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Abstract

The fifth-generation (5G)-and-beyond networks will provide broadband access to a mas-

sive number of heterogeneous devices with complex interconnections to support a wide variety

of vertical Internet-of-Things (IoT) applications. Any potential security risk in such complex

systems could lead to catastrophic consequences and even system failure of critical infrastruc-

tures, particularly for applications relying on tight collaborations among distributed devices

and facilities. While security is the cornerstone for such applications, trust among entities and

information privacy are becoming increasingly important. To effectively support future IoT

systems in vertical industry applications, security, trust and privacy should be dealt with inte-

gratively due to their close interactions. However, conventional technologies always treat these

aspects separately, leading to tremendous security loopholes and low efficiency. Existing so-

lutions often feature various distinctive weaknesses, including drastically increased latencies,

communication and computation overheads, as well as privacy leakage, which are extremely

undesirable for delay-sensitive, resource-constrained, and privacy-aware communications.

To overcome these issues, this thesis aims at creating new multi-dimensional intelligen-

t security provisioning and trust management approaches by leveraging the most recent ad-

vancements in artificial intelligence (AI). The performance of the existing physical-layer au-

thentication could be severely affected by the imperfect estimate and the variation of physical

link attributes, especially when only a single attribute is employed. To overcome this chal-

lenge, two multi-dimensional adaptive schemes are proposed as intelligent processes to learn

and track the all available physical attributes, hence to improve the reliability and robustness of

authentication by fusing multiple attributes. To mitigate the effects of false authentication, an

adaptive trust management-based soft authentication and progressive authorization scheme is

proposed by establishing trust between transceivers. The devices are authorized by their trust

values, which are dynamically evaluated in real-time based on the varying attributes, resulting

in soft security and progressive authorization. By jointly considering security and privacy-

preservation, a distributed accountable recommendation-based access scheme is proposed for

blockchain-enabled IoT systems. Authorized devices are introduced as referrers for collabora-

tive authentication, and the anonymous credential algorithm helps to protect privacy. Wrong

recommendations will decrease the referrers reputations, named as accountability. Finally, to
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secure resource-constrained communications, a lightweight continuous authentication scheme

is developed to identify devices via their pre-arranged pseudo-random access sequences. A

device will be authenticated as legitimate if its access sequences are identical to the pre-agreed

unique order between the transceiver pair, without incurring long latency and high overhead.

Applications enabled by 5G-and-beyond networks are expected to play critical roles in

the coming connected society. By exploring new AI techniques, this thesis jointly consider-

s the requirements and challenges of security, trust, and privacy provisioning, and develops

multi-dimensional intelligent continuous processes for ever-growing demands of the quality

of service in diverse applications. These novel approaches provide highly efficient, reliable,

model-independent, situation-aware, and continuous protection for legitimate communication-

s, especially in the complex time-varying environment under unpredictable network dynamics.

Furthermore, the proposed soft security enables flexible designs for heterogeneous IoT de-

vices, and the collaborative schemes provide efficient solutions for massively distributed enti-

ties, which are of paramount importance to diverse industrial applications due to their ongoing

convergence with 5G-and-beyond networks.

Keywords: 5G-and-beyond, security provisioning, trust management, privacy protection,

artificial intelligence
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Lay Summary

The fifth-generation (5G)-and-beyond will provide ultra-reliable broadband access every-

where not only to cellular hand-held devices but also to a massive number of new devices relat-

ed to the Internet of Things (IoT) and Cyber-Physical Systems (CPSs). Any potential security

risks and attacks in such dense networks could lead to catastrophic consequences and cause

avalanche-like damages. This is mainly due to the critical roles of 5G-and-beyond to support a

wide variety of vertical applications by connecting massive number of heterogeneous devices,

machines, and industrial processes, as well as cascaded reactions from the enormous parallel

interconnections. Moreover, the widely used resource-constrained devices, e.g., sensors, can

be compromised easily, resulting in widely distributed security threats through data injection,

spoofing, eavesdropping, and so on. With the cascading effects, these security threats could also

lead to the failure of a whole system, especially for those applications relying on tight collab-

orations among diverse entities. To enhance security and achieve more efficient management

in 5G-and-beyond, this thesis develops intelligent security provisioning and trust management

approaches by exploiting the help of artificial intelligence (AI) to address the related technical

issues and challenges.

Firstly, two multi-dimensional adaptive physical-layer authentication schemes are proposed

based on AI techniques as an intelligent process to learn and utilize the time-varying and im-

perfectly estimated communication link attributes, i.e., the kernel-learning-based scheme and

fuzzy-learning-based scheme. In the former scheme, a kernel-based fusion model is designed

to deal with the multiple attributes without knowledge of their statistical properties. The pro-

posed authentication is developed as a linear convex model. Such a convex property will

greatly reduce authentication complexity. In the latter scheme, fuzzy functions are explored

to characterize the multiple physical-layer attributes with imperfectness and uncertainties as

parametric models since the model structure can be learned from the data as a priori. A hybrid

learning-based adaptive algorithm is proposed to near-instantaneously update the authentica-

tion parameters. These two schemes both act as an intelligent process to tackle the variations of

the utilized attributes and hence to improve the reliability and robustness of the authentication.

To mitigate the effects of inevitable erroneous decision of authentication, an adaptive trust

management based soft authentication and progressive authorization scheme is proposed by
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intelligently exploiting the time-varying communication link-related attributes. The trust re-

lationships between transceivers are established based on their evaluations of the selected at-

tributes for fast authentication. The transmitter can be authorized by the specific level of ser-

vices/resources corresponding to its trust level. To dynamically update the trust level of the

transmitter, an online conformal prediction-based adaptive trust adjustment algorithm is pro-

posed relying on the real-time validation of attributes estimated at the receiver, resulting in soft

security and progressive authorization.

A privacy-preserved distributed access control scheme is proposed for blockchain-enabled

IoT systems, which involves an accountable recommendation mechanism, an anonymous cre-

dential generation strategy, and a reputation update mechanism. In the recommendation mech-

anism, multiple authorized devices are utilized as referrers to authenticate a public device and

issue the required credential for joining the system. Then, the anonymous credential genera-

tion strategy helps to further achieve privacy protection, and the reputation update mechanism

evaluates the behaviors of the authorized devices. A wrong recommendation will decrease the

referrers’ reputation, named as accountability.

Finally, to meet the stringent and diverse security requirements of 5G-and-beyond systems,

a lightweight continuous authentication scheme is developed for identifying multiple resource-

constrained IoT devices via their pre-arranged pseudo-random access time sequences. A trans-

mitter will be authenticated as legitimate if and only if its access time-sequential order is identi-

cal to a pre-agreed unique pseudo-random binary sequence (PRBS) between itself and the base

station. The seeds for generating PRBS between each transceiver pair are determined by ex-

ploiting the channel reciprocity, which is time-varying and difficult for a third party to predict.

Hence, the proposed scheme provides seamless protections for legitimate communications as

the seeds can be refreshed adaptively without incurring long latency, complex computation,

and high communication overhead.

As a conclusion, by exploring AI techniques, this thesis studies security, privacy, and trust

comprehensively to meet diverse communication requirements, supporting emerging applica-

tions of future connected society enabled by 5G-and-beyond networks.
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Chapter 1

Introduction

1.1 Research Motivations

1.1.1 Threats in Explosively Growing Collaboration among Entities

The fifth-generation (5G)-and-beyond wireless networks have received tremendous attention

from both academia and industries alike, which are expected to enable a wide variety of ver-

tical applications by connecting heterogeneous devices and machines [1, 2]. With extremely

dense deployments of base stations, 5G-and-beyond will provide ultra-reliable and affordable

broadband access everywhere not only to cellular hand-held devices but also to a massive num-

ber of new devices related to Machine-to-Machine communication (M2M), Internet of Things

(IoT), and Cyber-Physical Systems (CPSs) [3]. In addition, the dramatically growing num-

ber of low-cost devices and access points with increased mobility and heterogeneity leads to

the extremely complex and dynamic environment of 5G-and-beyond wireless networks [4].

Such enrichment implies that 5G-and-beyond is not a mere incremental advancement of 4G

as one might intuitively think, but an integration of new disruptive technologies to meet the

ever-growing demands of user traffic, emerging services, and IoT devices [4].

As shown in Figure 1.1, the 5G-and-beyond networks are expected to provide diverse and

stringent Quality of Service (QoS) requirements, including extremely very high data rates,

higher coverage with significantly improved communication reliability, and low latency [3]. To

meet these future communication demands, tight collaboration among devices and communi-

1
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Figure 1.1: 5G-and-beyond design principle.

cation systems is required and will be extremely important for future wireless communications.

Many related areas and technologies have attracted a multitude of interests from research and

industrial communities, as exemplified by the collaborative computing, manufacturing, soft-

ware development, and machine learning, just to name a few [5, 6]. However, the complexity

of future communication systems as well as dramatically increased use of intelligent machines

and devices within industry processes bring many vulnerabilities and new design challenges,

which will obviously fail the required collaboration if they are not fully addressed. The threats

in the explosive growth of collaboration among entities can be classified into three categories

as follows:

• Security risks. Potential security risks and attacks could lead to catastrophic conse-

quences and cause avalanche-like damages in 5G-and-beyond networks. This is mainly

due to the critical roles of 5G-and-beyond system to support a wide variety of vertical

applications by connecting tremendous heterogeneous devices, machines, and industri-

al processes, as well as cascaded reactions from the enormous parallel interconnection

contained in 5G-and-beyond. Moreover, the widely used resource-constrained devices,
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e.g., sensors, can be compromised easily, thus resulting in widely distributed threats to

the IoT network through data injection, spoofing, eavesdropping, and so on. With the

cascading effect, these security threats could also lead to the failure of a whole system,

especially for those applications relying on tight collaboration among diverse entities.

• Lack of trust. The collaborations among devices and communication systems heavily

depend on devices’ perceptions of the system as a trustworthy infrastructure for provid-

ing accurate information and reliable communication. On one hand, the trust is based

on the authentication solutions, where messages must be authenticated to prevent ex-

ternal attackers from injecting, altering, and replaying messages, as well as to prevent

eavesdropping and location tracking. On the other hand, assessing the credibility of the

reported data and behaviors of devices could help in establishing the trust of these de-

vices. Hence, the trust establishment for collaboration contains both the solutions for

defending against security risks and methods for assessing the behaviors of devices.

• Privacy leakage. To provide high-quality services, large amounts of multi-dimensional

data will be collected in the 5G-and-beyond networks. However, the collection and cor-

relation of these data allow the creation of detailed profiles encompassing every aspect

of a device/user [10]. Moreover, the significantly increased level of the interconnectivity

of a 5G-and-beyond system could further lead to privacy leakage. To be more specific,

combining multiple dimensions of data from different layers, devices, and application-

s can improve service quality, but increases the risk for leaks of sensitive data through

correlation as well. The leaked private information of a device/user not only leads to

security risks but also destroys the established trust during the collaboration process.

The relationship between security, trust, and privacy is shown in Figure 1.2. To be more

specific, security risks and attacks could lead to privacy leakage, including the leakage of sen-

sitive data, user location, and identity information [12]. Both security attacks and inappropriate

behaviors of devices could result in untrustworthy collaboration among devices and communi-

cation systems. Trust system can also be used in assessing the quality of received information,

to provide network security services such as access control, authentication, malicious node de-

tections, and secure resource sharing [9]. The leaked private information of a device/user could
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Figure 1.2: Security, trust, and privacy in explosively growing collaboration among entities.

be leveraged by attackers, thus leading to security risks and lack of trust. Hence, to effectively

support future IoT systems in vertical industry applications, security, trust, and privacy should

be dealt with integratively due to their close interactions.

In achieving collaboration among entities, multi-dimensional requirements should be con-

sidered, which are summarized as follows:

• Authentication and authorization. Both of them have been considered as key security

mechanisms and critical designs for 5G-and-beyond networks since adversaries need

access to communication systems to launch attacks [7, 11]. These mechanisms secure

legitimate communications by confirming the identities of all devices and their right

access to authorized resources, data, and services. To be more specific, the authentication

mechanism confirms the identities of communicating entities, ensures the validity of their

claimed identities, and provides assurance against various attacks [14].

• Access control. This protects against unauthorized use of network resources, and also

ensures that only authorized persons or devices can access the network resources, ser-

vices, data, and information flows [3].
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• Data confidentiality. It protects data from unauthorized disclosure, and ensures that the

data content cannot be understood by unauthorized entities [3, 18].

• Data integrity. It ensures the correctness and accuracy of data, and protects from unau-

thorized creation, modification, deletion, and replication [3, 18].

• Availability. It ensures that there is no denial of authorized access to network resources,

stored information, services, and applications [3, 18].

• Trust management. A trust management system aims to provide a process to produce

high-quality trust prediction for users [16, 17]. It usually contains several components,

such as trust calculation, trust propagation, trust aggregation, and trust prediction.

• Privacy protection. It provides protection for information that might be derived from

the observation of network activities as well as for data stored on the Internet [15]. Some

key properties can be used for privacy protection in 5G-and-beyond: anonymity, unlink-

ability, undetectability, unobservability, and pseudonymity [12].

1.1.2 Open Issues and Challenges for Conventional Mechanisms

The security solutions and architectures used in previous generations of wireless networks (i.e.,

3G and 4G) are apparently not sufficient for 5G-and-beyond, mainly because of its dynamics

of new services and technologies [12]. Moreover, the latency requirements of security manage-

ment, especially in machine communications, such as vehicular communication or Unmanned

Aerial Vehicles (UAVs), are much critical. Those security architectures of the previous gener-

ations lack the sophistication needed to secure 5G-and-beyond networks. Furthermore, there

are new technological concepts or solutions that will be used in 5G-and-beyond to meet the de-

mands of increasingly diverse applications and connected devices, as exemplified by the cloud

computing [19], Software Defined Networking (SDN) [19], and Network Function Virtualiza-

tion (NFV) [20]. These fast-emerging technologies bring new security challenges. Explicitly,

those IoT devices suffering from resource limitation could not support the security methods

requiring high communication and computation overhead. Tremendous devices contained in a

5G-and-beyond system also claim low-delay transmissions to guarantee their communication
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performance. Hence, to defend against threats in the explosive growth of collaboration among

entities, this thesis firstly focuses on studying the challenges for conventional mechanisms and

then on envisioning new approaches for security and trust enhancement.

The conventional security methods, including key-based cryptography techniques and phys-

ical layer key generation techniques, may suffer from their high complexity and long latency,

and may be ineffective to adapt to the complex dynamic environment, especially in large-scale

networks. Furthermore, their generated keys may be leaked in the security management pro-

cedures, e.g., key distribution. As discussed above, while security is the cornerstone for such

applications, trust among entities and information privacy are becoming increasingly importan-

t. Security, trust, and privacy should be dealt with integratively due to their close interactions.

However, conventional technologies always treat these aspects separately, leading to tremen-

dous loopholes and low efficiency. To be more specific, some open issues and challenges for

conventional mechanisms in supporting secure communications are summarized as follows.

• Long security overhead induced latency in large-scale networks. The convention-

al cryptography techniques require increased overhead and lengthy process for the in-

creased level of security, thus leading to high communication and computation overhead,

as well as long communication latency [2]. These are intolerable for the large-scale

network having significantly increasing number of intelligent machines and resource-

constrained devices with concurrent communications. Moreover, the conventional statistical-

based methods for authentication also require enough time and computational resources

for obtaining the statistical properties [2], thus leading to limited capability in detecting

attacks promptly.

• Ineffective adaptation to dynamic communication environments. Conventional se-

curity solutions may also suffer from cascading risks in dynamic communication sce-

narios due to their reliance on static binary mechanisms. Such mechanisms are difficult

in learning from and adapting to the dynamic environment encountered, thus resulting

in the failure of continuous protections for legitimate communications and decrease of

security performance in dealing with varying security risks.

• Potential key leakage in security management procedures. Conventional crypto-
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graphic techniques also require necessary key management procedures to generate, dis-

tribute, refresh and revoke digital security keys, leading to the potential leakage of key

information [2]. Furthermore, the key information transmission is also needed for infor-

mation reconciliation in the physical key generation techniques [21]. These all result in

tremendous loopholes for adversaries and wide security threats in 5G-and-beyond.

• Separate treatment of security, trust, and privacy in tightly collaborative applica-

tions. To achieve tight collaboration among entities in future wireless communications,

security, privacy, and trust should be considered comprehensively. Conventional security

methods that focus only on device-to-device data transmission are lack of trust evalu-

ation in tight collaborative applications, which helps in predicting the future actions of

users/devices and resulting in a good outcome in security enhancement. Hence, those

conventional security methods that separately treat security, trust, and privacy will leave

the amount of loopholes for attackers in tightly collaborative applications.

In a nutshell, the efficient security enhancement and trust management are of paramount

importance for 5G-and-beyond networks, especially in the coming of information age requiring

“Intelligence”.

1.1.3 Intelligent Security Provisioning and Trust Management

This thesis envisions new intelligent security provisioning and trust management approaches

by exploiting the help of Artificial Intelligence (AI) to address the above challenges for security

and trust enhancement as well as more efficient management in 5G-and-beyond networks. As

illustrated in Figure 1.3, the 5G-and-beyond networks are expected to provide wide services

having high communication and security performance as well as privacy-preserving transmis-

sions. Based on these basic requirements, the intelligent security provisioning and trust man-

agement approaches are required to meet multi-objectives, namely for high cost-efficiency,

high reliability, model independence, continuous protection, and situation awareness. More

importantly, the flexible designs of security and trust management are extremely helpful in

providing automatic services in different 5G-and-beyond communication scenarios, which are

presented in different colors inside the pentagon of Figure 1.3. Meeting these multiple objec-
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tives supports the advantages of intelligent security provisioning and trust management based

on AI as follows:
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Figure 1.3: Multi-objectives of intelligent security provisioning and trust management in 5G-
and-beyond.

• High cost-efficiency: Due to the increasing number of resource-constraint devices in

5G-and-beyond wireless applications, communication, security, privacy, and trust man-

agement should be executed concurrently to achieve cost-effective services. The oppor-

tunistic selection of features and dimension reduction methods [2] may help in decreas-

ing the complexity of the security and trust management relying on multi-dimensional

information as well as in reducing communication and computation overheads. Further-

more, by performing training and testing at devices having enough energy and storage

space, efficient security and trust management can be achieved at resource-constraint

devices.

• High reliability: Utilizing specific features and relationships in the multi-dimensional

domain is extremely helpful for achieving security enhancement since it is more difficult

for an adversary to succeed in predicting or imitating all attributes based on the received

signals and observations. To be more specific, the multi-dimensional information, such
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as time, frequency, network architecture, and communication process, provides broad-

er protections for legitimate users. Moreover, through using multi-dimensional infor-

mation, more precise and comprehensive trust evaluation can be achieved. AI tech-

niques could facilitate security and trust management by analyzing and fusing the multi-

dimensional information.

• Model independence: A data-based scheme through exploring machine learning tech-

niques overcomes the difficulties in modeling uncertainties and unknown dynamics of

the security and trust management process. Hence, the model-free schemes remove

the assumption of knowing structures of systems, resulting in a more scalable process

design. This benefits the development of multi-dimensional intelligent processes for

ever-growing demands of the quality of service in diverse applications, especially in the

complex time-varying environment under unpredictable network dynamics.

• Continuous protection: Utilizing the received information along with data transmission

for security enhancement could provide identification after login and control the varying

security risks. In achieving this, machine learning techniques may be explored for data

analysis and processing, so that the seamless protection for legitimate devices can be

achieved in 5G-and-beyond networks.

• Situation awareness: The situation-aware management observes the varying objectives

and security risks, and learns from the complex dynamic environment to enhance security

and to achieve efficient collaboration. AI techniques provide powerful tools to learn the

dynamic adversarial environment for self-optimization and self-organization, thereafter

achieving automatic security and trust management. More importantly, machine learning

techniques could help in the detection of time-varying communication scenarios as well

as the adaptation of security and trust management process.

As a conclusion, by exploring AI techniques, this thesis introduces the intelligence to secu-

rity and trust management in the complex time-varying environment, supporting radically new

applications of 5G-and-beyond wireless networks.
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1.2 Research Objectives

This thesis explores AI techniques for intelligent security provisioning and trust management.

The research objectives of this thesis are summarized as follows.

• To develop new authentication schemes based on AI techniques as an intelligent pro-

cess to learn and utilize the time-varying and imperfectly estimated communication link

attributes, thus to provide continuous protection for legitimate devices.

• To propose a soft authentication and progressive authorization scheme based on trust

management for achieving quick access and enhanced security by intelligently exploiting

the time-varying communication link-related attributes.

• To develop a distributed access management scheme for consortium blockchain-enabled

IoT systems by jointly considering security, privacy, and trust for achieving reliable ac-

cess control to defend against both outside and inside attacks.

• To propose a new lightweight continuous security scheme with the assistance of AI tech-

niques for identifying multiple resource-constrained IoT devices via their pre-agreed

pseudo-random access time sequences.

1.3 Thesis Contributions

The main contributions of this thesis are summarized as follows.

• Two multi-dimensional adaptive physical layer authentication schemes are proposed

based on AI techniques to learn and utilize the time-varying and imperfectly estimat-

ed communication link attributes. In the kernel-learning-based scheme, a fusion model

is designed to deal with the multiple attributes without knowledge of their statistical

properties. The authentication technique is developed as a linear convex model. Such

a convex property will greatly reduce authentication complexity. In the fuzzy learning-

based scheme, fuzzy functions are explored to characterize the multiple physical layer

attributes with imperfectness and uncertainties as parametric models since the model
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structure can be learned from the data as a priori. A hybrid learning-based adaptive al-

gorithm is proposed to near-instantaneously update the authentication parameters. These

two schemes both act as an intelligent process to tackle the variations of the utilized

attributes and hence to improve the reliability and robustness of the authentication.

• To mitigate the effects of inevitable wrong decision of authentication relying on the time-

varying communication link-related attributes, an adaptive trust management based soft

authentication and progressive authorization scheme is proposed. The trust relationships

between transceivers are established based on their evaluations of the selected attributes

for fast authentication. The transmitter can be authorized by the specific level of ser-

vices/resources corresponding to its trust level. To dynamically update the trust level of

the transmitter, an online conformal prediction-based adaptive trust adjustment algorith-

m is proposed relying on the real-time validation of attributes estimated at the receiver,

resulting in soft security and progressive authorization.

• A privacy-preserved distributed access control scheme based on accountable recommen-

dation is proposed for consortium blockchain-enabled IoT systems. It involves an ac-

countable recommendation mechanism, an anonymous credential generation strategy,

and a reputation update mechanism. In the recommendation mechanism, multiple au-

thorized devices act as referrers to authenticate a public device and issue the required

credential for joining the system. Then, the anonymous credential generation strategy

is developed for further privacy protection. The reputation update mechanism is pro-

posed to evaluate the behaviors of the authorized devices for achieving multiple-level

authorization and accountable security services. Hence, the proposed scheme secure

the integrated system through reliable access control to defend against both outside and

inside attacks.

• A lightweight continuous authentication scheme is developed for identifying multiple

resource-constrained IoT devices via their pre-arranged pseudo-random access time se-

quences. A transmitter will be authenticated as legitimate if and only if its access time-

sequential order is identical to a pre-agreed unique pseudo-random binary sequence

(PRBS) between itself and the base station. The seed for generating PRBS between
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each transceiver pair is determined by exploiting the channel reciprocity, which is time-

varying and difficult for a third party to predict. Moreover, the Support Vector Machine

(SVM) algorithm is applied for intelligently quantizing the physical layer attribute esti-

mates to bits. Hence, the proposed scheme provides seamless protections for legitimate

communications as the seeds can be refreshed adaptively without incurring long latency,

complex computation, and high communication overhead.

1.4 Thesis Organization

The following details and Figure 1.4 demonstrate the organization of remaining chapters of

this thesis.
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Figure 1.4: Thesis organization.

It would be beneficial to first provide fundamentals related to wireless communication se-

curity, privacy, and trust, existing solutions to secure communication and their challenges, as

well as the introduction of AI techniques for security enhancement, privacy protection, and
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trust management. All of these will be explained in Chapter 2.

Chapter 3 proposes two physical layer authentication schemes as an intelligent process to

achieve continuous protections for legitimate devices, including kernel learning-based scheme

and fuzzy learning-based scheme. The proposed kernel learning-based physical layer authenti-

cation scheme tracks multiple communication link-related features to achieve reliable authen-

tication that leaves fewer loopholes for spoofers in intermittent communications, which is a

nonparametric method. However, compared with another kind of methods, i.e., the parametric

methods, more observed samples of the adopted attributes are required in building the authen-

tication model by using the nonparametric methods, leading to a larger number of parameters

in the authentication process to be determined. Then, the fuzzy learning-based authentication

scheme is proposed, which is a parametric method. Through providing a form of system ex-

pression, more information has been involved in the attribute combination model, thus resulting

in fewer parameters to be determined when compared to the nonparametric methods.

Considering the inherent misdetection and false alarm problems in physical layer authenti-

cation, an adaptive trust management-based soft authentication and progressive authorization

scheme is developed in Chapter 4. This scheme establishes trust relationship between the

transmitter and receiver based on the evaluation of selected physical layer attribute for fast

authentication and multiple-level authorization. Through the designed trust model, the trans-

mitter is authorized by the specific level of services/resources corresponding to its trust level,

so that soft security is achieved. To dynamically update the trust level of the transmitter, an

online conformal prediction-based adaptive trust adjustment algorithm is proposed relying on

the real-time validation of its attribute estimates at the receiver, thus resulting in the progressive

authorization.

By jointly considering security and privacy-preservation, an accountable recommendation-

based distributed access control scheme is proposed for consortium blockchain-enabled IoT

systems in Chapter 5. This scheme involves an accountable recommendation mechanism, an

anonymous credential generation strategy, and a reputation update mechanism. In the recom-

mendation mechanism, multiple authorized devices are utilized as referrers to authenticate a

public device and issue the required credential for joining the system. Then, the anonymous

credential generation strategy helps to further achieve privacy protection. To ensure the ef-
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fectiveness of the proposed recommendation mechanism, a reputation update method is also

developed to evaluate the behaviors of authorized nodes. An incorrect recommendation will

lead to the decrease of referrers’ reputation values, named as accountability. Moreover, the

dynamic multiple-level authorization can be achieved for all devices based on their adaptive

reputation values.

Chapter 6 develops a new lightweight continuous authentication scheme in IoT system-

s based on the access time slots of the devices. The access time sequence of each device is

prearranged between itself and the base station based on the channel reciprocity. A new seed

acquisition technique is proposed based on the Support Vector Machine (SVM) to achieve bet-

ter quantization performance. With the acquired seed, a Pseudo-Random Binary Sequence

(PRBS) can be generated for authentication. The identification of the access time sequences

of devices can dramatically reduce the time latency for authentication. More importantly, the

proposed scheme is lightweight at the IoT devices since they don’t require high computa-

tion/communication costs in generating authentication keys/tags.

Finally, conclusions are drawn from the studies and future research directions are pointed

out in Chapter 7.



Chapter 2

Background Study on Security, Trust,

Privacy, and Artificial Intelligence

The 5G-and beyond wireless networks are critical to support diverse vertical applications by

connecting heterogeneous devices and machines, which directly increase vulnerability for var-

ious security risks and threats. Conventional cryptographic and physical layer security tech-

niques are facing inevitable challenges in complex dynamic wireless environments, including

significant security overhead, low reliability, as well as difficulties in pre-designing a precise

security model and providing continuous protection. This chapter presents the detailed risks

and threats in 5G-and-beyond networks as well as existing solutions for secure communica-

tion and their challenges. Furthermore, the benefits of utilizing Artificial Intelligence (AI)

for security provisioning and trust management are introduced. Machine learning paradigms

for intelligent security design are also presented, namely for parametric/non-parametric and

supervised/unsupervised/reinforcement learning algorithms. Based on these preliminaries, in-

telligent security provisioning and trust management will be further studied, as well as new

schemes will be developed for achieving the objectives of this thesis in the following chapters.

2.1 Risks and Threats Landscape in 5G-and-Beyond

As shown in Figure 2.1, the backhaul of 5G networks can be divided into three different layers:

infrastructure layer, control layer, and application layer [12]. The infrastructure layer contains

15
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the basic connectivity devices, such as base stations, routers, and switches. All the network

control functionalities and decision-making entities are placed in the control layer, which in-

teracts with the application layer. Besides, it can translate the network service requests from

the application layer as control commands and deliver to the infrastructure layer devices. Thus,

all the network services and applications are implemented in the application layer. In addition,

the end-to-end management is used in parallel to synchronize the operation and collaboration

of these layers.

 Spoofing attacks

 Eavesdropping attacks

 False information/

recommendation attacks

 Tampering attacks

 Sybil attacks

 Denial-of-Service (DoS)

Risks and threats

Backhaul 
network

Operator network
Cloud

Applications/ 
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Figure 2.1: Typical risks and threats in 5G-and-beyond networks.

To support a wide variety of vertical IoT applications, the 5G-and-beyond networks connect

a dramatically growing number of low-cost devices and access points with increased mobility

and heterogeneity, leading to an extremely complex and dynamic environment. Specifical-

ly, due to the open broadcast nature of radio signal propagation, widely adopted standardized

transmission protocols, and intermittent communication characteristic, wireless communica-

tions are extremely vulnerable to various attacks [2].

Some typical security threats and privacy risks in 5G-and-beyond are also shown in Figure

2.1, their descriptions are summarized as:
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• Spoofing attacks: The objective of spoofing attacks is to generate and send malicious

packets that seem legitimate in the systems. For example, the adversary may spoof the

IP addresses of authorized devices in an IP-based IoT system, and then send malicious

data with the spoofed IP addresses to gain access to the system [12].

• Eavesdropping attacks: Eavesdropping attacks are the acts of secretly or stealthily listen-

ing to the private conversation or communications of others without their consent [12].

An eavesdropping attack can be difficult to detect because the network transmissions will

appear to be operating normally.

• False information/recommendation attacks: A malicious device may collude and provide

false information/recommendations to isolate good devices while keeping malicious de-

vices connected. The malicious device may keep complaining about a peer device and

create the peer’s negative reputation [65].

• Tampering attacks: This kind of attacks can be classified as device tampering and data

tampering [66]. The device tampering can be easily performed especially when an IoT

device is absent most of the time. It can be easily stolen without being noticed and then

be used maliciously. The data tampering involves malicious modification of data, e.g.,

data stored in databases or data transiting between two devices.

• Sybil attacks: This kind of attacks are impersonation attacks, which can be simply pre-

vented by explicitly binding an identity to participate in a system. A malicious device can

use multiple network identities, which can affect topology maintenance and fault-tolerant

schemes, such as multi-path routing [65].

• Denial-of-Service (DoS) attacks: They aim to overwhelm the network services by inun-

dating them with requests, e.g., servers inundate with requests for services. A malicious

node may block the normal use or management of communications facilities, for exam-

ple, by causing excessive resource consumption [65].
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2.2 Existing Solutions for Secure Communication and Their

Challenges

This subsection presents some existing solutions for secure communications and their chal-

lenges, i.e., authentication, access control, trust management, and privacy protection.

2.2.1 Authentication

The existing solutions for authentication and their challenges are introduced in this subsection,

including cryptographic techniques and physical layer authentication techniques.

Cryptographic Techniques

Although digital key-based cryptographic techniques [22, 23, 24] have been widely used both

for communication security and authentication, they may fall short of the desired performance

in many emerging scenarios. One fundamental weakness of the digital credentials based

on conventional cryptography is that detecting compromised security keys cannot be readily

achieved, since the inherent physical attributes of communication devices and users are dis-

regarded [25]. Given the rapidly growing computational capability of devices, it is becoming

more and more feasible to crack the security key from the intercepted signals of standardized

and static security protocols. Furthermore, conventional cryptographic techniques also require

appropriate key management procedures to generate, distribute, refresh, and revoke digital

security keys, which may result in excessive latencies in large-scale networks. Indeed, this la-

tency may become intolerable for delay-sensitive communications, such as networked control

and vehicular communications. The computational overhead of digital key-based cryptograph-

ic methods is also particularly undesirable for devices, which have limited battery lifetime and

computational capability, such as IoT sensors. For example, the group key agreement protocols

require thousands of transmission times to exchange keys and to establish group keys among

5-client groups [26].

The authors of [27] developed a lightweight mutual authentication protocol based on the

public key encryption for smart city applications, which strikes a balance between the efficiency
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and communication costs without sacrificing security. A scalable framework for lightweight

authentication and hierarchical routing in data networking IoT is proposed in [28]. The au-

thors of [29] proposed a two-factor lightweight privacy-preserving authentication scheme to

enhance the security of vehicular ad-hoc network communications relying on the decentralized

certificate authority and the biological passwords. However, these schemes also require many

rounds for the key generation, refresh, and delivery, resulting in long time latency and high

communication overhead. Furthermore, the key transmission process in security management

procedures of the cryptographic techniques could lead to potential key leakage [30].

Physical Layer Authentication Techniques

Physical layer authentication techniques have attracted a lot of interests, which can be classified

as key-based or keyless, according to whether a secret key shared between the transceiver is

exploited for the physical layer authenticate or not [31].

In [32], the authentication signal is generated and added to the message signal with the

assistance of a secrete key. The communication performance could be reduced in this scheme

since the authentication signal appears as noise to the message signal and vice versa. The su-

perimposed tag-based authentication schemes [33] transmit an additional authentication signal

concurrently with the messages, but corrupt the entire data message and require additional com-

plicated preprocessing, such as message symbol recovery through demodulation and decoding.

The authors of [31] proposed an artificial-noise-aided physical layer phase challenge-response

authentication scheme for orthogonal frequency division multiplexing (OFDM) transmission.

In [34], a slope authentication method is developed at the physical layer to divide the transmit-

ted signal into multiple groups, and to generate a tag based on a shared secrete key and pilot

signal to mark the time index of each group for authentication. However, the above key-based

physical layer authentication schemes require the procedure of generating keys and assistance

from trusted third parties, resulting in long latency and high computation overhead.

The keyless physical layer authentication technique has been widely studied in the liter-

ature [31, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48] due to its advantages including

low computational requirement, low network overhead, and modest energy consumption. It

focuses on exploiting the attributes of communication links and devices to protect legitimate
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communications from the spoofing attacks. Such analog-domain attributes directly relate to

the communicating devices and corresponding physical environment, thus are difficult to im-

personate and predict, e.g., channel impulse response (CIR) [35, 36], carrier frequency off-

set (CFO) [37, 38], received signal strength indicator (RSSI) [39], in-phase-quadrature-phase

imbalance (IQI) [40], just to name a few. These attributes are time-varying and imperfect-

ly estimated in practical networks because of the mobility of devices, dynamic channels with

unpredictable interference conditions, estimation errors, and so on.
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Figure 2.2: Comparison of cryptographic and physical authentication techniques.

A detailed comparison of conventional and physical authentication techniques is given in

Figure 2.2.

Challenges for Existing Physical Layer Authentication Techniques

Although physical layer authentication has many advantages, it also faces many challenges.

The main reason is that most of the existing physical layer authentication techniques rely on
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only a single attribute, as well as on static mechanisms while encountering the complex dy-

namic wireless environment of 5G-and-beyond wireless networks. As shown in Figure 2.2, the

challenges for existing physical layer authentication techniques are summarized as follows.

• Low reliability when using single attribute: Performance of the single attribute-based

physical layer authentication schemes suffers from the imperfect estimates and variations

of the selected attribute [2]. Moreover, the limited range of specific attribute distribution

may not be sufficient for differentiating transmitters all the time. This limits the perfor-

mance of single attribute-based authentication schemes in many universal applications,

such as mobile device security.

• Difficulty in pre-designing a precise authentication model: Most of the existing phys-

ical layer authentication schemes are model-based, as exemplified by [37, 49], which

may be deteriorated when it is operated in a complex time-varying environment. More

importantly, tremendous amounts of data and a priori knowledge are required for ob-

taining the accurate channel model, which are obviously undesirable for those mobile

networks, such as unmanned aerial vehicle (UAV) networks and vehicular ad-hoc net-

works (VANETs). Hence, it is challenging to pre-design a precise authentication model

for supporting new applications in 5G-and-beyond networks.

• Impediment to continuous protection of legitimate devices: Most of the existing au-

thentication schemes are static in time and binary in nature, which means that the de-

vices either pass or fail the authentication, thus leading to the one-time hard verifica-

tion [37, 49]. Due to the intermittent communications between Alice and Bob, these

schemes may be limited in detecting spoofer after the initial login and in addressing

varying security risks.

• Challenge of learning time-varying attributes: Authentication performance of the ex-

isting static authentication schemes could be severely affected by the unpredictable vari-

ations of attributes due to the potential decorrelation at different time instants and device

mobility. Hence, the variations of attributes increase the uncertainty for adversaries, but

decrease the authentication accuracy of legitimate devices operating without learning the

diverse attributes as well.
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In addition, there are also some open issues for the adaptive authentication systems utilizing

multiple physical layer attributes as follows:

• Limited computational resources for estimating the statistical properties of attributes for

many IoT devices.

• Large search-space for finding the outcomes of authentication when multiple physical

layer attributes are utilized.

• Nonlinear and non-convex characteristics of authentication systems.

• Timely detection of time-varying attributes and adaptation of the authentication process.

Due to these existing challenges, the authentication enhancement and efficient security pro-

visioning are of paramount importance for 5G-and-beyond wireless networks.

2.2.2 Access Control

The access control mechanisms can be classified as encryption-based and encryption indepen-

dent based on whether they use a particular encryption technique or are independent of the un-

derlying encryption [147]. In the encryption-based approaches, the content providers encrypt

their content before disseminating them into the network. Clients need to authenticate them-

selves and obtain the content decryption keys to be able to decrypt and consume the content.

On the contrary, the encryption independent approaches provide access control frameworks

that can use any encryption methods for performing access control.

The encryption-based approaches have been well studied in the literature [53, 54, 148]. A

generalized hierarchical access control scheme named shared encryption-based construction is

proposed in [53] by adding qualified users to the system via perfect secret sharing and symmet-

ric encryption. This protocol defines alternative methods of accessing the system and allows

the distribution of duties to different users. This paper also develops a secure key assignment

scheme called threshold broadcast encryption-based construction. In [54], an attributed-based

encryption mechanism is proposed for access control enforcement that uses either the key-

policy or the ciphertext-policy based encryption models. The authors of [148] proposed a
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probabilistic structure for encryption-based access control. Publishers and clients are equipped

with public-private key pairs and each client initially subscribes to a publisher by sending an

interest. The publisher stores a record for each registered client and identifies the client’s cre-

dentials.

Different from the encryption-based approaches, [149] proposes a trust-based approach for

access control. During registration, a new client or publisher presents its credentials and at-

tributes to the broker, thus trust is established. The publisher defines an access policy and

submits it to its broker. In [50], a lightweight digital signature and access control scheme is de-

veloped for data networking. The access policies are enforced using generated tokens-metadata

that indicate access levels. Two private tokens enable content access and integrity verification

for each authorized entity. After receiving the entity’s request for a token, the provider encrypts

the token (generated by hashing a key vector) based on the requester’s access level. In [51], an

automated ConfigSynth framework is proposed to provide affordable and synthesizing precise

network configuration. The proposed framework is further refined to provide improved secu-

rity by developing a refinement mechanism. To prevent from international mobile subscriber

identity downgrade attack with a fake LTE base station, a pseudonym-based solution and a

mechanism to update LTE pseudonyms are proposed in [52].

2.2.3 Trust Management

Trust and reputation management systems can also be used in assessing the quality of received

information, to provide network security services such as access control, authentication, mali-

cious node detections, and secure resource sharing. According to [67, 68, 69, 150], definitions

of trust and reputation are given respectively as: “A node A’s trust in a node B is the subjec-

tive expectation of node A receiving positive outcomes from the interaction with node B in

a specific context.” and “Reputation is the global perception of a node’s trustworthiness in a

network.” The concept of “Trust” originally derives from social sciences and is defined as the

degree of subjective belief about the behaviors of a particular entity [63]. The authors in [64]

first introduced the term “Trust Management” and identified it as a separate component of se-

curity services in networks and clarified that “Trust management provides a unified approach
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for specifying and interpreting security policies, credentials, and relationships.” The concept

of trust also has been attractive to communication and network protocol designers where trust

relationships among participating nodes are critical in building cooperative and collaborative

environments to optimize system objectives in terms of scalability, reconfigurability, and relia-

bility, dependability, or security [65].

The trust management system usually contains multiple functional blocks: trust calcula-

tion, trust propagation, trust aggregation, and trust prediction. First of all, a trust value of the

device/user will be calculated based on some metrics or recommendations. These trust values

will be propagated in the network so that the trust can be established between devices which

are not in immediate contact. While propagating the trust, trust values from multiple paths will

be aggregated to get a combined trust value which can be stored in history. The stored trust

value can be used in the trust predictions and this predicted trust value will be further used in

the applications. The stored trust value can also be used in the trust computation in the form

of feedback knowledge. Therefore, trust calculation, trust propagation, trust aggregation, and

trust prediction blocks are closely interconnected in the trust management.

The authors in [70] proposed a highly scalable cluster-based hierarchical trust management

protocol for wireless sensor networks to effectively deal with selfish or malicious nodes. They

considered multidimensional trust attributes derived from communication and social networks

to evaluate the overall trust of a sensor node. The authors of [71] proposed a 3-tier cloud-

cloudlet device hierarchical trust-based service management protocol for large-scale mobile-

cloud IoT systems. This protocol allows an IoT customer to report its service experiences and

query its subjective service trust score toward an IoT service provider following a scalable

report-and-query design. In [72], a trust management scheme is proposed for unattended wire-

less sensor networks to provide efficient and robust trust data storage and trust generation. For

trust data storage, a geographic hash table is employed to identify storage nodes and to signifi-

cantly decrease storage costs. The subjective logic-based consensus techniques are utilized in

this work to mitigate trust fluctuations caused by environmental factors. To achieve accurate

and energy-efficient trust evaluation in underwater acoustic sensor networks, an attack-resistant

trust model is proposed in [73] based on multidimensional trust metrics, which mainly consists

of three types of trust metrics, i.e., the link trust, data trust, and node trust.
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2.2.4 Privacy Protection

In this subsection, privacy protection can be classified into three different categories, i.e., data

privacy, location privacy, and identity privacy [55], which are summarized as follows.

• Data privacy: 5G-and-beyond networks allow users to utilize smart and data-intensive

services, such as high-resolution streaming, healthcare [56], and smart metering [57],

through the heterogeneous smart devices. To provide these services, the service providers

may store and use private data of individuals without their permission. The stored data

may be shared with other stakeholders so that they can analyze the data for their products.

To mitigate such data privacy issues, service providers must provide clarification for the

users not only how and where the individual’s data have been stored, but also how and

what purpose their data have been used. The authors in [58] argued that the standard

formalization of differential privacy is stricter than that required by the intuitive privacy

guarantee it seeks. In this work, several mechanisms to attain individual differential

privacy are developed.

• Location privacy: More and more devices in 5G-and-beyond networks rely on ubiquitous

location-based services [59]. Indeed, such services make users’ life easier and more en-

joyable but bring a plethora of privacy issues that of being continuously tracked as well.

A scalable architecture is provided in [60] for protecting the location privacy from var-

ious privacy threats resulting from uncontrolled usage of location-based services. This

architecture includes the development of a personalized location anonymization model

and a suite of location perturbation algorithms. A flexible privacy personalization frame-

work is used to support location k-anonymity for a wide range of mobile clients with

context-sensitive privacy requirements. This framework enables each mobile client to

specify the minimum level of anonymity that it desires and the maximum temporal and

spatial tolerances that it is willing to accept when requesting k-anonymity-preserving

location-based services.

• Identity privacy: It protects the identity-related information of a device/system/ user a-

gainst attacks. As more and more devices are being connected to the network, it raises



26 Chapter 2. Background Study on Security, Trust, Privacy, and Artificial Intelligence

the probability of identity information leakage by adversaries [61]. The authors of [62]

addressed the privacy risks of identity disclosures in sequential releases of a dynamic

network. To prevent leakage of identity privacy, they proposed kw-structural diversity

anonymity, where k is an appreciated privacy level and w is a time period that an adver-

sary can monitor a victim to collect the attack knowledge.

2.3 AI for Security, Trust, and Privacy Enhancement

2.3.1 Benefits of AI for Security, Trust, and Privacy

The artificial intelligence (AI) [74] is leveraged in this thesis to enhance security, trust, and pri-

vacy in 5G-and-beyond networks through learning, reasoning, and self-correction. Explicitly,

AI techniques could be exploited at gateways and routers, and the abundant information con-

tained in large-scale wireless communication systems could be utilized for learning and reason-

ing, thus achieving security enhancement and trust management based on learned knowledge.

Moreover, through self-correction by AI techniques, the intelligent security provisioning and

trust management may be accomplished to adapt to dynamic wireless environments. To be

more specific, AI may contribute to the secure communications in 5G-and-beyond networks

due to the following reasons.

• Security management may be accelerated based on learned knowledge by AI. In

a large-scale communication system, the gateways and routers may undertake the AI

management, such as data collection, training, and testing, thus the communication and

computation overhead could be reduced at low-power devices. They also have abundant

multi-domain information on communication channels, devices, environments, network

connections, and application software. Such information could be intelligently utilized

for security provisioning as well as for contributing to the learning and reasoning by

AI techniques. More importantly, AI techniques may utilize historical information to

facilitate security management. Hence, the continuous security process at devices could

be accelerated as well as the security induced latency could be reduced based on learned

knowledge by AI techniques.
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• AI provides real-time learning under limited statistical properties and unpredictable

dynamics. In the practical communication environment, it is more and more difficult to

develop accurate statistical models for security enhancement. This is mainly because of

the ubiquitous uncertainties and unpredictable dynamics as well as the limited computa-

tional resources and time for obtaining precise statistical properties. Those AI techniques

providing online learning under limited statistical properties and unpredictable dynam-

ics could conduce to the real-time detection of attacks and continuous protections for

legitimate communications. Furthermore, different from the statistical hypothesis test-

ing [75], which requires an accurate statistical model, the machine learning algorithms

allow systems to become more accurate in predicting outcomes based on the training

data.

• Automatic management may be achieved with the help of AI techniques. With the

significant increasing requirements in 5G-and-beyond, automatic management helps to

meet different goals, for example, quality of service (QoS), security enhancement, trust

establishment, and privacy protection. This can be achieved based on the learning of the

dynamic situations of the time-varying systems by AI techniques, thus the different goals

can be automatically adjusted in the process of communications. More importantly, the

objective-aware techniques can be designed utilizing AI to provide benefits for more

efficient management in dynamic environments.

• Privacy protection in security management may be achieved based on AI. As the

leaked private information of a device/user could be leveraged by attackers, leading to

security risks and lack of trust, privacy protection in the security management process

is extremely important. With the help of AI, intelligent security provisioning may be

designed by utilizing the channel reciprocity [21] as well as by tracking the specific

communication link-related, device-related, and biometric features without the transmis-

sion of private information. To be more specific, AI techniques may help in amplifying

the channel reciprocity, so that highly similar information can be acquired on transceiver

sides. Moreover, machine learning algorithms can track the specific features for contin-

uous security management without the transmission of private information [2].
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Therefore, through leveraging AI, new intelligent security provisioning and trust manage-

ment schemes can be developed in large-scale 5G-and-beyond networks.

2.3.2 Categories of Machine Learning for Intelligent Management

The family of machine learning algorithms can be categorized based on their functionality and

structure [1], yielding regression algorithms, decision tree algorithms, Bayesian algorithms,

clustering algorithms, and artificial neural networks, just to name a few. In this subsection,

machine learning techniques are clarified from two perspectives: parametric/non-parametric

learning and supervised/unsupervised/reinforcement learning, as illustrated in Figure 2.3. The

adjectives “parametric/non-parametric” indicate whether there are specific forms of training

functions, while “supervised/unsupervised” indicate whether there are labeled samples in the

database. The focus of reinforcement learning is finding a balance between exploration of

uncharted territory and the exploitation of current knowledge. The basic concepts and typical

examples of these machine learning techniques will be introduced, more importantly, their

applications and possible requirements in designing intelligent security provisioning and trust

management approaches will be discussed for different wireless communication scenarios.
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Figure 2.3: Categories of machine learning (ML) techniques for intelligent security provision-
ing and trust management.

Parametric Learning Methods

The family of parametric learning methods has become mature in the literature, as exemplified

by the logistic regression, linear discriminant analysis, perceptron, and naive Bayes, which
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require the specific form of training functions [76]. When the training functions related to

the training samples (i.e., the collection of multi-dimensional information) are selected appro-

priately, the parametric learning methods could be more accurate, simpler, and require fewer

training samples than the non-parametric learning methods.

In the intelligent physical layer authentication schemes, the parametric learning method-

s could model the communication link-related attributes independently based on the specific

form of training functions, and the uncertainties caused by the complex time-varying environ-

ment may be circumvented. The communication overhead and complexity of training may be

adjusted adaptively by opportunistically leveraging attributes. However, this kind of learning

methods may be challenged in 5G-and-beyond wireless communication scenarios wherein the

statistic properties and a priori knowledge of attributes are not at hand.

Non-Parametric Learning Methods

In contrast to parametric learning methods, the non-parametric learning methods [1, 2, 76] are

not specified a priori, but are determined from the available data. Examples include kernel

estimator, k-nearest neighbors, and decision trees, just to name a few. A kernel machine-based

scheme for intelligent physical layer authentication process is proposed in [2]. The dimen-

sionality of multiple attribute-based authentication systems is reduced by the kernel function

and the resultant authentication process can be modeled as a linear system, thus decreasing the

computation complexity of the authentication process, even though a large number of attributes

are utilized. More importantly, the proposed kernel learning algorithm tracks the time-varying

attributes to enhance security based on continuous device validation.

The non-parametric learning methods dynamically learn from the time-varying environ-

ments without requiring any assumptions concerning the training models. Beneficially, this

provides higher flexibility for intelligent management, especially in those time-varying scenar-

ios, where the computational resources and time available for obtaining the statistical properties

of attributes and training functions are limited. However, compared with the parametric learn-

ing methods, they require more training data (i.e., collection of multi-dimensional information

and/or their corresponding labels) and may result in overfitting.
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Supervised Learning Techniques

The main difference between supervised and unsupervised learning algorithms is that super-

vised learning requires the prior knowledge of outputs for the corresponding inputs, while un-

supervised learning algorithms do not need labeled outputs. Some supervised machine learning

algorithms are studied in [76] for defending against the false data injection attacks, such as the

perceptron, k-nearest neighbors, and support vector machines (SVM). In intelligent manage-

ment, the choice between supervised or unsupervised machine learning algorithms typically

depends on the problem and volume of training data at hand. A supervised learning algo-

rithm is suitable when training data and corresponding outputs of a legitimate communication

session are straightforward to obtain. More explicitly, the labeled outputs should be required

near-instantaneously, so that the adaptation of the management process may be achieved in

real-time. When labeled outputs are not at hand, fast labeling techniques may be helpful for

the supervised learning-based intelligent management.

Unsupervised Learning Techniques

In exploring this kind of algorithms, the learner exclusively receives unlabeled training data

and makes predictions for all unobserved points, as exemplified by the K-means clustering [1].

For instance, in physical layer authentication scenarios wherein the samples of a legitimate

device (i.e., estimates of attributes) are much more than that of Spoofer, unsupervised learning

algorithms may be introduced for intelligent authentication. It is reasonable since the spoof-

ing attacks fully rely on the legitimate device’s behaviors for better attacking performance,

including the transmission protocols and attributes. Through applying unsupervised machine

learning techniques for security enhancement and trust management, the time latency and en-

ergy consumption for labeling the outputs will be significantly decreased.

Reinforcement Learning Techniques

They do not require accurate inputs and outputs as well as precise parameter updates. A Q-

learning-based authentication scheme is proposed in [78] depending on the received signal

strength indicator of signals to achieve the optimal test threshold and to improve the authen-
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tication accuracy. However, it is also a static authentication scheme and maybe unsuitable

when the available resources and time are limited for obtaining complete information, i.e., the

environment and agent states as well as the immediate reward for each action of devices.

2.3.3 AI-based Security Provisioning

As shown in Figure 2.4, a design of machine learning-aided intelligent authentication ap-

proaches is introduced as an example by utilizing multi-dimensional attributes and by opti-

mizing the holistic authentication process.

Performance evalua-
tion and adaptation

5G-and-beyond applications Intelligent authentication design

Feature observations 

Intelligent security provisioning 

Attribute analysis and 
fusion based on 

machine learning

Collection of multi-
dimensional attributes

Figure 2.4: Framework diagram of intelligent authentication design.

Phase I: The time-varying multi-dimensional attributes are collected for authentication, which

may be estimated imperfectly having noises and measurement errors. Examples include the

physical layer attributes, network selection in heterogeneous wireless networks, and mobili-

ty patterns. In a specific 5G-and-beyond wireless communication scenario, those attributes

providing more information for authentication may be selected first. In detail, the independent

attributes having a broader distribution range and a higher estimation accuracy could offer more

information for distinguishing different transmitters. By utilizing multi-dimensional attributes

as well as sharing the information among different layers and networks, the reliability of au-

thentication will be improved. Explicitly, the design of intelligent authentication only relies

on the estimation data of attributes without requiring a precise structure of the time-varying
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attributes, e.g., the channel model, resulting in model-free device validation.

Phase II: The multi-dimensional attributes can be fused for authentication based on machine

learning techniques. An example is given in [2], which is a kernel learning-based physical layer

authentication scheme. Considering the time-varying network conditions, such as the resource

limitations and uncertainties, the attributes may be opportunistically selected for dealing with

both communication overhead and security management concurrently. Furthermore, develop-

ing an appropriate machine learning algorithm and reducing the dimension of the authentica-

tion system will also benefit communication performance, thus cost-effective authentication

will be achieved.

Phase III: The authentication for a legitimate device and a spoofer can be conducted based

on the new collection of multi-dimensional attributes. To achieve this, the regression or clas-

sification model should be built based on the training data collected from them. Then the

authentication performance can be evaluated, and the authentication process can be adapted to

the complex time-varying environment by exploring machine learning to track the variations of

multi-dimensional attributes. Hence, the continuous and situation-aware process is proposed

for intelligent security provisioning in 5G-and-beyond applications.

2.4 Chapter Summary

This chapter firstly introduced the threats and risks in 5G-and-beyond networks as well as

some existing solutions for secure communications, including authentication, access control,

trust management, and privacy protection techniques. The challenges for the conventional tech-

niques and the advantages of artificial intelligence were presented. Then, the machine learn-

ing paradigms for intelligent management were classified into parametric and non-parametric

learning methods, as well as supervised, unsupervised, and reinforcement learning techniques.

Based on the preliminaries provided in this chapter, new intelligent security provisioning and

trust management schemes will be developed in the following chapters.



Chapter 3

Physical Layer Authentication as an

Intelligent Process

Physical layer authentication techniques validate wireless transmitters by verifying the dynam-

ic attributes of the associated physical communication links, devices, location, and environ-

ment. Performance of the existing physical layer authentication schemes could be severely

affected by the imperfect estimates and the variations of the communication link attributes.

The commonly adopted static hypothesis testing for physical layer authentication faces signifi-

cant challenges in time-varying communication channels due to the changing propagation and

interference conditions, which are typically unknown at the design stage. To circumvent this

impediment, two multi-dimensional adaptive physical layer authentication schemes are pro-

posed based on artificial intelligence (AI) techniques as an intelligent process in this chapter

to learn and utilize the complex time-varying environment, and hence to improve the reliabil-

ity and robustness of physical layer authentication. These two schemes are named as kernel

learning-based authentication scheme and fuzzy learning-based authentication scheme.

3.1 Introduction

Due to the open broadcast nature of radio signal propagation, as well as owing to using s-

tandardized transmission schemes and intermittent communications, wireless communication

systems are extremely vulnerable to interception and spoofing attacks. First of all, the open

33
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broadcast nature of wireless medium facilitates the reception of radio signals by any illegiti-

mate receiver within the coverage of the transmitter [25]. Secondly, the standardized transmis-

sion and conventional security schemes of wireless networks make interception and eavesdrop-

ping fairly straightforward [79, 80]. Moreover, the “on-off” and sporadic transmissions of low

cost wireless devices, especially the significantly growing number of Internet-of-Things (IoT)

devices, provide abundant opportunities to adversaries for spoofing attacks. Therefore, the en-

hancement of authentication schemes is of paramount importance for wireless communication

systems, especially in the light of the ongoing convergence between the wireless infrastructure

and vertical industrial applications enabled by IoT.

Physical layer authentication technique provides an effective approach for authenticating a

user (transmitter) by exploiting the physical layer attributes of its communication links. How-

ever, imperfect estimates and variations of the physical layer attributes are inevitable in prac-

tical wireless networks. These constitute challenges for the physical layer authentication, but

beneficially, they provide unique distinguishing features. Having said that, their adequate esti-

mation often imposes challenges on physical layer authentication, mainly due to time-varying

channels, dynamic interference conditions, mobility of devices, non-symmetrical observations

at the transmitter and receiver, as well as owing to the measurement errors, just to name a few.

To elaborate a little further on the challenges, the performance of the single-attribute-based

physical layer authentication schemes [31, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48] remains

limited by the imperfect estimates of the specific attribute used. Moreover, the limited range

of the specific attribute distribution may not be sufficiently wide-spread for differentiating the

devices all the time. These estimations lead to low-reliability and low-robustness of physical

layer authentication in conjunction with only a single attribute, especially in a hostile time-

varying wireless communication environment.

Hence, multiple physical layer attributes may be taken into account for improving the au-

thentication performance [30, 81], since it is more difficult for an adversary to succeed in

predicting or imitating all the attributes based on the received signal. On the other hand, when

the environment is time-variant, the performance of physical layer authentication could be

severely affected by the unpredictable variations of attributes due to the potential decorrelation

of the physical layer attributes observed at different time instants. Although the variations of
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attributes provide additional scope for improving the security mechanisms by increasing the

uncertainty for the adversaries, at the same time also brings challenges for the legitimate users

operating without discovering and tracking the variations of physical layer attributes.

In a nutshell, the main challenge is that a multiple varying attributes-based authentication

scheme is capable of achieving high security in the presence of adversaries, but this increases

the grade of challenge imposed on legitimate users as well. More importantly, variations of the

physical layer attributes are typically unknown at the design stage and they are hard to predict,

thus it is very difficult to pre-design a static physical layer authentication scheme. Hence the

conception of adaptive physical layer authentication is extremely helpful for improving the

validation performance, which can promptly adapt to the time-varying environment.

There are in general two classes of methodologies in the literature available for combining

the multiple physical layer attributes for authentication. The first one is the nonparametric

methods [96, 97, 98, 99, 100], which can be used for combining multiple attributes without a

fixed form (structure) of the authentication model. The other one is the parametric methods,

where the forms of system expression are given, as exemplified by the Gaussian function and

polynomial function [101, 102, 103]. The details of these two classes of methodologies have

been introduced in subsection 2.3.2.

3.1.1 Kernel Learning-based Authentication Scheme

When the statistical properties of the physical layer attributes are limited, designing near-

instantaneously adaptive physical layer authentication based on multiple attributes is challeng-

ing due to the following reasons:

C1. Both the computational resources and the time available for estimating the statistical prop-

erties of the physical layer attributes are limited;

C2. New authentication schemes based on multiple attributes result in a large search-space,

which may lead to both excessive complexity and non-convex property in optimization;

C3. In practical wireless communication, the typical authentication schemes rely on nonlinear

techniques, as exemplified by the binary hypothesis tests of [42, 43, 44] and by the generalized

likelihood ratio test of [82];
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C4. Sophisticated near-instantaneously adaptive processing techniques are required for fast

detection of time-varying physical layer attributes and the adaptation of the physical layer au-

thentication process.

To overcome these difficulties, the kernel-based machine learning technique of [83, 84] is

applied first for modeling the authentication problem in this chapter, which is a non-parametric

learning method. Although the family of parametric learning methods has become mature in

the literature [39, 87, 88, 89, 90, 91, 92], they usually rely on the assumption of knowing the

distribution of samples (i.e., the estimates of physical layer attributes) together with the spe-

cific form of the authentication model (e.g., based on linear function or polynomial function).

When the assumptions related to the samples’ distribution are correct, the parametric methods

are usually more accurate than the non-parametric methods. However, once the assumption-

s concerning the samples’ distribution models become inaccurate, they have a much greater

chance of failing. This dramatically limits the employment of parametric learning method-

s when they face challenge C1, since computing accurate distributions for multiple physical

layer attributes in a complex time-varying environment is indeed time-consuming. In contrast

to parametric learning methods, the non-parametric methods are not specified a priori, but are

determined from the data available. Some examples are constituted by the classic k-nearest

neighbors [93] and the decision tree based solutions [94]. However, these two non-parametric

methods have a limited ability to deal with challenges C2-C4. To be specific, it is not easy to

determine the most appropriate k-distance in the k-nearest neighbors method. In the decision

tree method, the perturbation of collected data (e.g., by noise) will result in quite a different

decision tree, thus leading to inaccurate authentication results.

The authors of [75] proposed a physical layer authentication scheme based on the extreme

learning machine for improving the spoofing detection accuracy. However, this scheme as-

sumes that all the multiple physical layer attributes obey the same statistical distribution func-

tions, such as the Gaussian distributions, thus their performance is limited in the complex

high-dynamic environments. Furthermore, a few other machine learning techniques are intro-

duced for authentication in [77], such as Q-learning and neural network-based techniques, as

well as some well-studied fusion methods, e.g., the Kalman filter of [37], fuzzy logic of [95],

and Bayesian inference techniques of [75]. However, these methods may be limited in dealing
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with C1-C4. To be specific, the authors of [77] studied the test threshold of authentication

based on the Q-learning technique instead of the variations of attributes in the time-varying

environment encountered. The neural network-based method of [77] may improve the model

accuracy by increasing the number of layers and neurons used, but at the cost of a higher com-

plexity, which hence may not be suitable for near-instantaneous authentication. Moreover, the

Kalman filter aided method of [37] is also model-based, relying on the assumption of having

Gaussian distributed process noise, the fuzzy logic method of [95] requires tuning of the mem-

bership function, and the Bayesian inference method of [75] also requires a statistical model of

the observed data, which are hence limited in dealling with challenge C1.

To overcome these challenges, a promising alternative approach of modeling the authenti-

cation process is to track multiple physical layer attributes based on the kernel learning [85, 86].

As a benefit, the kernel machine of [83, 84, 85, 86] is capable of reducing the dimensionality

of the authentication problem based on multiple attributes. It models the authentication prob-

lem as a linear system without requiring the knowledge of the attributes’ statistical properties.

More importantly, the variations of attributes as well as of the environment may be tracked

(learnt) by the kernel learning. Due to these compelling benefits, this chapter first proposes a

novel authentication scheme based on the kernel learning technique as an intelligent process in

the face of time-varying wireless communication scenarios to achieve reliable authentication

through discovering the complex dynamic environment encountered and through tracking the

variations of multiple physical layer attributes. Firstly, a multiple physical layer attribute fusion

model based on the classic kernel machine is designed for modeling the authentication problem

without requiring the knowledge of those attributes’ statistical properties, which corresponds

to C1. As for C2 and C3, the authentication problem is cast from a high-dimensional search

space to a single-dimensional space by using the classic Gaussian kernel, hence the resultant

physical layer authentication can be considered as a linear system. Then an adaptive algorith-

m is proposed for tracking the variations of the physical layer attributes to achieve a reliable

authentication performance, which is a solution for C4.

Specifically, the technical contributions of the proposed kernel learning-based physical lay-

er authentication scheme are summarized as follows:

• A kernel machine-based model for determining the authentication attributes is designed
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without requiring the knowledge of their statistical properties, and the authentication sys-

tem is cast from a high-dimensional space to a single-dimensional space. Then the re-

sultant physical layer authentication process can be considered as a linear system, which

is easier to train based on the estimates of the physical layer attributes and the observed

authentication results. As a result of this transformation, the complexity of the designed

multiple physical layer attribute fusion model can be dramatically reduced, despite con-

sidering a high number of physical layer attributes;

• The learning (training) objective of the physical layer authentication based on kernel ma-

chine can be formulated as a convex problem. An intelligent authentication process is

proposed based on kernel least-mean-square for tracking the variations of the physical

layer attributes to achieve a reliable authentication performance. By deriving the learn-

ing rules for both the system parameters and for the authentication system, the proposed

intelligent authentication process becomes capable of adapting to time-varying environ-

ments. Therefore, a timely detection of the physical layer attributes and the adjustment

of the authentication process can be achieved;

• Numerical performance and simulations results demonstrate that a larger number of

physical layer attributes leads to a more pronounced authentication performance im-

provement without unduly degrading the convergence and training performance. The

results also demonstrate the superiority of the kernel learning-based scheme over its non-

adaptive benchmarker.

3.1.2 Fuzzy Learning-based Authentication Scheme

When some statistical properties of the physical layer attributes are available and intermittent

availability of some attributes are considered, the fuzzy theory [104, 105, 106, 107, 108] is

leveraged for combining multiple attributes. It is because fuzzy models or sets are mathemat-

ical means of representing vagueness and imprecise information, then make decisions based

on the imprecise and non-numerical information. To be more specific, a fuzzy membership

function is used as a generalization of the indicator function in classical sets and represents the

degree of truth as an extension of valuation. Hence, it provides an effective method to combine
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multiple attribute and to deal with the imperfectness of attribute estimation for achieving accu-

rate authentication. Furthermore, knowing that the fuzzy model using membership function is

a parametric method, the authentication scheme based on fuzzy model can be seen as a com-

pact approach. In a nutshell, through the fuzzy theory, the authentication system can be well

modelled by using a specific expression to combine multiple attributes.

Compared with the parametric methods [101, 102, 103], more observed samples of the

adopted attributes are required in building the authentication model by using the nonpara-

metric methods, leading to a larger number of parameters in the authentication process to be

determined. Although sufficient observations of the adopted physical layer attributes may be

available in some networks, longer time for estimating attributes and larger memory space for

storing them are required in leveraging such methodologies. In the parametric methods, given

a fixed form of authentication model with only parameters to be determined, more informa-

tion has already been involved in attribute combination, thus resulting in less parameters to

be determined when compared to the nonparametric methods, hence demonstrating a compact

approach.

More importantly, the adopted physical layer attributes in the authentication process are

time-varying and their variations may be difficult to predict, due to the uncertainties and dynam-

ics of communication environments, i.e., the estimation imperfectness, time-varying character-

istic of attributes, and intermittent availability of some attributes. In the attribute estimation

stage, the estimates of some attributes may not be available by the receiver at some moments

because of the complex communication environment or the unreliable estimation components.

These all lead to a low authentication performance of the schemes without an adaptive mech-

anism to overcome the uncertainties and dynamics, as exemplified by [35, 36, 37, 38, 39]. In

detail, to achieve a reliable and robust authentication, an adaptive scheme is extremely helpful

in near-instantaneously updating the system parameters, so that they will remain unknown to

the adversaries.

In this chapter, a fuzzy theory-based adaptive authentication scheme is developed by uti-

lizing multiple physical layer attributes to improve authentication performance in time-varying

environments. First of all, a fuzzy model is designed for combining multiple physical layer

attributes with imperfect estimation, which forms multi-dimensional protections for legitimate



40 Chapter 3. Physical Layer Authentication as an Intelligent Process

devices. In order to update system parameters to achieve adaptive authentication, the false

alarm rate and misdetection rate of the fuzzy learning-based scheme are derived. Note that

updating the system parameters is a non-convex optimization problem. To improve the effi-

ciency of learning, system parameters in the proposed fuzzy multiple attribute combination

model are divided into two classes, named linear parameters and nonlinear parameters. Then,

a hybrid learning algorithm is proposed for near-instantaneously updating the system parame-

ters, wherein the least-square estimator is applied for linear parameter update and the gradient

decent is used for nonlinear parameters update.

Specifically, the technical contributions of the proposed adaptive fuzzy learning-based

physical layer authentication scheme are summarized as follows:

• The designed fuzzy model relaxes the accuracy requirement of attribute estimation and

provides an explicit expression of multiple physical layer attribute combination. Com-

pared with the non-parametric methods, the proposed fuzzy multiple attribute combina-

tion model requires much less observed samples and less parameters to be determined

in the authentication process due to the given form of system expression, leading to a

compact approach;

• The proposed hybrid learning algorithm achieves reliable and robust authentication in

time-varying environments. On one hand, the system parameters can be updated near-

instantaneously by the adaptive learning algorithm. On the other hand, each attribute in

the adaptive authentication model is independently taken into account, thus once some

attributes are unavailable at some moments, the remaining attributes still contribute to

the authentication model and make the model work, demonstrating a robust approach;

• Simulation results demonstrate the parameter update and authentication performance of

the proposed fuzzy learning-based scheme in simulated urban scenario. Moreover, com-

pared with some existing authentication schemes, the outperformance of the proposed

fuzzy learning-based scheme in defending against the spoofing attacks is shown in dy-

namic environments.

The rest of this chapter is organized as follows. In Section 3.2, the system model used

in this chapter is presented. In Section 3.3, the kernel learning-based physical layer authenti-
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cation scheme is proposed. The fuzzy learning-based physical layer authentication scheme is

developed in Section 3.4. Finally, Section 3.5 concludes this chapter.

Table 3.1: Notations of Chapter 3
Notations Definitions
N Number of physical layer attributes used for authentication.
H Estimates of multiple physical layer attributes.
F (·) Intelligent adaptive function for physical layer authentication.
ν Authentication threshold.
L Number of observations for training.
α Weight vector of Kernel machine.
µ Step-size parameter of Kernel machine learning.
σκ Kernel width.
e Prediction error in the training process.
PFA False alarm rate.
PMD Misdetection rate.
Φ0 The case that the signal is from Alice.
Φ1 The case that the signal is from Eve.
µ̂ Mean of Gaussian fuzzy function in fuzzy learning-based scheme.
σ̂ Variance of Gaussian fuzzy function in fuzzy learning-based scheme.
α̂ Linear system parameter of fuzzy learning-based scheme.

Notations: In this chapter, scalars are denoted by italic letters, while vectors are respectively

denoted by bold-face letters. False alarm (FA) represents an event when the receiver wrongly

believes that the legitimate transmitter is an adversary, while misdetection (MD) is an event

when the receiver wrongly identifies the adversary as a legitimate device. Table 3.1 shows the

notations of this chapter.

3.2 System Model and Problem Formulation

As shown in Figure 3.1, a wireless network is considered, where Alice and Bob communicate

with each other in the presence of an eavesdropper, i.e., Eve, who intends to intercept and im-

personate Alice, and then to send spoofing signals to obtain illegal advantages. Bob’s main

objective is to uniquely and unambiguously identify the transmitter by physical layer authen-

tication. The basic physical layer authentication aims for supporting this pair of legitimate

devices by a reciprocal wireless link, while the device-dependent features can be used as a

unique security signature.
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Figure 3.1: Adversarial system and physical layer authentication in a wireless network.

The number of physical layer attributes used for authentication is denoted as N and the

estimates of multiple physical layer attributes are denoted as H = (H1,H2, ...,HN)T, where T

represents the transposition of a vector. These physical layer attributes may include the chan-

nel state information (CSI), carrier frequency offset (CFO), received signal strength indicator

(RSSI), round-trip time (RTT), in-phase-quadrature-phase imbalance (IQI), and so on. These

unique channel and device features offer security guarantee by physical layer authentication.

A few important assumptions are stipulated for the authentication considered in this chap-

ter, as follows:

Assumption 3.1. The physical signals transmitted between a pair of legitimate devices rapidly

become decorrelated in space, time and frequency. This implies that it is hard for the attacker

to observe and predict the channel state between legitimate devices if the attacker is at a third

location, which is farther than a wavelength away from Alice and Bob;

Assumption 3.2. Both the wireless channels and the interference are time-varying, the devices

are moving, and hence the wireless environment is dynamically changing. These all lead to

unpredictable variations of the physical layer attributes;

Assumption 3.3. The estimates of the physical layer attributes are imperfect because the legit-

imate devices will suffer from different interferences in a dynamic propagation environment

when the devices roam in different locations.

These assumptions characterize a practical scenario, but naturally, it will be more difficult to
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deal with these imperfectly estimated time-varying physical layer attributes.

The physical layer authentication comprises two phases, as described below.

Phase I: Alice broadcasts one or more messages to Bob at time t. From the received signal,

Bob infers an imperfect estimate of the multiple attributes

HI
A[t] = (HI

A1[t],HI
A2[t], ...,HI

AN[t])T, (3.1)

which are associated with Alice. At the same time, Eve overhears the transmission.

Phase II: Either Alice or Eve transmits a message to Bob at time t + τ. Then Bob obtains

another imperfect estimate

HII[t + τ] = (HII
1 [t + τ],HII

2 [t + τ], ...,HII
N [t + τ])T, (3.2)

where τ represents the time interval between the two phases.

Bob should compare the estimate HII[t + τ] to the previous estimate HI
A[t]. If these two

estimates are likely to be originated from the same channel realization and the same imperfect

hardware, then the message at time t + τ is deemed to be coming from Alice.

Remark 3.1. As mentioned in the assumptions, the physical layer attributes are time-variant

and imperfectly estimated. The objective of this chapter is to propose authentication schemes

as an intelligent process relying on these physical layer attributes. The process aims for achiev-

ing reliable and robust authentication through discovering and learning the complex operating

environment. Two physical layer authentication schemes will be proposed for specific com-

munication scenarios, i.e., kernel learning-based scheme for the case that the properties of the

attributes are not available and fuzzy learning-based scheme based on the known properties

(which are not perfectly estimated).

An intelligent adaptive function F (·) is conceived, which is used for fusing N indepen-

dent physical layer attributes. Then the authentication process can be formulated relying on a

threshold ν > 0 as 
Φ0 : |F (HI

A − HII)| ≤ ν;

Φ1 : |F (HI
A − HII)| > ν,

(3.3)
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where Φ0 indicates that the signal is from Alice, while Φ1 indicates that it is from Eve. Due to

the variations and imperfect estimates of the physical layer attributes between Alice and Bob,

both false alarms and misdetections are encountered. Therefore, the parameters in F (·) should

be promptly updated to achieve low false alarm rate and misdetection rate in a time-varying

environment.

3.3 Kernel Learning-based Authentication Scheme

In order to improve the performance of the authentication schemes using multiple physical

layer attributes, which are imperfectly estimated and time-varying, a kernel machine-based

model is proposed for fusing multiple physical layer attributes without requiring the knowledge

of their statical properties in the spirit of C1. Then, the dimension of the search-space is

reduced from N to 1 with the aid of the developed kernel machine-based physical layer attribute

fusion model and the authentication problem can be modeled by a linear system as detailed in

this section (corresponding to C2 and C3). Therefore, the complexity of the designed multiple

physical layer attribute fusion model can be dramatically reduced, as well as the trade-off

between the authentication false alarm and misdetection can be improved by utilizing multiple

attributes.

3.3.1 Kernel Machine-based Multiple Physical Layer Attribute Fusion

Normalization

Kernel machine-

based multiple 

attribute fusion

    

Input Output

Figure 3.2: Kernel machine-based multiple physical layer attribute fusion.

In the kernel machine-based multiple attribute fusion, Bob will obtain an estimate HII[t+τ]

of (3.2) at time t + τ. Then, Bob will compare the estimate HII[t + τ] to the previous estimate

at time t, namely for HI
A[t] of (3.1). The difference between these two estimates is denoted as
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h = (h1, h2, ..., hN)T, where each hn ∈ [an, bn] is formulated as

hn = HI
An[t] − HII

n [t + τ], n = 1, 2, ...,N. (3.4)

Since the different attributes exhibit quite different ranges and have different units, the

normalization (see Figure 3.2) is required for scaling the attributes having different ranges to

the same range for the ease of analysis and for the design of the kernel machine-based fusion.

In the following, the attributes having ranges [an, bn], n = 1, 2, ...,N, are normalized to [−1, 1]

by invoking

h̃n =
2

bn − an
(hn −

an + bn

2
), n = 1, 2, ...,N. (3.5)

It can be observed from (3.4) and (3.5) that these two equations are only used for normal-

izing the estimates of the attributes to the range of [−1, 1], so that the rather diverse multiple

physical layer attributes can be processed in the same range. In practical systems, only the

approximate variation ranges of the attributes are required, which is reasonable because there

always have a priori knowledge about the communication systems and environments before

designing the authentication system.

Let us assume that a set of observations (h̃l, ŷl)L
l=1 ∈ [−1, 1]N × {0, 1} is given, which is used

for training the authentication process, where h̃l = (̃h1l, h̃2l, ..., h̃Nl)T is the lth estimate after the

normalization, with each element h̃nl defined in (3.5), and

ŷl =


1 Φ0

0 Φ1

. (3.6)

As shown in Figure 3.2, the normalized estimates h̃l, l = 1, 2, ..., L, are considered as the inputs

of the kernel machine, and f (h̃l) represent the outputs of the kernel machine with the corre-

sponding inputs given by h̃l ∈ [−1, 1]N , l = 1, 2, ..., L. Note that for the legitimate users, the

training data of a legitimate communication session is relatively straightforward to obtain.

The task is then to infer the underlying mapping function ŷl = f (h̃l) from the training data

set (the samples) received (h̃l, ŷl)L
l=1 ∈ [−1, 1]N × {0, 1}. In other words, the task in this section
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is to represent the authentication system ŷl = f (h̃l), and to model the relationship between the

estimates of multiple attributes and the corresponding authentication results. After this, it can

be verified whether a transmitter is that of Alice or of Eve once a new normalized estimate

h = (h1, h2, ..., hN)T has been obtained. For example, in a continuous authentication session

as defined in [48], once the transmitter accesses the system again or sends the messages to

Bob continuously, Bob can infer the estimates of this transmitter’s physical attributes, and then

determine its normalized estimate through (3.5). This normalized estimate may be different

from the previous normalized estimates h̃l, l = 1, 2, ..., L, because of the time-varying environ-

ment or channels, which will be treated as the new normalized estimate of the attributes and be

applied to the authentication to improve the security.

The kernel machine projects the N-dimensional input vector h ∈ [−1, 1]N into a potentially

infinite-dimensional feature space H through a mapping ϕ : [−1, 1]N → H . Note that the

transformation from the input space into the feature space is nonlinear, and the dimensionality

of the feature space is high enough. Since the linear model defined in feature spaceH satisfies

the universal approximation property of [29], the authentication system can be expressed as

f (h) = wTϕ(h), (3.7)

where w is the weight vector in the feature space H . According to the Representer Theorem

of [109, 110], the authentication system expression of (3.7) can be rewritten as

f (h) =

L∑
l=1

αlκ(h̃l, h), (3.8)

where κ(h̃l, h) is a Mercer kernel [83]. The classic Gaussian kernel function of [83, 84, 85, 86]

is adopted in this chapter, which has an excellent modelling capability and is numerically

stable. The Gaussian kernel function used in the proposed authentication scheme is given by

κ(h̃l, h) = exp(
−‖h̃l − h‖2

2σ2
κ

), (3.9)

where σκ is the kernel width and should be chosen by the users. The Gaussian kernel function
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of (3.9) characterizes a similarity between the observed inputs h̃l and the new normalized

estimate h.

From (3.7) and (3.8), the following relationship holds, i.e.,

κ(h̃l, h) = ϕ(h̃l)Tϕ(h). (3.10)

Remark 3.2. It is observed both from the kernel function of (3.9) and from the authentication

system expression of (3.8) that the physical layer attributes are fused without any specific

knowledge of their statistical properties, which corresponds to C1. As for C2, the search-space

is transformed from being N-dimensional to single-dimensional by the developed multiple

physical layer attribute fusion model.

Remark 3.3. In practical wireless networks, the authentication systems are usually nonlinear

(see C3). By contrast, according to the proposed kernel machine-based physical layer attribute

fusion model of (3.8), the authentication system is formulated as a linear system, since the

expression of (3.8) relies on the linear weights αl, l = 1, 2, ..., L.

The estimates of the multiple physical layer attributes H are time-variant, which may lead to

a low authentication performance without agile adaptation. Therefore, next subsection focuses

on proposing adaptive learning procedures for promptly adjusting the authentication system of

(3.8), which is the solution of C4.

3.3.2 Adaptive Authentication based on Kernel Learning

In this section, a learning procedure is proposed for adaptive authentication based on the kernel

least-mean-square for promptly updating the parameters. This authentication process is based

on learning from the observed samples (h̃l, ŷl)L
l=1 ∈ [−1, 1]N × {0, 1}. Explicitly, the proposed

learning procedure can be viewed as an intelligent process of learning the time-varying envi-

ronment for updating the system parameters αl, l = 1, 2, ..., L, to achieve a reliable and robust

authentication.

Given the samples (h̃l, ŷl)L
l=1 ∈ [−1, 1]N × {0, 1} observed, the N-dimensional input vector

h̃l ∈ [−1, 1]N is transformed into a kernel Hilbert space H through a mapping ϕ : [−1, 1]N →

H according to (3.7). Therefore, a pair of sample sequences {ϕ(h̃1), ϕ(h̃2), ...} and {̂y1, ŷ2, ...} is
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obtained. The weight vector w in (3.7) at iteration l should be updated for minimizing the cost

function as follows

min
w

l∑
i=1

[̂yi − wTϕ(h̃i)]2. (3.11)

Remark 3.4. It is observed from (3.11) that the learning (training) objective of the adaptive

authentication process is formulated as a convex optimization problem.

The learning rules conceived for updating the authentication system of (3.8) are given as:

Proposition 3.1: The learning rule conceived for updating the weight vector α[l] in the devel-

oped multiple physical layer attribute fusion model at iteration l can be expressed as

α[l] = µ × (e[1], e[2], ..., e[l])T, (3.12)

where µ represents a step-size parameter. Furthermore, e[l] is the prediction error computed as

the difference between the desired observation of the transmitter and its prediction relying on

the authentication system parameters α[l − 1], which is expressed as

e[l] = ŷl − f (h̃l)[l − 1], (3.13)

where

f (h̃l)[l − 1] =

l−1∑
i=1

αi[l − 1]κ(h̃i, h̃l). (3.14)

Furthermore, the learning rule conceived for adjusting the authentication system at iteration l

is given by

f (h)[l] = f (h)[l − 1] + µe[l]κ(h̃l, h). (3.15)

Proof: Let

J(w) =

l∑
i=1

[̂yi − wTϕ(h̃i)]2. (3.16)
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By invoking a step-size parameter µ, the learning rule for the parameter w can be derived by us-

ing the gradient. The partial derivative of the function J(w) with respect to w = (w1,w2, ...,wl)T

is given by

∂J(w)
∂w

= −2
l∑

i=1

ϕ(h̃i)[̂yi − wTϕ(h̃i)], (3.17)

and the instantaneous gradient at iteration l is

∂J(w)
∂w

[l] = −ϕ(h̃l)[̂yl − w[l − 1]Tϕ(h̃l)]. (3.18)

According to the steepest descent algorithm, it has

w[l] = w[l − 1] + µϕ(h̃l)[̂yl − w[l − 1]Tϕ(h̃l)]. (3.19)

Since e[l] of (3.13) can also be expressed as

e[l] = ŷl − w[l − 1]Tϕ(h̃l), (3.20)

the repeated application of (3.19) through iterations becomes

w[l] = w[l − 1] + µϕ(h̃l)e[l] = w[l − 2] + µϕ(h̃l−1)e[l − 1] + µϕ(h̃l)e[l]

= · · · =

l∑
i=1

µϕ(h̃i)e[i]; (w[0] = 0). (3.21)

According to (3.7), (3.8) and (3.9), the authentication system can be derived as

f (h) =

L∑
l=1

αlκ(h̃l, h) =

L∑
l=1

αlϕ(h̃l)Tϕ(h) = w[L]Tϕ(h) =

L∑
l=1

µe[l]ϕ(h̃l)Tϕ(h), (3.22)

then the following equation holds

αl[l] = µe[l]. (3.23)
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Therefore, the parameter vector α at iteration l, i.e., α[l] = (α1[l], α2[l], ..., αl[l])T, can be

updated through (3.12). Then the authentication system at iteration l can be formulated as

f (h)[l] =

l∑
i=1

αiκ(h̃i, h) = µ

l∑
i=1

e[i]κ(h̃i, h) = µ

l−1∑
i=1

e[i]κ(h̃i, h) + µe[l]κ(h̃l, h)

= f (h)[l − 1] + µe[l]κ(h̃l, h). (3.24)

Therefore, learning rule for adjusting the authentication system of (3.8) is expressed as (3.15). �

Algorithm 1 Intelligent authentication process based on the kernel learning
1. Initialization:

f [0] = 0: initial value of authentication system
e[0] = 0: initial value of prediction error
α[0] = 0: initial value of system parameter α
µ: step-size parameter of learning
σκ: kernel width
h̃1: initial input, i.e., the normalized estimate of physical layer attributes
C = {h̃1}: initial set of input
ŷ1: initial observation of the transmitter with the corresponding normalized estimate h̃1

2. Iteration:
2.1 while samples (h̃l, ŷl)L

l=1 ∈ [−1, 1]N × {0, 1} available do
2.2 obtain the output of authentication system f [l − 1] at iteration l − 1 via (3.8);
2.3 calculate the prediction error e[l] via (3.13);
2.4 update weight vector α[l] through (3.12);
2.5 adjust the authentication system f [l] via (3.15);
2.6 update the input set as C = C + {h̃l};
2.7 l = l + 1;
2.8 end

According to Proposition 3.1, the intelligent authentication process based on the kernel

least-mean-square is summarized at a glance in Algorithm 1.

Remark 3.5. In conclusion, the search space is transformed from being N-dimensional to

single-dimensional (see Remark 3.2), the authentication is modeled as a linear system (see Re-

mark 3.3), and the learning objective of the authentication is formulated as a convex problem

(see Remark 3.4). Therefore, the complexity of the physical layer authentication scheme re-

lying on multiple attributes is dramatically reduced. It is also observed from Algorithm 1 that

the execution-time is on the order of O(L), which makes Algorithm 1 an attractive solution.
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The step-size parameter directly affects the convergence of the proposed authentication

process, since increasing the step-size of learning will reduce the convergence time but may in

fact lead to divergence. Therefore, the step-size parameter µ should be carefully decided.

Theorem 3.1: The proposed intelligent authentication process (see Algorithm 1) converges to

a steady-state value, if the step-size parameter of learning µ satisfies

0 < µ <
L∑L

l=1 κ(h̃l, h̃l)
= 1. (3.25)

Proof: A practical convergence criterion is a convergence in the mean square error sense,

which is formulated as

E[‖e[l]‖2]→ constant, as l→ ∞, (3.26)

where E[·] represents the expectation of ·. It was shown in [109, 112] that the least-mean-

square criterion-based learning is convergent in the mean square, if µ satisfies

0 < µ <
1
βmax

, (3.27)

where βmax is the largest eigenvalue of the correlation matrix Θ[L] given by

Θ[L] = [ϕ(h̃1), ϕ(h̃2), ..., ϕ(h̃L)]N×L. (3.28)

Since βmax < tr(Θ[L])/L, the following inequality is satisfied

0 < µ <
L

tr(Θ[L])
=

L∑L
l=1 κ(h̃l, h̃l)

= 1, (3.29)

where tr(Θ[L]) is the trace of the matrix Θ[L]. Therefore, the proposed intelligent authentica-

tion process (see Algorithm 1) converges to a steady-state value if the step-size parameter of

learning µ satisfies (3.25). �

Remark 3.6. Theorem 3.1 gives the upper bound of the step-size parameter µ in Algorithm 1,

so that the proposed intelligent authentication process will converge to a steady state.
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According to the proposed authentication system of (3.8), the false alarm rate and misde-

tection rate at instant L can be rewritten, respectively, as

PFA = P(|
L−1∑
l=1

αlκ(h̃l, h̃L)| < ν | Φ0) (3.30)

and

PMD = P(|1 −
L−1∑
l=1

αlκ(h̃l, h̃L)| ≤ ν | Φ1), (3.31)

where ν ∈ [0, 1).

In the face of the imperfect estimates of time-varying physical layer attributes, they are

divided into two parts: the time-varying part H that is the real value of physical layer attributes

used, and part 4H that is the bias of estimated attributes. Then the estimates HI
A[l − τl] and

HII[l] can be written, respectively, as

HI
A[l − τl] = H

I
A[l − τl] + 4HI

A[l − τl] (3.32)

and

HII[l] = H
II

[l] + 4HII[l], (3.33)

where τl is the time interval between Phase I and Phase II of the physical layer authentication

at iteration l, l = 1, 2, ..., L. Furthermore, υ(τl) = (υ1l, υ2l, ..., υNl)T represents the variations of

part H
I
A during the time interval τl, which can be expressed as

υ(τl) = H
II
A [l] − H

I
A[l − τl]. (3.34)

Given the distributions of part 4H of the multiple physical layer attributes, the false alarm

rate and misdetection rate of the proposed scheme are calculated as the following theorems.

Theorem 3.2: The false alarm rate expression of the kernel learning-based scheme at iteration

L is given by
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PFA = FY1 ∗ FY2 ∗ · · · ∗ FYL−1(ν) − FY1 ∗ FY2 ∗ · · · ∗ FYL−1(−ν), (3.35)

where Yl = αl exp(−
∑N

n=1(̃hnl−h̃Φ0
nL )2/2σ2

κ), l = 1, 2, ..., L−1, h̃Φ0
nL is shown in (3.36), F represents

the cumulative distribution function, and ∗ represents the convolution.

Proof: According to (3.5), (3.32), (3.33), and (3.34), h̃L = (̃h1L, h̃2L, ..., h̃NL)T in case of Φ0 is

calculated as

h̃Φ0
nL =

2
bn − an

(υn(τL) + 4HI
An[L − τL] − 4HII

An[L] −
an + bn

2
), n = 1, 2, ...,N, (3.36)

where τL is the time interval between Phase I and Phase II of the proposed physical lay-

er authentication scheme at iteration L. Given the distributions of 4HI
An and 4HII

An of each

physical layer attribute, the probability of density function of h̃Φ0
nL can be obtained. Let Yl =

αl exp(−
∑N

n=1 (̃hnl−h̃
Φ0
nL )2

2σ2
κ

), the false alarm rate at iteration L is calculated as

PFA = P(|
L−1∑
l=1

αl exp(
−
∑N

n=1(̃hnl − h̃Φ0
nL )2

2σ2
κ

)| < ν) = P(
L−1∑
l=1

Yl < ν) − P(
L−1∑
l=1

Yl ≤ −ν)

= F∑L−1
l=1 Yl

(ν) − F∑L−1
l=1 Yl

(−ν). (3.37)

Therefore, the false alarm rate expression of the kernel learning-based scheme at iteration L is

shown in (3.35). �

Theorem 3.3: The misdetection rate expression of the kernel learning-based scheme at itera-

tion L is expressed as

PMD = FZ1 ∗ FZ2 ∗ · · · ∗ FZL−1(ν + 1) − FZ1 ∗ FZ2 ∗ · · · ∗ FZL−1(1 − ν), (3.38)

where Zl = αl exp(−
∑N

n=1(̃hnl − h̃Φ1
nL )2/2σ2

κ), l = 1, 2, ..., L − 1, and h̃Φ1
nL is shown in (3.39).

Proof: According to (3.5), (3.32), and (3.33), h̃L = (̃h1L, h̃2L, ..., h̃NL)T in case Φ1 is formulated

as

h̃Φ1
nL =

2
bn − an

(H
I
An[L − τL] − H

II
En[L] + 4HI

An[L − τL] − 4HII
En[L] −

an + bn

2
). (3.39)
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Given the distributions of 4HI
An and 4HII

En of each physical layer attribute, the probability of

density function of h̃Φ1
nL can be obtained. Upon letting Zl = αl exp(−

∑N
n=1 (̃hnl−h̃Φ1

nL )2

2σ2
κ

), the misdetec-

tion rate at iteration L yields

PMD = P(|1 −
L−1∑
l=1

αl exp(
−
∑N

n=1(̃hnl − h̃Φ1
nL )2

2σ2
κ

)| ≤ ν) = P(
L−1∑
l=1

Zl ≤ ν + 1) − P(
L−1∑
l=1

Zl < 1 − ν)

= F∑L−1
l=1 Zl

(ν + 1) − F∑L−1
l=1 Zl

(1 − ν). (3.40)

Therefore, the misdetection rate expression of the kernel learning-based scheme at iteration L is

given by (3.38). �

Remark 3.7. It can be observed from Theorem 3.2 and Theorem 3.3 that the false alarm

rate and misdetection rate of the kernel learning-based scheme depend on both the number of

physical layer attributes N and on the variations of the attributes υ. The kernel learning-based

scheme tracks the variations of the attributes and promptly adjusts the authentication system,

so that a compelling false alarm rate vs. misdetection rate trade-off will be achieved.

3.3.3 Simulation Results

In this subsection, the proposed kernel learning-based scheme is implemented using multi-

ple physical layer attributes. First of all, three physical layer attributes, namely the carrier

frequency offset (CFO), channel impulse response (CIR), and received signal strength indi-

cator (RSSI) are considered to confirm the viability of the proposed intelligent authentica-

tion process. Specifically, a communication system having a measurement center frequency

of 2.5 GHz, measurement bandwidth of 10 MHz, coherence bandwidth of 0.99, normalized

time correlation of 0.99 and sampling time of 50 ms is considered. The transmitted signal is

passed through a randomly generated 12-tap multipath fading channel having an exponential

power delay profile. The relative velocity between Alice and Bob is assumed to be around

20 km/h, and the initial distance between Alice and Bob is 5 m. Then the CFO of an in-

dividual transmitter can be approximated as a zero-mean Gaussian variable [37, 116], and

the standard deviation of the CFO variation is 4CFO ≈ 2.35 × 10−7. The CFO estimation

range is [−78.125, 78.125) kHz [37]. Furthermore, according to [82], an autoregressive mod-
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el of order 1 (AR-1) is used for characterizing the temporal amplitude fluctuation Ampk[t]

of the kth-tap in the multipath fading channel. Therefore, the variation of CIR can be giv-

en as υCIR =
∑12

k=1 Ampk[t] exp(− j4.99πk), and the per-tone signal-to-noise ratio (SNR) is

in the channel measurements range of [−12.8, 14.2) dB with a median value of 6.4 dB, if

the transmit power is 10 mW [82]. Finally, according to [117], the RSSI can be given as

PL[dB] = 75 + 36.1 log(d/10), where PL is the path loss, and d represents the direct transmis-
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Figure 3.3: Training performance of the kernel learning-based scheme (Algorithm 1) relying
on the CFO, CIR and RSSI triplet.

sion distance between the transmitter and Bob. The direct transmission distance between the

transmitter and Bob is assumed to be in the range of [0, 100] m.

Given 300 samples of the CFO, CIR and RSSI of Alice, i.e., (h̃l, ŷl)300
l=1 ∈ [−1, 1]3 × {0, 1},

where ŷl = 1, Figure 3.3 shows the training performance of the kernel learning-based scheme

(Algorithm 1) relying on the CFO, CIR and RSSI triplet. The step-size parameter of Algorithm

1 is set to µ = 0.1. It is observed from Figure 3.3 that the mean square errors E[‖e[l]‖2]

of all the strategies are significantly reduced, as the iteration index increases from 0 to 50.

Furthermore, the mean square error E[‖e[l]‖2] of each strategy reaches its steady-state value

after 30 iterations. Figure 3.3 shows that the CIR estimation performs better than both the CFO

and RSSI estimation in the training performance at the beginning, but its training performance

becomes the worst after 30 iterations. The reason for this trend is that the deviation of CIR

estimation is lower than that of the CFO and RSSI, while its variation is the highest.
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Figure 3.4: Training performance of the kernel learning-based scheme (Algorithm 1) relying
on 2 attributes and 3 attributes.

Figure 3.4 characterizes the training performance of the kernel learning-based scheme (see

Algorithm 1) relying on multiple attributes. Four cases are considered, namely the CFO &

CIR, the CFO & RSSI, the CIR & RSSI, and finally the CFO & CIR & RSSI scenarios. It

is observed from Figure 3.4 that the proposed intelligent authentication process relying on the

CFO & RSSI pair has the worst training performance before 30 iterations, while that relying

on the CIR & RSSI pair has the lowest mean square error. The reason for this trend is that

the mean square error of the proposed intelligent authentication process relying on the CIR is

lower than that of the CFO and RSSI before 30 iterations seen in Figure 3.5, which adversely

affects the training performance in this communication scenario. Additionally, the mean square

error of the proposed intelligent authentication process relying on the CFO & RSSI pair is the

lowest after 30 iterations, because both the CFO and RSSI are more reliable than the CIR

in the authentication process. Furthermore, it is also shown in Figure 3.4 that the training

performance of the proposed intelligent authentication process relying on the CFO & CIR &

RSSI triplet is worse than that of the CFO & RSSI pair after 30 iterations, while it is better than

that of the CFO & CIR pair and CIR & RSSI pair. This is because the training performance of

the kernel learning-based scheme depends on both the specific attributes and on the number of

physical layer attributes.

Figure 3.5 considers the case that Eve can intercept and imitate the CFO of Alice, which
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Figure 3.5: Authentication performance of the kernel learning-based scheme relying on the
CFO, CFO & CIR, CFO & RSSI, and CFO & CIR & RSSI scenarios.

characterizes the authentication performance of the kernel learning-based scheme relying on

the CFO, CFO & CIR, CFO & RSSI, and finally the CFO & CIR & RSSI scenarios. In other

words, Eve intercepts and impersonates the CFO of Alice to obtain unintended advantages

from Bob in this case. It is observed from Figure 3.5 that the kernel learning-based scheme

relying on the CFO & CIR & RSSI has the best authentication performance, while that only

relying on the CFO performs worst. The reason for this trend is that Bob can better identify

the transmitter by using CIR and RSSI, although Eve imitates the CFO of Alice in the CFO

& CIR & RSSI scenario. On the other hand, Bob suffers from a high misdetection rate in the

CFO scenario, since the CFO of Alice is impersonated by Eve. It is also shown in Figure 3.5

that there is a small difference between the authentication performance of the kernel learning-

based scheme relying on the CFO & CIR pair and that of the CFO & RSSI pair; and the

authentication performances of these two attributes scenarios are better than that of a single-

attribute scenario (i.e., CFO). This is because Bob can identify the adversary by using CIR or

RSSI in the CFO & CIR or the CFO & RSSI scenarios. Therefore, the increasing number of

physical layer attributes is expected to lead to a higher authentication performance in the kernel

learning-based scheme.

Figure 3.6 considers the scenario when Eve can intercept and impersonate both the CFO

and CIR of Alice. It is observed from Figure 3.6 that the authentication performance of the
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Figure 3.6: Authentication performance of the kernel learning-based scheme relying on the
CFO & CIR and CFO & CIR & RSSI scenarios.

kernel learning-based scheme relying on the CFO & CIR & RSSI triplet is better than that of

the CFO & CIR pair. The reason for this trend is that Bob can identify the adversary using

the RSSI in the CFO & CIR & RSSI scenario, although Eve imitates both the CFO and CIR

of Alice. Both Figure 3.5 and Figure 3.6 confirm that increasing the number of physical layer

attributes leads to a better authentication performance, since it is more difficult for an adversary

to succeed in predicting or imitating all the attributes based on the received signal.
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Figure 3.7: Authentication performance comparison results of the kernel learning-based
scheme with different numbers of attributes.
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Figure 3.7 characterizes the influence of the number of physical layer attributes N on the

authentication performance, which quantifies the MD rate vs. the threshold of FA rate for dif-

ferent numbers of physical layer attributes, namely for N = 2, N = 3, N = 4 and N = 5. It can

be observed that the MD rates are reduced in all cases as the threshold δ of FA rate increases

from 0 to 0.2, because there is an inevitable FA-and-MD trade-off. One can also observe from

Figure 3.7 that a larger number of attributes leads to a more obvious security performance im-

provement. This trend demonstrates the validity of authentication performance analysis. In a

nutshell, by using more physical layer attributes, the kernel learning-based scheme achieves a

better authentication performance, indicating the presence of a FA-and-MD trade-off, because

the proposed scheme can readily fuse multiple physical layer attributes and control the authen-

tication system to track the variations of multiple attributes. On the same note, the attackers

find it more difficult to predict and imitate a larger number of attributes from a received signal.
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Figure 3.8: Comparison results between the kernel learning-based scheme and the process
without updating system parameters relying on CFO & CIR & RSSI.

In Figure 3.8, the variations on the CFO, CIR and RSSI are imposed for comparing the

kernel learning-based scheme and the authentication process operating without updating the

system parameters. The threshold of the false alarm rate is 0.02. Then it can be observed

from Figure 3.8 that upon increasing the time between updates, the MD rate of the proposed

intelligent process remains robust, tending to around 0.035, while that of the process operating

without updating the system parameters increases dramatically from about 0.035 to almost
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0.35. This demonstrates that without an adaptive scheme, the authentication performance will

be dramatically reduced in time-varying environments. Therefore, the kernel learning-based

scheme performs better than the static scheme operating without updating the parameters.

3.4 Fuzzy Learning-based Authentication Scheme

In order to improve the authentication performance by utilizing multiple attributes when some

statistical properties of the physical layer attributes are available and intermittent availability

of some attributes are considered, a fuzzy theory-based model is designed to combine multi-

ple physical layer attributes. By using fuzzy theory [104, 105, 106, 107], the effects of their

imperfectness can be mitigated and the authentication accuracy can be improved.

Following the normalization of (3.4) and (3.5), each set [an, bn] is uniformed into specific

set [−1, 1] through

h′n[t] =
2

bn − an
(Hn[t + 1] − HAn[t] −

an + bn

2
), n = 1, 2, ...,N. (3.41)

In this equation, τ = 1.

The fuzzy membership function is explored to combine the multiple attributes, which is

a generalization of the indicator function in classical sets [106]. Some typical examples of

fuzzy membership function are given as the Gaussian function, triangle function, and trapezoid

function. In this chapter, the fuzzy membership function is designed as the Gaussian function

with means µ̂n and variances σ̂2
n, i.e.,

u[−1,1](h′n[t]) = exp(
−(h′n[t] − µ̂n)2

2σ̂2
n

). (3.42)

For different physical layer attributes, µ̂n and σ̂2
n, n = 1, 2, ...,N, experience different values

and control the developed fuzzy multiple attribute combination model. The expression (3.42)

is the fuzzy membership function for combing multiple physical layer attributes rather than

describing the Gaussian noises of attributes’ estimates.

Without loss of generality, through using product inference engine and center average de-
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fuzzifier [113], the fuzzy multiple attribute combination model is designed as

Inputs → Outputs

h′[t] → y[t] =

N∑
n=1

α̂nu[−1,1](h′n[t]), (3.43)

where h′[t] = (h′1[t], h′2[t], ..., h′N[t])T, and α̂n are system parameters, which adjust the weights

of multiples physical layer attributes. Therefore, the designed fuzzy multiple attribute com-

bination model can well control the different contributions of attributes on the authentication

accuracy.

Remark 3.8. The fuzzy function of (3.42) describes the form of model expression using Gaus-

sian function, which is a parametric method. It can also be observed from (3.42) that each

attribute is independently taken into account. Hence, although some attributes are unavailable

at some moments, the remaining attributes still contribute to the authentication and make the

model applicable, thus the fuzzy learning-based scheme comes to a robust approach. Moreover,

the robustness of the developed fuzzy authentication model can be improved by increasing the

number of attributes N.

Through the designed fuzzy multiple attribute combination model, a real-valued output y[t]

can be obtained from (3.42) at time t. Then the physical layer authentication process is turned

into a fuzzy authentication process as


Φ0 : ν ≤ y[t] ≤ 1;

Φ1 : 0 < y[t] < ν.
(3.44)

The false alarm rate and misdetection rate of the designed fuzzy model at time t can be formu-

lated based on the fuzzy authentication process of (3.43) as

PFA[t] = P(0 < y[t] < ν | Φ0), (3.45)

and

PMD[t] = P(ν ≤ y[t] ≤ 1 | Φ1). (3.46)
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In the following, it is assumed that the estimate deviations 4H, which can be seen as

the noises of estimates, are zero-mean complex Gaussian random variables with variances

%2 = (%2
1, %

2
2, ..., %

2
N)T, denoted as 4H ∼ ℵ(0, %2), and are independently distributed. Note

that only the noises of attribute estimates are assumed to be the zero-mean complex Gaussian

random variables. The multiple physical layer attributes can follow different distributions.

Upon denoting Xn[t] = (h′n[t] − µ̂n)/%′n, it obeys Gaussian random distribution, which can

be expressed as Xn[t] ∼ ℵ(µ′n[t], 1), where %′2n = 4(%2
An + %2

n)/(bn − an)2 and µ′n[t] = 2(Hn[t +

1]−HAn[t + 1] + υn[t]− µ̂n)/(%′n(bn − an)). Note that the Xn at time instant t is Gaussian random

variable, but Xn at different time instants does not obey Gaussian random distribution, since the

mean µ′n[t] is time-varying. Therefore, each X2
n[t] obeys the noncentral chi-squared distribution,

which can be expressed as X2
n[t] ∼ X2

n(1, λn[t]). It has two parameters: the number of degrees

of freedom, namely for 1, and the noncentrality parameter λn[t], satisfying λn[t] = µ′2n [t]. Using

the relationship between the central and noncentral chi-squared distributions, the probability

density function (PDF) and the cumulative distribution function (CDF) of variable X2
n[t] can be

given as

fX2
n [t](x; 1, λn[t]) =

1
2

exp(−
x + λn[t]

2
)(

x
λn[t]

)−
1
4 I− 1

2
(
√
λn[t]x), (3.47)

and

PX2
n [t](x; 1, λn[t]) = exp(−

λn[t]
2

)
∞∑
j=1

(λn[t]/2) j

j!
Q(x; 1 + 2 j), (3.48)

respectively. I− 1
2
(
√
λn[t]x) is a modified Bessel function of the first kind given by

I− 1
2
(
√
λn[t]x) = (

√
λn[t]x
2

)−
1
2

∞∑
j=0

(λn[t]x/4) j

j!Γ( j + 1/2)
.

Moreover, Q(x; 1 + 2 j) is the CDF of the central chi-squared distribution with 1 degree of

freedom shown as

Q(x; 1 + 2 j) =
Υ((1 + 2 j)/2, x/2)

Γ((1 + 2 j)/2)
, (3.49)
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where Υ(·) is the lower incomplete Gamma function, and Γ(·) represents the Gamma function.

Then, the output of the developed fuzzy multiple attribute combination model y of (3.43)

at time t can be rewritten as

y[t] =

N∑
n=1

α̂n[t] exp(−
%′2n

2σ̂2
n[t]

X2
n[t]). (3.50)

The following theorem can be obtained:

Theorem 3.4: The false alarm rate and misdetection rate of the designed fuzzy multiple at-

tribute combination model can be given, respectively, by

PFA[t] = P(0 < Y[t] < ν) =

N︷    ︸︸    ︷∫
· · ·

∫
C1

N∏
n=1

fξn[t](xn)dx1 · · · dxN (3.51)

and

PMD[t] = P(ν ≤ Z[t] ≤ 1) =

N︷    ︸︸    ︷∫
· · ·

∫
C2

N∏
n=1

fςn[t](xn)dx1 · · · dxN , (3.52)

where

Y[t] =

N∑
n=1

ξn[t], ξn[t] = α̂n[t] exp(−
%′2n

2σ̂2
n[t]

X2
n,λFA

n [t]), λ
FA
n [t] = (

2(υn[t] − µ̂n[t])
%′n(bn − an)

)2. (3.53)

fξn[t](xn) and Fξn[t](xn) are the PDF and CDF of variable ξn[t], respectively, which are given as

Fξn[t](xn) = 1 − PX2
n [t](−

2σ̂2
n[t]
%′2n

ln(
xn

α̂n[t]
); 1, λFA

n [t]) =

∫ xn

−∞

fξn[t](τ)dτ. (3.54)

Moreover,

Z[t] =

N∑
n=1

ςn[t], ςn[t] = α̂n[t] exp(−
%′2n

2σ̂2
n[t]

X2
n,λMD

n [t]),

λMD
n [t] = (

2(HEn[t] − HAn[t] + υn[t] − µ̂n)
%′n(bn − an)

)2. (3.55)
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fςn[t](xn) and Fςn[t](xn) represent the PDF and CDF of variable ςn[t], which are given as

Fςn[t](xn) = 1 − PX2
n [t](−

2σ̂2
n[t]
%′2n

ln(
xn

α̂n[t]
); 1, λMD

n [t]) =

∫ xn

−∞

fςn[t](τ)dτ. (3.56)

Furthermore,
∏

represents the product of a sequence. C1 and C2 are denoted as the domains of

multiple integral in (3.51) and (3.52), respectively, which satisfy 0 < Y[t] < ν and ν ≤ Z[t] ≤ 1.

Proof: According to (3.50), the probability of occurrence PFA[t] of (3.45) can be calculated as

P(0 < y[t] < ν | Φ0) = P(0 <
N∑

n=1

α̂n[t] exp(−
%′2n

2σ̂2
n[t]

X2
n[t]) < ν | Φ0)

= P(0 <
N∑

n=1

ξn[t] < ν). (3.57)

Note that X2
n,λFA

n
[t] obeys the noncentral chi-squared distribution with 1 degree of freedom and

λFA
n [t] in the case of Φ0. Therefore, the CDF of variable ξn can be shown in (3.54), and the

false alarm rate of the proposed scheme is expressed as (3.51). Furthermore, PMD[t] of (3.46)

is given by

P(ν ≤ y[t] ≤ 1 | Φ1) = P(ν ≤
N∑

n=1

α̂n[t] exp(−
%′2n

2σ̂2
n[t]

X2
n[t]) ≤ 1 | Φ1)

= P(ν ≤
N∑

n=1

ςn[t] ≤ 1). (3.58)

Note that X2
n,λMD

n
[t] obeys the noncentral chi-squared distribution with 1 degree of freedom and

λMD
n [t] in the case of Φ1, and its CDF is shown in (3.56). Therefore, the misdetection rate of

the fuzzy learning-based authentication scheme is expressed as (3.52). �

Remark 3.9. It is observed from Theorem 3.4 that the false alarm rate depends on the variations

of Alice’s attributes υn[t], n = 1, 2, ...,N. Therefore, without updating the system parameters,

namely for σ̂2
n, µ̂n and α̂n in (3.50), the designed fuzzy multiple attribute combination model

will result in low authentication accuracy in the time-varying environment. In next section, a

hybrid learning algorithm will be proposed for updating these system parameters.
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3.4.1 Multi-Dimensional Adaptive Authentication Architecture

In this section, an optimization problem based on the expressions of false alarm rate and misde-

tection rate and a multi-dimensional adaptive authentication architecture are designed. Then, a

hybrid learning algorithm is proposed to describe and update the system parameters of the de-

signed fuzzy multiple attribute combination model. The hybrid learning algorithm focuses on

updating the system parameters to solve the designed optimization problem, which describes

the false alarm vs. misdetection trade-off, thus reliable authentication in the time-varying en-

vironment can be achieved.

As discussed above, the authentication performance of the designed fuzzy multiple attribute

combination model can be improved by well deciding and updating the parameters µ̂n, σ̂2
n and

α̂n in (3.50). Due to the inevitable trade-off between false alarm and misdetection [2, 114], the

authentication optimization problem is designed as

min
(̂µn,σ̂

2
n ,̂αn,ν),n=1,2,...,N

PFA,

s.t. PMD ≤ δ, (3.59)

where δ represents the threshold of misdetection rate. Given a δ, the threshold of authentication

in (3.3), namely for ν, can be determined by letting PMD = δ. Then, the threshold ν is fixed

in the subsequent authentication process, and the proposed scheme focuses on improving the

authentication accuracy through tracking the variations of the adopted physical layer attributes

of Alice and updating system parameters near-instantaneously.

In order to study and update the system parameters (i.e., µ̂n, σ̂2
n and α̂n) near-instantaneously,

the fuzzy combination model of (3.43) is described as a multi-dimensional adaptive authentica-

tion architecture with these parameters in Figure 3.9. In this adaptive architecture, each input-

output behavior is determined by a collection of modifiable parameters. The multi-dimensional

adaptive authentication architecture can be expressed as follows:

Step 1: The inputs of multi-dimensional adaptive authentication architecture are denoted as

h′[t] = (h′1[t], h′2[t], ..., h′N[t])T with each element is designed in (3.41). Then a degree of mem-

bership value u[−1,1](h′n[t]) of (3.42) can be obtained.

Step 2: By multiplying the parameter α̂n with the output u[−1,1](h′n[t]) of Step 1, the α̂nu[−1,1](h′n[t])
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Figure 3.9: Multi-dimensional adaptive authentication architecture with linear parameters α̂n

and nonlinear parameters µ̂n, σ̂
2
n.

can be obtained.

Step 3: The overall output of the multi-dimensional adaptive authentication architecture is the

summation of outputs of Step 2, which can be written as

y[t] = α̂1 exp(
−(h′1[t] − µ̂1)2

2σ̂2
1

) + α̂2 exp(
−(h′2[t] − µ̂2)2

2σ̂2
2

) + · · · + α̂N exp(
−(h′N[t] − µ̂N)2

2σ̂2
N

).(3.60)

As shown in Figure 3.9, the multi-dimensional adaptive authentication architecture is feed-

forward, since the output of each step propagates from the input side (left) to the output side

(right) unanimously. Besides, it is shown in (3.60) that the output of multi-dimensional adap-

tive authentication architecture is linear in α̂n, while it is nonlinear in µ̂n and σ̂2
n. Therefore, α̂n

are called as linear parameters, while µ̂n and σ̂2
n are named as nonlinear parameters.

3.4.2 Hybrid Learning for Parameters Update

In this subsection, a hybrid learning algorithm is designed by combining the gradient descent

and the least-square estimator for fast updating the system parameters.

Gradient Descent for Nonlinear Parameter Update

Given weights α̂n, n = 1, 2, ...N, the Gradient descent is applied to update the nonlinear param-

eters µ̂n and σ̂2
n, thereby to solve the optimization problem of (3.59), which can be expressed
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as

µ̂n[k + 1] = µ̂n[k] − ε
∂PFA

∂µ̂n
|k (3.61)

and

σ̂2
n[k + 1] = σ̂2

n[k] − ε
∂PFA

∂σ̂2
n
|k, (3.62)

where ε represents the step size of Gradient descent. ∂PFA/∂µ̂n and ∂PFA/∂σ̂
2
n are the first order

partial derivatives of PFA with respect to µ̂n and that with respect to σ̂2
n, respectively. Again,

given the physical layer attributes adopted and attribute observations of Alice, the closed-from

expression of PFA can be obtained. Hence, the gradients in (3.61) and (3.62) can be derived.

Least-Square Estimator for Linear Parameter Update

Given the non-linear parameters µ̂n and σ̂2
n, the least-square estimator is applied to update the

weights α̂n in (3.60). Consider that a set of Alice’s observations {(h′l , ŷl), l = 1, 2, ..., L} is given,

which is used for training the weights α̂ = (α̂1, α̂2, ..., α̂N)T in the least-square estimator. Then,

using the matrix notation, the following equation holds

ŷ = y + e = Uα̂ + e, (3.63)

where ŷ = (̂y1, ŷ2, ..., ŷL)T are the observations for training, while y = (y1, y2, ..., yL)T represent

the outputs of the fuzzy learning-based scheme with the corresponding inputs h′l , l = 1, 2, ..., L.

Moreover, e = ŷ − y represent the errors between the observations and outputs of the fuzzy

learning-based scheme, and

U =


u[−1,1](h′11) · · · u[−1,1](h′N1)

...
. . .

...

u[−1,1](h′1L) · · · u[−1,1](h′NL)


L×N

. (3.64)

Instead of finding the exact solution for (3.59), the proposed fuzzy learning-based scheme
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aims at searching for optimal linear parameters, i.e., α̂∗n, for minimizing the sum of squared

error, which is given by

E(α̂) =

L∑
l=1

γL−le2
l =

L∑
l=1

γL−l(̂yl − yl)2 = (̂y − Uα̂)Tγ(̂y − Uα̂), (3.65)

where the γ ∈ [0, 1] is forgetting factor to place the heavier emphasis on more recent data and

γ =



γL−1 0 · · · 0

0 γL−2 · · · 0
...

...
. . .

...

0 0 · · · γ0


L×L

. (3.66)

The utilization of forgetting factor γ in the proposed hybrid learning algorithm can decrease the

influence of historical samples in the authentication system gently due to the decorrelation of

physical layer attributes in the time-varying environment. According to [115], the closed-form

of solution for minimizing E(α̂) of (3.65) can be obtained as

α̂∗[L] = (UTγU)−1UTγŷ. (3.67)

Hence, given non-linear parameters µ̂n and σ̂2
n, (3.67) provides an optimal linear parameter α̂∗

for multi-dimensional adaptive authentication.

Remark 3.10. If estimate of an attribute, i.e., Hn, cannot be obtained at some moments, α̂n =

0 is set directly, and update the other linear parameters via (3.67). Since each attribute in

the authentication model (3.43) is independently taken into account, the parameter update for

each attribute is also independent. This demonstrates the benefit of the proposed solution

compared with the nonparametric methods [2], that is, once some attributes are unavailable at

some moments, the remaining attributes will still contribute to the authentication model and

make the model work, leading to a robust authentication performance.
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Hybrid Learning Algorithm

In order to improve the convergence performance of parameters updating, the gradient descent

and least-square estimator presented above is combined, named as hybrid learning. The hybrid

learning is implemented in a batch mode, each learning epoch is composed of forward pass and

backward pass [115]. Given a threshold ν and a set of observations {(h′l , ŷl), l = 1, 2, ..., L}, the

weights α̂n are updated according to (3.67) in the forward pass. After the weights α̂n are iden-

tified, the µ̂n and σ̂2
n can be updated via (3.61) and (3.62), respectively, in the backward pass.

Then, the threshold ν is updated by letting PMD = δ with the updated parameters (̂µ∗n, σ̂
∗2
n , α̂

∗
n).

As a conclusion, the proposed hybrid learning algorithm can be summarized in Algorithm 2.

Algorithm 2 Hybrid learning for multi-dimensional adaptive authentication
Given N physical layer attributes adopted, Alice’s observations h′l , l = 1, 2, ..., L, step size

of Gradient descent ε, initial parameters α̂n[0], µ̂n[0], σ̂2
n[0], and ν[0].

1. Iteration: t = 1, 2, ...L
Gradient descent:
1.1 obtain (̂µ∗n[t], σ̂∗2n [t]) through updating means µ̂n[k + 1] and variances σ̂2

n[k + 1] via
(3.61) and (3.62), respectively, until |̂µn[k] − µ̂n[k − 1]| < ε1&|σ̂2

n[k] − σ̂2
n[k − 1]| < ε2;

1.2 update PFA(̂µ∗n[t], σ̂∗2n [t]) via (3.51);
Least square estimator:
1.3 if the estimate of attribute n is unvailable
1.4 set α̂n[t] = 0;
1.5 else
1.6 obtain optimal weights α̂∗n[t] through (3.67) and update PFA(α̂∗n[t]) via (3.51);
1.7 end if
1.8 update threshold ν by letting PMD(̂µ∗n[t], σ̂∗2n [t], α̂∗n[t]) = δ;

2. Multi-dimensional adaptive authentication: t = L + 1
2.1 obtain new physical layer attribute estimate of authenticating transmitter H[t];
2.2 predict authentication result using parameters (̂µ∗n[L], σ̂∗2n [L], α̂∗n[L]) via (3.44):

Alice/Eve;
2.3 update parameters via Step 1 by renewing observation set to {(h′l , ŷl), l = 1, ..., L + 1};

Figure 3.10 characterizes the hybrid learning process of parameter update in the fuzzy

learning-based scheme. Since the optimization problem of (3.59) is nonconvex, there may exist

several minimal points and saddle points, as shown in Figure 3.10 (a). Given the initial values

of linear parameters, the nonlinear parameters µ̂n and σ̂2
n are updated by using gradient descent

(GD) to achieve the point 1. Then based on the fixed µ̂n and σ̂2
n, the least-square (LS) estimator

is used to find an optimal weights α̂∗n according to (3.67), achieving to point 2. Continuing this
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process, the point 4 can be found as shown in Figure 3.10 (d). Note that the false alarm rate

of the proposed scheme is changing during the hybrid learning process. Therefore, through the

proposed hybrid learning algorithm (see Algorithm 2), most of the minimal points and saddle

points can be avoided, achieving better convergence performance.
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Figure 3.10: Schematic diagram of the proposed hybrid learning process.

Remark 3.11. Given fixed µ̂n and σ̂2
n, the weights α̂∗n of (3.67) are the optimal values α̂n in the

weights space because of the squared error measure used. Therefore, by proposing the hybrid

learning procedure (see Algorithm 2), the dimension of the search space is reduced, and the

time needed to reach convergence is substantially decreased.

3.4.3 Convergence Analysis of Fuzzy Learning-based Scheme

This subsection analyzes the convergence of Algorithm 2 to show the performance of the pro-

posed fuzzy learning-based authentication scheme. A general case is considered that at least

one physical layer attribute adopted in the proposed scheme is dynamic. Then the following

results can be obtained:

Theorem 3.5: If υ[t] , 0 satisfies, the proposed fuzzy learning-based authentication scheme

with parameters α̂[t], µ̂[t], and σ̂2[t] in Algorithm 2 performs better than that with parameters

α̂[t − 1], µ̂[t − 1], and σ̂2[t − 1] at time instant t.

Proof: Given α̂[t−1], µ̂[t−1], and σ̂2[t−1] at time instant t−1, the least-square estimator α̂∗[t]

of (3.67) can be obtained, which minimizes the sum of squared error for real-value authentica-
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tion of (3.65) with a new observation ŷ[t]. Therefore, for the given µ̂[t − 1] and σ̂2[t − 1], the

sum of squared error for real-value authentication of (3.65) with parameters α̂∗[t] is smaller

than that parameters α̂[t − 1].

Then, given parameters α̂∗[t], by setting PMD = δ in optimization problem (3.59), the

nonlinear parameters µ̂n[t] and σ̂2
n[t] can be updated via (3.61) and (3.62). Then it can be

observed from Algorithm 2 as well as equations (3.61) and (3.62) that if the step size ε small

enough, the following inequation satisfies

PFA(̂µ[t − 1], σ̂2
n[t − 1]) > PFA(̂µ[t], σ̂2

n[t]). (3.68)

Therefore, the results of Theorem 3.5 are proved. �

Remark 3.12. Theorem 3.5 shows that Algorithm 2 achieves a reliable authentication perfor-

mance in the time-varying environment. The reason is that the fuzzy learning-based physical

layer authentication scheme promptly adjusts the authentication system to adapt the dynamic

environment, so that a compelling false alarm rate vs. misdetection rate trade-off is achieved.

Remark 3.13. The proposed hybrid learning algorithm (i.e., Algorithm 2) combines the gradi-

ent descent and least-square estimator to update the system parameters for multi-dimensional

adaptive authentication. On one hand, the false alarm rate PFA is continuous, and satisfies Lip-

schitz condition with constant J > 0 in an arbitrary bounded subset of real numbers. Hence,

if gradient descent is ran for k iterations with a fixed step size ε ≤ 1/J, gradient descent is

guaranteed to converge with convergence rate O(1/k). On the other hand, given the matrix U

and closed-form of solution (3.67), the complexity of least-square estimator is O(N2L).

3.4.4 Simulation Results

In order to show the performance of the proposed fuzzy learning-based scheme, case study and

simulation results are provided in this section. Firstly, the proposed scheme is validated in a

simulated urban scenario by utilizing carrier frequency offset (CFO), channel impulse response

(CIR), received signal strength indicator (RSSI), and in-phase and quadrature imbalance (IQI).

The parameter design and convergence performance of Algorithm 2 are demonstrated. Then,

the fuzzy learning-based scheme is validated in a simulated indoor office scenario to show
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its performance. The comparison results between the fuzzy learning-based scheme and some

existing schemes are presented, i.e., the optimal weights-based scheme and neural network-

based scheme, demonstrating the superior permanence of the fuzzy learning-based scheme.
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Figure 3.11: An urban scenario in the simulation.

Table 3.2: Simulation parameters of Chapter 3
Variable Value Variable Value
Initial position of Alice [400; 600] m Position of Bob [900; 900] m
Initial position of Eve [600; 400] m Antenna number of Alice/Eve 4
Antenna number of Bob 8 Antenna height 1 m
Velocity of Alice [8; -9] m/s Velocity of Eve [-6.72; 2.26] m/s
Center frequency fc 5 GHz Sampling rate 20 MHz
Range 1000 m × 1000 m SNR 20 dB

In this subsection, the proposed scheme is studied in an urban scenario, where its system

topology is given in Figure 3.11. The locations of Alice, Bob and Eve, as well as the velocities

of both Alice and Eve (denoted as vA and vE, respectively) are shown in this figure. The

simulation parameters in this case study are given in Table 3.2. Specifically, the multipath

channel model in this urban scenario is formulated as

HIR(τ; t) =

K∑
κ=1

Aκ(t)δ(τ − κ∆τ), (3.69)
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where K is the number of multipath propagation paths, κ∆τ and Aκ represent the delay and

complex amplitude of κ-th multipath component, respectively. Moreover, according to [118],

the path loss model is given as

PL = 22.7 log10(d[m]) + 41 + 20 log10(
fc[GHz]

5
), (3.70)

where d is the distance between the transceiver.
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Figure 3.12: Variation measurements of CFO, CIR, RSSI, and IQI of Alice and Eve for simu-
lation.

Given simulation parameters in Table 3.2, observations of CIR, CFO, RSSI, and IQI of both

Alice and Eve can be obtained, where their variation measurements are shown in Figure 3.12.

In the proposed scheme, 12 system parameters should be determined, namely for weights α̂n,

means µ̂n and widths σ̂2
n, n = 1, 2, 3, 4 corresponding to CIR, CFO, RSSI, and IQI, respectively.

Figure 3.13 characterizes the parameter design and update of the fuzzy learning-based scheme
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by Algorithm 2 with respect to weights α̂n, means µ̂n and widths σ̂2
n, n = 1, 2, 3, 4. The parame-

ters are updated for each observation, and only 1 iteration is needed in the least square learning

process. In this figure, 10 observations are used for training at the beginning of parameter

design and authentication. It is shown in Figure 3.13 that with the increasing authentication

time, the parameters are updated according to the variations of physical layer attributes. More

importantly, Figure 3.13 demonstrates the compact characteristic of the proposed scheme in

dealing with the dynamics of physical layer attributes due to only 10 observations used for

learning and 12 system parameters to be determined in the case of utilizing 4 attributes. Figure
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Figure 3.13: Parameter design and update by Algorithm 2.

3.14 characteristics the convergence of the proposed hybrid learning algorithm for 11-th obser-

vation, which is the convergence performance of the developed gradient descent for nonlinear

parameter update in Algorithm 2. It is observed from Figure 3.14 that only about 50 iterations

are needed for identifying a new attribute estimate of the transmitter with the learned system
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parameters (based on 10 observations).
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Figure 3.14: Convergence performance of Algorithm 2 for 11-th observation in Figure 3.13.
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Figure 3.15: False alarm rate of the fuzzy learning-based scheme by different numbers of
attributes.

Considering the utilization of different numbers of physical layer attributes, the authentica-

tion performance of the proposed scheme is characterized in Figure 3.15. Its system parameters

of the proposed scheme in different cases, i.e., CIR & CFO, CIR & CFO & RSSI, and CIR & C-

FO & RSSI & IQI, are updated similarly as Figure 3.13. One can observe from Figure 3.15 that

a larger number of attributes used leads to a more obvious improvement in authentication per-
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formance of the fuzzy learning-based scheme. The reason for this trend is that it is extremely

unlikely for an adversary to predict or imitate all the attributes from the received signals. More-

over, reliable and robust authentication can be achieved by utilizing multiple attributes because

of their different contributions on authentication and more information considered for identi-

fying the transmitter. Therefore, utilization of multiple attributes for authentication schemes is

extremely helpful to provide high uncertainty for the adversaries as well as high-dimensional

protections for the legitimate devices.
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Figure 3.16: Robust performance of the fuzzy learning-based scheme.

Figure 3.16 characterizes the robust performance of the fuzzy learning-based scheme. Ex-

plicitly, 10 attribute observations are used for learning at the beginning of authentication. The

adaptive authentication process is performed relying on four attributes, i.e., CIR & CFO &

RSSI & IQI, during 11-100th authentication time instant. Then, the IQI is unavailable at the

receiver from 101-th observation. It is observed from Figure 3.16 that once some of the adopted

attributes are unavailable, the remaining attributes still contribute to the authentication model

and make the model work, demonstrating the robustness of the fuzzy learning-based scheme

in the complex time-varying environment.

Figure 3.17 characterizes the comparison results of the fuzzy learning-based (FL) scheme

and the optimal weight-based (OW) scheme [114] in different cases, namely for CIR & CFO &

RSSI & IQI and CIR & CFO & RSSI. It is observed from Figure 3.17 that with the increasing



3.4. Fuzzy Learning-based Authentication Scheme 77

0 100 200 300 400 500

Observations (Authentication Time)

10-10

10-8

10-6

10-4

10-2

100

F
al

se
 A

la
rm

 R
at

e

FL, CIR&CFO&RSSI 
OW, CIR&CFO&RSSI 
FL, CIR&CFO&RSSI&IQI 
OW, CIR&CFO&RSSI&IQI

Learning stage
(10 observations)

Figure 3.17: Comparison results of the fuzzy learning-based scheme and the optimal weight-
based scheme of [114].
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Figure 3.18: Comparison results of the fuzzy learning-based scheme and the neural network-
based scheme of [119].
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authentication time, the false alarm rate values of the fuzzy learning-based scheme in both cases

keep stable, while that of the optimal weights-based scheme dramatically increase. The reason

for this trend is that the optimal weights-based scheme is a static scheme and cannot update the

system parameters according to the variations of physical layer attributes, thus cannot adapt to

the dynamic environment. This also supports the results of Theorem 3.5. These all indicate that

the proposed scheme performs better than the weights-based authentication scheme of [114].

As a conclusion, the results of Figure 3.15-3.17 characterize the benefits of the fuzzy learning-

based scheme based on both multiple physical layer attributes and adaptive scheme.

Figure 3.18 characterizes the comparison results of the fuzzy learning-based (FL) scheme

and a three-layer neural network-based (NN) scheme having 10 neurons for each layer [119].

It is observed from Figure 3.18 that the proposed scheme performs much better than the neural

network-based scheme. Furthermore, the neural network-based scheme requires observations

of the Spoofer for training, which limits its application in practical networks. Specifically, the

fuzzy learning-based scheme straightforwardly utilizes the physical properties of the attributes

in the fuzzy learning-based authentication process (see Figure 3.9), while the neural network

cannot provide such information in the training process analytically and explicitly.

3.5 Chapter Summary

In this chapter, a kernel learning-based physical layer authentication scheme was proposed for

combining the multiple physical layer attributes and for modelling the authentication as a lin-

ear system. Through the kernel machine-based multiple attribute fusion model, the number of

dimensions of the search-space was reduced from N to 1, and the learning objective was for-

mulated as a convex problem. Therefore, its complexity was substantially reduced. Then, by

conceiving an adaptive authentication process relying on the kernel machine-based multiple at-

tribute fusion model, the process advocated readily accommodated a time-varying environment

by discovering and learning this complex dynamic environment. Both the convergence perfor-

mance and the authentication performance of the proposed intelligent authentication process

were theoretically analyzed and numerically validated. The simulation results showed that the

authentication performance can be dramatically improved by increasing the number of physi-
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cal layer attributes exploited by the proposed intelligent authentication process. Moreover, the

proposed scheme has a much better authentication performance in a time-varying environment

than its non-adaptive counterpart.

Then, a fuzzy learning-based physical layer authentication scheme was developed to im-

prove the authentication performance from a robust and compact perspective. A fuzzy model

was designed to combine the multiple physical layer attributes, which can efficiently mitigate

the imperfectness of estimated attributes. By proposing an adaptive hybrid learning algorithm,

i.e., the combination of least-square estimator and gradient method, the system parameters can

be updated in real-time to adapt to the time-varying environment. Both the convergence per-

formance and authentication performance of the proposed multi-dimensional adaptive authen-

tication scheme were theoretically analyzed and validated in different simulation scenarios. It

was demonstrated that the proposed scheme has much better authentication performance than

some exiting schemes, such as the optimal weights-based scheme and neural network-based

scheme.

In next chapter, the trust management will be explored for mitigating the risks of misdetec-

tion of authentication utilizing physical layer attributes. To be more specific, an adaptive trust

management-based scheme will be proposed to achieve soft authentication and progressive

authorization. The trust relationship between the transmitter and receiver will be established

by validating the physical layer attributes. Moreover, the trust management will provide an

efficient metric and method for multiple-level access control.



Chapter 4

Adaptive Trust Management for Soft and

Progressive Security

Conventional authentication mechanisms routinely used for validating communication devices

are facing significant challenges. This is mainly due to their reliance on both ‘spoofable’

digital credentials and static binary characteristic, and inevitable misdetection in physical lay-

er authentication using time-varying attributes, leading to the cascading risks of security and

trust. To circumvent these impediments and further reduce the effects of inevitable wrong de-

cision of physical layer authentication, an adaptive trust management-based soft authentication

and progressive authorization scheme is proposed in this chapter by intelligently exploiting the

time-varying communication link-related attribute of the transmitter to improve wireless secu-

rity. First of all, the trust relationship between the transmitter and receiver is established based

on the evaluation of selected physical layer attribute for fast authentication and multiple-level

authorization. Through the designed trust model, the transmitter is authorized by the specif-

ic level of services/resources corresponding to its trust level, so that soft security is achieved.

To dynamically update the trust level of the transmitter, an online conformal prediction-based

adaptive trust adjustment algorithm is proposed relying on the real-time validation of its at-

tribute estimates at the receiver, thus resulting in progressive authorization. The performance

of the proposed scheme is theoretically analyzed in terms of its individual risk and individual

satisfaction. Simulation results demonstrate that the proposed scheme significantly improves

the security performance and robustness in time-varying environments, and performs better

80
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than the static binary authentication scheme and existing physical layer authentication bench-

marker.

4.1 Introduction

Due to the broadcast nature of radio signal propagation, owing to the intermittent nature of

communications and the complex dynamic network environments encountered, wireless com-

munications are vulnerable to spoofing attacks [4, 2, 79]. A spoofer may intercept the trans-

missions between legitimate devices and imitate them to obtain illegal benefits from networks/

systems, while counterfeiting authorized identities for fraud or other malicious purposes.

Although key-based cryptographic techniques [22, 23, 120, 121] have been widely used for

authentication, they face increasing challenges in securing wireless communications. Differen-

tiating devices with the aid of digital credentials cannot be readily achieved when the diverse

attributes of communication devices are disregarded, thus leading to a high risk of undetected

spoofing attacks [25]. Furthermore, the conventional key-based cryptographic techniques are

static in time and binary in nature, where the devices either pass the security check or fail by a

one-time authentication. These security schemes cannot help in detecting/preventing spoofer-

s after the initial authentication has been completed. Although repeated authentication may

theoretically be achieved with the aid of key-based cryptographic techniques by repeatedly

logging into the server/system, the excessive latencies and computational overhead are partic-

ularly undesirable for delay-sensitive communications as well as for devices having limited

battery lifetime and computational capability, such as the IoT devices [4, 2, 79].

Physical layer security techniques [25, 30, 37, 43, 48, 122, 123, 124] provide alternative

authentication methods relying on the uniquely random link-related attributes, as exemplified

by the channel impulse response (CIR) [2], carrier frequency offset (CFO) [37], and received

signal strength (RSS) [25], just to name a few, which are difficult for malicious devices to im-

personate and predict. Although they have obvious advantages including the low computational

requirement, low network overhead and modest energy consumption, most of the physical layer

authentication schemes based on the classic hypothesis test are also static in the time-domain,

as exemplified by [43, 37, 30, 48]. Hence, they tend to be unsuitable for providing continuous
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identification. A kernel learning-based physical layer authentication scheme is proposed in [2]

and Chapter 3 through tracking multiple time-varying attributes to provide lasting protection

for legitimate links. However, the above schemes constitute binary admit/reject solutions as

well as rely on separate authentication and authorization, hence resulting in latent loopholes

for spoofing attacks because of the potential misdetection events in the physical layer authen-

tication. Once an adversary passed the authentication by spoofing a legitimate device, the

corresponding information/services/resources in the system will be leaked to this adversary.

Furthermore, these binary-type solutions fail to provide differentiated levels of access control.

To overcome these challenges, the concept of soft authentication and progressive autho-

rization is extremely beneficial for holistic system optimization in dynamic communication

environments. The soft security solution provides a fast authentication and multiple-level au-

thorization, while the progressive approach achieves continuous identification to enhance the

security by multiple-step validation of the physical layer attribute observations. Through such

a scheme, the threats and uncertainties caused by adversaries as well as the cascading risks in

security and trust can be evaluated and controlled in real-time. In achieving this, the decision-

making in a high layer is also required for modeling the soft authentication and progressive

authorization as well as for security enhancement.

Trust management processes symbolic representations of the trustworthiness in support of

a decision-making process, which has been widely studied in dealing with security problem-

s in the literature [9, 125, 126, 127, 128, 129, 130, 131, 132]. However, conventional trust

management approaches are usually used for modeling the trust relationships among authenti-

cated users/devices for supporting cooperations in wireless networks. This chapter focuses on

proposing an adaptive trust management approach by evaluating the attribute estimation of the

transmitter to establish the trust relationship between transceiver for authentication and to pro-

vide metric for authorization. Through exploring the adaptive trust management, this radical

solution provides fast authentication and dynamic multiple-level authorization, thus resulting

in soft and progressive security. More importantly, the trust management-based scheme moves

further away from the classical mechanisms, since it quests a holistic system design of unified

authentication and authorization based on the continuous evaluation of time-varying physical

layer attribute, which requires new wireless radio technologies. Hence, the machine learning
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techniques [4, 2] are studied in this chapter for adaptive trust management through classifying

the time-varying attribute estimates of the transmitter.

In the unsupervised machine learning techniques of [133, 134, 135, 136], an assumption is

usually made for the classification between normal and abnormal events that normal events are

those that occur frequently and anomalous events occur rarely. This leads to a high false alarm

rate in physical layer authentication, since those rare attribute observations may be deemed to

be from the Spoofer. Therefore, the family of supervised learning techniques is invoked for

the classification of the time-varying physical layer attribute estimates, which may be from

legitimate devices and (or) adversaries. However, most of the existing supervised machine

learning techniques have a limited capability to update the trustworthiness of an authenticating

transmitter because of the lack of information on how close their predictions are to the real

observations. Hence, the conformal prediction technique of [137, 138, 139] is explored in this

chapter, where a valid measurement of each individual prediction is provided along with a

confidence value based on the learning algorithms. More importantly, by invoking the online

machine learning technique of [140, 141], the associated real-time classification results can be

used for adaptive trust management, thus improving the security performance in time-varying

communication scenarios.

In a nutshell, the proposed online conformal prediction-based adaptive trust management

approach provides differentiated levels of continuous protection for legitimate communica-

tions. Such approach evaluates the trustworthiness of an authenticating transmitter using its

physical layer attribute dynamically, thereafter the corresponding level of services/resources is

authorized to the transmitter according to its trust level. Furthermore, it integrates authenti-

cation and authorization for achieving seamless and holistic system optimization, thus leaving

fewer loopholes open for spoofing attacks.

Specifically, the contributions of this chapter are summarized as follows:

• To achieve the soft security, a trust model is designed for evaluating the trustworthiness

of an authenticating transmitter relying on physical layer attribute without requiring its

statistical properties. This model achieves fast authentication and provides a metric for

multiple-level authorization to deal with the threats caused by adversaries and to control

the risks of being attacked;
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• An online conformal prediction-based adaptive trust adjustment algorithm is proposed

for real-time validation of transmitter and for dynamically updating the trust model de-

veloped. Therefore, the proposed scheme becomes capable of adapting to time-varying

environments for security enhancement;

• Simulation results demonstrate that the proposed scheme describes a soft access con-

trol and continuous procedure of authentication, thereby providing reliable adaptive pro-

tection for legitimate communication links. The superiority of the proposed scheme is

demonstrated over the static binary authentication scheme and an exiting physical layer

authentication scheme.

The rest of this chapter is organized as follows. In Section 4.2, the system model used

in this chapter is presented. In Section 4.3, the online conformal prediction-based adaptive

trust management scheme is proposed for achieving soft authentication and progressive au-

thorization using physical layer attribute. The security performance analysis of the proposed

scheme is also presented in Section 4.3, while the simulation results are discussed in Section

Table 4.1: Notations of Chapter 4
Notations Definitions
HA Attribute estimate collected from Alice.
HO Attribute estimate collected from Alice or the Spoofer.
F Trust value of relationship {Bob : Transmitter, Alice}.
N Number of authorization levels.
Rind Individual risk of the proposed scheme.
S ind Individual satisfaction of the proposed scheme.
Ψ0 Scenario that the transmitter is the Spoofer.
Ψ1 Scenario that the transmitter is Alice.
Γ Conformal predictor.
y Label of an attribute estimate.
Z Set of training samples in conformal predictor.
Y Predicted set of conformal predictor.
ε Significance level of conformal predictor.
1 − ε Confidence level on the predicted set Y .
e Error made by the conformal predictor.
A Nonconformity measure function.
α Nonconformity score.
p p-value of the conformal predictor.
L Number of training samples.
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4.4. Finally, Section 4.5 concludes the chapter.

Notations: In this chapter, scalars are denoted by italic letters, while vectors are respectively

denoted by bold-face letters. Table 4.1 shows the notations of this chapter.

4.2 System Model and Problem Formulation
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Figure 4.1: Soft authentication and progressive authorization system between Alice and Bob
using a physical layer attribute continuously.

As shown in Figure 4.1, the attack model in a time-varying environment is characterized,

where Alice and Bob represent a pair of legitimate devices and aim for communicating in the

presence of a Spoofer, who tries to impersonate Alice and hence to access the system. More

explicitly, the Spoofer not only tries to intercept Alice’s transmission, but also to imitate her for

obtaining illegal benefits from Bob. The Spoofer also tries to counterfeit authorized identities

for fraud or other malicious purposes. The aggregated spoofing channel (i.e., the physical

channel spanning from the Spoofer to Bob, as well as the hardware and analog components

involved) is assumed to be independent of the main channel between Alice and Bob. Therefore,

it is hard for the Spoofer to predict and clone Alice’s physical layer attributes, such as her CIR,

CFO, and RSS. In this chapter, only one physical layer attribute is utilized for authentication

and authorization.

At the beginning of communication between Alice and Bob, existing security schemes have

been used to establish initial authentication between them explicitly. Indeed, it is reasonable to



86 Chapter 4. Adaptive TrustManagement for Soft and Progressive Security

expect that the devices have to be registered before joining the communication system, which

is a basic prerequisite of physical layer authentication schemes [43, 37, 30, 48]. L estimates

of the selected physical layer attribute of Alice can be obtained during the established initial

authentication phase, which are denoted as

HA1,HA2, ...,HAL, (4.1)

where each HAl represents an attribute estimate collected from Alice, l ∈ {1, 2, ..., L} is an esti-

mation time index, and L is the number of estimates during the established initial authentication

phase. The major objective of physical layer authentication is to verify that the information

received is from a legitimate device (i.e., Alice) by exploiting the difference between the esti-

mates HA1,HA2, ...,HAL and new estimates of the selected attribute arriving from the transmitter

(i.e., Alice or the Spoofer) during the subsequent communication stages. The new attribute es-

timates are denoted as HOt, explicitly showing the time instants of physical layer authentication

t = 1, 2, 3, .... Due to the dynamic nature of the environment encountered, the attribute esti-

mates HOt are likely to be time-varying. Explicitly, the new attribute estimates HOt may have

arrived from Alice or the Spoofer, and the validation of these estimates has to identify whether

they are from Alice or the Spoofer. Moreover, the physical layer authentication starts at time

instant t = 1 by identifying the estimate HO1, which is arranged to be the (L + 1)-st attribute

estimate, because L estimates of Alice have been collected during the initial authentication

phase. Then, the physical layer authentication at time instant t = 1 is formulated as

∆HO1 = f (HA1,HA2, ...,HAL,HO1), (4.2)

where f (·) represents a function that quantifies the difference between the estimates HA1,HA2,

...,HAL and HO1. The nonconformity measure of [143] will be applied in the proposed scheme

for characterizing this difference. If the difference ∆HOt is small enough, the signal is deemed

to be coming from Alice, otherwise, from the Spoofer. It is assumed that the attribute esti-

mation noises of Alice and the Spoofer are independent and identically distributed, which may

caused by the measurement errors, channel noises, interferences in the wireless communication

environment, and so on.
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In order to achieve security enhancement, this chapter focuses on proposing a novel adap-

tive trust management approach for achieving soft authentication and progressive authorization

in dynamic communication environments. To be more specific, the proposed soft security so-

lution provides prompt authentication and multiple-level authorization, while the progressive

approach enhances the security by multiple-step validation of the time-varying physical layer

attribute considered. The varying threats and uncertainties caused by the Spoofer and the cas-

cading risks in security can be evaluated and controlled in real-time by the proposed scheme.

Furthermore, various levels of protection can be provided for legitimate communications.

The trust relationship between the transmitter (i.e., Alice or the Spoofer) and Bob is char-

acterized for the sake of evaluating the trustworthiness of the transmitter as follows:

Definition 4.1: The trust level of the relationship {Bob : Transmitter, Alice} at time t is de-

fined as the probability that the transmitter is deemed to be Alice in Bob’s point of view by

identifying the selected physical layer attribute, which is represented as

F [t] = Pr{Bob : Transmitter, Alice} ∈ [0, 1]. (4.3)

It can be observed from Definition 4.1 that Bob has full trust in the transmitter when F [t] = 1,

and Bob totally distrusts the transmitter if F [t] = 0. Then the new concept of multiple-level

authorization is developed, where N classes of security services/resources are defined, denoted

as {Φ0,Φ1, ...,ΦN−1}. The multiple-level authorization classes satisfy Φ0 ⊂ Φ1 ⊂ ... ⊂ ΦN−1,

where ΦN−1 represents the highest level of authorization, while Φ1 is the lowest one. Moreover,

Φ0 represents failed authentication and access denial for Bob. The proposed soft authentication

and progressive authorization scheme can be formulated as



Φ0 : F [t] ∈ [ν0, ν1]

Φ1 : F [t] ∈ (ν1, ν2]

...

ΦN−1 : F [t] ∈ (νN−1, νN]

, (4.4)

where the thresholds satisfy 0 = ν0 < ν1 < ν2 < · · · < νN−1 < νN = 1.
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As shown in Figure 4.1, upon assuming the estimation range of the selected physical layer

attribute as [−a, a], the soft authentication and progressive authorization process is designed

based on the trust level F [t] by evaluating the estimates of the selected attribute HOt as follows:

Soft authentication: The initial trust level of the relationship {Bob : Transmitter, Alice} is

set relying on the physical layer attribute estimate HO1 at time instant t = 1 according to the

authentication of (4.2) as

F [1] = 1 − ∆HO1. (4.5)

If the initial trust level satisfies F [1] ∈ (νn, νn+1], the transmitter is allowed to access the ser-

vices/resources associated with n-th level of authorization, namely at Φn, n ∈ {0, 1, ...,N−1}. In

contrast to the conventional hypothesis testing-based authentication schemes [43, 37, 30, 48],

the proposed soft authentication solution does not require any knowledge of the statical prop-

erties of the attribute selected and neither does it require the derivation of optimal thresholds

for hypothesis testing. These simplifications lead to prompt authentication via (4.4), but the

lack of having an optimal threshold may lead to an increased misdetection rate during the soft

authentication of (4.5). Fortunately, both the multiple-level authorization and following pro-

gressive authorization designed for the proposed scheme are capable of enhancing the security

by authorizing the corresponding class of security services and resources according to the trust

level F as well as through the multiple-step validation of the physical layer attribute selected.

Progressive authorization: Given estimates of the selected physical layer attribute HOt ∈

[−a, a] at time instants t = 2, 3, 4, ..., the trust level F should be updated to control the individ-

ual risk and individual satisfaction, which is formulated as

F (HOt,F [t − 1]) : [−a, a] × [0, 1] → [0, 1], (4.6)

where the individual risk and individual satisfaction are given in Definitions 4.2 and 4.3, re-

spectively. The proposed progressive solution provides security enhancement by validating the

transmitter continuously for ensuring that the security risks caused by inevitable misdetection

during the soft authentication can be evaluated by the proposed trust management approach as

well as carefully controlled by the judicious adjustment of the authorization level via (4.4).
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Upon denoting the scenarios when the signal is from the Spoofer and from Alice by Ψ0

and Ψ1, respectively, the individual risk and individual satisfaction of the proposed scheme is

defined as:

Definition 4.2: The individual risk level of the proposed soft authentication and progressive

authorization scheme at time t is formulated as

Rind[t] =

N−1∑
n=1

rn · Pr(F [t] ∈ (νn, νn+1] | Ψ0), (4.7)

where rn is Bob’s degree of loss or damage, if the system assigns the authorization level Φn to

the Spoofer.

Definition 4.3: The individual satisfaction level of the proposed soft authentication and pro-

gressive authorization scheme at time t is given by

S ind[t] =

N−1∑
n=1

sn · Pr(F [t] ∈ (νn, νn+1] | Ψ1), (4.8)

where sn denotes Alice’s degree of satisfaction at the authorization level Φn.

According to Definitions 4.2 and 4.3, the individual risk quantifies the potential loss of Bob

if the Spoofer is granted authentication, while the individual satisfaction level quantifies the

utility of services/resources granted to Alice by Bob. Note that PMD = Rind and PFA = 1 − S ind

satisfy in the conventional binary authentication associated with N = 2 and r1 = s1 = 1, where

PMD and PFA represent the misdetection rate and false alarm rate, respectively. Furthermore, it

is observed from (4.7) and (4.8) that there is a trade-off between the individual risk and indi-

vidual satisfaction level associated with the thresholds ν1, ν2, ..., νN−1. If the thresholds are set

too low, Bob will suffer from a higher individual risk, because the Spoofer may more easily

succeed in imitating Alice and accessing a higher authorization level, but Alice will access

more valuable services/resources to achieve a higher level of individual satisfaction. By con-

trast, if they are set too high, the proposed scheme may suffer from a low individual satisfaction

level because of the lower authorization level Alice has, although Bob will experience a low-

er risk level. In the specific communication scenarios requiring high-security protection, the

thresholds of the proposed scheme can be increased for reducing the risk caused by the Spoofer
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during the soft authentication stage.

Remark 4.1. The designed trust model provides an efficient metric for multiple-level autho-

rization and for coping with the uncertainty and uncontrollability caused by the Spoofer. In

contrast to the conventional physical layer authentication schemes [43, 37, 30], which mini-

mize the misdetection rate while guaranteeing the false alarm rate, the proposes scheme focus-

es on enhancing security by updating the trust level F [t] based on the validation of the attribute

estimates HOt continuously. Hence, an adaptive trust adjustment algorithm will be proposed to

achieve soft authentication and progressive authentication in next section.

4.3 Proposed Adaptive Trust Management Scheme

In order to adaptively update the trust level F for soft authentication and progressive autho-

rization, the online conformal prediction technique is explored for classifying the new collected

estimates of the physical layer attribute used, i.e., HOt, t = 1, 2, 3, ..., which are time-varying

and imperfectly estimated. Through developing an adaptive trust adjustment algorithm based

on the confidence of prediction results, security enhancement can be achieved by multiple-

step validation of the selected attribute and by appropriately adjusting authorization level in

real-time.

4.3.1 Conformal Predictor for Classification of Attribute Estimates

To classify the new attribute estimates, the conformal prediction technique is explored in this

subsection, which is a method conceived for providing valid measures of confidence for in-

dividual predictions by machine learning algorithms [142]. One of the main advantages of a

conformal predictor is that it can guarantee that the probability of making erroneous predictions

is the same as a pre-defined significance level (apart from some statistical fluctuations) [138].

The initial training set is denoted as {z1, z2, ..., zL} = {(HA1, 1), (HA2, 1), ..., (HAL, 1)}. In general,

each training sample zl contains an attribute estimate in the set [−a, a] and a label of yl ∈ {0, 1}.

The label ‘0’ indicates that the attribute estimate is from the Spoofer, while label ‘1’ indicates

that it is from Alice. The set of training inputs is denoted byZ = [−a, a] × {0, 1}.

Given a new sample having the observed attribute HO1 and a defined significance level of
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ε ∈ [0, 1], a conformal predictor outputs a predicted set of Yε
L+1 ⊆ {0, 1} for the unknown label

yL+1. Note that HO1 is arranged to be L + 1-th attribute estimate because of the L estimates of

Alice collected during the initial authentication phase. The complementary value of (1 − ε) is

called confidence level. It will always consider nested prediction sets Yε1
L+1 ⊆ Yε2

L+1 when ε1 ≥ ε2.

The conformal predictor is formulated as a measurable function

Γ : Z∗ × [−a, a] × [0, 1] → {∅, {0}, {1}, {0, 1}}

z1, z2, ..., zL, HO1, ε → Yε
L+1, (4.9)

where (z1, z2, ..., zL) ∈ Z∗.

The predicted set is valid at the specified significance level ε in the sense that the probability

of an error satisfies

Pr(yL+1 < Yε
L+1) ≤ ε, (4.10)

under the randomness assumption [142]. That is to say, it has more than (1 − ε) confidence in

the predicted set Yε
L+1. For example, in the case of ε = 0.1, the probability that a prediction set

includes the true label is at least 90%. Whether Γ makes an error on the L + 1-th trial can be

represented by 1 and by 0 in case of no error as

eεL+1 =


1, if yL+1 < Yε

L+1

0, otherwise
. (4.11)

The basic idea of conformal prediction is to estimate the p-value for y ∈ {0, 1}, denoted

as py, and to exclude those labels from the predicted set, which satisfy py < ε. This p-value

indicates how different a sample is from a set of training samples, and the higher the p-value,

the better this sample fits the group of other samples. In order to obtain the p-value, the

nonconformity measure of [143] is applied for estimate HO1 as

AL+1 : Z∗ ×Z → <. (4.12)
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Then the nonconformity score, which measures how different a sample zl is from other samples

in the set {z1, z2, ..., zL, zL+1} [143], can be defined as

αl : AL+1({z1, z2, ..., zl−1, zl+1, ..., zL, zL+1}, zl) (4.13)

for each sample zl in {z1, z2, ..., zL, zL+1}. It can be observed from (4.13) that zL+1 depends on

an unknown yL+1, so that the nonconformity score αl relies on a variable y ∈ {0, 1}, which

is a possible label for the new observation of the selected physical layer attribute HO1. The

nonconformity scores are based on the output of a classical underlying predictor, as exemplified

by the ridge regression technique of [144], the k-nearest neighbours method of [145] and the

autoregressive moving average solution of [146].

Then the p-value of zL+1 with different y in set {0, 1} can be estimated as the ratio of the

nonconformity scores α1, α2, ..., αL that are at least as large as αL+1, which is given as

py,L+1 =
| {l = 1, 2, ...., L : αl ≥ αL+1} |

L
, (4.14)

where | · | represents the number of samples in the set {z1, z2, ..., zL} satisfying αl ≥ αL+1 [142].

The predicted set is formed by estimating the p-value for each sample having a nonconformity

score, and by adding those samples associated with p-value≥ ε, which is formulated as

Yε
L+1 = {y : y ∈ {0, 1}, py,L+1 ≥ ε}. (4.15)

Remark 4.2. Given the conformal predictor developed, the estimates of the selected physical

layer attribute can be classified. Then the trust level F [t] can be adaptively adjusted depend-

ing on the classification results and the confidence level (1 − ε) in real-time for progressive

authorization, which will be explored in next subsection.

4.3.2 Adaptive Trust Adjustment based on Online Machine Learning

In order to dynamically update the trust level F based on the validation results of estimates

HOt, t = 1, 2, 3, ... in this subsection, an online conformal prediction-based adaptive trust ad-

justment algorithm is proposed. In online learning, the samples zL+t = (HOt, yL+t), t = 1, 2, 3, ...,
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are presented one by one. The attribute estimate HOt is observed and its label yL+t is predicted

for each time, and then it moves on to the next attribute estimate. After obtaining the label of

each physical layer attribute estimate, the training set {z1, z2, ..., zL} is updated by incorporating

it and its label, as well as by removing the decorrelated historical training estimates. This is

because the physical layer attribute used may become gradually uncorrelated after a period of

time. Hence, the training set is also time-varying for maintaining its capability of adapting

to the dynamic environment. Note that the attribute estimate at time instant t, namely HOt, is

arranged to represent the (L+ t)-th trial in the online conformal predictor due to having L initial

training samples used at the beginning of physical layer authentication.

This algorithm focuses on validating the collected attribute estimates of the transmitter,

i.e., HOt, t = 1, 2, 3, ..., thereby to dynamically update the trust level F relying on the real-time

classification results of HOt, so that progressive authentication associated with multiple-level

authorization can be achieved. To be more specific, according to Definition 4.1, if Bob observes

that the attribute estimate HOt is classified to be from Alice, the trust level F will be increased,

otherwise, it will be decreased. In this way, the designed trust model becomes robust even if

an inaccurate classification occurs during the learning process. At the same time, the risk of a

misdetection taking place during the soft authentication stage can be controlled by authorizing

the corresponding class of security services/resources according to the trust level F [t] and by

multiple-step validation.

According to the results in [142], the confidence predictor Γ is exactly valid if for each ε,

eε1, e
ε
2, ... is a sequence of independent Bernoulli-distributed random variables. Unfortunately,

the notion of exact validity is vacuous for confidence predictors, since no-confidence predictor

is exactly valid [142]. A modification of conformal predictors is developed in [143], named

smooth conformal predictor Γsm, by redefining p-value as

psm
y,L+t =

| {l : αl > αL+t} | +η | {l : αl = αL+t} |

L + t − 1
, (4.16)

where l ranges over {1, 2, ..., L+t−1} and η is generated randomly from the uniform distribution

on [0, 1]. Then, the following Lemma can be obtained:

Lemma 4.1 [143]: Given any significance level ε, the output of the smooth conformal predictor
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Γsm satisfies

lim
t→∞

℘t = 1 − ε, (4.17)

where ℘t is denoted as the prediction accuracy of the proposed online conformal predictor at

time instant t. It is formulated as

℘t =
| {i = 1, 2, ...., t − 1 : eεi = 0} |

t − 1
. (4.18)

Based on the above analysis, the validation result of the online conformal predictor at time

instant t associated with dynamically updating the trust level F is designed as

θt =


−(1 − ε), if Yε

L+t = {0}

1 − ε, if Yε
L+t = {1}

0, otherwise

. (4.19)

In this equation, (1 − ε) represents the confidence in the prediction set Yε
L+t = {1}, namely that

the attribute estimate collected is from Alice at time instant t. By contrast, −(1 − ε) quantizes

the opposite of the confidence in the prediction set Yε
L+t = {0}, namely that the collected at-

tribute estimate is deemed to be from the Spoofer at time instant t. The validation result for

updating the trust level F [t] is set as θt = 0 in the cases of Yε
L+t = {0, 1} and Yε

L+t = ∅, since

the prediction results are invalid for authentication and authorization. It is plausible that if

Yε
L+t = {0, 1} or Yε

L+t = ∅, it shifts to other confidence levels, especially to specific confidence

levels ε for which Yε
L+t is a singleton. Although the empirical error rate of the online confor-

mal predictor approaches ε in the wireless communication scenarios, the validation result in

(4.19) is set according to the confidence concerning the prediction results. This is because the

proposed scheme requires multiple-step validation of the transmitter, thus resulting in a robust

performance as a benefit of the progressive authorization process.

Then the trust level F at time instant t can be obtained by Definition 4.1 and (4.6), which

is updated as
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F [t] =
ρF [t − 1] + θt

ρ + 1
=
ρt−1F [1] +

∑t
i=2 ρ

t−i(ρ + 1)i−2θi

(ρ + 1)t−1 , (4.20)

where ρ ∈ (0, 1] is the forgetting factor. Note that the forgetting factor should be chosen

according to the specific application scenario. Upon using this forgetting factor in the trust

management, the closer validation results will have a higher influence on the trust level F . It is

observed from (4.20) that (1−ε) ∈ [0, 1], −(1−ε) ∈ [−1, 0], F [1] ∈ [0, 1], and F [t−1] ∈ [0, 1].

Upon setting F [t] ≤ 0 to 0, F [t] ∈ [0, 1] satisfies. In summary, the developed adaptive trust

adjustment procedure conceived for soft authentication and progressive authorization is sum-

marized in Algorithm 3.

Algorithm 3 Online conformal prediction-based adaptive trust adjustment
Given initial training set {z1, z2, ..., zL} and significance level ε;
1. Soft authentication:
1.1 obtain the initial trust level F [1] via (4.5);
1.2 if F [1] ∈ (νn, νn+1], n ∈ {1, 2, ...,N − 1}
1.3 authorize this transmitter with Φn and go to Step 2;
1.4 else
1.5 authenticate this transmitter as the Spoofer and go to Step 3;
1.6 end if
2. Progressive authorization:
2.1 update training set by {z1, z2, ..., zL} + (HO1, yL+1) − z1;
2.2 for authentication time instants t = 2, 3, 4, ...
2.3 collect new physical layer attribute estimate HOt;
2.4 obtain value psm

y,L+t and predicted set Yε
L+t via (4.16) and (4.15), respectively;

2.5 obtain validation result θt via (4.19), and then update trust level F [t] via (4.20);
2.6 if F [t] ∈ (νn, νn+1], n ∈ {1, 2, ...,N − 1}
2.7 authorize this transmitter with Φn;
2.8 else
2.9 terminate the communication with this transmitter and go to Step 3;
2.10 end if
2.11 update training set as {zt, zt+1, ..., zL+t−1} + (HOt, yL+t) − zt;
2.12 end for
3. END

Remark 4.3. In Algorithm 3, Bob authenticates the transmitter (Alice or the Spoofer) through

an adaptive process based on the classification of the physical layer attribute estimates. Once

the transmitter is believed to be the Spoofer, i.e., its trust level F is lower than ν1, the commu-
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nication session will be terminated by Bob, otherwise, the proposed scheme will be operated

until the end of their communications. This algorithm describes a soft authentication and pro-

gressive authorization process, which supports prompt connection and enhanced security for

legitimate devices.

4.3.3 Security Performance Analysis

According to Algorithm 3 and the proposed scheme, the following theorems can be formulated:

Theorem 4.1: In the case of ν1 ≥ (ρ+ε−1)/(ρ+1) and sn = rn, n = 1, 2, ...,N−1, the individual

risk and individual satisfaction of the proposed scheme at time instant t satisfy

℘[t]Rind[t] = (1 − ℘[t])S ind[t]. (4.21)

Proof : According to Definitions 4.2 and 4.3, and the proposed adaptive trust adjustment ap-

proach of (4.20), the individual risk and individual satisfaction at time instant t can be ex-

pressed, respectively, as

Rind[t] =

N−1∑
n=1

rn · Pr(F [t − 1] ∈ (
νn(ρ + 1) − θt

ρ
,
νn+1(ρ + 1) − θt

ρ
] | Ψ0)

=

N−1∑
n=1

rn · {Pr(F [t − 1] ∈ (
νn(ρ + 1) + 1 − ε

ρ
,
νn+1(ρ + 1) + 1 − ε

ρ
])℘[t]

+ Pr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
])(1 − ℘[t])}, (4.22)

and

S ind[t] =

N−1∑
n=1

sn · Pr(F [t − 1] ∈ (
νn(ρ + 1) − θt

ρ
,
νn+1(ρ + 1) − θt

ρ
] | Ψ1)

=

N−1∑
n=1

sn · {Pr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
])℘[t]

+Pr(F [t − 1] ∈ (
νn(ρ + 1) + 1 − ε

ρ
,
νn+1(ρ + 1) + 1 − ε

ρ
])(1 − ℘[t])}. (4.23)

Given the condition ν1 ≥ (ρ + ε − 1)/(ρ + 1), the following equation can be obtained
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Pr(F [t − 1] ∈ (
νn(ρ + 1) + 1 − ε

ρ
,
νn+1(ρ + 1) + 1 − ε

ρ
]) = 0,

since 0 < ν1 < ν2 < · · · < νN = 1 and (νn(ρ + 1) + 1 − ε)/ρ ≥ 1. Then the individual risk and

individual satisfaction at time instant t can be rewritten as

Rind[t] = (1 − ℘[t])
N−1∑
n=1

snPr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) (4.24)

and

S ind[t] = ℘[t]
N−1∑
n=1

snPr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) (4.25)

under the condition of sn = rn. Therefore, the individual risk and individual satisfaction of the

proposed scheme at time instant t satisfy (4.21). �

Theorem 4.2: In the proposed soft authentication and progressive authorization scheme, the

individual risk at time instant t satisfies

(1 − ℘[t])Rind[t − 1] ≤ Rind[t] < 1 − ℘[t] (4.26)

under the condition ν1 ≥ (ρ + ε − 1)/(ρ + 1) and νN−1 ≤ 1 − ε.

Proof : According to Definition 4.2 and the proposed adaptive trust adjustment approach of

(4.20) as well as the results of Theorem 4.1, the individual risk at time instant t can be expressed

as

Rind[t] = (1 − ℘[t])
N−1∑
n=1

rnPr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) (4.27)

under the conditions ν1 ≥ (ρ + ε − 1)/(ρ + 1) and νN−1 ≤ 1 − ε. Then the following results can

be obtained

νn(ρ + 1) − (1 − ε)
ρ

≤ νn, n = 1, 2, ...,N − 1, (4.28)
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Pr(F [t − 1] ∈ (
νN−1(ρ + 1) − 1 + ε

ρ
,

(ρ + 1) − 1 + ε

ρ
]) ≥ Pr(F [t − 1] ∈ (νN−1, 1]). (4.29)

Hence, the following result holds

Rind[t] ≥ (1 − ℘[t])Rind[t − 1]. (4.30)

Furthermore, due to

N−1∑
n=1

Pr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) ≤ 1, (4.31)

the following results are obtained

(1 − ℘[t])
N−1∑
n=1

rnPr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) < (1 − ℘[t]). (4.32)

Hence, the individual risk at time instant t satisfies (4.26) in the proposed scheme. �

Theorem 4.3: In the proposed soft authentication and progressive authorization scheme, the

individual satisfaction at time instant t obeys

℘[t]S ind[t − 1] ≤ S ind[t] < ℘[t] (4.33)

under the condition ν1 ≥ (ρ + ε − 1)/(ρ + 1) and νN−1 ≤ 1 − ε.

Proof : Similar to the proof of Theorem 4.2, given the conditions ν1 ≥ (ρ + ε − 1)/(ρ + 1) and

νN−1 < 1−ε, the individual satisfaction at time instant t is shown in (4.23). Based on the results

of (4.25) and (4.29), as well as 0 ≤ s1 < s2 < · · · < sN−1 ≤ 1, the following result is obtained

S ind[t] ≥ ℘[t]S ind[t − 1]. (4.34)

Given the result of (4.31), the following inequality is satisfied

℘[t]
N−1∑
n=1

snPr(F [t − 1] ∈ (
νn(ρ + 1) − 1 + ε

ρ
,
νn+1(ρ + 1) − 1 + ε

ρ
]) < ℘[t]. (4.35)
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Hence, the individual satisfaction of the proposed scheme at time instant t satisfies (4.33). �

Corollary 4.1: When t is large enough, the individual risk and individual satisfaction of the

proposed scheme at time instant t satisfy

(1 − ε)Rind[t] ≈ εS ind[t], (4.36)

under conditions ν1 ≥ (ρ + ε − 1)/(ρ + 1) and sn = rn, n = 1, 2, ...,N − 1.

Proof : According to Lemma 4.1, when t is large enough, the empirical prediction accuracy of

the online conformal predictor obeys

℘t ≈ 1 − ε (4.37)

according to (4.17). Hence, the result of Corollary 4.1 can be obtained. �

It can be observed from Theorems 4.1-4.3 that the individual satisfaction and individual

risk of the proposed scheme depend both on the dynamic trust level F [t] as well as on the

prediction accuracy ℘[t], which rely on the real-time validation results of the selected time-

varying attribute. One can be observed from Theorems 4.2 and 4.3 that the proposed scheme

evaluates the physical layer attribute used, thereby promptly adjusting the trust model, so that

the individual risk can be dramatically reduced within a short time. Given the specific distribu-

tion of the attribute estimates used in the proposed scheme, the closed-form expressions of the

Rind[t] and of the S ind[t] can be obtained.

Case study: In order to characterize the performance of the proposed scheme, a special case

is studied assuming that the specific physical layer attribute of Alice and that of the Spoofer

obey the classic Gaussian distribution with means of µ1 and µ2 as well as with variances of σ2
1

and σ2
2, respectively, and setting N = 3 and ρ = 1. Then the following results can be obtained:

Corollary 4.2: The closed-form expressions of the individual risk and individual satisfaction

of the proposed scheme at time instant t = 1 can be formulated, respectively, as

Rind[1] =
r1
√
π

[
∫ µ1−µ2+2a(1−ν1)

σ2
√

2

µ1−µ2+2a(1−ν2)
σ2
√

2

e−x2
dx +

∫ µ1−µ2−2a(1−ν2)
σ2
√

2

µ1−µ2−2a(1−ν1)
σ2
√

2

e−x2
dx] +

r2
√
π

∫ µ1−µ2+2a(1−ν2)
σ2
√

2

µ1−µ2−2a(1−ν2)
σ2
√

2

e−x2
dx (4.38)
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and

S ind[1] = s1[erf(

√
2a(1 − ν1)
σ1

) − erf(

√
2a(1 − ν2)
σ1

)] + s2erf(

√
2a(1 − ν2)
σ1

), (4.39)

where erf(·) is the error function.

Proof : In this case study, it is assumed that the attribute observations of Alice and that of

Spoofer obey Gaussian distribution with means µ1 and µ2 and variancesσ2
1 andσ2

2, respectively,

as well as set N = 3 and ρ = 1. F [1] = |HA − HO1|/2a is formulated, where HA is the average

of HA1,HA2, ...,HAL, and |HA − H1|/2a normalizes the range of difference ∆HO1 in (4.2) to the

limited set [0, 1]. Then the individual risk and individual satisfaction at time instant t = 1 can

be given as (4.40) and (4.41), respectively.

Rind[1] = r1Pr(F [1] ∈ (ν1, ν2] | Ψ0) + r2Pr(F [1] ∈ (ν2, 1] | Ψ0)

= r1Pr(|HA − HO1| ∈ [2a(1 − ν2), 2a(1 − ν1)) | Ψ0) + r2Pr(|HA − HO1| ∈ [0, 2a(1 − ν2)) | Ψ0)

=
1
2

r1[erf(
HA + 2a(1 − ν1) − µ2

σ2
√

2
) − erf(

HA + 2a(1 − ν2) − µ2

σ2
√

2
) + erf(

HA − 2a(1 − ν2) − µ2

σ2
√

2
)

−erf(
HA − 2a(1 − ν1) − µ2

σ2
√

2
)] +

1
2

r2[erf(
HA + 2a(1 − ν2) − µ2

σ2
√

2
) − erf(

HA − 2a(1 − ν2) − µ2

σ2
√

2
)]

=
1
2

r1[erf(
µ1 − µ2 + 2a(1 − ν1)

σ2
√

2
) − erf(

µ1 − µ2 + 2a(1 − ν2)

σ2
√

2
) + erf(

µ1 − µ2 − 2a(1 − ν2)

σ2
√

2
)

−erf(
µ1 − µ2 − 2a(1 − ν1)

σ2
√

2
)] +

1
2

r2[erf(
µ1 − µ2 + 2a(1 − ν2)

σ2
√

2
) − erf(

µ1 − µ2 − 2a(1 − ν2)

σ2
√

2
)]. (4.40)

S ind[1] = s1Pr(F [1] ∈ (ν1, ν2] | Ψ1) + s2Pr(F [1] ∈ (ν2, 1] | Ψ1)

= s1Pr(|HA − HO1| ∈ [2a(1 − ν2), 2a(1 − ν1)) | Ψ1) + s2Pr(|HA − HO1| ∈ [0, 2a(1 − ν2)) | Ψ1)

=
1
2

s1[erf(
HA + 2a(1 − ν1) − µ1

σ1
√

2
) − erf(

HA + 2a(1 − ν2) − µ1

σ1
√

2
) + erf(

HA − 2a(1 − ν2) − µ1

σ1
√

2
)

−erf(
HA − 2a(1 − ν1) − µ1

σ1
√

2
)] +

1
2

s2[erf(
HA + 2a(1 − ν2) − µ1

σ1
√

2
) − erf(

HA − 2a(1 − ν2) − µ1

σ1
√

2
)]

= s1[erf(
2a(1 − ν1)

σ1
√

2
) − erf(

2a(1 − ν2)

σ1
√

2
)] + s2erf(

2a(1 − ν2)

σ1
√

2
). (4.41)

Therefore, the closed-forms of individual risk and individual satisfaction of the proposed scheme

at time instant t = 1 are shown in (4.38) and (4.39), respectively. �
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Corollary 4.3: The closed-form expressions of the individual risk and individual satisfaction

of the proposed scheme at time instant t = 2, 3, 4, ... can be obtained based on the results of

Corollary 4.2, respectively, as

Rind[t] = r1(1 − ℘[t])Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+r2(1 − ℘[t])Pr(F [t − 1] ∈ (2ν2 − 1 + ε, 1]) (4.42)

and

S ind[t] = s1℘[t]Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+s2℘[t]Pr(F [t − 1] ∈ (2ν2 − 1 + ε, 1]) (4.43)

under condition ν1 ≥ ε/2.

Proof : In this case study, the individual risk and individual satisfaction at time instant t =

2, 3, 4, ... can be obtained based on the results of Theorems 4.1-4.3 and Corollary 4.2 as

Rind[t] =

2∑
n=1

rnPr(
F [t − 1] + θt

2
∈ (νn, νn+1] | Ψ0)

= (1 − ℘[t])r1Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+(1 − ℘[t])r2Pr(F [t − 1] ∈ (2ν2 − 1 + ε, 1])

+℘[t]r1Pr(F [t − 1] ∈ (2ν1 + 1 − ε, 2ν2 + 1 − ε])

+℘[t]r2Pr(F [t − 1] ∈ (2ν2 + 1 − ε, 3 − ε]) (4.44)

and

S ind[t] =

2∑
n=1

snPr(
F [t − 1] + θt

2
∈ (νn, νn+1] | Ψ1)

= ℘[t]s1Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+℘[t]s2Pr(F [t − 1] ∈ (2ν2 − 1 + ε, 1])

+(1 − ℘[t])s1Pr(F [t − 1] ∈ (2ν1 + 1 − ε, 2ν2 + 1 − ε])

+(1 − ℘[t])s2Pr(F [t − 1] ∈ (2ν2 + 1 − ε, 3 − ε]). (4.45)
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According to the derived Rind[1] and S ind[1] in (4.40) and (4.41), respectively, the individual

risk and individual satisfaction of the proposed scheme at time instant t = 2, 3, 4, ... are given as

(4.42) and (4.43), respectively, under condition ν1 ≥ ε/2. �

Corollary 4.4: Based on the results of Corollaries 4.2 and 4.3, the solution of the following

problem does exist.

(ν1, ν2) = arg max S ind[t], (4.46)

s.t. Rind[t] ≤ δ, 0 < ν1 < ν2 < 1,

where δ denotes maximum tolerate individual risk invoked for controlling the risk in the pro-

posed soft authentication and progressive authorization process.

Proof : Given the problem of (4.46), maximum S ind[t] can only be achieved when Rind[t] = δ,

since there is a trade-off between the individual risk and individual satisfaction associated with

the thresholds ν1, ν2. Hence, the following results can be obtained as

(1 − ℘[t])r1Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2ν2 − 1 + ε])

+(1 − ℘[t])r2Pr(F [t − 1] ∈ (2ν2 − 1 + ε, 1]) = δ

⇒ ν2 = g(ν1), (4.47)

where g(·) is the function of ν2 in terms of ν1. Then the problem of (4.46) can be rewritten as

ν1 = arg max{℘[t]s1Pr(F [t − 1] ∈ (2ν1 − 1 + ε, 2g(ν1)

−1 + ε]) + ℘[t]s2Pr(F [t − 1] ∈ (2g(ν1) − 1 + ε, 1])}. (4.48)

Therefore, the solution of problem (4.46) does indeed exist because the righthand side of (4.48)

is a continuous function in terms of ν1 based on the closed-form expression of individual satis-

faction of (4.43). �

Remark 4.4. Corollaries 4.2 and 4.3 give the closed-form expressions of the individual risk

and individual satisfaction in the soft authentication phase (i.e., t = 1) and in the following

phases (namely t = 2, 3, 4, ...), respectively. It is observed from Corollary 4.2 that the required
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soft security is achieved by setting multiple authorization levels, thus the risk of a misdetection

can be carefully controlled by configuring this device for a low authorization level.

Remark 4.5. As it can be observed from above Theorems and Corollaries that the individual

risk and individual satisfaction depend on the thresholds ν1, ν2, ..., νN−1. Most of the conven-

tional physical layer authentication techniques determine the threshold of the authentication

system based on the Neyman-Pearson criterion [2, 25, 37], which minimizes the misdetection

rate subject to a maximum tolerable constraint on the false alarm rate. However, these schemes

constitute binary authentication solutions, which are unsuitable for achieving the soft authen-

tication and progressive authorization. More importantly, for a communication system, the

thresholds can be flexibly determined to meet the requirement of security.

4.4 Simulation Results

In order to evaluate the performance of the proposed soft authentication and progressive au-

thorization scheme, simulation results are provided in this section by utilizing both carrier

frequency offset (CFO) and received signal strength indicator (RSSI). Firstly, the training pro-

cess and results characterizing the proposed online conformal predictor are presented. Then

the performance of the proposed soft authentication solution is characterized by studying the

trade-off between individual satisfaction level vs. individual risk level during the soft authenti-

cation stage. A scenario is studied for characterizing the security performance and robustness

of the proposed progressive authorization solution, where a misdetection event occurs during

the soft authentication stage or the Spoofer imitates Alice after the soft authentication. Com-

pared to the static binary authentication scheme and the kernel learning-based authentication

scheme of [2], the superiority of the proposed scheme is highlighted.

In order to achieve soft authentication and progressive authorization, both the CFO [37] and

RSSI [117] are utilized for the validation of the proposed scheme. The observations of the CFO

seen in Figure 4.2 (a) and those of the RSSI seen in Figure 4.3 (a) used for training and testing

are collected from the implementation-oriented contributions of [37] and [117], respectively.

In a little more detail, the authors of [37] built a software-defined radio platform based on the

Universal Software Radio Peripheral to capture the real CFO data. The system implemented
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Figure 4.2: Performance of the proposed online conformal predictor relying on CFO.
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comprises two transmitters (i.e., Alice and the Spoofer) and one receiver (Bob) operating at

a carrier frequency of 2.47 GHz. Furthermore, the authors of [117] collected data throughout

three different measurement campaigns, seven days combined and spread across two summer

seasons. The measurements were carried out in an approximate range of 0-100 m at points

which were approximately 10 m apart from each other at 9 different parts of the orchard de-

scribed in [117] along five directions, namely along, across, 30◦, 45◦, and 60◦ with respect to

the tree rows. As shown in Figure 4.1 and the system model, the Spoofer can be viewed as the

second transmitter, who is located in a third location (i.e., more than a wave-length away from

Alice) and tries to imitate Alice for gleaning illegal advantages from Bob. Hence, the CFO and

RSSI estimates of the Spoofer are also collected for testing in the simulation.

Given the initial training set {z1, z2, ..., zL}, L = 40, and the significance level of ε = 0.1, the

proposed online conformal predictor is trained and tested by utilizing the collected observations

of the CFO. Note that only Alice’s CFO observations are used for training, i.e., the first 40

samples in Figure 4.2 (a), and the CFO observations of both Alice and the Spoofer are utilized

for testing the prediction accuracy of the proposed scheme based on the online conformal

predictor. The distribution of the smoothened p-values recorded for y = 1 (i.e., the CFO

observations are from Alice) is given in Figure 4.2 (b), which is used to form the predicted set

of (4.15). To be more specific, the x-axis represents the p-values, while the y-axis is the number

of CFO observations. When the p-value is below the significance level ε, the class (either 0

or 1) will be removed from the predicted set Yε
t . Then a confidence level of 0.9 is obtained

concerning the predicted set. More importantly, Figure 4.2 (c) characterizes the prediction

accuracy of the proposed online conformal predictor relying on new CFO observations, i.e., ℘t.

It can be observed from Figure 4.2 (c) that the prediction accuracy values concerning new CFO

observations are all higher than 0.9. The reason for this trend is that the proposed conformal

predictor keeps the error rate below the significance level ε.

Similarly, only Alice’s RSSI observations are used for training, i.e., the first 40 samples in

Figure 4.3 (a), and the RSSI observations of both Alice and the Spoofer are utilized for testing

in the online conformal predictor. Figure 4.3 (b) and (c) characterize the online conformal

prediction results relying on the RSSI observations by setting the significance level of ε = 0.2,

where (b) presents the p-values for the class of y = 1, and (c) demonstrates the prediction
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accuracy of the proposed scheme concerning new RSSI observations. It is observed from

Figure 4.3 (c) that the prediction accuracy concerning new observations is higher than 0.8.
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Figure 4.4: Individual satisfaction vs. threshold of individual risk for the numbers of autho-
rization levels N = 2, N = 3, and N = 4 based on the results of Figure 4.2.

Figure 4.4 characterizes the individual satisfaction vs. the individual risk with respect to

the number of authorization levels of N = 2, N = 3, and N = 4 by utilizing CFO of Figure

4.2. It can be observed from Figure 4.4 that upon increasing the individual risk threshold,

namely δ, the individual satisfaction values increase in all cases. The reason for this trend is

that there is a trade-off between the individual risk and individual satisfaction as demonstrated

by the analytical results of subsection 4.3. Furthermore, when the threshold of the individual

risk is lower than 0.2, the individual satisfaction value of the scenario associated with N = 4

is the highest, while that of N = 2 is the lowest. It is because using multiple authorization

levels in the proposed scheme helps to access services/resources quickly when the threshold of

individual risk is low, i.e., the security requirement is high.

Then the scenario when a misdetection event occurs during the soft authentication stage or

when the Spoofer attacks Alice after the soft authentication stage is studied. In Figure 4.5, the

performance of the proposed progressive authorization scheme is characterized by utilizing the

CFO (see Figure 4.2) with respect to the forgetting factors of ρ = 0.8, ρ = 0.6 and ρ = 0.4

compared to that of the static binary authentication scheme. In this figure, the number of

authorization levels is set to N = 3 in the proposed scheme, while the classification of the
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services/resources is given by Φ0, Φ1, and Φ2. It can be observed from Figure 4.5 that the

individual risk values of the proposed scheme decrease in all cases upon increasing the number

of observations (i.e., the estimates of CFO) of the transmitter. The reason for this trend is

that if Bob observes that the CFO is in nonconformity with the training samples of Alice, the

trustworthiness of this transmitter will be decreased. Thereafter the authorization level will be

reduced to Φ0 within a short time. However, in the static binary authentication scheme, the

individual risk value will not be decreased, leading to substantial losses in this scenario. This

demonstrates that the static binary authentication scheme fails to deal with the scenario, when

a misdetection occurs during the soft authentication phase or the Spoofer attacks the authorized

device after the soft authentication stage. It also demonstrates the superiority of the proposed

scheme after soft authentication by providing additional protection. Additionally, it can be

observed from Figure 4.5 that the individual risk of the proposed scheme associated with the

forgetting factor of ρ = 0.8 is higher than that of ρ = 0.6 and ρ = 0.4. The risk level associated

with ρ = 0.4 is the lowest in these three cases. This is because the historical observations of

Alice’s CFO have more substantial effects on the adaptive trust adjustment system in the case

ρ = 0.8, so that the trust level F is reduced slower than that of the forgetting factors of ρ = 0.6

and ρ = 0.4.
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Figure 4.5: Performance of the proposed progressive authorization solution for different for-
getting factors benchmarked against the static binary authentication scheme.

In Figure 4.6, the security performance of the proposed scheme for N = 3, N = 4 and



4.4. Simulation Results 109

2 4 6 8 10 12 14

Number of Observations

0

0.2

0.4

0.6

0.8

1

In
di

vi
du

al
 R

is
k

Our scheme, N=3
Our scheme, N=4
Our scheme, N=5
Static binary authentication scheme

Stage 1 Stage 2 Stage 3

Figure 4.6: Security performance and robustness of the proposed progressive authorization
solution parameterized by different numbers of authorization levels.

N = 5 authorization levels is characterized to show the effects of N on the proposed scheme

in the scenario that a misdetection event occurs in the soft authentication stage or the Spoofer

attacks the authorized device after the soft authentication stage. Some transient observations

(from 3 to 5 observations) are added to show the robustness of the proposed scheme, which

represent the prediction errors in the proposed online conformal predictor, and are mainly

caused by the imperfect estimates and variations of the CFO, noisy observations, as well as

owing to the dynamic behaviors of the Spoofer. It can be observed from Figure 4.6 that the

individual risk value of the proposed scheme recorded for N = 3 decreases quicker than in the

other cases in Stage 1. The reason is that when the CFO estimates are identified by Bob to be

from the Spoofer, the authorization of the transmitter in the N = 3 scenario will be reduced to

the lowest level more quickly. By contrast, the case of N = 5 needs more time (observations) to

achieve a low individual risk. Furthermore, the performance of the proposed scheme recorded

for N = 3 suffers from the lowest robustness, although the individual risk level of this scenario

decreases more quickly than in the other cases in Stage 1. To be specific, the risk level of

N = 3 decays fastest in Stage 1 (before 3 observations), while it increases fastest in Stage 2

(from 3 to 5 observations). In Stage 3, it decreases fastest in all cases. This indicates that the

proposed scheme having a lower number of authorization levels is less robust, but it achieves

a reduced individual risk more quickly in the scenario that a misdetection event occurs in the
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soft authentication stage or the Spoofer attacks Alice after the soft authentication stage.
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Figure 4.7: Individual satisfaction comparison results of the proposed scheme and the scheme
of [2] in the scenario that false alarms happen during the authentication process.

Figure 4.7 characterizes the individual satisfaction comparison results of the proposed pro-

gressive authorization process and the kernel learning-based physical layer authentication pro-

cess of [2]. In this figure, a scenario that false alarm events occur during the authentication

process is studied because of the imperfect estimates and variations of the CFO, as seen from

6 to 8 observations. It is observed from Figure 4.7 that the individual satisfaction level of the

proposed scheme is a bit lower than that of the physical layer authentication process of [2]

for less than 6 CFO observations. This is because of the specific nature of the trust manage-

ment approach used in the proposed scheme, where the individual satisfaction level depends

on the trust level between Alice and Bob. However, once a false alarm event occurs during

the authentication process, the individual satisfaction value of the authentication process of [2]

tends to 0, because the communication session between Alice and Bob is terminated by Bob.

By contrast, the proposed progressive authorization scheme exhibits its robustness in term of

tolerating a few false alarms. In conclusion, both Figure 4.4 and Figure 4.7 demonstrate that

the proposed soft authentication and progressive authorization scheme performs better than the

kernel learning-based authentication scheme of [2] when the threshold of individual risk is low

or when false alarm events occur during the authentication process, hence resulting in a faster

access and higher robustness.
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4.5 Chapter Summary

In this chapter, a soft authentication and progressive authorization scheme based on the trust

management was proposed to achieve security enhancement by evaluating the physical layer

attribute estimates. A trust model was firstly designed for evaluating the trustworthiness of the

relationship between transmitter and receiver, and for supporting a multiple-level authoriza-

tion. Then a conformal predictor was developed for classifying the estimates of the physical

layer attribute selected, which are used for characterizing the trustworthiness of the transmit-

ter. An adaptive algorithm based on online machine learning was developed to update the

trust management in real time. The simulation results characterized the benefits of the pro-

posed scheme, demonstrating its superiority over the static binary authentication scheme and

the exiting physical layer authentication scheme benchmarker.

In next chapter, the security, trust, and privacy will be comprehensively designed for the

blockchain-enabled IoT systems. To be more specific, a distributed access control scheme will

be proposed by jointly considering security and privacy-preservation to secure the access of

devices and to protect the private information stored in the blockchain. The trust management

will be designed to achieve multiple-level authorization and accountable security services for

all nodes in the consortium blockchain-enabled IoT systems.



Chapter 5

Accountable Distributed Access Control

with Privacy Preservation

While being able to avoid the risk of single point failure, decentralized security provisioning

(e.g., access control and authentication) is facing new challenges of increased system com-

plexity, lacking a sense of responsibility, and privacy preservation. To circumvent these im-

pediments, a distributed access control scheme using consortium blockchain is proposed for

the Internet of Things (IoT) systems. In achieving overall system efficiency and privacy preser-

vation, the proposed framework has three key components, i.e., a distributed recommendation

mechanism, an anonymous credential generation strategy, and a reputation update scheme for

accountability. In the proposed recommendation mechanism, multiple authorized nodes are u-

tilized as referrers to efficiently confer their trust on a new public entity. The authentication can

be conducted by the referrers in a distributed behavior to issue the required credential for the

new entity to join in the system, and an anonymous credential generation strategy is developed

for the new entity to further protect its privacy from linking attacks. A reputation update strat-

egy is proposed based on the new entity’s behaviors after its joining in the system, and a false

recommendation will reduce the referrers’ reputation values. The accountability of the refer-

rers can be achieved by lessening its significance in the new authentications and by adaptively

adjusting its authorization based on the proposed dynamic multiple-level authorization strat-

egy. The results show that the proposed scheme significantly improves security performance

and provides privacy preservation for IoT systems.

112
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5.1 Introduction

IoT systems have attracted a multitude of interests from research and industrial communities

due to their ongoing convergence with vertical industry applications [4, 151]. The growing

complexity of IoT systems as well as dramatically increased use of intelligent machines and

devices within industry processes bring many security vulnerabilities in IoT systems, such as

data injection, spoofing, privacy leakage, and so on [14, 194]. Access control techniques pro-

tect against unauthorized use of network resources, and also ensure that only the authorized

persons or devices can access the network resources, services, data, and information flows.

However, most state-of-the-art IoT systems are heavily centralized relying on third parties,

which are facing a lot of challenges, such as security, privacy, and trust risks when the third

parties are compromised, as well as the lacks of data accountability and traceability, especially

in the decentralized industry applications [14]. Hence, distributed access control with secu-

rity enhancement, privacy protection, and reputation management for defending against both

outside and inside attacks is extremely helpful in securing the IoT systems.

Blockchain is a growing list of blocks that record transaction data based on distributed con-

sensus mechanisms [152]. Given its advantages including decentralized nature, traceability,

coordinability, and robustness to data tampering, the integration of blockchain technology and

IoT infrastructures has been widely studied in [152, 153, 154, 8, 155, 156, 157, 158]. It not

only decentralizes the management and operation of IoT systems, but also brings many poten-

tial benefits, such as higher adaptability of heterogeneous IoT, higher fault tolerance. Different

from the private blockchain [152] and public blockchain [155, 156], a consortium blockchain

is controlled by several authorized nodes from multiple organizations, as exemplified by Hy-

perledger [154, 8], Quorum [153], and Corda [153]. Compared with a public blockchain, the

consortium blockchain is more scalable and acceptable among IoT applications due to its much

higher system interaction efficiency [153]. Such integration systems can be applied in different

areas, for example, smart building and smart industry, and can also achieve the collaborations

among different networks as exemplified by information sharing among these networks relying

on different gateways or clusters.
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5.1.1 Security Weaknesses and Motivations

In a consortium blockchain-enabled IoT system, several authorized nodes will decide who can

be part of the system, who can transact, mine, and deploy smart contracts, as well as whether

read or write permissions would be public or limited to selected authorized nodes. They have

common goals but do not fully trust each other. More importantly, such integration systems are

facing some critical security threats from both outside and inside of the system, which limits

its deployment in distributed IoT applications. To be specific, the adversaries may imitate or

forge the identities of legitimate users to bypass the authentication, then try to obtain illegal

benefits from the system. Moreover, the insider attacks are more challenging because they are

caused by the misbehaved authorized nodes, e.g., false data injection attacks [159] and denial

of service attacks [160]. The private information of authorized nodes may also be leaked

to the attackers by linking the IoT data stored in blocks to their real identities. Hence, all the

nodes should be authenticated and authorized before they access and transact in the consortium

blockchain-enabled IoT system [154].

The access control methods have been studied in [50, 51, 52, 53, 54, 147, 148, 149]. How-

ever, most of the existing access control methods are centralized and rely on the trusted third

parties or managers, binary in nature and static in time, where nodes either pass the securi-

ty check or fail by a one-time verification. Once the trusted third parties or static protocols

are cracked, the IoT data stored in blocks will be revealed to adversaries. Hence, a dynamic

multiple-level authorization is necessary to provide the soft and accountable security service

for protecting the consortium blockchain-enabled IoT system, which aims at ensuring that ma-

licious behaviors are able to be identified and punished [161]. More importantly, in the existing

consortium blockchain-enable IoT systems, a trusted membership service provider is required

to maintain the identities for all nodes, and the credential authorities take responsibility to issue

credentials for authentication and authorization, such as [154, 162, 163]. Such a centralized

mechanism goes against the partially distributed property of the consortium blockchain.

In a nutshell, the concept of distributed access control with privacy preservation and ac-

countable security service is exceedingly helpful in the consortium blockchain-enabled IoT

system. However, such a scheme is facing the following challenges for the IoT systems, i.e.,



5.1. Introduction 115

P1. How to achieve a reliable and secure access control, so that the integration system can be

protected from outside attacks?

P2. How to achieve the privacy preservation for IoT entity as well as IoT data for each autho-

rized node in the system?

P3. How to respond to the incorrect recommendations and authentications to provide account-

able security service?

5.1.2 Technical Contributions

In this chapter, a novel distributed access control scheme is proposed based on the consortium

blockchain for IoT systems. First, a recommendation mechanism is developed, where several

authorized nodes act as referrers to provide recommendations for a public node and to a issue

credential to it for further authentication and authorization, which provides a solution for P1.

To address P2, an anonymous credential generation strategy is proposed, so that the private

information of each new authorized node stored in the blockchain will not be directly linked

to its real identity. Finally, a reputation update strategy is proposed to achieve accountable

security service through decreasing the referrers’ reputation values if they provide wrong rec-

ommendations, as well as lowering their authorization levels based on the proposed dynamic

multiple-level authorization strategy, thus P3 is solved.

The contributions of this chapter are summarized as follows:

• A recommendation mechanism is proposed for distributed access control relying on mul-

tiple referrers to protect the IoT data from outside attacks. The trade-off between false

alarm and misdetection of the proposed scheme can be improved by using more referrers

based on the proposed scheme;

• The privacy of each authorized node is further protected from the linking attacks by

generating anonymous credentials. Through both the recommendation mechanism and

anonymous credential generation strategy, the private information of authorized nodes in

the integration system can be protected from both the outside and inside nodes;

• The developed reputation update strategy provides a method for evaluating the behaviors
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of authorized nodes and for dynamic multiple-level authorization. Moreover, the ac-

countable security services can be achieved by the proposed scheme through decreasing

the reputation values of referrers if they provide wrong recommendations.

Table 5.1: Notations of Chapter 5
Notations Definitions
N Number of authorized nodes who control the blockchain.
K Number of authorization levels.
Ψ0 The case that the transmitter is an adversary.
Ψ1 The case that the transmitter is a legitimate node.
ν1, ..., νK−1 Thresholds of the multi-level authorization.
M Number of referrers.
Rn Reputation value of n-th authorized node.
S Average recommendation score.
S m Recommendation score of m-th referrer.
PFA False alarm rate.
PMD Misdetection rate.

The rest of this chapter is organized as follows. In Section 5.2, the system model used and

the key requirements of this chapter are presented. In Section 5.3, the distributed access control

scheme is proposed, and the performance analysis is presented. The simulations and numerical

results are shown in Section 5.4. Finally, Section 5.5 concludes this chapter.

Notations: In this chapter, scalars are denoted by italic letters, while vectors are respectively

denoted by bold-face letters. Table 5.1 shows the notations of this chapter.

5.2 System Model

The framework of a consortium blockchain-enabled IoT system is shown in Figure 5.1. Each

block in the blockchain contains the hash of the previous block (previous hash), transaction

data, an arbitrary nonce, a timestamp, and hash of the current block (current hash). In this

integration system, all communications go through the blockchain, and N authorized entities

are acting as end-points in the blockchain network. Each authorized node is designed to hold

one copy of the blockchain and is capable of voting on each transaction prior to appending it

to the blockchain. There are also some public nodes in this IoT system, who want to join in the

consortium blockchain system for the data access. This work considers the system having no
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centralized service provider, credential authority, and manager, corresponding to the properties

of consortium blockchain but increases the grade of challenge imposed on the legitimate users

as well. The Practical Byzantine Fault Tolerance (PBFT) algorithm [154] is applied in this

integration system.
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Figure 5.1: Framework of a consortium blockchain-enabled IoT system.

In this integration system, the adversary aims at accessing and obtaining illegal benefits

from the system. Although the N authorized nodes have a common goal, they do not fully trust

each other, and some of them may attack/cheat for illegal benefits. Furthermore, the public

nodes and authorized nodes may try to observe private information of other authorized nodes

from the IoT data stored in blocks. To improve the security performance and protect privacy,

this chapter focuses on proposing a new distributed access control scheme for the consortium

blockchain-enabled IoT system to meet the following requirements:

− Authentication: Public nodes should be authenticated before their access to the integration

system with the help of authorized nodes in a distributed way, so that the system will be pro-

tected from the outside attackers.
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− Authorization: Every node in the integration system should be authorized what it can do,

as exemplified by transacting and deployment of smart contracts. Moreover, the dynamic

multiple-level authorization is required to provide soft and progressive security service for

protecting system.

− Privacy Preservation: The IoT data and the privacy of authorized nodes stored in blocks

should be protected from both public nodes and other authorized nodes. In other words, the

public nodes cannot gain any knowledge of the transactions in the system, and transactions

stored in blocks are anonymous;

− Accountability: Authorized nodes in the IoT system should be accountable for their behav-

iors, especially for the adversarial behaviors. It means that malicious behaviors are able to be

identified and punished in the integration system.

5.3 Proposed Distributed Access Control Scheme

In this section, a recommendation mechanism is firstly developed that several authorized n-

odes should act as referrers to authenticate a public node before its access to the consortium

blockchain-enabled IoT system, so that P1 will be addressed. These referrers will then issue

the initial credential together to the new authenticated node based on an anonymous credential

generation strategy, so that the IoT data stored in blocks will not be linked to the real iden-

tities of devices, thus P2 will be solved. Then, a reputation update strategy is developed for

adaptively updating the reputation values of authorized nodes based on their interactions with

other nodes and recommendations, so that the dynamic multiple-level authorization is achieved

according to their reputation values. This strategy provides a solution for P3, since an incor-

rect recommendation will lead to punishments on the referrers by decreasing their reputation

values.

5.3.1 Recommendation for Distributed Access Control

As shown in Figure 5.2, if a public node, i.e., Alice or Adversary, wants to access/join in the

consortium blockchain-enabled IoT system, M referrers in the set of N authorized nodes are

incentivized to provide their recommendations for this node. The recommendation score of
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Figure 5.2: The proposed recommendation mechanism for distributed access control.

m-th referrer on new public node is denoted as S m, which depends on the familiarity degree

of referrer m on this public node and satisfies S m ∈ [−1, 1]. If the value of S m is high, the

referrer m is familiar with this public node and its recommendation is Alice, while S m = 0

represents that referrer m has no knowledge of this public node. Moreover, if the value of S m

is low and less than 0, it means that the referrer m is familiar with this public node and its

recommendation is Adversary. Then the average recommendation score of referrers on this

public node is formulated as

S =

∑M
m=1 S mRm

M
, (5.1)

where Rm ∈ [0, 1] is the reputation value of referrer m representing the global perception of its

trustworthiness in the system. The recommendations of the referrers and reputation values of

all authorized nodes are stored in the blockchain as transactions. It is observed from (5.1) that

a referrer having higher reputation value has higher significance on the recommendation for

the public nodes.

K authorization levels are set by dividing the services/resources of the integration system

into K sets, denoted as Φ0,Φ1, ...,ΦK−1, in the system according to their importance. Φ0 rep-

resents the service set with lowest authorization level, which means the node is not allowed
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to access any services/resources of the system, while ΦK−1 is denoted as the service set with

highest authorization level, with which the nodes can access all services/resources in the sys-

tem. Therefore, ∅ = Φ0 ⊂ Φ1 ⊂ · · · ⊂ ΦK−1 satisfies, where ∅ represents null set. Then, the

distributed access control is formulated as

Φ0 : S ∈ (−∞, ν1]

Φ1 : S ∈ (ν1, ν2]

...

ΦK−1 : S ∈ (νK−1,∞)

, (5.2)

where ν1 < ν2 < · · · < νK−1, 
S ∈ (−∞, ν1] Ψ0

S ∈ (ν1,∞) Ψ1

, (5.3)

and

S = G(·) |t0 . (5.4)

Ψ1 indicates that the public node is a legitimate node, while Ψ0 represents that it is an adversary.

t0 represents the initial authentication time instant.

According to the proposed recommendation mechanism of (5.1) and (5.2), the false alarm

rate and misdetection rate of the distributed access control can be calculated, respectively, as

PFA = Pr(S ≤ ν1|Ψ1) = Pr(
M∑

m=1

S mRm ≤ Mν1|Ψ1) (5.5)

and

PMD = Pr(S > ν1|Ψ0) = Pr(
M∑

m=1

S mRm > Mν1|Ψ0). (5.6)

The recommendation score S m is assumed to be Gaussian variable in [−1, 1], where its
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probability distribution functions (PDF) of Ψ1 and Ψ0 are formulated, respectively, as

fΨ1(x) =
1

√
2πσ1

exp(−
(x − µ1)2

2σ2
1

) (5.7)

and

fΨ0(x) =
1

√
2πσ0

exp(−
(x − µ0)2

2σ2
0

), (5.8)

where µ0 < 0 < µ1 holds. Hence, the average recommendation score S is also a Gaussian

variable. Then, the false alarm rate and misdetection rate of (5.5) and (5.6) can be derived,

respectively, as

PFA =

∫ Mν1

−M

1√
2π
∑M

m=1 R2
mσ1

exp(−
(x − µ1

∑M
m=1 Rm)2

2σ2
1

∑M
m=1 R2

m

)dx (5.9)

and

PMD =

∫ M

Mν1

1√
2π
∑M

m=1 R2
mσ0

exp(−
(x − µ0

∑M
m=1 Rm)2

2σ2
0

∑M
m=1 R2

m

)dx. (5.10)

Then, the security performance of the proposed scheme depends on both the number of

referrers M and threshold ν1. According to (5.9) and (5.10), there is a trade-off between false

alarm and misdetection relying on the threshold ν1. Therefore, the optimization problem of the

access control is designed as

min
M,ν1

PMD (5.11)

s.t. PFA ≤ δ, M ≤ Mmax, and ν1 > 0,

where δ represents the threshold of false alarm rate, and Mmax is the threshold of referrer

number, which is set to control the time latency and communication overhead of the proposed

scheme. This optimization problem can be evaluated based on the Neyman-Pearson criterion

[23]. It is concluded that PMD achieves the minimum value while PFA meets equality constraint

δ. Thresholds ν2, · · ·, νK−1 are determined by the users depending on the historical knowledge of
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Algorithm 4 Distributed access control
1. Initialization:
{1, 2, ...,N}: set of authorized nodes
{R1,R2, ...,RN}: set of reputation values of the authorized nodes

2. Referrer selection and threshold design:
2.1 sort authorized nodes relying on their reputation values in descending order as

τ1, τ2, ..., τN;
2.2 for M = 1, 2, ...,Mmax

2.3 select referrers τ1, τ2, ..., τM;
2.4 obtain optimal threshold ν∗1 by setting PFA = δ;
2.5 obtain misdetection rate PMD via (5.10) based on M and ν∗1;
2.6 end for
2.7 obtain the optimal number of referrers M∗, which achieves the minimum PMD(M, ν∗1) in

set {1, 2, ...,Mmax}

2.8 referrers τ1, τ2, ..., τM∗ provide recommendations for the public node;
2.9 authorize this public node with Φi via (5.2) based on the average recommendation score

of (5.1).

the consortium blockchain-enabled IoT system and the specific application. In order to solve

this optimization problem, a distributed access control algorithm is proposed as Algorithm 4.

5.3.2 Anonymous Credential Generation

In the distributed access control, the selected M∗ referrers will issue a credential together to this

public node if it is authorized with one of Φ1, ...,ΦK−1. A credential is also shown in Figure 5.2,

which contains authorization level, validity period, credential number, referrers’ public keys,

and referrers’ signatures. The validity period is denoted as Γ, which is determined and agreed

by more than 50% authorized nodes in the system initialization phase. Any authorized nodes

can verify the credential by checking the referrers’ signatures.

To achieve privacy preservation, the anonymous credentials are issued by the referrers to

Alice for further authentication and authorization. Figure 5.3 characterizes the process of

anonymous credential generation. Firstly, Alice generates L credentials, and blinds them by

mixing a randomly blinding factor [164], so that the referrers cannot recognize its original

credentials based on the blind versions. Then, Alice sends the blinded credentials to request

signatures from its referrers. To verify the blinded credentials, the referrers challenge Alice to

show randomly assigned L − 1 credentials. After Alice opens the specific L − 1 credentials,
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Figure 5.3: Anonymous credential generation procedure.

the referrers verify them and sign the remaining ones if those L − 1 credentials are all valid.

Here, a credential is valid if I1-I3 in Figure 5.2 are all valid. Finally, after Alice receives the

new signed credentials, it removes the blinding factor from the signatures to obtain the real

credentials [164]. It can be observed from the process of anonymous credential generation that

the real identity of Alice in the consortium blockchain-enabled IoT system will not be linked

to its public key by its referrers. Furthermore, a higher L defends against the cheating attacks

of signed credentials by Alice, but leads to higher computation, communication overhead, and

time latency.

5.3.3 Accountability based on Adaptive Reputation Update and Dynamic

Multiple-Level Authorization

The reputation values of N authorized nodes at time t are denoted as R1[t],R2[t], ...,RN[t] and

are recorded in the blocks. Note that once a public node joined in the system, the set of

authorized nodes will be renewed by adding this node. To stimulate them to provide recom-

mendations for the new public nodes, the referrers’ reputation values will be increased as

Rm[t + 1] = Rm[t] + θ0, (5.12)
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where θ0 represents the reward for the recommendations.

If the authorized node n attacks the system, such as false data injection attacks [159], denial

of service attacks [160], and spoofing other authorized nodes to obtain illegal benefits, the

attacked node(s) will broadcast its behaviors to the other authorized nodes, once more than

50% authorized nodes verified them as adversarial, then the reputation value of authorized

node n will be decreased as

Rn[t + 1] = Rn[t] − ϑn[t], n ∈ {1, 2, ...,N}, (5.13)

where ϑn[t] ∈ [0, 1] represents the attack level, which is defined corresponding to the specific

IoT application. ϑn[t] = 1 indicates the case that this node attacked the IoT system with

highest level at time t, while ϑn[t] = 0 means this node was well-behaved at time t. The

average recommendation score of its referrers on this node in the distributed access control of

(5.1) is the initial reputation value of authorized node n.

More importantly, if authorized node n attacked the IoT system at time t, the reputation

values of its referrers will be decreased as

Rnm[t + 1] = Rnm[t] − θ, m = 1, 2, ...,M, (5.14)

where Rnm represents the m-th referrer of authorized node n and θ is the punishment of rec-

ommending a misbehaved node to the system. The punishment on decreasing their reputation

values is set to be higher than the reward for the recommendations θ0. It can be observed

from (5.14) that an incorrect recommendation will lead to the decrease of their own reputation

values, resulting in an accountable recommendation mechanism.

The dynamic multiple-level authorization is processed as

Φk : Rn[t] ∈ (νk, νk+1], n = 1, 2, ...,N. (5.15)

Once the reputation value of authorized node n is lower than ν1, it will be denied to access the

system.

As shown in Figure 5.2, a smart contract is used for the effective, efficient, and secure
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creation of the proposed scheme, which operates as autonomous actors, and can be trusted to

drive forward any on-chain logic that can be expressed as a function of on-chain data inputs

[165]. The corresponding functions for adding nodes should be contained in the smart contract,

while their opposite functions should also be designed for removing the nodes. To achieve

the reputation update for dynamic multiple-level authorization in the system, the adversarial

behaviors of a node will be recorded in the blocks, so that the reputation update for both

this node and its referrers can be achieved via (5.12), (5.13), and (5.14), respectively. The

reputation update function can be executed by the authorized nodes to update the reputation

value of a misbehaved node in the smart contract. More importantly, the dynamic multiple-

level authorization of (5.2) is also implemented in the smart contract, so that the authorization

levels of all authorized nodes can be adaptively updated through publishing the transactions

containing adversarial behaviors of the authorized nodes to trigger the function.

5.3.4 Analysis

In the proposed scheme, if an authorized node tries to deanonymize Alice, the anonymity set

size is N − 1, which is defined as the set of nodes that are indistinguishable from Alice with the

set including Alice itself [166]. Then the entropy of the anonymity set, denoted as Hq, which

expresses the attacker’s knowledge of the anonymity set [167], is formulated as

Hq = −

N−1∑
n=1

qn log2 qn, (5.16)

where qi represents the probability of Alice being the target of this attacker. If all authorized

nodes except the attacker have the same probabilities to be the target, Hq achieves its maximum

value, denoted as Hmax, which is given by

Hmax = log2(N − 1). (5.17)

The accountability is guaranteed in the proposed scheme, and a misbehaved authorized

node in the consortium blockchain-enabled IoT system is traceable and punished. To be spe-

cific, the adversarial behaviors of authorized nodes and all the recommendations are stored
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as the transactions in blocks. These records indicate the trustworthiness of authorized nodes,

and guarantee the accuracy of reputation values of authorized nodes, so that the multiple-level

authorization can be achieved to protect system and to control the risk level of being attacked.

More importantly, the referrers should be responsible for their recommendations based on the

proposed scheme.

5.4 Simulation Results

In this section, simulation and numerical studies are provided to evaluate the performance

of the proposed scheme. Firstly, a blockchain is built, which is controlled by 20 authorized

nodes (ANs). The size of block is set to 10. A smart contract is created containing functions

for adding and removing nodes, as well as for reputation update. The recommendations of

the selected referrers, as well as reputation values and malicious behaviors of all ANs are

recorded in the blocks as transactions. Each transaction contains time, transaction identity

(ID), blockchain ID, node ID, and public key of exponent. After a transaction is generated, it

is signed by the exponent using its private key.

Attack model in the simulation: The 9-th AN (denoted as AN9) is set to be a misbehaved

node who cheats the other ANs in the recommendation process and voting process. Moreover,

10-th AN (denoted as AN10) is set to be a misbehaved node who attacks the other ANs in the

system and causes denial of service attacks, false data injection attacks, or spoofing attacks

by imitating the other ANs to collect private information and obtain illegal benefits in the

system. Furthermore, an adversary, who is a public node, tries to join in the integration system

controlled by ANs to obtain the illegal benefits. Specifically, Type I attacks represent the

cheating attacks and wrong recommendations, while the denial of service attacks, false data

injection attacks, and spoofing attacks are denoted as Type II attacks. The punishments for

Type I and Type II attacks are set to be 0.1 and 0.2, respectively.

Figure 5.4 characterizes the trade-off between misdetection and false alarm of the proposed

recommendation mechanism with respect to different numbers of referrers, i.e., M = 2, M = 3,

and M = 4. One can be observed from Figure 5.4 that the misdetection rates of all cases

decrease with the increase of threshold of false alarm rate. More importantly, by utilizing more
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Figure 5.4: Misdetection rate vs. false alarm rate with different numbers of referrers.

referrers in the proposed recommendation mechanism, the misdetection rate of the proposed

scheme is lower with a specific threshold of false alarm rate, leading to the improvement of

trade-off between misdetection and false alarm.

Figure 5.5 characterizes the effects of referrer number, i.e., M, on the false alarm rate of the

proposed scheme with respect to different thresholds, namely for ν1 = 0.2, ν1 = 0.3, ν1 = 0.4,

and ν1 = 0.5, in the distributed access control. It can be observed from Figure 5.5 that as

the number of referrers increasing, the false alarm rates of all cases decrease significantly.

The reason is that the use of more referrers provides more recommendation information and

achieves robust authentication in the proposed scheme. Furthermore, the false alarm rate of the

proposed scheme with ν1 = 0.2 is the lowest, while that of ν1 = 0.5 is the highest. The reason

for this trend is that a higher threshold ν1 leads to higher probability of failure of Alice to join

in the consortium blockchain-enabled IoT system.

Figure 5.6 characterizes the misdetection rate versus the number of referrers, i.e., M, to

show the authentication performance of the proposed mechanism with respect to ν1 = 0.2,

ν1 = 0.3, ν1 = 0.4, and ν1 = 0.5 in the distributed access control. It can be observed that the

increase of referrer number results in the decrease of misdetection rate. The reason is that it

is more difficult for an adversary to conclude or cheat the referrers when more referrers are
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Figure 5.5: False alarm rate vs. number of referrers with respect to different thresholds in the
distributed access control.
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required in the proposed scheme. Furthermore, the higher ν1 leads to lower misdetection rate,

which demonstrates the trade-off between the false alarm rate and misdetection rate (see both

Figure 5.5 and Figure 5.6).
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Figure 5.7: Comparison results of privacy preservation between the scheme of [8] and the pro-
posed scheme in the case that the trusted third party or one of Alice’s referrers is compromised
with a probability.

Figure 5.7 characterizes the comparison results between the scheme of [8] and the pro-

posed scheme, where authentication and authorization in [8] are based on a membership ser-

vice provider (MSP) and a credential authority (CA), while that of the proposed scheme utilizes

multiple referrers. The trusted third party in the scheme of [8] and one of the Alice’s referrers

in the proposed scheme are compromised with a probability. It is observed from Figure 5.7

that as the increase of probability of trusted third party or one of Alice’s referrers being com-

promised, the entropy values (5.16) of all cases are decreasing. The reason for this trend is that

both the scheme of [8] and the proposed scheme suffer from a lower entropy of anonymity set

if the third trusted third party or one of Alice’s referrers is compromised with a higher prob-

ability. One can also observe from Figure 5.7 that the entropy value of the proposed scheme

is higher than that of [8] because the scheme in [8] is centralized and controlled by the trusted

third party, and the privacy of all authorized nodes in the system will be leaked once the trusted

third party is being compromised.
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Figure 5.8: Reputation update of the misdetected adversary with respect to different attacking
behaviors in the proposed scheme.

Assuming that the Adversary passed the initial authentication and joined the consortium

blockchain-enabled IoT system, the reputation value update results of this new authenticated

node can be obtained in Figure 5.8 with respect to different attacking behaviors in the case

K = 3. The observations represent the behaviors of the node observed by the other ANs

and recorded as transactions in the blocks. The hybrid attacks of Type I and Type II attacks

are denoted as mixed attacks. In Figure 5.8, the attacking behaviors are set to be “on-off” in

the system with a probability, e.g., 10% and 30%. The threshold ν1 of (5.2) can be obtained

from Algorithm 4 as 0.18, and another threshold is set to be ν2 = 0.5 by users. One can

observe from Figure 5.8 that the reputation values of misdetected adversary decrease faster if it

performs Type II attacks or with a higher attacking probability. The reason for this trend is that

the Type II attacks and higher attacking probability cause more damages to the system, thus

the punishment will be higher in decreasing the reputation value of this node. According to the

multiple-level authorization of (5.2), when the reputation value of this misdetected adversary is

lower than 0.5, it will be authorized by Φ1 with less services/resources to reduce the damages

caused by this node as well as to protect the other ANs. Moreover, it will be denied to access

the system if its reputation value is lower than 0.18.

The reputation values of the misdetected Adversary and its referrers in the system are given
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Figure 5.9: Reputation update of the misdetected adversary and its referrers in the proposed
scheme.

in Figure 5.9. The observations represent the behaviors of the node and its referrers observed

by the other ANs and recorded as transactions in the blockchain. AN9, and AN10 are chosen

as the referrers of the misdetected Adversary in the case M = 2. In this figure, the misdetected

Adversary performs Type II attacks with 30% attacking probability. It can be observed from

Figure 5.9 that the reputation values of the misdetected Adversary, AN9, and AN10 are de-

creasing with the increase of observations. Moreover, the reputation value of AN10 is lower

than that of AN9, since it also attacks the system during the distributed access control. In a

nutshell, Figure 5.9 characterizes the proposed scheme with the accountable security service

based on the developed reputation update strategy.

5.5 Chapter Summary

A distributed access control scheme is proposed for the consortium blockchain-enabled IoT

system in this chapter. The developed recommendation mechanism utilizes multiple referrers,

who are the authorized nodes in the integration system, to authenticate public nodes in a dis-

tributed way. To protect the private information, an anonymous credential update strategy is

developed, so that the real identity of each authorized node can be concealed. Then a reputation
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update strategy was proposed for the referrers to take responsibility for their recommendations

and for achieving multiple-level authorization. The simulation and numerical results demon-

strated that by increasing the number of referrers, the trade-off between the misdetection rate

and false alarm rate of the proposed scheme is increased. Furthermore, the accountability can

be achieved based on the proposed scheme.

In next chapter, the communication performance and security enhancement will be compre-

hensively considered for securing resource-constrained communications. A lightweight contin-

uous authentication scheme will be proposed to identify devices via their pre-arranged pseudo-

random access sequences. A device will be authenticated as legitimate if its access sequences

are matched with the pre-agreed unique order between the transceiver pair, without incurring

long latency and high overhead.



Chapter 6

Lightweight Continuous Authentication

via Intelligent Access

Conventional authentication techniques based on cryptography and computational hardness

are facing growing challenges for deployment in resource-constrained Internet-of-Things (IoT)

devices. To meet the stringent and diverse security requirements of IoT applications, the dra-

matically increased security overhead and latency from the inherent computational processing

make these conventional static security techniques undesirable for emerging machine commu-

nications. In this chapter, a novel lightweight continuous authentication scheme is proposed for

identifying multiple resource-constrained IoT devices via their pre-arranged pseudo-random

access time sequences. A transmitter will be authenticated as legitimate only if its access time

sequential order is matched with a pre-agreed unique pseudo-random binary sequence (PRBS)

between itself and the base station. The seed for generating the PRBS between each transceiver

pair is acquired by exploiting the channel reciprocity and applying the support vector machine

(SVM) algorithm, which is time-varying and difficult for a third party to predict. Hence, the

proposed scheme provides seamless protection for legitimate communications by refreshing

the seeds adaptively without incurring long latency, complex computation, and high communi-

cation overhead. Simulation results show that the proposed scheme achieves high entropy and

seed bit randomness, and low bit mismatch rate, as well as is robust in the noisy environment.

Finally, the superiority of the proposed scheme over the existing schemes is demonstrated in

quantization performance, authentication performance, and computation cost.

133
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6.1 Introduction

The fifth generation (5G)-and-beyond networks connect billions of things that include sensors,

actuators, services, and other Internet-connected objects, enabling the future smart life and

connected industries by Internet-of-Things (IoT) applications, as exemplified by smart cities,

intelligent transportation, smart building, just to name a few [4, 168]. However, resource-

constrained IoT devices in 5G-and-beyond networks are extremely vulnerable to spoofing at-

tacks, leading to unauthorized access to network resources/services and privacy leakage. The

root causes for security weaknesses in wireless IoT communications mainly include the open

broadcast nature of radio signal propagation, intermittent machine communications, heteroge-

neous complex network architecture, as well as the abundance of miniaturized and resource-

constrained IoT devices used [2, 95]. More importantly, wireless sensors are widely used in

5G-and-beyond networks for monitoring and recording the physical conditions of the environ-

ment, while being equipped with limited computation, storage, and power resources. Hence,

lightweight authentication is extremely critical for guarding against the spoofing attacks in

5G-and-beyond networks.

Although the conventional cryptographic techniques [169, 170] have been widely stud-

ied, their excessive latency and computation overhead are extremely undesirable for resource-

constrained IoT devices. For example, the group key agreement protocols require thousands

of interactions to exchange keys for establishing group keys among 5-client groups [26]. The

authors of [27] developed a lightweight mutual authentication protocol based on the public

key encryption for smart city applications, which strikes a balance between the efficiency and

communication cost without sacrificing the security. A scalable framework for lightweight

authentication and hierarchical routing in data networking IoT is proposed in [28]. However,

these schemes also require many rounds for the key generation, refresh, and delivery, result-

ing in long time latency and high communication overhead. The authors of [29] proposed a

two-factor lightweight privacy-preserving authentication scheme to enhance the security of ve-

hicular ad-hoc network communications relying on the decentralized certificate authority and

the biological passwords, which is also unsuitable for the authentication between multiple IoT

devices and the base station. Furthermore, the key transmission process in the security man-



6.1. Introduction 135

agement procedures of the cryptographic techniques could lead to potential key leakage [14].

Physical layer authentication techniques of [37, 171, 172] may provide lightweight au-

thentication by exploiting the inherent physical attributes and channel reciprocity of wireless

communication links. Compared with the conventional cryptographic based authentication

techniques, security overhead and reduced energy consumption in IoT devices can be achieved

with physical layer authentication by eliminating the explicit key exchange and its related com-

putation process. The authors of [173] proposed a lightweight mutual authentication protocol

based on physical unclonable functions, which may be regarded as unique physical features

of a device. Unfortunately, the physical features of a device suffer from imperfect and time-

varying estimates, causing their estimates to differ between the transmitter and receiver. Hence,

the physical layer key generation techniques of [174, 175, 176, 177, 178, 179] require a key

agreement process to guarantee the key correctness between transceiver, but the information of

the generated keys may be intercepted during this process. Moreover, the physical layer key

generation techniques suffer from very low key generation rates.

Most of the existing authentication schemes are static in time, e.g., [37, 171, 172], thus

resulting in abundant loopholes for the adversaries owing to the time-varying wireless envi-

ronment and heterogeneous complex architecture of 5G-and-beyond networks. Furthermore,

the authentication after initial identification cannot be achieved using these one-time schemes.

To overcome these challenges, a continuous physical layer authentication scheme is proposed

in [2] based on the kernel machine learning approach as an intelligent process by utilizing

multiple communication link-related and device-related attributes. Its performance still suffers

from the imperfect estimates and variations of physical layer attributes, leading to inevitable

misdetections and false alarms in the continuous authentication process.

Hence, a new lightweight continuous authentication scheme is proposed by identifying the

pre-arranged pseudo-random access time sequence of each transmitter (i.e., IoT device), which

provides high uncertainties for the adversaries as well as seamless protections for legitimate

communications. To be more specific, a pseudo-random binary sequence (PRBS) is pre-agreed

between a pair of IoT device and base station for authentication, which is difficult for the

adversaries to predict and does not require additional hardware for implementation. The access

time sequence of an IoT device, which is different from this pre-agreed PRBS, will be identified
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to be coming from a spoofer by the base station. Different from the time-division multiplexing

(TDM) methods [180], the time domain is divided into recurrent time slots of fixed length and

arrange them intelligently for authentication purposes.

In order to achieve lightweight continuous authentication, the channel reciprocity [14] is

explored to acquire the seeds for generating PRBSs, where a transceiver pair can observe the

same channel simultaneously. To be more specific, the physical layer features are utilized for

generating dynamic seeds, which benefit from their time-varying characteristic and are diffi-

cult for the adversaries to predict. In contrast to the physical layer key generation techniques

of [174, 175, 176, 177, 178, 179], the seed acquisition technique does not require a high seed

generation rate, since the seeds are used for generating PRBSs rather than for practical appli-

cations directly, as exemplified by encryption and decryption. Moreover, only three phases

are required for seed acquisition, namely for channel probing, quantization and verification,

where the quantization phase is the main phase of the developed seed acquisition technique for

transferring the extracted channel measurements into bits.

Although the received signal strength (RSS)-based quantization method [175] is easy to

implement, its entropy is low and does not work well for wireless communication systems

that consist of static nodes. Moreover, the frequency phase-based quantization method [179]

applies multiple thresholds to quantize each estimated frequency-phase, but wrong decisions

can be made if the estimated frequency phases are close to the region boundaries, leading to

a high mismatch rate of quantization between the transceiver pair. Hence, the fundamental

principle of machine learning-based anomaly detection techniques [181, 182] is studied in

this chapter to improve the quantization performance. Different from the anomaly detection

techniques, which focus on maximizing the detection accuracy, the objective of quantization

in this chapter is to divide the channel measurements into bits by designing a region boundary

intelligently to achieve high entropy and seed bit randomness as well as low bit mismatch rate

on transceiver sides, so that a high quantization accuracy and uncertainty can be achieved.

In this chapter, a lightweight continuous authentication scheme is proposed by identify-

ing the pre-arranged access time sequence of each IoT device corresponding to the PRBS

pre-generated by an identical unique seed on both transceiver sides. To obtain the seed, a

new support vector machine (SVM)-based seed acquisition technique is developed by utilizing
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physical layer features for generating specific PRBSs between the base station and multiple IoT

devices, which consists of three phases, namely channel probing, quantization, and verification.

The SVM is applied to derive an optimal nonlinear boundary for quantizing the measurements

of physical layer attributes used into bits to improve entropy and seed bit randomness while

decreasing the bit mismatch rate of the obtained seed. The seeds for PRBS generation are

updated dynamically by estimating the time-varying physical layer features, thus resulting in

natural adaptive protections for the legitimate communication parties and high uncertainty for

the adversaries.

Specifically, the contributions of this chapter are summarized as follows:

• A novel authentication scheme is proposed to identify the access time sequence of each

IoT device corresponding to its pre-agreed unpredictable PRBS. This scheme is lightweight

and provides continuous authentication between a base station and multiple IoT devices.

Explicitly, this scheme provides a new device authentication method, which is radical-

ly different from the existing authentication schemes via the identification of keys or

communication-related features;

• A seed acquisition technique is developed by utilizing physical layer features to obtain

identical seeds for PRBS generation and update between a base station and IoT device

pair without exchanging the obtained seed, so that the PRBS leakage could be avoided.

To transform the measurements of the physical layer features into seeds, the SVM is

explored to derive an optimal nonlinear boundary to improve the quantization accuracy;

• Simulation results are presented to demonstrate the superior performance of the proposed

scheme in quantization performance, time complexity, authentication performance, and

computation cost, compared with some exiting schemes. Furthermore, the results show

that the proposed scheme is robust in the noisy communication environment and false

alarm events can be avoided.

The rest of this chapter is organized as follows. In Section 6.2, the system model used in

this chapter is presented. The lightweight continuous authentication scheme is proposed based

on the intelligently arranged pseudo-random access in Section 6.3. The performance analysis
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is also presented in Section 6.3. Simulation results are given in Section 6.4. Finally, Section

6.5 concludes this chapter.

Table 6.1: Notations of Chapter 6
Notations Definitions
N Number of physical layer attributes used.
HB Attribute estimates at the base station.
L Number of IoT devices.
Hl Attribute estimates at the l-th IoT device.
BII Bit mismatch rate of quantization phase.
γ0 Ratio of 0 bits in the obtained seed.
c Center of quantization boundary.
R Radius of quantization boundary.
J Number of samples for training at the base station.

Notations: In this chapter, scalars are denoted by italic letters, while vectors are respectively

denoted by bold-face letters. Table 6.1 shows the notations of this chapter.

6.2 System Model and Dynamically Arranged Pseudo-Random

Access

IoT devices

Base station

Spoofers

Spoofing 

attacks

Legitimate 

communications

Figure 6.1: System model in the 5G-and-beyond network. The communications between mul-
tiple IoT devices and a base station suffer from the spoofing attacks caused by the adversaries.

As shown in Figure 6.1, wireless communications between legitimate IoT devices and a

base station suffer from spoofing attacks. The spoofers aim at imitating the legitimate IoT
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devices, then try to access the system for gleaning illegal advantages or injecting false data

to the cloud/Internet, leading to unauthorized access, privacy leakage, wrong decisions, and

so on. The base station needs to unambiguously and continuously identify the spoofers from

the legitimate devices. It is assumed that the spoofers are located more than a wavelength

away from the legitimate IoT devices, and that the clocks of IoT devices and base station

are synchronized. More importantly, owing to the characteristics of IoT devices, namely the

limited computation, storage, and power resources, the concept of lightweight authentication

is extremely critical in the 5G-and-beyond networks.

Time slot

Devices
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Transmission time slot
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1001001001
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Figure 6.2: The developed authentication method between IoT devices 1-4 (transmitters) and
a base station (receiver) through the identification of the pre-arranged pseudo-random access
time sequences of IoT devices according to the pre-agreed PRBSs.

Figure 6.2 characterizes the novel authentication scheme based on the arranged pseudo-

random access in the time-domain, which aims at supporting the authentication between a base

station and multiple IoT devices, e.g., devices 1-4. To be more specific, the time domain is

divided into recurrent time slots of fixed length. Each IoT device sends its messages to the

base station in the time slots corresponding to its identical pseudo-random binary sequence

(PRBS) pre-agreed between this IoT device and the base station, thus an incorrect access in the

time-domain will be detected from a spoofer. The PRBSs are very difficult for the adversaries

to predict, if their seeds are concealed from the spoofers. More importantly, a seed can be used

to generate a number of PRBS bits, thus providing a lengthy secure identification of each IoT



140 Chapter 6. Lightweight Continuous Authentication via Intelligent Access

device at the base station. In contrast to the conventional key-based cryptographic and physical

layer security techniques, authentication via pseudo-random access does not require compli-

cated computation, extra hardware, and excessive latencies. Hence, a lightweight continuous

authentication between a base station and multiple IoT devices can be achieved.

To achieve the lightweight continuous authentication, the seeds for generating PRBSs are

required to satisfy the following policies: 1) a transceiver pair should obtain the same seed,

so that an identical PRBS could be generated for authentication at the base station; 2) seeds

should be concealed from any other devices, thus the generated PRBSs will be difficult for the

spoofers to predict; and 3) seeds should be refreshed dynamically to achieve a continuous au-

thentication having high uncertainty for the spoofers. To meet these requirements, the physical

layer features are utilized to develop a new seed acquisition technique for PRBS generation,

e.g., channel state information (CSI) [4], carrier frequency offset (CFO) [37], and received sig-

nal strength indicator (RSSI) [39], just to name a few. The main reason is that the physical

layer features provide a high degree of uncertainty for adversaries as well as strong correlated

information between a transceiver pair. In other words, it is very difficult for spoofers to predict

the physical layer features of a transceiver if they are at different locations, while each pair of

transceiver can obtain the same channel estimates at the same time because of the channel reci-

procity property [174, 175, 176, 177, 178, 179]. More importantly, the time-varying features

of communication links provide a natural refresh method for renewing seeds.

However, perfect channel reciprocity is generally impractical mainly due to the mobility of

devices, the different responses of the radio frequency front ends and the non-symmetric inter-

ference characteristics observed at the two devices of a communication link, the quantization

and measurement errors, as well as the time lag between the bidirectional channel measure-

ments [174, 175]. This imperfect channel reciprocity directly influences the accuracy of seed

acquisition, thus leading to a possible disagreement of the generated PRBSs on both sides. The

channel estimates at the base station and IoT devices are denoted, respectively, as

HB[t1] = (HB1[t1],HB2[t1], ...,HBN[t1])T, (6.1)

and
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Hl[t2] = (Hl1[t2],Hl2[t2], ...,HlN[t2])T, l = 1, 2, ..., L, (6.2)

where N is the number of physical layer features used, L denotes the number of IoT devices,

and T represents the transposition of a vector. t1 and t2 are estimation time instants at the base

station and IoT device, respectively, which represent the time lag of channel estimation on

different sides.

The objective is to obtain an identical unique seed between the base station and each IoT

device based on HB[t1] and Hl[t2], which satisfies the policies listed above, and will directly

affect the performance of the proposed scheme. To facilitate the discussion of the developed

seed acquisition technique, some important evaluation metrics are presented next to assess the

performance of the proposed scheme.

Entropy: which refers to the uncertainty associated with a random variable [175], and is used

to evaluate the security strength of the proposed scheme. It is defined as

E =

K∑
k=1

Ek, (6.3)

where

Ek = −pk0 log pk0 − (1 − pk0) log(1 − pk0), (6.4)

K is the binary bit number of the acquired seed and pk0 denotes the posterior probability of its

k-th bit when the bit is 0 from the spoofers’ knowledge.

Bit mismatch rate: which represents the difference between the seeds obtained by the base

station and each IoT device relying on physical layer attribute estimation [175], and is defined

as

B =
|S B − S l|

K
, (6.5)

where S B and S l represent the seeds obtained at the base station and IoT device l, respectively.
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Seed bit randomness: which is used to evaluate the security performance of the seed acquisition

technique, since a less random seed will result in a smaller search space by brute force attacks

thus compromising the security [174].

This chapter focuses on developing a new seed acquisition technique to increase the entropy

and seed bit randomness, as well as to decrease the bit mismatch rate to achieve the lightweight

continuous authentication via pseudo-random access in the time-domain (see Figure 6.2).

6.3 Intelligently Arranged Access for Lightweight Continu-

ous Authentication

PRBS 

generation

Wireless channel

PRBS 

generation

        011100101 
Seed acquisition

  011100101 
Seed acquisition

Base stationIoT device

Message generation Authentication

Figure 6.3: Framework of the proposed lightweight continuous authentication scheme through
identifying the pre-arranged pseudo-random access time sequences of IoT devices.

As shown in Figure 6.3, the proposed scheme contains three components at both the base

station and IoT device sides. IoT device l should probe the channel between itself and the

base station to obtain a channel estimate, namely for Hl[t2], which is used for acquiring a seed.

Then, IoT device l sends its messages in the time sequence corresponding to the PRBS gen-

erated by this seed. The base station should also obtain the same seed relying on the channel

estimate, i.e., HB[t1], for generating an identical PRBS to authenticate IoT device l. In this sec-

tion, a new seed acquisition technique based on the support vector machine (SVM) algorithm

is firstly proposed to obtain identical seeds between the base station and IoT device l by uti-

lizing multiple features of the communication links. Note that the machine learning algorithm

is implemented at the base station, which is used to derive an optimal non-linear boundary

to quantize the channel measurements into bits (i.e., seeds). Then, the PRBS generation and

update schemes as well as the performance analysis are presented.
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6.3.1 Seed Acquisition Technique
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Figure 6.4: Process of the developed new seed acquisition technique for PRBS generation
containing three phases: Channel probing, Quantization, and Verification.

The developed seed acquisition technique at the base station and each IoT device operates

in three phases shown as Figure 6.4 as follows:

Phase I. Channel probing: This is used to collect channel measurements by the base station

and IoT devices [183, 184]. In this phase, the base station and IoT device l exchange channel

probing signals with each other. Then, highly correlated measurements of the physical lay-

er attributes used are collected by the base station and IoT device l because of the channel

reciprocity property, namely for HB[t1] and Hl[t2], respectively.

In the channel probing process, a higher probing rate enjoys a high seed generation rate but

compromises the randomness of the generated seed sequence because of correlation between

the sampled data, while a lower probing rate results in a lower seed generation rate [179]. D-

ifferent from the physical layer key generation techniques [174, 175, 179], the developed seed

acquisition technique does not require a high seed generation rate. The reason is that the seeds

are used for generating PRBSs rather than for applications directly, such as encryption and

decryption.
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Phase II. Quantization: This phase is used to quantize the extracted channel measurements

into bits [175, 179]. It is the main phase of the developed seed acquisition technique, since it

provides the initial binary sequences for seed acquisition and significantly affects the authen-

tication performance. Note that wrong decisions can be made in the quantization phase if the

channel measurements are close to the region boundaries. The imperfect channel reciprocity

and the noise are the main factors that impact the quantization accuracy [179]. More impor-

tantly, the measurements of physical layer attributes are usually not uniformly distributed. For

example, according to [37], the estimated CFO can be well approximated by a Gaussian ran-

dom variable. Hence, most of the measurements of physical layer attributes used could be

intensively distributed. In this case, the quantization accuracy will be low if the region bound-

ary crosses those intensive measurements.

Measurements of physical layer attribute 1

M
ea

su
re

m
en

ts
 o

f 
p

h
y
si

ca
l 

la
y

er
 a

tt
ri

b
u

te
 2 Boundaries

Figure 6.5: The schematic diagram of the developed SVM-based quantization method with
multiple boundaries. The red dots are the measurements of physical layer attributes used.

The extracted channel measurements are quantized into bits by designing an optimal region

boundary based on the support vector machine (SVM) algorithm [185, 186, 187, 188]. A two-

dimensional example of the developed quantization method with different boundaries is shown

in Figure 6.5, where only two physical layer attributes are used in this example. As it is

shown in Figure 6.5, those sparsely distributed data are partitioned by each boundary from the

intensively distributed data, thereby the quantization accuracy will be increased because there

are fewer data close to the boundary. Those intensive data in the boundary are quantized to

1, and the others are quantized to 0. It can also be observed from Figure 6.5 that a larger
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boundary will lead to a smaller number of 0 bits in the generated seed, leading to low entropy,

although achieving a better quantization accuracy. On the other hand, a smaller boundary will

result in a higher bit mismatch rate of the seed, since there are more data close to the boundary.

Hence, there is a trade-off between the quantization performance and security performance in

this phase, and the boundary, which is a super-circle, should be well-designed to achieve a

better trade-off.

The objective of quantization is to minimize the bit mismatch rate while guaranteeing the

minimum number of 0 bits required by deciding the radius and center of the boundary. Hence,

the quantization optimization problem in the proposed scheme can be formulated as

(R, c) = arg min BII, (6.6)

s.t. γ0 ≥ θ,

where BII represents the bit mismatch rate between the base station and IoT device l in phase

II, while R and c = (c1, c2, ..., cN)T denote the radius and center of the boundary, respectively.

The parameter γ0 is the ratio of 0 bits in the obtained seed, which is formulated as

γ0 =
K0

K
, (6.7)

where K0 represents the number of 0 bits, and θ in (6.6) is the threshold of the ratio of 0 bits in

the obtained seed.

In order to solve the optimization problem of (6.6), the SVM technique is applied to de-

termine the radius and center of the optimal boundary. Assuming that J samples of the u-

tilized physical layer features of IoT device l are used for training at the base station, i.e.,

Hl j, j = 1, 2, ..., J, the optimization problem of (6.6) is turned into the classification problem

min
(R,c,ξ)
{R2 + C

J∑
j=1

ξ j} (6.8)

s.t. ‖ Hl j − c ‖2≤ R2 + ξ j, ξ j ≥ 0, j = 1, 2, ..., J,

where ξ j, j = 1, 2, ..., J, are known as slack variables [189] and commonly used in optimization
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to define relaxed versions of some constraints, ξ = (ξ1, ξ2, ..., ξJ)T. In this optimization problem,

a slack variable ξ j measures the distance by which vector Hl j violates the desired inequality,

i.e., ‖ Hl j − c ‖2≥ R2. Parameter C determines the trade-off between margin-maximization

and the minimization of the slack penalty
∑J

j=1 ξ j. Note that C can be determined to satisfy

γ0 ≥ θ in (6.6) according to specific training data obtained, i.e., Hl j, j = 1, 2, ..., J. In other

words, if the slack penalty C is set to be smaller, the slack variables ξ j will be higher, then more

channel measurements will be quantized to be 0s in the developed seed acquisition technique.

However, the amount of physical layer feature estimates of legitimate IoT devices available is

usually limited to set aside a validation sample since that would leave an insufficient amount of

training data in practice. Therefore, the cross-validation method [189] is applied to exploit the

labeled data for determining C in the implementation of the proposed scheme, which satisfies

ϑ0 ≤ C ≤ ϑ. (6.9)

ϑ0 and ϑ are two parameters designed to satisfy the condition γ0 ≥ θ in (6.6), since a smaller

C results in higher γ0 while ϑ0 represents the minimum C that leads to γ0 = 0.5.

The optimization problem of (6.8) is a convex optimization problem, since the constraints

are affine and convex, and the objective function is convex. Hence, the Lagrangian function is

derived with Lagrange variables α = (α1, α2, ..., αJ)T and β = (β1, β2, ..., βJ)T as

L(R, c, ξ,α,β) = R2 + C
J∑

j=1

ξ j −

J∑
j=1

β jξ j −

J∑
j=1

α j(R2 + ξ j− ‖ Hl j − c ‖2). (6.10)

Defining the Lagrange dual function F as the minimum value of the Lagrangian function over

(R, c, ξ), it has

F (α,β) = inf
(R,c,ξ)

L(R, c, ξ,α,β) = inf
(R,c,ξ)
{R2 + C

J∑
j=1

ξ j

−

J∑
j=1

α j(R2 + ξ j− ‖ Hl j − c ‖2) −
J∑

j=1

β jξ j}. (6.11)

Since the dual function is the pointwise infimum of a family of affine functions of (α,β), it is
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also concave. Then, the Lagrange dual problem associated with the problem of (6.8) is given

as

max
(α,β)
F (α,β) = max

(α,β)
inf

(R,c,ξ)
L(R, c, ξ,α,β). (6.12)

According to the Karush-Kuhn-Tucker (KKT)’s theorem of [189], the KKT conditions ap-

ply at the optimum and can be obtained by setting the gradient of the Lagrangian function of

(6.10) with respect to the primal variables R, c, and ξ j to zero. Hence, the flowing equations

can be obtained

J∑
j=1

α j = 1,
J∑

j=1

α jHl j = c, α j + β j = C,

α j = 0 ∨ R2 + ξ j =‖ Hl j − c ‖2, β j = 0 ∨ ξ j = 0. (6.13)

Then, the Lagrange dual problem of (6.12) can be rewrote as

max
α

J∑
j=1

α j ‖ Hl j − c ‖2= max
α
{

J∑
j=1

α jHT
l jHl j −

J∑
i, j=1

αiα jHT
li Hl j}, (6.14)

s.t. 0 ≤ α j ≤ C, j = 1, 2, ..., J,

where C satisfies (6.9). This is a quadratic programming problem, which can be solved by

some well-studied algorithms, as exemplified by the interior point, active set, augmented La-

grangian, conjugate gradient, gradient projection, extensions of the simplex algorithm [190].

Theorem 6.1: In the quantization phase, the optimal boundary for dividing the estimates of

attributes used in the proposed scheme is a hypersphere with center and radius given, respec-

tively, by

c∗ =

J∑
j=1

α∗j Hl j, (6.15)

and

R∗2 =‖ Ĥli − c∗ ‖2 (6.16)
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where α∗ = (α∗1, α
∗
2, ..., α

∗
J)T is the solution of the quadratic programming problem of (6.14).

Ĥli is the support vector, whose Lagrange variable satisfies 0 < α∗i < C.

Proof: According to the KKT conditions of (6.13), the center of the optimal boundary can

be obtained directly as (6.15) by deriving the solution of the quadratic programming problem

of (6.14). Moreover, some results of the developed SVM-based quantization method can be

obtained as follows

ξi = 0 & ‖ Hli + c ‖2≤ R2, if αi = 0

ξi = 0 & ‖ Hli + c ‖2= R2, if 0 < αi < C

ξi ≥ 0 & ‖ Hli + c ‖2≥ R2, if αi = C

ξi = 0 & αi = 0, if ‖ Hli + c ‖2< R2

ξi > 0 & αi = C, if ‖ Hli + c ‖2> R2

. (6.17)

Hence, if 0 < α∗i < C, ‖ Hli + c∗ ‖2= R2 satisfies. To obtain the radius of the optimal boundary,

the support vector Ĥli is utilized. Then, the radius of the optimal boundary in the developed

SVM-based quantization method is formulated as (6.16). �

Remark 6.1: The designed boundaries in the existing quantization methods, e.g., the RSS-

based quantization method [175] and frequency phase-based quantization method [179], are

static in time. Moreover, only one-dimensionality is considered in these quantization methods,

i.e., RSS and frequency phase. These all lead to low quantization performance of the proposed

scheme relying on multiple attributes in the time-varying environment. This is mainly because

these quantization methods lack analysis of the physical layer attributes used and adaptation in

the noisy dynamic environment. The developed SVM-based quantization method is intelligent

in designing the optimal boundaries based on the measurements of physical layer attributes,

which circumvents the intensively distributed data, thus resulting in high quantization accuracy

and seed randomness.

As shown in Figure 6.4, after obtaining the optimal radius and center of the boundary, the

base station sends the trained super-circle to the IoT device l, so that highly similar binary se-

quences will be acquired on both the base station and IoT device sides. Note that the spoofers

cannot predict the seed generated by the base station and IoT device l, even though they in-
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tercept and compromise the boundary information. It is because they do not observe the same

channel between the base station and IoT device l if they are at different locations. More impor-

tantly, the super-circle can be trained in the beginning of network establishment, and updated

frequently at the base station. Hence, the developed seed acquisition technique is lightweight

at the IoT devices, as well as achieves high entropy and seed bit randomness while minimizing

the bit mismatch rate of binary sequences S B and S l.

Phase III. Verification: In order to make sure that the seeds generated at both the base station

and IoT device l sides are identical, the verification is designed in the last phase of the seed

acquisition technique. The block diagram of verification is given in Figure 6.4 (on the right

side). Firstly, both the base station and IoT device l use the same hash function to generate hash

values for binary sequences S B and S l obtained in Phase II, and exchange their hash values to

verify the agreement of the binary sequences S B and S l. An agreement is reached if their hash

values are identical. Otherwise, they divide each binary sequence into two binary sequences

with the same length, and verify both of them until an identical binary sequence appears. This

identical binary sequence is specified as the final seed of the base station and IoT device l for

generating PRBS.

Remark 6.2: It can be observed from the verification process that the seed exchange is not

required, so that authentication information (i.e., PRBS) leakage could be avoided. This is

mainly because the SVM is applied to achieve high quantization accuracy for acquiring the

highly similar binary sequences S B and S l. More importantly, the identical seed is acquired

between the base station and each IoT device although the physical layer features suffer from

the imperfect estimation and variations in the complex time-varying environment. In other

words, the proposed scheme is robust in the noisy wireless communication environment.

6.3.2 PRBS Generation and Update

After obtaining a seed between the base station and IoT device l, the PRBS can be generated

using the linear feedback shift registers [191]. A PRBS sequence is generated by a monic

polynomial of degree µ with typical values of µ equal to 7, 9, 11, 15, 20, 23, and 31. 2µ − 1 is

the maximum number of bits. Note that the PRBS generator design has been well-studied, and
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is not a main focus in this chapter.

One can be observed from the process of seed acquisition in Figure 6.4 that the key physical

layer feature is the time-varying nature of the channel, so that the seeds for PRBS generation

between the base station and each IoT device can be renewed naturally by repeating the devel-

oped seed acquisition process. Due to the unique property of physical layer features used for

seed acquisition, the pseudo-random access designed for authentication, and the PRBS update,

it is extremely difficult for spoofers to imitate the legitimate IoT devices. Moreover, the time

period can be decided for renewing the seed between the base station and each IoT device

based on the sequence generating monic polynomial used.

Remark 6.3: Collisions may occur when multiple IoT devices transmit the packets to the base

station at the same time, since their PRBSs are pre-generated by seeds utilizing the channel

estimation. This provides high uncertainty for spoofers but makes it difficult to control the

collisions as well. The orthogonal frequency-division multiplexing (OFDM) scheme can be

applied to reduce the collisions, but resulting in the waste of spectrum resources in the 5G-

and-beyond network. In order to overcome this difficulty, the code-domain or power-domain

non-orthogonal multiple access (NOMA) can be applied to reduce the collisions as well as to

improve the quality of services (QoS). The principle is that the multiple domains (i.e., time

domain, frequency domain, power domain, and code domain) can be well designed to coordi-

nate the accesses of IoT devices, so that both high communication performance and efficient

security management can be achieved.

Remark 6.4: The proposed authentication scheme is suitable for those IoT applications that de-

vices are not distributed with a high density or different authentication schemes are co-existing

for smart services.

6.3.3 Performance Analysis

As shown in Figure 6.4, the quantization phase significantly affects the performance of seed

acquisition, i.e., entropy, bit mismatch rate, and seed bit randomness. Performance analysis of

the proposed scheme on these evaluation metrics is presented as follows:

Entropy
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Due to the physical layer features used in the proposed scheme for obtaining the seed be-

tween the base station and each IoT device, it is extremely difficult for the spoofers, who are

in different locations, to observe and predict the same channel measurements. Furthermore,

the proposed SVM-based quantization method provides further entropy improvement. To be

specific, on the one hand, the channel measurements are quantized to bits, instead of using

them directly. On the other hand, the binary sequences obtained in the quantization phase will

be further processed in the verification phase without releasing any seed information between

the base station and each IoT device in the developed seed acquisition technique. Hence, the

unique property of physical layer features, SVM-based quantization, and verification of the

proposed scheme provide multi-dimensional and multi-layered protections for the legitimate

communications between the base station and IoT devices, resulting in high entropy.

Bit mismatch rate & Seed bit randomness

Theorem 1 provides the optimal solution for the optimization problem of (6.6), which mini-

mizes the bit mismatch rate under the constraint γ0 ≥ θ. Since a higher γ0 will result in higher

randomness of seed bits, the optimization problem of (6.6) describes a trade-off between the bit

mismatch rate and seed bit randomness. In the proposed scheme, given the requirement of seed

bit randomness θ, the lowest bit mismatch rate in Phase II of the developed seed acquisition

technique can be obtained.

Lightweight authentication

The proposed scheme authenticates the IoT devices through their pseudo-random access in the

time-domain. Compared with the conventional key-based cryptographic techniques [169, 170],

the proposed scheme does not require a number of rounds for the system setup, key genera-

tion, distribution, refreshment, and revocation. Different from the physical layer security tech-

niques [37, 171, 172], the proposed scheme provides robust continuous authentication even

in noisy complex communication without continuous parameter updating. Note that the de-

veloped SVM-based quantization method can be implemented at the base station before the

authentication. Hence, the proposed scheme is a lightweight solution and provides continu-

ous protections for the communications between the base station and each IoT device in the

5G-and-beyond network.
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6.4 Simulation Results

In this section, the simulation of the proposed lightweight continuous authentication scheme

is firstly presented to show its feasibility. To be specific, the optimal quantization boundary

(R∗2, c∗) given in Theorem 1 is derived relying on the estimates of given physical layer at-

tributes, namely carrier frequency offset (CFO), channel impulse response (CIR), and received

signal strength indicator (RSSI). After the verification phase, the seeds of multiple pairs of

transceivers are acquired. The continuous authentication between each pair of transceiver is

achieved based on the identical PRBS generated by their unique seed. Then, the comparison

results between the proposed scheme and state-of-the-art schemes are given to demonstrate the

superior performance of the proposed solution in quantization performance, authentication per-

formance, and computation cost. Specifically, it is compared with the RSS-based quantization

scheme of [175], physical layer key generation schemes of [174, 175, 176, 177, 178], static au-

thentication scheme, continuous kernel machine learning-based physical layer authentication

scheme of [2], and physical layer authentication scheme of [39].

6.4.1 Implementation of The Proposed Scheme

Table 6.2: Simulation parameters of Chapter 6
Parameters Value
Range 1 km × 1 km
Center frequency fc 5 GHz
Sampling rate 20 MHz
Antenna number of IoT devices 4
Antenna number of the base station 8
Time lag between the bidirectional channel measurements 10 ms

The proposed lightweight continuous authentication scheme is simulated by utilizing mul-

tiple physical layer attributes, i.e., CFO [37], CIR [2], and RSSI [39], in an urban scenario. The

simulation parameters for the implementation are shown in Table 6.2 and the system topology

of the simulation is shown in Figure 6.6. Specifically, 10 IoT devices are distributed in the

range of 1 km × 1 km, and the multipath channel model used in the simulation is formulated
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Figure 6.6: Simulation scenario of the proposed scheme.
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Figure 6.7: Observations of physical layer attributes used at base station and Device 1.
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as

hIR(τ; t) =

I∑
i=1

Ai(t)δ(τ − i∆τ), (6.18)

where I is the number of multipath propagation paths, i∆τ and Ai represent the delay and

complex amplitude of the i-th multipath component, respectively. According to [118], the path

loss model is given as

PL = 22.7 log10(d[m]) + 41 + 20 log10(
fc[GHz]

5
), (6.19)

where d[m] is the distance between each pair of transceiver in meters.

Device Binary sequence

Base station 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0
0 1 0 1 1 1 1   1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1

IoT device 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0
0 1 0 1 1 1 1   1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1

Seed acquired 0 0 1 0 1 1 1 1   1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1

Figure 6.8: Initial binary sequences obtained (100 bits) at the base station and Device 1 in
Phase II of the developed seed acquisition technique, as well as the unique seed acquired (50
bits) in the proposed scheme.

The observations at the base station and Device 1 are given in Figure 6.7. The initial 100

observations of these attributes are used to derive the optimal boundary given in Theorem 1,

namely for (R∗2, c∗), where the estimates of three-dimensional training samples are divided into

two sets, i.e., inside the sphere and outside the sphere. To be specific, those estimates inside

the sphere are set to 1, while the remaining estimates are set to 0. Then, the initial binary

sequences in Phase II of the developed seed acquisition technique (please see Figure 6.4) can

be obtained. The initial binary sequences of the base station and first IoT device are shown in

Figure 6.8. In the quantization Phase, 63 bits of ‘1’ are obtained at the base station, while 62

bits are generated at the IoT device because of the imperfect estimates and different estimation
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times at the base station and IoT device. Through the verification phase of the developed seed

acquisition technique, a 50 bits seed is acquired in the implementation as shown in Figure

6.8. Finally, a PRBS with 500 bits is generated by this seed for the authentication between the

base station and this IoT device. To be more specific, only when the access time sequence of

this IoT device is identical to the pre-agreed PRBS, it will be identified as a legitimate device.

Otherwise, it will be authenticated as a spoofer.

6.4.2 Comparison Results
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Figure 6.9: Comparison results between RSS-based quantization method of [175] and the pro-
posed SVM-based quantization method.

The comparison results between the RSS-based quantization method of [175] and the pro-

posed SVM-based quantization method are depicted in Figure 6.9 assuming that 250, 400, and

500 observations of physical layer features are used. The proposed SVM-based quantization

method utilizes RSSI, CIR, and CFO, while the RSS-based quantization method only uses one

physical layer attribute. As it is shown in Figure 6.9, the mismatch rate of the RSS-based

quantization method of [175] utilizing RSSI is slightly lower than that of the proposed quanti-

zation method, while the mismatch rates of other cases (i.e., utilizing CIR or CFO) are much

higher that of the proposed SVM-based quantization method. The reason is that the proposed

SVM-based quantization method derives an optimal boundary, while the RSS-based quantiza-
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tion method only applies a fixed threshold for quantization. Moreover, since the RSSI changes

faster than the other physical layer attributes (see Figure 6.7), the fixed threshold in the RSS-

based quantization method can achieve a smaller mismatch rate. However, this highly depends

on both the physical environment and physical layer attribute used, and this method suffers

from very low seed bit randomness. Hence, the generated seed could be easily compromised

by spoofers.
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Figure 6.10: Comparison results between the proposed scheme and the physical layer key
generation schemes of [174, 175, 176, 177, 178].

Figure 6.10 characterizes the comparison results between the physical layer key generation

schemes of [174, 175, 176, 177, 178] and the proposed scheme. It can be observed from Figure

6.10 that the schemes of [174, 175, 176, 177, 178] are static in time and one-time authentica-

tion, while the proposed scheme achieves continuous identification of multiple IoT devices in

the time-domain. To achieve security enhancement, the high key generation rate is required in

the schemes of [174, 175, 176, 177, 178], but it is not required in the proposed scheme. Further-

more, the seed transmission is not required in the proposed scheme, thus resulting in privacy

protection of the obtained seed. On the contrary, the physical layer key generation schemes

need the key transmission during the process, which leads to the potential key leakage. More

importantly, the time complexity forN times of authentication in the proposed scheme is much

lower than that of the schemes of [174, 175, 176, 177, 178], whereN represents the number of
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authentication times between the transceiver pair. In a nutshell, the proposed scheme achieves

higher security performance and continuous protection for legitimate devices as well as lower

time complexity.

5 10 15 20 25
Time Between Updates

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
a
ls

e
 A

la
rm

 R
a
te

KLAIP, SNR=30dB
KLAIP, SNR=20dB
KLAIP, SNR=10dB
LCA

Figure 6.11: False alarm comparison results between the Kernel Learning-based Authentica-
tion as an Intelligent Process (KLAIP) scheme of [2] and the proposed Lightweight Continuous
Authentication (LCA) scheme.

The false alarm comparison results between the proposed scheme and the scheme of [2]

with respect to SNR=30dB, 20dB, and 10dB are characterized in Figure 6.11. Due to the

verification phase designed in the developed seed acquisition technique, an identical seed is

acquired at both the base station and IoT device sides for PRBS generation. To be specific, the

PRBS generated in the proposed scheme for authentication between an IoT device and base

station pair is unique and identical. Therefore, the false alarm events can be avoided in the

proposed lightweight continuous authentication scheme. However, the false alarm events are

inevitable in the scheme of [2] due to the imperfect and time-varying estimates of the physical

layer attributes encountered, although the kernel machine learning approach is explored for

tracking the attributes to achieve continuous authentication. Lower SNR could lead to a higher

false alarm rate in the scheme of [2], since its performance relies on the observations of physical

layer attributes used.

Figure 6.12 characterizes the misdetection rate of the proposed scheme with respect to S-
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Figure 6.12: Misdetection comparison results of the Kernel Learning-based Authentication as
an Intelligent Process (KLAIP) scheme of [2], Static Authentication (SA) scheme, and the
proposed Lightweight Continuous Authentication (LCA) scheme.

NR=30dB, 20dB, and 10dB. With the increase of access time slots, the misdetection rate of

the proposed LCA scheme significantly decreases because it is more difficult for the spoofer to

predict more access time slots of the legitimate IoT devices. More importantly, it can be ob-

served from Figure 6.12 that the misdetection rates of the proposed scheme remain unchanged

with the decrease of SNR. The reason for this trend is that the authentication of the proposed

scheme depends on the identification of the access time sequences of the IoT devices and

the verification phase designed. Hence, the proposed scheme is robust in the noisy wireless

communication environment. Figure 6.12 also demonstrates that the continuous authentication

schemes, including the KLAIP scheme of [2] and the proposed LCA scheme, perform better

than the static authentication scheme because they adapt to the time-varying communication

environment. More importantly, the proposed scheme performs best after a few time slots, typ-

ically less than 6, and does not require a complex system parameter update scheme, resulting

in a lightweight solution.

Figure 6.13 characterizes the computation overhead comparison between the proposed

Lightweight Continuous Authentication (LCA) scheme and the schemes of [39], i.e., Incremen-

tal Aggregated Gradient (IAG), Frank-Wolfe (FW), and distributed Frank-Wolfe (dFW). The
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Figure 6.13: Computation cost comparison between the proposed Lightweight Continuous
Authentication (LCA) scheme and the schemes of [39], namely IAG, FW, and dFW.

total computation overhead of the schemes of [39] is according to the Lemma 4 of [39]. Explic-

itly, the schemes of [39] are static and one-time authentication solutions requiring the help of

landmarks for collecting RSSI of signals, while the proposed LCA scheme is continuous. The

computation overhead of the proposed LCA scheme stays stable as O(max(J,N) min(J,N)2)

[192, 193] with the increase of authentication times, which is 900 in this case. Note that the

computation is required to obtain the optimal boundary for quantization in the proposed LCA

scheme. The designed optimal boundary can be used for generating multiple PRBSs for au-

thentication, where each PRBS containing 500 bits representing 500 authentication times. The

schemes of [39] require the iterations to reach optimal solutions, thus leading to much higher

computation overhead compared with the proposed scheme with the increase of authentication

times. By calculating 15 iterations in IAG, FW, and dFW, their computation overhead val-

ues are 35758, 151140, and 389940 runs for only one authentication, respectively. With the

increase of authentication, the computation overhead values of the schemes of [39] increase

linearly.
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6.5 Chapter Summary

In this chapter, a lightweight continuous authentication scheme was proposed by identifying the

pre-arranged pseudo-random access time sequences of the IoT devices in 5G-and-beyond net-

works. First, a new seed acquisition technique was developed for generating identical PRBSs

between each pair of the base station and IoT device by utilizing channel reciprocity. Second,

a SVM-based method was explored to derive an optimal boundary for quantizing the estimates

of physical layer attributes into bits, so that the bit mismatch rate can be reduced, while the seed

bit randomness is guaranteed. Then, if the access time sequence of an IoT device is identical to

its pre-agreed PRBS, it will be authenticated as a legitimate device by the base station. Finally,

the proposed scheme was verified by comparing it with state-of-the-art schemes to demonstrate

its superior performance in quantization, authentication, and computation cost.

Through identifying the access sequences of IoT devices in the time domain, the authenti-

cation between multiple devices and the base station could be significantly simplified. Simi-

larly, different access methods, e.g., in the frequency domain, the power domain, and the code

domain, can be developed for authentication in the future works. Moreover, by intelligently

design the authentication method in multiple domains, the security performance and commu-

nication performance will be improved.
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Conclusion and Future Work

This chapter presents the conclusion of this thesis. Some future works are also presented in

this chapter.

7.1 Conclusion

In this thesis, two multi-dimensional adaptive physical-layer authentication schemes were first-

ly proposed based on AI techniques as an intelligent process to learn and utilize the time-

varying and imperfectly estimated communication link attributes, i.e., the kernel learning-

based scheme and fuzzy learning-based scheme. In the former scheme, a kernel-based fusion

model was designed to deal with the multiple attributes without knowledge of their statistical

properties. The authentication was developed as a linear convex model, which greatly reduces

authentication complexity. In the latter scheme, fuzzy functions were explored to characterize

the multiple physical-layer attributes with imperfectness and uncertainties as parametric mod-

els. A hybrid learning-based adaptive algorithm was proposed to near-instantaneously update

the authentication parameters. These two schemes both act as an intelligent process to tackle

the variations of the utilized attributes and hence to improve the reliability and robustness of

the authentication.

An adaptive trust management based soft authentication and progressive authorization scheme

was proposed by intelligently exploiting the time-varying communication link-related attributes.

Through evaluating the selected attributes, the trust relationships between transceivers were

161
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established. To dynamically update the trust level of the transmitter, an online conformal

prediction-based adaptive trust adjustment algorithm was proposed relying on the real-time

validation of attributes estimated at the receiver, resulting in soft security and progressive au-

thorization.

A privacy-preserved distributed access control scheme based on accountable recommenda-

tion was proposed for blockchain-enabled IoT systems. In the recommendation mechanism,

multiple authorized devices were utilized as referrers to authenticate a public device and issue

the required credential for joining the system. Then, the anonymous credential generation strat-

egy was developed to further achieve privacy protection, and the reputation update mechanism

was proposed to evaluate the behaviors of the authorized devices.

Finally, to meet the stringent and diverse security requirements of 5G-and-beyond sys-

tems, a lightweight continuous authentication scheme was proposed for identifying multiple

resource-constrained IoT devices via their pre-arranged pseudo-random access time sequences.

A transmitter will be authenticated as legitimate if and only if its access time-sequential order

is matched with a pre-agreed unique pseudo-random binary sequence (PRBS) between itself

and the base station. The seeds for generating PRBS between each transceiver pair were deter-

mined by exploiting the channel reciprocity and by applying Support Vector Machine (SVM)

algorithm. Through the proposed scheme, seamless protection for legitimate communications

can be achieved without incurring long latency, complex computation, and high communica-

tion overhead.

7.2 Future Work

With the rapidly increasing number of intelligent devices used in 5G-and-beyond networks,

there are also many other perspectives and areas in which AI can play a remarkable role and

improve the quality of human lives. A range of future research ideas on AI for intelligent

security and smart services in future wireless communications can be summarized as follows.

The AI techniques may be utilized for other security applications, such as anomaly/ fault/

intrusion detection, access control, and authorization. This is mainly due to their ability to pro-

vide continuous protection for legitimate communications in 5G-and-beyond networks. Fur-
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thermore, with the ongoing convergence between wireless devices and human beings, machine

learning provides a new insight for studying human-device interaction, and the interplay be-

tween devices and information security, as well as the database security and data mining, oper-

ation systems security, Internet and cyber-security, incident handling, hacking, biometric tech-

niques, smart cards, infrastructure protection, and risk management. Through identifying and

learning the dynamic adversarial systems, automatic security management may be achieved by

machine learning techniques.

With the fast development of distributed communication systems (e.g., blockchain), ma-

chine learning may facilitate distributed security management. To be specific, it may be ex-

plored for inferring the mobile users’ decision making and device’s dynamic states under un-

known network conditions for better security performance, for example, adversarial behaviors

study for predicting the possible attacks of adversaries in peer-to-peer networks. The family of

machine learning algorithms may be also applied for better decision making, such as resource

allocation, distributed computing, analytical thinking, customer orientation, strategy, and plan-

ning. These are expected to be extremely important for 5G-and-beyond wireless networks to

achieve intelligent and autonomous services for human beings.

The design of more effective machine learning and distributed machine learning algorithms

is also beneficial for wireless communication applications and security provisioning. Statistical

learning methods ranging from a simple calculation of averages to the construction of complex

models may be utilized, such as Bayesian learning and maximum-likelihood learning. Some

AI techniques may be also explored for reducing the dimensionality of authentication and

authorization systems, such as principal component analysis.

Considering that the insider attacks caused by adversaries who have passed the authenti-

cation may cause cascaded damages to large-scale IoT systems, the game theory may be also

utilized for defending against insider attacks through modelling the behaviors of attackers.

Some typical game models for studying interactions between legitimate devices and adver-

saries include the potential game, Stackelberg game, and evolutionary game, just to name a

few. The incentive mechanism and punishment mechanism can be designed for achieving se-

curity enhancement and cooperations among untrusted entities in smart applications.

For resource allocation problems, the game theory, auction theory, and reinforcement learn-
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ing can be explored to achieve better decision making. The interactions among devices can be

modeled based on game theory, so that cooperations can be consummated by searching its e-

quilibrium based on learning algorithms. Auction theory, such as ascending-bid auctions and

descending-bid auctions, may be utilized for modeling the resource competitions among multi-

ple entities in 5G-and-beyond networks, so that the reliable “market” may be built for wireless

communication applications.
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