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Abstract
HIV-1 is a rapidly replicating retrovirus that faces two distinct fitness landscapes: within-

host HIV-1 faces viral competition for host cells and for escape from the immune system, and
between hosts HIV-1 faces a transmission bottleneck in which the majority of new infections
are started by a single virus strain. Possibly as a result of these conflicting selective pressures,
the rate of evolution of HIV-1 tends to be greater within-host than between hosts.

A current hypothesis for this difference in evolutionary rates is that the HIV-1 latent reser-
voir acts to archive virus for later transmission. We offer a related but complimentary hypothe-
sis: while some of the viruses’ life history traits are under selective pressure within-host, traits
that are responsible for the efficiency of transmission to a new host are not under direct se-
lection within-host and thus are subject to drift. Combined with the necessity of transmission
through an extremely severe, competitive bottleneck, this results in the preferential transmis-
sion of founder-like viral lineages.

As further evidence of the conflict between transmission fitness and within-host fitness,
experimental evidence demonstrates that subtypes A and D are 100-fold more fit than subtype
C in in vitro fitness competitions, yet subtype C dominates the global spread of new infections.
It is unclear whether this discrepancy is caused by differences in within- and between-host
fitness, or primarily reflects differences in in vitro versus in vivo fitness measures. To address
this question, data from a four-year, 8000 participant study in Uganda and Zimbabwe were
analyzed for evidence of in vivo fitness differences between subtypes A, C and D. Analyzing
this dataset along with simulated participant data, we conclude that either more frequent data
sampling, or an even larger study, would be necessary to capture the early within-host dynamics
sufficiently for a comparison across subtypes.

Similar to subtypes A and D, subtype B is estimated to have an eight- to ten-fold in vitro
fitness advantage over subtype C. Since frequent data collection over the early course of in-
fection is necessary to quantify in vivo viral fitness, another approach to this question is to
use data collected for simian/human immunodeficiency virus (SHIV). We develop a non-linear
mixed-effects model for a meta-analysis of 143 non-human primates from over 20 sources to
study in vivo fitness differences between SHIV subtypes B and C. Results suggest that subtype
C has a lower replicative fitness but higher burst size than subtype B.

Keywords: HIV, SHIV, multi-scale, modeling, simulation, within-host, between-host, sub-
type, evolution
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Summary for lay audiences
Human immunodeficiency virus (HIV) is a rapidly evolving virus that faces two distinct

environments. Within a single infected individual (“within host”), HIV is engaged in a race
with the immune system, evolving to avoid the host defences. When transmitted from one in-
fected individual to another (“between hosts”), HIV faces an extreme transmission bottleneck.
A faster evolutionary rate is observed within-host than between-hosts. We hypothesize that
the ability of the virus to transmit across the extreme transmission bottleneck is an important
factor for this difference in the evolutionary rates, and that when a virus mutates within-host
the ability for the virus to transmit is usually reduced. This leads to the transmission of viruses
that are more like the virus that established the infection than the average virus within-host at
the time of a transmission.

Further evidence of this conflict between the virus’ ability to out compete other viral strains
within-host and the ability of the virus to transmit is seen in the discrepancy between labora-
tory experiments, where HIV subtypes A and D replicate more quickly than subtype C, and the
global epidemic, which is increasingly dominated by HIV subtype C. To address this conflict
we consider data from a four year, 8000 participant study in Uganda and Zimbabwe where
differences between subtypes in the study participants were considered. To detect the ability of
one viral subtype to out-compete another subtype, samples from early in a participant’s infec-
tion are required. By simulating participant’s appointment timing and infection time courses,
we were able to determine that the data-set did not contain the information needed to detect
differences in within-host replication rates between subtypes.

In order to detect possible differences between HIV subtypes we consider the constructed
virus, simian/human immunodeficiency virus (SHIV), which infects macaques and shares the
subtype differences of HIV. Developing a statistical model and gathering data from over 143
non-human primates infected with SHIV from over 20 previous studies, we were able to detect
distinct replication advantages for both subtype C and D. Subtype C has a lower ability to infect
new cells, within-host, but generates more new virus from each cell it infects than subtype D.
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Chapter 1

Introduction

1.1 Human immunodeficiency virus (HIV)

Human immunodeficiency virus (HIV) is a positive sense single stranded retrovirus that primar-

ily replicates in CD4+ immune cells [Barre-Sinoussi et al., 2013, Joseph et al., 2015]. HIV-1

faces two distinct fitness landscapes over two distinct time scales: within host HIV-1 faces

selection pressure from the hosts’ immune system and viral competition for the hosts’ immune

cells, and between hosts HIV-1 faces a transmission bottleneck, after which the majority of

new infections are initially homogeneous. This homogeneous initial population of virus, seen

shortly after transmission, diversifies into a viral quasi-species seen in active infection [Joseph

et al., 2015, van Dorp et al., 2014].

The differentiation of HIV-1 into a genetically diverse quasi-species is facilitated by the

error prone RNA replication process, resulting in a high mutation rate, along with a high repli-

cation rate within-host [Cuevas and Sanjuán, 2015, Fraser et al., 2014]. This HIV-1 mutation

potential allows the virus to increase in within-host fitness as it adapts to the host and evolves

to escape immune pressures [Carlson et al., 2016, Payne et al., 2014, Immonen et al., 2012].

Currently available antiretroviral therapy (ART) is effective at suppressing viral load in the

plasma below detectable levels and halting viral evolution, but after treatment interruption the

1



2 Chapter 1. Introduction

virus typically rebounds to pre-treatment levels [Conway et al., 2019, Davenport et al., 2019].

There were 37.9 million people living with HIV at the end of 2018, with an estimated 62%

on antiretroviral therapy, and 53% of people living with HIV have achieved suppression of the

virus.

1.2 HIV-1 diversity: groups and subtypes

HIV is a zoonotic virus and the origins of the current HIV-1 epidemic are estimated to have

been established in the human population around the 1920s near Kinshasa in the present day

Democratic Republic of Congo (DRC) [Bbosa et al., 2019, Tebit and Arts, 2011]. Early in the

epidemic two genetically diverse lentaviruses, HIV-1 and HIV-2, were prevalent but geograph-

ically separated and established through multiple zoonotic transmissions between simian im-

munodeficiency virus in primates and humans [Bbosa et al., 2019]. But since the introduction

of HIV-2, its prevalence has reduced to near extinction [Ariën et al., 2005], while the current

diversity of HIV-1 is high near its origin in the DRC near Kinshasa (formerly Leopoldville)

[Bbosa et al., 2019]. The accuracy of dating the origin of the current epidemic and estimat-

ing the many cross-species jumps of HIV depends on an estimate of the rate of between-host

evolution over the epidemic and the prevalence of recombination for this virus [Olabode et al.,

2019].

Divergent evolution combined with the multiple zoonotic jumps has lead to the diversity

of HIV-1 that we now see in the human population [Ball et al., 2003]. Separate introductions

of HIV-1 in the human population led to the spread of divergent groups of HIV-1: groups M

(main), O (outlier), group N and group P viruses [Bbosa et al., 2019]. Groups N, O and P have

not globally spread and the majority of the epidemic is from group M viruses. Group M viruses

are subdivided into ten different subtypes or clades (labeled subtypes A through J) based on the

diversity of the eve gene [Bbosa et al., 2019, Ball et al., 2003]. The genetic diversity of HIV-1

is not completely captured by the HIV-1 subtype classification and there are at least ninety
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circulating recombinant forms [Olabode et al., 2019]. The genetic distance across subtypes is

estimated to be between 25 and 35% and the genetic distance within subtypes is estimated to be

up to 20% [Bbosa et al., 2019]. This extreme genetic diversity between HIV-1 subtypes leads to

the question whether HIV-1 genotypes are associated with measurable biological or phenotypic

traits [Tebit and Arts, 2011]. Some differences in phenotypic traits have been observed, with

greater rates of treatment failure and drug resistance in subtype D than subtype A [Kyeyune

et al., 2013].

The genetically distinct subtypes have geographically defined distributions with subtype C

and inter-subtype recombinant forms found in Africa and subtype B prevalent in North America

and Europe [Bbosa et al., 2019]. The domain of subtype C has expanded since 1990 and its

spread accounts for approximately 53% of the 27.2 million new infections between 1990 and

2015 [Venner et al., 2016].

1.2.1 Simian/human immunodeficiency virus (SHIV)

Animal models of HIV have been developed by combining genes from HIV and simian immun-

odeficiency virus (SIV) to create the novel pathogen simian/human immunodeficiency virus

(SHIV). SHIV infects non-human primates and has been developed to facilitate the study of

HIV transmission, pathogenesis, and the development of HIV vaccines [U et al., 2001]. SHIV

variants typically have the env, tat, rev, and vpu genes of HIV while the remaining genes are

from SIV [Sui et al., 2014]. SHIV variants with the envelope from subtypes A, B, C, and E

have been created [Sui et al., 2014]. SHIV created from the SIVmac239 backbone expresses

the chemokine receptor CXCR or CCR5, or both the CXCR4 and CCR5 receptors, to allow

cell entry. These viruses cause greater depletion of naı̈ve T cells during the acute phase of in-

fection, leading to more rapid disease progression than is seen in either a SIV or HIV infection

[Sui et al., 2014].
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Figure 1.1: Generalized sketch of HIV disease progression

1.3 Within-host dynamics: disease progression

Typical within-host progression of HIV and the times to detectable viral load and viral an-

tibodies have been divided into the eclipse phase and five Fiebig stages [Shaw and Hunter,

2012]. A sketch of the typical HIV-1 viral load dynamics as detected in the peripheral blood is

seen in Figure 1.1. After initial infection there is an eclipse phase, that lasts between 5 to 14

days, during which the HIV-1 viral load is typically below detectable levels [Shaw and Hunter,

2012, Konrad et al., 2016]. During the rapid growth of the within-host viral load to a viral peak

around 21 days post infection, viral RNA is detectable in Fiebig stage I and viral p21 antigen is

detectable in Fiebig stage II [Shaw and Hunter, 2012]. Near the peak viral load, virus-specific

antibodies become detectable first by recombinant protein-based, enzyme-linked immunosor-

bant assay (ELISA) in Fiebig stage III [Shaw and Hunter, 2012]. The duration of Fiebig stages

I, II, and III were estimated to be 5.0, 5.3, and 3.2 days, respectively [Konrad et al., 2016].

As the viral load drops to a relative steady state, the set-point viral load (SPVL), antibodies

become detectable by Western immunoblotting with an indeterminate banding pattern, stage

IV, and a diagnostic banding pattern stage V [Shaw and Hunter, 2012]. In addition to the circu-

lating virus there is extensive compartmentalization of HIV-1 [Chen et al., 2018, Boritz et al.,

2016, Gianella et al., 2016, Feder et al., 2017].

Effective antiretroviral therapy reduces HIV-1 viral replication and disease progression,

lowering virus in the blood to below detectable levels. As mentioned above, after treatment
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interruption, viral replication rebounds to pre-therapy levels [Conway et al., 2019, Davenport

et al., 2019]; HIV-1 forms a latent reservoir of infected, long-lived immune cells that allows

for this viral rebound [Kuo and Lichterfeld, 2018].

The formation of the HIV-1 latent reservoir is not well characterized. There is conflicting

evidence about the formation of the the HIV-1 latent reservoir, with evidence that indicates

that the latent reservoir forms rapidly early in infection [Whitney et al., 2014, Sengupta and

Siliciano, 2018] or that the reservoir’s formation occurs primarily upon initiation of ART treat-

ment [Abrahams et al., 2019]. Abrahams et. al. argue cells are infected as they are entering a

resting state and that 78% of virus in the latent reservoir is most similar to virus in circulation

just before the initiation of therapy [Abrahams et al., 2019]. Uncertainty about the composi-

tion of the HIV latent reservoir leads to uncertainty about its formation [Poon et al., 2018].

Determining the relative size and makeup of the latent reservoir is difficult because there is an

abundance of fragments of nonproductive RNA archived in the latent reservoir and quantitative

viral outgrowth assays are required [Abrahams et al., 2019].

The HIV-1 latent reservoir contributes to circulating diversity by archiving virus that closely

resembles founding virus. This archive of founder-like virus is sufficiently large to allow for

further transmission [Immonen and Leitner, 2014]. The relative stability of the latent reservoir,

which is contributed to by a slow rate of decay and clonal expansion, allows this archive of

founder-like virus to persist throughout the infection [Descours et al., 2017].

1.4 Between-host dynamics: conflicting selection pressures

Between hosts HIV-1 faces a restrictive transmission bottleneck [Kariuki et al., 2017, Lythgoe

et al., 2017, Joseph et al., 2015]. When transmitted between individuals, HIV-1 undergoes a

severe, and multistage, bottleneck; it is possible that only a single variant establishes the circu-

lating infection in the new host [Carlson et al., 2014a, Tully et al., 2016, Haaland et al., 2009, Li

et al., 2010, Keele et al., 2008, Zimmer, 2002]. This bottleneck persists across different modes



6 Chapter 1. Introduction

of transmission with estimates of: 80% of heterosexual [Carlson et al., 2014a], 75% of male-

to-male homosexual (MSM) [Li et al., 2010], 70% of mother-to-child [Wolinsky et al., 1992],

and 40 to 80% of intravenous drug-use transmissions originate from a single variant [Kariuki

et al., 2017, Tully et al., 2016]. Clinical evidence also supports preferential transmission of

some viral strains [Theys et al., 2018, Lythgoe et al., 2017, Deymier et al., 2015, Carlson et al.,

2014a, Redd et al., 2012, Wolinsky et al., 1992] suggesting that the bottleneck is not strictly

stochastic.

The conflicting selection pressures of the within- and between-host fitness landscapes lead

to a trade-off between within-host virulence and between-host infectiousness [Theys et al.,

2018, Lythgoe et al., 2017]. Understanding this trade-off and the viral strains that are transmit-

ted and initiate infection is critical in the development of vaccines and prevention strategies for

HIV-1 [Lythgoe et al., 2017, Kariuki et al., 2017], and has been addressed through clinical stud-

ies in the context of heritability of virulence [Bertels et al., 2018, Blanquart et al., 2017, Tully

et al., 2016, Cuevas and Sanjuán, 2015].

This fitness trade-off is also partially manifest as a mismatch in within- and between-host

evolutionary rates, where the estimated between-host rate is many times lower than the rate

observed within-host [Vrancken et al., 2014, Theys et al., 2018, Volz et al., 2017], a discrepancy

that has important consequences for phylodynamic inference [Volz et al., 2017].

1.5 Mathematical modelling approaches

Substantial progress in understanding these conflicting between- and within-host selection

pressures has also been achieved through modelling approaches.

In early work, Fraser et al. explored the evolution of set-point viral load (SPVL). Since

SPVL increases transmissibility but reduces the duration of infection, modelling predicted that

SPVLs should cluster around intermediate values [Fraser et al., 2007, Shirreff et al., 2011].

In related work, Lythgoe and Fraser proposed a within-host multi-strain model, which also
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included a reservoir of latently infected cells. The model demonstrates that the latent reservoir

is able to archive virus that closely resembles the founding virus; virus from this latent archive

is then available for further transmission. Comparing a number of hypotheses, Lythgoe and

Fraser argue that this store and retrieve mechanism is the most important factor underlying

observed differences in evolutionary rates [Lythgoe and Fraser, 2012].

This suggestion is consistent with the conclusions of Immonen and Leitner, who, using pa-

tient data, phylogenetic methods, and a detailed within-host model of HIV-1 infection predicted

that the latent reservoir substantially slows observed within-host evolution.

Focusing further on the evolution of virulence, Lythgoe et al. introduced a deterministic

multi-scale model which links within- and between-host evolution [Lythgoe et al., 2013]. The

authors conclude that slower within-host evolution leads to intermediate virulence, whereas

with faster within-host dynamics evolution is short-sighted, resulting in selection for higher

within-host fitness and higher virulence. In this approach, the within- and between-host scales

are linked through a non-stochastic transmission event; in particular, every viral strain in the

donor is transmitted to the recipient, in proportion to the circulating abundance in the donor at

the time of transmission.

Doekes et al. [Doekes et al., 2017] further developed this approach, replacing the within-

host model with two coupled quasi-species equations [Eigen, 1971] such that the latent reser-

voir is explicitly included. The presence of a latent compartment slows the within-host dynam-

ics when considering moderate fitness changes, but has little effect when there are large fitness

differences driving the within-host dynamics [Doekes et al., 2017]. In the supporting material,

Doekes et al. extend this model to include mutations that have no effect on SPVL (and thus

drift neutrally within host), but reduce between-host transmission. The presence of preferential

transmission further slows the between-host evolution of SPVL [Doekes et al., 2017].
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1.6 Outline of the thesis

An increasingly clear picture is thus emerging of the factors affecting between-host evolution in

HIV-1: the trade-off between high SPVL and low duration of infection, the store-and-retrieve

mechanism facilitated by the latent archive, and mutational drift of transmission fitness during

in-host evolution. To date, however, the genetic bottleneck associated with disease transmission

has received comparatively little attention. Since only one or a handful of viral strains are likely

to found the next infection, the bottleneck not only eliminates nearly all genetic diversity, but

likely imposes intense selection for strains in which traits important to disease transmission

have retained their function.

In Chapter 2, we develop a multi-scale model of the epidemiology and evolution HIV-

1, linking the within- and between-host scales through a stochastic, competitive transmission

bottleneck. While within-host selection favours increased virulence in our model, traits that

are responsible for the efficiency of transmission to a new host are not under direct selection

within-host and thus are subject to drift. Combined with the necessity of transmission through

an extremely severe, competitive bottleneck, this results in the preferential transmission of

founder-like viral lineages that more closely resemble the founding virus than virus circulating

within the host at the time of transmission. These results are presented in Chapter 3.

In Chapter 4, we examine appointment timing and viral load data from a large study of 302

women from Uganda and Zimbabwe to determine whether fitness differences in HIV-1 among

subtypes are detectable in this dataset.

In Chapter 5, we develop a non-linear mixed-effects model for a meta-analysis of 143

primates from over 20 sources to consider fitness differences between infection with SHIV

subtype C (SHIV 1157) and subtype B (SHIV SF162).

Chapter 6 presents some brief conclusions and suggestions for future work.



Chapter 2

Multi-scale model of the evolution of

HIV-1: Methods

2.1 Introduction

We develop multi-scale simulations of the evolution of HIV-1 over epidemic time, simulat-

ing the evolution of viral traits in response to the two distinct fitness landscapes that HIV-1

faces, within- and between-host selective pressures. We couple the within- and between-host

dynamics with attention to mutations that affect specific life history traits of the virus.

The within-host dynamics are governed by a host-cell limited, differential equation model

of viral dynamics [Nowak and May, 2000]. The within-host model includes evolution through

phenotypic mutation classes [Lythgoe et al., 2013] with increasing fitness and a latent com-

partment in which evolution does not occur [Doekes et al., 2017], representing the HIV latent

reservoir.

For the between-host dynamics, three models of decreasing complexity are developed, as

described in further detail in Sections 2.3.1 to 2.3.3. The first and most complete model of

the between-host transmission dynamics of HIV-1 is used to address the role of the HIV-1

latent reservoir in the observed differences in evolutionary rate within- and between-host, and

9
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to analyze the application of the germline hypotheses [Lythgoe et al., 2017] to the epidemic

evolution of HIV-1.

The first and most complete model of between-host dynamics will be subsequently referred

to as the full model. In the full model, the within-host dynamics are linked to a between-host

stochastic model of virus evolution including transmission fitness.

The second fixed transmission model is established as a control for comparison against

the full model. In the fixed model, the probability of each virion establishing an infection in

the recipient host, transmission fitness, is independent of the within-host model.

In the third model of between-host transmission, the simplified model, transmission fitness

is neglected. This model is more computationally efficient and is used to determine bounds on

the expected behavior of the more complete models. This computationally efficient model is

used to test the sensitivity of the simulation to parameter and specification changes, as well as

to establish the most informative parameter regimes to consider with the more complex models.

2.2 Within-host model

The within-host viral dynamics are determined by a compartmental model of CD4+ T cells

with n distinct phenotypic mutation classes, as shown in system (2.1), where the time depen-

dence t has been omitted for clarity.

The model considers the densities of uninfected target cells x(t), infected cells yi(t), and

latently infected cells li(t) for mutation classes i ∈ {0, 1, 2, . . . , n − 1}, where densities are per

unit blood volume.

In this model we neglect the usual compartment modelling free virus. The dynamics of

the free virus compartment closely follow the dynamics of the infected cells with most of the

relevant behaviour occurring with a time scale of days. We believe it is reasonable to model

the dynamics only of infected cells because we are interested in mutation dynamics in the

within-host model, which take place over years of infection, and the dynamics of the between-



2.2. Within-host model 11

host model, which consider hundreds of years of evolution over an epidemic. This modelling

decision will be discussed further when model parameters are considered.

The model considers the main target of HIV-1, activated CD4 T-cells as the uninfected

target cells, which have density x(t) at time t. Uninfected activated CD4+ cells join the popu-

lation at rate λ, have a natural death rate d, and become infected at rate x
∑n

i=1 β(i, β0,h)yi, where

the replicative capacity of mutation class i, β(i, β0,h), is given by the saturating exponential

function:

β(i, β0,h; βM, βλ) = β0,h + (βM − β0,h)(1 − e−βλi).

Thus the replicative fitness function β(i, β0,h) is a monotonic increasing function of mutation

class i with minimum value β0,h; β0,h is the viral trait that will be inherited from the between-

host model with index h for each host, as explained further in Section 2.3. This replicative

fitness function also depends on the simulation parameters for maximum replicative fitness,

βM, and slope, βλ. Note that we can simulate a fixed value of β by setting βλ = 0.

We have chosen a saturating exponential function which has a greater fitness advantage

between earlier mutation classes and then saturates with increasing mutation classes.

Thus we are modelling replicative capacity with the assumption that there exists a maxi-

mum replicative fitness that the virus could attain. Importantly, during simulations this theo-

retic maximum fitness is not reached when realistic parameter values are used. Beyond con-

sidering a reductio ad absurdum argument for the necessity of an upper limit on replicative

fitness, an upper limit on replicative fitness is biologically reasonable considering that the most

prevalent virus strain elicits an immune response, thus limiting maximum fitness achievable

[Immonen et al., 2015].

We conjecture that the choice of a saturating exponential function is not required. As long

as the final mutation class, and thus the maximum fitness modelled, is not reached any rea-

sonable monotonically increasing function could be used to maintain the relationship between

increasing mutation classes and increasing fitness. The exploration of non-monotonic fitness

functions is left for future work.
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HIV-1 is vulnerable to mutation upon replication; we model the probability of mutation

in two steps. First, newly infected cells have a probability of mutation µ. So, newly infected

cells carry the same viral traits as the infecting cell with probability 1 − µ, or mutate to a

new phenotypic mutation class with probability µ. Second, when a mutation occurs, upon

replication, the mutation class the newly infected cell joins is determined by the mutation

kernel

K(ζ) =


λµe−λµζ ζ > 0

0 ζ ≤ 0.

where the constant λµ is a simulation parameter. Thus, cells infected by non-mutated virus join

yi at a rate x(1 − µ)β(i, β0,h)yi when the new infection is from a class i infected cell, and cells

infected by mutated virus join yi at a rate xµ
∑n

j=1 β( j, β0,h)K(i − j)y j when the new infection is

from a mutation class j cell where j , i.

Modelling cell death, infected CD4 T cells are removed with a removal rate function that

is specific to their phenotypic mutation class:

δ(i, δM; δ0, δλ) = δ0 + (δM − δ0)(e−δλi).

Similar to the replicative fitness function, the infected cell removal function δ(i, δM; δ0, δλ) is a

function of mutation class i and maximum death rate δM, parameters which change within and

between hosts during a simulated epidemic, as well as depending on simulation parameters for

a minimum removal rate δ0 and slope δλ.

We consider a viral reservoir of infected CD4 T cells, which has been well established, and

are not modelling the possibility of non-CD4 T cell reservoirs of infectious virus despite recent

evidence [Kuo and Lichterfeld, 2018]. The latent reservoir of resting CD4 T cells is assumed

to have a low mutation rate because any replication of latent cells that does occur is through

the DNA replication process of cellular proliferation.
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The dynamics of the viral latent reservoir are not fully characterised. It is usual to describe

the latent reservoir as forming early and being very long lived. But a consensus on the specifics

of entry, activation, clearance, and clonal expansion of reservoir cells has not been reached

[Abrahams et al., 2019, Sengupta and Siliciano, 2018].

In particular, it is believed that CD4 T-cells may be infected as they are transitioning from

the active to the memory state and in this way HIV provirus is inserted into the cellular genome

[Abrahams et al., 2019]. Models of within-host dynamics that include a latent reservoir often

model entry into the reservoir as new infections take place. That is, entry into latent reservoir is

included with the xyi interaction terms [Doekes et al., 2017]. Given the uncertainty surrounding

these dynamics, we have made the simplifying assumption of a constant rate of entry from the

infected cell compartment to the latent reservoir, as well as a constant activation rate from the

latent reservoir to the infected cell pool. We have also chosen to exclude a reservoir-specific

removal term such that all removal of virus takes place through the infected cell compartment.

Mutation class i infected cells enter the mutation class i latent reservoir (li) at rate γ, and are

activated from li at rate α. Latently infected cells replicate through cellular proliferation at rate

ρ. As mentioned above, the DNA replication process of cellular proliferation has a relatively

low mutation rate compared with the active replication of HIV viral particles, and we therefore

assume error-free viral replication through cellular proliferation [Doekes et al., 2017, Immonen

and Leitner, 2014].

Taken together, these assumptions yield the following within-host model:

ẋ = λ − dx − x
n∑
i

β(i, β0,h)yi

ẏi = x(1 − µ)β(i, β0,h)yi + xµ
n∑

j=i

β( j, β0,h)K(i − j)y j + (α − γ)li − δ(i, δM)yi (2.1)

l̇i = γyi + (ρ − α)li,

for mutation classes i ∈ {0, 1, 2, . . . , n − 1}.
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Given fixed values of γ and α with α > γ, the parameter ρ can be used to set the relative

size of the latent reservoir. In particular, we set

ρ =


s(α − γ) α − γ ≥ 0

0 α − γ < 0

where 0 ≤ s ≤ 1 is a simulation parameter which determines the size of the latent reservoir

(
∑

i li) relative to the total number of actively infected cells (
∑

i yi).

2.3 Between-host Dynamics

2.3.1 Full model

The full model is our most complete simulation of the between-host transmission dynamics

during an HIV-1 epidemic. We develop a stochastic simulation of the transmission of HIV-1

including an extreme bottleneck, where new infections are founded by a single virion. The

phenotypic mutation class of that virion, i, is used to determine the initial conditions, β0,h and

δ0, in the newly infected host, h; thus these two viral traits are carried by the founding virion

to the new host.These infected hosts form a transmission tree over epidemic time where each

vertex is an infected individual and the transmission events are directed edges between vertices.

In reality, the HIV-1 transmission bottleneck is multistage [Joseph et al., 2015, Fraser et al.,

2014], involving virus sampled from a subset of the virus circulating within the host [Boritz

et al., 2016, Gianella et al., 2016]. There is evidence that the circulating HIV-1 virus is com-

partmentalized and that the virus available for transmission will depend on the compartment

from which the virus is transmitted. There is also evidence of preferential transmission of virus

[Deymier et al., 2015, Carlson et al., 2014a, Champredon et al., 2013, Joseph et al., 2015]. An

example of this preferential transmissions mechanism is the increased glycosylation of some

virus which effects the ability of the virus to transit the mucosal barrier in the case of sexual
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transmission [Ping et al., 2013].

After virus is transmitted to the new host it is then subject to a local fitness competition

before the establishment of a systemic infection [Kariuki et al., 2017, Joseph et al., 2015, Fraser

et al., 2014]. Evidence suggests that as a result of the transmission bottleneck and this local

fitness competition, the majority of new infections are established by a single variant [Carlson

et al., 2014b, Tully et al., 2016, Haaland et al., 2009, Li et al., 2010, Keele et al., 2008].

Thus, we assume that each new infection is established by a single virion in our model, and

our simulation of the bottleneck models the distinct stages of the bottleneck as the stochastic

processes described in the sections below. We address the idea of extending the model to

include the transmission of multiple variants that simultaneously establish a systemic infection

in Chapter 6.

In the full model, the between-host transmission of HIV-1 is separated into four distinct

stages or components: (1) the probability of a potential transmission, which can be thought of

as a contact probability; (2) given that a contact occurs, the stochastic sampling of virions to

form the bottleneck inoculum; (3) the local competition that occurs between the virions in the

bottleneck inoculum, determining which single virion will have the chance to establish the new

infection; and (4) the probability, φ, that a new infection is established by that virion.

Potential transmission

A potential transmission simulates the probability of contact between an infected and an unin-

fected individual. This potential transmission is dependent on the contact structure [Park and

Bolker, 2017] and can be thought of as a sexual contact for any sexual risk group or an instance

of needle sharing.

This framework presents two challenges: the types of transmission risks individuals will

face in their infected lifetime will vary1, and the number of potential contacts for individuals of

different risk groups have a large variation. Rather than combining the different contact types

1e.g. A single individual may have sexual contacts from different risk groups.
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an individual from a particular risk group would have by forming a mean risk, we make the

simplifying choice to simulate only epidemics of individuals that all belong to the same risk

group. This is preferable to averaging over very different risk groups, which would obscure the

interpretation of potential transmissions.

The number of potential transmissions c j for a particular individual is Poisson distributed

with mean µctT , where µc and tT are simulation parameters giving the mean number of potential

transmission events per year, and total number of infectious years for an infected individual,

respectively. Although the maximum time an individual is infectious can vary between hosts

and could be reduced by a highly virulent virus or by the introduction of antiretroviral therapy,

we make a strong simplifying assumption and set tT as a constant for all individuals in the

epidemic.

The times of potential transmissions, td, are drawn from a uniform distribution from 0 to

tT where d is an index for each potential transmission for an individual. This is equivalent to

having a constant probability of contact in each time interval.

Transmission fitness φ

Transmission fitness, φ, in our simulation is the conditional probability that a single virion

establishes a new infection, given that there is a potential transmission and that this virion is

the “winner” of the local competition among virions in the bottleneck inoculum. Thus, the

unconditional probability that a single virion establishes a new infection also depends on the

size of the bottleneck inoculum and the structure of the local competition, both of which will

be discussed in the following sections. A calculation of this unconditioned probability as a

function of φ will be considered after the relevant structure of the between-host model has

been detailed.
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Bottleneck Inoculum

At each new potential transmission, a number of virions is generated and this ensemble of

virions forms the bottleneck inoculum. To avoid bottleneck inocula that contain zero virions,

the number of virions is determined as the maximum of one and a single draw from a Poisson

distribution. The simulation parameter for bottleneck size sets the mean value of this Poisson

distribution.

For a potential transmission event occurring at time t during an individual infection, the

virions included in the bottleneck inoculum are sampled from the distribution of phenotypic

mutation classes corresponding to the solution of the within-host model of the transmitting

individual at that time. In other words, we use the within-host model to generate the distribution

of infected cells of mutation class i at time t, and assume that this mirrors the distribution of

potentially transmitted virions in each mutation class.

Calculation of transmission fitness φ

An important feature of our approach is that we do not assume that traits affecting transmission

fitness are shielded from mutation while the virus is replicated within host. Each virion in the

bottleneck inoculum is therefore assigned a transmission fitness, φ, but the distribution from

which φ is chosen depends on the the mutation class of the virion. In general, virions in higher

mutation classes have sustained several mutations relative to the founding viral strain, and

these mutations are likely to have some effect on other traits, including transmission fitness.

In addition, virions in higher mutation classes are likely to have experienced more “mutational

pressure”, that is, they are more likely to be part of within-host viral lineages that have been

circulating within the host for long times, and have not been shielded from mutation in the

latent reservoir. We argue that transmission fitness is unlikely to remain completely unaffected

by this mutational pressure.

The distribution of fitness effects of new mutations on the transmission fitness of HIV-1 is

not well characterized [Theys et al., 2018]. As an example, virus from chronically infected
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φ0,h transmission fitness of the founding virus
φm transmission fitness of mth virion in the bottleneck inoculum
Φ random variable describing the change in transmission fitness, a single

draw from G
G The generalized flipped inverse gamma distribution

Table 2.1: Definition of terms involved in the calculation of φ.

individuals was found to be more highly glycosylated relative to virus circulating in acute

infections. This suggests that mutations that confer a fitness advantage within-host may be

deleterious for transmission fitness [Ping et al., 2013]. Generally, the distribution of fitness

effects of mutations is complex and multi-modal, and single mutations can be lethal for RNA

viruses [Eyre-Walker and Keightley, 2007].

We make the assumption that a mutation that is beneficial to a particular within-host trait

(such as reducing the infected cell death rate) should not necessarily have correlated effects on

an unrelated trait, in this case transmission fitness. Thus we expect that mutations that change

the within-host fitness (and therefore mutation class) might have similar effects on transmis-

sion fitness as randomly chosen mutations. To implement this assumption the value of φm is

calculated for virions 1, 2, . . . ,m, in the bottleneck inoculum using the flipped inverse gamma

distribution described below. The flipped inverse gamma distribution has been previously in-

troduced in a number of other settings as a model of the fitness effects of a randomly chosen

mutation, reflecting the fact that most random mutations are slightly deleterious [Doekes et al.,

2017, Zanini et al., 2017, Eyre-Walker and Keightley, 2007, Eyre-Walker et al., 2006].

Thus, the transmission fitness for the mth virion in the bottleneck inoculum, φm, is given by

φm = φ0,h + (i − j)Φ

where j is the mutation class of the virion of interest in the bottleneck inoculum, φ0,h is the

transmission fitness of the mutation class i virion, from host h − 1, that founded the within-

host infection, and Φ is a random variable drawn from the generalized flipped inverse gamma
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distribution:

G(x) =


exp

(
β̄

x−µ̄ γ̄
)
γ̄ β̄

x−µ̄

ᾱγ̄+1
x > µ̄

0 otherwise
(2.2)

which depends on the simulation shape parameters ᾱ, φ̄ and simulation scale parameter γ̄, and

location parameter µ̄.

We note that a greater difference in mutation class, i − j, will, on average, increase the

change in transmission fitness between the founding and transmitting virion. If virion m in

the bottleneck inoculum has not mutated, i = j and φm will be equal to φ0,h. See Figure 2.1

for example probability density functions of the change in transmission fitness, (i − j)Φ, for

changes in mutation class i − j = 1, 2, and 3.

Establishment viral competition

Once the bottleneck inoculum is transmitted to the new host it is then subject to a local fitness

competition before the most fit variant establishes a systemic infection. We model this local

establishment competition by selecting the virion in the bottleneck inoculum with the highest

φ. The φ for this virion is then tested against a random number to determine if an infection is

ultimately established. If a new infection is established the mutation class from the successful

virion becomes the initial mutation class of the new infection, and the values of β, δ and φ

associated with this virion in the donor become β0,h, δ0 and φ0,h respectively in the recipient.

Sampling the transmission trees

Because transmission trees are initiated with a single infected individual, there is a high proba-

bility that the epidemic will go extinct in the first few steps. In cases where successful transmis-

sion is established (non-extinction), if the between-host fitness is sufficiently high the transmis-

sion tree undergoes a period of exponential growth, which typically slows as the virus evolves

and φ decreases. For computational efficiency we do not record and simulate every infection
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Figure 2.1: Example probability density functions (pdfs) for change in transmission fitness,
(i − j)Φ, for mutation classes with a change of i − j = 1 (dotdash), 2 (dashed), and 3 (solid)
which show the increase in the variance of the distribution without changing the probability
that a mutation is beneficial. The plots are generated from the trial phiDistTest experiment 1
and the parameter regime is available in Appendix A.1.

during the exponential growth of the epidemic. Instead, we sample lineages such that although

the underlying epidemic would be expanding exponentially, we record, on average, only one

new infected individual per infected individual. This sampling rate begins near one (all infec-

tions in the lineage are recorded at the start of the epidemic) and is adjusted by considering the

number of new infections generated by the previous n ≤ 25 infected individuals.

2.3.2 Fixed transmission model

The fixed transmission model is used as an experimental control. In this model, within-host

mutation is uncoupled from the ability of the virus to transmit. In particular, the mean trans-

mission fitness of the founding virus is attributed to all the virions in the bottleneck inoculum

regardless of their phenotypic mutation class or class that established the infection in the trans-

mitting host. In this case, a single virion is chosen at random from the bottleneck inoculum to

establish the new infection.

Holding transmission fitness constant across the epidemic removes any transmission fitness

effects, and within-host fitness is allowed to evolve without between-host transmission fitness

constraints. That is, the virus is transmitted through a restrictive but random bottleneck.
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2.3.3 Simplified model

In the model we will describe as the “simplified model”, the complex transmission dynam-

ics are replaced by a single chain of deterministic transmissions. Each infected individual

generates exactly one new infection, the time of which is drawn uniformly from the donor’s

infectious lifetime. At the time of transmission a single virion is randomly sampled from the

within-host model to establish the new infection. The values of β and δ associated with this

virion in the donor become β0,h and δ0 respectively in the recipient.

2.4 Experimental design

Each model simulation, containing both the within- and between-host components, is initiated

with a single infected individual and generates one transmission tree. The number of trans-

missions and time span of this generated transmission tree will vary for each simulation. See

Figure 2.2 for an example of a transmission tree. In the transmission trees, vertices represent

infections and the edges represent transmission events.

Each run the simulation is repeated many times; a single repetition of the simulation is

referred to as a replicate. For a given set of simulation parameters and initial conditions each

replicate is independent and produces a single transmission tree. It is possible that this trans-

mission tree contains only the initial vertex.

Each set of simulation parameters and initial conditions are referred to as an experiment.

Each replicate is initiated from an experiment. One completed simulation experiment will con-

tain many replicates. Experiments with different parameters and initial conditions are collected

in trials. Each experiment in a trial differs in a single simulation parameter. Trial definitions

can be found in Appendix A.1.
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Figure 2.2: Example of a short transmission tree generated from one replicate. The tree is not
time scaled. Numbers provide an index of infected individuals; the epidemic began with patient
0. Arrows point from the recipient toward the donor to illustrate that lineages are generated
from the leaves to the root as discussed in Section 2.5.1 and that the ancestor node is used
to generate the tree summary statistic, 2.5.2. An example lineage is the transmission chain
through {10,5,3,1,0}.
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2.5 Analysis

The result of each experiment is a collection of highly variable transmission trees. As the

transmission trees evolve some lineages grow exponentially while others go extinct. Simu-

lated transmission trees, started from a single vertex, can go extinct immediately or contain

thousands of vertices. It is common for entire branches of the transmission tree to go extinct

as the result of stochastic variation or as the result of mutations that may lower transmission

fitness unsustainably. Despite a large number of transmissions over a large number of trees,

significant variation remains. The stochasticity of the evolution and size of transmission trees

presents challenges for analysis.

2.5.1 Random Lineage Summary Statistics

A single random lineage from each replicate is used to generate summary statistics. For each

simulated transmission tree one vertex without descendants, a leaf, is chosen randomly and

only the transmissions that belong to the path from this leaf to the initial vertex, the root are

used in generating the summary statistics. See Figure 2.2 for an example lineage.

The use of only one lineage per replicate addresses the problem of repeated counting of

transmissions near the root that would occur if all lineages in each tree were used. Repeated

counting is a problem since as lineages approach the root each node is a member of more

lineages and at the extreme we see that every lineage includes the root. The use of only one

lineage per replicate, however, discards much potentially useful information and requires many

replicates to be generated since the lineage space in each tree can be large.

The selection of a random lineage also introduces bias into the sample, as successful lin-

eages will have had more transmissions and are therefore more likely to be sampled. This

sampling bias is toward more successful viral strains; surviving lineages are over-represented,

but these are not necessarily more evolved lineages.
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2.5.2 Tree Summary Statistics

To generate tree summary statistics, the root is positioned at the centre of the tree and the total

epidemic length is divided into concentric bins; for each graph edge that crosses the concentric

bin line, the ancestor node is determined. The parameters recorded for this ancestor node are

the initial conditions for the within-host model that established the ancestor’s node’s infection;

it is these parameters that are used to calculate the summary statistics. Since the number

of transmissions used to generate this summary statistic differ across replicates, a weighted

average accounting for this difference must be considered when combining the results from

multiple replicates.

The use of the ancestor node’s parameters is a required simplification that does not account

for within-host evolution that has occurred between the time the ancestor node was infected

and the time at which the graph edge was sampled. This simplification is required since the

establishment of a new infection is a stochastic process and the evolution at the time of the

sample, when the concentric bin line crossed the graph edge, does not predict the parameters

of the virion that was ultimately transmitted.

Summary statistics determined in this way have the advantage that nodes that result in

multiple transmissions will be counted multiple times; this advantage is distinct from the dis-

advantage of counting the statistics from every lineage discussed in the preceding section,

2.5.1.

In contrast, summary statistics determined in this way have the disadvantage of averaging

all transmissions, such that transmissions that result in extinct lineages are included along with

the surviving lineages. This can result in the calculated mean value “jumping” in value when

a lineage, or branch, does go extinct. For this reason, the choice of bin width can affect the

resultant statistic. Finally, statistics determined in this way never consider the leaves, since

only parameters from ancestor nodes are recorded.
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Figure 2.3: Panel (a) shows the solution to a within-host model using the best-fit parameters
for patient seven from an early HIV study from Stafford et al. Panel (b) displays the solution to
the same within-host model using the average estimated parameter values from the same study
[Stafford et al., 2000]. The yellow line represents the viral load and the blue line represents the
number of infected cells.

2.6 Model Parameters

A major drawback of a complex simulation model is the number of model parameters and

the model’s sensitivity to those parameters. Choosing the default parameters for our model

we faced several challenges: individuals infected with HIV-1 present large variability in vi-

ral trajectories; choosing ensemble parameters from various studies and individuals can lead

to unrealistic within-host viral trajectories which do not share the qualitative features of the

individual infection time courses that were used to estimate these ensemble parameters; and

within-host models in the literature are variable and are largely purpose-specific, so the trans-

lation of parameters between different models is required.

We have chosen to draw our initial simulation parameters from as few study participants

and studies as possible. For our within-host parameters we use best-fit parameters for the par-

ticipant that most closely matched the average parameters in [Stafford et al., 2000]; a solution to

a within-host model using these best-fit parameters for participant seven, or using the average

estimated parameter values from that study, are compared in Figure 2.3.

For each simulation trial the parameters shared by all experiments are fixed, while the pa-

rameters of interest for that trial are varied in each experiment. For full details of the parameters

used for the trials considered in Chapter 3, see the full trial definitions in A.1.
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parameter description units value reference
λ Growth rate, uninfected immune cells cells·(ml·day)−1 x2

0(5.7 × 10−5) [Stafford et al., 2000]
M(β(i; β0,h, βM)) mean of the β kernel ml·(cells·day)−1 0.0741 [Stafford et al., 2000]
M(δ(i; δ0, δM)) mean of the δ kernel ml·(cells·day)−1 0.0741 [Stafford et al., 2000]

d death rate, uninfected immune cells day−1 5.7−5 [Stafford et al., 2000]
M[K(ζ)] mean of the mutation kernel 5 × 10−5 [Lythgoe et al., 2013]

Table 2.2: Shared within-host simulation parameters for most experiments. For full details for
each experiment, see appendix A.1.



Chapter 3

Multi-scale Model: Results

3.1 Within-host Model

The typical time course of a single within-host infection, using parameters from the trial Pri-

mary, experiment 1, is shown in Figure 3.1. Here, the infection begins with a single infected

cell in mutation class 0, and progresses for five years. For visual clarity, only actively infected

cell classes are shown (colours), the sum of the actively infected cell densities is shown in

black. Vertical bars illustrate the times at which a transmission event occurred, causing an

infection in a new host.

Figure 3.1 illustrated only the actively infected cells, yi. The density of infected cells in the

latent reservoir is determined by the entrance rate into the latent compartment γ, activation rate

from the latent compartment α, and the rate of cellular proliferation of the immune cells in the

latent compartment ρ. In our simulation, the parameter ρ is used to maintain the relative size of

the latent reservoir such that the total density of latently infected cells is equal to the density of

actively infected cells. Figure 3.2 shows a comparison of the size of the latent reservoir with the

actively infected compartment, using the cellular proliferation rate ρ to maintain equality. The

results shown are using parameters from Grade experiments 2, 5, 8, 11 and 14. Trial definition

details can be found in Appendix A.1.

27
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Figure 3.1: The typical time course of a single within-host infection, using parameters from
the trial Primary, experiment 1. Actively infected cell classes are shown (colours), the sum of
the actively infected cell densities is shown in black. Vertical bars illustrate the times at which
a transmission event occurred, causing an infection in a new host.

Figure 3.2: Comparison of the relative density of infected cells in the latent reservoir with
variation of entry rate γ and cellular proliferation rate ρ set to maintain equilibrium. The
results shown are using parameters from Grade experiments 2, 5, 8, 11 and 14. Trial definition
details can be found in Appendix A.1. The solid lines show the actively infected cells and the
dashed lines the latently infected cells. In experiment 14 with γ = 0.1, the dashed turquoise
line, is above the actively infected cells because even with ρ = 0 the number of latent cells at
equilibrium is higher than the number of infected cells at equilibrium. The dashed orange line
from experiment 2, has γ = 0 and the latent reservoir remains at zero.
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(a)

(b) (c)

Figure 3.3: Solutions of the within-host model showing the relative frequency of phenotypic
mutation classes, with mutation classes 1 through 4 shown as early mutation classes, 5 through
8 as middle mutation classes, and classes greater than 8 combined as the late mutation classes.
The top panel, (a), contains a solution to the initial within-host model for the relative frequency
of infected cell mutation classes from Experiment 271 in the trial Blueberry where γ = 0. The
left panel, (b), contains the relative frequency of infected cell mutation classes yi and the right
panel, (c), the relative frequency of the latent reservoir li mutation classes from Experiment
271 in the trial Blueberry where γ = 0.02, α = 0.045 and ρ = 0.035. The trial definition is
available in Appendix A.1.
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An example of the progression through mutation classes during the course of a single

within-host infection is shown in Figure 3.3, both with and without the latent reservoir. To

better visualize this progression, relative cell densities are plotted, with mutation classes 1

through 4 shown as early mutation classes, 5 through 8 as middle mutation classes, and classes

greater than 8 combined as the late mutation classes. In panel (a) there is no latent reservoir,

whereas in panels (b) and (c), with a γ value of 0.02, a ρ value of 0.035 and an α value of 0.045,

the latent reservoir compartment is equal in size to the actively infected compartment and the

mutation classes in the latent reservoir lag very slightly behind the mutations in the actively

infected compartment.

3.2 Multi-scale Model

We are interested in the evolution of both transmission fitness and within-host fitness. As

explained previously, within-host fitness increases through evolutionary changes in δ, the death

rate of infected cells.

To facilitate comparisons, simulations are organized into trials, experiments, and replicates.

The analysis in this chapter focuses on experiments from the Primary trial and all experiments

are from this trial unless otherwise noted. Parameters are varied between experiments to allow

the comparison of effects, see 3.1. Each experiment is then repeated in a number of replicates,

with the same parameter values, where each replicate generates a transmission tree.

The mean value of δ calculated from each transmission tree, which is generated in each

replicate, is used to quantify changes in δ for each experiment. The time series of each mean

value of δ generated from an experiment over the epidemic is referred to as a trajectory. Figure

3.4 shows the resulting trajectories from the transmission trees that survived until the end of the

simulation at 200 years. Each transmission tree is summarized into a mean trajectory using the

tree summary method and the distributions of trajectories at 200 years, the final time in the trial

Primary, are used to compare experiments. The definition of the experimental parameters for
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Figure 3.4: Each thin line represents the mean δ value for one replicate calculated with the
tree summary method, that is, the mean δ value averaged over a single transmission tree from
experiment 5 (thin purple lines) or 7 (thin blue lines). The thick lines represent the mean of all
the replicates for experiments 5 (purple) and 7 (blue).

the Primary trial are found in Table 3.1 and the full definition of the trial is found in Appendix

A.

Figure 3.4 shows the cloud of individual evolutionary trajectories that result from the tree

summary statistics for each replicate. Each replicate of 1000 for the trial Primary was then

summed to create the trial average (thick lines in the figure). In the sections to follow, we

compare the distributions of averaged tree statistics to determine significance across trials,

comparing mean tree statistics over time and also at the final point of the simulation.

The distribution of parameter averages across replicates vary with time; all trees in an ex-

periment will start at the same point and then possibly diverge as the epidemic progresses

over time. But the statistical power of this divergence is balanced by the loss of replicates as

transmission trees go extinct. In Figure 3.5 we see that for longer final times, fewer transmis-

sion trees are available (purple lines/axes), and that the p-value for significance between two

experiments fluctuates, depending on the final time chosen. Nonetheless, as shown in these

typical examples, significant results remain very significant over the time course of the epi-

demic (panel b), while insignificant results vary greatly as transmission trees go extinct but
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Figure 3.5: P-value for the difference in sample medians, compared pairwise over the length of
the epidemic, for experiments 3, 4 in panel (a) and 9, 13 in panel (b) from a two-tailed Mann-
Whitney test.

never reach a level of significance (panel a). We have chosen to look at the distribution of

transmission trees at the end of the simulation to allow the rate of extinctions over time to slow.

The effects of transmission fitness on the evolution of δ are included in the simulation

through, φ, transmission fitness. To analyze the impact of including transmission fitness in the

simulation a control case for each parameter set, the fixed model, is also simulated. Recall,

from the previous chapter, that transmission fitness effects are included in the full model of

the simulation by linking the evolution of φ with the number of within-host mutation classes

that a virion in the transmission inoculum has passed through. In the fixed model this linkage is

broken and the distribution that φ is drawn from is fixed; in the trial Primary when a fixed model

is simulated that distribution is fixed to the distribution that arises when mutation class 0 is

transmitted to the next infected host. This results in limited random evolution of φ independent

from the the evolution of δ. In each experiment which model is simulated, the full model vs.

the fixed model is recorded in the control parameter. e.g. in the Primary trial, experiment 1 is

simulated under the full model and experiment 2 has the same parameters as experiment 1, but

is simulated under the fixed model.

The inclusion of between-host fitness effects, the full model, prevents δ from evolving as

quickly as it does when uncoupled from the evolution φ. The results of the trial Primary

show this key result in Figure 3.6. Here, we can compare δ evolution between experiments
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# experiment control µ(BN) latent γ λδ
1 Primary1 Full 1 – 0 0.0003
2 Primary2 Full 1 LR 0.02 0.0003
3 Primary3 Fixed 1 – 0 0.0003
4 Primary4 Fixed 1 LR 0.02 0.0003
5 Primary5 Full 2 – 0 0.0003
6 Primary6 Full 2 LR 0.02 0.0003
7 Primary7 Fixed 2 – 0 0.0003
8 Primary8 Fixed 2 LR 0.02 0.0003
9 Primary9 Full 1 – 0 0.003
10 Primary10 Full 1 LR 0.02 0.003
11 Primary11 Fixed 1 – 0 0.003
12 Primary12 Fixed 1 LR 0.02 0.003

Table 3.1: Experimental parameter definitions for the Primary trial. The control parameter
indicates if the full model or fixed model is simulated. Column headings refer to: µ(BN) the
bottleneck inoculum size; latent and γ both indicate if a latent reservoir compartment was
simulated; λδ is the parameter determining the shape of the fitness kernel.

1 and 3 (full versus fixed model, without latent reservoir) and between experiments 2 and 4

(full versus fixed model, with the latent reservoir); both comparisons yield highly significant

differences in the final distribution of δ (see Table 3.2). We also see that the mean transmitted

mutation class is reduced with the inclusion of the linked random mutation effects on φ (the

full model), as seen in Figure 3.8a and Table 3.2. Both of these results match our intuition that

allowing transmission fitness to evolve without selection during within-host evolution increases

the probability of transmitting a less evolved phenotype, which will slow the between-host

evolution of δ.

In both the Full and Fixed models there is not a significant difference between final distri-

butions of δ for experiments with a latent reservoir, 2, 4, and without a latent reservoir, 1, 3.

There is apparent separation of the mean evolutionary paths in both cases, and the differences

are stronger across the epidemic and in the final distribution of δ in the Full model, between

experiments 1, 2. But the final δ distributions in both comparisons between 1, 2 and 3, 4 were

not sufficiently different to reach statistical significance, see Table 3.2. The effect of the latent

reservoir is, however, strong enough to cause a significant reduction in the average transmit-

ted mutation class with the inclusion of the latent reservoir. This agrees with the understanding
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Figure 3.6: Effect of the latent reservoir, γ, and the effect of mutation class dependent selection
of transmission fitness, φ, on the evolution of δ. The left-hand side shows the evolution of
δ over 200 years of the simulation from experiments 1, 2, 3, and 4. The top two lines in the
left panel are the simulation results for experiments 1 (blue), 2 (yellow), under the full model,
and the lower two lines show results from experiments 3 (green), and 4 (red), under the fixed
model. The first two distributions on the right compare the fixed and full models, i.e. effect
of mutation class dependent selection of φ, and the third and fourth distributions compare the
effect of the HIV-1 latent reservoir. Refer to Table 3.2 for comparison details. Significance at
the 1% (***), 5% (**), 10% (*) levels is the same as in Table 3.2.

that with the inclusion of a latent reservoir, some virus is shielded from mutation, and archived,

which slows within-host evolution and that this effect would be amplified by the inclusion of a

fitness cost of mutation. The marginal amplification of the latent reservoir effect can be seen

in the differences between the average transmitted mutation class in figure 3.8a which shows a

significant difference between experiments 1 and 2, experiments 3 and 4, and all comparisons

between the Full and Fixed models, see Table 3.2. Although amplified by the inclusion of a

fitness cost of within-host mutation the effect of the latent reservoir is small in comparison with

direct effects of mutations that are deleterious to transmission.

We also considered the effect of changes to the size of the transmission bottleneck, as

described in detail in Chapter 2. In the full model, Figure 3.7, we see that the evolution of δ is

slowed by an increase in bottleneck inoculum size. Changes to the bottleneck inoculum size in

ceteris paribus comparisons have a significant difference in cases with the latent reservoir, 1, 5
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Figure 3.7: Effect of bottleneck inoculum on virus evolution. The left-hand side shows the
evolution of the mean of δ over all replicates for 200 years of the simulation from experiments
1, 2, 3, 4, 5, 6, 7, and 8. The top two lines in the left panel are the simulation results for the full
model, bottleneck inoculum 2, with and without the latent reservoir (experiments 5 (purple),
6 (brown)), the middle two lines show the same results for a bottleneck inoculum of 1 (exper-
iments 1 (blue), 2 (yellow)). We see that a larger transmission bottleneck slows within-host
evolution. The bottom group of four lines show results from the fixed model, in which the
bottleneck size has no effect; results from experiment 3 (green), and 4 (red) with a bottleneck
inoculum of 1 and 7 (light blue), 8 (light yellow) with a bottleneck inoculum of 2 are shown.
Refer to table 3.2 for comparison details. Significance at the 1% (***), 5% (**), 10% (*) levels
is the same as in Table 3.2.

and without the latent reservoir 2, 6. This accords with our intuition that when the bottleneck

inoculum is larger, there is a higher chance of sampling a virion with a low mutation class

and correspondingly higher transmission fitness. Since the virion with the maximum φ wins

the local fitness competition and can potentially transmit, larger bottlenecks slow the rate of δ

evolution in the full model.

Differences between experiments with different mean bottleneck inoculum sizes are not

seen when the fixed model is simulated, comparisons between experiments 3 and 7 or experi-

ments 4 and 8. This agrees with our expectation that the within-host mutation does not affect

the distribution from which the transmitted φ is drawn in the fixed model.

The bottleneck size does not affect our previous conclusions about the presence or absence

of a latent reservoir: the p-value comparing experiments with and without a latent reservoir is
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(a) (b)

Figure 3.8: Mutation class and φ results for experiments from Primary. Panel (a) shows the
mean transmitted mutation class averaged over the epidemic and panel (b) shows mean φ at
200 years. For analysis of the significance of the differences between select experiments see
Table 3.3.

0.17 with mean bottleneck inoculum size of 1 (experiments 1 and 2), and is 0.16 with a mean

inoculum size of 2 (experiments 5 and 6).

We have tested an extreme case for the size of the bottleneck inoculum; the inoculum is

possibly orders of magnitude larger than one or two virions, but the effect of the distribution

of the transmitted φ is largest with this small size and quickly diminishes. Simulations of the

maximum φ value obtained for a given bottleneck size reveal that a doubling of the bottleneck

inoculum from 1 to 2 virions has a much more pronounced effect on the distribution of the

transmitted value of φ than a doubling from 5 to 10.

3.3 Sensitivity Analysis

To analyze the sensitivity of the simulation we considered 10% changes to the following param-

eters: the latent reservoir entry rate, latent reservoir activation rate, the shape of the mutation

kernel, the shape of the fitness kernel, the initial transmission fitness, and the size of the latent

reservoir, see Table 3.4. These parameters were chosen as those which had the most uncer-

tainty in their quantitative values. We found no significant changes to the final median value

of δ except a single case, in which a 10% increase to α resulted in a change with a p-value of
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comparison # LR BN control δ sig. mutation sig. φ sig.
LR vs no LR 1, 2 - 1 Full - *** -
Full vs Fixed 1, 3 LR 1 - *** *** ***
LR vs no LR 3, 4 - 1 Fixed - *** -
Full vs Fixed 2, 4 no LR 1 - *** *** ***
LR vs no LR 5, 6 - 2 Full - *** -
Full vs Fixed 5, 7 LR 2 - *** *** ***
LR vs no LR 7, 8 - 2 Full - *** -
Full vs Fixed 6, 8 no LR 2 - *** *** ***
BN 1 vs BN 2 1, 5 LR - Full *** *** ***
BN 1 vs BN 2 2, 6 LR - Full *** *** ***
BN 1 vs BN 2 3, 7 no LR - Full - *** -
BN 1 vs BN 2 4, 8 no LR - Full - - -

Table 3.2: Results where the compared experiments are given in the second column. See Table
3.1 for the experiment definitions. Significance includes the Bonferroni correction for the 12
simultaneous tests and is given for difference in sample medians determined from a two-tailed
Mann-Whitney test at 1% (***), 5% (**), 10% (*) significance level. See results Table 3.3 for
p-values.

0.046. Therefore our results are quite robust to changes in this set of parameters. We further

considered qualitative changes to the shape of the final distribution of δ, see Figure 3.9.

Changing the entry rate γ while holding the size of the latent reservoir fixed yielded a more

complex picture; while 10% changes in γ do not have a significant effect in the final median

value of δ, both the larger and smaller values of γ produced multi-modal distributions of δ,

where the central peak of the distribution has much less variance and there are two peaks on

each side flanking the central peak. We suggest that this effect is possibly caused by transmis-

sion trees that have large components that have yet to mutate (the higher sub-peak), or have

yet to go extinct (the lower sub-peak). Simulating the epidemic for longer would presumably

result in a smoother δ distribution with less variance, but would be computationally prohibitive.

3.3.1 Conclusions

With the inclusion of random mutations affecting transmission, tied to the time under mutation

pressure (i.e. the number of mutation classes a virion has transited), evolution of within-host

fitness is slowed over the epidemic. Also, the evolution of transmission fitness within-host has
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Figure 3.9: From left to right is the simulations sensitivity to: latent reservoir size, latent
reservoir size entry ∆γ, shape of the mutation kernel λµ, latent reservoir activation ∆α, shape
of the fitness kernel, ∆λδ, and initial transmission fitness ∆φ, comparing 10% changes to the
parameters to the effects those changes have on the final δ distributions. For a table of results
see 3.4

a greater impact on the slowing of the evolution of HIV-1 between-hosts than the impact from

the inclusion of a latent reservoir. Although we do not see significant changes in the evolution

of δ with the inclusion of a latent reservoir, we do see a change in the average mutation class

of transmitted virions, Figure 3.8a. There is an increase in the probability that a less evolved

virion will be selected for the possibility of transmission.

We used conservative assumptions for the shape and strength of the mutation kernel, assum-

ing that mutations affecting transmission fitness are random and only correlated with mutations

affecting within-host fitness through shared time under mutational pressure. If we instead as-

sumed that beneficial mutations to within-host fitness necessarily result in detrimental changes

to between-host fitness, we would likely see an increase in the separation between experiments

with and without a latent reservoir.

The simulation is computationally expensive and produces a large number of transmis-

sions; within each experiment, transmission trees were significantly variable. This variability

remained even after 1000 replicates. Producing reliable summary statistics proved challenging
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and controlling the exponential growth of the transmission trees introduced uncertainty into

the results. Given the number of assumptions required to build the model and the number

of parameters and modelling choices, we have confidence in the direction and significance of

changes to the final distributions of δ, but do not have confidence in the quantitative magnitude

of these changes. In particular, the choice of the minimum attainable δ, controlled by the fitness

kernel, determined the magnitude of changes we see to δ. The minimum attainable δ, which

we set equal to the clearance rate of healthy CD4 cells, d, was never reached in simulation but

did determine the magnitude of both within- and between-host evolution observed.

Considering relative changes to δ as a measure of within-host fitness change, we find that

with the inclusion of random within-host mutations affecting transmission fitness, an HIV-1

latent reservoir is not required and see a reduction in the evolution of within-host fitness over

the epidemic.
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Chapter 4

HIV subtype fitness differences in vivo

4.1 Introduction

There is evidence of phenotypic differences in replicative fitness, disease progression, and

epidemiology among HIV-1 subtypes [Bertels et al., 2017, Venner et al., 2016, Kyeyune et al.,

2013]. Previous direct in vitro growth competitions have shown subtypes A and D to be 100-

fold more fit than subtype C [Morrison et al., 2007]. In vitro studies have also shown that

subtype C has slower cell fusion times than subtypes A and D [Venner et al., 2016].

In the same dataset, the mean loss of CD4 cell concentration per week differed between

subtypes, and a difference was also seen between Uganda, with mainly subtypes A and D, and

Zimbabwe, with mainly subtype C, where the loss of CD4 cells was slower in both Zimbab-

wean woman and for subtype C [Venner et al., 2016].

How these in vitro fitness differences between subtypes manifest in HIV infected indi-

viduals is not well understood. Our goal is to look for evidence of differences in replicitive

fitness and cell fusion times between subtypes in vivo that are been seen in vitro [Venner et al.,

2016, Abraha et al., 2009, Ariën et al., 2005, Ball et al., 2003].

42
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Uganda Zimbabwe
A 84 3 87
C 6 174 180
D 34 1 35

124 178 302

Table 4.1: Summary of study participants’ region and HIV-1 subtype.

4.2 Study Population

Over four years, from November 1999 to January 2004, over 8000 woman seeking reproduc-

tive and general healthcare services were screened at three sites in Uganda and four sites in

Zimbabwe. Of the woman screened, 2235 from Uganda and 2296 from Zimbabwe were in-

cluded in the study population. Study participants were aged 18-35 years, sexually active, not

HIV infected, and had not used injection drugs nor had a blood transfusion in the three months

prior to enrolment [Morrison et al., 2007].

Follow-up screening visits for study participants were scheduled every 12 weeks, for 15 to

24 months. At the follow-up screening visits, study participants donated blood samples and

serum was tested for HIV using enzyme- linked immunosorbent assays (ELISA) for HIV-1

infection and infection was confirmed with a Western blot test. During the study period, 302

of the study participants contracted HIV and are included in our dataset. Participants who

contracted HIV-1 subtypes A, C, and D are represented in the data with the division between

subtype and region detailed in Table 4.1.

When a study participant tested antibody positive (AB+), HIV polymerase chain reaction

(PCR) was performed serially on samples from their previous visits. The date of HIV acqui-

sition in the dataset was defined as the date of the first positive PCR result [Morrison et al.,

2007]. The results of the PCR test for HIV-1 viral RNA was recorded in the dataset as RNA+

or RNA- for each sample. Participants who tested antibody positive for an HIV-1 infection

were scheduled to return for additional appointments at two week intervals twice, at four week

intervals twice, and then every three months.
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There are two possible scenarios upon discovery of an infection at a follow-up visit: a

participant’s sample from a previous screening visit tests RNA+ or RNA-. If a sample from a

participant’s previous screening visit tests RNA+, then the true date of infection was at least

83 days prior to detection and our data does not contain the initial viral growth phase.

If a participant’s sample from the previous screening visit tests RNA-, then the participant

became infected in the intervening 83 days between the follow-up visit in which the participant

had an AB+ test and the previous screening visit. This window is further narrowed with the

assumption that the immune system takes 7 to 14 days for detectable antibodies to develop

with negative results from the ELISA for up to 14 days post infection [Alexander, 2016]. Thus,

the true date of HIV acquisition falls within 83 to 7 days prior to detection. We can hope to

accurately capture the viral growth phase only if the time of first detection was before the viral

peak, which we assume to occur within the first 27 days post infection [Karlsson and Mittler,

2000]. Therefore the participant would have to become infected within 20 days of detection.

The two detection routes are summarized in Figure 4.1 where the red indicates the possible

time of first infection.

4.2.1 Within-host model

In this chapter we use a standard three compartment within-host model of HIV-1 [Nowak and

May, 2000]. A schematic of this three compartment model is found in Figure 4.2. This within-

host model considers a well stirred environment and models a systemic HIV infection in the

blood. The modeled compartments are: target cells, T , which are activated CD4+ T-cells that

can become infected; infected cells, I, that are infected CD4+ T-cells which produce free virus;

and free virus, V , which infects target cells. Target cells have a constant entry rate, λ, a natural

death rate, d, and become infected when they interact with free virus at rate β and join I.

Infected cells are lost with death rate δ. Free virus is produced from I with burst size p and
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days
Route 1

AB-/RNA+

0

−83−97 −27 20

83

0

AB+/RNA+

97

days
Route 2

AB-/RNA-

−83

9320−20

0

AB+/RNA+

14 28 56 83

Figure 4.1: The date of participant samples are marked with vertical lines. The days of potential
infection are indicated in red. The days in which an infection would have to have occurred so
our data potentially contains the viral growth phase is marked in solid yellow. Only infections
acquired in the area marked in alternating red and yellow have the potential to contain the viral
growth phase. Thus in our dataset only 33 participants are expected to have been infected 7 to
20 days prior to detection, and therefore have the time to set point information captured. The
grey bars represent the time past which peak viremia has likely already occurred in our data.

free virus is cleared with clearance rate c. This yields the system

dT
dt

= λ − dT − βTV

dI
dt

= βTV − δI (4.1)

dV
dt

= pI − cV.

4.2.2 Time to setpoint viral load

This standard host cell limited HIV model, (4.1), is well-studied; it has been shown that a

viral phenotype with higher replicative fitness will more quickly reach a higher peak viremia.

Having infected all the circulating target cells, the free virus in this model will also decay to a

stable setpoint viral load more quickly than a phenotype with a lower replicative fitness [Nowak

and May, 2000].
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T V I

λ

d c δ

β

p

+

Figure 4.2: Schematic diagram of a standard within-host HIV model. The modelled compart-
ments are: target cells, T ; infected cells, I; and free virus, V .

To understand the parameters affecting replicative fitness, consider system (4.1), and let

T = λ
c x, I = λ

c ,V = c
β
v, and t = 1

cτ. This yields the non-dimensional system

dx
dτ

= 1 − Ax − xv

dy
dτ

= xv − By (4.2)

dv
dτ

= Cy − v

where A = d/c, B = δ/c,C = λβp/c3. Examining parameter C, we see that the growth rate of

target cells λ, the interaction infection rate, β, and burst size, p, all increase the growth rate of

the virus, and the free viral clearance rate c decreases the growth rate of the virus.

To detect phenotypic differences in replicative fitness between HIV-1 subtypes, we use time

to setpoint viral load as a proxy for replicative fitness. We follow the method of [Morrison et al.,

2010] and attempt to use Locally Weighted Scatterplot Smoothing (lowess) smoothing to detect

the time to viral load setpoint in our data. The participant data is considered together because

each individual participant has too few data points to consider a local regression that could

capture the time to the viral load setpoint. The first positive test for RNA is used as the time

of initiation of infection for each participant. Included in the appendix are Figures B.6 and B.7

which show the results of lowess smoothing using a sliding window of 20% of the timecourse,

and including all data in our dataset.

Identifying the time to the viral load setpoint in the data with lowess smoothing requires a
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decision rule because the begining of the stable viral load is not well defined. In the following

analysis, we identified the first minimum after the highest rate of descent and use this as a

proxy for the time to setpoint viral load.

The choice of the percent of the time course to include in the local smoothing has a strong

effect on the time to setpoint viral load that is identified. In Figure 4.3 we see the lowess

smoothing results for randomly chosen 90% boot strap samples, using smoothing windows

that include 10 to 100 percent of the timecourse from the first 300 days for each participant.

These results, summarized in Figure 4.3, show that the choice of lowess smoothing percentage

has a strong effect on the observed time to setpoint. In Figure 4.4 the relative order among

subtypes of time to setpoint also changes with the choice of smoothing percentage. With these

results we conclude that lowess smoothing is not a reliable method for comparing time to

setpoint viral load or the setpoint viral load between subtypes in our data.
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(a) (b)

(c)

Figure 4.3: Bootstrap samples using 90% of the data for the first 300 days were generated for
subtypes A, C, and D shown on panels (a), (b), and (c) respectively. Each dot’s location with
respect to the vertical axis represents the estimated time to setpoint using the first minimum
after the highest rate of descent method, and each dot’s location with respect to the horizontal
axis represents the percent of the first 300 days of data used in the local smoothing window.
The colour of the dots represents the plasma viral RNA/ml at setpoint. The red ‘*’ represents
the results from Morrison et al. 2010 [Morrison et al., 2010]. The horizontal location of ‘*’
was arbitrarily chosen since Morrison et al. 2010 did not restrict the data to the first 300 days
and a direct comparison is not available.
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4.2.3 Best Fit Parameters

A major barrier to finding the individual participant’s best fit parameters for a within-host

model, as well as aggregating the data, is each participant’s unknown date of infection. In the

previous section the participant data were aggregated using first date of an RNA+ sample as

the initiation of infection and all data were aligned at time zero with this initial date for each

participant. This crude approximation is not feasible with the limited number of appointments

for participants in our dataset and would drastically affect the parameter values found as well

as the ability to find best fit parameters. The model dynamics would not fit the data if the date

of infection was off drastically and the model was at near equilibrium.

To overcome this difficulty, we fit the time of infection as an additional parameter in the

model. Best fit parameters were found for the non-dimensional system (4.2) using an iterative

approach and fminsearch in Matlab. The best fit parameters from each previous iteration were

used to scale the viral load from the participants to fit in the next iteration. The system was

initiated from the best fit parameters found for the dimensional system. This method was

necessary because the units for time and viral load had to be scaled into non-dimensional form,

which is not exact unless the exact parameter values are known. Figure 4.5 contains some of

the best fits that were found, but adequate model fits were not found for a large number of

participants. Too few acceptable sets of best fit parameters for individual participants were

found to analyze the differences in replicative fitness between subtypes. We propose that the

participants where best fit parameters were not found did not contain the early dynamics of the

virus, the dynamics that our within-host model was modelling. In the next section we explore

the probability that our data contained these early dynamics given the appointment schedule

followed by each participant and whether this appointment timing allowed for high quality fits

with acceptable uncertainty so conclusions about replicative fitness can be safely drawn.
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Figure 4.5: participant data, red circles, shown with the solution to 4.1 using the individual
best fit parameters found. Insufficient participants have acceptably good fits to analyze the
differences in replicative fitness between subtypes.
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Figure 4.6: The solid lines are the simulated participant types and the dashed lines are the mean
of the fitted parameters for the 236 simulated participants with simulated realistic appointment
timing and the true time of infection known. The two types of simulated participants share
the parameters λ = 12, d = 0.04, p = 20, c = 0.1. and participant type A has parameters
β = 3 × 10−5, δ = 0.848 and participant type B has parameters β = 8.1 × 10−5, δ = 1.22. Thus
the β parameters have a 92% difference and the δ parameters have a 36% difference.
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4.2.4 Simulated Participant Data

Participants’ appointment timing has an effect both on the best fit parameters found, and also

on the probability that the dataset contains viral load data that might allow for an accurate

detection of the replication rate. To quantify the uncertainty in the best-fit parameters and to

elucidate the probability that the dataset contains the necessary viral load data, we simulated

data with three appointment timing regimes and two phenotypically different HIV types. Figure

4.6 shows the two simulated HIV types with different replicative fitness and death rate of

infected CD4 cells.

Three screening visit appointment timing regimes are considered: ideal, fixed, and ran-

domly sampled realistic. The ideal regime has the screening visit appointment schedule fixed

with appointments every two weeks for 168 days. The date of the initiation of the virus is

chosen randomly from 0 to 83 days before the first screening appointment that is simulated.

This regime has 7 more screening appointments than were planned in the study. Figure 4.7

shows data simulated with ideal appointment timing, for two simulated participants of type

A and B, along with the solution to the model with best-fit parameters. The number of days

between the screening appointment at which the virus was detected and the date of initiation

of the infection is the shift required to fit the simulated participant data with the correct date of

initiation of infection.

The fixed regime has the screening visit appointment schedule fixed with appointments

at 14, 28, 56, 84, 168 days and the date of the initiation of infection is chosen randomly from

0 to 83 days prior to the first visit at which the infection was detected. This regime would

correspond to the appointment timing in the clinical study, if appointments could be scheduled

exactly as planned and no appointments were missed.

In reality, appointments in the clinical study did not occur at precise times, and adherence

to the study regime was imperfect. In the randomly sampled realistic regime, as in the fixed

regime, the infection is initiated on date randomly chosen uniformly from 0 to 83 days prior

the first viral load sample. But, in the randomly sampled realistic regime, realistic timing for
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(a) (b)

Figure 4.7: Simulated participants with ideal appointment timing, where the blue dashed line is
the actual model, the orange line is the fitted model where there are data-points, and the purple
line shows the fitted model prior to the first appointment. Panel (a) shows a participant with
a type A simulated infection where the first data point is 7 days post infection. In this case
where the time of infection and the first data point are closely aligned the models with best-fit
parameters closely match the viral load trajectory but misclassify the time of infection by two
days. Panel (b) shows a participant with simulated type B infection and ideal appointment
timing, where the first data point is 30 days after the time of infection. In this case the solution
to the model with the best-fit parameters also closely matches the data points, but the estimate
of the early infection dynamics and the estimate of the time of infection do not match the
simulated values.

the participants’ follow-up screening appointments is also simulated to match the appointment

timing found in the dataset. Histograms of the waiting times seen between appointments are

included in the Appendix in Figure B.1.

To match the observed appointment timing distribution, each participant’s appointment tim-

ing schedule is simulated as a renewal process. To create a distribution of appointments to

match the data, future appointments are normally distributed around the next scheduled differ-

ence in the appointment schedule regardless of the time of the current appointment. That is,

if the participant is visiting for their first follow-up, that would originally have been scheduled

around 14 days from the discovery of infection, the next appointment is randomly chosen from

a normal distribution with mean 14 days from the current appointment. To match the actual

distribution of appointment times, participants also had to randomly miss appointments. The
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Figure 4.8: The simulated appointment timing distribution generated with a renewal process is
indicated with the red dashed line overlayed with the blue histogram of the appointment timing
seen in our dataset.

probability of a participant missing an appointment is .4, .3, .2, .1 for the first, second, third, and

fourth appointment respectively. Also 40% of participants all miss the frequent appointments

and return only at 84 days. An example of the generated distribution is seen in Figure 4.8.

The two simulated HIV phenotypes had different replication rates, β, and infected cell death

rates, δ. These changes were chosen to allow for realistically different initial growth rates

while still maintaining similar set-point viral loads. Figure 4.6 shows the two phenotypes’

within-host dynamics as well as the results of the mean best fit parameters from 236 simulated

participants with realistic appointment timing. Note that to obtain these fits, we assume that

the infection was detected via route two (Figure 4.1) and that the time of infection is known.

This figure indicates that with a known time of infection, and a large sample of participants

with realistic and unbiased randomly sampled appointment timing, the two HIV phenotypes

can be distinguished.

A major challenge in determining the best fit parameters for our dataset is that the time of

infection of the participants is unknown and also needs to be estimated. Figure 4.7 demon-

strates this problem under ideal appointment timing, which includes a follow-up sample every
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7 days after the virus is detected. In this case if the virus is detected close to the time of in-

fection a reasonable fit to the data was found and the estimated date of infection was close

to the true date. As the date of infection moves further from the date of first detection of the

virus, even with some of the early dynamics captured and fitting parameters for the reduced

dimension model (4.2), the estimates of the time of infection and the best-fit parameters did

not match the simulated true parameters and time of infection. Furthermore, a solution for the

best-fit parameters was not always possible to find. The unknown time of infection prevented

any confidence in the estimated parameter values.

To understand the limitations of finding the best fit parameters, even if the time of infection

was known, we found best fit parameters for the 236 simulated participants using the true time

of infection. The two simulated phenotype β parameters differed by 92% while the δ parameters

had a difference of 36%. This difference affects only the reduced dimensional parameters B and

C; the reduced dimensional parameter A = d/c was unchanged, since d and c were identical

between phenotypes.

The number of participants that contain the time to peak viral load information is deter-

mined by the shift from the day of initiation of infection and the day of the screening visit at

which the virus was first detected. In Figure 4.9 the simulated participants best-fit parameters,

for the reduced dimension system 4.2, were found with the sample points shifted to the correct

number of days from the date of initiation of infection.

Considering this best case scenario, in which the true date of infection is known, we find

that the reduced dimensional parameters are correctly identified as significantly different for the

ideal appointment timing when all participants with a shift less than 50 days are considered.

These differences lose significance, however, when all participants are considered. If only

participants with a shift less than 15 days are considered, parameter A is incorrectly identified

as different between phenotypes. Note that in this case, only 32 of the 236 participants in the

study are considered for analysis.

The fixed appointment timing performed well only when the analysis was restricted to
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participants for whom the time of infection was near the time of detection. When participants

with longer shifts were included, parameters B and C did not show significant differences, and

parameter A was sometimes misidentified as significantly different between subtypes.

For the random appointment timing regime, the ability to detect the difference between

phenotypes for parameters B and C increased as participants with longer shifts were included

in the analysis, and could be detected for sample sizes greater than 50 participants which corre-

lates with a shift of more than 14 days. The A parameter for the reduced dimension system was

never misidentified in the random appointment timing regime. Here the random appointment

timing out-performed the ideal appointment timing, but failed to identify the early dynamics if

the first appointment was too close to the time of infection. If the time of detection is close to

the time of infection the probability that there is a follow-up appointment near the peak viral

load is reduced because the initial appointment is before the viral peak.

Using the simulated participants with realistic appointment timing and an unknown time

of infection, we calculate the expected number of participants of each subtype with enough

information to capture the early behavior in the dataset, that is, with adequate data within the

first 50 days post infection. In a dataset of 302 participants the mean expected number of each

subtype are type A = 22, type C = 27, and type D = 9.

Figure 4.9 demonstrates that phenotypic differences between the two subtypes could in fact

be detectable, if the time of infection for each participant were known. Unfortunately, Figure

4.7 demonstrates that with even a 30 day shift between infection onset and data collection, the

time of first infection is not accurately determined by data fitting. Considering both our inabil-

ity to determine the time of infection, the different phenotypes, and the sample size required to

detect those phenotypes, we conclude that the dataset does not contain enough information to

determine the phenotypic differences between subtypes, even if they do exist.
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Figure 4.9: The p-value that the best-fit parameters for the two simulated participant pheno-
types have unequal means with the 236 simulated participants with ideal (a), fixed (b), and
random (c), appointment timing. The red, blue and green lines, corresponding to the left axes,
represent the p-values for the dimensionless parameters A, B, and C respectively. The right
axes and the circles show the sample size available for a given date of infection within the first
number of days shown on the horizontal axes.
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4.2.5 Conclusion

Fitting within-host dynamics, without the true time of infection, is a difficult problem and

we were unable to find enough high quality fits to the data to determine whether there is a

phenotypic difference between subtypes. Using simulated participant data, we discover that

the expected number of participants for whom the early dynamics are captured in the dataset is

too small to be able to determine, with confidence, a difference between subtypes.



Chapter 5

SHIV Meta Analysis

5.1 Introduction

In vitro fitness competitions between HIV-1 subtypes suggest a relative order in replicative

fitness and that this fitness difference is directly related to host cell entry. During in vitro

fitness competition, subtype B is estimated to have an eight- to ten-fold fitness advantage over

subtype C [Marozsan et al., 2005]. This host cell entry fitness advantage does not translate to an

advantage for the spread of subtype B in the epidemic. HIV-1 subtype C or recombinant forms

containing at least one envelope gene of subtype C accounts for more the 50% of all infections

worldwide. HIV subtype C displaced subtype B and the subtype A/E recombinate, CRF01 AE,

in South China and is an increasing proportion of HIV-1 infections in Kenya [Abraha et al.,

2009, Bbosa et al., 2019].

It appears that the transmission fitness of the virus dominates transmission in the epidemic,

and replicative fitness within host plays a smaller role. The goal of this study is to examine

the evidence that the in vitro fitness advantages of subtype B also exist in vivo, and therefore

the differences in prevalence and growth of HIV-1 subtypes are indeed in spite of a replicative

fitness advantage for subtype B. As seen in Chapter 4, to capture the initial growth of the

virus within host and therefore some indication of the replicative fitness of a subtype in vivo,

60
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requires high sampling at the time of infection. This has proven to be impractical, and even

following approximately 3000 patients with a rigorous schedule of appointments has yielded

an inadequate data set to detect differences in the initial growth phase.

To approach the question of replicative fitness of HIV-1 in vivo we have chosen to con-

sider an animal model of HIV-1, simian/human immunodeficiency virus (SHIV). Given that

both SHIV types use the subtype specific envelope gene from HIV-1, we expect the cell entry

dynamics to be a good proxy for the in vivo HIV-1 dynamics [Sui et al., 2014]. We consider

SHIV SF162 and SHIV 1157 clones, which use the CCR5 co-receptor and are created with

the env gene from subtype B and subtype C respectively, performing a meta analysis of SHIV

infected primates using data from 20 papers [Eugene et al., 2013, Robinson et al., 2010, Le-

derman et al., 2015, Peterson et al., 2014, Lakhashe et al., 2014, Garcı́a et al., 2010, Sholukh

et al., 2015, Polacino et al., 2008, Mumbauer et al., 2013, Harbison et al., 2014] as well as

unpublished data.

Two methods are considered to detect differences in replicative fitness in vivo: a compart-

mental model of viral dynamics is used to find best fit parameters, and the interval with the rate

of maximum growth is found as a more direct proxy of replicative fitness [Nowak and May,

2000, Ribeiro et al., 2010].

First, best fit parameters for a within-host model of viral dynamics are found. These pa-

rameters give insight into the efficiency of host cell entry through the replicative fitness term,

β, which includes host cell entry as one of the dynamic processes it models. Fitting the within-

host model also provides insight into the other life history traits of the virus and a more com-

plete picture of the interactions between host and pathogen.

The selection of a within-host model that is identifiable but also retains the relevant dynam-

ics is challenging. To keep the data fitting process tractable we have chosen to consider a class

of within-host models that do not explicitly consider delays. The efficiency of viral attachment

and time required for host cell entry are indirectly included in rate term β which also includes

the probability of interactions between infected and target cells. Thus the differences in the
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time required for cell attachment or cell entry, which could be what is driving the observed in

vitro replicative fitness differences, are captured by the models.

Experimental and biological differences among primates, which include inoculum size and

infection route, confound estimates of parameter values when fitting viral load to a dynamic

model of acute SHIV from diverse experimental studies. Viral load data outside the exponential

growth phase has a strong influence on the best fit parameters and may obscure replicative

fitness differences. For this reason we limited the data considered to viral load data taken for

the first year post infection.

Second, following a method similar to [Ribeiro et al., 2010] for the determination of the

maximum viral growth rate, the sampling interval with the maximum increase of viral load was

found. This method complements the within-host model as it is a more direct proxy of in vivo

replicative fitness.

A simplified model of the exponential growth phase is developed and used to estimate

the within-host model parameter β from the rate of maximum growth found using interval of

maximum slope. A hybrid model, using a simplified model of the growth phase to detect the

maximum growth rate in the first few weeks of infection, as an alternative to finding the interval

of maximum slope, is left for future work.

Both methods – fitting a within-host dynamics model and finding the interval of maximum

growth – share sensitivity to the sampling interval timing, with the interval of maximum growth

being less comparable across subjects with different sampling intervals than the model fitting

approach.

Using an animal model and SHIV as a method to detect HIV-1 subtype differences has

several limitations. The primates are given viral inoculums that ensure a near 100% infectivity.

This high initial dose of virus may bypass some of the early viral competition. But even the

largest viral inoculums are relatively small compared to the large number of circulating virus

particles during the explosive growth stage of initial infection. With simian immunodeficiency

virus, depending on the challenge method, the dose of the virus inoculum significantly affects
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Figure 5.1: Density plot of SHIV SF162 (Subtype B) in blue and SHIV 1157 (Subtype C) in
red where more data points in an area result in higher colour intensity.

the number of transmitted variants [Sui et al., 2014].

5.1.1 Dataset

Viral load time series for up to one year from 143 primates, yielding 2179 data points, were

compiled from multiple studies and unpublished data. The data represent both rhesus and pig-

tailed macaques infected with SHIV subtype C (SHIV 1157) and subtype B (SHIV SF162).

The primates were challenged with SHIV in three ways: intrarectal, intravaginal, and intra-

venous. Three rhesus macaques that were given a subtype B intravaginal challenge failed to

become infected and were subsequently challenged with a second higher dose; in the results to

follow, the covariate double is used to denote this situation. See Table 5.1 for a summary of

the dataset and Figure 5.1.1 for a representation of the data. In Figure 5.1.1 the wide range of

within-host dynamics and set-point viral loads is clearly seen.

The primates challenged with SHIV SF162 are further divided between SHIV isolates,

SF162, SF162P4, SF162P3N, and SFV162P3. The primates challenged with SHIV 1157

are divided between SHIV isolates 1157ipd3N4, 1157ipEL, and 1157i. The different iso-
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Pigtailed Rhesus
Subtype B 21 91 112
Subtype C 3 28 31

Intrarectal challenge 12 59 71
Intravaginal challenge 48 48
Intravenous challenge 12 12 24

24 119 143

Table 5.1: Primate Data Summary

lates within each subtype are much more closely related than isolates between subtypes. This

smaller within-subtype diversity could also result in fitness differences. For further details

about the data and methods of challenge see Appendix C.

5.2 Best Fit Parameters

5.2.1 Within-host Dynamics Models

A series of within-host nested models are considered. The nested models are derived from

two closely related compartmental models. The base within-host model considered is similar

to the generalized immune response model introduced by [Nowak and May, 2000]. The most

complete model extends the base model to include resting CD4+ T-cells. The addition of a

resting CD4+ T-cell compartment was motivated by finding the best fit parameters for the data

in this chapter as well as the experience gained from chapter 4. The addition of a resting CD4+

compartment accounts for the initial stock of CD4+ cells that cannot be initially infected but

are more quickly available for infection than the CD4+ cells’ reproduction rate. Thus, the

addition of a resting CD4+ cell compartment accounts for the delay in activation of the cells

that are initially available within the host.

The most complete model has compartments representing: resting CD4+ T-cells, z, which

are not susceptible to infection; activated CD4+ T-cells, x, which can become infected; infected

CD4+ T-cells, y, which produce free virus; free virus, v, which both activates an immune
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response and infects activated CD4+ T-cells; and a compartment to capture a general immune

response, u. The second compartment of activated CD4+ T-cells was added to better capture

the dynamics of early infection and to allow the comparison of measured CD4+ T-cells with

the CD4+ levels in the model. In the absence of an activated CD4+ compartment, only cells

that can be infected are considered in the model.

The parameters in this model are: natural growth of naive CD4+ T-cells, λ; natural death

rate of CD4+ T-cells, dx; a function for immune activation rate of CD4+ T-cells function,

A(α, z, y, v, u); infection and interaction rate between virus particles and activated cells, β; in-

creased death rate of infected cells, dy; general immune killing of infected cells, ry; effective

viral burst size, p0; general immune clearance of virus particles, rv; natural clearance of virus

particles, cv; virus induced activation of general immune response, αv; and the degradation of

the immune response, du. This yields the following 11-parameter model of within-host viral

dynamics,

dz
dt

= λ − dxz − A(α, z, y, v, u)

dx
dt

= A(α, z, y, v, u) − dxx − βxv

dy
dt

= βxv − (dx + dy)y − ryyu (5.1)

dv
dt

= p0y − rvuv − cvv

du
dt

= αvv − duu.

Activation of resting CD4+ T-cells is the result of the interaction of the host’s immune

system and the virus or its products, but the details of this activation and how they map onto

the generalized immune compartment are not well understood. The within-host model (5.1) is

constructed with a general function, A(α, z, y, v, u), for activation which reflects the uncertainty

of the appropriate form and is a function of z and the interaction with infected T-cells, free

virus, and the generalized immune response. When finding the best fit parameters we model

activation with a linear constant activation rate of αz as well as with a non-linear interaction
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term which includes y, v, or u. e.g. A(z, y, v, u) = αzu.

The units of the generalized immune response compartment do not have a biological inter-

pretation, and therefore we are able to re-scale this compartment to reveal correlations between

parameters and reduce the dimension of the system. The substitution 1
rv

ū for u yields the sys-

tem,

dz
dt

= λ − dxz − A(α, z, y, v,
1
rv

ū)

dx
dt

= A(α, z, y, v,
1
rv

ū) − dxx − βxv

dy
dt

= βxv − (dx + dy)y −
ry

rv
yū (5.2)

dv
dt

= p0y − ūv − cvv

dū
dt

= αvrvv − duū,

and shows clearly the expected correlation between the immune activation rate and the two

killing rates. To simplify notation, the bar was dropped from ū, and we define av := αvrv.

The simpler model that is considered, system (5.3), does not have the added compartment z

for resting CD4+ T-cells and instead activated CD4+ T-cells are introduced at a constant rate,

λ.

dx
dt

= λ − dxx − βxv

dy
dt

= βxv − (dx + dy)y −
ry

rv
yu (5.3)

dv
dt

= p0y − uv − cvv

du
dt

= avrvv − duu.
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Model Fitted Acronym System Compartments Set to 0 A(α, z, y, v, u)
Base Model Base 5.3 x, y, v u0, av -

Immune Response IR 5.3 x, y, v, u - -
Resting CD4+ T-cell Resting 5.2 z, x, y, v u0, av -

Resting-Immune Response

RIR-Linear 5.2 z, x, y, v, u - αz
RIR-u 5.2 z, x, y, v, u - αzu
RIR-y 5.2 z, x, y, v, u - αzy
RIR-v 5.2 z, x, y, v, u - αzv

Table 5.2: Summary of the within-host models used to find best-fit parameters.

5.2.2 Model selection

Nine combinations of within-host model, data, and covariates were considered. An overview

of the models considered can be found in Figure 5.4 and Table 5.2. The Immune-Response (IR)

within-host model, which is based on system (5.3), was considered first and formed the basis

of the initial population parameter estimation. All initial population parameters were informed

by the literature where possible and chosen so that the qualitative dynamics of viral load for

the numerically solved models matched the primate data. The population parameters were

then refined for each statistical model iteratively by running the SAMBA algorithm (described

in Section 5.2.3 below), setting the results as new initial parameters until the models were

consistently convergent. To achieve consistent convergence some parameters that did not show

differences between covariates of interest were fixed or restricted with prior distributions after

the initial fits were found. For the three models with the lowest corrected Bayesian Information

Criteria (BICc) an additional convergence assessment was carried out.

Base Model

The Base model is the statistical model based on the within-host system (5.3) with the param-

eters u0 := 0 and av := 0 so that u remains at 0 and the immune response is not considered. A

summary of the initial estimates and distributions of the initial estimates is found in Figure 5.3.
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Parameter Distribution Covariate Population IE Units
λ Lognormal Species 8000 cells (ml·day)−1

β Lognormal Subtype 2.92e-6 ml (virions·day)−1

dx Lognormal - 0.04 day−1

dy Lognormal - 0.8 day−1

p0 Lognormal Species,Subtype 205 day−1

cv Lognormal - 2 day−1

T0 Lognormal - 10000 cells
v0 Lognormal - 0.03 virions

Table 5.3: Base model initial parameter distributions, covariates, and initial estimates (IE).

Immune Response Model

The Immune Response model is the statistical model using the base within-host system (5.3)

with the immune response considered. A summary of the initial estimates and the distributions

of the initial estimates is found in the appendix Figure D.1.

Resting CD4+ T-cell Model

The Resting CD4+ T-cell model is the statistical model using the more complex within-host

system (5.2) with u0 := 0 and av := 0 so that the immune response is not considered. A

summary of the initial estimates and distributions of the initial estimates is found in appendix

Figure D.2.

Resting-Immune Response Models

The Resting-Immune Response (RIR) models are the statistical models using the more complex

within-host model (5.1) with the immune response considered. The dynamics of activation

of the CD4 T-cells are not fully understood and the most appropriate form for the activation

function, A(α, z, y, v, u), is not clear. The early dynamics of an HIV infection are better fit

if some stock of resting CD4+ cells are available for activation and further infection. We

have chosen to consider four simplified activation functions and acknowledge the best model

would include a more complex relation between the virus, infected cell, and immune response.
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Figure 5.2: Primate viral load data superimposed over the numerical predicted distribution from
500 simulations using the parameters’ posterior distributions from the RIR-Linear model.

We consider activation of CD4+ cells from the interaction of resting cells and the immune

response αzu, free virus αzv or infected cells αzy as well as a linear activation of CD4+ T-

cells αz; these four models are referred to as RIRu, RIRv, RIRy and RIR-Linear, respectively.

The linear activation function simplifies the dynamics of the activation of CD4 T-cells and is

only a reasonable approximation once the immune response reaches equilibrium, but was the

only model that was successfully fit to the full dataset using the Stochastic Approximation

Expectation-Maximization (SAEM) algorithm (as described below). A summary of the initial

estimates and the distributions of the initial estimates is found in appendix Figure D.3.

When considering the numerical predicted distribution (Figure 5.3) from the RIR-Linear

model fit, it is clear that the dynamics of some primates are not captured. From the numerical

predicted distribution (Figure 5.3) thirteen primates were identified as outliers, i.e. primates

whose viral loads were outside the eighty-fifth percentile beyond fifty days. To address the
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Figure 5.3: Primate viral load data superimposed over the numerical predicted distribution from
500 simulations using the parameters’ posterior distributions from the RIR-Linear-Stratified
statistical model fit with the stratified dataset excluding the outlying primates shown on the left
and the data from the outlying primates on the right.

thirteen outliers we tried two approaches: stratifying the data or adding a latent covariate.

To stratify the dataset a numerical predicted distribution was found from the fit RIR-Linear

model by simulating 500 viral load trajectories with the parameters drawn from the posterior

distributions. This separated the data into two sets with 13 primates with higher sustained viral

loads and 130 with the dominant dynamics. The primates with higher sustained viral loads

were all pig-tailed macaques with SHIV subtype C. The RIR-linear model was then fit for the

data that was stratified with a covariate for the two sets of primates with qualitatively different

dynamics.

For the second approach, to identify the primates whose dynamics were not captured, the

RIR-Linear model was fit with the addition of a latent variable that was a covariate for the

immune response parameters ry, av, and du.
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Figure 5.4: Hierarchy of statistical models.

Statistical Model Within-host model A(α, z, y, v, u) Add. Covar. BICc
Base Model (5.3) with av, u0 := 0 NA NA 8310.4

IR (5.3) NA NA 4794.19
Resting (5.1) with with av, u0 := 0 αz NA 7475.86

RIR-Linear (5.1) αz NA 4684.32
RIRu (5.1) αzu NA NA
RIRv (5.1) αzv NA NA
RIRy (5.1) αzy NA NA

RIR-Linear (5.1) αz Latent 4642.45
RIR-Linear (5.1) αz Stratified 4604.02

Table 5.4: Comparison of statistical models. This table shows the within-host model fit for
each statistical model along with the functional form of A(α, z, y, v, u), any covariates added to
the model and the corrected Bayesian Information Criterion. The models without a BICc failed
to converge.

5.2.3 Statistical Model Selection

A non-linear mixed-effects model was developed and fit to the data for each of nine within-host

dynamics models. Model details can be seen in Figure 5.4. The space of possible covariate and

correlation model variations are prohibitively large to test all possibilities. To allow comparison

between models, the covariate and correlation model selection was completed on the Immune-

Response (IR) within-host model. There was not support for including correlations and the

covariate model that had the most support in the IR model was then used when finding the best

fit parameters for all nine models.

Automatic covariate and correlation model building was used to select the best statistical

model. The covariate model was determined using the Stochastic Approximation for Model

Building Algorithm (SAMBA) implemented in the monolix package. The biologically relevant
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Species Subtype Challenge Dose Double
λ X
β x X
dx x
dy x x
ry x x x
p0 X X
cv x x
av x x x x
du x
T0 x
v0 x x
u0 x x

Table 5.5: The covariates tested using the SAMBA algorithm are marked with x where the
uppercase X indicated the covariate was selected by the algorithm.

covariates considered are: species, for pig-tailed and rhesus macaques; challenge for intrarec-

tal, intravaginal and intravenous challenges; dose for the initial viral inoculum received which

is comparable only within studies; and “double” for the primates that failed to become infected

after the first challenge. Figure 5.5 details the biologically relevant covariates that were consid-

ered for each model parameter. Other possible covariates (which were judged to have weaker

biological justification) were locked out of the analysis. Based on the results of the SAMBA

algorithm the primate species was used as a covariate for λ and p0 and subtype was used as

a covariate for β and p0. No correlations between parameters were strongly suggested by the

automatic model selection.

All initial model fits were performed with the covariates found for the IR model. The auto-

matic covariate model building was repeated using the Conditional Sampling use for Stepwise

Approach based on Correlation test (COSSAC) algorithm for the RIR-Linear model and the

RIR-Linear model with the stratified dataset after the best-fit parameters were found. This

COSSAC analysis yielded the same suggested covariates as the covariates determined by the

SAMBA algorithm for the IR model.

For the models with a promising Corrected Bayesian Information Criteria (BICc), after

the initial run of the SAEM algorithm, the Fisher Information matrix of the estimates was
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Figure 5.5: The convergence diagnostic plots for a refinement iteration of the RIR-Linear sta-
tistical model with the stratified data covariate. Estimated parameter values are shown over the
iterations of the SAEM algorithm for four model runs with random initial parameters.

estimated and considered to check the uncertainty of the parameter estimates and whether the

model was over determined. Any parameters with correlation values greater than 0.5, which

suggests non-identifiability of the parameter, were considered and one of the parameter values

was fixed. This process was repeated with the addition of sensitivity analyses of the parameters

by completing five additional runs of the SAEM algorithm to check the convergence via the

convergence diagnostic plots. Figure D.4 contains the RIR-Linear convergence diagnostic plot

with the stratified data covariate from a refinement iteration.

5.3 Results

The RIR-Linear Stratified model achieved the lowest Corrected Baysian Information Criteria

(BICc) of 4604.2. The Fisher information matrix condition number for the model is 6.4, which

is a strong indication that the model is not over-specified.

The individual weighted residuals (IWRES) and normalized prediction distribution errors

(NPDEs), shown in Figure 5.6, are roughly centered around zero. There is room for a better

specified model, but this might require more covariates than available in our dataset and a
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Figure 5.6: Individual weighted residuals (IWRES) and normalized prediction distribution er-
rors (NPDEs), together with the standard Gaussian probability density function and cumulative
distribution function for the RIR-Linear Stratified statistical model.

Figure 5.7: Example individual fits from RIR-Linear-Stratified. Plots of viral load over time are
shown with the data points and the primates individual fits. The red dots represent the primate
data for subtype C and the blue data for subtype B. Pink bars indicate viral load measurements
that were below the limits of detection.
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more complicated model that will be difficult to fit. A clear avenue for improvement is the

more biologically realistic activation functions that we attempted to fit.

Figure 5.4 shows the viral load data superimposed over the numerical predicted distribu-

tion from 500 simulations sampled from the parameters’ posterior distributions of the best-fit

parameters, with the stratified dataset excluding the outlying primates shown on the left and

data from the outlying primates shown on the right. With the stratified data we can see that the

predicted parameters capture the majority of the data, but a few primates with relatively high

viral loads are not well modeled. This further indicated that a covariate that is not available

is important to fully understand the data. An attempt to use a latent covariate to capture the

sustained high viral load was attempted in the RIR-Latent model, but the latent covariate was

unable to detect the primates with high viral load and only isolated a single primate for which

the covariate was applied. Below we speculate that the immune response is driving the changes

in viral load and find some evidence of immune differences between the two stratified datasets,

as seen in Figure 5.8.

Further considering the results in Figure 5.8 from the RIR-Linear Stratified model, we see

there is a relative replicative fitness advantage, as represented by β, with SHIV SF162 created

with the env gene from subtype B over SHIV 1157 created with the env gene from subtype C.

This is consistent with the experimental results that show subtype B having an in vitro fitness

advantage over subtype C [Marozsan et al., 2005]. The overall within-host fitness advantage

is less clear with subtype C showing an increased burst size parameter p0 over subtype B. The

overall effect of these competing life history traits is not clear with the experimental results

supporting the importance of host cell entry.
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Figure 5.8: Results from the RIR-Linear Stratified statistical model showing the parameter
differences between covariates. Only parameters that display differences for the covariates of
interest are shown. The parameter values are displayed using loge.
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The mechanics of any particular experiment and virus might play a pivotal role in deter-

mining the relative effect of the competing life history traits of replicate fitness and viral burst

size. The details of host entry and co-infection could have unexpected results that are not cap-

tured by the within-host models considered in this chapter, and therefore using these parameter

estimates results to model the in-vitro competition may be misleading. Simple comparison of

the relative size of the change in burst size verses replicate fitness is not a viable approach to

determine the overall fitness effect.

There is also indication that the qualitative differences that lead to the stratification of the

data were a result of the immune killing rate ratio ry

rv
. In particular the outlying data, with

higher sustained viral load, showed a slight bias toward removal of virus over infected cells. A

stronger difference is seen between the two stratified data sets in the rate of degradation of the

immune response, with the outlying data showing a faster degradation.

This result suggests that a generalized immune response is not a good proxy for the much

more complex immune response in primates, and underscores the issue that parameter iden-

tifiability is a difficult problem when dealing with complex model equations. Considering an

alternate reduced dimension system:

dz
dt

= λ − dxz − A(α, z, y, v,
1
rv

ū)

dx
dt

= A(α, z, y, v,
1
rv

ū) − dxx − βxv

dy
dt

= βxv − (dx + dy)y − ryduyū (5.4)

dv
dt

= p0y − rvduūv − cvv

dū
dt

=
αv

du
v − ū,

for (5.1) we see the degradation of the immune response, du, is tied, through the scaling

of the immune compartment, to both removal rates. Therefore our choice of re-scaling the
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immune compartment to be proportional to the removal rate of free virus may have shifted

the effect of the immune activation rate to the immune degradation rate. This highlights the

difficulty with the non-identifiable parameters in complex systems.

The activation of the immune response, av, does not show a strong difference between the

two data sets. The Wald test shows only marginal support for stratification as a covariate of

av with a p-value of 0.142 and the distribution of standardized random effects shows that av is

the only parameter with random effects not centered at zero. So there is evidence that av is not

well estimated.

The best fit parameters from the RIR-Linear Stratified model also show a higher viral burst

size, p0, for pig-tailed relative to rhesus macaques that may have implications for experimen-

tal design considering mixed types of primates and also could be a valuable avenue for future

research. Differences in the reproduction rate of CD4+ cells were also detected with rhesus

macaques showing a higher rate of creation of target cells. No other significant parameter dif-

ferences were found between the two primate species. We attempted to find best fit parameters

with the additional differences in origin of the primates but did not have enough data to further

find reliable fits for the four different primate origins and species categories.

All thirteen primates identified as outliers with high sustained viral loads were rhesus

macaques infected with SHIV SF162 (subtype B). Considering only the stratified data set with

the outlying primates removed, Figure 5.9, the primary conclusions for the differences between

subtypes are maintained. The only large change is in the β estimates for rhesus macaques where

the outlying parameter estimates (the outlying red plus signs seen in Figure 5.8 for β and p0)

are now included in the boxplot.
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Figure 5.9: Parameter estimates for the RIR-Linear Stratified model (outliers removed) show-
ing the parameter differences between covariates. The parameter values are displayed using
loge.
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5.4 Interval of Maximum Slope

The maximum rate of increase of viral load is used as a proxy for the maximum replicative fit-

ness of the virus in-vivo. To estimate the maximum rate of increase without fitting a model, we

find the interval between samples with the maximum slope [Ribeiro et al., 2010]. Finding the

interval of maximum slope is a much simpler method than fitting a mixed effects model based

on a complex within-host model. A difficulty with this simpler method is that the sampling rate

of the primates’ viral load has a strong effect on the detected maximum slope.

To quantify the effect of the sampling rate on the maximum slope found, we simulated

primate data. Twenty primate acute infections, viral load and CD4+ levels, were simulated

using model 5.5 with the initial parameters set from best fit parameters from primate RM3311

found via maximum likelihood methods implemented in MATLAB. The initial parameters for

viral load and activated T-cells were drawn from a log-normal distribution centered on the

respective best-fit parameters.

dz
dt

= λ − dxz − αxu

dx
dt

= αxu − dxx − βxv

dy
dt

= βxv − dyy − ryyu (5.5)

dv
dt

= p0y − rvuv − cvv

du
dt

= avv − duu.

We find the length of the sampling interval had a strong effect on the calculated maximum

slope as demonstrated in Figure 5.10 that shows the results of changes to the sampling interval.

Given the strong effect of sampling interval, only primates with similar sampling intervals can

be meaningfully compared.
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Figure 5.10: The maximum slope estimates calculated from 20 simulated infections using (5.5)
model with best fit parameters from primate RM33113. The initial conditions for viral load
and activated T-cells were drawn from log-normal distributions around the best-fit parameters’
means.

5.4.1 Results

The interval of maximum slope was found for all primates. See Figure 5.10 for primates with

a semiweekly sampling rate and Appendix C.5 for all primates.

The length of the sampling intervals varied for each primate and among primates. Primates

were sorted by the length of the sampling interval with the maximum slope. Considering pri-

mates with near semiweekly sampling rates, as seen in Figure 5.12, we can see some evidence

of differences in the interval of maximum slope. Primates infected with SHIV 1157, subtype

C, show a higher replicative fitness by this method. This result disagrees with the results for β

found in the previous section. This result is likely partially a result of the interval of maximum

slope approximating both the results of replicative fitness, β, and viral burst size, p0, which we

found in the previous section to affect within-host viral fitness in opposite directions.

This result is not repeated when primates with a near weekly sampling interval are consid-

ered where the larger number of primates do not display a significant difference.
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Figure 5.11: Time series of viral load for primates that were sampled semiweekly with the in-
terval of maximum slope highlighted in blue for primates infected with SHIV SF162 (Subtype
B) and highlighted in red for primates infected with SHIV 1157 (Subtype C). The detection
limit of the viral load assay used is marked with a dotted line.
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Figure 5.12: Boxplots for primates with near semiweekly sampling rates grouped by SHIV
subtype, SHIV SF162 (Subtype B) in blue and SHIV 1157 (Subtype C) in red. The Wilcoxon
rank-sum test for equal means yields a p-value of 0.0236.
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Figure 5.13: Boxplots for primates with near weekly sampling rates grouped by SHIV subtype,
SHIV SF162 (Subtype B) in blue and SHIV 1157 (Subtype C) in red. The Wilcoxon rank-sum
test for equal means yields a p-value of 0.3938.

Intravaginal Intravenous Unknown
Intrarectal 0.493 0.185 0.007

Intravaginal * 0.175 0.047
Intravenous 0.175 * 0.012

Table 5.6: P-value for unequal means of the interval of maximum slope of the different chal-
lenge methods using the Wilcoxon rank sum test comparing all primates.

Tables 5.6 and 5.7 show the p-value for unequal means of the interval of maximum slope

between different challenge methods using the Wilcoxon rank sum test comparing all primates

and primates with a weekly sampling rate respectively. Focusing on the weekly sampling

rate, there is some evidence that challenge method affects the maximum slope found. This

agrees with our intuition that different challenge methods will introduce varying numbers of

virus particles to different initial host cell populations. This also hints at the importance of

transmission method in the evolution of HIV. This difference in the replicative fitness related

to challenge method found with the interval of maximum slope method presumably confounds

detection of replicative fitness and indicates that mixed effects models are required to account

for these effects.
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Intravaginal Intravenous
Intrarectal 0.054 0.020

Intravaginal * 0.63754644

Table 5.7: P-value for unequal means of the interval of maximum slope between different chal-
lenge methods using the Wilcoxon rank sum test comparing primates with a weekly sampling
rate.

Intrarectal Intravaginal Intravenous

0
.8

1
.0

1
.2

1
.4

lo
g

(M
a

x
 S

lo
p

e
)

Intrarectal (n = 61)

Intravaginal (n = 23)

Intravenous (n = 16)

Figure 5.14: Boxplot of the log slope of the interval of maximum slope for each primate with
a sampling rate near weekly grouped by challenge method.
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5.5 Conclusions

Non-linear mixed-effects models offer a powerful tool allowing more complex models of within-

host dynamics to be fit while efficiently utilizing data and allowing the application of biological

knowledge of the within-host system. A major obstacle to estimating best-fit parameters for

models of viral dynamics is the difficulty in parameter identifiability. Also incomplete under-

standing of the interplay between model parameters could lead to misidentifying the underlying

cause for differences in best-fit parameters between groups.

Using our large compiled data-set we were able to identify differences in replicative fitness

and burst size between SHIV subtypes, with lower replicative fitness but higher viral burst size

in subtype C when compared to subtype B. A re-examination of the in vitro results considering

this particular interplay between replicative fitness and burst size could help further elucidate

the relationship between the in vivo and in vitro results.

We were also able to speculate that differences in immune response between primates lead

to the outlying higher viral loads seen in some rhesus macaques infected with SHIV SF162.

This difference between primates could be an important confounding variable and should be a

controlled covariate, that was unavailable in our compiled dataset.
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Summary and Future Work

Using a combination of simulation, modelling, and statistical methods we identified evolution-

ary pressures on the life history traits of HIV-1 and the drivers of the observed difference in

evolutionary rates within- and between-hosts. The extremely severe and competitive transmis-

sion bottleneck is an important factor in slower between-host evolution of HIV-1, relative to the

rapid evolution of HIV-1 within-hosts, and subtype B and C have different relative fitness ad-

vantages. We speculate that the lower replicative fitness of HIV-1 subtype C drives the results

of in vitro fitness experiments that find HIV-1 subtypes A, B, and D have a fitness advantage

over subtype C. In addition, we suggest that in vivo, the importance of the extreme transmis-

sion bottleneck may increase the impact of viral burst size and that this, along with viral traits

related to transmission fitness, could be the fitness advantages that drive the observed global

expansion of HIV-1 subtype C.

To capture the effect of different relative within-host fitness advantages, details need to be

added to our multi-scale model, yet the diversity and/or number of founding strains of HIV

are still controversial. In future modelling work, we would like to include the possibility of

transmitting more than one virion from the bottleneck inoculum. The increased number of

virions transmitted would immediately begin a within-host fitness competition. We hypothesize

that with the inclusion of a larger number of transmitted virions, those that are more fit, within-

86
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host, would quickly establish the new infection and win the within-host competition. This

might result in much faster between-host evolution or increase the importance of archiving

virus with a higher transmission fitness but lower within-host fitness. The inclusion of a larger

transmission bottleneck might elevate the importance of the latent reservoir.

We would also like to expand our multi-scale model to consider a non-homogeneous host

population. Individuals have different human leukocyte antigen alleles and a fitness advantage

in one host could be a disadvantage in another. We can consider this possibility by including

two or more different types of hosts in our simulation, each with a distinct within-host fitness

landscape.

Additionally we plan to incorporate incomplete drug treatment into the model to examine

the effect of multiple activations from the latent reservoir on the course of evolution over the

epidemic. Is there an increased risk of drug resistance seeding the reservoir and being transmit-

ted, or does a stable latent reservoir and the transmission fitness costs of within-host evolution

slow the transmission of drug resistance?

The result that subtype C has a lower replicative fitness but higher burst size when com-

pared to subtype B raises questions that could possibly be addressed with additional in vitro

research; for example, experimental environments could be devised to detect the increased fit-

ness advantage conferred by a higher burst size. Further results from the literature regarding the

relative fitness advantages of different life history traits in viral pathogens can also be leveraged

to help understand HIV-1.

The work in this thesis highlights the advantage of using multiple tools, illustrating how

modelling, simulation, and statistics can be combined to address complex problems. Careful

analysis of the within-host models and the information available in the Uganda and Zimbabwe

data-set uncovered the infeasibility of detecting replicative fitness differences from the data.

The multi-scale model of HIV-1 evolution, combining deterministic within-host modelling with

a stochastic bottleneck, highlighted the relative importance of the extreme transmission bottle-

neck. A model of within-host dynamics combined with a large, rich data-set, analysed with
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a non-linear mixed effects model, uncovered the potential fitness differences between HIV-1

subtypes B and C. It is our hope that the use of multi-faceted, interdisciplinary approaches will

continue to propel research forward in this critical field of pathogen evolution.
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Appendix A

Multi-scale model of the evolution of

HIV-1

A.1 Parameter and Trial Definitions

Trial: Blueberry

Number Name Control µ(BN) Latent α γ ρ µ λµ λδ φ
271 Blueberry271 Full 1 – 0.045 0 0.045 0.08 3.55 0.003 0.26
272 Blueberry272 Full 1 LR 0.045 0.01 0.035 0.08 3.55 0.003 0.26
273 Blueberry273 Full 1 LR 0.045 0.02 0.025 0.08 3.55 0.003 0.26
274 Blueberry274 Full 1 LR 0.045 0.05 0 0.08 3.55 0.003 0.26
275 Blueberry275 Full 1 LR 0.045 0.1 0 0.08 3.55 0.003 0.26
276 Blueberry276 Fixed 1 – 0.045 0 0.045 0.08 3.55 0.003 0.26
277 Blueberry277 Fixed 1 LR 0.045 0.01 0.035 0.08 3.55 0.003 0.26
278 Blueberry278 Fixed 1 LR 0.045 0.02 0.025 0.08 3.55 0.003 0.26
279 Blueberry279 Fixed 1 LR 0.045 0.05 0 0.08 3.55 0.003 0.26
280 Blueberry280 Fixed 1 LR 0.045 0.1 0 0.08 3.55 0.003 0.26
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104 Chapter A. Multi-scale model of the evolution of HIV-1

Trial: Primary

# Name Control µ(BN) Latent α γ ρ µ λµ λδ φ
1 Primary1 Full 1 – 0.055 0 0.055 0.08 3.55 0.015 0.248
2 Primary2 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.015 0.248
3 Primary3 Fixed 1 – 0.055 0 0.055 0.08 3.55 0.015 0.248
4 Primary4 Fixed 1 LR 0.055 0.02 0.035 0.08 3.55 0.015 0.248
5 Primary5 Full 2 – 0.055 0 0.055 0.08 3.55 0.015 0.248
6 Primary6 Full 2 LR 0.055 0.02 0.035 0.08 3.55 0.015 0.248
7 Primary7 Fixed 2 – 0.055 0 0.055 0.08 3.55 0.015 0.248
8 Primary8 Fixed 2 LR 0.055 0.02 0.035 0.08 3.55 0.015 0.248
9 Primary9 Full 1 – 0.055 0 0.055 0.08 3.55 0.02 0.248
10 Primary10 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.02 0.248
11 Primary11 Fixed 1 – 0.055 0 0.055 0.08 3.55 0.02 0.248
12 Primary12 Fixed 1 LR 0.055 0.02 0.035 0.08 3.55 0.02 0.248
13 Primary13 Full 2 – 0.055 0 0.055 0.08 3.55 0.02 0.248
14 Primary14 Full 2 LR 0.055 0.02 0.035 0.08 3.55 0.02 0.248
15 Primary15 Fixed 2 – 0.055 0 0.055 0.08 3.55 0.02 0.248
16 Primary16 Fixed 2 LR 0.055 0.02 0.035 0.08 3.55 0.02 0.248
17 Primary17 Full 1 – 0.055 0 0.055 0.08 3.55 0.025 0.248
18 Primary18 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.025 0.248
19 Primary19 Fixed 1 – 0.055 0 0.055 0.08 3.55 0.025 0.248
20 Primary20 Fixed 1 LR 0.055 0.02 0.035 0.08 3.55 0.025 0.248
21 Primary21 Full 2 – 0.055 0 0.055 0.08 3.55 0.025 0.248
22 Primary22 Full 2 LR 0.055 0.02 0.035 0.08 3.55 0.025 0.248
23 Primary23 Fixed 2 – 0.055 0 0.055 0.08 3.55 0.025 0.248
24 Primary24 Fixed 2 LR 0.055 0.02 0.035 0.08 3.55 0.025 0.248

Trial: Sensitivity

# Name Control µ(BN) Latent α γ ρ µ λµ λδ φ
1 Sensitivity1 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.003 0.248
2 Sensitivity2 Full 1 LR 0.055 0.018 0.037 0.08 3.55 0.003 0.248
3 Sensitivity3 Full 1 LR 0.055 0.022 0.033 0.08 3.55 0.003 0.248
4 Sensitivity4 Full 1 LR 0.055 0.0145 0.035 0.08 3.55 0.003 0.248
5 Sensitivity5 Full 1 LR 0.055 0.0255 0.035 0.08 3.55 0.003 0.248
6 Sensitivity6 Full 1 LR 0.0495 0.02 0.035 0.08 3.55 0.003 0.248
7 Sensitivity7 Full 1 LR 0.0605 0.02 0.035 0.08 3.55 0.003 0.248
8 Sensitivity8 Full 1 LR 0.055 0.02 0.035 0.08 3.195 0.003 0.248
9 Sensitivity9 Full 1 LR 0.055 0.02 0.035 0.08 3.905 0.003 0.248
10 Sensitivity10 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.0027 0.248
11 Sensitivity11 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.0033 0.248
12 Sensitivity12 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.003 0.2232
13 Sensitivity13 Full 1 LR 0.055 0.02 0.035 0.08 3.55 0.003 0.2728
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106 Chapter A. Multi-scale model of the evolution of HIV-1

A.2 Simulation Sketch

(a) 

(b) 

(c) Replicative Capacity (β) 

Infected Cell Death Rate (δ) 

Transmission Fitness (Φ) 

Figure A.1: (a) The results of a within-host model of viral competition with a latent reservoir
and distinct mutation classes. Each mutation class may have, for example, an increased replica-
tive capacity, β. (b) A transmission event where transmission fitness (φ) replicative capacity (β)
and infected cell death rate (δ) are selected and transmitted to the next host. The minimum of 1
and a Poisson distributed number of infected cells are randomly selected from the transmitter
across, and proportional to, the within-host mutation classes. Transmission fitness for each
selected virion is selected from a flipped inverse gamma distribution where the variance of the
distribution is determined by the mutation class of the selected virus. β and δ are inherited from
the mutation class from which the potential founder was selected. (c) The next infection in the
transmission chain is founded by the virion with the maximum transmission fitness and this φ
then becomes the mean of the flipped inverse gamma distribution from which φ is selected for
any following transmissions. This new host inherits mutation class, β, and δ from the selected
virion which then are used as initial conditions for the next within-host model.
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A.3 Transmission Timing
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Figure A.2: Transmission time histogram of a surviving tree. The histogram shows the trans-
mission times from the experiment Primary replicate number 65. The solid line is the mean
and the dashed line in the median.
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Figure A.3: Transmission time histogram of a extinct tree. The histogram shows the transmis-
sion times from the experiment Primary replicate number 660. The solid line is the mean and
the dashed line in the median.
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A.4 Trial: Primary comparisons
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Figure A.4: Comparison of experiments from Primary at 200 years of evolution. Significance
shown is for a two-tailed Mann-Whitney test at the *** 1%, ** 5%, and * 10% levels including

the Bonferroni correction
(
α

24

)
for 24 comparisons.
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Figure A.5: Mean transmitted mutation class averaged over the epidemic for experiments from
Primary.



Appendix B

HIV subtype fitness differences in vivo

B.1 Inter-appointment waiting times

days

20 40 60 80 100 120 140

%
 o

f 
w

a
it
in

g
 t
im

e
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Waiting time between visits 1 and 2

(a)

days

20 40 60 80 100 120 140

%
 o

f 
w

a
it
in

g
 t
im

e
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Waiting time between visits 2 and 3

(b)

days

20 40 60 80 100 120 140

%
 o

f 
w

a
it
in

g
 t
im

e
s

0

0.01

0.02

0.03

0.04

0.05

0.06
Waiting time between visits 3 and 4

(c)

days

20 40 60 80 100 120 140

%
 o

f 
w

a
it
in

g
 t
im

e
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Waiting time between visits 4 and 5

(d)

Figure B.1: Histogram of the waiting times between the first and second, (a), the second and
third, (b), third and fourth, (c), and fourth and fifth appointments, (d).
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B.1.1 Simulated inter-appointment waiting times
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Figure B.2: Histogram of randomly generated realistic appointment timing fit the time between
the first and second visit, panel (a), the second and thrid visit, panel (b).
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B.2 Estimation of SPVL using LOWESS smoothing

The whole data set was used and
then time to setpoint was esti-
mated using lowess smoothing.
Each dots location with respect to
the vertical axis represents the es-
timated time to setpoint using the
first minimum after the highest
rate of descent method and each
dots location w.r.t the horizon-
tal axis represents the local per-
cent of the first 300 days of data
used in the local smoothing. The
colour of the dots represents the
plasma viral RNA/ml at setpoint.
The red ‘*’ represents the results
from Morrison et. all 2010 were
the percent of smoothing was ar-
bitrarily chosen to be 50% since
the authors did not restrict the data
to the first 300 days.
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Figure B.6: Estimated SPVL over time. Lowess smoothing at 20% of available data. n is all
datapoints used.
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Figure B.7: Estimated CD4 cell counts over time. Lowess smoothing at 20% of available data.
n is all datapoints used.

B.3 Realistic simulated appointment timing
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Appendix C

SHIV Data Summary

C.1 Interval of maximum slope
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Figure C.1: Interval of maximum slope for all 24 subtype C primates

115



116 Chapter C. SHIV Data Summary

0 5 10 15 20

2
4

6
8

M03233

0 5 10 15 20

2
4

6
8

K03220

0 5 10 15 20

2
4

6
8

K03266

0 5 10 15 20

2
4

6
8

M03225

0 5 10 15 20

2
4

6
8

31617

0 5 10 15 20

2
4

6
8

33075

0 5 10 15 20

2
4

6
8

33185

0 5 10 15 20

2
4

6
8

33543

0 5 10 15 20

2
4

6
8

33872

0 5 10 15 20

2
4

6
8

33370

0 5 10 15 20

2
4

6
8

33444

0 5 10 15 20

2
4

6
8

33142

0 5 10 15 20

2
4

6
8

30527

0 5 10 15 20

2
4

6
8

J02303

0 5 10 15 20

2
4

6
8

K02305

0 5 10 15 20

2
4

6
8

L02143

0 5 10 15 20

2
4

6
8

M02127

0 5 10 15 20

2
4

6
8

K02264

0 5 10 15 20

2
4

6
8

M02295

0 5 10 15 20

2
4

6
8

J03147

0 5 10 15 20

2
4

6
8

J04009

0 5 10 15 20

2
4

6
8

L03247

0 5 10 15 20

2
4

6
8

M03235

0 5 10 15 20

2
4

6
8

M03427

Figure C.2: Interval of maximum slope for 24 subtype B primates
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118 Chapter C. SHIV Data Summary

C.2 With-in host replication rate β
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Figure C.5: A boxplot of the maximum log(slope) between sample points for subtypes 1 = B
and 2 = C, with 115 primates infected with subtype B and 17 infected with subtype C. The
Wilcoxon rank sum test for equal mean maximum slopes between subtypes yield a p-value of
0.03521.
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Figure C.6: Plot of the maximum log(slope) between sample points, over all data (top plot)
and between in intervals 2 to 5 (bottom plot), for subtypes 1 = B and 2 = C. The P-value is
reported from the Wilcoxon rank sum test for equal mean maximum slopes between subtypes.



Appendix D

SHIV Figures and Tables

D.1 Initial parameter distributions

Parameter Distribution Covariate Population IE
λ Lognormal Species 8000
β Lognormal Subtype 2.92e-6
dx Lognormal 0.04
dy Lognormal 0.8
p0 Lognormal Species,Subtype 205
cv Lognormal 2
T0 Lognormal 10000
v0 Lognormal 0.03

Figure D.1: IRIE model initial parameter distributions, covariates, and initial estimates.

Parameter Distribution Covariate Population IE
λ Lognormal Species 8000
β Lognormal Subtype 2.92e-6
dx Lognormal 0.04
dy Lognormal 0.8
p0 Lognormal Species,Subtype 205
cv Lognormal 2
T0 Lognormal 10000
v0 Lognormal 0.03

Figure D.2: RestingIE model initial parameter distributions, covariates, and initial estimates.

120
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Parameter Distribution Covariate Population IE
λ Lognormal Species 8000
β Lognormal Subtype 2.92e-6
dx Lognormal 0.04
dy Lognormal 0.8
p0 Lognormal Species,Subtype 205
cv Lognormal 2
T0 Lognormal 10000
v0 Lognormal 0.03

Figure D.3: RIRIE model initial parameter distributions, covariates, and initial estimates.

D.2 RIR-Linear Stratified prediction errors

Figure D.4: Individual weighted residuals and Normalized prediction distribution errors for the
RIR-Linear Stratified model.
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