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Abstract 

Sports related concussions and mild traumatic brain injuries have seen an increase in 

frequency over the past decade.  The creation of highly biofidelic computational head 

models is an important step in understanding the mechanisms of these mild brain injuries 

and preventing them. Hence, the purpose of this research is to combine state-of-the-art 

computational models, brain imaging modalities and traditional head injury assessment 

protocols to simulate and predict the brains responses during traumatic head impacts. A 

novel, atlas-based, parcellated axon fiber embedded head model was developed which 

allows for in-depth analysis of the brain’s structural connectome tracts for injury 

diagnosis and analysis. New axon strain metrics were developed along with traditional 

head kinematic methodologies to create one of the most advanced finite element head 

models for concussion injury reconstruction which allows for comparison to patient 

symptoms through tract injury level prediction.  

Keywords 

Traumatic brain injury, concussion, mathematical models, computational model, finite 

element analysis, axon fiber, cognition, sports concussion, DTI 
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Summary for Lay Audience 

With the ever-growing evidence of the major health risks associated with traumatic brain 

injuries and concussions, development of new methods for researching and diagnosing 

injury mechanism is required. Our lab is attempting to tackle this problem by 

incorporating finite element methods to the complex geometries and material properties 

of the human brain. This thesis was completed over the course of 2 years and begins with 

an exploration into the mechanisms that produce what are considered ‘signs’ of traumatic 

brain injuries. The work then progresses to examine some of the leading predictive injury 

criteria’s and assess their viability and limitations. Finally, this project led to the 

development of a new modified finite element head model and goes through the 

generation of parcellated fiber axon models that will help to better understand the injury 

mechanism of the brain’s communication neural network. This model, which currently 

encompasses 41 distinct fiber bundles, is, as of now, the only embedded finite element 

parcellated fiber axon model using group averaged diffuse tensor imaging data in the 

world.  

Along with the development of the embedded and parcellated fiber axon model, a new 

injury prediction metric has been developed. Using the strains produced in the axial 

direction of the fibers, like previous cadaveric experiments, it is possible to determine the 

overall injury present in a specific fiber bundle as a percentage over a predetermined 

‘injury’ threshold. This will allow for the comparison of different fiber tract damage 

under different dynamic impact scenarios. 

 The possibilities for future studies that look explore damage to specific fiber 

orientations, fiber lengths and fiber functionalities will allow for in-depth analysis of the 

inner mechanisms of the brain. The overarching goal of this research is to couple 

engineering principals with medical imaging techniques and neuroscience to understand, 

diagnose and prevent some of the symptoms and impairments associated with 

concussions and mild traumatic brain injuries.   
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Chapter 1  

1 Introduction  

1.1 Research Rationale  

Traumatic brain injury (TBI) is estimated to affect close to 70 million individuals every 

year [1], with 80-90% of those injuries considered to be mild, more commonly known as 

concussions. The victims of these injuries have remarkably little information into how to 

prevent or even understand the long term implications of these injuries  [2]. This injury is 

a considerable burden on the health and well-being of society, and its repercussion leads 

to physical and mental health declines as well as significant negative economic effects. 

Mild TBI, more commonly referred to as the concussion, has made its way onto 

mainstream news due to its obvious and dramatic symptoms. Typical short term effects to 

brain functionality can induce chronic symptoms such as; memory loss, cognitive 

impairments and motor disturbances and has been shown to cause long term 

neurodegeneration that results in death [3]. Some of the greatest challenges that arise 

from this injury type are the knowledge gaps between understanding not only the 

mechanisms that cause mTBI, but the thresholds and post-injury outcomes that 

distinguish between the severity and diagnosis for this life altering injury. The need for 

improved diagnostic methods, and better understanding of the biomechanics that lead to 

functional changes, to assist in injury prevention and rehabilitation are crucial in 

improving patient outcomes and increasing post injury quality of life.     

1.2 Head and Brain anatomy and functions  

1.2.1 Skull and brain protection anatomy  

The brain is protected from injury in several ways, one of those ways is a thick bone 

which encloses the brain, known as the skull. The skull is made up of three layers, an 

inner and outer layer made of dense cortical bones and a middle layer made of porous 

trabecular bone and consists of 8 cranium bones and 14 facial bones. The second inner 

layer of this protective incasing is the meninges which include the outer dura mater, the 

middle arachnoid membrane and the inner pia matter. These layers encase the brain and 
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are combined with the third method of the body’s natural protection on the soft brain 

which is the cerebrospinal fluid (CSF). The CSF helps cushion the brain from shock and 

sudden pressure changes by circulating through the four ventricles and in the 

subarachnoid space and absorbing some of the energy that could occur in a traumatic 

impact. Finally, the blood-brain barrier, helps with the brain’s protection through the 

limitation of movement of chemical, toxic substances and infection from other parts of 

the body. All four of these protective mechanisms protect the brain from everyday 

activities. However when a traumatic head impact occurs, one or more of these systems 

reaches its failure threshold producing injury [4].  

1.2.2 Brain anatomy 

The brain is one of the most complex and least understood organs, especially in the 

human body. The various anatomical components and different material and geometric 

properties that each of those different components showcases, not to mention the 

complex chemical composition of the brain, makes it extremely difficult to recreate. In 

the study of impact injury mechanisms, the brain can show injury patterns from much 

lower energy level injuries than that of any other soft – tissue component in the body, 

such as muscles and ligaments [5]. The brain, segmented regions and anatomical features 

shown in Figure 1, is made up of gray, white and reticular matter, with each showing 

unique mechanical and functional characteristics. The gray matter, named after its 

distinct gray-brown color, is made up of capillaries and neuronal cell bodies 

predominately and can be found primarily in the cortex. White matter, of which this 

research focuses on, consists mainly of axon fibers, which form connection between 

neurons [4]. The brain structure is broken down further into various different 

subcomponents, which include components like the brainstem made up of; (1) the 

hindbrain (cerebellum), (2) the midbrain, (3) the diencephalon (hypothalamus, thalamus) 

and the forebrain (basal ganglia, limbic system, and cerebral cortex). With each of these 

structures performing different functions and working together to allow for the body to 

regulate movement, cognitive processing and everyday activities. 
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Figure 1, schematic of the different brain regions and anatomical cross section of 

sagittal and coronal planes with labelled landmarks.  

1.2.3 Functions of the brain  

The different subcomponents of the brain communicate with each other and the different 

parts of the body through the network known as the central nervous system (CNS) made 

up of neurons and myelinated axons. The human brain has approximately 85 billion 

neurons, each making as many as 15,000 synaptic connections with other cells to engage 

in information processing and neuronal function [6]. The brain itself is divided into 

different distinct regions that act differently and provide different functions to the brain. 

1.2.3.1 Deep brain    

This is made up of the; (1) the Midbrain which includes superior and inferior colliculi 

(vision and hearing, motor function), (2) the Diencephalon which includes 3 thalamic 

structures; the epithalamus (pineal glands for biorhythms), the thalamus (relays sensory 

information to cortex) and hypothalamus (contains nuclei for regulatory functions 

(internal temp, eating/drinking/sexual activity) and (3) the Hindbrain which contains 
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nuclei that give rise to cranial nerves [4]. All these regions are highlighted in the 

schematic provided in Figure 2 and exist in all vertebrate brains. 

 

Figure 2,  breakdown of main regions in brain, sliced along the midline, with 

different regions highlighted [7]. 

1.2.3.2 The Forebrain  

The forebrain is made up of several components which include (1) the basal ganglia 

which is thought to dictate motor coordination, (2) the limbic system which is involved in 

one’s emotion, motivation and memory, (3) the cortex (neocortex) which is involved in 

sensory, motor and cognitive function and is made up of four cortical regions each with a 

specific function; (vision - occipital), (audition - temporal), (somatosensations - parietal) 

and (movement-frontal). These lobes can then be broken down into primary secondary 

and tertiary regions which preform more complex sensory-motor and associative 

functions. An example of how these all work together; the cortical structures receives 

sensory information through thalamus and works through basal ganglia to produce 

movement and through limbic system to organize emotion and memory. 



5 

1.2.3.3 Fiber axons and the brains neural network 

The myelinated axons in the brains white matter transport electric signals from 

neurons in different regions of the brain to form a communication highway of 

information, these pathways, made up of axon fibers, are referred to as tracts. Using 

different imaging technologies, specifically diffuse tensor imaging (DTI) and functional 

magnetic resonance imaging (F-MRI), different axon fiber tracts and their associated 

functionalities have been determined, a step into understanding how the human brain 

functions [8].  

To understand how these imaging modalities work, along with their associated uses and 

connection to this study, it is important to understand the structures that they are 

attempting to locate and quantify. Methods of understanding these white matter 

connections arise from the field of connectomics, with graphical representations of these 

connections represented in graphs called connectograms, see Figure 3 as an example of 

these graphs. The different colors represent different parcellated regions in the brain, each 

with its own intrinsic function. This is one of the more recent methods of visualizing the 

CNS architecture and is used for efficiently analyzing the human connectome and 

investigating both subject specific and clinical population models [9] 
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Figure 3, Connectogram representing the different white matter fiber tracts and 

their connections, this is the basis of brain parcellation a method of understanding 

brain function [10]. 

1.2.3.3.1 Imaging techniques  

The use of DTI as a method for assessing and diagnosing changes in the brain which lead 

to brain injury are widely cited in literature [11-19]. This imaging modality is commonly 

used as a method of examining the integrity and determining the pathways of the brains 

white matter tracts [18]. DTI was introduced as modified DWI tool over conventional 

MRI to determine the structural changes of the brain as it is more sensitive in its ability to 

quantify changes to the microstructure of white matter. This is the reason for increased 

use as a diagnostic tool for mTBI. DTI also provides another useful function, its ability to 



7 

produce three-dimensional tractography, Figure 4, allows for the visualization of the 

brains myelinated long-fiber axon tracts, which relay the information produced by the 

neurons. The bases of DTI and how it can model these incredibly complex and intricate 

tracts is through the diffusivity of water molecules inside the brain. This non-invasive 

method allows for the visualization of the anisotropy that is present in the brain as the 

diffusion in the direction of the myelinated fibers is faster in parallel than in a 

perpendicular direction [20].  In terms of its relation to the biological mechanism in the 

brain, diffusion tensors work by transferring material from one spatial location to another 

at a point in time, i.e. water molecules inside the tube-like myelinated fibers. Diffusivity 

is typically modeled as ellipsoids where the direction of the greatest diffusivity is 

assumed as the direction which is parallel to the local direction of the white matter (i.e. 

axon fibers). Methods of measuring diffusivity include mean, axial and radial 

diffusivities along with fractional anisotropy. 

 

Figure 4, parcellated 3D human brain axon tractography derived from DTI, images 

extracted from a single subject using DSI studio software. 

Imaging modalities such as functional MRI (fMRI) allow for a mapping of the 

metabolic function of the brain rather than the 3D anatomical mapping done by MRI. 

This metabolic mapping allows for analysis of the brain network connectivity changes 

over time [7]. In particular it is used to evaluate regional interactions that occur, with 

resting state MRI (rs-fMRI) occurring when the patient is resting or in a task-negative 

state [21]. These imaging techniques have paved the way for understanding the functions 

associated with the brain’s different regions and how those regions are connected by the 



8 

axon fibers. Table 1 summarizes literature findings that highlight specific tract locations 

and anatomical orientations (association, commissural and projection) as well as the 

functions and impairments that are caused when damaged. These neuroscience concepts 

are the basis of functional and structural brain research. 

Table 1, breakdown of 22 major axon fiber tracts and their functions based on 

literature. 

Name of Tract Location Function 

Arcuate Fasciculus (AF) Association tract located in parietal, temporal, and 

frontal regions connecting Wernicke’s area to Broca’s 

area. 

Damage associated with conduction aphasia, 

impairments in naming reading and apraxia [22, 

23]. 

Cingulum Bundle (CB) Association tract connection located in parietal, 

temporal, and frontal lobes of cortex, above CC and 

under cingulate cortex (made up of five regions). 

Executive control, emotion, pain, episodic 

memory, and cognitive functions, damage 

associated with Alzheimer’s disease, 

schizophrenia, depression, PTSD, OCD and 

autism spectrum disorder [24, 25]. 

Corpus Callosum (CC) Commissural tract connecting cortical regions of both 

hemispheres through corpus callosum. 

Interhemispheric interaction, damage leads to 

inhibited transfer of somatosensory information 

and learning processes between sides of cerebral 

cortex, decline cognitive function[26, 27].  

Cortico-Ponto-Cerebellar 

pathways (CPC)  

Projection tract from associative and limbic areas of 

cerebellar cortex to the contralateral half of the 

cerebellum. 

Coordination and regulation of movement 

damage associated with progressive ataxia, 

atrophy, dysmetria, dysarthric speech, or tremor 

[28]. 

Corona-radiata-frontal and 

parietal (CR-F & CR-P) 

Along brainstem projection tract. Motor and sensory patterns, loss of motor 

function and muscle weakness, damage leads to 

sever motor and sensory deficits (faciobrachial 

or brachiocrural and hemihypethesia)[29]. 

Corticospinal Tract (CST) Originates at primary motor cortex and passes through 

internal capsule and cerebral ending in the grey matter 

of spinal cord. 

Pathway for voluntary motor function (fine 

motor activities in hand)[30, 31]. 

External Capsule (EC) Association fibers connecting cerebral cortex to 

striatum, fibers from basal forebrain to cerebral cortex. 

Damaged associated with anterograde and 

retrograde axonal damage[32]. 

Extreme Capsule (EmC)  Cortical Association bundle that interconnects the 

frontal, insular and temporal cortices, inferior frontal 

cortex through superior temporal gyrus to inferior 

parietal lobe.  

Language processing and expression [33]. 

Internal Capsule (ICP) Along brainstem, divided up into 5 subdivision  Damage shows deficits in storage and retrieval 

of verbal memory, visual and auditory 

processing. 

Inferior Longitudinal 

Fasciculus (ILF) 

Connects the temporal and occipital lobes  Right – involved in visual memory and facial 

identification 

Left – visual analysis and recognition of colors, 

works, shapes and objects 

Damage causes language processing deficient, 

and disruption of information between visual, 

limbic and memory regions  [33]. 

Intracerebellar input and 

Purkinje tract (Intra-

CBLM -IP) 

In the Cerebellum GABAergic neurons that receive 

input from the cerebellar cortex and outputs to the 

cerebellar cortex 

Important in motor learning and coordination as 

well as cognitive information processing.

 Damage leads to reduction in white 

matter volume, disorganized pathways, mossy 

fibers, and abnormal fibers running to/from the 

cerebellum[34]. 

Intracerebellar Parallel 

Tract (Intra-CBLM-PaT) 

 [35] 

Inferior Occipito-frontal 

Fasciculus (IOFF) 

Connects ventrolateral and dorsolateral prefrontal 

cortex with posterior temporal cortex and occipital lobe 

Facilitates higher visual processing, recognition 

of objects, places, colors, faces, and words; also 

associated with ventral language pathways, 
damage/lesions can cause deficits in visuospatial 

processing [33]. 
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Middle Cerebellar 

Peduncle (MCP) 

Composed of fibers that carry input from contralateral 

cerebral hemisphere relayed via the pontine nucleus, 

information from contralateral cerebellar hemisphere, 

main afferent pathway to the cerebellum. 

Motor coordination, difficulty walking, speaking 

vertigo and facial weakness [36]. 

Middle Longitudinal 

Fasciculus (MdLF) 

Connects superior temporal gyrus to the parietal lobe 

made up of two tracts (angular gyrus and superior 

parietal lobule) 

Involved in attention and language and 

visuospatial and intergrative audiovisual 

functions. Associated with neurodegenerative 

disorders such as primary progressive aphasia, 

posterior cortical atrophy, frontotemporal 

dementia, and Alzheimer’s disease [33] 

Striato-frontal (SF) Connections between the lateral prefrontal cortex and 

dorsal striatum via basal ganglia; front end of a larger 

cortical-basal ganglia-thalamo-cortical circuit 

Damage associated with cognitive impairments 

regarding visuospatial processing, executive 

functioning, and motor speed. Disorders 

attributed to the frontal-striatal system include 

schizophrenia, impulsive disorders, drug 

addiction, Parkinson’s disease, and Tourette’s 

syndrome [37]. 

Superior Longitudinal 

Fasciculus (SLF) 

Major association fiber pathway connecting the 

postrolandic regions to frontal lobe, made up of four 

components  

Facilitates cognitive processes; attention, 

memory emotion and language as well as a 

connection for working memory, damage to left 

SLF is language disorders, right SLF spatial 

attention deficits [32]  

 

Superficial-

F/FP/O/OT/P/PO/PT/T 

Superficial-frontal, 

frontal-parietal, occipital, 

occipital-temporal, 

parietal, parietal-occipital, 

parietal-temporal, 

temporal 

Superficial white matter, is located directly below 

cortex and is a mixture of short association fibers that 

include intra-cortical, subcortical and termination 

fibers. 

 

Thalamo-frontal (TF) Diencephalon to prefrontal cortex  Region has been associated with executive 

functioning (skills necessary for purposeful, 

goal-directed activity). Damage associated with 

impairments in concept formation, abstract 

reasoning, mental flexibility, cognitive speed 

and planning. [38] 

Thalamo-occipital (TO) Important relay pathway that receives afferents from 

visual sensory organs and sends efferent to the primary 

sensory cortex. Lateral geniculate nucleus signals to the 

occipital cortex 

Decreased connectivity between thalamo-

occipital projections were present in 

congenitally blind patients. Patients with 

temporal lobe epilepsy (TLE) demonstrate 

abnormal thalamo-occipital functional 

connectivity [39, 40].  

Thalamo-parietal (TP) Connects the dorso-lateral nuclei to the posterior 

associative cortex relay peripheral sensory information 

to the somatosensory cortex in the parietal lobe 

Involved in central pain and pain relief, working 

memory. Damage leads to symptoms that 

include central imbalance, spontaneous pain or 

nociception, and central disinhibition [41, 42] 

Unicate Fasciculus (UF) Connects anterior tip of temporal lobe with 

orbitofrontal cortex 

 

semantic and episodic memory; Damage to the 

right UF results in impaired retrieval of episodic 

memory including autobiographical and event-

related memories; disrupts emotional empathy – 

makes patients apathic and indifferent , damage 

to the left UF results in impaired semantic 

memory retrieval (recalling concepts and facts) 

[33] 
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1.3 Mild traumatic brain injury 

1.3.1 Diffuse injury  

1.3.1.1 Injury tolerance at tissue level 

The use of brain strain to quantify the deformation associated with diffuse injuries is 

deemed as a reasonable metric for predicting mTBI or concussions because the strain 

(stretch) is the direct cause of neuronal damage [43]. Studies report that a strain of 0.19 – 

0.21 in brain regions is considered a threshold for experiencing mTBI [44, 45]. Different 

structures of the brain experience different strain thresholds, while some structures have 

different levels of injury susceptibility, the corpus callosum, the component connecting 

the left and right hemispheres, is damaged at strains of between 0.28 to 0.31 [46, 47]. The 

thalamus was reported to have a strain tolerance between 0.26 and 0.38 [46, 48]. 

Rotational head motions are the overarching contributor to brain strains, and factors such 

as the shape of the impact curve or its magnitude and duration, as hypothesized by Zhao 

et al., Yoganandan et al., Post et al, and Bian et al can have a considerable effect [49-52]. 

Impact location as reported by Zhang et al. and Elkin et al. can also influence the brain 

strains location and magnitude [53, 54]. The key to understanding this tissue tolerance 

level is combining large amounts of data with highly detailed FE models, animal data and 

imaging studies. 

1.3.1.2 Diffuse axonal injury (DAI) 

One of the primary mechanisms of brain injury is thought to be well understood, a rotational 

motion applied to the head causes a shearing force to the soft brain tissue which leads to 

tensile strains on the brains axon fibers [55]. The strains derived from the impact to the head 

are found to cause different injury outcomes such as diffuse axonal injury (DAI) [56], these 

types of injuries, specifically the ones associated with the axon fibers of the brain are the 

focus of this study as it has been proven that there is a specific injury threshold at this axonal 

level [57]. The study completed by Bain et al. 2001, showed through the stretching of the 

optic nerve of a guinea pig that at functional injury was present at a strain of 0.34 (false 

positives) and 0.14 (false negatives) with the optimal strain threshold for sensitivity and 

specificity measuring 0.21 [43]. Strains at the axonal level are believed to be a predominant 
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driving force in the negative outcomes associated with TBIs and concussions in humans [58]. 

While other studies have looked in depth at the response of the brain to traumatic head 

impact [46, 58, 59], few studies have looked at the axon fibril networks dynamic response in 

real world impact scenarios. Studies such as those completed by Giordano et al. and Wright 

et al. focused on the validation of a computational models that treat white matter as an 

anisotropic, hyperplastic material based on DTI to determine a threshold or probability of 

DAI  [55, 60]. Both studies determined that strain in the direction of the fibers is a better 

predictor of injury then a generalized max principal strain (MPS), anisotropic equivalent 

strain (AESM) and cumulative strain damage measure (CSDM).  

 TBI also affects the cognitive ability and brain connectivity, due to the trauma on the axon 

fiber networks of the brain. Fagerholm et al. has been able to show with a 93.4 % accuracy 

that axonal injury in patients resulted in significant impairments in cognitive performance 

such as information processing speed, executive function and associative memory. These 

results suggest that TBI results from disconnection of network hubs in axonal injuries [61].  

These results were directly related to the disconnection of the network hubs in the brain 

which were predominantly associated with deep brain regions such as the corpus callosum.  

1.3.2 The sports concussion 

1.4 Biomechanical methods to study head injury in 

hockey   

To study the effects of impacts to the head in physical contact sport, such as 

hockey, there are several different methods to produce effective traumatic impact 

mechanism predictions in concussion like instances. Both researchers and industry use a 

wide variety of techniques to assess the viability of protective equipment and the range of 

forces that result in such injury types. Accident reconstruction, physical experimental 

methods and computational simulations, have been shown to be efficient in providing 

consistent and repeatable data for use in research [62, 63]. Our work focuses on the 

computational methods of accident reconstruction as it provides real world-relevant 

scenarios and allows engineers with a background in biomechanics the necessary tools to 

generate novel insights into brain injury.  Understanding brain injuries in hockey can also 

mean understanding the benefit and overall effectiveness of the helmet in reducing 
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impact kinematics that contribute to brain motion[64-66]. Kraus et al. demonstrated that 

in ice-hockey a properly designed helmet, including tested foams and solid construction 

could reduce head injuries from 8.3 per 100 games to 3.8 per 100 games [67]. This study 

compared helmeted and non-helmeted players and proved that the use of helmets in the 

sport of hockey for head injury reduction is warranted. 

1.4.1 Experimental methods  

1.4.1.1 Laboratory test 

Historically, surrogate, physical dummy models were used to measure the linear and 

angular accelerations associated with head impacts and created injury criteria to assess 

the damage of head injuries quantitatively [68]. The use of drop tests, pendulum impacts 

and other forms of blunt force impacts to the head proved effective in recreating some of 

the typical loading conditions that are associated with head injuries[44]. Recently, new 

methods of recreating impacts that involve tangential forces that result in rotational 

motion to the head have been introduced, in the form of helmet safety testing. One of the 

most popular and widely referenced helmet testing protocol is that of STAR. This 

methodology, which is examined in more detail in several of our studies, looks to 

introduce typical loading conditions present in helmeted sports, such as hockey and 

football and provide a consumer centric rating system to determine a helmets relative 

safety rating  [66].  The STAR methodology and other similar physical dummy tests 

typically use a NOCSAE head form and Hybrid III neck to reconstruct game like 

impacts, with embedded sensor like accelerometers providing typical center of gravity 

head responses in kinematic form, typically providing, linear and rotational acceleration 

[64]. 

1.4.1.2 Brain injury prediction based on head kinematics  

Traditionally, commonly used concussion prediction methods are kinematics-

based head injury metrics. These metrics are typically calculated based on the peak 

resultant kinematic response of the head during a traumatic impact. One of the original 

and most widely referenced metric is the Wayne State Tolerance Curve (WSTC) for head 

injury, which is defined based on the relationship of linear acceleration and impact 
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duration [69, 70]. The WSTC hypothesis is that the head can tolerate higher peak linear 

acceleration for a very short duration, while injury occurs when same magnitude of 

acceleration is applied at a longer duration [71]. The WSTC data is considered the basis 

for many widely used injury metrics such as Gadd Severity Index (GSI). The GSI is 

described by the integration of linear acceleration to the power of 2.5 which in theory 

gives idealistically peak values for the impact with longer pulse duration [72, 73]. GSI is 

capable of quantifying severe skull fractures and brain injuries, but is not typically 

recommended in its ability to predict the risk of concussions [74]. The mathematical GSI 

is represented as equation 1.  

𝐺𝑆𝐼 =  ∫ 𝑎(𝑡)2.5𝑑𝑡   (1) 

Where ‘a’ is the effective acceleration of the head in terms of g, acceleration due to 

gravity, and ‘t’ is the time in milliseconds [75]. Building on the GSI the Head Injury 

Criterion (HIC) is focusing on the severity index on the part of the impact that can be 

expected to be pertinent for the risk of brain injury. This measure is calculated by 

averaging the integrated curve of resultant acceleration and time over the time interval of 

maximum HIC value.  The mathematical expression for HIC shown in equation 2.  

𝐻𝐼𝐶 =
𝑚𝑎𝑥

𝑡1, 𝑡2
 {(𝑡2 −  𝑡1) [

1

𝑡2 − 𝑡1
 ∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1

]

2.5

}  (2) 

When first developed the t1 and t2 in the HIC equation referred to any two arbitrary times 

on the acceleration pulse [76]. In 1972, the National Highway Traffic Safety 

Administration (NHTSA) narrowed t2 and t1 to be no more than 36 milliseconds (HIC36) 

and the maximum HIC36 not to be greater than 1000. In addition, NHTSA further 

reduced impact duration time in HIC15 where t2 and t1 could be no more than 15 

milliseconds with maximum value not exceeding 700 [77].  HIC is still widely being used 

in multiple industrial and research fields for risk predictions. This metric is often used to 

quantify traumatic brain injuries while its accuracy in predicting mTBIs has been 

consistently challenged. In the automobile testing, HIC has been recognized as the 

premiere metrics for predicting the head injuries related to motor vehicle accidents for 

(1) 
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over three decades [45]. However, in a real-world collision, head injury occurs due to the 

combination of linear and angular acceleration and HIC is an experiential criterion that 

only takes linear acceleration into account. Being limited to only linear acceleration led to 

the rise of The Generalized Acceleration Model for Brain Injury Threshold (GAMBIT). 

This metric was proposed to consider the combined effect of linear and rotational 

kinematics. It can be calculated from maximum linear and angular acceleration measured 

at the center of gravity (COG) of the head.  Mathematically, it can be expressed as 

equation 3.  

𝐺𝐴𝑀𝐵𝐼𝑇 =  [(
𝑎𝑚𝑎𝑥

𝑎𝑐𝑟
)

2

+ (
𝛼𝑚𝑎𝑥

𝛼𝑐𝑟
)

2

]

1

2

 (3)   

Where amax is the peak linear acceleration of the head in g and αmac is the maximum 

angular acceleration in radians per square seconds [78]. With the use of scaled animal 

models and along with NHTSA, a rotational brain injury criterion – Brain Injury Criteria 

(BrIC) was developed. BrIC looked to introduce peak angular velocity and critical values 

which are directionally dependent on the anatomical planes of the anthropomorphic test 

dummy [79]. BrIC has become very critical to understand the vehicle and dummy motion 

during the development of the restraints system test. Recently, the New Car Assessment 

Program has updated BrIC as a new head injury criteria in automobile oblique impact 

crash test [80]. 

𝐵𝑟𝐼𝐶 =  √(
𝜔𝑥

𝜔𝑥𝐶
)

2

+ (
𝜔𝑦

𝜔𝑦𝐶
)

2

+ (
𝜔𝑧

𝜔𝑧𝐶
)

2

  (4) 

Where ωx, ωy, and ωz are maximum angular velocities in X, Y, and Z-axes respectively, 

and ωxC, ωyC, and ωzC are the critical angular velocities (66.25, 56.46 and 42.87 rad/s) in 

their respective directions [79].  

Due to the development of finite element and computational methods, 

deformation of the skull and internal organs were made possible. This greatly encouraged 

the discovery of new injury criteria. More than ten different three-dimensional finite 

element head models (FEHM) have been developed in the last decade. Thus bridging the 

(3) 
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gap between macro-level kinematics and micro-level injury assessments, FEHM played 

an important role in simulating brain response subjected to external impact [81]. While 

taking into account the varying sizes of a human head-on impact, using FEHM from 

Stockholm Royal Institute, introduced KTH which emphasis the head size dependence of 

intracranial stress associated with injury [82]. To assess the potential of TBI in car 

crashes, new criteria called Simulated Injury Monitor (SIMon) criteria was introduced 

which can predict three different forms of brain injury using three injury metrics as 

follows [83]. 

I. Cumulative Strain Damage Measure (CSDM) - A correlate for Diffuse Axonal 

Injury (DAI) which is associated with the tensile strains of the cumulative 

volume of brain tissue over a predefined critical level.  CSDM predicts DAI by 

calculating the strain levels at a volume fraction of the brain tissue [83]. 

 

𝐶𝑆𝐷𝑀20 =  
# 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑀𝑃𝑆 𝑜𝑣𝑒𝑟 0.20 

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 
  (5) 

Subsequently, from the outcome of volunteer sled tests and professional football 

reconstruction, Injury criteria for FEHM – Global Human Body Model Consortium 

(GHBMC) which have detailed skull, face and brain structures was developed [59, 84].  

The concept that a second-order mechanical system behaves in a similar function to the 

typical brain deformation response to angular head motion has led to the development of 

several new brain injury metrics.  

I. Universal Brain Injury Criterion (UBrIC) was developed based on the relation 

between the rotational head kinematics and strain-based injury metrics such as 

Maximum Principal Strain (MPS). This combinational equation was developed 

in part by the brain response outputs of FEHM in dynamic loading scenarios.  

Mathematically, UBrIC is represented as equation 6. 

𝑈𝐵𝑟𝐼𝐶 =  {∑ [𝜔𝑖
∗ + (𝛼𝑖

∗ − 𝜔𝑖
∗)𝑒

𝛼𝑖
∗

𝜔𝑖
∗
]

𝑟

𝑖
}

1
𝑟

 (6) 
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Where 𝜔𝑖∗ and 𝛼𝑖∗ are the directionally dependent (𝑖 = 𝑥, 𝑦, 𝑧) maximum 

magnitudes of head angular velocity and angular acceleration each normalized by 

a critical value (𝑐𝑟); 𝜔𝑖∗ =𝜔𝑖⁄𝜔𝑖𝑐𝑟 and 𝛼𝑖∗ = 𝛼𝑖⁄𝛼𝑖𝑐𝑟 [85, 86]. 

II. Diffuse Axonal Multi-Axis General Evaluation (DAMAGE) was developed 

which predicts maximum brain strain using directional dependent angular 

acceleration time histories from head impacts. It is represented in eq. 7. 

𝐷𝐴𝑀𝐴𝐺𝐸 =  𝛽𝑚𝑎𝑥𝑡{𝛿 (𝑡)}  (7) 

Where β is a scale factor that relates the maximum resultant displacement of the system 

to the MPS value from the FE brain model [87]. Besides depending on the tolerance level 

of brain injury to SDH (Subdural Hematoma), a threshold curve called critical strain 

curve was suggested, expressed in terms of the peak angular acceleration and change in 

angular velocity which demonstrates that there was no axonal injury between 5% and 

10% critical strain. Injuries such as concussions can be expected above these values, 

where DAI may also be expected [19, 88]. 

Due to the extensive use of FEHM, various physical parameters such as coup, contrecoup 

pressure, von Mises, and shear stress could be utilized to better predict the risk of brain 

injuries [89]. In addition, to classify and describe the severity of specific injuries, it is  

common to use a widespread injury severity scale named The Abbreviated Injury Scale 

(AIS), which was introduced by Association for the Advancement of Automotive 

Medicine (AAAM) and ranges from 0 (no injury) to 6 (fatal injury). It was initially 

adopted as an epidemiologic tool to define MVC but later adopted in all types of 

trauma[90-93]. Most of the previously listed injury prediction metrics attempt to compare 

their concussion assessment results to the AIS scale, a clear description of the level of 

injury is described in Table 2.  

 

 

 

(8) 
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Table 2, the Abbreviated Injury Scale (AIS) [93]. 

AIS- Code Injury 

AIS 1 Minor 

AIS 2 Moderate 

AIS 3 Serious 

AIS 4 Severe 

AIS 5 Critical 

AIS 6 Maximum 

1.4.2 Computational head and brain models  

1.4.2.1 Mathematical modelling (FEA) 

This numerical method is described as the simplification of complex structures through 

the discretization and meshing of large systems into smaller, simpler geometries through 

the technique of meshing. This method provides a finite number of elements and points 

that can be more easily solved using linear algebra and partial differential equations to 

extract important engineering measures such as mechanical stresses and strains. This 

technique is ideal for the prediction of mechanics related head damage, simplifying the 

complex structure of the head and brain for quantifiable analysis [5]. The benefits of 

using FE for head models is its ability to model the brain-damage related responses, 

particularly brains strain and pressure and simulated impacts and accident reconstruction. 

Most FEHM are generated based on anthropometric head geometries, derived from CT 

and MRI scans [59], which consist of different components that represent the brains 

anatomical regions both in terms of geometrical and material properties.  

1.4.2.2 Different head and brain models  

One of the earliest finite element head models was the Wayne State University brain 

injury model (WSUBIM), developed in the early 1990s. The benefit of this model and 

others like is its ability to be modified and updated as new research emerges, the latest 

version of this model contains 281,800 node and 314,500 elements [94]. Other models 
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soon followed with Kang et al. developing a 13,208 element model which included key 

anatomical features such as, the falx, tentorium, cerebrum, cerebellum and brainstem, 

known as the Universitѐ Louis Pasteur (ULP) human head model [95]. This model had 

several improvements over others during that time period yet used some outdated 

modeling techniques such as elastic material properties for brain matter instead of more 

complex constitutive models [96]. The continuous improvement in models with 

advancements in FE techniques was shown in 2002 where Kleiven developed a model 

known as the Kungliga Teknisha Hӧskolan (KTH) [82].  The KTH model is made up of 

18,400 elements, includes anatomical features such as the skull, brain meninges and CSF, 

and has major improvements over other FEHMs of the past with its inclusion of different 

material properties such as homogenous, isotropic and non-linear materials. This was 

then proceeded in the following year by the Simulated Injury Monitor (SIMon) model, 

which was modelled after a 50th percentile male [83], this model defined the skull as a 

rigid material while other components showed similar material properties to that of the 

KTH model. While all those models continued to be updated with slightly improved 

geometries and material properties, one of the larger jumps in FEHM was in 2013 with 

the development of the Global Human Body Models Consortium (GHBMC) FEM which 

was developed by Mao et al., shown in Figure 5 [59]. This model was a detailed model 

based on CT and MRI scans that contained a plethora of key anatomical features such as 

the cerebrum, cerebellum, brainstem, corpus callosum, ventricles, and thalamus, with 

each location individually marked and viscoelastic material properties applied pertaining 

to white matter and grey matter. The GHBMC model was validated against intracranial 

pressure data, brain displacements, nasal impacts and frontal horizontal impacts [59]. All 

of these models were recently compared by Miller et al. to determine which model 

provided the most comprehensive and accurate representation of brain skull displacement 

as mentioned by Hardy et al. [97]. In this study, top performers where the KTH (M-R) 

[98] , the ABM and the GHBMC models which all performed consistently well in the 

CORA, a tool that evaluates the similarities of curves. While there is some debate over 

using the Hardy validation cadavers as a good validation tool for FEHM in terms of the 

strains experienced in the brain, this validation protocol has been used extensively and is 

considered a golden standard for FEHM performance validation. So far, computational 
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head models have been well developed and available to the users in the field, these 

include validated models such as the atlas-based brain model, ABM [99], the Total 

Human Model for Safety (THUMS) head model [100], the Dartmouth Head Injury Model 

(DHIM)  [17], as well as the University College Dublin Brain Trauma Model 

(UCDBTM) [101] and Strasbourg University Finite Element Head Model (SUFEHM) 

[102], aside from the aforementioned [97]. 

 

Figure 5, cross-sectional schematic of GHBMC head model, anatomical regions are 

represented in different colors for clarity 

The improvement in the quality and accuracy of imaging modalities such as DTI brought 

on a new wave of these new detailed models. These finite element models have evolved 

the capability of numerical injury analysis by bridging the gap between the stress-strain 

thresholds obtained by FEHM and their relationship to the mechanical thresholds of 

cellular injury [103]. The new wave of FEHM, maximize the potential of DTI to provide 

mesoscopic (μm) insights into the brains structure and the potential effects that those 

structures have on the brain’s anisotropic injury response. These models utilize different 

measures such as; fractional anisotropy (FA) or weighted average fiber orientation to 

introduce a combination in imaging measures and meshed finite elements to describe the 
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brains injury response in novel ways, a summary of the different models is presented in 

the table below.  

These models however produced a variety of limitations, Chatelin et al. who 

projected strains from the bulk volume elements onto the fiber direction after post 

processing, lost important axonal strain information, compromising the accuracy of the 

material model, by averaging fiber direction, which may not direct anisotropy in the 

correct direction [103, 104]. Zhao et al. improved on this work by using DTI to 

incorporate fiber direction into the brain model to calculate axonal strain, comparing the 

different anisotropy implementations (voxel, tractography or multiscale sub-modeling) 

and determined that the implementation of discrete tractography in FEHM was the 

recommended method for accurate injury metric prediction [105].  This recent study 

advised that the combination of tractography and neuroimaging for region segmentation 

led to more accurate injury metrics based on brain strains and should be explored in 

future FEHM. 

1.5 Research scope 

This study will encompass four fields of medical and mechanical engineering 

research; computational modelling, neuroscience, soft tissue biomechanics and medical 

imaging to provide a new perspective on how traumatic head impacts affect deep brain 

responses. This will then, in turn, provide insight into how the connection networks of the 

brain are associated to cognitive function. Traumatic brain injury has been associated 

with high rates of mortality and disability and is usually associated with automotive 

accidents [106]. This research will focus primarily on a subset of the TBI know as a 

concussion which is commonly derived from sports related accidents and falls.  

For this study, a high quality, extensively validated finite element human head model, 

known as a GHMBC model was used. This model was further improved by featuring 

axonal fiber tracts taken from real human subjects through a subset of the Magnetic 

Resonance Imaging modality called Diffuse Tensor Imaging. The overall objective of this 

research project is to create a geometrically accurate FE model of the neural connection 

network of the brain based on 3T and 7T DTI. This model was used to provide evidence 
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that certain impacts, based on impact location, duration and force have on deep brain 

responses, particularly axonal strain.  This study looked to provide a novel approach at 

determining the strain to those axon fibrils and attempt to correlate that strain to cognitive 

functions that have been affected. The study utilized data accrued from surrogate, 

laboratory impact testing to determine the change in neural network composition post-

concussion, while utilizing a computational model to predict injury location based on 

post injury rs-fMRI and literature resources. 

1.6 Thesis outline  

The breakdown of each subsection of this study are as follows. The computational 

modelling involved advanced finite element analysis using a currently validated GHBCM 

model. This provided a quantifiable mathematical approach to understanding the 

biomechanical responses of the deep brain and soft tissues and relating the output through 

a comprehensive state of the art review.  This subsection has a direct relation to the soft 

tissue biomechanics that was also a focus of this paper. The brain is a very complicated 

organ and its structure and in vivo conditions result in complications when attempting to 

study real world responses and affects in human subject [5].The introduction of axon 

fiber tracts to the pre-existing model helped improve functional response of the white 

matter regions of the brain with the final goal to model and simulate real world traumatic 

head impacts. This further helped solve issues pertaining to the mechanical responses of 

tissue interaction in the deep brain to predict injury outcomes and aid in diagnosis [46]. 

Using diffuse tensor imaging which maps the pathways of which water flows through the 

brain it is possible to create three-dimensional computer tractography’s that provide an 

accurate representation of the functional neural network of the brain [107]. The axonal 

fiber tract for this study focused primarily on the pathways of the brain and the neural 

connections that aid in cognitive function [108].  This thesis includes six chapters. 

1. Introduction, background and literature review.  

2. Development of tools for automated injury prediction and analysis.  
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3. Exploration of current injury criteria and future measures for brain injury, 

understanding the effect of a helmet. 

4. Development and validation of a parcellated axon fiber FEHM for improved 

injury prediction. 

5. Using new FEHM model to predict injury and pave way to the future, combining 

imaging, FEA, patient diagnosis and symptoms, with virtual brain injury 

prediction and symptom prediction. 

6. Concluding remarks, future work within group, thoughts on where research 

should go, impact of study and novelty of research. 
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Chapter 2  

2 Development of a computational concussion injury 

prediction pipeline for ice hockey helmet performance 

evaluation  

This chapter was co-authored by Dr. Haojie Mao, Marco Gallone, Kierra McDougall and 

Dr. Ryan Ouckama and is accepted as a peer reviewed paper into IRCOBI conference. 

For this chapter and the following 4 chapters the introductions include information re-

iterated in the introductory chapter, however, for the purpose of publication formats, 

information is repeated. 

2.1 Abstract and Key Terms 

 

Abstract This study looks to develop and explore a computational approach, along with 

data gathered from conventional mechanical helmet testing procedures in ice hockey, to 

provide new insights into how the helmet could protect an individual from concussive 

type impacts. In this study, five samples of six different ice hockey helmet models were 

tested using the methodologies set forth by The Summation of Tests for the Analysis of 

Risk, the STAR helmet rating protocol. Head form kinematics collected during STAR 

testing were used as inputs to the Global Human Body Model Consortium head finite 

element model, and each impact (n=672) was simulated. A 15% cumulative strain 

damage measure threshold was chosen as the main response variable to predict brain 

injury probability. The results indicate that output kinematics of rotational velocity were 

most correlated (r = 0.96, P < 0.05) to cumulative strain damage measure and other 

strain measures. Impact direction also had significant effects on the strains in the brain, 

with impacts to the rear, front and side showing statistical significance to cumulative 

strain damage measure. It was also observed that specific helmets showed less 

deformation response in certain impact directions compared to others. This study 

developed a start-to-finish methodology to evaluate helmets for mild brain injury 

mitigation. 
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Keywords Concussion mitigation, cumulative strain damage measure, injury 

prediction pipeline, kinematic performance evaluation, mild traumatic brain injury 

2.2 Introduction  

The traumatic brain injury (TBI) has become one of the most critical issues affecting 

global health systems with over 69 million individuals worldwide sustaining this injury 

every year [1]. An estimated 80% of these injuries are considered to be mild in nature, i.e. 

concussions, which poses a unique challenge to the researchers, physicians and medical 

trainers who are tasked with diagnosing, rehabilitating and mitigating their rate of 

occurrence [2]. 

In organized sports the issue of the mTBI is rampant, especially in adolescent aged 

participants [109]. The competitive environment which focuses on physical contact, 

especially in sports such as American Football and Ice Hockey, leads to increased 

instances of concussive and sub-concussive impacts that accumulate and could lead to 

negative short- and long-term neurodegenerative disorders [110, 111]. In both sports the 

use of a helmet is the primary method of head impact mitigation. The original purpose of 

a helmet was to provide its wearer protection from mechanical loading that lead to 

lacerations, abrasions, fractures and other forms of tissue disruptions by absorbing the 

energy acting on the head upon impact [66]. Helmets, however, need to be improved to 

cushion the brain and provide protective measures for the mitigation of concussive 

instances.  

One common pathology of mild traumatic brain injury (mTBI) is the diffuse axonal 

injury (DAI), which is directly correlated to injury outcomes such as unconsciousness, 

cognitive impairments, and if the level of injury is severe enough, death [112]. The 

primary mechanical mechanism in DAI is inertial forces applied to the head following 

impact, that cause stretching of the deep and subcortical white matter. This twisting effect 

leads to extensive deformation of the brain structure and micro-tears to the underlying 

axon fiber bundles [56]. The issue with DAI, and moreover mTBI, is that it is extremely 

difficult to quantify the extent of the damage using traditional macroscopic pathology, 

typically used as assessment tools, post injury [112]. This along with the perceived 
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randomness associated with concussions, where no two impacts are alike and where the 

ability to see the difference in brain structure using traditional diagnosis tools, such as 

computed tomography (CT) and magnetic resonance imaging (MRI) scans, is difficult, 

spearheading the inability to properly diagnose the patients who suffer from them.  

The use of physical dummy testing models has become common practice in both 

academia and industry to create injury criteria based on kinematics to assess injuries 

quantitatively. In the sport of hockey, the standards for the level of protection in helmets 

in Canada is governed by three different organizations; The Hockey Equipment 

Certification Council (HECC), The Canadian Standards Association (CSA), and the 

International Organization for Standardization (ISO). All three standards have very 

similar pass/fail criteria mainly targeted towards the reduction of the probability of 

sustaining catastrophic head injuries. These current testing protocols are geared towards 

high energy linear impacts to the head and dummy and have considerable disregard for 

more mild or concussive like impacts. The current issue with these organizations and the 

helmet standardization and testing, is that it currently does not take into consideration (1) 

the effects of rotational motion on the brain, and (2) the effects that more mild or sub-

concussive impacts have on the brain structure and relationship to long-term neuro-

degeneration. The obvious limitation of such methods is that (1) they do not allow 

researchers to recreate in vivo head impact scenarios and (2) they are not able to provide 

adequate representation of the complex, non-linear and anisotropic behavior of the soft-

tissue in the brain [113].  

Therefore, the need for the kinematic parameters of the helmeted head are required as 

they provide a direct correlation to the inertial response of the brain and hence could be 

an invaluable tool to predict the level of injury and provide instant insight into patient 

diagnosis. The introduction of the Summation of Tests for the Analysis of Risk (STAR) 

formula and safety testing methodology allows for a novel helmet testing procedures that 

looks to mitigate some of these inertial effects by examining the rotational forces applied 

to the helmeted head in low and medium energy level impacts [64, 66]. This STAR 

testing methodology utilizes the kinematic principles of linear acceleration, rotational 

acceleration and head impact exposure, a metric based on male and female collegiate 
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player’s impact location and severity over several seasons [66], to provide a resource for 

consumers to make educated decisions on purchasing helmets which are perceived as 

most likely to mitigate concussive risk. The STAR Helmet rating system, in theory, 

should provide a conclusive rating to assess the safety of a specific helmet, acting to keep 

helmet manufactures truthful and innovative with their research and development into 

new and innovative concussion mitigation technology, benefiting consumers.  

The introduction of computational head and brain models has allowed researchers and 

engineers to evaluate brain tissue loadings that directly link to damage. With the use of 

finite element (FE) head models we are now able to recreate the complicated geometries 

and material structure of the human head. These FE models have allowed for reliable 

prediction of mechanical response and an accurate description of the constitutive 

behavior of the nonlinear soft tissue response to loading, e.g., [59, 97, 114-117]][94]. 

With these computational head models available, developing a computational brain injury 

prediction pipeline for hockey helmets will help the field to better understand the 

effectiveness of protection and explore new designs that can better protect the brain. 

This study looks to provide details of the development of an automated injury prediction 

pipeline for large kinematic datasets that will be used to provide new insights into how 

effective current methodologies such as that of the STAR are in assessing helmet 

performance and determining injury likelihood. One question that we look to solve is the 

validity of this methodology in assessing helmet protection and whether the use of linear 

and rotational acceleration are the best kinematic predictors for injury to the brain 

structure. This study looks to combine validated computational head models along with 

the use of validated physical surrogate models and assess the validity of the different 

testing methodologies and attempt to predict the level of injury mitigation that a hockey 

helmet helps provide when looking at common concussion-level impacts.    

2.3 Methods 

2.3.1 Experimental Procedure   

To re-create an industry standard method for physical helmet evaluation, this study based 

its helmet testing procedure on that of Hockey STAR. This methodology of assessing the 
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biomechanical performance of hockey helmets differs from traditional methods provided 

by other standardization organizations as it primarily looks to recreate some of the 

rotational kinematics associated with head impacts. The Hockey STAR equation, 

Equation 1, includes several unique metrics that pertain specifically to the sport of Ice 

Hockey. The L represents the location of impact (rear, side, front or top), the θ represents 

different impact energy levels, these levels were determined in the original 

methodologies by the angle of the pendulum arm of the impactor. The E represents 

exposure, the number of times a player is expected to receive an impact in a season. 

Finally, R, is the risk of concussion as a function of linear (a) and angular (α) 

acceleration. One of the purposes of this study was to examine whether the variable ‘R’ is 

sufficient at assessing the correlation between the kinematic outputs of a traumatic impact 

and the true level of injury response of the brain. 

𝐻𝑜𝑐𝑘𝑒𝑦 𝑆𝑇𝐴𝑅 =  ∑ ∑ 𝐸(𝐿, 𝜃) ∗ 𝑅(𝑎, 𝛼)

3

𝜃=1

4

𝐿=1

  (8) 

The impactor of this study differed slightly from that of the original methodology. Rather 

than a pendulum as the STAR methodologies originally call for, a pneumatic impactor 

was used as it allows for more consistent impacts transferred to the head-form and less of 

a safety risk in testing [62]. Figure 6 highlights the locations of impact, confirmed using 

slow motion video and pointed tip impactor heads, along with the placement of the 

accelerometer inside the NOCSAE head form.  Like the original laboratory testing 

procedure; three impact energy levels (low, medium and high) with impact speeds of 2.6 

m/s, 4.6 m/s and 6.0 m/s respectively, and four impact locations (front, rear, side and 

top), were recreated to assess the viability of each helmet sample, see Figure 6. While the 

front and rear impacts were directed at the center of gravity of the NOCSAE head form, 

the top and side impacts were not directed at the COG of the head form and hence added 

an element of tangential loading. It needs to be highlighted the top impact (Figure 6-D) 

was not a conventional impact delivered from the vertical side, but more an impact with 

an elevation.  Each helmet was hit twice with the impactor (19.94 kg) per direction per 

impact speed per trial, with four to five helmet samples for each helmet model type. In 

this study six different helmet models were tested. In total each helmet went through an 
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average of 112 impacts for a total of 672 impacts with corresponding kinematics. Helmet 

tests were analyzed for repeatability by assessing the standard deviations of individual 

kinematic metrics of repeating trials.   

The helmets were fitted onto a medium size National Operating Committee on Standards 

for Athletic Equipment (NOCSAE) head-form mounted on a Hybrid III 50th percentile 

neck with three Endevco 7264C-2KTZ-2-240 (Meggitt, Bournemouth airport, Dorset, 

United Kingdoms) accelerometers for linear acceleration, and three rotational velocity 

channels of the DTS6DX Pro (Diversified Technical Systems, Seal Beach, California, 

USA) mounted in the center of mass of the head form. Two Endevco Model 136 

amplifiers provided excitation voltage and signal conditioning. The kinematic data of 

each helmet impact; linear acceleration, rotational acceleration and rotational velocity, 

were collected at 20 kHz with a filter chain of Hardware CFC1000 filter at amplifier for 

all channels, software CFC1000 filter on linear acceleration and software CFC155 filter 

on rotational velocity. A custom script was then developed to export the data into a 

spreadsheet including X, Y and Z axis data. 
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Figure 6, the experimental setup procedure and helmet impact locations modelling 

that of the Virginia Tech STAR Methodology (A) Rear Impact (B) Front Impact (C) 

Side Impact (D) Top Impact (E) placement of Endevco accelerometer in the center 

of gravity of the NOCSAE head form with Hybrid III neck and (F) the schematic of 

the placement of the accelerometer measured in inches for accurate recreation of 

kinematics in the computational model. 

2.3.2 Computational Modelling 

The finite element model used in this study to simulate the physical testing impacts was 

the Global Human Body Model Consortium (GHBMC) head model [59]. This validated 

model of the human brain and skull is based on (CT) and (MRI) scans of a healthy adult 

male brain of average height and weight. This model allows for a biofidelic 

computational model to simulate and interpret the mechanical stresses and strains 

associated with traumatic impact. The GHBMC model, as seen in Figure 7, allows for the 
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quantification and visualization of the mechanical soft-tissue material metrics in key 

anatomical regions such as; the corpus callosum, thalamus, cerebellum, brainstem and 

basal ganglia. In this model a linear visco-elastic material was used in both the grey and 

white matter with the skull modelled as a piecewise-linear-plastic material. In total the 

GHBMC head and brain model contains 62 components of bone and soft-tissue, 61 

unique material properties and 270,552 total elements (beam, shell and solid), and is 

validated against intracranial pressure and brain displacement data [118, 119]. 

 

Figure 7, breakdown of GHBMC head and brain finite element model. From top to 

right, full GHBMC model with skin, isometric view of model with skull and skin 

transparent to view placement of brain and sagittal view of model showing the 

placement of different anatomical components of the brain along with the location 

of applied loading. 

When setting up the model, the direction of the kinematics was reoriented to a 23-degree 

offset above the horizontal Y- axis to mimic the sensor setup in the original dummy head 

form. The orientation of the raw data provided by Bauer originally differed from the 

automotive standard orientation of the GHBMC model, hence the need for model 

orientation manipulation to align with the provided data for automated pre-processing.   

An initial dataset of an impact in three different impact energy levels in a single direction 

based on a single helmet sample was provided to determine an optimized time of impact 

to allow for both analysis of the moment of maximum principal strain as well as allowing 

for efficiencies regarding computational time and resources. The kinematic curves used 
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in this study were determined through an initial testing round, the overall time of 

simulation (80ms) (Figure 8, left) was used based on the peak strain responses of a test 

impact (t = 200ms) where peak max principal strain (MPS) (Figure 8, right) was included 

along with subsequent inertial response. The simulations were then completed on a 

Lenovo workstation (2 X Intel Xeon GOLD 5118 Processor (12 cores @ 2.3GHz), 128 

GB DDR4 Memory) using LS-DYNA, finite element program, (Livermore Software 

Technology ANSYS LSTC, Livermore, CA, USA) with simulation time equivalent to ~2 

hours per simulation at NCPU = 2, for a total computational time of ~1344 hours. Each 

simulation was then analyzed in LS-PrePost and checked over for any logical errors, such 

as accurate direction of motion and strain levels within an expect range. 

2.3.3 Pipeline Logic 

An in-house MATLAB script was created to orient the GHBMC head model, apply the 

kinematic data from the Excel file as a time history loading curve and save as the original 

file name into a new keyword file for the increased efficiency of setup for all 672 

simulations automatically. This script also applied a rotation matrix to the original 

kinematics to orient peak kinematics to the GHBMC computational model’s strain output 

and calculated the resultant linear accelerations, rotational accelerations and rotational 

velocities of each impact scenario. Each completed simulation was then passed through 

another in-house post-processing pipeline, which analyzed the maximum principal strains 

(MPS) of all elements throughout the time history plot and, using a customized script, 

determined the cumulative strain damage measure (CSDM) of each impact at a pre-set 

strain level. CSDM, which is suggested as a predictor of brain injury response, was used 

as a measure of brain responses induced by different impacts and provides the diffuse 

pattern of the total damage that could occur to the brain leading to a damage [79]. Based 

on the MPS of each element the algorithm can determine the percentage of the elements 

in the GHBMC model that are above a threshold specified by a user. This study examined 

five CSDM scenarios ranging from mild to severe in terms of predicted brain damage 

(CSDM5, CSDM10, CSDM15, CSDM20 and CSDM25). Where a value of CSDM20 = 

0.50 would mean that 50% volume of the elements in the GHBMC head model would 

experience strains over 20%.  
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Figure 8, representation of the typical strain patterns in a frontal impact on helmet 

E at 15% max principal strain fringe level in the GHBMC model in the transverse 

cross-sectional view. Representation of typical time-history strain patterns of (A) 

low 2.6m/s, (B) Mid 4.6 m/s and (C) High 6.0m/s energy impact levels. Initially 

200ms plots were used as justification for 80ms simulation time on all simulations to 

encompass the peak of the maximum strain to the brain elements while reducing 

computational time and cost. 

2.3.4 Pre-processing Pipeline Explained  

This script converted Excel kinematic data into the linear acceleration and rotational 

velocity time-history curves used as a boundary condition of a prescribed motion in LS-

DYNA.  Each kinematic impact scenario output manipulated a baseline GHBMC 

keyword file with new time history curves in the X, Y and Z directions for a total of six 

degrees of freedom, all of this being done automatically with the process pipeline which 
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is described with associated functions below. The kinematic curves were applied to a 

point at the COG of the GHBMC model. This point acted as a rigid connection to the 

skull and hence any applied kinematics are transferred directly to the skull motion. The 

brain motion is derived from the reaction to the skull motion where different brain-skull 

connectors act as the boundary conditions that facilitate the relative brain-skull 

displacements. This pipeline allows for a computational approach to convert easily 

reproducible XYZ data into a keyword file which is fully ready for input into the LS-

DYNA solver.  

2.3.5 Post-processing Pipeline Explained  

The post processing pipeline looks to take the simulated GHBMC model and extracts the 

element data output (ELOUT) file. This process acts as a batch script to utilize a custom 

in-house script [120] and extract the MPS of each element and the total volume of the 

brain and calculate the CSDM of the brain at varying levels to provide a glimpse into the 

perceived level of sub-concussive and concussive injury likelihood. All files in a folder 

can be examined with a single click, and hence 672 individual CSDMS were examined in 

this experiment. A simplified schematic is provided in Figure 9. With a breakdown of the 

pipelines coding logic explained in Appendix A.  
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Figure 9, schematic of the pre- and post- processing pipeline in simplified terms. 

A full breakdown of the logic behind the kinematic injury prediction pipeline is 

available in the supplementary material. 

2.3.6 Analysis  

Statistical analysis tools were used to analyze the correlation between the CSDM values 

and the peak kinematics, along with comparing the relative safety of each helmet in terms 

of mitigating brain injury and reducing corresponding inertial factors. All values were 

analyzed using IBM SPSS Statistics 26 (IBM, Armonk, New York). Statistical tests 

performed included determining the R2 values in a linear regression, Pearson correlations, 

and completing One and Two-way Analysis of variance (ANOVA) to compare resultant 

data. 

1. Pre – Processing  

2.   Post – Processing  
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2.4 Results 

Repeatability tests show that overall differences for the same impact setting were small 

(Table 3).  For example, for the helmet ‘A’, samples were broken down into its first and 

second trials, showing similarities in the resultant peak linear acceleration (RPLA), 

resultant peak rotational velocity (RPRV) and resultant peak rotational acceleration 

(RPRA) of each direction and at each energy level. 

Table 3, example impact showing test repeatability under same experimental condition, in this 

example, helmet A is shown with average percent difference of all trail 1 vs trail 2 shown. 
   

Trail 1 Trial 2 Avg 

Diff. 

Helmet  Impact 

Energy  

Direction RPLA RPRV RPRA RPLA RPRV RPRA  

A Low Front 54.15 22.04 2084.66 50.26 22.37 2140.46 3.86% 

Mid Front 86.41 32.00 3604.53 85.26 32.18 3526.64 1.36% 

High Front 166.64 43.91 4407.81 181.08 43.95 4968.79 6.79% 

Low Rear 57.84 21.55 2556.78 52.99 22.07 2331.47 6.78% 

Mid Rear 77.92 29.28 3527.65 76.56 29.60 3433.27 1.85% 

High Rear 117.59 37.62 5257.20 124.24 39.12 5148.83 3.83% 

Low Side 54.71 18.59 3502.87 53.29 18.53 3612.59 2.01% 

Mid Side 107.26 26.22 6550.22 110.20 26.23 6648.86 1.41% 

High Side 206.54 34.99 11522.78 232.42 36.25 12756.8 8.50% 

Low Top 41.48 15.32 2886.14 41.99 16.51 3142.34 5.73% 

Mid Top 72.44 18.46 4827.23 79.37 22.78 5067.64 11.65% 

High Top 166.12 30.99 9589.87 197.37 33.29 11748.32 14.86% 
 

The range of linear accelerations, rotational velocities, and rotational accelerations is 

described in Table 4 for all 672 impact scenarios. On average, RPLA reaches 121 g’s and 

RPRV reaches 28 rad/s. 
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Table 4, breakdown of the linear accelerations, rotational velocities, and rotational 

accelerations 

Kinematic Minimum Maximum Mean Std. Deviation 

Linear Acc. X (g) 6.81 228.65 41.01 43.23 

Linear Acc. Y (g) 2.83 326.69 63.87 62.31 

Linear Acc. Z (g) 1.29 355.17 62.38 79.98 

RPLA (g) 31.85 417.05 121.01 80.56 

Rotational Vel. X (rad/s) 0.37 19.56 4.29 3.77 

Rotational Vel. Y (rad/s) 0.27 44.43 12.58 12.62 

Rotational Vel. Z (rad/s) 1.51 47.28 18.31 14.43 

RPRV (rad/s) 11.75 47.31 28.29 8.57 

Rotational Acc. X (rad/s/s) 301.03 8492.54 1556.25 1647.92 

Rotational Acc. X (rad/s/s) 273.90 18813.32 3778.66 4323.23 

Rotational Acc. X (rad/s/s) 516.16 10940.55 2944.12 2005.51 

RPRA (rad/s/s) 1635.78 19321.35 5814.78 3822.74 
 

2.4.1 The Pipeline to Connect Head Kinematics and Brain Strains   

A completed pipeline was developed and tested for all 672 impact scenarios. This 

pipeline reduced overall pre-processing time from approximately 20 minutes of manual 

keyword manipulation to approximately two minutes per scenario of automated 

computational manipulation. This pre-processing pipeline allowed for all 672 impacts 

XYZ kinematic output data to be converted into keyword files for simulation by LS-

DYNA solver in approximately 22 hours of computational time compared to over 220 

hours, or 10X less total time. Following the simulation of all 672 impacts, the post 

processing pipeline was engaged. This pipeline determined the CSDM of each simulation 

and organized all simulations into an Excel spreadsheet, in approximately five minutes 

per simulation or a total time of approximately 56 hours. The original manual extraction 

and manipulation of the post processed data into CSDM data was approximately 10 

minutes per scenario or a total time of 112 hours. This represents a 100 percent increase 

in total computational time and the need for user intervention. The results were organized 

into an easy to read spreadsheet that allows for data analysis.  



37 

2.4.2 The Correlation between Head Kinematics and Brain Strains  

Assessing all 672 scenarios the peak kinematics with averages were compiled from the 

initial dataset and the CSDM values were all computed and related to each impact test 

scenario. As seen in Figure 10 all peak impact kinematics were compared with CSDM15, 

which was determined as a valid assessment of DAI as a threshold for the maximum 

strain an axon could withstand before exhibiting signs of tearing or deformation [43]. The 

RPLA (R = 0.61 P < 0.01) and RPRA (R = 0.51 P < 0.01) were less correlated to 

CSDM15 than RPRV (R = 0.96 P < 0.01). This analysis was done using SPSS, and the 

bivariate correlation coefficient was Pearson with the test of significance being two-tailed 

(Figure 10).  Of note, CSDM metrics correlated heavily with other similar strain-based 

metrics such as average MPS and MPS top 1 percent and 5 percent thresholds (R=0.99 P 

< 0.01, R=0.98 P< 0.01 and R=0.99 P<0.01). Other widely used kinematics based injury 

criteria, primarily the head injury criteria (HIC15) and the Brain Injury Criteria (BrIC) 

were also included in the analysis to better understand their correlation to the different 

strain metrics, with BrIC showing strong correlation to average strain (R=0.897 P<0.01) 

(Figure 10). Interestingly while HIC15 produced a middling linear regression of R2 = 0.57 

when compared to average strain its cubic regression was R2 = 0.812, meaning that the 

HIC scores while not linearly correlated to Strain did provide some correlation 

relationships. 
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Figure 10, these graphs represent the peak resultant kinematic of each impact 

scenario (n=672); Top left, resultant peak linear acceleration (g) compared to 

CSDM15, top right,  resultant peak rotational acceleration (rad/s/s) resultant 

compared to CSDM15, bottom left  peak rotational velocity(rad/s) compared to 

CSDM15 and bottom right is RPRV compared to average max principal strain. The 

bottom two grayscale scatterplots show the relationship of common injury 

prediction criteria HIC15 and BrIC. 
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2.4.3 Impact Direction and Helmet Strain Effect on Brain Response  

Impact direction and the effects of the helmets on reducing brain strains by way of 

CSDM was also analyzed. Results show that impact direction has effect on relating to 

relative CSDM value, with rear impacts showing the largest mean CSDM values across 

all CSDM levels and all impact energy levels. Rear impacts were followed by Front then 

Side and finally by Top impacts. It is also noted that helmets exhibited varying levels of 

success in different directions with some helmets mitigating brain strain response in one 

direction more effectively than other helmets and in other directions less effectively than 

other helmets. A representation of these results is shown in Figure 11 below. For impact 

direction relationship to CSDM15 there was a statistically significant difference between 

groups as determined by One-way ANOVA (F (3, 668) = 39.846 p < 0.01). A Tukey post 

hoc test revealed that CSDM15 was statistically significantly higher in impacts to the 

Front (0.337 ± 0.198 p < 0.01), Rear (0.382 ± 0.189 p < 0.01) and Side (0.295 ± 0.178 p 

< 0.01) compared to Top impacts (0.179 ± 0.195). There was no statistically significant 

difference between Side and Front impacts (p = 0.139). with the assumptions that the 

population was close to normal distribution, the samples independent population variance 

is equal and that the groups are of equal sample size (n = 168 each). The Two- Way 

ANOVA was also completed in SPSS, looking at impact direction and helmet type at the 

different energy levels. The results show that helmet type was not a statistically 

significant factor p = 0.082, with impact direction being the main signifier of strain p < 

0.01. The combination of the two did provide a statistically significant factor p = 0.045, 

however the R2
 value of 0.162 was low.  Therefore, helmet type has no significant effect 

on strain levels, however impact direction based on all three energy levels appears to 

have a significant effect. However, the combination of helmet type and impact direction 

appears to have some statistically significant effect on MPS average, and hence more 

analysis is needed. 
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2.5 Discussion 

2.5.1 Adopting a Computational Brain Injury Prediction Pipeline besides 

Experimental Testing 

This study was established behind the theory that mechanical strain is an effective tool to 

evaluate the brain injury response using computational head models. The use of CSDM 

 

Figure 11, graphs examining the differences between impact direction and relative 

CSDM effect for all five CSDM levels analyzed (CSDM5 to CSDM25), each direction 

has then been further broken down into the relative effect each helmet has in 

mitigating the CSDM value and for comparison average MPS. 
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has been an effective tool to correlate the overall strains experienced by the GHBMC 

model and the probability of brain injury that is to be expected following a similar impact 

in a real world traumatic head impact scenario [79]. Such a pipeline is justified as timely 

as both large quantity of experiment tests and high-quality FE human head models have 

been made available in the field. Such a pipeline will help to overcome the hurdle of time 

and difficulty of handling hundreds to thousands of head impact simulations, while 

allowing for quick comparisons of current injury prediction metrics and future metrics 

and brain strains. More datasets to be generated in the field, together with our study, will 

allow users to better understand the protective effects of helmets by understanding how 

helmets help to reduce brain strain. Where the real innovations will occur is with the 

compilation of such large datasets, with multiple parameters, to allow for in-depth 

analysis and the application of new technologies and research tools to provide a 

computational solution to this complex problem.  

2.5.2 Using Peak Rotational Velocity rather than Peak Rotational 

Acceleration     

This study was an effective indicator of the relationship between rotational velocity and 

the brain strain response of the brain based on 672 experimental impacts and 672 FE 

simulations. The correlation between rotational velocity and brain strain in the form of 

CSDM supports the usage of peak rotational velocity rather than peak rotational 

acceleration and peak linear acceleration, at least for the specific testing scenarios that we 

investigated. Linear acceleration as a good indicator of intracranial pressures [114], is 

substantially less effective in providing insight into the brains deformation incurred 

through maximum principal strains, maximum shear strains and other stress-strain related 

metrics [44]. In previous practice, the use of helmet-mounted head impact telemetry 

(HIT) system [65, 121] documented valuable peak head acceleration, but ignored the 

entire time histories of accelerations and hence missed the opportunity of calculating 

rotational velocity. Hence, newly developed sensors such as mouth guard sensors [122, 

123] that not only rigidly attached to the skull to minimize helmet-to-head sliding effect, 

but also provided time histories of rotational kinematics, will help to collect rotational 

velocities from human participants. Hence, the correlation between rotational velocity 
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and observed concussion risks can be analyzed to further improve helmet evaluation 

approach. 

Studies that involve the use of several FE head models, head kinematics, brain responses 

and brain injury risks have been conducted. A study which was also focused on ice 

hockey and used a specific guided drop tower to collect head kinematics, reported that 

resultant change in angular velocity best predicted MPS and CSDM15 [124]. Beyond ice 

hockey, Takhounts et al. also reported strong correlation between max resultant rotational 

velocity and CSDM with an R2 of 0.92 [79]. Our in-house study using various theoretical 

loading curves supported rotational velocity best correlated with CSDM and average 

MPS [52]. It was also demonstrated that the peak change in angular velocity  was shown 

to have a better correlation with strain levels for purely rotational impulses than angular 

acceleration, or HIC, both of which were demonstrated in this study [98, 125]. Given 

agreements made across research groups, injury metrics like BrIC that considers 

rotational velocity are recommended to predict strain-related brain damage. Together 

these studies highlighted that while linear acceleration is a good indicator of the 

intracranial pressure it lacks the ability to indicate the deformations in the brain. While 

rotational acceleration, which previously was believed to correlate to brain strain, is 

insufficient.  Future helmet methodologies, particularly ones that attempt to quantify the 

potential risk of mTBI, are recommended to be focused on a combination of linear 

acceleration that correlates to brain pressure and rotational velocity that correlates to 

brain strain. This study reasons that injury assessment metrics, like that of Hockey STAR, 

can be further developed and improved by considering the inclusion of rotational velocity 

in combination with rotational acceleration to improve strain-based prediction accuracy.  

2.5.3 Recommended use of Brain Strains Pipeline and Limitations  

This study helps to highlight the potential applications of a fully automated testing to 

injury prediction pipeline for the categorization of consumer-focused helmets. While this 

paper focused its direction on that of hockey helmets, the possibilities of this helmet 

process are numerous. The STAR helmet rating protocol itself encompasses more sports 

than just hockey and any other kinematics-based helmet testing protocol that outputs X, 

Y and Z-direction kinematics could also be adapted to this pipeline seamlessly.   
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There are limitations of this study. As is the case with brain injury, the understanding of 

what constitutes as a definitive concussive or sub-concussive scenario is still an 

uncertainty and therefore the reliance on only CSDM as the singular predictor of brain 

injury is a limiting factor. Although CSDM is a validated DAI predictor in the GHBMC 

model, other predictors have been shown to be equally as effective or have exhibited 

different advantages in the GHBMC and other computational head and brain models. 

Kleiven et al. have shown that pressure is a good predictor for mTBI and that while 

rotational motion is effective in perpetuating strain response, it does very little in terms of 

contributing to pressure response [44]. Therefore, future studies using this dataset could 

include more examination and analysis of other predictor methodologies that would 

encompass all kinematic factors and therefore view a larger scope of the brain predictor 

metrics. Another limitation of this study is the inherent limitation with finite element 

head models that are validated against brain-skull relative motion, as it was recently 

determined to possibility not be fully sufficient in determining accurate strain prediction 

outputs [126, 127]. Validation of head models against experimental brain strains in 

addition to brain-skull relative motion was suggested and will be further explored in 

future studies.  

A limitation arises with the validity of this testing methodology, as while the side and top 

impacts have some tangential contact with the head forms, the rear and frontal impacts go 

through the center of gravity and hence do no provide that tangential factor. While we 

acknowledge this as a limitation what this study explores is how this widely used and 

accepted experimental testing methodology is related and potentially lacking in its 

prediction of the brain’s response, particularly in terms of brain strain. The Hockey 

STAR helmet testing protocol uses real world data as the exposure metric, validating 

some of the linear and rotational acceleration values, meaning that the conditions could 

be assumed to be realistic in hockey, and hence the evaluation of these helmets is 

appropriate, or at least consistent as a comparison tool. 

2.6 Conclusions 

We developed a novel computational brain injury prediction pipeline that was based on 

validated industry used methodologies and computational models to evaluate the 
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concussive and sub-concussive mitigating potential of hockey helmets. The helmet 

industry, and those of football and hockey are committed to innovating for changing 

consumer behaviors and provide helmets that are safer, especially in mTBI or concussive 

impacts. What this paper helps to provide is a stepping stone for the current limitation of 

some of the state of the art testing procedures and an approach into how to quickly and 

automatically test new metrics that could involve machine learning or artificial neural 

networks to predict kinematic injury thresholds to help design future helmets.  This 

preliminary study focused on understanding and showcasing which traditional helmet 

testing output kinematics are most correlated to brain injury, as per the CSDM metric, 

and provided initial insight into the effects of direction on brain injury and how well 

individual helmets can mitigate these effects. Rotational velocity is a significant 

contributor and predictor of brain strains and future helmet testing protocols need to 

include this telling metric. This study has also provided some initial reporting that future 

innovations in helmet design need to consider impact direction when attempting to limit 

brain strains. Future studies will delve deeper into understanding the underlying factors 

that influence the success of a specified helmet in mitigating brain strains and analyze 

more statistically significant relationships between specific kinematic mechanisms and 

the level of injury a real-world subject might experience.   
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Chapter 3  

3 Investigating injury metrics in predicting brain damage and 

evaluating hockey helmets  

3.1 Abstract and key terms 

Abstract Understanding what qualifies as a concussion and how to prevent or mitigate 

this devastating injury is still in need of more exploration. This study used one of the most 

common concussion prediction testing methodology in the sport of hockey, known as the 

Hockey STAR, to assess 6 different helmet models. Using one of the most state of the art 

and validated FEHMs, GHBMC, the concussion mitigation potential of the different 

helmets were tested and the validity of the STAR helmet testing protocol was assessed 

against widely used kinematics-based traumatic head injury prediction criteria and 

compared to strain based injury predictors. This novel study showed that while the level 

of STAR varied greatly between different helmets (113.0 %), the level of strain in the 

brain was consistent with changes of less than (10.8 %), indicating variances in the 

injury mitigation capabilities of different helmets when being evaluated by two 

approaches. This study concluded that the main factor of this discrepancy is the lack of a 

rotational velocity component in the STAR equation, which correlated much more highly 

to MPS and CSDM metrics than linear or rotational acceleration. Furthermore, this 

study evaluated recently proposed evaluation methods such as UBrIC and DAMAGE. 

Finally, this study introduced an ANN based injury predictor which used rotational 

velocity and linear acceleration to predict MPS at a R2 of 0.988, which could provide 

helmet manufactures an efficient tool to quickly test the concussion mitigation potential 

of their helmets. 

Key terms: Concussion, Brain Injury prediction, Strain-based assessment  
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3.2 Introduction 

3.2.1 Background  

The mild traumatic brain injury (mTBI), is quickly becoming one of the most 

critical global health issues. With over sixty-nine million individuals experiencing TBI 

every year, there is a growing urgency from academia and industry to provide validated 

and tested solutions to this ever-growing problem [1]. One of the prevalent issues that 

arises from sustaining this form of injury is the seemingly random onset of varied post 

injury symptoms and the widespread inability to rehabilitate these injuries and return the 

affected individuals back to their regular day-to-day life. The concussion, one of the most 

common pathologies of mTBIs is on the forefront of research and media alike. Typically 

victims of diagnosed concussions experience a multitude of symptoms both in the short-

term (unconsciousness, headaches, cognitive impairments, dizziness, etc.) and long-term 

such as neurodegeneration and in some cases death [3]. Researchers are limited in their 

ability to diagnose and assess the level of injury, due to inherent limitations, the skull is 

opaque and hence limits visual view of the brain, and this leads to confusion and varying 

opinions on what mechanical mechanism is the primary factor in concussion occurrence.  

Organized sport is one area where the research into mTBI, and, concussive and 

sub-concussive impacts are growing and providing novel insights into prevention and 

mitigation, especially on developing new helmets. This environment provides several 

important benefits over other primary concussion sustaining environments such as 

random falls or automobile accidents; (1) A controlled and monitored location (video 

accident reconstruction), (2) individual protective equipment (individual telemetry 

systems) and (3) a competitive and physical situation where athletes are encouraged to 

tackle and hit opposing players.  In some sports, such as American Football and Ice 

Hockey, the use of physical contact is a primary mean of gaining a competitive 

advantage. These sports are made up of mostly adolescent aged individuals where the 

outcome after sustaining a concussion is debilitating to the evolving brain. One of the 

primary methods that these sports looks to mitigate the risks associated with TBI is using 

a protective helmet. These helmets however were not originally designed to reduce the 

risk of sustaining a concussion but were designed as the first line of protection from 
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mechanical loading that leads to common injury types such as lacerations, abrasions, 

fractures and other surface level forms of tissue disruptions [66]. There is an urgent need 

for helmet technology to be improved to assist in energy absorption to reduce the forces 

leading to more mild injuries such as the concussion.  

Manufacturers have been conducting experimental testing on helmets mounted 

onto dummy head form. The tests modes include linear-impactor-induced, pendulum-

based, and gravity-guided impacts to the head in a laboratory setting. In the sport of 

hockey, the standards for the level of protection in helmets is governed by three different 

organizations; The Hockey Equipment Certification Council (HECC) [128]. The 

Canadian Standards Association (CSA)[129], and the International Organization for 

Standardization (ISO)[130]. All three standards have similar pass/fail criteria mainly 

targeted towards the reduction of the probability of sustaining catastrophic head injuries. 

These current testing protocols are geared towards high energy linear impacts to the head 

and dummy but not for more mild or concussive like impacts. 

3.2.2 Kinematic relationships to brain injury  

The use of head injury metrics to predict the probability of sustaining a brain 

injury are usually calculated based on the resultant kinematic responses of the head 

during and immediately following an observed impact. One of the earliest metrics 

proposed to provide a link between resultant kinematic and brain injury was that of 

Lissner and Gurdjian et al. widely known as the  Wayne State Tolerance Curve (WSTC) 

[131, 132]. This equation explored the relationship between the linear acceleration and 

duration of an impact and how that effected the head injury. The data provided by the 

WSTC was and still is the basis of many widely used and cited injury metrics such as the 

Gadd Severity Index (GSI) which uses linear acceleration, and impact duration and is 

effective at quantifying severe skull fractures and severe brain injuries, but has 

limitations in its ability to predict the risk of more mTBI’s such as the concussion [72]. 

Another commonly used prediction metric is the Head Injury Criterion (HIC) which is 

based on the WSTC and is calculated by averaging the integrated curve of the time 

history of the resultant acceleration over a specified time interval with a power of 2.5, 
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and finding the maximum HIC value, with HIC15 being the most adopted with a time 

interval of 15ms [133] .  

These early linear-acceleration-based injury prediction metrics were then 

expanded on with the inclusion of rotational motion to incorporate the deformation of the 

brain typically associated with common pathological injuries such as diffuse axonal 

injury (DAI). These new metrics were better suited to provide better assessments of more 

mild injuries such as concussions. The development of the Generalized Acceleration 

Model for Brain Injury Threshold (GAMBIT), became one of the first criterions that took 

into effect both linear and rotational kinematics[78]. The Brain Injury Criteria (BrIC) was 

then developed to examine the predicting potential of angular velocity, which 

theoretically provides a clearer image of an impact as it inherently includes duration and 

overcomes the limitations of using only translational acceleration [79]. 

These different injury criterions continued to develop and encompass more details 

including real world head impact data, an example of this is the Head Impact Telemetry 

Severity Profile (HITsp), a weighted composite score which takes into account; linear 

acceleration, rotational acceleration, impact duration and impact location through the use 

of HIC and GSI [134].  The introduction of FEHM such as the GHBMC model led to the 

introduction of new injury metric which used second order mechanical system to behave 

similarly to the brain deformation response to angular head motion. Two of these metrics, 

particularly the Universal Brain Injury Criterion (UBrIC) and the Diffuse Axonal Multi- 

Axis General Equation (DAMAGE), utilize rotational kinematics and compare their 

correlation to typical FEHM response outputs such as CSDM and MPS in order to 

estimate the probability of sustain injuries such as DAI [85, 86] [19, 88]. 

The Summation of Tests for the Analysis of Risk (STAR) formula and safety 

testing methodology recently developed by Rowson et al., is based on similar ideologies. 

Allows for a novel helmet testing procedures that looks to mitigate some of these inertial 

effects by examining the rotational forces applied to the helmeted head in low and 

medium energy level impacts [64, 66]. This STAR testing methodology utilizes the 

kinematic principles of linear acceleration, rotational acceleration and head impact 

(8) 
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exposure, a metric based on male and female collegiate player’s impact location and 

severity over several seasons [66], to provide a resource for consumers to make educated 

decisions on purchasing helmets which are perceived as most likely to mitigate 

concussive risk. The STAR Helmet rating system, in theory, should provide a conclusive 

rating to assess the safety of a specific helmet, acting to keep helmet manufactures 

truthful and innovative with their research and development into new and innovative 

concussion mitigation technology, benefiting consumers. While considered an 

improvement over traditional helmet assessment methodologies it has its inherent 

limitations. The issues with these kinematics-based metrics is that they treat the head and 

brain as a rigid mass, with no inclusion of the deformation and potential strains that affect 

the brain. Table 5 lists widely used injury metrics. 

Table 5, kinematics-based injury metric equation summary 

Injury Metric Equation  

1. GSI 
𝐺𝑆𝐼 =  ∫ 𝑎(𝑡)2.5𝑑𝑡   

2. HIC 

𝐻𝐼𝐶 =
𝑚𝑎𝑥

𝑡1, 𝑡2
 {(𝑡2 −  𝑡1) [

1

𝑡2 −  𝑡1
 ∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1

]

2.5

} 

3. GAMBIT 

𝐺𝐴𝑀𝐵𝐼𝑇 =  [(
𝑎𝑚𝑎𝑥

𝑎𝑐𝑟
)

2

+ (
𝛼𝑚𝑎𝑥

𝛼𝑐𝑟
)

2

]

1
2

  

4. BrIC 

𝐵𝑟𝐼𝐶 =  √(
𝜔𝑥

𝜔𝑥𝐶
)

2

+ (
𝜔𝑦

𝜔𝑦𝐶
)

2

+ (
𝜔𝑧

𝜔𝑧𝐶
)

2

  

5. UBrIC 

𝑈𝐵𝑟𝐼𝐶 =  {∑ [𝜔𝑖
∗ + (𝛼𝑖

∗ − 𝜔𝑖
∗)𝑒

𝛼𝑖
∗

𝜔𝑖
∗
]

𝑟

𝑖
}

1
𝑟

 

6. DAMAGE 𝐷𝐴𝑀𝐴𝐺𝐸 =  𝛽𝑚𝑎𝑥𝑡{𝛿 (𝑡)} 

7. STAR 

(Hockey) 
𝐻𝑜𝑐𝑘𝑒𝑦 𝑆𝑇𝐴𝑅 =  ∑ ∑ 𝐸(𝐿, 𝜃) ∗ 𝑅(𝑎, 𝛼)

3

𝜃=1

4

𝐿=1
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3.2.3 Computational models and strain-based relationship to brain injury 

The development of computational finite element models allowed researchers to 

explore micro-level injury outcomes with the implementation of macro-level kinematic 

inputs, thus providing a more detailed and encompassing assessment of human brain 

response. These finite element head models (FEHMs) provide a level of exploration into 

the head that allows for accident reconstruction and the ability to analyze the brain 

response to mechanical loading at a level of detail which is superior to dummy head form 

and surrogate cadaveric model experimental testing. Various physical parameters such as 

coup pressure, countercoup pressure, von Mises stress, shear stress, and tensile strain 

could now be assessed to predict the level of brain injury [89]. Researchers are beginning 

to understand the potential of these FEHM and the demand for validated and accurate 

models is exploding. More than 10 different highly tested and validated, three- 

dimensional FEHM have been developed in industry and academia over the last decade 

alone, with varying levels of anatomical features and complexities present [59, 94, 97, 

114-117].   

These FEHM have allowed for a more in-depth look at the brain’s response to 

impact and with this newfound assessment method, a slew of new brain injury metrics, 

some of which provided a more accurate prediction of the injuries associated with more 

mild impacts, were developed. Looking into the strains in the brain, a direct mechanical 

metric which quantifies deformation on brain tissue also known as the “stretching” of the 

brain, has direct correlation to common traumatic brain injury pathologies such as DAI 

[56]. Using a strain-based injury metric such as maximum principal strain (MPS), is one 

method of determining the outcome of a traumatic head impact scenario. Based on MPS, 

several more encompassing metrics were developed, cumulative strain damage measure 

(CSDM) provides a volume based correlation of the extent of damage that could be 

attributed to DAI, and this metric predicts DAI by calculating the MPS level at a volume 

fraction of the FEHM [79].  
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3.2.4 Objectives 

 This study looks to combine laboratory dummy experiments and FEHM 

techniques and attempts to better understand how effective the different brain injury 

prediction criteria are for determining the effect of a helmeted head during typical hockey 

impact scenarios. This group believes that some of the more modern helmet assessment 

techniques such as that of STAR could be updated to include more expansive brain injury 

predictors such as strain which is highly correlated to angular velocity. The use of a 

previously developed novel start-to-finish kinematic to brain injury pipeline, allows for 

instantaneous comparison of modern injury prediction metrics, and the scope of this work 

is to provide new data to help helmet manufactures create and design a new generation of 

helmets that are better suited to dealing with the devastating effects of the concussion. 

3.3 Materials and Methods  

3.3.1 Experimental setup 

To re-create an industry standard method for physical helmet evaluation, this 

study based its helmet testing procedure on that of Hockey STAR. This methodology of 

assessing the biomechanical performance of hockey helmets differs from traditional 

methods provided by other standardization organizations as it primarily looks to recreate 

some of the rotational kinematics associated with head impacts. The Hockey STAR 

equation, equation 1, includes several unique metrics that pertain specifically to the sport 

of Ice Hockey. The L represents the location of impact (rear, side, front or top) and the θ 

represents different impact energy levels.  These levels were determined in the original 

methodologies by the angle of the pendulum arm of the impactor. The E represents 

exposure, the number of times a player is expected to receive an impact in a season. 

Finally, R is the risk of concussion as a function of linear (a) and angular (α) acceleration. 

One of the purposes of this study is to examine whether the variable R is a sufficient and 

accurate assessor of the correlation between the kinematic outputs of a traumatic impact 

and the true level of injury response of the brain. 

Rather than a pendulum as the STAR methodologies originally called for, a 

pneumatic impactor was used as it allows for more consistent impacts  transferred to the 
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head-form and less of a safety risk in testing [62]. Like the original laboratory testing 

procedure; 3 impact energy levels (low, medium and high) with impact speeds of 2.6 m/s, 

4.6 m/s and 6.0 m/s respectively, and 4 impact locations (front, rear, side and top), were 

recreated to assess the viability of each helmet sample. Each helmet was hit twice with 

the impactor (19.94 kg) per direction per impact speed per trial, with 4-5 helmet samples 

for each helmet model type. In this study 6 different helmet models were tested. In total 

each helmet went through an average of 112 impacts for a total of 672 impacts with 

corresponding kinematics. The helmets were fitted onto a medium size NOCSAE head-

form mounted on a Hybrid III 50th percentile neck with 3 Endevco 7264C-2KTZ-2-240 

(Meggitt, Bournemouth airport, Dorset, United Kingdoms) accelerometers for linear 

acceleration, and 3 rotational velocity channels of the DTS6DX Pro (Diversified 

Technical Systems, Seal Beach, California, USA) mounted in the center of mass of the 

head form. Two Endevco Model 136 amplifiers provided excitation voltage and signal 

conditioning. The kinematic data of each helmet impact; linear acceleration, rotational 

acceleration and rotational velocity, were collected at 20 KHz with a filter chain of 

hardware CFC1000 filter at amplifier for all channels, software CFC1000 filter on linear 

acceleration and software CFC155 filter on rotational velocity. A custom script was then 

developed to export the data into a spreadsheet including X, Y and Z axis data. 

3.3.2 Computational Model  

The finite element model used in this study to simulate the physical testing impacts was 

the Global Human Body Model Consortium (GHBMC) head model [59]. This validated 

model of the human brain and skull is based on computed tomography (CT) and magnetic 

resonance imaging (MRI) scans of a healthy adult male brain of average height and 

weight. This model allows for a biofidelic computational model to simulate and interpret 

the mechanical stresses and strains associated with traumatic impact. The GHBMC 

model, as seen in Figure 12, allows for the quantification and visualization of the 

mechanical soft-tissue materials metrics in key anatomical regions such as; the corpus 

callosum, thalamus, cerebellum, brainstem and basal ganglia. In this model a linear visco-

elastic material was used in both the gray and white matter with the skull modelled as an 

elastic plastic material. In total the GHBMC head and brain model contains 62 
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components of bone and soft-tissue, 61 unique material properties and 270,552 total 

elements (beam, shell and solid), and is validated against intracranial pressure and brain 

displacement data [118, 119]. 

 

Figure 12, GHBMC Model in its normal configuration, anatomical features given 

different colors for visual representation, on right, typical MPS patterns exhibited 

in traumatic head impact, red is considered bad or high strain while green/blue is 

considered low to no strain which is good. 

When setting up the model, the direction of the kinematics was reoriented to a 23-degree 

offset above the horizontal Y- axis to mimic the sensor setup in the original dummy head 

form. An initial dataset of an impact in 3 different impact energy levels in a single 

direction based on a single helmet sample was provided to determine an optimized time 

of impact to allow for both analysis of the moment of maximum principal strain as well 

as allowing for efficiencies regarding computational time and resources. The kinematic 

curves used in this study were determined through an initial testing round, the overall 

time of simulation (80ms) was used based on the peak strain responses of a test impact (t 

= 200ms) where peak max principal strain (MPS)was included along with subsequent 

inertial response. The simulations were then completed on a Lenovo workstation (2 X 

Intel Xeon GOLD 5118 Processor (12 cores @ 2.3GHz), 128 GB DDR4 Memory) using 

LS-DYNA, finite element program, (Livermore Software Technology ANSYS LSTC, 

Livermore, CA, USA) with simulation time equivalent to ~2 hours per simulation at 

NCPU = 2, for a total computational time of ~1344 hours. Each simulation was then 

analyzed in LS-PrePost and checked over for any logical errors. 
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3.3.3 Analysis Methods 

An in-house script was used to calculate common head injury prediction criteria 

(Chapter 2). Each of the 672 impact scenarios was assessed for peak kinematics in the X, 

Y and Z direction to determine resultant peak kinematics as well as injury prediction 

metrics, summarized in table 1. The kinematic data was automatically processed to 

calculated common injury metrics such As HIC15, GSI, GAMBIT, BrIC, UBrIC and 

DAMAGE. This retrofitted pre-processing pipeline required the introduction of a 

rotational matrix about the Z-Axis to align with the Frankfort horizontal plane as the 

sensor position was at a 23-degree offset above the horizontal (Figure 13). 

 

Figure 13, comparison of schematic of dummy head form with accelerometer 

placement and modified GHBMC model at 23 degree offset to account for 

prescribed motion 

Along with analyzing the preprocessed kinematics, the post-processed strains were 

also analyzed using an automated extraction method. The post processing pipeline looks 

to take the simulated GHBMC model and extracts the element data output (ELOUT) file. 

This process acts as a batch script to utilize a custom in-house script [120] and extract the 

MPS of each element and the total volume of the brain and calculate the CSDM of the 
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brain at varying levels to provide a glimpse into the perceived level of sub-concussive 

and concussive injury likelihood. All files in a folder can be examined with a single click, 

and hence 672 individual CSDMs (5% to 25% threshold) along with average MPS and 

MPS critical 1% and 5% were examined in this experiment. Each of the peak head impact 

kinematics along with their associated peak resultant kinematics were assessed for their 

correlation to the brain response assessment metrics (CSDM5-25, Average MPS, Top 1 

% and 5% MPS) to determine their linear relationship and overall effect on the brains 

strains that lead to mTBI.   

The physical testing produced results like what were to be expected from the STAR 

methodology, providing evidence of the accuracy of the repeatability of this experiment. 

Peak kinematics were recorded in the X, Y, and Z directions with their mean values and 

standard deviations provided in the table below. These peak kinematic were then input 

into the STAR equation and compared to the STAR scores that were listed on the 

Virginia Tech Helmet Rating website (Virginia Polytechnic Institute and State 

University, Blacksburg, VA, USA). 

Table 6, breakdown of a typical helmet impact, in this example Helmet A with a 

Low impact Energy is shown 

Helmet  Energy  Impact 
Direction  

  LinX  LinY  LinZ  RPLA  RotvX  RotvY  RotvZ  RPRV  RotaX  RotaY  RotaZ  RPRA  

A  Low  Front  Mean  22.97  64.41  4.36  67.77  1.22  0.93  21.17  21.20  585.66  471.36  2285.03  2299.34  

N  10  10  10  10  10  10  10  10  10  10  10  10  

Std. 

Dev.  

0.62  1.87  1.38  1.97  0.40  0.10  0.28  0.28  169.23  63.63  117.85  122.18  

Rear  Mean  11.63  53.34  4.64  54.23  0.82  0.88  24.98  25.00  483.57  417.77  2857.35  2878.12  

N  10  10  10  10  10  10  10  10  10  10  10  10  

Std. 

Dev.  

0.92  3.85  0.79  3.75  0.39  0.20  1.30  1.29  26.77  104.40  134.65  139.80  

Side  Mean  9.53  14.65  68.29  69.70  3.03  18.23  4.93  18.88  926.90  4018.35  784.19  4135.50  

N  10  10  10  10  10  10  10  10  10  10  10  10  

Std. 

Dev.  

0.24  1.41  1.60  1.55  0.36  0.35  0.35  0.25  159.90  217.67  76.49  233.69  

Top  Mean  24.32  6.11  38.18  44.73  8.76  14.69  2.65  14.94  1810.89  1902.11  936.29  2547.55  

N  10  10  10  10  10  10  10  10  10  10  10  10  

Std. 

Dev.  

1.72  1.61  3.51  3.51  0.72  0.82  0.23  0.71  169.48  156.33  131.48  145.47  

Total  Mean  17.11  34.63  28.87  59.11  3.46  8.68  13.43  20.00  951.75  1702.40  1715.72  2965.13  

N  40  40  40  40  40  40  40  40  40  40  40  40  

Std. 

Dev.  

6.75  25.17  27.00  10.71  3.25  7.99  9.92  3.77  547.07  1489.05  899.05  732.79  

Each prediction metric was then imported into a master spreadsheet where the 

data for each of the 672 impact scenarios was stored. Using IBM SPSS statistics 26 

(IBM, Armonk, New York), data was analyzed for statistically significant correlations 

and data trends with tools such as bivariate Pearson correlation, hierarchical linear 

regression and Artificial Neural Networks (ANNs).  
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For this study a new method was developed to attempt to provide more 

instantaneous strain metrics through the introduction of an ANN surrogate. We devised a 

hockey specific artificial neural network (ANN) injury prediction tool which provides a 

strain-based outputs for input 9 input parameters (peak; rotational velocity, linear and 

rotational acceleration in the X, Y and Z directions). The ANN was produced in SPSS 

using a Multilayer Neural network perception with 80-20 training testing partition.  This 

ANN was produced using 5 helmet samples as training and testing for the model (576 

impacts) and excluding 1 helmet (96 impacts) from the training for additional testing and 

validation. This final helmet was then put through the ANN algorithm with only the input 

kinematics and the predicted ANN output strain parameters including CSDM and MPS 

were compared to those determined by the GHBMC model. This relatively large dataset 

and well laid out input and output parameters, allowed for an in-depth analysis and the 

ability to train and test the dataset for machine learning techniques. 

3.4 Results 

3.4.1 Kinematics 

The calculated STAR scores in this study produced a percent difference between 

this study’s linear impactor tests and the original star methodologies pendulum-based 

tests that were on average 13.78 % higher. Using bivariate two tailed Pearson coefficient 

correlation, highly correlated and statistically significant parameters were flagged, a 

representation of the different kinematic measures and strain measures is shown in Figure 

14. When examining the output strain related metrics, the most correlated input kinematic 

parameter was resultant peak rotational velocity (RPRV). It is correlated highly with 

CSDM5-25 with an average r = 0.92 (P < 0.01) and correlates highly, r = 0.96 (P < 0.01), 

with MPS average, MPS 1% and MPS 5%. Looking at resultant peak linear acceleration 

(RPLA) the correlation while significant is decreased with an r = 0.604 (P < 0.01) for 

averaged CSDM5-25 and r values of 0.66, 0.58 and 0.54 (P < 0.01) for MPS average, MPS 

1% and MPS 5% respectively. Resultant peak Rotational Acceleration (RPRA), was the 

least correlated to strain metrics of the three with r = 0.51 (P < 0.01) for averaged 

CSDM5-25 and MPS average, MPS 1% and 5% (r = 0.58, 0.47 and 0.40 P < 0.01) 

respectively.   
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Figure 14, comparison of different raw peak max resultant kinematic, top row is 

compared to MPS average bottom row is CSDM 20 and from left to right is RPLA, 

RPRV and RPRA. 

3.4.2 Comparison of Different Injury Metrics 

The different injury metrics (GSI, HIC15, GAMBIT, BrIC and UBrIC and DAMAGE) 

were assessed based on the strength of their relationship to the different strain-based 

metric (CSDM5-25, MPS average, MPS5%critical and MPS1%critical), shown in Figure 15. The 

velocity based injury prediction criteria, BrIC (r = 0.914 P < 0.001), UBrIC MPS (r = 0.916 

P < 0.001), and UBrIC CSDM (r = 0.922 P < 0.01) preformed significantly better than the 

linear and rotational acceleration based metrics GSI (r = 0.582 P < 0.001), HIC15 (r = 

0.702 P < 0.001), GAMBIT (r = 0.564 P < 0.001) and even outperformed DAMAGE (r = 

0.882  P < 0.001). When compared to the FEHM strain outputs all injury metrics 

outperformed the STAR incidence rating (r = 0.186 P < 0.001), however this could be 

due to the way that STAR is calculated where all directions experience different 

exposures in combination.  
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Figure 15, comparison of different injury metrics to CSDM 20, colors indicate 

helmet models. 

3.4.3 STAR VS Strain results 

The STAR equation was then assessed vs the different strain metrics that were correlated 

to brain deformation responses such as MPS average, MPS critical 1% and 5 % and the 

different CSDMs (Figure 16). The relationship between the STAR rating and the 

different strain parameters was not strongly correlated. While there were decreased in 
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overall strain, average MPS for 0 star equal to 0.123 compared to 0.114 for a 4-star 

helmet, a percent difference of only 7.6%, does not seem to justify the perceived 

difference between a 0 STAR rating and a 4 STAR rating. The difference between a 3 to 

a 4 stars rating was even more miniscule and was almost the same in terms of average 

MPS response. 

 

Figure 16, showing average strain and comparing it to STAR (red line), showing 

that while the difference between a 0 star rated helmet and a 3 star rated helmet is 

minimal in terms of strain the correlation between strain and a simple velocity 

based injury prediction method is much larger. 

3.4.4 Directional performance 

There were interesting differences in the performance of the different directions. 

Rear impact had the largest MPS average, 0.133 ± 0.031 (n = 168) followed by frontal 

impact, 0.122 ± 0.033 (n = 168), side impact, 0.118 ± 0.033 (n = 168) and finally top 

impact, 0.101 ± 0.026 (n = 168). Looking more in-depth into each direction, as shown in 
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Figure 17, some helmets such as helmet C preformed worse in side impacts resulting in a 

higher strain (0.142 ± 0.038 n = 24) than front (0.127 ± 0.036 n= 24) or rear impacts 

(0.133 ± 0.034 n =24). While helmet A and helmet B performed differently in frontal and 

rear impacts where helmet A showed a difference of 14.7 % in strain values whereas 

helmet B only showed a 3.86 % difference in mean MPS average.   

 

Figure 17, boxplots representing the performance of each helmet, in terms of impact 

direction and energy level, in this example ‘High’, each helmet preformed slightly 

differently in how they fared under each impact loading scenario, however trends 

emerged such as strain being least effected by top impacts and rear impacts producing 

the most strain, on average.   

3.4.5 Helmet performance 

Based on average MPS the helmet that performed best based across all impact 

direction and energy types was helmet D with a mean MPS average of 0.113 ± 0.030 (n 

=120). The worst preforming helmet across all impact directions and energy levels for 

MPS average was Helmet C, MPS average = 0.125 ± 0.0373 (n = 96). The percent difference 



61 

of the strain levels of these two helmets was approximately 10.1%, meaning that overall 

of the 6 different helmet models, based on this helmet testing methodology, the best 

preforming and worst preforming helmets, both at varying levels of STAR protocol and 

relative consumer perspective had a performance boost of 10%,  with the best performing 

helmet having a reduced strain of 5.2% of the mean MPS average across helmets and the 

worst preforming helmet having an increased mean MPS average of 4.9%.  

When comparing those performance differences with those of the STAR 

methodology, there is a different picture of how effective each helmet performed relative 

to one another. While Helmet D is still the best performing helmet with a STAR score of 

3.54 ± 0.19 which equates to a 3 Star helmet, but borders on 4 Star, which is considered a 

very good helmet for mitigating concussive risks.  Helmet B was determined to be the 

worst preforming helmet according to STAR with a score of 12.78 ± 0.18 which equates 

to a 0 Star helmet rating and is 113.2% worse in terms of overall STAR rating 

differences. Figure 18 shows the differences between that of the STAR rating system and 

the MPS from the GHBMC FEHM, there is an evident disparity between not only the 

way that the helmets are ranked and the difference in overall concussion mitigating 

metrics between the two methods.  
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Figure 18, helmet performance comparison between strain-based brain response metric, 

Average MPS and kinematic based performance metric, STAR. From top left to bottom 

right, low energy, mid energy, High energy and average energy. Chart is used to show 

discrepancy between the strain reducing effects of helmets and their relative STAR score. 

STAR recommends only helmets that are 4 or 5 stars rated, with 5 stars equal to a score 

of 2.0 and lower and 4 stars equal to a score of 3.5 and lower. 

When comparing individual helmet performance there is little difference between comparable 

models in terms of overall visual strain plot differences.  Setting the threshold fringe level of 

MPS to 0.25 the strain contours in coronal, mid-sagittal and transverse planes are almost 

identical for a similar impact direction and loading energy level (Figure 19). That is partially 

the reason that elemental based strain outputs and statistical analysis were important for this 

study as they provide clearer helmet differences.    
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Figure 19, comparison of strain plots between different helmet models, the strain plots 

appear very similar hence the need to investigate the values in more detail. 

3.4.6 Use of ANN  

We devised a hockey specific artificial neural network (ANN) injury prediction tool 

which provides a strain-based output for input rotational velocity and linear and rotational 

acceleration. The tested model had a total of 672 cases with 80.4% (540) of the cases used as 

training and the other 19.6% (132) of the cases used for testing, all impact scenarios were 

deemed valid by the software. with an average percent difference of 2.86% and strain error 

rates of over 10% only 1.49% of cases (n =10/672) and a R2 = 0.985 (Figure 20). Using input 
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parameters; linear acceleration, rotational acceleration and rotational velocities in XYZ (9 

inputs) the hypothesis is that the ANN could predict average MPS and CSDM values that 

would normally have to be first simulated by GHBMC models. In comparison of time, ANN 

took approximately 0.04s to train, while GHBMC models took approximately 22 hours for 12 

with a workstation running at NCPU =2 for each scenario (total NCPU =24).  In Figure 20, the 

bottom two graphs show the ability of this tool to be used in future surrogate uses. The linear 

regression value R2 was 0.987 for the excluded helmet. This helmet only included the peak 

kinematics as inputs and produced convincing strain outputs. In this example CSDM20 was 

compared. 

 

 

Figure 20, scattered plot graph of the 672 impact scenarios actual average MPS and 

predicted average MPS, this study helps to create a framework for instantaneous 
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injury prediction of 97.14% confidence with only linear and rotational acceleration and 

rotational velocity as inputs. Linear line of best fit with an R2 of 0.985 and the dashed 

lines representing 95% confidence interval. Without the inclusion of rotational velocity 

prediction decreases to 93.52 % with 20.68% (139/672) of cases differing by over 10%. 
 

3.5 Discussion 

3.5.1 What are the most effective injury criteria in determining the 

concussive mitigating potential of Ice Hockey helmets? 

We were able to show in this study the significant advantages that rotational 

velocity-based injury prediction criteria such as, BrIC, UBrIC and even RPRV have over 

linear acceleration and rotational acceleration based metrics such as HIC, GSI, GAMBIT, 

DAMAGE and STAR, which have limitations in their ability to predict the brain’s 

deformation response to an impact. Rotational velocity metrics have produced higher 

correlations to brain strains in several recent studies and their inclusion into any helmet 

assessment protocol should be incorporated immediately [52]. In this study we validated 

their importance, with a large dataset that showed statistically significant correlations to 

common computational related injury prediction metrics such as CSDM and MPS which 

have been shown to provide a reasonable assessment of the brains level of injury and are 

shown to be related to common mild traumatic brain injury pathologies, in particular 

DAI. While this study does have its limitations, including the absence of axial strain 

through the embedding of an axon fiber component in the FEHM, this study still uses a 

widely validated state of the art model that provided a reduced computational cost for 

large data acquisition.   

3.5.1.1 Exploring DAMAGE injury metrics in more detail  

The recent introduction of the DAMAGE injury metric provided a new injury prediction 

criterion which was based on strain outputs from the GHBMC model and relied on linear 

and rotational acceleration as inputs. Our results indicated that it was important to look 

beyond the Pearson correlation of DAMAGE which was r = 0.882 and explore how well 

it correlated in terms of directional performance. An interesting finding was that 

DAMAGE very highly correlated highly in the Front and Rear impact directions (R2 = 
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0.979 and 0.963 respectively) yet suffered a bit in correlation in the Top and Side Impacts 

(R2 
= 0.855 and 0.870 respectively) (Figure 21).  One possible explanation for this 

reduction in correlation could be the tangential kinematics associated with the Side and 

Top Impacts, which as stated in the Hockey STAR methodology are impacted not 

through the COG like the Front and Rear impacts and hence the resulting brain response 

is less correlated to the linear accelerations that each impact produces. This again could 

provide as more definitive proof that rotational velocity-based metrics such as BrIC and 

UBrIC are superior in injury prediction. 

 

Figure 21, comparison of DAMAGE correlation to CSDM20, Front, Side, Rear and 

Top impacts. DAMAGE is derived from strain outputs of the GHBMC model which 

is most likely the reason for it having good correlation to the strain results of this 

experiment 



67 

3.5.2 Comparison of helmets and impact directions – compare to the brains 

preferred direction of motion 

Comparatively the helmets performed similarly when exploring their strain 

reducing ability, while some helmet performed slightly better overall, Helmet C, the 

differences were small. Exploring the areas of injury rather than the brain as a whole or 

including the axial strain metric could be some next steps that provide a clearer image of 

the differences and concussion mitigating potential of the different helmet models, but 

based on the GHBMC FEHM and common injury prediction criteria the helmets 

preformed similarly without enough of a variance to determine that a particular helmet 

model is marginally better than a another for reducing brain strain and rotational based 

kinematics. This is most likely based on the helmet industry as a whole designing helmets 

and materials with a goal of reducing linear and rotational acceleration, which based on 

this study is a mistake. 

This study also examined the directional differences of helmet impacts. Other 

studies have shown that an impact directed at a specific region results in larger brain 

deformation, even with similar impact energies [52, 62, 86, 122, 124]. While it is 

presumed that the direction that causes the highest brain strains is the axial rotational 

direction, in this particular experiment about the x-axis, this study showed that rear and 

frontal impact or impacts that would affect the flexion/extension direction produced the 

highest strains consistently, with the highest overall average strain produced by helmet C 

with a side (axial rotation + lateral bending) impact. This is interesting especially 

combined with our previous analysis showing that an axial rotation produced much 

higher brain strains compared to flexion/extension with the same magnitude of head 

rotation[52]. While this testing methodology has some obvious limitations, particularly in 

its inclusion of more tangential impact directions that would induce higher axial rotation 

kinematics, it cannot be ruled out that the helmets themselves have either geometric or 

material differences that directed impact energy away from the higher danger impact 

directions into lower danger directions. 
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3.5.3 STAR Methodology could use some updating 

Based on this study the STAR helmet safety rating protocol has some major 

limitations when it comes to predicting the effectiveness of different helmet models in 

mitigating concussive impacts. Whereas we determined a relatively minute difference in 

the helmet models in terms of strain reduction, STAR reported significant differences in 

the helmet’s performances. For example, for Hockey STAR Rowson et al. explained that 

a difference between a 12.809 star rated helmet and a 7.098 star rated helmet would 

equate to 44.6 % less likelihood of sustaining a concussion [66].  In our study, similarly 

rated helmet A (STAR = 8.692) and helmet B (STAR = 12.780) only showed a percent 

difference in strain by way of CSDM20 of 9.79%.While there are studies that have 

reported relationships between linear and rotational acceleration to TBI, the STAR rating 

could use some updating, specifically with the addition of rotational velocity. This will 

allow for potential consumers to make a more educated helmet purchasing decisions, one 

that is supported by brain strain response. While the methodology itself has been brought 

into question, specifically with it not being fully encompassing of tangential impacts, the 

equation itself appears to be a more major point of error in the assessment capabilities of 

the testing protocol. 

Showing that there are major limitations with the use of rotational acceleration 

and linear acceleration to predict the strains in the brain, in the form of MPS and CSDM, 

leads us to believe that the STAR safety rating protocol and specifically the STAR 

equation needs to be updated. We propose the use of rotational velocity kinematics, as 

evident by its strong correlation to the different brain response metrics to better predict 

the effectiveness of a helmet and its ability to mitigate concussive impacts. 

3.5.4 Use of ANN and future research 

The ANN predicted strains proved to be more highly correlated to both MPS average and 

CSDM20 than any of the literature prediction criteria (Figure 22). For MPS average the 

predicted values from the ANN had an R2 of 0.962, compared to 0.895 which was the R2 

of UBrIC MPS peak to peak, the most correlated of the injury prediction metrics. The 

same story can be seen in CSDM20 where the ANN outperformed all other criteria, with 
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an R2 of 0.991 which was 0.122 larger than the second closest metric. These results in 

combination with the effectiveness of predicting strain metrics such as CSDM20 seem to 

justify the use of ANNs as surrogate models in future studies that look to utilize this 

pipeline. The ability to have a start to finish prediction of different brain injury metrics 

both kinematics-based and strain based in a matter of minutes post impact could be 

important indicators of injury level and prove to be a valuable research tool. With more 

testing and data input in the future this model will only become more accurate and would 

lead the way into providing instantaneous brain injury response based on a validated 

helmet testing methodology and a validated state of the art computational head model. 

This chapter highlights the in-depth analysis that could be done using current state of the 

art FEHM, though there exists limitation in terms of the physical dummy testing and the 

complete biofidelity of the computational model as highlighted in the previous chapter, 

these results show novel insights into the role of the hockey helmet in mitigating brain 

injury. The next step for this research is to try to target one of these limitations, with 

improvements to the FEHM and new methods of examining mTBIs the ability to 

determine subtle changes in the brains structure could unlock the door into understanding 

concussions and providing insights into improving hockey helmet design. 
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Figure 22, ANN comparisons of MPS average and CSDM20 to some of the more 

recent injury prediction criteria (UBrIC and DAMAGE) as well as the most well-

known HIC15. 
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Chapter 4  

4 Development of Multiple Parcellated Axon Fiber FE models 

for TBI symptom diagnosis 

4.1 Abstract 

The growing need for an accurate assessment of mild traumatic brain injuries in 

the determination of concussion protocol requires the exploration of new technologies. 

The use of Finite Element Modelling has provided a computational approach to recreate 

loading and impact conditions without the need to recreate impacts physically. This study 

delves into a novel computational approach to better understand the mechanisms of the 

deep-brain responses associated with concussions through the generation of a validated 

parcellated axon fiber tractography atlas embedded head and brain model. This study 

examined shortcomings of previous literature pertaining to the subject area, while 

creating a detailed 1-D beam model using 3T and 7T diffuse tensor imaging. The model 

was compared to that similar literature models, as well as validated using brain skull 

displacement studies, determining that difference in strain was exhibited and that the 

overall model generation workflow was possible, validated and repeatable. This 

anisotropic axon embedded model will be a useful tool in future studies and industry as a 

better predictor of the mesoscopic (≈ 1mm) white matter structure of the brain and is a 

step forwards in uncovering the mystery of the concussion. 

4.2 Introduction 

The mild traumatic brain injury (mTBI) is a prevalent and debilitating injury that is 

shown to lead to a host of negative short and long-term health related symptoms [135]. 

These classified “minor” brain injuries, affecting an estimated 1.6 - 3.8 million people the 

United States (US) annually, are difficult to diagnose using standard neuroimaging 

techniques, and result in a large portion of those affected reporting a wide variety of 

symptoms for months post injury known as post-concussion syndrome (PCS) [136, 137]. 

There exists a knowledge gap between researchers and doctors on how to accurately 

assess the severity of the injury and determine the proper rehabilitation protocol to return 
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patients to their normal daily function [103]. The first step to assess the different levels of 

injury is through the development of repeatable and validated injury recreation 

methodologies to better understand the mechanisms associated.   

4.2.1 Experimental history 

Historically, physical dummy models were used to measure the linear and angular 

kinematics associated with head impacts to aid in the creation of injury criteria to assess 

the damage of such injuries quantitatively [138]. The issue with these methodologies is 

that they do not allow for researchers to investigate the in-vivo brain response of how 

brain reacts to such impacts, especially with the complicated nonlinear and anisotropic 

behaviors of soft tissues in the human brain [60]. Throughout the 1970s, 80s and 90s 

numerical models were created that were able to do just that, investigate and attempt to 

simulate the response of the brain to real world traumatic impact scenarios. However, 

these models were simplistic in nature and were inaccurate in their simulation of complex 

impact scenarios  [59].  

New models have been created over the past several years have provided more accurate 

predictions of brain response and have allowed for reliable predictions of mechanical 

response and an accurate description of the constitutive behavior of the viscoelastic and 

hyper-elastic soft tissue responses [15, 56, 60, 103, 105, 139-144] .  

4.2.2 Diffuse axon injury and new models 

 The strains derived from the impact to the head are found to cause different injury 

outcomes such as diffuse axonal injury (DAI) [55]. These types of injuries, specifically 

the ones associated with the axon fibers of the brain are the focus of this study as it has 

been proven that there is a specific injury threshold at this axonal level [57]. The study 

completed by Bain et al. 2001, showed through the stretching of the optic nerve of a 

guinea pig that a functional injury was present at a strain threshold for sensitivity and 

specificity measuring in at 0.21 [43]. Strains at the axonal level are believed to be a 

predominant driving force in the negative outcomes associated with traumatic brain 

injuries and concussions in humans [58]. While other studies have looked in depth at the 

response of the brain to traumatic head impact [138], few studies have looked at the axon 
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fibril networks dynamic response in real world impact scenarios. Studies such as those 

completed by Giordano et al. and Wright et al. focused on the validations of a 

computational model that treated white matter as an anisotropic, hyper-elastic material 

based on DTI to determine a threshold or probability of DAI [55, 60]. Both studies 

determined that strain in the direction of the fibers (axonal strain) is a better predictor of 

injury then a generalized max principal strain (MPS), anisotropic equivalent strain 

(AESM) and cumulative strain damage measure (CSDM). More complex models 

involving the entirety of the brain and axonal fiber tracts were developed by T.H. 

Garimella and R.H. Kraft (2017) [103]. A Patient specific methodology was used to 

create a fiber tractography finite element model to calculate axonal strains and for real 

time tracking and the mechanical response of the axonal fiber tract under different head 

impact, scenarios. The study determined the influence of impact direction to the extent of 

axonal injury, with lateral impact loading considered to be the most dangerous [103]. A 

second, more recent study completed by Wu et al. (2019) attempted to create a statistical 

axon fiber model of a large population and utilize the model as a prediction tool an 

improvement on the already validated GHBMC head and brain model. The two studies 

above are summarized in Table 1 and will be referenced as literature validations 

throughout this paper, as they are currently the only two explicit axon fiber models to our 

knowledge. 
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Table 7, comparison of different explicitly embedded tractography models. 

Group DTI info 

Tract 

Number 

of 

fibers  

Average 

Fiber 

length 

Element 

type 

Number 

of 

elements  

Axon 

diameter 

(mm) 

Material  Element 

Size 

(mm) 

H. 

Garimella 

& R. 

Kraft 

[103] 

Siemens 

Trio 

Tim 

3.0T 

MRI 

17001 43.735 

+- 

23.329 

Truss 161,811 1.12 +- 

0.08 

[145] 

Ogden 

Hyperelastic 

 ρ =1040kg/m^3 

μ = 35.64 kPa 

 α = 6.101 and  

D = 9.1 e-10 Pa-1  

 Κ = 2.2 GPa 

[140] 

5 

T. Wu et 

al. 

(Panzer) 

[141] 

Siemens 

3T 

Skyra 

scanner 

[146] 

4556 78.6 +- 

38.24 

Cable 104,866 Based 

on FA 

values  

Hyper 

viscoelastic user 

defined, 

Holzapfel -

Gasser-Ogden 

(HGO) [147, 

148]  

2.5 

Gerber 

(Kraft) 

[142] 

Siemens 

Trio 

Tim 

3.0T 

MRI 

2994 22.5 Truss 2994 

(block 

of 

fibers) 

1.0 Ogden 

Hyperelastic 

 ρ =1040 kg/m3  

  μ =2.5 kPa  

α = 4.5  

D =9.1 e-10pa-1 

[140] 

3.4 

4.3 Methodology  

4.3.1 Baseline model  

The idea behind this study was to utilize a pre-existing and validated finite 

element head model and attempt to improve it by incorporating new analysis features and 

more anisotropic behaviors. Therefore, the baseline model chosen was that of the global 

human body model consortium (GHBMC) head model, which has been used extensively 

in the automotive and safety industry for TBI and mTBI research  [59, 141]. The 

GHBMC head model is derived from computed tomography (CT) and magnetic 

resonance imaging (MRI) of 35 cadaveric subjects to create the accurate geometry of an 

adult 50th percentile male [59]. The head model is made up of 270,552 elements, with 62 

different bone and soft tissue components, including important anatomical features such 

as; the skull, bridging veins, cerebrospinal fluid and membranes along with the 
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cerebellum, brainstem, corpus callosum, thalamus and ventricles. This model was 

validated for robustness of model prediction using intracranial pressure data, relative 

skull-brain displacement and skull and facial bone impact responses. This model is still 

considered one of the most state-of-the-art FEHMs for brain strain and pressure 

prediction [97].  The GHBMC model was used in this study as the master system, loads 

were applied to its center of gravity and the response of the brains white matter 

composition was relayed to the axon fiber 1D elements. The new model was examined 

against the original unchanged “baseline” model and compared in terms of overall strain 

response changes as well as time dependent displacement changes, such as those 

provided by Hardy et al. 2001 & 2007 [118, 119]. 

4.3.2 Axon fiber tractography  

The tractography for this model was extracted using a common and widely accepted 3D 

tractography extraction methodology known as DTI, which is based on DWI, a modality 

of MRI [13, 20]. Two different models were developed, requiring slightly differing 

development processes to produce high quality finite element parcellated axon fiber 

tractography models, an explanation of the pipeline generation process is shown in Figure 

23. These models were then individually embedded into the GHBMC head model, hence 

creating the first explicit parcellated finite element axon fiber model, which allows for 

specific tract injury prediction and introduces anisotropic behavior to the GHBMC 

model.  
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Figure 23, process flow of explicitly embedded axon fiber model from the (1) DWI to 

DTI (2) brain masking and parcellation (3) tractography visualization, (4) 

MATLAB point to line to IGES file, (5) Hyper Mesh 1-D beam FE generation (6) 

anatomical embedding in GHBMC model and final generated model. 

4.3.2.1 HCP group dataset parcellated tractography model 

Using a pre-existing, anatomically curated white matter atlas parcellated 

tractography model, developed and validated by the O’Donnell Research Group (ORG), a 

novel automated FE pipeline was created [35]. The atlas for this model was generated 

based on 100 healthy human scans from the human connectome project (HCP), and tested 

on 584 diffusion MRI scans across genders, ages (1-82) and health conditions [146]. This 

is one of the most consistent and comprehensive automated white matter tract-based 

parcellations to date with 58 deep white matter tracts and 198 short and medium range 

tracts for a total of 800 fiber clusters to allow for whole brain connectivity analysis [149]. 

Another benefit of this atlas is it being open sourced and publicly available [150, 151], 

available on GitHub (San Francisco, California, United States) and utilizing the free and 
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open source software 3D Slicer for image analysis and scientific visualization. The 

curated population based anatomical fiber tracts used in this study are derived from the 

SlicerDMRI platform using the ORG-Tracts-MRB and ORG-800FiberClusters files to 

visualize the 800 fiber clusters and break those down into 41 predetermined tracts from 

the ORG-88FC-100HCP atlas [35]. A visual representation of some important anatomical 

tracts and the distribution of average fiber lengths and number of fibers in our generated 

model are shown in Figure 24. 
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Figure 24, breakdown of number of fibers in 1% tract (top), Average mean fiber 

length in each tract (bottom) and outcome of beam elements inside head model. This 

pipeline allows for different metrics of fibers to be quickly and easily calculated. 
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4.3.2.2 Subject specific model  

The DMRI used for this study was provided by the Western Universities Center for 

Functional and Metabolic Mapping and represents a single, healthy, 23-year old female 

patient. Although there are differences in the general size between male and female 

brains, this study was not focused on the anatomical difference but more on validating the 

overall process flow for this type of model. The fibers were generated and visualized 

using DSI studio (www. dsi-studio.labsolver.org), a tractography software tool that maps 

brain connections, with the overlaying atlas to determine the anatomical parcellation of 

the fibers being that of HCP-842 [146]. This software is considered a golden standard for 

fiber tracking and visualization, achieving the highest (92%) valid connections over 96 

different methods (54% average) [152]. The diffusion images were acquired on a 

SIEMENS Investigational Device 7T scanner using a 2D EPI diffusion sequence. Echo 

time was 59ms, and repetition time was 6700ms. A multishell diffusion scheme was used, 

and the b-values were 1000 and 2000 s/mm2. The number of diffusion sampling 

directions were 30 and 60, respectively. The in-plane resolution was 1.6 mm. The slice 

thickness was 1.6 mm. The b-table was checked by an automatic quality control routine 

to ensure its accuracy [153]. The diffusion tensor was calculated. A deterministic fiber 

tracking algorithm [154] was used and fiber direction was determined using tri-linear 

interpolation [155]. A seeding region was placed at whole brain. The fa threshold was 

0.141. The angular threshold was randomly selected from 15 degrees to 90 degrees. The 

step size was randomly selected from 0.5 voxel to 1.5 voxels. Tracks with length shorter 

than 18 or longer than 300 mm were discarded. A total of 50000 seeds were placed, 

repeated fibers within 1 voxel size were deleted as well as further manipulated with the 

in- house fiber generation script, provided as supplementary material. 

4.3.3 Model Calibration and Validation 

To validate this model, several similar studies were examined to assess their 

ability of determine model response compared to real world examples. As this is a 

preliminary study where the goal was to prove the viability of a parcellated axon fiber 

model, comparison to the baseline model was paramount and hence all validations were 

assessed based on that of the original GHBMC model results. 
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To assess the material properties and model response, a simplistic 3x3 solid 

model with embedded fibers was created using HyperMesh. This model was based off of 

work completed by Gerber et al. with solid elements modelled as Kelvin-Maxwell 

viscoelastic, the same material as white matter in the GHBMC model and the axon fibers 

modelled as Elastic MAT type 1 in LS-DYNA as well as MAT 6 viscoelastic and MAT 

27 Mooney-Rivlin hyperelastic in an attempt to recreate accurate brain – fiber stress 

strain response [142]. These simulations where run to 1.5 times of stretch with a baseline 

(no fiber model) and fiber included models.  

The first step in the calibration and validation process was to create a 3x3x3 (27 

elements in total) simplistic model to determine the effect of different axon material 

properties, constraint type, and 1d element property type (Figure 25). This was also a 

quick way to test out the effects of axon diameter on stress-strain relationships and 

understand the overall effects that constrained axon fibers have on providing anisotropy 

to the isotropic brain material. For the solid elements, the same material properties as 

those in the original GHBMC model were used, this being a *MAT_KELVIN-

MAXWELL_VISCOELASTIC on LS-DYNA. This model was based on that used by 

Gerber et al., and hence the dimensions (24mm) and number of axons used (100) were 

recreated accordingly. Each simulation given a prescribed motion set in the Z-

translational acceleration to simulate a tensile loading scenario. A 1.5 times of stretch 

was applied meaning an additional 12 mm in the z-direction was applied to the top nodes 

of the model, while the bottom nodes were fixed in the z-direction, this was applied over 

a 1200ms time, each simulation took approximately 1 minute with additional time added 

for axon embedded models.  
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Figure 25, the 3x3 simplified model to efficiently test material and property 

modification on left is the solid material model, on the right is a look inside the 

model to shows the 1D beam axon fibers. Also included is a description of the 

material properties tested for the solid material and beam materials. 

Following the initial simulated tensile test studies multiple fiber embedded models 

were simulated to assess the bio fidelity of the axon-based model, when compared to the 

original GHBMC model. This was done using a study that is widely referenced for 

validating FE models completed by Hardy et al. (2001) [98, 103, 141, 142] which look to 

measure the relative brain-skull displacements under high- rate impacts in human 

cadavers using embedded radiopaque, neutral density targets (NDT) [118]. The baseline 

GHBMC model has already undergone these simulations, with the impact direction, 

duration and magnitude being inputted into LS-DYNA as time-history curves through a 

*PRESCRIBED_MOTION boundary condition [59]. Two scenarios where chosen, based 
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on widely referenced FE studies, NDT C755-T2 and NDT C383-T3 which simulated 

frontal and rear impacts and were compared to both the GHBMC baseline model result 

and experimental model result. 

4.3.4 Finite element model generation 

Although the subject specific and population-based models differed on how they were 

extracted, the process of converting the individual points of those models into 1-D beam 

elements for finite element analysis was similar. Points were imported into a custom 

MATLAB script that allowed for a visualization of individual fibers along with 

quantification of fiber dimensional characteristics. A tractography breakdown like the 

one used in this study is summarized in table 9. This in-house script also allowed for the 

conversion of the 3D tractography data obtained into line and points that could be 

imported into HyperMesh as IGES files and generated into 1D Hughes-Liu with cross 

section integration (ELFORM 1) beam elements and Truss (ELFORM 3) 1D elements. 

The beam elements are 5mm in element length, as per Garimella et al. [103], this was 

chosen to reduce overall number of elements, for computational efficiency. A unique 

cross section diameter of the beam element, representing the axons, was determined for 

each level of detailed axon models based on volumetric conservation of the relative ratio 

of axon fibers volume to total brain volume. 

Table 8, tractography model breakdown 

Tract Name Brain 1 percent 

number of tracts 6500 

tract length mean (mm) 90.07 

tract length SD (mm) 48.04 

tracts volume (mm^3) 49592 

fa mean 0.45 

md mean 0.65 

ad mean 0.99 

rd mean 0.47 

ha mean 31.57 

Axon diameter mean 0.67 

Axon SD 0.43 
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 For both the population-based and subject-specific models, different numbers of fibers 

and therefore elements were used to determine the parametric differences in models will 

optimizing overall computation time. The 1D beam elements were then given a simple 

elastic material property based on a recommended Ogden Hyper-elastic substitute 

provided by Garimella et al. [103], as well as different viscoelastic and hyper-elastic 

models to determine optimal model response. LS-DYNA does not allow for Ogden 

Hyper-Elastic materials to be applied to beam elements hence a replacement material had 

to be found[11]. For this study the simplicity of an elastic material was important as it 

provided a repeatable uncomplicated material that could be modified with relative ease 

and was validated by Garimella et al. as a suitable replacement to Ogden Hyperelastic, 

producing on average a difference of only 3.4% strain values [103].  Table 9 shows the 

material properties of the elastic model which showed similar strains in relation to the 

brain in other literature studies, other materials, mainly a Mooney-Rivlin hyperelastic and 

a viscoelastic material modelled around white matter properties were also tested, however 

showed significant inaccuracies in the models response to impact.  

Following the completion of this initial parametric study the fully detailed fiber 

axon model was embedded into the GHBMC baseline head model through anatomical 

location estimations and constrained as embedded elements using the 

LAGRANGE_IN_SOLID keyword in LS-DYNA. Techniques like this have been 

employed previously to model rebar-reinforced concrete composites, and model response 

appeared to be more accurate with this type of constraint over *BEAM_IN_SOLID, 

especially for Hughes-Liu beams (ELFORM1), which allow for better visualization of 

strain response as well as allow for shear strain and stress response which is not possible 

with ELFORM3 Truss elements [141]. This constraining method should ensure that the 

baseline white matter and the fiber axons will have the same accelerations and velocities 

under loading. The models were then simulated as a PRESCRIBED_MOTION at the 

COG of the head with a *DEFINED_CURVE which is simulated as parabolic 

acceleration at 5 krad/s2 to simulate a typical mild traumatic impact to the head [63]. This 

six-degree-of-freedom (DOF) kinematic curve was accelerated for 5ms and decelerated 

for 5ms before given an additional 10ms to represent any strains that result from the 

“lagging” inertial effects. Once the process was validated to providing repeatable results 
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a more complete representation of the displacements and anisotropic effects of the model 

was simulated based on previous brain-skull displacement experiments. 

4.3.4.1 Testing model response and fiber sensitivity 

The purpose of this project was to determine the ability to produce a parcellated axon 

fiber FEM. This model is not available to the best of our knowledge and hence its ability 

in injury diagnosis and in neuroscience applications is significant. Three landmark tracts 

were chosen, based around the idea of fiber tract orientation (commissural, association 

and projection) with differences to tract damage level assessed. The commissural tract 

chosen was the (CC), this tract was assessed for its average axial strain and cumulative 

strain damage measure axon (CSDMa) which was set at 0.20 as per Bain et al. the same 

was done for the projection fiber tract (CST) and the association fiber tract (SLF I) [43]. 

A simplified prescribed rotational acceleration of 5000 rad/s^2 was applied to the 

GHBMC model along different axis. This resulted in three different head motions Lateral 

Bend (LB), Axial Rotation (AR) and Flexion (FL), each of which will look to provide a 

better image of how the axons react to different impact direction along with how the 

brain responds to its preferred direction of motion.  

4.3.5 Data analysis  

All simulations were performed with LS-DYNA (V971 R8, double precision, 

LSTC, Livermore, CA) using a Lenovo P920 Thinkstation (24 Core, Intel XEON Gold 

5188 CPU @ 2.3GHz (2 processors), 128 GB RAM). All kinematics were applied to the 

center of gravity of the head model. A custom MATLAB code was also developed to 

provide post processing comparison metrics such as CSDM, MPS average, MPS top 1 % 

and 5 % and MPS 50th 75th and 95th percentile and maximum axial strain (MAS). All 

statistical analysis was completed using SPSS 26 and Excel.    

4.4 Results 

4.4.1 Calibration results 

Based on the initial simplistic model the best combination of element type, 

constrain type and material properties was determined to be an elastic material, 
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constrained Lagrange in solid with 1D Beam elements. Based on stress strain curves as 

well as visual confirmation with the stress plots and strain plots, Figure 26, that 

combination of parameters provided the most consistent patterns in respect to the original 

baseline material. Also compared were the axial strain responses, with a Lagrange in 

solid beam element providing a more consistent representation of axon strains, based on 

previously validated models in literature [103, 141, 142], with similar strain levels as the 

solid elements constraining it.  

 

Figure 26, calibration model showing the different strain and stress patterns of the 

different models baseline, beam in solid with included axon constrain and lagrange 

in solid with included axon constrain, also shown is the difference in axial strain 

behavior between beam and truss elements.  

4.4.2 Final models 

The generation of the models was successful, with a full process flow pipeline 

generated to take DICOM images from D-MRI and transform it into a fully parcellated 

and anatomically accurate axon fiber finite element head model. These models can 

discretely showcase the axial strain as well as the shear strain present individual fiber 

tracts, with region-based output of maximum axial strain (MAS) and cumulative strain 

damage measure of axon (CSDMa) able to be quantitatively assessed. Visual 

confirmation of the strain response of both the original brain solid elements and the new 

beam axon elements is shown in Figure 27. The relative strain outputs, including CSDM 

and different MPS measures show that the difference in model response is below the 10% 

percent difference. 
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Figure 27, comparison of tissue-based strains in baseline vs the fiber embedded 

subject specific and group-based models. 

Also shown is the validation study completed, with comparison between the 

baseline model, the experimental Hardy results and the new axon embedded model 

shown (Figure 28). The primary results of this validation study are that the relative 

displacement curves are slightly muted in the axon embedded model, which is to be 

expected as there is additional volume and material stiffness added to the brain model.  
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Figure 28, brain skull relative displacement charts comparing Hardy et al. 

cadaveric head experiments with the baseline GHBMC model and the new 

axon embedded GHBMC Model. Two experimental cases were examined 

(383-T3 and 755-T2) representing front and rear impacts. 
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4.4.2.1 HCP population-based model   

The model chosen to represent the population-based HCP fiber tractography was 

considered the “1 percent” model, this model was generated through down sampling the 

original fiber tractography in 3DSlicer from 650,000 individual fibers to around 6,500 

fibers, to allow for decreased computational expense. These fibers represent the 

myelinated long tract fibers which represent approximately 20% of all axon fibers in the 

brain. A volumetric conservation equation was used to retain overall axon volume in the 

brain to approximately 2% of brain volume, this was based on total fiber length 

(approximately 150,000km) and axon diameter (average is approximately 0.7 

micrometers) [156]. This final model included 0.2mm diameter fibers representing 

0.00043% of estimated total number of fibers in the average male brain while accounting 

for 2% of the total brain volume.  Following the validation, CSDM5-25 along with 

average maximum principal strain and MPS5% and MPS1% were recorded and 

compared to the baseline model to confirm model response accuracy. The new axon 

embedded model exhibited a slightly stiffer model however all fall within the previously 

mentioned 10% range.  

Table 9, baseline model vs group-based axon model vs subject specific axon model 

Strain comparison 

755-T2 Baseline Group 

Based  

Subject 

Specific 

CSDM5 0.790 0.757 0.759 

CSDM10 0.378 0.295 0.326 

CSDM15 0.095 0.087 0.084 

CSDM20 0.024 0.033 0.027 

CSDM25 0.003 0.008 0.005 

MPS average 0.085 0.079 0.079 

MPS 5% 0.195 0.203 0.196 

MPS 1% 0.241 0.258 0.248 

The total computation time for the Axon embedded model compared to the 

baseline model was approximately 1.75X longer, however, it now provides more insight 

into fiber directional damage and specific fiber injury, which was previously not possible. 

These models are now able to visualize strain patterns in individual parcellated axon fiber 

tracts. 
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4.4.2.2 Subject-specific model  

In this study the subject specific parcellated model was developed more for 

validation of processes, for future research, although it opens the door for interesting 

exploration of the injured brain. The parcellated subject specific model was also validated 

against the baseline model (Table 9) with comparable outcomes to that of the population-

based model. Using DSI studio a model was developed to mirror that of the HCP model, 

with 6500 fibers that were distributed over 73 different tract clusters, this model allowed 

for the differentiation of the left and right hemispheres. Therefore, the axon diameter was 

like that of the population-based model. Overall, the computation time was comparable to 

the HCP model with a total time of 20 hours at NCPU = 4 for the 62.224ms simulation 

time of the HARDY 755-t2 impact duration.  

4.4.3 Tract specific strain response (typical impact) 

The results, along with their respective visualize strain plots are shown in Figure 29, and 

tables 10 (tissue-based metrics) and 11 (axon-based metrics). Of note is the increased 

presence of CSDMa10 in the CC tract (0.14 compared to 0.042 (CST) and 0.025(SLFI)) 

during lateral bend and CSDMa5in the CST tract (0.3 compared to 0.21 (SLFI) and 0.16 

(CC) during flexion loading. We hypothesize that this is due to the anisotropic response 

of the new model, where strains acting along a specific direction can now be visualized in 

the FEHM. 
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Figure 29, axial strain visualization of the 3 specified parcellated tract clusters along 

with the CSDM axon and average MAS during each loading condition. 

Table 10, comparison of tissue-based metrics of 3 impact directions 

Row Axial Rot. Flexion Lateral Bend 

CSDM5 0.940 0.913 0.870 

CSDM10 0.735 0.651 0.538 

CSDM15 0.526 0.345 0.287 

CSDM20 0.346 0.166 0.136 

CSDM25 0.221 0.079 0.064 

MPS Average 0.190 0.131 0.117 

MPS5% 0.493 0.325 0.298 

MPS1% 0.580 0.410 0.351 
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Table 11, comparison of axon-based metrics of different directions lateral bend 

(LB), axial rotation (AR) and Flexion (FL) 

CSDM 

Threshold 

CSDMa5 CSDMa10 CSDMa15 CSDMa20 CSDMa25 Average 

Axial 

strain 

LB_SLFI 0.0842 0.0250 0.0079 0.0015 0.0001 0.0124 

LB_CST 0.2462 0.0423 0.0101 0.0040 0.0024 0.0217 

LB_CC 0.2793 0.1354 0.0621 0.0146 0.0021 0.0309 

FL_SLFI 0.2152 0.0527 0.0109 0.0028 0.0014 0.0213 

FL_CST 0.2995 0.0684 0.0104 0.0049 0.0024 0.0267 

FL_CC 0.1585 0.0218 0.0054 0.0015 0.0003 0.0196 

AR_SLFI 0.3223 0.1203 0.0434 0.0156 0.0052 0.0301 

AR_CST 0.1283 0.0313 0.0128 0.0077 0.0057 0.0156 

AR_CC 0.3081 0.1477 0.0618 0.0268 0.0162 0.0292 

4.5 Discussion 

4.5.1 Exploration of brain strains in parcellated model (different strain 

thresholds) 

 Two validated embedded models were generated that provided a novel parcellated 

construction while utilizing new and previously explored methodologies to generate one 

of the most biofidelic FEHM to date. This study was successful in providing evidence of 

the connection between axial strain and the brains MPS while also showcasing the 

differences between isotropic strain patterns and the anisotropic patterns exhibited by the 

embedded axon fibers, a more accurate representation of the human brain as mentioned 

by Garimella et al and Wu et al. With the use of new analysis metrics such as CSDMa 

and MAS average, different tracts could be compared and analyzed for potential injury 

risk, one of the goals of this study. While other groups have developed similar models, 

mainly Wu and Garimella, the introduction of specific tract analysis through the use of a 

pre-existing brain atlas shows a new direction that computational biomechanical analysis 

of head injuries could pursue, mainly injury prediction not through general threshold 

level but through regions most likely affected.  
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4.5.2 Validation of model’s viability a potential use as exploratory tool  

Axial strain is a validated method to determine brain injury level, Hajiaghamemar et 

al, compared axonal based injury prediction metrics such as MAS to other tissue based 

injury metrics and determined that it had outperformed typical brain metrics such as MPS 

and CSDM in predicting traumatic axonal injury (TAI) [157]. The improved injury 

prediction capabilities and the ability to validate impacts with those seen in specific 

sports and their resultant injuries studies such as Bain et al. indicate an injury likelihood 

of 50% from axonal strains of 0.18 or greater [16, 43] [44] will allow for future studies to 

use this threshold with our in-house developed CSDMa to determine the extent of axon 

injury. The level of injury which could result in permanent damage, leading to short- and 

long-term cognitive impairments and neurodegenerative diseases due to DAI. These new 

axon embedded models have shown that while tissue based strain results where similar in 

some models as a whole , the specific location of strain differed, with the parcellated 

model this was taken a step further where injury along the tract was able to be discerned 

and hence the exact location of potential lesion was determined. 

It is well understood that rotational motion leads to what are known as diffuse injuries 

[158]. The strain patterns that were exhibited in the different impact directions shows that 

the idea of a singular definition of a concussion could be misconstrued, while the saying 

“no two concussions are the same” holds up, the knowledge gap to group those 

concussions into symptom based categories could provide a better idea of how to better 

protect the brain and help treat concussion patients. 

4.5.3 Advancing computational brain models for better understand injury 

mechanisms 

The developed models exhibit several prominent advantages that helps the field. While 

advantageous to use one of the most commonly used and validated models as the baseline 

model, GHBMC, the addition of explicitly embedded axon fiber tracts extracted from 

DTI to add another level of mesoscopic detail to the model, an improvement on models 

such as that of the SIMon, KTH model. Ji et al. have stated that this higher level of detail, 

especially when considering the anisotropic strain parameters derived from axial strain 
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produces significant advantages when correlating FEHM strain outputs and concussive 

events in sport [17].  

The addition, the inclusion of two separate models, easily generated from a partially 

automated DTI to FE pipeline, provides advantages over other comparable explicit axon 

embedded models such as that developed by Garimella et al. which is a subject specific 

based axon model incorporated into a subject specific and relatively untested head model 

or that developed by Wu et al. which was constructed with the HCP population based 

model and GHBMC head model, but is limited as it does not include the detail of beam 

elements along with the atlas based parcellation included in this model. 

4.5.4 Limitations  

This preliminary study does have its limitation however, the first, which applies to all 

DTI derived axon tractographies is fundamental ambiguities inherent in tract 

reconstruction based on orientation information alone, which need to be considered when 

interpreting tractography and connectivity results [152]. While DTI has improved, 

limitations with the accuracy of tract prediction, especially in crossing fibers is still 

prevalent. The comparative nature of this and subsequent studies does reduce the overall 

negative effect of this limitation as the models are compared with similarly derived DTI 

models, all of which are at a reduced tract density percentage.  

Another limitation of this study is the use of 1D beam elements with an elastic material 

behavior. While this material provides efficient simulation and a reduced computational 

cost it does differ from the gold standard Ogden hyperelastic material used by other 

groups, primarily Wu et al. and Garimella et al. However, the use of this material and its 

material properties were reported to be sufficient as an Ogden hyperelastic replacement in 

beam by Garimella et al. who reported that MPS differed by only less than 5% and the 

percent of “damaged axons” only differed by 2.1% [103]. 

4.5.5 Conclusion 

This study provided the preliminary setup and development process of future studies that 

will look to explore the relationship between the mechanical loading inside the head 
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immediately post impact and the associated functional changes of the brain that leads to 

the varying post-concussion symptoms and the idea that “ no to concussions are alike”.  

This study is the first, to our knowledge of combining researched human brain atlas with 

high resolution 7T MRI and a highly validated FEHM to create a novel tool for the future 

of traumatic brain injury reconstruction and concussion prediction. The use of this tool 

looks to assist in future helmet-based studies as well neuropsychological studies to 

combine an engineering approach to exploring brain injury with neuroscience.  

 



95 

Chapter 5  

5 Predicting the typical mTBI injury patterns to the brain’s 

functional network exhibited in ice hockey for post-

concussion syndrome assessment  

5.1 Abstract 

Post-concussion symptoms such as cognitive impairment, decreased motor 

function and sensory sensitivity results in the decreased quality of life of mild traumatic 

brain injury (mTBI) victims. Innovations in imaging technology and the rise of 

computational head models to predict the brain responses to impacts has provided new 

insights into how to better protect the brain and how to potentially mitigate the risk of 

receiving a concussion. While understanding the effects of an impact to the brain is 

important, linking those brain responses to real world functional magnetic resonance 

imaging data, could be the bridge between quantitative injury prediction and qualitative 

injury outcome diagnosis measures. In this study, a novel three-dimensional parcellated 

axon fiber model, derived from diffuse tensor imaging (DTI), was developed and 

embedded inside a validated sate of the art computational model, the global human body 

model consortium (GHBMC) head model, to provide unique insight into the deep brain 

microscopic response and the effect of typical hockey impacts on different axon fiber 

clusters. In this study, 12 impact kinematic curves (80-ms duration impact), representing 

typical hockey impacts at 4 impact directions, 3 energy levels and 6 different helmet 

models (n =672), were simulated using this state-of-the-art model. Impact kinematics was 

assessed for their injury probability level using peer reviewed brain injury prediction 

criteria such as; Gadd Severity Index (GSI), Head Injury Criterion (HIC15), The 

Generalized Acceleration Model for Brain Injury Threshold (GAMBIT), Brain Injury 

Criteria (BrIC), Universal Brain Injury Criterion (UbrIC) and Diffuse Axonal Multi-Axis 

General Evaluation (DAMAGE). Following the simulation each impact was post-

processed with validated injury assessment methodologies such as average maximum 

principal strain (MPSAverage), cumulative strain damage measure (CSDM), MPS 1% and 
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5% critical values, and axial strain. Along with those assessments a new injury 

assessment measure was proposed, the cumulative axon strain damage measure 

(CASDM) to assess axon fiber clusters relative damage. Of the 12 kinematic impacts, the 

rear impacts were chosen for in-depth analysis, as it aligned with the reported impact 

location of the concussed test subjects. As the background research was previously 

completed at Western University, studying real-world youth resting state functional 

magnetic resonance imaging (RS-MRI) following hockey impacts, the Superior 

Longitudinal Fasciculus (SLF) tract showed particular high levels of axial diffusivity 

(AD) which has been shown to correlate to diffuse axonal injury (DAI) [8, 21]. Patients 

in those studies also completed regular testing of SCAT3 to assess post-concussion 

symptoms associated with PCS[159]. Our model showed a similar injury pattern of axial 

strain to that of the connectivity impairment in the RS-FMRI dataset, resulting in a 

preliminary validation of the model’s prediction capabilities. This data was then further 

analyzed to confirm the typical function of each affected tract and how this can affect a 

victim’s post-concussion symptoms. The functions associated with the tracts are; the 

facilitation of cognitive processes, spatial-attention deficits and connection of high and 

low order auditory processing. Superior Longitudinal Fasciculus tract experienced 

CSDM10 of 0.053 and 0.051 in the rear and frontal impact which was approximately 2 

times that of those experienced in the side and top impacts. These findings align with 

those reported in the study, while other findings align with symptoms reported in the 

SCAT3 results. This study helps to bridge the gap between some of the mechanical 

responses inside the brain and their related symptomatic responses that patients 

experience. The goal of this and future studies is to gather a large enough dataset where 

the potential to diagnose a concussive injury could be done more precisely and effectively 

and lead to new advancements in rehabilitation methodologies to increase patient 

outcome and improve their quality of life quickly. 



97 

5.2 Introduction 

5.2.1 Background and problem 

The traumatic brain injury (TBI) is amongst the most predominant injury types in terms 

of case fatalities, long term implications, and injury occurrence/ re-occurrence [160]. This 

injury type is broken down into three similar but varying levels of injury severity mild, 

moderate and severe, according to the Glasgow coma scale (GCS) [161]. The mild 

traumatic brain injury (mTBI) is a significant burden on patients, their families and the 

health care system, as it is the most common reported at approximately 80% of 

hospitalized TBI instances [135]. While the diagnosis and mitigation of these injuries 

continues to be the focus of academic research, the rehabilitation and long-term negative 

effects that this injury type presents to a large portion of its recipients remains a 

challenge. Approximately 10 – 25 % of mTBI patients, while reporting recovery of initial 

symptoms, exhibit the persistence of other functional impairments such as cognitive, 

emotional, somatic and behavioral disturbances, a presence of any singular or 

combination of these symptoms is generally referred to as post-concussion syndrome 

(PCS) [162].  Cognitive impairments generally refer to issues with ones working memory 

and executive functions, both of which have specific tests that can test for subtle 

differences. Somatic symptoms usually refer to how a patient feels, typical examples 

include nausea, dizziness, headache, blurred vision, auditory disturbances and fatigue. As 

for emotional or behavioral problems, changes to a person’s typical mood are noticed by 

themselves or surrounding individuals with typical examples including disinhibition, 

emotional lability and post-traumatic stress disorder (PTSD) [163] 

5.2.2 Post-Concussion symptoms 

With concussions constituting a large portion of sports related injuries, 

particularly in physical sports such as hockey, rugby, football and soccer the prevalence 

of PCS in adolescent athletes is concerning. Babcock et al. reported that 29.3% of 

adolescent (age 5-18) mTBI patients admitted to the emergency department, experienced 

some form of PCS, with the most common persistent symptom being headaches, resulting 

with patients to miss between 1-3 weeks of school[164]. The difference between this 
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injury type and other typical sports injuries such as broken bones or torn ligament is the 

inability to return to daily norms quickly, particularly in school environment, leading to 

future academic complications.  

5.2.3 Axon fiber models and computational models 

To understand the outcomes of a concussion, it is important to first understand the 

mechanisms that result in injuries that constitutes as concussions. Typically, impacts to 

the head or body that result in rotational motion to the skull and brain kickstart a chain of 

responses that lead to damage to the brains soft jelly-like tissue.  Brain tissue, made up of 

grey and white matter, stretches during rotational motions leading to damage. These 

injuries are known as diffuse injuries, which are the most common pathology in mTBIs, 

with diffuse axon injuries (DAIs) exhibited to lead to axonal degeneration [139]. Being 

the second most common cause of fatality in TBIs and the most prevalent injury 

pathology across mild to severe TBIs, the presence of DAI is an excellent metric for 

concussion prediction.  It has been shown that there is a 50% risk of DAI at 15% of 

axonal strain which marks it as a telling metric for concussion prediction [139]. The 

potential of this metric in determining concussion risk has led to several groups to create 

detailed axon embedded FEHMs to calculate axonal stretch through the axial strains 

predicted in computational simulations [103, 141]. Bain et al. reported similar findings 

and stated that axonal strain of between 0.18 -0.21 has a 50% likelihood of resulting in 

permanent axonal tearing and therefore impairment [43].  

5.2.4 Typical hockey impact and the concussed player 

A research study that looks to track the post-concussion brain changes in hockey players 

was competed at Western University by Manning et al. [8]. In the study, 17 bantam-aged 

(11-14) male hockey players that were diagnosed with concussions and a control group of 

26 age-matched players were recruited. The study then evaluated the concussed players 

over time (24-72 hours after an injury) using a variety of advanced MRI techniques and 

compared that data to the control group (Figure 30). This study provided a basis of 

typical brain changes evaluated through imaging modalities in concussed players and 

hence will provide evidence to the validation of this research methodology for the typical 
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hockey impact kinematics and typical hockey injuries sustained from these impact 

situations. 

 In this study clinical measures, diffusions metrics along with resting state network and 

region to region functional connectivity patterns were analyzed. The results indicated that 

tract specific spatial statistics revealed a large region along the SLF with significant 

decreases in diffusivity measures, correlating with clinical cognitive deficits [8]. 

 

Figure 30, left, rs-fMRI changes in concussed subjects brain, showing activity area 

in SLF, Right, network  connections in different regions in brain, concept derived 

from connectograms (images taken from Manning et al. 2018 Neurology 

manuscript) 

5.2.5 Comparison of tissue-based injury metrics and axon-based injury 

metrics of helmets  

Several outcomes that this paper looks to explore are (1) what is the typical hockey 

concussion brain response and what prediction metrics or the new axon-based metrics 

best explains it,  (2) what are some of the brains “hot spots”, and how does typical brain 

injury patterns in tissue compare to axon damage and finally (3) can this detailed FEHM 

provide evidence to some of the typical PCS symptoms exhibited by hockey players who 

have experienced concussions and does this match with functional imaging studies of 

concussed players brain changes.  
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5.3 Methods 

5.3.1 Creation of Kinematic representative curves 

The Hockey STAR experimental hockey helmet evaluation methodology was 

used in this paper as the basis of the laboratory testing parameters. This laboratory testing 

method, was designed to recreate real-world, concussion-like, impact conditions in the 

sport of ice hockey, to evaluate and identify the differences in the ability of hockey 

helmets to reduce concussion risk [66]. The laboratory testing matrix is made up of 3 

different energy levels and 4 different impact locations equating to 12 individual testing 

scenarios for each helmet. To determine the magnitude of different impact energies, data 

from two different studies encompassing impact data from men’s, women’s and youth ice 

hockey players was used[165]. One of these studies, following male and female 

collegiate ice hockey players over 3 seasons, recorded 37,411 impacts, and recorded 

linear and angular kinematics, using a helmet mounted sensor array, as well as 

differences in exposure by sex, player position and session type(game or practice) [165]. 

The Hockey STAR experimental procedure used a pendulum-based impactor, striking a 

medium NOCSAE head form mounted on a Hybrid III 50th percentile neck at varying 

levels of speeds (energies). This experiment used a pneumatic impactor with output 

velocity speeds designed to align with those generated by the pendulum arm angles of 

40 (low), 65 (medium) and 90(High), with 2.4 m/s, 4.8 m/s and 6.0 m/s respectively. 

These impact magnitudes were then focused on the helmeted dummy head at 4 different 

impact locations, two aligned with the center of gravity of the head form (front and rear) 

and two non-centric or tangential with the COG (side and top). For each impact scenario 

a minimum of 2 different helmets of each model are to be tested with each helmet tested 

twice for each of the 12 impacts for a total of 24 impacts on each individual helmet. A 

representation of a typical impact testing scenario can be seen in Figure 31. In total 6 

different helmet models were tested, producing 672 individual impacts that conveyed the 

typical kinematic of a lab produced real world hockey impact. This was explained in 

more detail in previous chapters. 
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Figure 31, representation of a typical helmet setup for physical experiment. Side and 

Top impacts were non-centric. 

For this study, a new MATLAB processing script was developed to take the 

previously generated 672 individual helmet impacts, categorize and average them. These 

were then organized based on impact location and energy to create 12 representative 

curves of what a hockey player would be most likely to experience in-game (ex. Mid-

level impact to rear of head). These 12 impacts provide the typical helmeted head 

kinematic response over 80ms post impact and will be used along with a validated FEHM 

to model typical injury patterns exhibited by ice hockey players. 

5.3.2 Explicit embedded axon fiber model 

A modified, explicitly embedded, parcellated FEHM based around The Global 

Human Body Models Consortium (GHBMC) head model was used in this study as the 

functional injury predictor and PCS assessor. The model generation procedure was 

explained in detail in the previous chapter; however, highlights of the model include its 

new human brain atlas-based segmentation and parcellation of DTI derived axon fiber 

tractography extracted from 100 healthy subjects from the human connectome project 

(HCP). The automatically created white matter atlas parcellated 3D tractography model 

was developed and validated by the O’Donnell research group (ORG), and includes 58 

deep white matter tracts, and 198 short and medium range tracts for a total of 800 fiber 

clusters broken down into 41 predetermined and labelled tracts found in the ORG-88FC-

100HCP atlas [35].  



102 

The atlas segmented axon fiber tractography was then individually converted into 41 

respective FE 1D beam models to create a group-based axon fiber model that was 

constrained in the GHBMC model by a Lagrange in solid constraining method in LS-

DYNA. This model, embedded inside the GHBMC model, is shown in Figure 32 along 

with individual tracts, a total of 6500 fibers were used to provide a high enough level of 

anatomical detail while still reducing the computational expense that the additional 

220,000 elements imposed. This embedded model underwent preliminary validation 

based both on brain-skull displacements derived from cadaveric studies completed by 

Hardy et al. as well as strain based comparison studies from the original baseline model 

developed by Mao et al. [59, 118]. 

 

Figure 32, process flow for explicitly embedded GHBMC axon Model 

5.3.3 Analysis Methods  

Using the in-house script, post- processed tissue and axon strain metrics were 

assessed along with pre-processed kinematics-based metrics. The kinematics injury 

assessors used for injury comparison rely on linear and rotational accelerations and 

rotational velocity and have been widely used as TBI injury predictors. These metrics 

include GSI, HIC15, GAMBIT, BrIC, UBrIC and DAMAGE. The strain-based injury 

predictors rely on the correlations between mechanical strain and tissue damage, which 

include CSDM, MPS and different variations. For axon injury predictors, individual 

tracts will be assessed with both MAS and a new threshold metric that works off CSDM, 
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which is named in this study as CSDMaxon. This metric will assess percent of axon 

damage, and axons elements which have exceeded predetermined injury thresholds for 

permanent functional damage [43].  

5.3.3.1 Analysis and post-concussion symptoms prediction based on 

axon damage patterns 

Using neuroscience concepts such as connectomics and connectograms along with the 

injury pipeline, this study looked to compare the highest damaged fiber clusters vs typical 

PCS symptoms. This study also looked to determine any additional correlation between 

individual tract damages for different impact magnitudes and directions, using SPSS V26 

(IBM). All post-processing of the FEHM was done with LS-PREPOST V4.3.  

Example uses of this pipeline and future research potentials were provided with a 

comparison to rs-fMRI literature studies which have examined post-concussion imaging 

of a helmeted hockey player. A comparison of the injury pattern exhibited by the player 

and those exhibited by the model could predict the injury location the player had while 

potentially predicting some of the players possible symptoms and provide a tool for 

researchers and medical professionals to look for and assess those injury patterns of PCS 

in impacted players. The subjects tested for this study included 17 male adolescent 

bantam aged players (age 13.3 ± 0.6 years) who were diagnosed with a concussion based 

on observed mechanism of injury followed by the onset of typical concussion symptoms. 

The design of this study has been described previously by Daley et al. [159]. The benefit 

of using this study as a reference point is both its relatively large concussive group size, 

but as well the tedious attention to detail that was described in diagnosing and gathering 

clinical data on the concussed players. Players also completed a Sports Concussion 

Assessment Tool -3rd edition (SCAT3; 13-14 years of age) [166] which provided 

concussed individuals somatic, cognitive and behavioral post-concussion symptoms. 
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Table 12, breakdown of n =11 adolescent hockey players SCAT3 results [159, 166] 

Self-reported symptom # of concussion patients 

with symptoms (n = 11) 

% of concussion patients 

with symptoms 

Headache 10 91 

Dizziness 9 82 

Pressure in head 9 82 

Sensitivity to light 9 82 

Don’t feel right 9 82 

Difficulty concentrating 8 73 

Fatigue or low energy 8 73 

Sensitivity to noise 8 73 

Feeling slowed down 8 73 

Drowsiness 7 64 

Balance problems 7 64 

Trouble falling asleep 7 64 

Difficulty remembering 6 55 

Neck Pain 5 45 

Blurred vision 4 36 

Feeling like in a fog 4 36 

Confusion 4 36 

Irritability 3 27 

Nausea or vomiting 2 18 

More emotional 1 9 

Sadness 1 9 

Nervous or Anxious 1 9 

 

For this study 4 different tracts representing different orientation of fibers as well as 

different typical functions associated with damage to those tracts were chosen. These 

tracts (table 13), where analyzed in further detail for MAS as well as CSDMaxon ranging 

from 5 -25 % strain. All tracts were analyzed with a medium level energy impact to 

recreate an impact that would border on being concussive and non-concussive and hence 

would provide detail in how an individual could be affected by each impact scenario. 

[165, 167, 168]. 
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Table 13, description of different fiber tracts to be assessed 

Tract Name Tract location and anatomical 

orientation 

Tract function and symptoms 

when impaired due to damage 

1. Cingulum Bundle (CB) 

 

Association tract connection 

located in parietal, temporal, and 

frontal lobes of cortex, above CC 

and under cingulate cortex (made 

up of five regions). 

 

Executive control, emotion, pain, 

episodic memory, and cognitive 

functions, damage associated with 

Alzheimer’s disease, 

schizophrenia, depression, PTSD, 

OCD and autism spectrum 

disorder [24, 25]. 

 

2. Corpus Callosum (CC) 

 

Commissural tract connecting 

cortical regions of both 

hemispheres through corpus 

callosum. 

 

Interhemispheric interaction, 

damage leads to inhibited transfer 

of somatosensory information and 

learning processes between sides 

of cerebral cortex, decline 

cognitive function [26, 27]. 

 

3. Corona-radiata-frontal and 

parietal (CR-F & CR-P) 

 

Along brainstem projection tract. 

 

Motor and sensory patterns, loss 

of motor function and muscle 

weakness, damage leads to sever 

motor and sensory deficits 

(faciobrachial or brachiocrural 

and hemihypethesia) [29]. 

 

4. Superior Longitudinal 

Fasciculus (SLF) 

 

Major association fiber pathway 

connecting the postrolandic 

regions to frontal lobe, made up 

of four components 

 

Facilitates cognitive processes; 

attention, memory emotion and 

language as well as a connection 

for working memory, damage to 

left SLF is language disorders, 

right SLF spatial attention deficits 

[32] 

 

5.4 Results  

5.4.1 Kinematic curves + typical tissue metrics 

The pipeline successfully generated the 12 representative curves for input into the axon 

embedded FEHM, an example of these curves, with impact duration times of 80ms is 

shown (Figure 33).  
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Figure 33, representative curve examples of 'High' Impact scenarios 

The breakdown of these curves and their respective peak kinematics is provided in Table 

14. The largest linear accelerations are produced in the az direction of the side impacts 

with 187.9 g in the high energy impact. However, the largest overall peak resultant linear 

acceleration is in the high energy level top impact with a value of 230.50 g. For rotational 

velocity the largest velocities are produced in the Front High direction with an average of 

ωz = 42.44 rad/s, this is also the direction and impact energy with the highest resultant 

peak rotational velocity with 42.45 rad/s. In the rotational acceleration kinematic, again, 

side impacts with high impact energy produced the largest rotational velocity with αy = 

11482.30 rad/s2, while also producing the highest Resultant peak rotational acceleration 

of 11677.27 rad/s2
.  
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Table 14, numerical values for peak kinematics of 12 representative curves 

 Front Rear Side Top 

Measure Low Mid High Low Mid High Low Mid High Low Mid High 

ax (g) 14.55 31.31 60.68 7.59 12.93 23.34 8.36 15.63 27.65 21.39 64.25 135.25 

ay (g) 48.11 91.39 168.08 52.20 79.05 132.96 11.78 25.29 48.43 2.01 6.89 13.13 

az (g) 0.91 1.28 3.01 1.36 1.47 2.08 54.12 101.21 187.90 38.85 90.93 187.44 

PRLA (g) 50.26 96.55 175.98 52.56 79.70 133.94 55.32 104.43 194.33 43.37 110.60 230.50 

ωx (rad/s) 0.69 0.93 1.43 0.21 0.25 0.69 3.51 6.07 9.72 5.37 7.01 8.89 

ωy (rad/s) 0.95 1.22 1.67 0.30 0.39 0.40 17.64 24.78 33.90 12.07 17.67 26.14 

ωz (rad/s) 21.68 31.00 42.44 21.42 29.33 38.11 4.60 6.47 8.48 1.69 2.84 4.61 

RPRV 

(rad/s) 
21.69 31.00 42.45 21.42 29.33 38.11 18.26 25.66 34.83 13.16 19.10 27.83 

αx(rad/s^2)
 142.35 179.87 294.22 74.40 74.87 83.07 716.51 1269.77 1989.36 1239.25 2482.57 4517.04 

αy(rad/s^2) 184.91 304.02 815.16 81.19 88.66 122.77 3612.39 6420.68 11482.30 2317.77 4979.71 10256.86 

αz(rad/s^2) 1658.92 3232.39 5401.99 2510.16 3797.96 6254.36 646.87 1127.54 1810.94 606.20 1565.04 3155.06 

RPRA 

(rad/s2) 
1659.71 3232.70 5408.31 2510.25 3798.06 6254.71 3717.43 6588.53 11677.27 2583.66 5515.74 11182.80 

Along with the curve generation injury metrics were generated, these include GSI which 

had the highest score of 1152.76 in the Top High impact, HIC15 with the largest score of 

593.94 in the top impact, BrIC with a largest score of 0.75 in the High Front impact, 

GAMBIT with a highest score of 1.14 in the top high impact, UBrIC MPS peak to peak 

of 0.25 in the High Front impact, UBrIC CSDM peak to peak of 0.36 in the High front 

impact, and DAMAGE of 0.46 in the High Rear Impact and an example DAMAGE score 

of 0.34 for a High Side impact of a typical hockey helmet. 

Table 15, kinematics-based injury prediction metrics summarizing the 4 impact 

locations and 3 energy levels. 
 

Front Rear Side Top 

Injury Metrics Low Mid High Low Mid High Low Mid High Low Mid High 

GSI 90.53 290.88 957.75 97.63 250.71 660.29 89.93 304.12 998.85 67.22 297.19 1152.76 

HIC 15 71.02 201.28 523.37 79.94 195.58 446.54 69.41 193.69 454.32 51.55 189.63 593.94 

BrIC 0.38 0.55 0.75 0.38 0.52 0.68 0.29 0.42 0.58 0.22 0.32 0.45 

Gambit 0.20 0.39 0.68 0.26 0.39 0.65 0.35 0.62 1.12 0.25 0.56 1.14 

UBrIC MPS p2p 0.13 0.18 0.25 0.13 0.17 0.22 0.09 0.13 0.19 0.07 0.10 0.15 

UBrIC CSDM p2p 0.18 0.26 0.36 0.18 0.25 0.32 0.16 0.23 0.32 0.12 0.17 0.25 

Incidence STAR 0.08 0.14 0.47 0.19 0.05 0.17 0.53 1.64 2.20 0.04 0.26 0.10 

DAMAGE 0.23 0.33 0.45 0.25 0.35 0.46 0.18 0.26 0.34 0.13 0.19 0.25 
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Following the simulation of the 12 representative curves in the axon embedded GHBMC 

model in LS-DYNA (smp_s_R10.0), where each simulation took approximately 38 hours 

with NCPU =2, tissue-based strain metrics could be extracted using the ELOUT file. 

These now provide representative injury outcomes from an impact, meaning a Top Low 

impact in a hockey game would produce a CSDM20 of 0.1 or approximately 10% of the 

brains volume would see a stretch of over 20% its original shape. For CSDM the most 

consistently high CSDM seen in the simulations was that of Front impacts with an 

average CSDM 5-25 across low- high of 0.378, 0.004 higher than Rear impacts. Front 

and rear impacts also have large MPS average across the board while Rear impacts have 

the high MPS 95th percentile. A full breakdown is provided in table 16. 

Table 16, tissue-based strain metrics of the simulated impacts 
 

Front Rear Side Top 

Strain Metrics Low Mid High Low Mid High Low Mid High Low Mid High 

CSDM5 0.75 0.86 0.93 0.78 0.88 0.93 0.69 0.85 0.94 0.59 0.79 0.92 

CSDM10 0.31 0.57 0.74 0.32 0.56 0.74 0.24 0.47 0.66 0.14 0.33 0.56 

CSDM15 0.09 0.27 0.50 0.10 0.26 0.46 0.06 0.18 0.37 0.01 0.10 0.25 

CSDM20 0.03 0.12 0.29 0.04 0.11 0.25 0.01 0.07 0.17 0.00 0.01 0.10 

CSDM25 0.01 0.05 0.15 0.01 0.05 0.13 0.00 0.02 0.08 0.00 0.00 0.03 

MPS Average 0.08 0.11 0.15 0.08 0.11 0.15 0.07 0.10 0.14 0.06 0.09 0.12 

MPS5% 0.20 0.29 0.39 0.21 0.29 0.38 0.17 0.24 0.31 0.15 0.20 0.27 

MPS1% 0.26 0.37 0.50 0.27 0.37 0.49 0.20 0.28 0.37 0.17 0.23 0.30 

MPS 50th 0.17 0.24 0.32 0.17 0.23 0.30 0.15 0.21 0.27 0.13 0.18 0.24 

MPS 75th 0.11 0.15 0.21 0.11 0.15 0.20 0.10 0.13 0.18 0.09 0.12 0.15 

MPS 95th 0.07 0.10 0.14 0.08 0.11 0.14 0.06 0.09 0.12 0.06 0.08 0.11 

5.4.2 Axon injury results  

The CSDMaxon and MAS differs with the different impact directions as well as impact 

magnitudes. Figure 34 provides comparisons of the CSDMa values of the different tracts 

as well as MAS average values. Of note, across all impacts the CRF tract appeared to be 

most damaged in terms of CSDMaxon. Moreover, the CC sustained the highest MASaverage 

in the non-centric top impact with MASaverage = 0.021, 33% more than the second largest 

MASaverage values seen in CRF and CRP tracts.  
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Figure 34, charts visualizing the differences in fibers MAS Average. Left to right, CB, 

CC, SLF, CRF and CRP. 

5.4.3 Relation to real world concussion subjects 

 We then compared the specific tracts shown to have changes in their axial diffusivity, 

mean diffusivity, Fractional anisotropy and rs-fMRI in the Manning et al. study with the 

axial strain plots extracted from LS-PREPOST. Figure 35 visualizes these changes while 

showing specific regions of the tract where high strain concentrates. One observation that 

was reported was the obvious differences in high strain locations, with frontal and rear 

impacts showing varying locations along the tract of high strain concentrations. CST was 

also included in these strain plots to align with the Manning et al. and Daley et al. studies.  
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Figure 35, strain patterns of different landmark fiber axon tracts (a.) CB (b.) CC 

(c.) CR-F (d.) CR-P (e.) SLF (f.) CST 

5.5 Discussion  

5.5.1 Representative curve validity 

It is important for the curves that are used to prescribe motion to the axon 

embedded model to be accurate to real world scenarios, so that they can recreate those 

real-world impacts and therefore provide reasonable data. Several studies have looked to 

determine peak impact kinematics during practices and games in-season, Mihalik et al. 
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captured 12,253 head impacts over 151 games and 137 practices and determined average 

linear and angular kinematics [168]. They reported that head impacts reported during 

game resulted in higher rotational accelerations than in practices and that directional 

effects were also present with ‘Top’ impacts resulting in higher linear accelerations but 

lower rotational accelerations and side impacts resulting in the largest rotational 

accelerations. Wilcox et al. completed a similar study recording 37,411 impacts over 3 

seasons [165]. Their results provided average frequency of impacts per season for male 

and female collegiate players, 95th linear acceleration for male players equaling (41.6 g) 

and rotational impacts (4424 rad/s2). Their study reported rear impacts resulted in the 

largest 95th percentile peak linear accelerations (45.2 g) while side and rear impact 

resulted in the largest 95th percentile peak rotational accelerations of 4719 rad/s2. These 

two studies helped foster the idea for head impact exposure metrics and weighted factors 

for injury predictions such as those seen in UBrIC and STAR [66, 86]. In this study, the 

average peak resultant linear accelerations of approximately 50 g were seen in the low 

energy impacts while peak resultant rotational accelerations of around 5000 rad/s2  where 

exhibited in mid to high level energy impacts except for top impacts which exhibited 

RPRA of over 10000 rad/s2 in high level energy impacts. Our reasoning for these 

discrepancies is twofold, first, while providing accurate readings, the hybrid III fixed 

neck in the testing dummy is passive, not active, as one would see in a real world 

situations of one bracing themselves for impact, this would mean that the neck could be 

less of a factor in decelerating the head in our experimental procedure. Secondly, most 

studies recording these impacts (both concussive and non-concussive) are mostly made 

up of normal ‘non-injury’ impacts. These impacts can be assumed to be much lower than 

those experienced in concussive situations.  

5.5.2 Typical post-concussion symptoms  

One outcome of this study was the obvious advantages that are exhibited by the 

inclusion of axon fiber tractography in computational head models. While tissue-based 

strain metrics provide researchers an understanding of the overall probability of brain 

injury or concussive likelihood it has inherent limitations in attempting to predict or 

describe potential injury outcomes of the concussed individual [47, 51, 55, 86].  While 
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both are representative of DAI in the brain, the parcellated axon fibers provide a new 

tactic that could be implemented for future brain research. In this study it has been shown 

that Rear impacts prove to show significant MAS in landmark tracts such as the SLF 

tract, validated by comparison to manning et al. study. For Manning et al.’s diffusion 

results, there were significant main effect for group differences in the CST, cingulum and 

SLF (F =4.18 p < 0.05), with a large region of the SLF shown to have significant MD, 

RD and AD changes even at 3 months post-concussion [8].The SLF tract known to 

facilitate cognitive processes; attention, memory emotion and language as well as a 

connection for working memory [26], symptoms exhibited in over 55% of concussed 

subject [159], could provide a new tool for impact location prediction as well as symptom 

prediction of impact location is known. These strain patterns line up both in terms of 

tracts showing high MAS as well as the specific location of injury determined by rs-fMRI 

changes in the SLF as well as the CST, where high strain (damage) to the lower portion 

of the tract was also observed in Manning et al. study [8]. Another point of note was the 

consistently high axial strain exhibited in the CR-F tract, where damage to this tract and 

the CR-P tract leads to severe motor and sensory deficits, all of which were again 

exhibited by the majority (64%) of concussed cases, as stated by the SCAT3 results [29]. 

Moreover, Top impacts proved to have high MAS in the CC which was also present in 

the visual strain plots for frontal and rear impacts at a fringe level of 0.15 MAS, damage 

in the CC leads to inhibited transfer of somatosensory information and learning processes 

between sides of cerebral cortex, decline cognitive function [26, 27], this somatosensory 

damage could explain the headache and dizziness exhibited by 91% of the concussed 

hockey players an again provides some connection between the simulated impact and 

those experienced by the players. 

5.5.3 Limitations of model and future improvement  

This study provided a starting point for future research involving imaging modalities, 

concussion assessment testing such as that of SCAT3 and axon embedded FEHM. While 

inherent limitations exist with diffusion MRI imaging modalities, mainly potential 

inaccuracies with crossing fibers [14, 152], the level of detail feasible with modern 

computing power, should render this limitation minute. One area which could be an 
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interesting future approach, would be to replace this studies group-based HCP model 

with a subject specific model, particularly that of a 13-year-old male, in order to better 

recreate the axonal tracts that would be anatomically connected to different brain regions. 

Another point to consider for future research is the variance in axonal diameter, in this 

study uniform axon thickness was used, however as Liewald et al. observed, different 

axon tracts have wildly varying axon diameters [156]. For example reported diameter of a 

cadaveric brains right SLF tract was 1.34 μm while the CC tract was 0.74 μm, so while 

their average diameter is close to the 1 μm used in this study, as reported in a the 

preceding chapter, axon diameter especially when its doubled could have a relatively 

large effect on brain anisotropy. 

The goal of this research, particularly this study is to provide clinicians and other non-

engineering researchers the tools to be able to better assess brain injuries in-order to take 

steps in mitigating the sports concussion. 
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Chapter 6  

 

6 Conclusion and future work  

The need to continue the exploration of the mild traumatic brain injury in a 

collaborative research environment is paramount to its decline as a societal catastrophe. 

This chapter looks to highlight the work that was completed over the two-year master’s 

thesis research while examining what research is now possible with this work as a base.   

A literature review to encapsulate the latest work in the field of concussion 

research and the methods of which state of the art FEHM are developed, tested and used 

to predict concussion probability was described in the first chapter. This literature review 

and background research provided a starting point to help develop the topics and research 

plan of this thesis, from understanding through experimentation the mechanisms that are 

most correlated to concussion to providing new tools to help predict and diagnose 

concussions through symptom-based approaches. Exploration of imaging techniques such 

as DTI, to provide a secondary level of detail, while understanding the limitations of 

these modalities and the benefits that their use could provide in bridging the gap between 

computational models and patient outcome post injury is an important part of the research 

process.  

6.1 Summary 

This thesis encapsulates my work over the past 2 years, it follows a chronological 

breakdown through the chapters to understand the mechanisms that effect the risk of 

concussion and how to potentially reduce those risks. 

6.1.1 Understanding injury mechanism  

Starting with the development of an automated injury prediction pipeline to 

prepare, simulate and post-process large amounts of data using a state of the art FEHM. 

This pipeline allowed for the confirmation of the role that rotational motion has in 

increasing concussion likelihood through brain responses such as engineering strain. The 
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utilization of this pipeline to explore how different impact directions and magnitudes 

cause differing brain responses through metrics such as CSDM and MPS is critical in 

providing a base of understanding what increases concussion likelihood. This chapter 

focused on the development of a physical experimentation procedure, testing 6 different 

helmet models, at 3 different impact energies at 4 different impact locations, following 

that described by STAR to provide an assessment of which kinematics affect output brain 

strain the most. The understanding that strain is a prominent indicator of concussion 

likelihood, with its connection to typical concussion pathologies such as DAI, provided a 

starting point for future chapters to explore this injury mechanism.  

6.1.2 Deeper dive into brain injury, purpose of the helmet  

 Following up on the development of the initial strain-based injury prediction processing 

pipeline, the addition of several other important kinematic based metrics were added to 

provide a better understanding of the overall correlation that well used and accepted 

injury prediction criteria have with the strain-based brain response. Using the data 

collected from the 672 impacts simulated with the GHBMC head model, several key 

criteria including GSI, HIC, GAMBIT, BrIC, UBrIC and DAMAGE were assessed based 

on their statistical correlation to brain response metrics such as MPS and CSDM. Along 

with assessing the different kinematic measures a more detailed examination of the effect 

of varying levels of helmet technology was also assessed. The 6 different helmet models 

ranged both in terms of price and in terms of the technology and R&D that was put into 

their development. Different materials and different helmet geometries designed to 

mitigate concussive impacts by reducing linear and rotational accelerations were 

implemented into the newer and more expensive helmet models, with the perception that 

they were safer. This hypothesis was considered proven by the rating received by the 

STAR hockey helmet rating system, the leading consumer focused helmet ranking. The 

STAR rating gives a score of between 0 and 5 stars, where 5 stars is considered excellent 

in terms of concussion mitigation potential and 0 stars considered not recommended. This 

rating system is widely referenced in by media outlets and is the foremost source of 

consumer information when determining the safety of a helmet when making an informed 

purchasing decision. This chapter looked to test this rating system with the kinematics-
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based criteria to determine if its rating is correlated to helmet effectiveness in reducing 

brain strains, a metrics associated with concussion prediction. This chapter was then 

concluded with the introduction of a new kinematics-input, strain-output artificial neural 

network algorithm to take the total information of the linear and rotational velocity and 

acceleration accelerometer outputs and the strain measures extracted from the GHBMC 

model to train a dataset of 672 impacts and produce the most encompassing concussion 

prediction measure. This chapter highlights the limitations that arise with the baseline 

GHBMC model and the limitations that arise from using strain as the only metrics to 

correlate computational injury severity with real world patient outcome.  

6.1.3 Development of a new and improved model 

Following the understanding of the inherent limitation of tissue based strain 

outputs and the advantages of anisotropic brain material representation, along with the 

need to explore the connection of injury patterns exhibited in computational models to 

real world injury scenario and concussion symptoms, the need for a new, more detailed 

FEHM was proposed. This model looks to connect tissue based injury associated with the 

strain response in computational models with the axon based injury metrics that would 

provide directional effect insights as well as provide insights to correlate FEHM to 

imaging modalities that look at structural and functional changes, such as DTI or RS-

FMRI. This chapter highlights the process of developing and validating two novel axon 

fiber tractography explicitly embedded into a validated FEHM. These two models, one 

being population based and a second being a subject specific model extracted from DWI 

in 7T MRI scans, both included a novel feature, individually parcellated axon fiber tracts 

that provide a new approach of analyzing FEHM injury response. The process for model 

generation and an exploratory experiment on directional effects of impact on differently 

directed axon fibers was completed, leading the way for more detailed work on the 

effects of real world traumatic head impact on the tractography clusters and how the 

damage presented in these axons relates to the real world post-concussion symptoms 

experienced by mTBI victims.   
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6.1.4 Exploring models functionality, the future of brain research  

Taking the work completed in each of the previous chapters and combining their 

outcomes leads to this final content chapter. Using the axon embedded GHBMC model in 

combination with 12 impact representative curves based on 672 impact scenarios 

recreating a typical hockey level impact provides a prescribed motion that represents 

different impact energies and different impact locations to the head. These 12 curves 

were treated as inputs for the GHBMC group-based axon embedded head model to create 

an encompassing study that provides details into the brain’s microscopic anatomy post 

injury. These results were then compared as a preliminary measure to injury patterns 

exhibited by a concussed hockey player, with the effect of each impact scenario both in 

terms of direction and magnitude compared to determine which tractography cluster was 

most damaged and relate it to what typical symptoms could be exhibited by the simulated 

injured player. This exploratory study exhibited a combination of the different preceding 

chapters of this thesis and exhibits the potential use of the automated pipeline, injury 

criteria calculation, axon model development and parcellated human brain atlas to 

develop a useful tool for future researchers in concussion injury analysis.  

6.2 Conclusions 

6.2.1 Best metrics for injury prediction 

Several outcomes that were in line with some of our original hypothesis were exhibited 

by the results analyzed in this thesis. The first prevalent outcome which pertained to 

determining the best metrics for injury prediction was the significant advantage of using 

rotational velocity as a predictive kinematic than both linear and rotational acceleration 

when it comes to strain prediction. As stated, resultant peak rotational velocity was the 

most correlated with the different tissue-based strain predictors, more so than linear or 

rotational acceleration. Our hypothesis, that peak linear velocity predicts more accurately 

due to its inclusion of impact duration, proves to be true based on our FEHM, which 

leads us to concluding that future predictive criteria, such as that of STAR, should be 

updated to include rotational velocity as a kinematic input for predicting probability of a 

concussive scenario.  
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Even when combining linear and rotational acceleration into an ANN training 

algorithm RPLV outperformed in its linear relationship to CSDM and MPS measures. 

When comparing past injury criteria, even some recently developed ones, those that 

contained velocity in the equation outperformed those that contained linear and rotational 

acceleration. The increased adoption of machine learning and deep learning methods for 

the analysis of big data and use as a forecasting/predictive tool is another method that we 

believe concussion prediction could be improved. Combining some of the most state of 

the art computational simulation practices that provide a large amount of data with a large 

amount of inputs, such as which direction an impact occurs from, what the magnitude of 

the impact was and what are its peak kinematics allows for improved predictive 

capabilities that greatly outperform current injury prediction criteria. An outcome of this 

study that was not originally hypothesized but proved to be valuable in future research 

was the importance of ANN and other machine learning methodologies as an efficient 

predictive tool to help in impact reconstruction and big data summarization. 

6.3 Future studies  

6.3.1 Future research 

The methods and models developed over this research project prove to have the 

capabilities to provide a basis for future innovative research in the field of computational 

biomechanics and impact biomechanics. These models, particularly the explicit 

parcellated tractography models, that combine engineering principals with imaging and 

neuroscience for segmentation and atlas registration, are widely accepted as the proper 

method going forward in the field of injury prediction [105]. This project encompassed 

multiple engineering principals from background research to design of experiment to 

model development, iteration and testing to provide an answer for the original hypothesis 

and prove the novelty and impact of this research. Future group members now have new 

tools such as the automated injury prediction pipeline which allows for the automatic pre-

processing and post-processing of large quantities of data to allow for more industry 

partnerships. Encapsulating the different injury prediction metrics of the field into this 

pipeline allows for the simple comparison of accepted metrics and the combination or 

exploration of new metrics.  
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The development of new parcellated tractography embedded FEHM’s is another step 

towards the future as it provides the first atlas based segmented FE DTI derived axon 

model to this authors knowledge. The development of model’s framework and generation 

pipeline also allows for future studies exploring the effects of impacts to different 

tractography clusters to improve the predictive capabilities of computational models 

through the improvement in biofidelity and microscopic detail. Potential future research 

involving rodent DTI could also allow for a more cohesive connection from injury to 

simulation to animal cognitive impairment which could result in more groundbreaking 

research.  

This research looks to provide new evidence of helmet effect on mitigating brain strain 

and the effects post-concussion symptoms. With 6 different helmet models and over 670 

individual impact cases analyzed using a multitude of different injury prediction criteria 

as well as some of the most highly detailed FEHMs understanding the role of the helmet 

and how different geometries and materials provide concussion mitigating effects has 

been given a preliminary examination. Understanding if specific helmets reduce localized 

strain better than others and how that could relate to common symptoms post-concussion, 

could help drive the answer to questions such as what concussion thresholds are and what 

quantifiable differences exist between similar concussive and non-concussive impacts. 

Future incorporation of more machine learning techniques such as ANN and deep 

learning to assist in large data analysis and visualization along with neuroscience tools 

such as The Virtual Brain (TVB), where there are possibilities to construct personalized 

virtual brains to recreate tract lesions extracted from the axon embedded FEHM  [169]. 

This future work would improve patient diagnosis for physicians or allow for app-based 

concussion prediction tools based on helmet or mouthguard embedded accelerometers. 

While we understand that these models have their limitations and do not represent the 

human head 100%, the ability to recreate some of these impact scenarios, with FEM and 

highly detailed and validated models provides new insights into the human condition. 

While this model was based on that of an adult 50th male, future models encompassing a 

wider range of subjects including older adult, adult female, and child human models as 

well as primate and rodent models could provide new insights and outcomes that could 
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drive innovation in the field of concussive injury rehabilitation, diagnosis and ultimately 

prevention.  

6.3.2 Novelty, significance, and impact of work 

1) Development of a fully automated start to finish injury prediction and analysis 

pipeline that calculates important injury risk criteria, pre-processes a FEHM, and 

post-processes said FEHM to extract important engineering metrics that are 

considered essential in TBI assessment.  

2) Developed a pipeline for the generation of the first explicitly embedded 

parcellated axon fiber FEHM, this pipeline and model was proven to be an 

effective predictor of injury location and looks to be a better tool for comparison 

to imaging modalities for accident reconstruction. 

3) Analyzed injury metrics suitable for predicting concussion in Ice Hockey, using 

literature data and our own experimental procedure which included 672 individual 

impacts, recreated with validated processes.  

4) Combined engineering, imaging and neuroscience principals to create a full start 

to finish process for the assessment of future protective equipment and 

technologies through looking at axonal-fiber related loading. Future 

collaborations within Western University and industry partners could benefit from 

this computational suite, what we believe could benefit concussion research for 

years to come. 
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