by 

solving the following a system of stiffness equations [119]: 

                                                  [K]{u} = {F}                                                                 

(3.4) 

where K is the stiffness matrix, u is the displacement vector and F is the force vector. The 

solution process is stated below: 

1. Based on the definition of elements and nodes, discretize a continuous domain into a 

set of discrete sub-domains called finite elements. 

2. After determination of the group of elements and their corresponding nodes, this 

defines the following interpolation scheme to relate displacements within the element 

to nodal displacements: 
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𝑢𝑖(𝑿)    = ∑𝑁𝑎(𝑿)𝒖𝒊
𝒂

𝒏

𝒂=𝟏

 

  

    (3.5) 

where x stands for coordinate for arbitrary point in the solid and Na (X) presents as an 

interpolation function which must be satisfied by Kronecker delta stated below: 

𝑵𝒂(𝒙𝒃) = = {
1, 𝑖𝑓 𝑎 = 𝑏
0, 𝑖𝑓 𝑎 ≠ 𝑏

 

  

    (3.6) 

The shape function N can be determined for any order of P is written by the definition of 

Lagrangian: 

𝑁𝑖
𝑘  = ∏

𝑥 − 𝑥𝑗
𝑘

𝑥𝑖
𝑘 − 𝑥𝑗

𝑘

𝑝+1

𝑖=1,𝑗≠𝑖

 

  

    (3.7) 

3. Using shape function third step calculates the following element stiffness equation where 

[𝑲𝒆] and {𝑭𝒆} are the element stiffness matrix and nodal force vector. 

4. All the stiffness matrix [𝑲𝒆] and load vectors {𝑭𝒆} are assembled for each element in the 

domain Ωi into the following global stiffness equation. where [K] and {F} are the global 

stiffness matrix and global load vector respectively. 

5. Apply boundary conditions. 

6. Solve system of equations using {u} = [K]−1{F} 

Post processing in FE simulation provides nodal displacement, force, stresses at any point of 

interest. 

A significant body of literature is available on hyperelastic material modeling to predict 

mechanical response of soft tissues during indentation test. Choosing the right model is very 

important to identify accurate material constants [146, 147]. There are different forms of strain 

energy function for modeling incompressible and isotropic material [121, 147], transversely 

isotropic material [148] and orthotropic [149]material model. There are many constitutive 

models, including Ogden, polynomial, reduced polynomial, Arruda and Boyce, Neo-Hookean 
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solid and Mooney-Rivlin, Van der Waals, Yeoh models, that describe material strain energy  

as a function of the deformation [15, 26, 119]. A few of these models are discussed below, 

including Ogden hyperelastic model which has been introduced as a strain energy potential in 

this dissertation. 

 

3.3.1.1    Ogden Model 

 

The Ogden constitutive model is a phenomenological model developed by Ogden [150]. This 

model is based on the principle strain ratio rather than strain invariants. According to Ogden, 

strain energy functions are based on principle strains (λ1, λ2, and λ3) which are a directly 

measurable quantity [89]. Ogden strain energy function is considered for fitting the 

experimental data in this thesis. The Ogden strain energy density function is stated below [85, 

126]: 

𝑊    =∑
μi
αi

∞

i=1

 (λ1
αi + λ2

αi + λ3
αi − 3)  +∑ki(J

el  − 1)2i
∞

i=1

  

  

    (3.8) 

For incompressible material, the Jacobian become zero and the Ogden strain energy function 

is reduced to: 

𝑊    =∑
𝜇𝑖
𝛼𝑖

∞

𝑖=1

 (𝜆1
𝛼𝑖 + 𝜆2

𝛼𝑖 + 𝜆3
𝛼𝑖 − 3)   

    (3.9) 

Where                                        ∑
𝜇𝑖

𝛼𝑖

∞
𝑖=1  = 2𝜇𝑖        3.10) 

For incompressible material, the principle Cauchy stress can be calculated from 

                                                         𝜎𝑗     
=  𝜆𝑖

𝛿𝑊

𝛿𝜆𝑗
−  𝑃  (j=1,2,3 …)   (3.11) 

Also due to material incompressibility, the hydrostatic pressure p is eliminated from the 

deformation and taken into consideration for direct equilibrium equation: 
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𝜎𝑗     
=  ∑𝜇𝑖

𝑁

𝑖=1

𝜆𝑗𝑖
∞ − 𝑃 

  (3.12) 

Let us consider the compression to be uniaxial and let the strain be in the direction of com- 

pression where λ1 = λ and corresponding principle Cauchy stress σ1 = σ and where the two 

other two principal stresses are zero. As the material is incompressible and no lateral forces 

are applied in the analysis, the stretch equation becomes: 

λ𝟏  = λ𝟑 = λ−𝟏/𝟐   (3.13) 

µi and αi explains the shear behavior of the constitutive material parameters. The stress 

equation can be written as: 

𝜎    =  ∑𝜇𝑖

𝑁

𝑖=1

𝜆𝛼𝑖 − 𝑃 

  (3.14) 

and further manipulation leads to the following: 

0 =   ∑𝜇𝑖

𝑁

𝑖=1

𝜆𝛼𝑖/2 − 𝑃 

  (3.15) 

Substituting P from (3.15) in to (3.14) 

𝜎    =  ∑𝜇𝑖

𝑁

𝑖=1

(𝜆𝛼𝑖 − 𝜆−𝛼𝑖/2) 
  (3.16) 

where N = 1, 2, 3... and in this case N = 1 and the Ogden stress equation becomes 

𝜎    =   𝜇(𝜆𝛼𝑖 − 𝜆−𝛼𝑖/2)   (3.17) 

For nominal stress 

                                               T=𝜎λ−1/2       (3.18) 
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Hence the theoretical nominal stress for any soft tissue can be calculated by using the following 

equation [151]: 

                                               T=𝜇(𝜆𝛼𝑖−1 − 𝜆−𝛼𝑖/2−1)   (3.19) 

where, µ and α describe the shear behavior of the material. Ali and his colleagues reported that 

Ogden’s energy function is computationally more demanding than any other polynomial form 

in material characterization [147]. They also reported that the accuracy level of the Ogden 

model is high in fitting experimental data [89, 152]. 

 

3.3.1.2    Mooney-Rivlin Model 

 

The strain energy function in the Mooney-Rivlin model is as follows [102, 137]: 

                            W = ∑ Ci𝑁
𝑖+𝐽̇=1 j(I1 − 3)i (I2 − 3)j + ∑

1

𝐷𝑖
(𝐽ⅇ𝑙 − 1)

∞

𝑖=1
 2i                   (3.20) 

 When N = 2, α = 2 or α = −2, the Ogden hyperelastic model converts to: 

                            W = C10(𝐼1⃗⃗   − 3) + C01(𝐼 2 − 3) + K1/2 (J − 1)2                                   (3.21) 

 Cij is mentioned as C10,C01 and K1 are temperature dependent material parameters that can be 

obtained as follows: 

                          µ1 = 2C10, µ2 = 2C02, µ0 = (µ1 + µ2), and K0 = K1                              (3.22)  

Due to higher water content, soft biological tissue is considered as nearly incompressible 

material and the Jacobian (J) is equal to 1, hence the last term vanishes. 

                         W = C10(𝐼1⃗⃗    − 3) + C01(𝐼 2 − 3)                                                             (3.23)  

Among other constitutive models, the Mooney-Rivlin and Ogden models are the most favored 

ones. The hyperelastic parameters in these two models can be estimated experimentally 



51 

Chapter 3: Development and Validation of Numerical Model 

 

51 

 

through data fitting [14]. For cases with a large number of parameters, the fitting method can 

be complicated [25]. 

 

3.3.2  Choice of hyperelastic model 
 

The choice of the most appropriate hyperelastic material model depends on the accuracy of the 

experimental setup and results, stability of the material model and convergence of the FE 

analysis.   

The fitting of experimental data on the basis of optimization algorithm is not straight forward. 

Ogden et al. investigated three separate forms of strain-energy function based on principle 

stretches and mentioned two difficulties (a) relative errors propagated in the fitting process and 

(b) the existence of multiple sets of optimal material parameters for the same data sets. This 

multiplicity of extracted material properties can lead to very different numerical solutions for 

a given boundary-value problem [145]. Furthermore, difficulties involved in the fitting 

procedure are intrinsic to the problem in hand and are not dependent on the specific choice of 

constitutive law [145]. 

As soft biological tissues are anisotropic and inhomogeneous, it can be hypothesized that there 

is no universally accepted model for hyperelastic soft tissue behavior. Also, as the Ogden 

hyperelastic model works with the principal stresses and provides accurate optimization in 

curve fitting, this model is chosen for the development of the optimization algorithm used in 

this work as shown in Figures: 3.1 and Figure: 3.2. 
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Figure 3.1: Experimental vs fitted stress- 

stretch curve (BoGe10X). Optimization 

techniques provide accurate parameter 

estimation. [26]. 

Figure 3.2: Experimental vs fitted 

stress- stretch curve (BoGe10-G). 

Optimization techniques provide 

accurate parameter estimation. [26]. 

 

3.4    Application of Ogden Model 
 

3.4.1   Inverse Algorithm 

To estimate soft tissue hyperelastic parameters using indentation experimental data, inverse 

problem analysis is used. In the context of this work, the inverse problem is nonlinear, which 

can be solved using optimization. In this work, an optimization algorithm was developed where 

the cost function to be minimized is the difference between experimental force-displacement 

data and corresponding data obtained from FEM simulation of the indentation test [129]. 

 

3.4.2    Optimization Method 
 

The optimization algorithm developed in this work calculates a set of hyperelastic parameters 

that lead to best fit between experimental and FE generated force-displacement data. It uses 

inverse approach to minimize an objective function formed based on this criterion with respect 

to the unknown constitutive parameters [26]. 
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The parameter estimation procedure consists of the following three steps: (i) Record the 

mechanical responses of soft tissues whose hyperelastic parameters are to be determined; (ii) 

con- struct corresponding finite element model; and (iii) minimize error (cost) function that 

quantifies the deviation of the numerical model predicted data from the experimental data [94, 

157]. An optimization algorithm is developed in conjunction with MATLAB for calculating 

the unknown parameter (µ, α). 

Let us consider Λ = [Λ1, Λ2, … Λm]T are vector values of deformation, and [τ = τ1, τ2… τm] 

are the corresponding values of stress. (Λ, τ) are the given pair of data values. Ogden strain 

energy function (W) is considered for stress calculation and written as F(Λ, Q) : ℝ𝑋ℝ →  ℝ𝑛, 

where, Λ takes values Λi, 1 = 1....m and Q = [Q1, Q2, Q3…. Qn]
T is a set of n material parameters 

to be identified. The object function is defined as the squared 2-norm to be minimized [121] 

                                             

where F(Λ, Q) := [F(Λi, Q), ........, F(Λm, Q)]T. Using Equation: (3.24) we can conduct 

sensitivity analysis for the Ogden strain energy function [151]: 

                                                            

Here we use the MATLAB built-in function fminsearch optimization Toolbox to run an 

iterative optimization algorithm until the objective function is minimized. There are many 

optimization algorithms available in the literature based on slight modification of Newton-

Raphson iterative technique [121]. A number of researchers have published methods of 

material characterizations from soft biological tissues as discussed previously.  

Fellay et al. tackled the problem of characterizing material properties from gelatin gel. They 

found difficulties in choosing the right hyperelastic model [26]. They used the spherical in- 

dentation test for measuring the load displacement curve. The FE simulated load-displacement 

data of different stiffness values 0.06 to 55 kPa were inserted into the MATLAB optimization 



54 

Chapter 3: Development and Validation of Numerical Model 

 

54 

 

algorithm for parameter estimation. The parameters obtained using their work for hydrogel (µ 

= 3.67 kPa, α = −6.67) matches reported data provided by Gamonpilas et al. (µ = 3.1 kPa, α = 

−6.2) [11].  

The optimization process uses global or local minimization method for parameter estimation. 

Starting with an initial guess for the unknown hyperelastic parameters, these parameters are 

input in the tissue specimen FE model. The FE model leads to tissue response (e.g. indentation 

force-displacement) which is compared to the experimental data. Comparison process 

determines the value of the object function O(𝐩̂) for the actual set of target parameters 𝐩̂ at the 

respective iteration step. The target parameter vector p is updated based on the optimization 

algorithm to find an improved estimate that reduces the objective function. This process is 

repeated until an optimal set of hyperelastic parameters are found that lead to best matching 

between experimental and simulated data. The object function O(𝐩̂) is equal to the sum of the 

squared normalized element of the residual vector [26]: 

                                    

It was reported that the accuracy of the constitutive parameter (µ, α) depends on the initial 

guess of the optimization process (µ0 and α0). 

 

3.4.3    Trust Region Approach 
 

The Levenberg-Marquardt algorithm works with optimal parameter vector p iteratively, and 

an iteration counter k is implemented. In the iteration step k a correction ∆p(k) to the actual 

parameter vector p(k) is estimated.  The quadratic model 𝑜̃(p(k)) of the object function is 

approximated by Taylor series expansion as follows: 
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After identifying the optimal Ogden hyperelastic material properties, a parametric analysis is 

performed to evaluate the model’s sensitivity to the Ogden material properties (µ, α) perturbing 

each parameter by ±(1%). Fellay et al. also reported that only α is sensitive to material 

properties [26]. 

 

3.5    Axisymmetric Indentation Model 
 

Commercial finite element modeling software package, Abaqus is used to develop the 2D 

axisymmetric rigid, flat-ended, cylindrical indentation model. The radius of the indenter a is 

used to indent a test specimen of thickness h. Cylindrical polar coordinates are (r, θ, z) are used 

as the indenter axis coincides with the z-axis, r is perpendicular to z, and θ represents the 

angular distance between a reference line and r. 

For an isotropic elastic half-space, the axisymmetric displacement field w(r) is chosen in θ = 0 

plane with two degree of freedom (DOF). The test sample is bounded on the equipment sur- 

face, and shear traction between the indenter and test sample are assumed to be negligible. 

During simulation, the initial elastic modulus, E = 0.1 kPa, and Poisson’s ratio, ʋ = 0.499 is 

considered. This model is developed for the characterization of soft tissue phantoms. 
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3.5.1     Choice of Element Type 

Depending on the type of applications from simplest to complex FE simulations have been 

categorized as (2D) element shown in Figure 3.3. 

 

Figure 3.3:  Schematic of the 2D element used in FEA for solving solid mechanics problems 

[35].  

Each element is determined based on family, number of nodes, degree of freedom, formulation 

and integration. ‘Full integration’ refers to elements utilizing standard number of numerical 

integration points within FE element to obtain accurate integration involved in the elements’ 

stiffness matrix calculation. ‘Reduced integration’ is one order less than the ‘full integration’ 

rule. ‘Reduced integration’, linear elements have a smaller number of integration points within 

each finite element, leading to significant reduction of CPU calculation time at the expense of 

some accuracy. 

In this dissertation, models utilized FE with reduced integration. The mesh density is 

maximized (refined) in the vicinity of the indenter and test specimen and gradually decreased 

out- side the contact region. At least 7600 (CAX4RH) quadratic elements were generated in 

the meshing process for all of the finite element simulations. Fine FE meshing was used 

underneath the indenter to overcome the effect of hourglass during simulation. 
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3.5.2    Discretization of the Domain 
 

Before mesh generation, the domain was divided in many subunits and each one is called 

element. For the case of iso-parametric element, each element has a local coordinate system 

called natural coordinates. Using the same shape functions the element geometry can also be 

mapped. Let us consider ξ1, ξ2, ξ3 as the natural coordinates and n is the number of nodes. The 

shape function can be explained as 

             

The motion of the body is presented in terms of xa(t) 

                                 

Other solution fields such as displacement, velocity virtual velocity, can also be expressed 

using the shape functions (ABAQUS User’s Guide Vol. 5, 2013) 

 

3.5.3     Mesh Design 

Mesh generation is an extended discretization process that provides control to converge a 

solution accurately. Changing grid density is the fine-tuning tool that makes the optimum 

balance between computation and the accuracy of the solution. The cylindrical indenter used 

in FE simulation is perfectly rigid, hence is modeled as an analytically rigid body. A rigid body 

reference point is assigned on the tip of the indenter for the translations of variables on a single 

node. A typical meshing of the specimen for spherical indentation and meshing of the specimen 

for uniaxial indentation are shown in Figure: 3.4 and Figure: 3.5. 



58 

Chapter 3: Development and Validation of Numerical Model 

 

58 

 

  

Figure 3.4: Meshing of the specimen for 

spherical indentation. 7600 (CAX4RH) 

elements were generated in the meshing 

process [36]. 

Figure 3.5: Meshing of the specimen for 

uniaxial indentation. 11000 (CAX4RH) 

elements were generated in the meshing 

process. 

Four-nodded axisymmetric linear quadrilateral elements are utilized. Reduced integration was 

employed to reduce computation time. Abaqus used axisymmetric, first order, four-noded 

bilinear, reduced integration with hourglass control ‘CAX4RH’continuum element 

respectively. The indentation problem was modelled using contact mechanics where the rigid 

surface (indenter) was considered as master surface and the surface of the soft tissue is 

considered as slave surface in a contact pair. To have a better understanding about the 

deformation pattern, bias element distribution was implemented. Very fine mesh was used 

underneath the master surface, and 5% bias ratio was introduced to decrease the grid density 

from finer to coarser for the area farther from the indenter. 

 

3.5.4     Indenter-Specimen Interaction 
 

Indentation deals with the theory of contact problem. There are two kinds of contact interaction 

(i) interaction normal to the surface and (ii) tangential to the surface. Contact pair interaction 

between master and slave surface is shown in Figure: 3.6 and 3.7. 
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Figure 3.6: Schematic showing the master 

and slave surface and penetration 

restriction be- tween the two surfaces 

(ABAQUS User’s Guide Vol. 5, 2013) 

Figure 3.7: Schematic of the master and 

slave surface, where the interaction between 

surface and node was observed during FE 

simulation (Abaqus). 

Based on the definition of contact region in Abaqus manual, the normal component uses con- 

tact pressure on soft tissue. Rigid cylindrical indenter is chosen as the master surface and the 

soft tissue as the slave where the nodes on the two contacting surfaces are grouped together to 

create master and slave surfaces. In order to formulate interaction property surface-to-surface 

interaction the contact formulation Abaqus used Coulomb friction in the simulation. The rigid 

indenter and the soft tissue mimic were adjusted in such a way that contact region has zero 

clearance and acts as an initial condition before the application of load. The process was 

completed by specifying an “adjustment zone” in Abaqus. The “hard” contact relationship was 

introduced to define the normal contact that restricts the penetration of the slave surface into 

the master surface at the constraint locations. The coefficient of friction between the master 

and the slave surface can be changed according to the choice of interest. 

 

3.5.5    Effect of Coefficient of Frictions 

Together, the indenter and soft tissue were treated as a contact pair. The indenter is specified 

as master surface and the soft tissue slave surface. Coefficient of friction between the contact 

pair has been reported by others with a wide range [94]. As second order elements can cause 

problems in contact simulation, first-order elements were selected to form the slave surface. 
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Schematic of indenter to node interaction where friction coefficients are in effect and FE 

simulated load-displacement contours plot shown in Figure: 3.8 and Figure: 3.9. 

  

Figure 3.8: Schematic of the slip region 

where friction of coefficient is introduced 

between surface to node interaction  

Figure 3.9: Schematic of FE simulated load-

displacement contours plot at aspect ratio 

a/h=8, zero friction coefficient and Poisson’s 

ratio of 0.5. 

 

Friction coefficient plays an important role in numerical simulation. Many researchers paid 

special attention to frictionless interface between indenter and test samples in FE simulation 

[25, 139]. Cao et al. showed a correlation between the indenter radius to thickness ratio and 

the effect of friction in two different friction coefficients [30]. Also, Zhang et al. reported the 

effect of friction on the calculation of tissues, cryogel’s Young’s modulus [25]. In order to 

investigate the effect of friction on polyvinyl alcohol cryogel (PVA-C), a number of friction 

coefficients have been introduced in simulation as follows: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 etc. 

Marteau et al. discussed the influence of friction coefficient and identify optimized friction 

coefficient for numerical analysis [99]. 

 

3.5.6     Boundary Condition and Applied Load 
 

Boundary condition is applied to the specimen to prevent rotation and promote normal 

translation. In order to prevent rigid body motion, it is necessary to apply constraints. For an 
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axisymmetric model roller boundary condition is introduced along the symmetry of axis which 

only allows translation in vertical direction. The nodes at the bottom and right side of the mesh 

are fixed. In order to avoid boundary effect soft tissue mimic, the aspect ratio of indenter radius 

to specimen size was validated beforehand. Load control method was introduced where a 

concentrated force of 0.6 kN was applied on the top of the analytical rigid indenter. The 

boundary conditions underneath the indenter towards the z direction at the test specimen are 

shown in Figure: 3.10 and Figure: 3.11. 

  

Figure 3.10: Schematic of FEA (produced 

by Abaqus) for cylindrical indentation. 

Figure 3.11: Schematic of 7600 CAX4RH 

element mesh for cylindrical indentation. 

Case 1: There is no normal stress acting on the free surface outside the contact region σz. 

 uz(r, 0) = h;  0 ≤ r < a  (3.32) 

Case 2: The contact region between the indenter and the elastic half space (test specimen) are 

frictionless. 

 σz(r, 0) = 0;  r > a (3.33) 

Case 3: The force should be consistent for displacement in the z direction uz. Due to sharp edge 

of the cylindrical indenter σz → ∞, when r = a. 
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 σrz(r, 0) = 0;  r ≤ a (3.34) 

 

3.6     Validation of the Finite Element Model 
 

The nature of the stresses arising from the contact between two elastic bodies is of consider- 

able importance and was first studied by Hertz [31, 45]. To examine the suitability of finite 

element model assumptions and the simulated results and to implement physical model in real 

biomedical applications, model validation is necessary [158]. Boussinesq first investigated the 

problem associated with the distribution of stress within an elastic half space when it is de- 

formed by the normal pressure against its boundary of a rigid punch [28]. He used potential 

theory to solve this problem, and one of the cases was flat-ended cylindrical punch [48]. For 

validation, the FE solutions pertaining to linear elastic model for the displacement and stress 

are compared with Hertz, Boussinesq, Sneddon’s elastic analysis [25, 28]. 

 

3.6.1    Mesh Refinement 
 

Convergence analysis of the numerical solution was assessed for solving two-point boundary 

value problems and to minimize truncation error [159]. Accuracy in FEA depends on (i) the 

number of gaussian points involved in numerical integration, (ii) the number of elements 

involved in discretization, and (iii) the number of integration points used in the numerical 

experiment. In FE analysis, contact detection includes the definition of two elements: indenter 

as a master surface and soft tissue as a slave surface. Accuracy of a numerical solution depends 

on choosing appropriate mesh through mesh refinement process [160]. 

To obtain accurate detection of the contact between indenter and soft tissue the grid density of 

the indented area must be high [99]. The convergence for each thickness and friction 

coefficient are shown Figure: 3.12 and Figure: 3.13. 
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Accurate meshing confirms convergence and accuracy of numerical results that is mesh 

refinement and element size.  If coarse grid density is considered, solution will not be accurate 

[99]. It can be concluded that element size is inversely proportional to the number of discretized 

elements. In order to have a converged solution the number of discretized elements must be 

increased to a certain degree, but beyond some point further refinement, does not improve ac- 

curacy appreciably [160]. 

A fully non-linear finite element analysis was conducted for indentation simulation to obtain 

simulated response. Numerical studies are accomplished to examine the effect of indenter 

geometry and materials stress-strain pattern on the load-displacement output [161]. A test 

specimen of thickness 0.4 to 20 mm and axial length of 25 mm used to validate FE simulated 

analysis. 

The axisymmetric finite thickness isotropic FE models consist of three-nodded (CAX3) and 

four-node (CAX4RH) quad element (bilinear axisymmetric, quadrilateral, reduced integration, 

hourglass control). Static, general. non-linear geometry, equal step size 0.01 to a maximum 

100 number of increments used in each analysis step. Direct method equation solver and full 

Newton-Raphson technique was utilized in the simulation. Finite sliding, surface-to-surface 

contact discretization, and single configuration with no slave adjustment methods were 

  

Figure 3.12: FE simulated displacement at 

different number of elements for infinite thick 

model. Solution converges after mesh 

refinement process. 

Figure 3.13: FE simulated displacement with 

different number of elements for finite thick 

model. Solution converges after mesh 

refinement process. 
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initiated in the interaction process. A mesh convergence analysis was performed to determine 

that an adequate number of nodes and elements are present in the simulation. 

 

3.6.2    Validation with Hertz Theory of Elastic Indentation  
 

The solution for stress analysis problem between two elastic bodies placed in a mutual contact 

was first developed by Hertz [31]. His approximation assumptions are known as Hertz theory 

of elastic indentation which are stated below: [45]: 

1. The displacements and stresses must satisfy the differential equations of equilibrium 

for elastic bodies and the stresses must vanish at a great distance from the contact 

surface. 

2. The contact between the bodies are frictionless. 

3. At the outer surface of the body the normal pressure is assumed to be zero at the point 

of contact, and it is equal and opposite. 

4. The inner surface distance between the two bodies is zero at the outer surface of contact 

is greater than zero. 

5. The total distribution of pressure within the circle of contact provides the force acting 

between the two bodies. 

 

3.6.2.1    Stress Field for Spherical Indenter 

The normal pressure distribution directly beneath a spherical indenter of radius a is given by 

Hertz: 

 
                  

𝜎𝑧
𝑃𝑚

= −
3

2
(1 −

𝑟2

𝑎2
) ;      𝑟 ≤ 𝑎 

(3.35) 

The pressure distribution σz = 1.5Pm is a maximum at the center of contact and is zero at  the 

edge of the contact circle. Outside the contact circle, the normal stress σz is zero. The 
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r r2 

displacement of points on the surface of the specimen within the contact circle, measured with 

respect to the original specimen free surface [31, 45] is: 

 
𝑈𝑧 =

1 − 𝜈2

𝐸
   
3

2
 
𝜋

4𝑎
  (2𝑎2 − 𝑟2  );   𝑟 ≤ 𝑎        

(3.36) 

And outside the contact circle is: 

 
𝑈𝑧 =

1 − 𝜈2

𝐸
   
3

2
 
1

2𝑎
  [(2𝑎2 − 𝑟2  ) sin−1 (

𝑎

𝑟
)+𝑎𝑟 (𝑎 −

𝑎2

𝑟2
)]

1/2

      
(3.37) 

Equation (3.36) shows that the depth beneath the original surface of the contact circle (at r/a = 

1) is exactly one-half of the total depth at r = 0, which indicates that the surface deformation 

mode is always sinking-in for pure elastic materials. 

3.6.2.2   Stress Field for Cylindrical Indenter 

 

The stress field created by a cylindrical flat punch is very similar to Hertzian stress field for a 

spherical indenter. Cylindrical indentation is preferred over the spherical indentation because 

the contact radius of the cylindrical indenter is fixed. However, the sharp edge of the cylindrical 

punch indenter may create a stress singularity at the edge, leading to plastic deformation and 

tissue damage. The distribution of pressure beneath the rigid cylindrical flat punch is calculated 

based on the superposition of Boussinesq’s stress field equation as given below: 

 
                  

𝜎𝑧
𝑃𝑚

= −
1

2
(1 −

𝑟2

𝑎2
) ;      𝑟 ≤ 𝑎 

(3.38) 

Here, σz = 0.5 Pm  is a minimum at the center of contact and approaches infinity at the edge. 

Outside the indenter, σz = 0 throughout the surface. Beneath the indenter, Uz is the penetration 

depth beneath the original specimen free surface [31]. 

 
𝑈𝑧 =

1 − 𝜈2

𝐸
 
𝑎𝜋

2
𝑃𝑚;        𝑟 ≤ 𝑎        

(3.39) 

+ 
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r 

when, r is independent and outside the contact circle, the normal displacement is given below 

[28, 31]: 

𝑈𝑧 =
1 − 𝜈2

𝐸
𝑃𝑚𝑎sin

−1 (
𝑎

𝑟
) ;      𝑟 > 𝑎     

   

(3.40) 

Sneddon’s equations are used to solve Boussinesq’s problem. Also plots of stress components 

obtained from FE simulation are provided below in Figure: 3.14 and 3.15. 

  

Figure 3.14: Horizontal stress distribution vs 

specimen radius (25 mm) for linear elastic 

model. 

Figure 3.15: Vertical stress distribution vs 

specimen radius (25 mm) for linear elastic 

model. 

 

3.6.3    Validation with Boussinesq’s Solution 

Boussinesq developed the solution for vertical stresses below (a) the center (b) at any point (c) 

the edge (d) or, any type of circular loaded area under semi-infinite medium assumption. 

(a). Vertical stress below the center of a uniformly loaded circular area 

From Boussinesq’s equation for a uniform surface pressure the compressive stress at a depth h 

beneath the center line is given by: 
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𝜎𝑧 = 𝑃

{
 

 

1 −
1

(1 + (
𝑎
ℎ
)
2
)
3/2

}
 

 

     

   

(3.41) 

where, P is the uniform pressure over a circular area.  A typical stress distribution  at points 

below a load distributed over a circular area was given by Ahlvin and Ulery [37] as shown in 

Figure: 3.16 and Vertical stress below the center of the uniformly loaded circular area as a 

function of sample aspect ratio is also shown in Figure: 3.17. 

  

Figure 3.16: Vertical stresses at a point 

below a load uniformly distributed a circular 

area [37]. 

Figure 3.17: Variation of vertical stress vs 

sample aspect ratio analytical vs simulated 

data shown in Table 3.1. 

Table 3.1: Simulated vertical stress data obtained from different aspect ratio’s and 

Boussinesq’s stress equation 
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(b). Vertical deformation under uniformly loaded circular area 

Boussinesq equation for vertical deformation in this case of a uniform pressure p applied over 

a circular area of radius r is given by : 

 
∆ℎ= 𝑃𝑟

2(1 − 𝜈2)

𝐸
𝐼𝐹 

(3.42) 

Table 3. 2 Analytical vertical deformation obtained from Boussinesq’s deformation equation 

and compared with FE simulated results. 

According Boussinesq [27]: Influence Factor 

At the center 

Influence Factor 

At the Edge 

P = 
q

πr2
 =0.011937 kN/mm2 

E = 0.1 kPa 

r = 4 mm 

ν = 0.4999. 

IC = 1 IE = 0.637 

Boussinesq’s analytical 

solution ∆Bous = 0.4870mm 
∆Bous = 0.310226 mm 

Present FE simulated 

solution ∆FE = 0.4426mm 
∆FE = 0.308406 mm 

 

(c). Vertical stress at any point below a uniformly loaded circular area 

Vertical stress below a uniformly loaded flexible circular area was given by Ahlvin and Ulery 

[37]. A detailed calculation for vertical stress located at a depth z at any distance s from the 

center of the loaded area is given by: 

 σh = P(A' + B') (3.43) 

Where, A’, B’ are the functions of s/b and z/b detailed in tables provided in the Appendix. 

σI :  Vertical stress at point I  

σII : Vertical stress at point II  

σIII : Vertical stress at point III q : Uniform circular load 

A’, B’ : Partially influence factor which depend on, (z/b, s/b) 
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P=Force/ πb2 = 0.01193659282  

Vertical stress at any point below a uniformly loaded circular area and its FE simulation are 

shown in Figure: 3.18 and Figure: 3.19. 

  

Figure 3.18: Schematic of vertical stress at  

any point below a uniformly loaded circular 

area [31]. 

Figure 3.19: Axisymmetric FE model with 

fine grid density underneath the indenter sur- 

face. 

Table 3.3: Boussinesq’s analytical and simulated vertical stress. 

 s/b z/b s/b z/b s/b z/b  Vertical Stress Analytical 

(kN/mm2) 

FEA 

 0 0.2 1 0.2 1.5 0.2 (I). σI = P(A' + B') 0.011846 0.0153342 

A, 0.80388 0.38269 0.05251 (II). σII = P(A' + B') 0.005584 0.00603391 

B, 0.18857 0.08519 0.04448 (III). σIII = P(A' + B') 0.000092 0.00001049 

Table 3.2: Vertical stress at three points below a uniformly loaded circular area and its FE 

simulation. 

 

3.6.4     Validation with Sneddon’s Solution  
 

For this validation, a number of indentation tests were simulated using the model developed 

here using FEM and results compared with Sneddon’s equation. In the first developed here 

using FEM and results compared with Sneddon’s equation. In the first example the dimensions 

of the specimen were taken as (25 mm x 12.57 mm). A concentrated load of 0.6 kN was applied 
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on the top of cylindrical indenter of radius 4mm. The material was considered nonlinear with 

modulus of elasticity and Poisson’s ratio of 0.1 and 0.499 respectively. The FE model consists 

of 4216 nodes and 4130 elements. FE analysis provides maximum stress value of 0.0326 

kN/mm2 and from Sneddon’s equation value of 0.03 kN/mm2 which shows a very good 

agreement between simulated and calculated results. Schematic of force-displacement 

contours and stress contours for finite thick (25 mm x 12.57 mm) FE model are shown in 

Figure: 3.20 and Figure: 3.21.  

  

Figure 3.20: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.21: Stress contours of 

axisymmetric FE simulated finite 

thickness linear elastic model. 

In the second example, the dimensions of the specimen were taken as (25 mm x 10 mm). A 

concentrated load of 0.6 kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.49 respectively. The FE model consisted of 6239 nodes and 6134 (CAX4RH) and 105 

(CAX3) number of nodes elements. FE analysis led to a maximum stress value 0.0271 kN/mm2 

while Sneddon’s equation value 0.02879 kN/mm2 which shows a very good agreement 

between simulated and calculated results. Schematic of force-displacement contours and stress 

contours for finite thick (25 mm X 10 mm) FE model are shown in Figure: 3.22 and Figure: 

3.23. 



71 

Chapter 3: Development and Validation of Numerical Model 

 

71 

 

  

Figure 3.22: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.23: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 

In the third example the dimensions of the specimen were taken as (25 mm x 5 mm). A 

concentrated load of 0.6 kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 6868 nodes and 6690 (CAX4RH) and 178 

(CAX3) elements. FE analysis led to a maximum stress value 0.0168 kN/mm2 while Sneddon’s 

equation led to 0.0118 kN/mm2. Schematic of force-displacement contours and stress contours 

for finite thick (25 mm x 5 mm) FE model are shown in Figure: 3.24 and Figure: 3.25. 

  

Figure 3.24: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

 

Figure 3.25: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 
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In the fourth example the dimensions of the specimen were taken as (25 mm x 4 mm). A 

concentrated load of 0.6 kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 2519 nodes and 2484 (CAX4RH) and 35 

(CAX3) elements. FE analysis led to a maximum stress value 0.00268 kN/mm2 while 

Sneddon’s equation led to 0.0021 kN/mm2. Schematic of force-displacement contours and 

stress contours for finite thick (25 mmX4 mm) FE model are shown in Figure: 3.26 and Figure: 

3.27. 

  

Figure 3.26: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.27: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 

In the fifth example the dimensions of the specimen were taken as (25 mm X 2.667 mm). A 

concentrated load of 0.6 kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 1244 nodes and 1137 (CAX4RH) elements. FE 

analysis led to a maximum stress value 0.0085 kN/mm2 while Sneddon’s equation led to 0.0082 

kN/mm2.  

Schematic of force-displacement contours and stress contours for finite thick (25 mm X 2.667 

mm) FE model are shown in Figure: 3.28 and Figure: 3.29. 
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Figure 3.28: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

 

Figure 3.29: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 

In the sixth example the dimensions of the specimen were taken as (25 mm X 2 mm). A 

concentrated load of 0.6kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 1244 nodes and 1137 (CAX4RH) elements. FE 

analysis led to a maximum stress value 0.002193 kN/mm2 while Sneddon’s equation led to 

0.0021 kN/mm2. Schematic of force-displacement contours and stress contours for finite thick 

(25 mm X 12.57 mm) FE model are shown in Figure: 3.30 and Figure: 3.31. 

  

Figure 3.30: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.31: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 

In the seventh example the dimensions of the specimen were taken as (25 mm x 0.8 mm). A 

concentrated load of 0.6kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 1425 nodes and 1245 (CAX4RH) elements. FE 

analysis led to a maximum stress value 0.001456 kN/mm2 while Sneddon’s equation led to 
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0.0015 kN/mm2. Schematic of force-displacement contours and stress contours for finite thick 

(25 mm x 12.57 mm) FE model are shown in Figure: 3.32 and Figure: 3.33. 

  

Figure 3.32: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.33: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 

In the eight example the dimensions of the specimen were taken as (25 mm x 0.4 mm). A 

concentrated load of 0.6 kN was applied on the top of cylindrical indenter of radius 4mm. The 

material was considered nonlinear with modulus of elasticity and Poisson’s ratio are 0.1 and 

0.499 respectively. The FE model consisted of 2097 nodes and 1813 (CAX4RH) elements. FE 

analysis led to a maximum stress value 0.00049 kN/mm2 while Sneddon’s equation led to 

0.0004 kN/mm2. Schematic of force-displacement contours and stress contours for finite thick 

(25 mm x 12.57 mm) FE model are shown in Figure: 3.34 and Figure: 3.35. 

  

Figure 3.34: Displacement contours of 

axisymmetric FE simulated finite thickness 

linear elastic model. 

Figure 3.35: Stress contours of axisymmetric 

FE simulated finite thickness linear elastic 

model. 
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3.7    Summary  

In this chapter, a two-dimensional axisymmetric numerical model was developed for the 

cylindrical, spherical indentation and uniaxial testing in the finite element software package 

Abaqus to study material characterization of nonlinear soft biological tissue phantom (PVA-

C). A concentrated load was applied at the top of the indenter’s reference point which was also 

chosen at the right top corner of the indenter. The material (PVA-C) was characterized as 

nonlinear. To discuss the nonlinearity of this material, two hyperelastic models were discussed 

in this chapter. Due to nonlinear tissue properties, other, more suitable models were required 

for further investigation. Ogden and Mooney-Rivlin hyperelastic models were considered to 

be the most appropriate for this finite element analysis. 

At the initial stage of the study, linear elastic models were considered appropriate for the 

understanding of displacement pattern. Mesh refinement process was adopted for optimal 

convergence that ensured numerical accuracy. Finite and infinite thickness specimen were 

considered for FE simulation. 

In the validation phase, a series of numerical analysis were conducted using Abaqus to confirm 

whether simulated results are consistent with Boussinesq’s analytical solution. The simulated 

stress values were compared with Boussinesq’s analytical solutions and found good agreement, 

which were shown in Table: 3.2. Based on Boussinesq's solution, one can evaluate stress at 

any point within the specimen body. This investigation will help to calculate stresses at any 

point on a specimen where geometric nonlinearity is considered. 

The effect of relative indentation depth, aspect ratio, Poisson’s ratio and dimensionless k on 

the indentation response of soft tissues were investigated. This addition, a new function Ω will 

be introduced as a function of k (Φ, Ψ, Ω) [25]. At the second stage stress analysis were 

conducted for linear and hyperelastic model. Furthermore, a validation exercise was conducted 

using Hayes, Cao’s and Zhang’s data. Finally, to fulfill the short comings from indenter-

specimen interaction, a novel analytical solution will be developed to investigate the material 

properties of soft tissues. and will be included Chapter 4 of this dissertation.
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Chapter 4 

 

 

Characterizations of PVA-C Material 

Behavior using Finite Element Method 

 
4.1    Introduction 

 

For the last couple few decades, indentation techniques have played an active role for material 

mechanical characterization. Analytical solutions for nonlinear elastic materials are not avail- 

able for finite indentation depth. However, for linear elastic materials, closed form solutions 

are readily available [95]. Having effective solutions non-linear elastic tissue undergoing in- 

dentation testing is very important for various future biomedical applications. Specimen’s 

friction coefficient, displacement influence factor, Poisson’s ratio, relative indentation depth, 

aspect ratio influences the tissue response greatly, and hence should be considered properly in 

estimating tissue properties. It has been reported by many previous researchers that most 

pathological tissues stiffer than their healthy tissue counterparts [25, 162]. Flat-ended 

cylindrical indenter is used in this dissertation to mechanically stimulate finite and infinite 

thickness soft tissues or mimics (PVA-C) to characterize the non-linear mechanical properties 

[33]. 

The main objective of this chapter is to investigate the behavior of non-linear material. This 

chapter will investigate the following using FEM: 

(i) the mechanical properties of Polyvinyl Alcohol Cryogel (PVA-C) using finite and 

infinite thickness. 
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(ii) validation of Boussinesq’s, Sneddon’s, Cao’s, Zhang's theory of elastic 

indention and compare their results with the results obtained from this study. 

(iii) the effect of displacement influence factor on finite thickness specimens 

with linear and non-linear elastic model. 

(iv) the effect of Poisson’s ratio, aspect ratio and relative indentation depth and 

friction coefficient on PVA material response. 

(v) results obtained from the model used in this study and compared their results 

with previous published works. 

The first section of this chapter describes a general technique for solving a linear and non- 

linear problem using Abaqus. This section also describes convergence and compares 

between experimental and FE simulated results. The third section of this chapter discusses 

Hayes, Cao’s and Zhang’s model. Finally, the fourth section addresses about a novel 

analytical solution by modifying Zhang’s model. This chapter concludes followed by a 

summary. 

 

4.2 Finite Element Model of Soft Tissues 
 

Commercial FE software package Abaqus was used to create an axisymmetric model for 

examining indentation. PVA-C was used a soft tissue mimic and a flat ended cylindrical 

indenter was modeled in this simulation. The contact surface between the indenter and the soft 

tissue was set as frictionless. Soft biological tissue is generally considered to be as 

incompressible [39], hence the linear elastic models, the Poisson’s ratio and Young’s modulus 

were set as 0.499 and 10 kPa, respectively. A concentrated load of 5 kN was applied on the top 

of the indenter. For optimal numerical accuracy, high mesh density was adapted underneath 

the indenter and convergence criteria was verified. Indentation tests were simulated under 

linear and non-linear hyperelastic model assumptions. 
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4.2.1     FE Mesh Convergence Assessment 

Numerical mesh convergence analysis is necessary in any numerical solution used for solving 

boundary value problems for minimizing model errors [73]. Accuracy of FEA results depends 

on (i) number of Gaussian points engaged in the FE numerical integration and (ii) number of 

elements involved in domain discretization. Also, accuracy of a numerical solution depends on 

choosing the appropriate mesh through a mesh refinement process [160]. Mesh convergence 

analysis, whereby the size distribution of FE elements is altered until desired accuracy is 

achieved, is essential to ensure results reliability [163]. Pinyochotiwong et al. reported that, 

element size is inversely proportional to the number of discretized elements [160]. In order to 

obtain accurate results in the simulated environment, mesh optimization is critical. The mesh 

density is maximized (refined) in the vicinity of indenter and gradually decreased outside the 

contact region. Mesh refinement process is implemented for convergence and finally optimal 

grid density is chosen for all FE simulations. 

In this work, 5346 (CAX4RH) quadratic elements were generated with aspect ratio > 1 for all 

elements. Average aspect ratio of elements was 1.23 while the least desirable aspect ratio was 

2.65. Out of the 5346 elements, 120 of the elements were triangular elements of type (CAX3H) 

with aspect ratio > 1 with average aspect ratio of 1.27 and highest aspect ratio of 1.84 and 

shape factor <0.01. The left side of the vertical boundary was subjected to axisymmetric 

boundary condition U1=U3=UR2=0 which allows the test sample to move only in the vertical 

direction, and the boundary condition of the bottom and right side was U1 = U2= U3 = UR1 = 

UR2 = UR3 = 0. 

An axisymmetric flat ended cylindrical and spherical indenter was used in this simulation. 

Very fine mesh was used underneath the indenter region. The contact ratio between the 

indenter and material was (1:1). Convergence criteria was checked for each thickness. Except 

for the loading region, the rest of the material was meshed at a 5% bias ratio. Large 

displacement criteria were also invoked in this analysis. For a nonlinear material, optimal 

convergence is obtained after mesh density corresponding to 5000 elements as shown in 
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Figure: 4. 1, and optimal convergence was obtained at mesh density corresponding to 4600 

elements as shown in Figure: 4.2. 

  

Figure 4.1: Non-dimensional value K is plot- 

ted against different grid density for converged 

solution. Friction coefficient is Ω = 0. 

Figure 4.2: Non-dimensional value K is plot- 

ted against grid density for converged 

solution. Friction coefficient is Ω = 1. 

To understand the combined effect of the indenter radius and specimen thickness the 

indentation procedure was simulated using a model with axisymmetric finite elements. For 

finite and infinite thickness specimens, the load-displacement contours are shown in Figure: 

4.3 and Figure: 4.4.  

  

Figure 4.3: Force-deformation curve of 

specimen under cylindrical indenter. A 

boundary effect is observed for finite 

thick specimen 0.5 mm and Ω = 0. 

Figure 4.4: Force-deformation curve for a 

specimen with infinite thickness under 

cylindrical indentation. No boundary effect was 

observed for infinite thick 40 mm and Ω = 0. 
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The coefficient of friction between the soft tissue and the indenter was set to zero. For in- 

dentation with large thickness, the soft tissue does not experience any boundary effect. When 

the thickness of the soft tissue decreases, the boundary will influence the apparent stiffness of 

the material. Similarly, the indenter size, and thickness plays an important role in the stiffness 

measurement. Thus, Indenter size, thickness plays an important role in the linearity of the 

indentation force-displacement data. 

 

4.2.2    Experimental Results vs FE Model Simulated Results 
 

At the initial stage of this numerical work, an axisymmetric FE model was developed using 

Abaqus and optimum mesh convergence was ensured. 7600 (CAX4RH) quadrilateral elements 

were taken in the convergence process. A 4-mm radius of cylindrical and spherical indenters 

were taken in the simulation process. Experimental data of PVA-C obtained from [38] was 

taken as an input parameter for this numerical work. 

 

4.2.2.1     Cylindrical Indentation 

 

A typical force-displacement curve for experimental and FE simulated data for 5% and 15% 

PVA-C are shown in Figure: 4.5 and Figure:4.6, respectively. 

  

Figure 4.5: FE simulated and experimental 

data for PVA-C, 2 FTC at 5% concentration 

Figure 4.6: FE simulated experimental data 

for PVA-C, 2 FTC at 15% concentration. 
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Ogden model is used in the curve fitting process. As this fitting is non-optimized, inverse 

method will be applied to identify optimized Ogden parameter from cylindrical indention 

force-displacement curve for all PVA-C samples. PVA-C 5%, 2FTC showed hyperelastic 

behavior as shown in Figure: 4.5. PVA-C 15%, 2FTC showed liner elastic behavior as shown 

in Figure: 4.6. This is due to the increase PVA-C concentration. 

 

4.2.2.2     Spherical Indentation 

 

A typical force-displacement curve for experimental data obtained from [38] and FE simulated 

data for 5% and 15% PVA-C are used as input parameter for Mooney-Rivlin hyperelastic 

model shown in Figure: 4.7 and Figure:4.8, respectively. 

  

Figure 4.7: FE simulated and experimental 

data for PVA-C, 2 FTC at 5% concentration. 

Figure 4.8: FE simulated and experimental 

data for PVA-C, 2 FTC at 15% concentration. 

The experimental force-displacement data is plotted against corresponding FE simulated PVA-

C (mimic) with finite thickness and 5% concentration shows nonlinearity. Also, PVA-C 

(mimic) with finite thickness and 15% concentration shows high stiffness based on the shown 

force- displacement relationship. 

 

 

4.2.2.3     Uniaxial Test 
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A typical stress-strain relationship pertaining to for experimental test obtained from [38] and 

corresponding FE simulated (Ogden model) data for 5% and 15% PVA-C  are used as input 

parameter for Mooney-Rivlin hyperelastic model are shown in Figure: 4.9 and Figure: 4.10, 

respectively. 

  

Figure 4.9: FE simulated (Ogden model) and 

experimental data for PVA-C, 2 FTC at 5% 

concentration. 

Figure 4.10: FE simulated (Ogden model) and 

experimental data for PVA-C, 2 FTC at 15% 

concentration. 

The experimental stress-strain data is plotted against its FE simulated data counterparts. PVA-

C (mimic) with 5% concentration and finite thickness shows nonlinearity. Also, PVA-C 

(mimic) with 15% concentration shows high stiffness based on stress-strain relationship. 

 

4.2.3   Finite vs Infinite Thickness 

Finite thickness: Indentation with a flat-ended cylindrical indenter applied to a sample with 

finite thickness was simulated using FEM. The mesh consisted of 5346 quadrilateral elements 

with aspect ratio greater than 1, average aspect ratio of 1.23, and largest aspect ratio of 2.65 of 

the mesh also included 120 triangular elements with aspect ratio greater average aspect ratio 

1.27 and largest aspect ratio 1.84. 

Infinite thickness: A flat-ended cylindrical indentation of infinite thickness is considered 

numerical FE simulation. The FE mesh consists of 4584 quadrilateral elements with aspect 

ratio of 2.88. It is also consisting of a triangular element 62 with aspect ratio greater than 1, 

average aspect ratio of 1.23, and largest aspect ratio of 1.61. 
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FE simulations were carried out for samples with (i) Finite and (ii) Infinite thickness load- 

displacement data were obtained for high accuracy of the FE solution, fine meshes were 

employed in the analysis. Typical force-displacement and displacement-distance contours are 

shown in 4.11 and 4.12. 

  

Figure 4.11: FE simulated load displacement 

data for samples with finite and infinite 

thickness where displacements of 0.4706 mm 

and 0.6818 mm were recorded. 

Figure 4.12: Simulated displacement data 

along true distance along path for finite and 

infinite thickness with maximum 

displacements of 0.4706 mm and 0.6818 mm. 

 

4.3    Stress Analysis using FEA 
 

A sample with a thickness of 12.57mm under indentation with a cylindrical indenter was 

simulated for stress using axisymmetric finite elements. For effective stress analysis using 

Sneddon’s model, the total load required to produce deformation is given below: 

 
𝑃 =

2𝐸𝑎𝑤

1 − 𝜈2
 

(4.1) 

E is the Young’s modulus, ν is the Poisson’s ratio, a is the indenter radius, r is the specimen 

length and w is the depth of penetration. The distribution of stress beneath the punch is given 

by following equation [28]: 
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𝜎 =

2𝐸𝑤

𝜋(1 − 𝜈2)
(𝑎2 − 𝑟2)−1/2 

(4.2) 

 

4.3.1    Effect of Stress on Thickness and Aspect Ratios 

Indentation with a flat-ended cylindrical indenter applied to a sample with finite thickness 

specimen with the dimension of (19 mm x 12.57 mm) was simulated using FEM. The mesh 

consisted of 7600 quadrilateral elements A stress contours for finite thick is shown in Figure: 

4.13. 

 

Figure 4.13: FE based stress contours for a sample with finite thickness under cylindrical 

indenter 

Abaqus uses “query” to find the stress any point within the specimen. Maximum stress from 

the simulation was 0.037 kN/mm2 and noted from the FE (Abaqus) simulation also pointed at 

Figure: 4.13. The displacement value obtained from numerical (FE) analysis was used in 

Equation (4.2) to calculate stress. Result shows good agreement between analytical and 

simulated solutions.  

An axisymmetric FE model was developed using Abaqus. The effect of stress on thickness and 

aspect ratios are simulated numerically. The simulated results were compared with Sneddon’s 

analytical solution. A typical stress distribution vs thickness and aspect ratios for a sample with 
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finite thickness were calculated using Sneddon’s model shown in Figure: 4.14 and Figure: 

4.15.  

  

Figure 4.14: Stress vs thickness graph of a 

sample with finite thickness loaded by a 

cylindrical indenter, Sneddon’s solution 

shows good agreement between analytical and 

simulated solutions Table: 4.1. 

Figure 4.15: Stress vs aspect ratio graph of a 

sample with finite thickness loaded by a 

cylindrical indenter, Sneddon’s solution 

shows good agreement between analytical and 

simulated solutions Table: 4.1. 

 

Table 4. 1: Shows analytical and numerical solutions for Sneddon’s model. 

Thickness Aspect Ratio Young’s modulus Shear Modulus Displacement Stress (Analytical) FEA Stress 

in (mm) a/h E μ FEA (mm) σzz (N/mm2) σzz (N/mmˆ2) 

12.57 0.3182 0.1 0.0333 0.3788 0.0326 0.03 

10 0.4 0.1 0.0333 0.339 0.0287 0.027 

5 0.8 0.1 0.0333 0.1987 0.0168 0.011 

4 1 0.1 0.0333 0.1551 0.0026 0.002 

2.67 1.498 0.1 0.0333 0.0963 0.0081 0.008 

2 2 0.1 0.0333 0.02537 0.0021 0.0021 

0.8 5 0.1 0.0333 0.01782 0.0015 0.0014 

0.4 10 0.1 0.0333 0.00433 0.0004 0.0004 

 

4.3.2    Stress Distribution for Linear Elastic and Hyperelastic Model 

Sneddon’s solution allowed us to calculate stress any point underneath the indenter. An axe-

symmetric model is developed with the dimension of (19 mm x 12mm). Displacement control 

indentation is employed to calculate stress. Experimental stress-strain data taken from the 

PVA-C specimen at a concentration of 5%, 2FTC, simulated and the obtained stress-strain 

contours for linear elastic and hyperelastic model are shown in Figure: 4.16 and Figure: 4.17. 
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× 

  

Figure 4.16: Stress contours (S, S22) at (δ = 

8mm) for PVA-C with 5% and 2FTC (19 mm 

X 12 mm) for linear elastic model. 

Figure 4.17: Stress contours (S, S22) at (δ = 

8mm) for PVA-C with 15% 2FTC (19 X mm 

12 mm) for hyperelastic model. 

FE simulated vertical stress at a concentration of 5%, 2FTC are plotted against sample radius 

for linear elastic and hyperelastic models and shown in Figure: 4.18 and Figure: 4.19. 

  

Figure 4.18: Distribution of stress under the 

indenter. For hyperelastic model and linear 

elastic model LE1 (E=10kPa, Poisson’s 

ratio (ν)=0.499). 

Figure 4.19: Distribution of stress under the 

indenter. For hyperelastic model and linear 

elastic model LE2 (E=1kPa, Poisson’s ratio 

(ν)=0.499). 

Vertical stress distribution along horizontal and vertical axes were plotted for linear elastic and 

hyperelastic model are shown in Figure: 4.20 and Figure: 4.21 where PVA-C data of 10%, with 

2FTC and 6FTC concentrations were used in the simulation. 
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Figure 4.20: Vertical stress distribution for 

hyperelastic model of PVA 10% and 2FTC 

along X direction.  

Figure 4.21: Vertical stress distribution for 

hyperelastic model of PVA 10% and 6FTC 

sample along Y direction.  

Vertical stress distribution along horizontal axis was plotted for hyperelastic and linear elastic 

model shown in Figure: 4.21 and Figure: 4.23. 

  

Figure 4.22: Vertical stress distribution for 

hyperelastic model of PVA 10% and 4FTC 

sample along X direction. 

Figure 4.23: Vertical stress distribution for 

linear elastic model for different E values 

along Y direction. 
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4.4    Model Validation 

A numerical analysis of indentation was conducted by the closed-form approximation 

incorporating the features of elastic half space (finite and infinite thick) model and simulated 

results were compared with theoretical calculations of Sneddon’s, Hayes, Cao’s and Zhang’s 

model. 

 

4.4.1    Hayes Model 
 

To characterize the mechanical properties of soft tissues indentation tests have been conducted 

previously by several investigators. Due to lack of theoretical solutions, appropriate 

constitutive models for layered soft tissue specimen under indentation is limited [29]. To 

overcome those problems Hayes et al. developed a mathematical model for indentation testing 

of articular cartilage. The relation between the applied force (P) and displacement (w) is 

represented by a dimensionless parameter (k) as given below: 

 
𝑘 =

𝑃(1 − 𝜈2)

2𝐸𝑎𝑤
 

(4.3) 

The values of k for a range of Poisson’s ratios (ν), indenter radius (a), thickness (h). To validate 

the present model with Hayes mathematical model an axisymmetric finite element model was 

developed using FE Abaqus solver. Simulation was conducted with friction (Ω = 1) and 

without friction (Ω = 0). 

A significant friction effect is observed between the two indentation conversion factors vs 

aspect ratio. Results of these simulations are shown in Figure: 4.24 and Figure: 4.25 also in 

Figure: 4.26 and Figure: 4.27. 
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Figure 4.24: FE (Abaqus) simulated graph of 

indentation conversion factor w.r.t aspect 

ratio for a flat ended cylindrical indenter 

when friction coefficient is zero [29].  

Figure 4.25: FE (Abaqus) simulated graph of 

indentation conversion factor w.r.t aspect 

ratio for a flat ended cylindrical indenter 

when friction coefficient is one [29]. 

 

  

Figure 4.26: FE (Abaqus) simulated results 

of indentation conversion factor w.r.t aspect 

ratios for a flat ended cylindrical indenter. 

The friction coefficient is zero and aspect 

ratios are in the range of zero to two. 

Figure 4.27: FE (Abaqus) simulated graph of 

indentation conversion factor w.r.t aspect 

ratios for a flat ended cylindrical indenter. 

The friction coefficient is one and aspect 

ratios are in the range of zero to two. 

The validation exercise is conducted based on Hayes model of linear elastic theory. For flat 

ended cylindrical indenter, the displacement is directly proportional to load. The indentation 

factor (w/h)(P/ μa2) is plotted for Poisson’s ratios of 0.30, 0.35, 0.4, 0.45 and 0.5. For small 

aspect ratios increase no significant Poisson’s effect is observed, but a significant friction and 
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Poisson’s effect is visualized at Poisson’s ratio 0.5 and friction coefficient one. Detailed 

calculations are provided in Appendix B. 

 

4.4.2    Cao’s Model 
 

Cao et al. conducted a computational study to solve indentation problem of a flat punch ap- 

plied to a compressible elastic layer [30]. They reported a number of expressions of the load- 

displacement curve for a range of Poisson’s ratio 0.3 ∼ 0.5 and (a/h) is in the range of (0 ∼ 

20). The present work performed numerical simulation to validate Cao’s model as a proof-of- 

principle. Cao made a little modification to Hayes load-depth equation [29] which is in the 

form: 

 
𝑃 =

2𝐸

1 − 𝜈2
𝑎ℎk (

a

h
, ν) 

(4.4) 

Cao also normalized Π with a normalization factor f 

 
𝑓 = 1.03𝑒(−

𝑎
ℎ
) +

𝜋

2

(1 − 𝜈2)

1 − 2ν

𝑎

ℎ
[1 − 𝑒(

−𝑎
ℎ
)]  

(4.5) 

where e is the exponential term. When (a/h) approaches 0, f approaches to 1, and when (a/h) 

approaches infinity Cao’s modified load-depth equation converges [12, 32]. Hence, the final f 

is: 

 
𝑓 =

𝜋

2

(1 − 𝜈2)

1 − 2ν

𝑎

ℎ
 

(4.6) 

A flat ended cylindrical indentation was modeled in the FEM (Abaqus) solver. Poisson’s ratio 

is taken as 0.5, layer thickness (a/t0) is taken from (0.1 ∼ 10) with friction coefficients 0.5 and 

0.05. The normalized dimensionless function (k/ f) and the ratio of the indenter radius to the 

layer thickness (a/h) are shown in Figure: 4.28 and Figure: 4.29. 
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Figure 4.28: FE (Abaqus) simulated graph 

for the normalized dimensionless function 

(k/ f ) and the ratio of the indenter radius to 

the layer thickness (a/h) at friction 

coefficient Ω = 0.5 

Figure 4.29: FE (Abaqus) simulated graph 

for the normalized dimensionless function 

(k/ f) and the ratio of the indenter radius to 

the layer thickness (a/h) at friction 

coefficient Ω = 0.05 

It has been observed that as the layer thickness ratio increases the normalized dimensionless 

function decreases until a/h ≥ 1. Beyond this point friction effect decreased and negligible at 

(a/h » 1. Since, Cao et al. did not work on incompressible materials with Poisson’s ratio (ν = 

0.5), this present work only investigated incompressible materials with Poisson’s ratio (ν = 

0.5) and (ν = 0.05) and found consistent results which validated Cao’s model numerically. 
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4.4.3    Zhang’s Model 

To validate this study, an axisymmetric FE model of flat ended cylindrical indentation model 

was developed using Abaqus finite element solver to characterize the soft tissues 

biomechanics. Friction coefficient was employed in the simulation with respect to aspect ratio 

(a/h) and Poisson’s ratio. The simulated displacements for different aspect ratio and friction 

coefficient were substituted in Zhang’s equation. According to Zhang: 

 
𝑘 (
𝑤

ℎ
,
𝑎

ℎ
, ν) =

𝑃(1 − 𝜈2)

2𝐸𝑎𝑤
 

(4.7) 

where, P is the indentation force, w is the indentation depth, a is the indenter radius, h is the 

thickness of the soft tissue. Hence, the dimensionless K and coefficient of friction are plotted 

as shown in Figure: 4.29 and compared with Zhang’s model shown in Figure: 4.30. 

  

Figure 4.30: Graph of a dimensionless K vs 

coefficient of friction which investigating 

the effect of friction at different aspect ratios 

(a/h). 

Figure 4.31: Graph of a FE (Abaqus) 

simulated results for dimensionless K and 

varying aspect ratios (a/h) and friction 

coefficients of Ω =0 and Ω =1. 

Table: 4.2 shows the effect of dimensionless K vs coefficient of friction. relative indentation 

depth (w/h)% and aspect ratio (a/h)% are also shown in table. The simulated results were then 

plotted with Zhang's provided data [25]. A considerable effect of friction coefficient was 

observed as the value of friction coefficient increases. 
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Table 4. 2: Data obtained at different values of friction coefficient vs k. Obtained k values are 

compared with Zhang’s model [25].  

Aspect Ratio Relative indention Friction Zhang Present 

a/h depth (w/h) Coefficient k=P(1-vˆ2)/2Eaw k=P(1-vˆ2)/2Eaw 

0.6 

0.6 

0.6 

0.6 

0.6 

4.400 

4.364 

4.355 

4.353 

4.353 

0 

0.2 

0.4 

0.6 

0.8 

2.213 

2.210 

2.211 

2.212 

2.213 

2.207 

2.215 

2.217 

2.217 

2.218 

 

1 

1 

1 

1 

1 

 

4.768 

4.070 

3.818 

3.813 

3.810 

 

0 

0.2 

0.4 

0.6 

0.8 

4.070 

4.334 

4.393 

4.414 

4.390 

3.168 

4.155 

4.163 

4.171 

4.176 

 

1.5 

1.5 

1.5 

1.5 

1.5 

 

0.072 

0.064 

0.062 

0.061 

0.061 

 

0 

0.2 

0.4 

0.6 

0.8 

5.915 

6.190 

6.239 

6.263 

6.326 

5.884 

6.558 

6.803 

6.822 

6.830 

Table: 4.3 presented a comparison of nondimensional functional k values between friction and 

no friction. Data obtained at different relative indentation depths of (w/h)=0.1%, 10%, 15% 

and 100% with Ω = 0 and Ω = 1 are compared between the present model and Zhang’s model 

where good consistency was found. There is a considerable effect of friction coefficient on in- 

dentation however, as the aspect ratio (indenter radius to sample thickness) increases observed 

effects become more significant. 

Table 4. 3: Data obtained at different relative indentation depths (w/h)=0.1%, 10% and 15%. 

Obtained k values are compared with Zhang’s model [25].  

 

k values Ω=0 Ω=1 Difference Ω=1 Ω=1 Difference 

w/h(percent) Present Present Percentage Present Zhang Percentage 

0.1 9.425 9.516 0.955 9.516 9.111 4.268 

10 9.488 12.365 23.262 12.365 11.555 6.553 

15 9.520 12.511 23.899 12.511 13.052 -4.323 

100 10.030 13.084 23.341 13.084 13.08 0.033 

The results were also validated by changing Young’s modulus (E1, E2). Through axisymmetric 

cylindrical indentation and the depth of penetrations were recorded with increasing Young’s 

modulus. The simulated displacement validated the analytical solution 
𝐸1

𝐸2
=

𝑤1

𝑤2
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h 

h 

 

4.5    Novel Approach 

A novel analytical model was developed by adding a new parameter called friction coefficient 

as a function of k in Zhang’s solution [25]. To validate this analytical model using the present 

FE model, let us consider k as a function of relative indentation depth, (Ψ = 
𝑤

ℎ
), aspect ratio (Φ 

=
𝑎

ℎ
 ), Poisson’s ratio, ν and friction coefficient Ω = (Fc). The new equation is given below: 

 
P =  

2Eaw

(1 − ν2)
𝐤(Φ,Ψ, Ω) 

(4.8) 

The validation of the novel analytical solution is illustrated in Figure: 4.32 and Figure: 4.33. 

  

Figure 4.32: Non-dimensional value K is 

plotted against aspect ratio indenter radius to 

material thickness(a/h). 

Figure 4.33: Non-dimensional value K is 

plotted against fraction coefficient with 

varying aspect ratios (a/h), Table: 4.2. 

Friction coefficient is believed to be an important factor for nonlinear soft biological tissues. 

As a part of the validation exercise an axisymmetric FE simulation is conducted at friction 

coefficients of 1 and 0. The simulated results are presented as a part of the validation exercise. 

The numerical deformation is inserted in the novel equation to calculate the dimensionless 

value K. The above figures indicate a good agreement between finite element and analytical 

results, especially for Ω = 1 and Ω = 0. It implies that the novel analytical model exhibited 
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promising results. The verification of the novel analytical solution is introduced here as 

illustrated in Figure:4.34 and Figure: 4.35 as a part of the proof of the principle. This new 

approach shows a good potential to investigate the mechanical responses of finite thick 

biological tissues. 

 

4.5.1    Model Validation 
 

To conduct numerical validation of the present method, simulated displacement data were 

inserted into the analytical solutions. Hence the same data was used in Hayes [29] and Zhang’s 

[25] models considering no friction between the indenter and the specimen. For Zhang’s, 

Hayes’ and the present model, the analytical solutions of k vs Poisson's ratio (ν) at different 

aspect ratios are plotted. Also, k vs coefficient of friction is plotted for the purpose of 

comparison among Zhang, Hayes and the present models. Both graphs are shown in Figure: 

4.34 and Figure: 4.35. 

  

Figure 4.34: FE (Abaqus) simulated graph of 

dimensionless k and relative indentation 

depth (w/h)% for finite thickness with 

comparison to Zhang model. All simulations 

were performed at friction coefficient Ω = 1. 

 

Figure 4.35: FE (Abaqus) simulated graph of 

dimensionless k vs Poisson’s ratio for finite 

thickness with comparison to Zhang and 

Hayes models. All simulations were 

performed at friction coefficient Ω = 0. 

 

Table 4. 4: Data obtained at different relative indentation depth (w/h)=0.1%. k values are 

compared with Hayes, Zhang and the present models [25, 29]. 
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 \  Ω = 0    w/h=0.1% 
a/h Present Zhang Hayes Present Zhang Hayes Present Zhang Hayes Present Zhang Hayes Present Zhang Hayes 

 v=0.3   v=0.35   v=0.40   v=0.45   v=0.50   

0.2 1.18 1.21 1.21 1.21 1.22 1.21 1.24 1.22 1.23 1.29 1.23 1.25 1.40 1.244 1.28 

0.4 1.44 1.513 1.47 1.47 1.54 1.50 1.52 1.57 1.54 1.59 1.625 1.59 1.71 1.70 1.698 

0.6 1.77 1.82 1.78 1.81 1.87 1.83 1.89 1.93 1.91 2.01 2.03 2.03 2.26 2.18 2.21 

1 2.36 2.52 2.48 2.49 2.26 2.60 2.68 2.77 2.78 3.01 3.06 3.08 3.62 3.59 3.60 

1.5 3.31 3.479 3.4 3.55 3.712 3.62 3.93 4.08 3.99 4.61 4.73 4.73 6.08 6.078 5.97 

2 4.20 4.42 4.33 4.56 4.782 4.68 5.16 5.36 5.27 6.33 6.47 6.38 9.31 9.11 9.07 

The simulated results for incompressible material (ν = 0.499) are further analyzed for statistical 

significance. The R-squared values among the tree models were found to be very consistent 

and this result completes the verification process as shown in Table: 4.5. 

Table 4. 5: Data obtained at different Poisson’s and Aspect ratios compared k values with 

Zhang and Hayes models. 

Aspect Ratio  Linear equation Ω = 0   R2 value  

(a/h) Present Zhang Hayes Present Zhang Hayes 

0.2 y = 1.0234x + 0.855 y = 0.126x + 1.1784 y = 0.364x + 1.0924 0.8431 0.9183 0.8583 

0.4 y = 1.3461x + 1.0064 y = 0.91x + 1.2262 y = 1.098x + 1.1234 0.8806 0.8897 0.8897 

0.6 y = 2.3951x + 0.9886 y = 1.782x + 1.2562 y = 2.092x + 1.1196 0.9105 0.8218 0.9478 

1 y = 6.0996x + 0.3932 y = 5.8848x + 0.4886 y = 5.48x + 0.7212 0.8959 0.9544 0.9478 

1.5 y = 13.214x - 0.9895 y = 12.44x - 0.559 y = 12.49x - 0.6502 0.961 0.961 0.943 

2.0 y = 23.98x - 3.6803 y = 22.116x - 2.813 y = 22.326x - 2.9824 0.9568 0.9568 0.9623 

 

The simulated results were fitted in linear regression model and finally, R-square test were 

conducted. At Ω = 0, R-squared values from the three-model found consistent. 
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4.6    Summary 
 

In this chapter, an axisymmetric model was developed for the cylindrical, spherical and 

uniaxial indentation test. FE simulation package Abaqus was used to characterize material 

properties of soft tissues or mimics. A concentrated load was applied at the top of the indenter’s 

reference point and the reference point was also chosen at the right top corner of the indenter. 

To discuss the nonlinearity, two hyperelastic models were discussed in this chapter. Ogden and 

Mooney-Rivlin hyperelastic model are considered to be appropriate for the finite element 

analysis.  At the initial stage of the study, axisymmetric linear elastic model was considered to 

be appropriate for the understanding of displacement pattern. Mesh refinement process was 

adopted for optimal convergence and the accuracy of the results were ensured. Finite and 

infinite thickness specimen were considered for FE simulation. The effect of relative 

indentation depth, aspect ratio, Poisson’s ratio and dimensionless k on the indentation response 

of soft tissues were investigated.  

To investigate the friction, the effect of friction coefficient Ω was added with Zhang’s equation 

to the non-dimensional parameter (k) to be considered as a function of (Φ, Ψ, and Ω) [25].  At 

friction coefficient Ω =0, Hayes, Zhang and the present model shows good agreement as shown 

in Table: 4.4 and 4.5.  A significant variation of results observed when a range of friction 

coefficients were introduced as shown in Table: 4.2.  A significant variation (23%) is observed 

when we compared the results for Ω =0 and Ω =1 at a relative indentation depth (w/h=100%). 

At the second stage, stress analyses were conducted for linear and hyperelastic model. 

Furthermore, a validation exercise was conducted using Hayes, and Zhang’s and present data. 

Later in this thesis, hyperelastic models will be constructed using experimental data for soft 

biological tissue and simulation will be performed. Finally, Ogden and Mooney-Rivlin 

hyperelastic models were adopted to capture unknown material properties. This model will be 

implemented in the parametric studies of material characterization and will be included in 

Chapter 5. 



98 

Chapter 5: Soft Tissue Characterization using Inverse Finite Element Techniques 

98 

 

 

 

Chapter 5 

 

 

Soft Tissues Mechanical Characterization 

Using Inverse Finite Element Technique. 

 

5.1    Introduction 
 

Inverse finite element analysis is a numerical method used to characterize the material proper- 

ties of soft tissues for biomedical applications engineering [135, 164]. A number of techniques 

have been implemented previously to characterize tissue in vivo, ex vivo or tissue mimicking 

materials [119]. During the characterization process, the first order Ogden hyperelastic model 

is used for estimating material properties. Biological tissues are usually acquired from 

surgeries as small specimens with irregular shapes and rough surfaces. This precludes the 

possibility of using conventional techniques such as uniaxial testing for mechanical 

characterization of such tissue specimen’s mechanical characterization. Another challenge is 

tissues’ complex nonlinear behavior and heterogeneity which further complicates its 

mechanical. property. 

Many previous researchers have indicated that indentation test is an effective technique for 

characterizing the compressive behavior of tissue under small and large deformation loading 

conditions [10]. They also questioned the validity of infinitesimal deformation theory for most 
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biological tissue under physiological conditions, hence the necessity of considering tissue 

geometric and intrinsic nonlinearity in mechanical testing data interpretation [165]. Samani et 

al. considered tissue hyperelasticity in their indentation-based measurement technique and 

reported hyperelastic parameters of breast tissues. For the purpose, they processed force-

displacement data pertaining to the tissue indentation test through an inverse FE framework 

[15]. 

Their method was founded on a combined “experimental-numerical” approach aimed at 

characterizing tissue hyperelastic behavior [10, 14, 15]. Soft tissues or tissue mimicking 

materials are typically modeled as nonlinear, homogeneous, isotropic and nearly 

incompressible. Ogden hyperelastic model is commonly used to capture biological tissue 

nonlinearity. Isvilanonda et al. used first order Ogden constitutive model in the material 

characterization process and using inverse problem analysis of experimental data, they found 

obtained very good results [91]. 

A similar approach is followed in this dissertation whereby indentation testing data is 

processed through an inverse FE framework to estimate tissue hyperelastic parameters. For 

solving the inverse problem in this context, an optimization algorithm developed in MATLAB 

was used where tissue FE model was used to calculate the cost function to be minimized. In 

order to measure material properties of soft tissues through inverse analysis, two major steps 

are considered (i) developing a mathematical model which is physically acceptable and 

mechanically pragmatic and (ii) developing a data inversion technique for parameter 

estimation [166]. 

For the first step FE modeling is a good candidate which has been used extensively in this 

dissertation while for the second step, a cost or objective function, which measures the 

difference between measured and model based mechanical response is developed. Having 

these two essential elements, the hyperelastic parameters can be calculated through an 

optimization by iteratively refining an initial guess of the sought parameters until the cost 

function reaches its minimum value [26]. 
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In the previous chapter, a non-linear elastic model was discussed. This chapter is geared to- 

ward developing a comprehensive understanding of soft tissues characterization based on a 

hyperelastic model using inverse analysis. 

 

The principle objectives of the study presented in this chapter are: 

 

(i) To conduct a parametric analysis with varying material properties and examine the       

      effectiveness of an optimization meth 

(ii) To develop a non-linear hyperelastic analysis for soft tissue samples with finite and 

infinite thickness. 

(iii) To investigate the effect of specimen thickness, PVA-C concentration and Freeze-thaw 

cycle on (µ, α) 

(iv) To develop and implement an inverse algorithm for Ogden hyperelastic model to 

determine tissue hyperelastic parameters from experimental data. 

(v) To assess estimated parameters (µ, α) based on the non-linear hyperelastic FEA model 

prediction. 

(vi) To conduct a stability analysis by using Levenburg-Marqardt (LM) optimization    

       algorithm. 

 

The first section of this chapter describes a hyperelastic material model for solving nonlinear 

material using Abaqus. This section also discussed about choice of constitutive model and 

inverse finite element analysis. The second section described the novel optimization algorithm 

for the identification of material properties. The third section of this chapter is the results 

section using cylindrical. spherical and uniaxial indentation. Finally. The fourth section 

discusses about effect on Mu and Alpha on concentration, freeze thaw cycle and sensitivity 

analysis. This chapter concludes followed by a summary.  
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5.2     Hyperelastic Model 
 

Polyvinyl alcohol cryogel (PVA-C) samples of 5%, 10% and 15% w/w concentration is 

modeled as soft tissues mimics to examine their non-linear material properties. Experimental 

force-displacement (F −D) data used as input parameter for Ogden and Mooney-Rivlin 

hyperelastic model. 

 

5.2.1    Choice of Constitutive Model 

 

 Many previous studies reported the effectiveness of using Ogden model for correctly capturing 

the hyperelastic behavior of soft materials including hydrogels and living tissues [11, 100]. 

Selecting proper constitutive model is essential for determining physically meaningful material 

parameters which is still a major challenge [11]. To validate hyperelastic parameters obtained 

from cylindrical or spherical indentation or uniaxial compression testing, first order Ogden 

model has been utilized within inverse problem frameworks. 

A hyperelastic material is a type of constitutive model where the presence of a strain energy 

density function is assumed, and stress-strain relationship is derived from a strain energy 

density function. The Ogden hyperelastic model for isotropic material can be obtained from 

strain 

𝑊    =∑
μi
αi

∞

i=1

 (λ1
αi + λ2

αi + λ3
αi − 3)  +∑ki(J

el  − 1)2i
∞

i=1

  
      (5.1) 

Where µ, α and K are presented as constitutive parameters. J is the determinant of the strain 

tensor and λ is known as the principle stretches.  For incompressible materials deformation   J 

= 1 leads the second term the above equation to vanish. For first order Ogden model i = 1. 

Thus, the model will have only two unknown parameters of initial shear modulus (µ), and 

strain hardening exponent (α).  
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For a uniaxial compression test the nominal stress (σ) is represented as a function of the stretch 

ratio λ. The first order Ogden material model can be presented in the form given below: 

 
𝜎 =

2𝜇

𝛼
(λ(𝛼−1) − λ(−𝛼/2−1)) 

     (5.2) 

 

 

The above mentioned two equations can take only positive values. The experimental force- 

displacement (F − d) data are used as an input parameter for hyperelastic model. Through curve 

fitting to the experimental (σ − λ) data the first order Ogden parameter is extracted. 

 

5.3    Numerical Analysis 
 

Numerical analysis was performed by FEM using Abaqus version 6:13−4(2013). Spherical 

indenter and rigid flat ended cylindrical indenter were used for numerical analysis. A 4 mm 

radius of test indenter indented a soft tissue mimicking sample of PVA-C with, 5%, 10%, and 

15% (w/w) concentration. The sample radius 19 mm and thickness 12mm. The soft tissue 

sample was is modeled as homogeneous, isotropic and nearly incompressible. 

An axisymmetric model was developed and meshed with (CAX4RH) and (CAX3H) linear 

quadrilateral elements. A very fine mesh was made at the contact zone and comparatively 

coarse mesh was utilized outside the contact zone. The boundary conditions for three side of 

the sample was fixed (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0) and one side is variable (U1 = 

U3 = UR2 = 0). During the indentation test a 4N vertical load was applied and the contact 

between the indenter and the sample was considered frictionless. Ogden hyperelastic material 

model was considered for PVA-C samples undergoing indentation test the data of which was 

provided by [38]. The simulation was completed in 13 steps with a step size of 0.01. To observe 

the indentation responses, the hyperelastic FE model was analyzed including sample with finite 

thick and infinite thickness made of PVA-C with (5%) and (15%) concentrations. 

 



103 

Chapter 5: Soft Tissue Characterization using Inverse Finite Element Techniques 

103 

 

5.3.1 Numerical Model Setting 

A two dimensional axisymmetric cylindrical and spherical indentation model was developed 

using Abaqus. Ogden first order strain energy density function was used in the numerical 

simulation.7818 (CAX4RH) number of nodes generated in the meshing process shown in 

Table: 5.1 and Table: 5.2. 

Table 5. 1: Generated FE mesh parameters for cylindrical indentation. Ogden hyperelastic 

material model used in simulation of soft tissue mimic PVA-C 5%, 2FTC and 15%, 2FTC.  

 

Table 5.2:  Generated FE mesh parameters for spherical indentation. Ogden hyperelastic 

material model used in simulation of soft tissue mimic PVA-C 5%, and 15% w/w, 2FTC 

 

 

An axisymmetric FE model was developed by using Abaqus, PVA-C 5%, and 15%, 2FTC 

experimental data obtained from [38] used as an input parameter for first order Ogden 



104 

Chapter 5: Soft Tissue Characterization using Inverse Finite Element Techniques 

104 

 

hyperelastic model. Load-displacement graph for both PVA concentration are shown in Figure: 

5.1 and Figure: 5.2. 

  

Figure 5.1: Load vs displacement graph for 

PVA-C model with 5% concentration.  

Figure 5.2: Load vs displacement graph for 

PVA-C model with 15% concentrations. 

 

5.4    Parametric Studies 

Based on previous research it has been found that the hyperelastic parameters determined using 

cylindrical or spherical indentation testing are not always the same as those obtained from 

experimental uniaxial compression test [10, 26, 91, 126]. To investigate the sources of such 

disagreement a parametric study was conducted to examine the influence of (µ, α) on the shape 

of the simulated data. An optimization algorithm combined with MATLAB used for 

minimizing the sum of squared difference between the experimental measurements and the FE 

simulated Ogden hyperelastic model predicted results. Finally, unknown parameters (µ, α) 

were determined. Sensitivity analysis was conducted to verify the accuracy and robustness of 

the parameters. 

 

5.5    Inverse Finite Element Analysis 
 

Inverse FE method was used to determine the hyperelastic material parameters of soft tissue 

specimens from indentation responses. Based on Hadamard’s definition an inverse problem is 
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ill posted if one of the three conditions are violated (i) existence, (ii) uniqueness, and (iii) 

stability. This means that stability of a solution depends on the quality of the input data which 

can be contaminated due to significant noises sources. Zhang et al. reported that as unstable 

solution can be encountered in inverse problems much attention must to be paid to obtain 

meaningful solutions. Many optimization algorithms are commonly used as such least square 

fitting power low, Levenberg-Marquardt (LM) Trust Region Algorithm, and Kalman Filter to 

solve the inverse problems. 

The inverse analysis is introduced to minimize an objective function with respect to unknown 

constitutive material parameters (µ, α) that match the experimental data [11, 26]. It fits 

experimental data by determining material parameters (µ, α). In order to have accurate 

optimized results choosing the right model is not always obvious. Levenberg-Marquardt (LM) 

method was used in this dissertation to extract the unknown parameters based on inverse 

analysis. LM method is defined as the minimization of the error function Φ with respect to a 

vector 𝑃̂. The error function is represented as: 

 
Φ(𝑃̂) =

1

2
∑[𝑟𝑖(𝑃̂)]

2
=
1

2

𝑛

𝑖=1

𝑟𝑇𝑟 
  (5.3) 

Here, P̂ is a vector which contains unknown constitutive parameters 𝑃̂𝑇 = {µ, α} and n are the 

number of measurements. The vector r̂   is defined as: 

 

 𝑟̂= t∗ − 𝑡̂ (5.4) 

where, t∗ and 𝑡̂ are the model predicted and experimental data. 

 

 

5.5.1    Optimization Algorithm: Using Ogden Model 
 

A detailed flowchart of the inverse optimization process to characterize the tissue hyperelastic 

parameters used in the current study shown in Figure: 5.3. 
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Figure 5.3: Flowchart of the inverse optimization process to characterize the unknown 

tissue hyperelastic parameters Ogden parameter. First, experimental (F-D) data are used 

as an input parameter for the numerical model (Abaqus). Simulated (F-D) data then used 

as an input parameter for inverse analysis (MATLAB). An object junction introduced to 

minimize the quadratic difference between simulated and model predicted data. Through 

optimization process numerical convergence was achieved and optimized unknown 

parameter was obtained. These parameters were used as an input parameter of Abaqus 

for numerical validation. 

 

5.5.2    Mesh Optimization with  and  

Although, the implicit method with Newton-Raphson iterative solver is enough to obtain 

converged solution, mesh optimization through adaptive meshing was adopted for numerical 

accuracy. Optimized µ and α through mesh convergence are shown in Figure: 5.4, Figure: 5.5, 

Figure: 5.6, and Figure: 5.7. 
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Figure 5.4: Graph of  vs number of 

elements for PVA-C modeled with 5% 

concentration and finite thickness. 

Figure 5.5: Graph of  vs number of 

elements for PVA-C modeled with 5% 

concentration and finite thickness. 

 

  

Figure 5.6: Graph of  vs number of 

elements graph for PVA-C modeled with 

15% concentration and finite thickness. 

Figure 5.7:  Graph of  vs number of 

elements for PVA-C modeled with 15% 

concentration and finite thickness. 

 

5.5.3 Identification for Estimating Material Properties:  

         A Novel Approach 

Ogden model is used to identify the hyperelastic material properties. Levenburg-Marqardt 

(LM) algorithm was used to minimize the difference between experimental and model 
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predicted data. Here, a novel approach is introduced to determine and validate material 

hyperelasticity. This method includes the following steps: 

• Experimental data are used as an input for the Ogden hyperelasticity model. 

• Numerical analysis is carried out with FEM (Abaqus) and the output of the load-

displacement curve is recorded. 

• This simulated load-displacement data are used as input for Levenburg-Marqardt (LM) 

optimization algorithm in MATLAB. 

• Initial guess values (µ, α) are used for initializing the optimization algorithm. 

• MATLABR Simulink: R2015a used @ fminsearch algorithm was used to fit the Ogden 

first order hyperelastic model shown in Equation: 5.2. Also, Levenburg-Marqardt (LM) 

optimization algorithm shown in Equation: 5.3 was used. The optimized parameters (µ, 

α) shown in Equation: 5.4 are recorded. 

• These optimized parameters (µ, α) are inserted in FEA (Abaqus) for validation and 

verification of the inverse problem. 

Through inverse analysis, extracted Ogden and Mooney-Rivlin parameters are readily 

available to use in simulation also to verify the stability of the solution. The detailed process 

was shown in the flow-chart of Figure: 5.3 

 

5.5.4    Validation Exercise 
 

FE simulated cylindrical load-displacement data was used in the robust optimization algorithm 

through inverse analysis. The entire procedure was shown as a flow-chart in Figure: 5.3. A 

validation exercise was conducted using Ogden parameters (µ) which was varied while kept α 

was constant and vice-versa as shown in Figure: 5.8 and Figure: 5.9 [26].  
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Figure 5.8: FE simulated Load-displacement 

graph for Ogden hyperelastic model. 

Material property α was kept constant and µ 

was varied. 

Figure 5.9: FE simulated Load-displacement 

graph for Ogden hyperelastic model. 

Material property α was varied and µ 

constant. 

 

The results obtained from the load-displacement curve indicated that, there is a significant 

effect of (µ), as this parameter explains the strength of the material and (α) the strain hardening 

coefficient. In the process of validation µ and α values were compared with [26] and found 

good agreement. 

 

5.6 Results 

The performances of the novel model are illustrated in this section where 5% and 15% (w/w) 

soft tissue mimic data [38] were used in hyperelastic model. During the simulation, cylindrical, 

spherical and uniaxial indentation tests were conduction. 

The hyperelastic model was simulated in Abaqus environment where, Ogden’s first order 

constitutive model was used, and experimental data was fitted for parameter optimization. The 

indentation response from cylindrical indentation for 5% and 15% soft tissue mimics are shown 

in Figure: 5.10 and Figure:5.11. The results for indentation test using cylindrical indention are 

given below.  
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Figure 5.10: Load vs displacement graph for 

PVA-C sample with finite thickness and 5% 

concentration.  

Figure 5.11: Load vs displacement graph for 

PVA-C sample with finite thickness and 

15% concentration.  

Experimental data obtained from [38] used as input parameter for FE simulated Ogden model. 

FE simulated and model predicted Load vs displacement curve for PVA-C, 2FTC 5% and 15% 

specimen are shown above. This process used optimization algorithm for the determination of 

material properties (µ, and α). 

FE software Abaqus simulated indentation response from cylindrical indentation for 5% and 

15% soft tissue mimics are used in the analysis. Ogden hyperelastic model is used in the 

analysis and the results for stress-stretch curve shown in Figure: 5.12 and Figure:5.13 are given 

below. 
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Figure 5.12: Stress-stretch graph for PVA-C 

samples with finite thickness and 5% 

concentrations.  

Figure 5.13: Stress-stretch graph for PVA-C 

samples with finite thickness and 15% 

concentrations. 

Figure: 5.14 and Figure: 5.15 shows residual-stretch graph. It is defined by the proportion of 

variance (R-square) between the observed and the predicted data. FE simulated Ogden model 

used in optimization algorithm for the residual-stretch results. Experimental data used from 

cylindrical indentation at a concentration of (i) PVA-C 5%, 2FTC and (ii) PVA-C 15%, 2FTC. 

  

Figure 5.14:  Residual vs stretch graph for 

PVA-C samples with (5%) concentrations 

where, fitness coefficient (R2 = 0.999). 

Figure 5.15: Residual vs stretch graph for 

PVA-C samples with (15%) concentrations 

where, R2 = 0.999. 
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5.6.1   Optimization Algorithm 

A detailed flowchart of the inverse optimization process to characterize the tissue hyperelastic 

parameters used in the current study shown in Figure: 5.16.  

 

Figure 5.16: Flowchart of the inverse optimization process to characterize the unknown 

tissue hyperelastic parameters Mooney-Rivlin parameters. First, experimental (F-D) data 

used as an input parameter for the numerical model (Abaqus). Simulated (F-D) data then 

used as an input parameter for inverse analysis (MATLAB). An object junction 

introduced to minimize the quadratic difference between simulated and model predicted 

data. Through optimization process numerical convergence was achieved and optimized 

unknown parameter was obtained. These parameters were used as an input parameter of 

Abaqus for numerical validation. 
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A set of simulated force-displacement data inserted in the optimization algorithm for 

identifying unknown Mooney-Rivlin material parameters. Fine mesh with spherical, the 

convergence analysis for PVA 15% 2FTC is shown in Figure: 5.17 and Figure:5.18. 

  

Figure 5.17: Very fine FE mesh with 7600 

(CAX4RH) elements for indentation with 

spherical indenter 

Figure 5.18: Graph of convergence between 

normalized C10 and C01 and number of 

iterations for spherical indentation of PVA-

C 5%. [38] 

FE simulated load-displacement contours and convergence analysis for cylindrical indentation 

are shown in Figure: 5.19 and Figure:5.20. 

 
 

Figure 5.19: Force-displacement contours 

with optimal C10 and C01 values obtained 

from the FE inverse algorithm 

Figure 5.20: Graph of convergence between 

normalized C10 and C01 and number of 

iterations for spherical indentation of PVA-

C 5% [38]. 
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A set of simulated force-displacement data inserted in the optimization algorithm for 

identifying unknown Mooney-Rivlin material parameters. Fine mesh for uniaxial testing 

and the convergence analysis for PVA 5% 2FTC are shown in Figure: 5.21 and Figure:5.22. 

  

Figure 5.21: Force displacement contours for 

uniaxial testing is shown. The date was used 

for identifying unknown Mooney-Rivlin 

parameters. 

Figure 5.22: Graph of convergence between 

normalized C10 and C01 and number of 

iterations for uniaxial indentation of PVA-C 

5%. [38] 

Force-displacement graph is compared through optimization algorithm. The simulated force-

displacement data was used as input parameter for the inverse optimization algorithm. PVA-C 

at a concentration of 5% and 15% rest results used as an input parameter for Ogden model 

shown in Figure: 5.23 and Figure:5.24. 
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Figure 5.23: Force-displacement graph 

with fitted graph with optimal (µ,α) values 

obtained from the FE inverse algorithm. 

Figure 5.24: Force-displacement graph 

with fit- ted graph with optimal (µ,α) values 

obtained from the FE inverse algorithm 

Graph of convergence for uniaxial testing and residuals for PVA-C at a concentration of 5% 

shown in Figure: 5.25 and Figure:5.26. 

  

Figure 5.25: Graph of convergence between 

normalized (µ/µ0), (α/α0) and number of 

iterations for UCS of PVA-C 5%. 

Figure 5.26: Residuals vs stretch graph for 

uniaxial testing of PVA-C 5%, 2FTC. 

Results shows R2 =1. 

Stress-strain and stress-stretch graph of uniaxial testing for PVA-C at a concentration of 5% 

shown in Figure: 5.27 and Figure:5.28. 

  

Figure 5.27: Stress-strain curve for uniaxial 

testing of PVA-C 5%, 2FTC. Experimental 

data was provided by [38]. 

Figure 5.28: Stress-stretch curve for uniaxial 

testing of PVA-C 5%, 2FTC. Experimental 

data was provided by [38]. 
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5.6.2    Effect of  and  on Thickness 

FE software Abaqus simulated force-displacement data are used as input parameter for 

inverse optimization algorithm using MATLAB for the determination of Ogden parameters 

which are plotted against various concentration of PVA-C 5%, 2FTC and PVA-C 15%, 

2FTC shown in Figure: 5.29, Figure: 5.30 and Figure:5.31, Figure:5.32. 

  

Figure 5.29: Graph of  vs various 

thickness for PVA-C 5%, 2FTC. 

Figure 5.30: Graph of  vs various 

thickness for PVA-C 5%, 2FTC 

  

Graph of  vs various thickness for PVA-C 

15%, 2FTC. 

Figure 5.32: Graph of  vs various 

thickness for PVA-C 15%, 2FTC. 
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It can be hypothesized that (µ, α) values has a greater dependency on thickness. As the 

thickness increases both (µ, α) increases 

 

5.6.3    Effect of Concentration and Freeze Thaw Cycle on  and  

The extracted Ogden parameters from inverse optimization algorithm are plotted against con- 

centration and freeze thaw cycles shown in Figure: 5.33, Figure: 5.34, Figure:5.35 and 

Figure:5.36. 

  

Figure 5.33: Graph of  vs various number 

of PVA-C concentrations. 

Figure 5.34: Graph of  vs various number 

of PVA-C concentrations.  

 

  

Figure 5.35: Graph of  vs various number 

of PVA-C concentrations.  

Figure 5.36: Graph of  vs various number 

of PVA-C concentrations. 
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This result led us to the conclusion that, there is a proportional relationship between (µ, α) 

values and PVA-C concentration also freeze-thaw cycles. With the increase of PVA-C 

concentration (µ, α) increases also, Also, with the increase of freeze-thaw cycle time (FTC) 

the values of (µ, α) increases. 

 

5.7    Sensitivity Analysis: Cylindrical Indentation 
 

In order to overcome stability problem sensitivity analysis was conducted by adding (± 1%) 

and ±2 %) noise to the solutions. This noise modulation with the input data will enable us to 

investigate whether there is any extraneous influence on material, equipment etc. Fellay et al. 

considered this problem as another minimization approach. 

After determining optimal material parameters, sensitivity analysis of the solution was 

analyzed by adding (±1% and ± 2%) noise to the iterative solutions. A typical sensitivity plot 

of soft tissue mic (PVA-C 5%) is shown in Figure: 5.37 and Figure: 5.38. 

  

Figure 5.37: Normalized parameters (µ, α) of 

15% PVA-C with respect to the number of 

iterations. Two levels ((+1%) and (-1%) of 

noise were added to Ogden parameters. 

Figure 5.38: Shows normalized parameter 

(µ, α) with respect to the number of 

iterations. Two levels ((+2%) and (-2%) of 

noise were added to Ogden parameters. 

Based on Hadamard’s [167] paper solution of any inverse problem continuously depends on 

the stability of the data [118]. The sensitivity of the solution indicates that, there was no 

external influence in the solution. Which also again proved the uniqueness of the solution. 
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5.8    Sensitivity Analysis: Spherical Indentation 
 

Sensitivity analysis of the solution was performed by adding (±2%) noise to the iterative 

solutions. A typical sensitivity plot soft tissue mic (PVA-C 5%) is shown in Figure: 5.39 and 

Figure: 5.40. 

  

Figure 5.39: Normalized parameter (µ, α) 

with respect to the number of iterations. 

Two levels ((+2%) and (-2%) of noise were 

added to Ogden parameters. 

Figure 5.40: Normalized parameter (µ, α) 

with respect to the number of iterations. 

Two levels (±2%) of noise were added to 

Ogden parameters. 

 

Based on Hadamard’s [167] paper solution of any inverse problem continuously depends on 

the stability of the data [118]. The sensitivity solution indicates that the current solution table 

under reasonable amount of noise. 
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5.9    Summary 
 

Before conducting any surgical procedures, planning for bio-material research or any other 

field where applicable, unique identification of material properties essential. The accuracy, 

effectiveness and robustness of such procedures needs verification [11] with FE simulated 

data. 

The objective of the study was to characterize non-linear behaver of soft tissue phantom. The 

combination of the inverse method in conjunction with the finite element method enables 

identification of unknown material parameters. The Levenberg-Marquardt optimization 

algorithm was used to optimize material properties and minimize the sum of squared 

differences between the model predicted and experimentally measured load-displacement data 

and provide bench- marks for accurate Ogden parameters (µ, α). The accuracy, effectiveness 

and robustness of such procedures were validated through FE simulated data and cross checked 

by the robust technique and compared with published results. 

The simulated data were used as an input parameter for MATLAB optimization algorithm. The 

robust optimization technique performed as expected, which conformed the uniqueness of the 

solution. Secondly, the Ogden parameters were plotted at various thicknesses. This proved that, 

µ, and α has a significant effect on specimen thickness. Also, µ, and α were plotted against 

concentration and freeze thaw cycles. Simulated result confirmed the dependency of µ, and α 

on PVA concentration and freeze thaw cycles. Which means the value of µ, and α increases 

with the increase of concentration and freeze thaw cycles with little exception of PVA at higher 

concentration.  

R-squared values for 5% and 15% PVA-C, 2FTC were obtained through parameter estimation 

technique. Their fitness coefficient was 0.99999 and 0.9998. This led us to conclude that, the 

optimization algorithm provided accurate results in the determination of Ogden parameter and 

Mooney-Rivlin parameters. Finally, PVA-C of 5%, 15% has undergone sensitivity test by 

adding y ±1%, ± 2% noise to the solution. No extraneous effect was observed. Thus, the 

solution proved the uniqueness.  
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The novel algorithm provided in Appendix A.8 provides an opportunity to validate results and 

estimate optimized (µ,α) parameters for Ogden and (C10. C01) parameters for Mooney-Rivlin 

hyperelastic material model. These extracted parameters were assessed with FE software 

Abaqus for the numerical accuracy. It can be concluded that the proposed technique can be 

used effectively to estimate and validate Ogden and Mooney-Rivlin parameters for numerical 

accuracy. 
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Chapter 6 
 

 

6.1 Contribution and Conclusions 

This chapter presents a discussion on the findings of the research presented in this dissertation. 

It will conclude with the contributions of this research and propose recommendations for future 

research.  

A numerical study was conducted to characterize non-linear mechanical properties of 

polyvinyl alcohol cryogel (PVA-C). A range of PVA-C phantom data was analyzed in the 

numerical study. The force-displacement data were recorded and used in FEA studies for 

experimental data validations and material characterizations.  

1. The developed finite element model (FE) can be utilized to determine the distribution 

of resulting stresses of linear and nonlinear elastic thin-structured materials for a given 

load.  Since this FE model incorporates influence factor (IF), the stress distribution 

could be computed up to 36% (with IF =1, and IF =0.637) more reliably. 

2. Introduction of friction coefficient (Ω) in the developed analytical model provides up 

to 23% difference in magnitude of the functional parameter k used in different standard 

models such as Zhang’s, Cao’s and Hayes’ model. Thus, the proposed analytical 

solution can potentially provide an improved understanding of the indentation response 

of soft tissues. 

3. The developed inverse algorithm is suitable to identify few biomechanical properties 

(e.g. Ogden and Mooney-Rivlin parameters) for new development of artificial materials 

(e.g. scaffolding, tissue generation, phantoms for surgical training etc.).  

4.  Overall, the finite element model, the analytical model and the inverse algorithm 

developed in this study would provide an important tool in the design and 

characterization of soft tissue materials. 
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The central aim of this research project was to develop robust methods to identify nonlinear 

elastic material properties of PVA-C and other soft materials using hyperelastic models as dis- 

cussed in chapter 4 and 5. To address each of those objectives, indentation responses from 

cylindrical, spherical and uniaxial testing were investigated. As well as a robust technique was 

developed for optimizing and characterizing nonlinear material properties using an Ogden and 

Mooney-Rivlin hyperelastic material model for a range of soft, artificial, and natural materials. 

In chapter 3, an axisymmetric numerical model was developed for the cylindrical indentation 

in order to study material characterization of soft biological tissues. Mesh optimization 

technique was introduced for optimal numerical accuracy. The effect of the coefficient of 

friction was investigated. Validation of Hertz, Boussinesq’s, Sneddon’s analytical solutions 

were conducted using numerical analysis. Distribution of stress of different specimen thickness 

were investigated. The effect of influence factor IF for a range of parameters was discussed. 

Chapter 4 discussed about the indentation responses from non-linear materials. A numerical 

analysis (FEM) for finite and infinite thick, soft tissues were presented. This analysis examined 

the uniqueness of Sneddon’s, Cao’s, Zhang's model and presented our FE simulated results by 

comparing with their published results. Thus, providing a more precise result which was deter- 

mined by the R-square analysis. A novel analytical approach was developed by adding a new 

parameter called friction coefficient Ω as a function of k in Zhang’s solution [25]. This new 

approach showed a great potential to investigate the mechanical responses of finite thick 

biological tissues. 

Chapter 5 focused on developing numerical models that incorporates finite thick biological 

soft tissues and phantoms with cylindrical, spherical and uniaxial indenters. Inverse analysis 

was used to extract unknown material properties. Since, there was no straightforward method 

available to extract unknown material properties from experimental data, a robust technique 

was developed by using “optimization algorithm”. This robust method is capable of extracting 

unknown parameter with maximum numerical accuracy and least computational time. This 

method also examines (i) convergence (ii) experimental vs model predicted data (iii) optimized 

and provide Ogden, Mooney-Rivlin parameters, and (iv) stability analysis. The extracted 
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parameters are readily available to use in FEA simulation to verify and validate the uniqueness 

and stability of the solution. 

 

6.2    Future Research Recommendations 

The current work can be expanded in future in several ways. 

• The experimental data [38] used in two-dimensional indentation test using finite 

element method (Abaqus) can be used as standard case. The novel analytical technique 

can be utilized to investigate the effect of friction in tissue mechanics. 

• A new technique has been developed to characterize the bio-mechanical properties of 

non-linear material using Ogden and Mooney-Rivlin hyperelastic model. In the future, 

this technique can be further investigated to develop patient specific artificial organs. 

• This study was conducted using cylindrical, spherical and uniaxial indentation. Since 

indenter shape plays an important role in stress distribution, other types of indenters 

including, conical and nano indentation test could be used for future research. 

• The current research conducted can be expanded in the future in various ways. This 

includes the experimental data used in two-dimensional indentation test using finite 

element method (Abaqus) which can be used as benchmark analysis. The novel 

analytical technique can also be exercised to investigate the effect of friction in 

biological materials. 

• A new technique has been developed to characterize the biomechanical properties of 

nonlinear material using Ogden and Mooney-Rivlin hyperelastic model. In future re- 

search, this technique can be further explored to help develop patient specific artificial 

organs, which can replace the need for human organ transplantations. 

It is hoped that, the present research will help to improve material characterization accuracy 

through indentation tests. 



125 

Chapter 7: Appendix 

 

125 

 

 

 

Chapter 7 

 

 

Appendixes 

 

 

 

 

 

 

 

 

 

 

 



126 

Chapter 7: Appendix 

 

126 

 

Appendix A.1 
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Appendix A.2 

Table 2: Indentation Factor and Aspect Ratio at Friction coefficient (Ω) =1 
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Appendix A.3 
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Appendix A.4 
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Appendix A.5 

Table 5: For Cylindrical and Uniaxial indentation (µ, α) obtained from inverse analysis. For 

5% and 15% PVA-C, 2FTC specimen 
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Appendix A.6 

Table 1: Friction coefficient (Ω) = 0 and (a/h)=0.2 
Element Mesh=582 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k1=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.40029873 

4 20 0.2 10 10 4.01E-02 0.1 0.06 0.5 0.75 2 1.401345291 

4 20 0.2 15 15 0.0602 0.1 0.09 0.5 0.75 2 1.401578073 

4 20 0.2 100 100 0.4012 0.1 0.6 0.5 0.75 2 1.402043868 

Element Mesh = 869 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k2=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399950224 

4 20 0.2 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.400996264 

4 20 0.2 15 6.02E-02 0.1 0.09 0.5 0.75 2 1.401345291 

4 20 0.2 100 0.4013 0.1 0.6 0.5 0.75 2 1.401694493 

Element Mesh= 1383 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k3=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399950224 

4 20 0.2 10 4.01E-02 0.1 0.06 0.5 0.75 2 1.402743142 

4 20 0.2 15 6.02E-02 0.1 0.09 0.5 0.75 2 1.40087996 

4 20 0.2 100 0.4014 0.1 0.6 0.5 0.75 2 1.401345291 

Element Mesh = 2351 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k4=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399253731 

4 20 0.2 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.40029873 

4 20 0.2 15 6.03E-02 0.1 0.09 0.5 0.75 2 1.400414938 

4 20 0.2 100 0.4016 0.1 0.6 0.5 0.75 2 1.40064741 

Element Mesh=3647 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k1=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399601891 

4 20 0.2 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.40064741 

4 20 0.2 15 6.02E-02 0.1 0.09 0.5 0.75 2 1.40087996 

4 20 0.2 100 0.4016 0.1 0.6 0.5 0.75 2 1.40064741 

Element Mesh= 5458 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k1=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399253731 

4 20 0.2 10 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.40029873 

4 20 0.2 15 15 6.03E-02 0.1 0.09 0.5 0.75 2 1.400414938 

4 20 0.2 100 100 0.4019 0.1 0.6 0.5 0.75 2 1.399601891 

Element Mesh= 7833 

a h a/h w/h(Percent) w E P v 1-vˆ2 Formula k1=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399253731 
4 20 0.2 10 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.40029873 

4 20 0.2 15 15 6.03E-02 0.1 0.09 0.5 0.75 2 1.400414938 

4 20 0.2 100 100 0.4018 0.1 0.6 0.5 0.75 2 1.399950224 

Element Mesh= 9542 

a h a/ h w/h(Percent) w E P v 1-vˆ2 Formula k1=P(1-vˆ2)/2Eaw 

4 20 0.2 0.1 4.02E-04 0.1 0.0006 0.5 0.75 2 1.399601891 

4 20 0.2 10 4.02E-02 0.1 0.06 0.5 0.75 2 1.40064741 

4 20 0.2 15 6.02E-02 0.1 0.09 0.5 0.75 2 1.40087996 

4 20 0.2 100 0.4019 0.1 0.6 0.5 0.75 2 1.399601891 
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