
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-21-2020 10:00 AM

Network Resource and Performance Optimization in Autonomous Network Resource and Performance Optimization in Autonomous

Systems: A Connected Vehicles and Autonomous Networks Systems: A Connected Vehicles and Autonomous Networks

Perspective Perspective

Ibrahim Shaer, The University of Western Ontario

Supervisor: Shami, Abdallah, The University of Western Ontario

Co-Supervisor: Haque, Anwar, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Ibrahim Shaer 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Shaer, Ibrahim, "Network Resource and Performance Optimization in Autonomous Systems: A Connected
Vehicles and Autonomous Networks Perspective" (2020). Electronic Thesis and Dissertation Repository.
7254.
https://ir.lib.uwo.ca/etd/7254

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F7254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7254?utm_source=ir.lib.uwo.ca%2Fetd%2F7254&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

This thesis covers two topics that optimize a network-related problem subject to environment-

specific constraints; placing vehicular applications and executing network traffic assignment changes.

The first topic introduces an optimization model, Resource and Delay-aware V2X service Place-

ment (RDP), and a baseline approach that only considers the resource requirements of vehicular

services. Both are responsible for placing vehicular services used by vehicular applications in an

edge computing environment. Under different simulation scenarios, the results obtained by RDP

satisfy the delay requirements of vehicular applications as opposed to the baseline approach. The

second topic examines the efficient execution of inter-domain traffic changes under bandwidth,

monetary, and infrastructural constraints. An oracle algorithm and two heuristics are formulated,

and evaluation criteria are devised to reflect the constraints. These algorithms are evaluated on

different networks, and the results reported show that OrderSteps (OSS) heuristic satisfies the con-

straints and outperforms the oracle implementation in terms of run-time.

Keywords: Vehicle-to-everything applications, V2X applications, Optimization, Edge Com-

puting, Inter-domain Traffic Engineering, TE, Partitioning, Execution Plans, Traffic Assignment

Changes.

ii

Summary for Lay Audience

This thesis examines two topics that are related to autonomous vehicles and Internet data traffic

routing. Autonomous vehicles are envisioned to transfer the authority in the decision-making pro-

cess from the human driving it to the computer operating the vehicle. To achieve this vision, the

vehicle must be equipped with sensors that are gathering information from their surrounding en-

vironment and applications, resembling the mobile applications, responsible for extracting useful

insights that can be valuable in risky and dangerous situations. Such situations require fast process-

ing and response in the space of 10ms from these applications. Unfortunately, all these applications

can not be installed on a single vehicle due to its limited capacity. Therefore, the first topic investi-

gates this issue by first breaking down these applications into smaller independent components for

capacity purposes. After that, these components are installed on infrastructure of varying capacity

close to the vehicles, so that the components’ requirements in terms of capacity and the vehicles’

requirements in terms of response time are satisfied. Currently, people are extensively using their

mobile phones and their smart TVs to surf the Internet and to watch movies. Any activity related to

the Internet requires, on the network level, to route the data from source to destination as a response

for a specific request. To better manage the routing process, network operators have divided the

network into a set of routers whereby each set is defined as an Autonomous System (AS). Each

of these Autonomous Systems (ASes) forms relations with other ASes to route the traffic exiting

them to its destination. The main objective of each AS is to maximize the profit and optimize

its resource usage which is achieved by mandating the routing of traffic in specific ways in the

iii

infrastructure they manage. Each network operator is concerned in routing traffic generating mass

data such as YouTube and Netflix traffic. Due to the traffic’s dynamicity, the network operators’

respective routing strategies change frequently, so that they keep adhering to their objective. The

second topic covers transitioning between two routing strategies in a way that satisfies the network

operators objectives.

iv

Statement of Co-Authorship

This thesis includes the following manuscript that has been accepted for publication.

• I. Shaer, A. Haque, A. Shami, “Multi-Component V2X Applications Placement in Edge

Computing Environment,” in International Conference on Communications (ICC), 2020 (ac-

cepted)

This thesis contains the following manuscript which will be submitted for review.

• I. Shaer, G. Sidebottom, A. Haque, A. Shami, “Efficient Execution of Egress Traffic Engi-

neering Changes” (pending submission)

The following coauthors have provided their expertise to complete the abovementioned articles:

• A. Shami contributed to the work done in Chapter 3 and 4 through his theoretical and tech-

nical expertise as a professor and his opinion and perspective.

• A. Haque contributed to the work done in Chapter 3 and 4 through his theoretical and tech-

nical expertise as a professor and his opinion and perspective.

• G. Sidebottom contributed to the work done in Chapter 4 through his expertise and knowl-

edge as a Principal Engineer at Juniper Networks.

v

Epigraph

“He who has a why to live for can bear almost any how.” Friedrich Nietzsche

vi

Dedication

I would like to dedicate this thesis to my family who always wanted me to succeed and advance in

my life.

vii

Acknowledgements

Putting together all of this research work and smoothly transitioning into a new country would

not have been possible without the help of many people. This excerpt is dedicated to express my

gratitude to the people that were important factors in the realization of my Master’s experience.

To my supervisors, Dr. Abdallah Shami and Anwar Haque. Thank you for your continuous

support that helped me to grow as a researcher and most importantly as a critical thinker. Under

your mentorship, I saw myself gain courage to tap into the uncertainties of research and come out

with decisive victories. Throughout my research journey, I always found them willing to help and

to listen to my concerns and guide me on any questions that I have. Again, thank you for all of

your efforts that culminated in what I am today. I am looking forward to my future collaboration

with you.

To Greg Sidebottom, my research industry partner, thank you for helping me throughout my

research journey. You helped me realize how my work can be applied to industry problems. You

were a true mentor for embedding “The Art of Programming”.

To my family, Ahmad, Svetlana and Ikram, thank you for your encouragement and faith. I

would not be more certain about my future steps academically without your support and belief.

How can I forget you nodding in approval and saying that I got it while I am talking about my

“techy” gibberish.

Along my research journey, I got to befriend some great people that enriched my experience

throughout and made the adaptation process a lot more graceful. Thank you Abdallah, Tareq,

viii

Yiota, Aziz, and Ayman. You were always there for me to share with me my ups and my downs. I

am lucky to have gained such fulfilling friendships.

When I joined the lab, I was fortunate to come across a great person that later became a very

close friend. That person is Dimitrios Manias. Dimitri was always there when I needed cheering

or when I needed to rant. Either way, the conversation ended with laughter. Thank you Dimitri for

being there not only as a friend but more as a brother.

Despite the famous proverb that says “out of sight, out of mind”, the Mohammads (Ibrahim,

Bzeih, and Saleh), Mustafa, Soukaina, and Marya were sure to clearly defeat that saying. Thank

you for always staying in contact despite the time differences and the calamities of recent events.

Your support and encouragement will be forever cherished.

While the current pandemic has confined us at home, it was a great opportunity for me to get

to know my roommates better. Jacob, Owen, Nicole and Jenna, thank you for being there to ease

the isolation experience.

Lastly, I would like to thank my lab fellow members for offering help and support when needed

which were both rewarding personally and professionally.

ix

Table of Contents

Abstract ii

Summary for Lay Audience iii

Statement of Co-Authorship v

Epigraph vi

Dedication vii

Acknowledgements viii

Table of Contents x

List of Tables xiv

List of Figures xv

List of Abbreviations xvii

1 Introduction 1

1.1 Research Contributions . 2

2 Background 3

2.1 Edge Computing . 3

2.2 Autonomous Vehicles . 6

x

2.3 Traffic Engineering . 6

3 Multi-Component V2X Applications Placement in Edge Computing Environment 11

3.1 Introduction . 11

3.2 Related Work . 13

3.3 System Model . 15

3.3.1 System Design . 16

3.3.2 Optimization Problem . 17

3.4 Experimental Setup and Results . 20

3.4.1 Simulation Setup . 20

3.4.2 Implementation . 23

3.4.3 Results and Discussion . 23

3.5 Conclusion . 27

4 Efficient Execution of Egress Traffic Engineering Changes 34

4.1 Introduction . 34

4.2 Related Work . 37

4.2.1 Network Traffic Engineering and Network Consistent Updates 37

4.2.2 Application Partitioning and Computation Offloading 38

4.2.3 Novelty of this study . 39

4.3 System Model . 40

4.3.1 Illustrative Example . 41

4.3.2 EPE Network Elements . 42

4.3.3 Plans and Network Elements Costs . 43

4.4 Evaluation of Execution Plans . 44

4.4.1 Definition and Notation . 44

4.4.2 Evaluation Metrics . 44

xi

4.4.2.1 Progress Quality (qπ) . 45

4.4.2.2 Balance Quality (qr) . 45

4.4.2.3 Ideal Step Size Quality (q|∆tr,s |) 46

4.4.3 Process of Execution Plan Evaluation . 47

4.5 Proposed Algorithms . 48

4.5.1 Balanced Size Partitioning (BSP) . 48

4.5.2 Unbalanced Node Partitioning Heuristic (UNP) 49

4.5.3 Order Steps Heuristic (OSS) . 51

4.6 Experimental Setup and Procedure . 54

4.6.1 Preliminaries . 54

4.6.2 Procedure . 54

4.6.3 Implementation . 55

4.7 Results and Discussion . 56

4.7.1 Algorithms Evaluation . 56

4.7.2 Effect of Quality Metric Weights . 59

4.7.3 Effect of Ideal Step Size Parameter . 62

4.7.4 Effect of Traffic Density Parameter . 63

4.7.5 Effect of Independent Runs . 64

4.7.6 Algorithms’ Acceleration . 66

4.7.7 Quality vs. Runtime . 69

4.7.8 Effect of Network Size . 71

4.8 Conclusion . 72

5 Conclusions and Future Directions 78

5.1 V2X Applications Placement in Edge Computing Environment 79

5.2 Efficient Execution of Egress Traffic Engineering Changes 80

xii

Curriculum Vitae 84

xiii

List of Tables

3.1 SUMO vehicle movement parameters . 21

3.2 Breakdown of V2X applications’ V2X basic service and performance metrics . . . 21

3.3 Computational Requirements . 22

4.1 Small Network Configurations . 55

4.2 Results on Small Networks . 56

4.3 Effect of Ideal Step Size . 62

4.4 Effect of Traffic Density Parameter . 63

4.5 Results of OSS on Medium and Large Size Networks 71

xiv

List of Figures

2.1 Ad-hoc Cloud . 4

2.2 Edge Computing . 5

3.1 System Model . 19

3.2 Average Delay of V2X Applications for different Vehicle Densities 24

3.3 Probability Density Function for 1500 vehicles/hour 25

3.4 Probability Density Function for 1800 vehicles/hour 26

3.5 RDP vs RAA . 27

4.1 EPE Network . 41

4.2 Flowchart for Evaluating Execution Plans . 47

4.3 Example of BSP . 49

4.4 UNP Algorithm . 51

4.5 Ratio of Actual to Expected Peer Link Capacity for Different Algorithms 59

4.6 Weight Effect on Algorithm Peformance . 60

4.7 Weight Effect on Runtime . 60

4.8 Quality vs. Independent Runs . 65

4.9 Runtime vs. Independent Runs . 65

4.10 Best Execution Plan vs. Runtime . 67

4.11 Best Execution Plan After Sampling for BS P vs. Runtime 68

4.12 Best Execution Plans for BS P vs OS S . 69

xv

4.13 Best Execution Plans for BS P vs. OS S . 69

4.14 Quality vs. Runtime . 70

xvi

Nomenclature

ASes Autonomous Systems

CA Cooperative Awareness Basic Service

DEN Decentralized Environmental Notification Service

E2E end-to-end

IP Internet Protocol

ITS Intelligent Transportation System

LDM Local Dynamic Map

OSS Order StepS Heuristic

QoS quality of service

RAM Random Access Memory

RDP Resource and Delay-aware V2X basic service Placement

RSU Roadside Unit

TE Traffic Engineering

V2X Vehicle-to-everything

xvii

Chapter 1

Introduction

The optimal placement of services and the management of network resources are important factors

for the realization of autonomous systems such as connected vehicles and autonomous networks.

In both cases, to achieve the desired performance of the envisioned systems, a clear objective and

environment-specific constraints need to be considered. This thesis presents two articles represent-

ing a framework that encompasses the management and placement of network resources of specific

applications while maintaining the application specific constraints. In this perspective, this thesis

examines two important applications in the autonomous systems domain. The first topic covers

the placement of vehicular services used by vehicular applications also referred to as vehicle-to-

everything (V2X) applications in an edge computing environment where both delay and resource

requirements are considered. The second topic addresses the automation of inter-domain network

traffic assignment changes while considering peer links’ bandwidth constraints, monetary costs,

and infrastructural constraints. Each article illuminates new concepts, presents new algorithms,

and advances the state-of-the-art.

1

CHAPTER 1. INTRODUCTION

1.1 Research Contributions

The following chapters introduce several research contributions:

• Chapter 3:

1. Decompose V2X applications into multi-V2X basic services;

2. Formulate the optimal V2X applications placement by considering their delay requirements

and the resource requirements of their constituent components;

3. Evaluate the performance of the optimal placement in terms of average and density distribu-

tion of the delay for each V2X application under different traffic conditions.

• Chapter 4:

1. Devise evaluation criteria that verify the compliance of execution plans with network perfor-

mance objectives;

2. Propose two new heuristics, one based on graph representation of traffic assignment changes

and the second on sorting the traffic changes according to the cost associated upon their

execution;

3. Formulate an exhaustive search algorithm, used as a benchmark to compare heuristics, that

partitions the set of traffic assignment changes;

4. Evaluate and compare the proposed approaches on networks of different sizes and configu-

rations.

2

Chapter 2

Background

This section presents background concepts that are needed for the understanding of the contribu-

tions in the following sections.

2.1 Edge Computing

To transition from the cloud computing to the edge computing paradigm, the research community

have achieved several intermediate conceptual advancements that were necessary building blocks

for the development of the edge computing scheme. The main intuition behind all of these concepts

is to provide computational access close to mobile agents, which include user equipment (UE) and

vehicles, in order to avoid relying on the centralized computing environment [1].

The first advancement in this transition culminated in the concept of ad-hoc clouds. Mobile

agents that are spatially close combine and virtualize their computational power, so that the other

agents that need these resources can use them to their benefit. However, many challenges need

to be addressed for the utilization of ad-hoc clouds that are mainly related to privacy and security

issues, reliability and incentives systems for agents to collaborate [1]. Ad-hoc cloud serves better

as an amendment to a present architecture that provides cloud services rather than being the main

3

CHAPTER 2. BACKGROUND

Figure 2.1: Ad-hoc Cloud

architecture that serves this purpose. Fig. 2.1 illustrates a typical example of vehicular ad-hoc

network where vehicles form clusters dictated by vehicles’ communication ranges. In each clus-

ter, vehicles share their computational resources through virtualization allowing other vehicles to

opportunistically use these resources.

While the Mobile Cloud Computing (MCC) deployment paradigm suffers from high latencies

and exerts extreme traffic conditions on the network backhaul, the concept of cloudlets was revolu-

tionary for mitigating the limitations of MCC. The main idea of cloudlets is deploying servers with

high computational power and storage, in predefined locations, in close proximity to mobile users.

The concept mirrors WiFi hotspots in providing cloud services to mobile users. However, this

paradigm suffers from two significant shortcomings. (1) Connecting to a cloud service requires

switching from the mobile network to the WiFi services provided by the cloudlets. This incurs

delays due to the handover process which degrades the Quality of Service (QoS) of the applica-

tions in need of cloud services. (2) The cloudlets do not necessarily provide ubiquitous coverage

for mobile users as they are placed following the network operators’ objectives which limits the

cloudlets’ support for mobility. [1]

4

CHAPTER 2. BACKGROUND

Figure 2.2: Edge Computing

The last advancement which is considered analogous to edge computing is fog computing. The

concept of fog computing was introduced by Cisco [2] whereby computational resources are de-

ployed at the edge of the network to provide low latency requirements for mobile and vehicular

applications, contextual awareness for these applications, and wide-spread geographical distribu-

tion that can be leveraged to collect pervasive spatial-temporal data [1]. Fig. 2.2 demonstrates the

de-facto architecture of an application deployment environment that integrates the edge comput-

ing principle. As it is depicted, different mobile agents such as mobile phones, Unmanned Aerial

Vehicles (UAVs), and cars communicate with the servers deployed at the edge of the network. The

edge servers share information among each other and communicate and transmit information to

the centralized cloud.

The edge computing principle has spawned many research efforts that resulted in defining con-

cepts such Mobile Edge Computing (MEC) [3], Small Cell Cloud (SCC) [4], Mobile Micro Clouds

(MMC) [5], and Follow Me Cloud (FMC) [6]. The main difference between these concepts lies in

the management and control of virtualized resources, deployment strategies, and the densification

levels of computing resources.

5

CHAPTER 2. BACKGROUND

2.2 Autonomous Vehicles

Any autonomous vehicle system relies on three main components [7]: RoadSide Unit (RSU),

On-Board-Unit (OBU), and Application Unit (AU). The OBU is responsible for collecting and

processing and sending data from sensors and surrounding environment. The RSU is the entity that

hosts applications and provides Internet connectivity to the vehicles. The AU uses the connection

capability provided by the OBU to use the applications hosted on the RSU. In detail, the main

functionalities of these entities are as follows:

• On Board Unit (OBU): The OBU provides wireless radio access capabilities for the vehicle,

and it ensures its connectivity to other vehicles and RSUs. Also, it is responsible for applying

network functions such as congestion control and reliable data transfer. Additionally, it

can act as a relay to forward the data from other OBUs destined to a different vehicular

infrastructure. Lastly, it represents an intermediate infrastructure between the AU and the

surrounding environment by providing connectivity to the AU.

• Application Unit (AU): The separation between the OBU and AU is logical. The AU is

dedicated to use the applications of RSU, or it can host safety and non-safety vehicular

applications. The AU uses the OBU to ensure its connectivity to the outside world.

• RSU: RSUs are usually deployed along the road side which are responsible for extending

the vehicular agents’ communication range, gathering and distributing the circulated infor-

mation in the environment, hosting safety applications that are accessible to vehicles using

communication technologies and providing Internet connectivity to OBUs. [7]

2.3 Traffic Engineering

Internet traffic engineering (TE) is a branch of network engineering that focuses on the perfor-

mance optimization of IP networks by applying engineering principles that controls and manages

6

CHAPTER 2. BACKGROUND

Internet traffic. The performance is optimized at both resource and traffic levels by considering

the requirements of the network traffic representing myriad of applications and the underlying net-

work infrastructure. On a bigger scale, the main objective of TE is to consolidate the reliability,

scalability, and the survivability of the network. To that end, automated TE is performed to opti-

mize Internet routing function by effectively steering the network traffic. The routing policies are

executed within a framework that prioritizes the perceived performance by end users as it is the

most significant indicator of the network performance while considering the utilization of the un-

derlying resources. Careful methods should be applied for measuring network performance. When

choosing network performance metrics, it is important that they represent the global network state.

Optimizing inaccurate metrics can achieve local spatial and temporal objectives but can lead to

devastating consequences on the quality of service of network applications and the state of the

network in general [8].

Optimization of TE is a continual process that depends on the dynamicity of network traffic

environment. This environment is always in the process of introducing new technologies, applica-

tions and user segments. Any or all of these factors impose new performance objectives that need

to be integrated in the Internet TE procedure. Many aspects should be considered to create the

pipeline for any Internet traffic engineering problem. This requires identifying the problem under

study, solution space, desirable features of the solution, and the representative evaluation of the

solution [8].

Before developing the TE principle, the networking research community adopted different rout-

ing algorithms and protocols responsible for routing traffic entering and leaving a specific domain

or Autonomous Systems (ASes). For routing traffic entering a domain, each router between source

and destination nodes selects the path with the least cost to forward the packets [8]. This is imposed

by the Interior Gateway Protocol (ISPs) [9] that is designed to choose such a path for forwarding

traffic. Such a methodology has a prominent disadvantage. Every router will prefer using the path

with the least cost to forward traffic which will cause congestion on the path with least cost[10].

7

CHAPTER 2. BACKGROUND

Regardless of the objectives that can vary depending on the network operator, the main intuition

of TE is to avoid link congestion which has implications on the delays, jitter and performance

predictability [8]. TE achieves this objective by routing traffic through under-utilized paths which

contributes to network load balancing. To that end, TE creates tunnels that define a path from a

source node to a destination node. To make a comprehensive decision, TE gathers information

about the network topology, traffic distribution, and the resources available on the traversed links

[10].

Two different methods of network traffic control can be leveraged in this respective: pro-active

and reactive. Pro-active methods assume some unfavorable future events and create policies to pre-

vent their occurrence. On the other hand, reactive methods are adopted for events that already took

place in the network and measures are applied to roll back the network to its previous desirable

state. Adopting any of the methods optimizes the utilization of network resources which signifi-

cantly decreases capital expenditure and increases projected revenues by providing more resources

to be leveraged for more network services [8].

8

Bibliography

[1] P. Mach and Z. Becvar, "Mobile Edge Computing: A Survey on Architecture and Computa-

tion Offloading," IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628-1656, thirdquarter

2017, doi: 10.1109/COMST.2017.2682318.

[2] M. K. Saroa and R. Aron, "Fog Computing and Its Role in Development of

Smart Applications," in 2018 IEEE Intl Conf. on Parallel Distributed Process-

ing with Applications, Ubiquitous Computing Communications, Big Data Cloud

Computing, Social Computing Networking, Sustainable Computing Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, Australia, 2018, pp. 1120-1127,

doi: 10.1109/BDCloud.2018.00166.

[3] Y. Yu, "Mobile edge computing towards 5G: Vision, recent progress, and open chal-

lenges," China Communications, vol. 13, no. Supplement2, pp. 89-99, 2016, doi:

10.1109/CC.2016.7833463.

[4] "FP7 European Project, Distributed Computing, Storage and Radio Resource

Allocation Over Cooperative Femtocells (TROPIC),". [Online]. Available:

https://cordis.europa.eu/project/id/318784

[5] S. Wang et al., "Mobile Micro-Cloud: Application Classification, Mapping, and Deploy-

ment," in Proc. Annu. Fall Meeting ITA (AMITA), New York, NY, USA, Oct. 2013, pp. 1-7.

9

BIBLIOGRAPHY

[6] T. Taleb and A. Ksentini, "Follow me cloud: interworking federated clouds and distributed

mobile networks," in IEEE Network, vol. 27, no. 5, pp. 12-19, September-October 2013, doi:

10.1109/MNET.2013.6616110.

[7] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti and H. Zedan, "A comprehensive survey

on vehicular ad hoc network", Journal of Network and Computer Application, vol. 37, pp.

380-392, Jan. 2014.

[8] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. 2002. Overview and Principles of

Internet Traffic Engineering. RFC 3272. RFC Editor

[9] S. Misra, S. Goswami, "Interior Gateway Protocols," in Network Routing: Funda-

mentals, Applications, and Emerging Technologies , Wiley, 2014, pp.131-157, doi:

10.1002/9781119114864.ch6.

[10] Ciena, All About MPLS Traffic Engineering, [Online]. Available:

https://media.ciena.com/documents/All+About+MPLS

+Traffic+Engineering+E+Book.pdf

10

Chapter 3

Multi-Component V2X Applications

Placement in Edge Computing Environment

3.1 Introduction

Intelligent Transportation Systems (ITSs) are envisioned to ameliorate traffic congestion and im-

prove road safety and traffic experience. ITSs have drawn the attention of a large number of stake-

holders due to their direct effect on the manufacturing of sensor and wireless-equipped vehicles

known as connected and autonomous cars. In this regard, Vehicle-to-everything (V2X) applica-

tions are considered a key enabler for the shift to ITSs in terms of traffic management. These

applications allow the vehicles to communicate and exchange information with their surrounding

environment that includes other vehicles, pedestrians and supporting road side units (RSUs).

To ensure road safety, these applications operate with stringent end-to-end (E2E) latency/delay.

There are different paradigms that can determine the placement of V2X applications to address the

E2E latency requirements. The placement of these services is disruptive to the customary cloud-

based infrastructure. The projected increase in the number of connected and autonomous vehicles

will result in data explosion. The data will be routed to a single centralized server creating severe

11

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

network traffic congestion [1]. Additionally, the centralized servers are usually located far from

vehicles generating data; thus, incurring a huge E2E delay and high probability of packet loss.

Furthermore, this architecture exposes a single point of failure, which is huge risk to take for time

and mission-critical V2X applications.

Given these circumstances, distributing the cloud computing technology in proximity to ve-

hicles is proposed as a viable solution to deal with the shortcomings of the centralized paradigm

[2]. This computing architecture is referred to as Edge Computing. Edge Computing can support

the latency requirements of the V2X applications which are critical for their performance [3]. In

addition, the edge servers collect data from the close local nodes which allows for a more individ-

ualized experience for the V2X application users. While Edge Computing paradigm can ensure

some V2X system-level performances, this come at the expense of limited computational power at

the edge. This limitation hinders the processing of large amount of data. To address this challenge,

Microservices architecture that decomposes a single application into decoupled modules can be

used. Additionally, virtualization techniques can be adopted to make the full use of the available

resources at the edge. Combining Microservices architecture and virtualization techniques has the

potential to minimize the computational tasks executed at the edge; thus, making it a viable option

for the placement of V2X applications. Hawilo et. al [4] investigated the applicability of this

paradigm for Virtual Network Functions which display similar characteristics to V2X applications

making it a viable option for their placement.

In the domain of V2X applications, 3rd Generation Partnership Project (3GPP) [5] envisions

complex V2X applications that combine vehicle status analysis, imminent traffic events generation,

and raw sensor data exchange that define the function of autonomous and connected vehicles. Each

of these applications relies on the data processing and analysis of miniscule V2X basic services.

Current research efforts in the domain of vehicular applications placement disregard the nature of

vehicular applications and mainly focus on an abstract formulation of these applications which is

detached from their defined structure mandated by standardization institutions.

12

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

This chapter starts with an overview of related work and the state-of-the-art in the field. After

that, the system model and the problem formulation are presented. Next, the simulation procedure

is outlined, and the results are investigated. The last section concludes the chapter and presents

concluding remarks.

3.2 Related Work

A large body of work has been conducted to study the placement of vehicular applications, inte-

gration of edge computing paradigm into the vehicular environment, and computation offloading

in vehicular networks. This section will discuss the related work in these fields and pinpoint their

shortcomings motivating this research study.

Emera et. al [6] investigate the advantages of integrating Multi-Access Edge Computing envi-

ronment compared to centralized cloud paradigm on the end-to-end (E2E) latency of Vulnerable

Road Users (VRU) messages dissemination and processing. In their experiments, the application

responsible for the processing of VRU messages was deployed on edge and cloud server. Both

approaches were evaluated with varying the VRU density and the number of vehicles receiving the

transmitted messages. In the same context, reference [7] addresses the placement of V2X services

in a hybrid environment that includes edge and cloud services. To that end, the authors devise three

approaches that consider the delay and resource requirements of these services.

To address vehicle mobility, references [8, 9, 10] discuss the migration of vehicular applications

under different environment-related constraints. Yu et. al [8] first propose a hierarchical architec-

ture divided into three levels: vehicular cloud, roadside cloud and central cloud. Each of these

infrastructures have varying degrees of communication and computation capabilities. The authors

focus on the efficient resource management of the defined entities while satisfying the service re-

quests of moving vehicles. Towards that goal, a game theoretical approach and a VM reservation

scheme are presented where the vehicle’s main objective is to reserve the resources it needs while

13

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

minimizing the resource leasing costs. Similarly, [9] addresses the migration of V2X applications

while satisfying their QoS requirements. The authors integrate trajectory prediction models to find

the optimal migration decision that is achieved through partial updating of the trajectory and V2X

applications’ priority. A VM migration problem is also addressed by [10] in a roadside cloudlet.

The authors focus on when and where the VM should be migrated. The decision is dictated by the

overall network cost which encompasses migration costs and network traffic cost.

In the field of computation offloading, [11] proposes a resource-aware parallel offloading scheme

that considers the mobility and the computational capabilities of the hosting vehicles. Markov

chains were adopted to model the time-varying aspect of the aforementioned factors. To paral-

lelize the offloading procedure, the tasks of non-safety applications are partitioned and offloaded

to hosting severs. The sum of task offloading delay, tasks decomposition, and handover cost are

adopted as the performance metric of offloading performance. Zhang et. al [12] adopt a predic-

tive offloading strategy whereby its main objective is to minimize the latency and the transmission

cost of the offloading process. The authors discuss two offloading strategies. The first utilizes the

RSUs for offloading tasks and following the mobility predictive model, the results are delivered to

the RSU that is closest to vehicle’s position upon the completion of task processing. The second

leverages the V2V multi-hop communication to deliver the task to the RSU predicted to produce

task processing results when the requesting vehicle is in its proximity.

Purely focusing on the resource availability, [13] addresses the offloading of resource-intensive

vehicular application tasks by considering the resources of both the vehicles and MEC servers.

Their approach utilizes the unused TV spectrum. The work by Gangadharan et. al [14] targets

the efficient delivery of services considering the bandwidth utilization and cost. Additionally,

partitioning of the requested data is leveraged to accommodate for the limited resources at the

edge.

All of these research efforts suffer from some limitations. While most of aforementioned work

consider the resource requirements of vehicular applications, only some take into account the re-

14

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

source and the delay requirements of vehicular applications. Also, none of the works proposes

decomposition of vehicular applications into smaller vehicular services responsible for processing

the offloaded tasks or vehicle requests. In the same context, the environments whereby partitioning

of tasks is applied, the authors assume that such tasks are uniform, and all edge nodes can process

them. This shows that the applications deployed on the edges are homogeneous. Lastly, none of

the related work consider realistic traffic conditions while evaluating their respective approaches.

As opposed to the above-mentioned research efforts, this study is the first to address the place-

ment of V2X applications’ components considering their resources requirements and the delay

requirements of V2X applications. No comparisons are conducted between this study and the

state-of-the-art in terms of results and problem formulation because it is the first research effort

that focuses on solving the aforementioned problem. Given these circumstances, a self-evaluation

approach is followed. Two optimization models are devised; the first that considers both the delay

and the resource requirements, while the second only addresses the resource requirements. The

second approach mirrors the environment constraints considered in some of the related work to

measure their performance in the environment set in this experiment. Both models are evaluated

under realistic simulation traffic conditions.

3.3 System Model

In the reference model, a highway scenario is considered. Each of the vehicles moving on the

highway is running a set of V2X applications that are collecting data from nearby RSUs to func-

tion autonomously. RSUs and the vehicles are communicating directly using Dedicated Short-

range Communication [15] and no communication takes place between any vehicles. Each RSU is

equipped with a server which are both considered as an edge computing node. Vehicles are receiv-

ing data from V2X basic services placed on each RSU. European Telecommunication Standard-

ization Institute (ETSI) defines three V2X basic services that are the foundation of any envisioned

15

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

V2X applications. The V2X basic services are as follows:

(1) Cooperative Awareness Basic Service (CA) [16] is responsible for creating, analyzing and

sending Cooperative Awareness Basic Messages (CAMs) which include information about the

vehicle’s status and attributes, (2) Decentralized Environmental Notification Service [17] (DEN)

broadcasts Decentralized Notification Messages (DENM) whenever a road hazard or abnormal

traffic condition takes place, and (3) Media Downloading [18] service is requested on demand by

the passengers of the vehicle.

ETSI defines Local Dynamic Maps (LDMs) [19] that are responsible for storing the sent CAMs

and DENMs. Because LDMs store spatial relevant information, an LDM is deployed on each edge

server. LDMs are queried by V2X basic services in order to retrieve information. Finally, in

addition to basic vehicular services that are related to road safety, there is a variety of innovative

applications that are referred to as value-added services that are of lower priority [20]. These

services include augmented reality, parking location and others that are part of the infotainment

services provided by vehicular applications. Compared to road safety applications, these services

display high levels of diversity and individuation. Therefore, they need to be migrated when the

vehicle moves from one edge server coverage zone to another. For this purpose, each edge server

reserves part of its resources to accommodate these migrating services. In this section, the system

design and the optimal optimization technique for V2X basic service placement are presented.

3.3.1 System Design

In the reference model used for the placement of V2X basic services, HWY 416 IC-721A that

passes through the city of Ottawa is considered. The edge computing servers are deployed uni-

formly along the highway as the deployment of RSU is out of the scope of this study. No com-

munication interference zone exists between any two successive RSUs to avoid the possibility

of encountering ping-pong handover cases which will be difficult to handle in an optimization

16

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

model. Also, the handover delay when a vehicle changes its association from one RSU to another

is considered negligible. Additionally, the vehicles are assumed to be always connected to RSUs

throughout their journey. The E2E latency of a service is the sum of the communication, process-

ing, transmission and propagation delay. The propagation delay is dependent on the medium of

communication which is out of the scope of this study, and therefore considered negligible. In this

model, DSRC, the communication technology between the moving vehicles and RSUs, affects the

communication delay. In the proposed model, the processing and transmission delay between the

communicated edge servers is considered. Each edge computing server has the same computing

and processing power that are expressed by the number of cores and RAM available. Finally, the

vehicle density is considered to model real case scenarios.

3.3.2 Optimization Problem

In the optimization function, a set of edge servers and V2X services are considered. Let N denote

the set of edge servers where n ∈ N. Let U denote the set of unique V2X basic services where

u ∈ U. The availability of the computational resources on the edge is denoted by matrix Cap where

Capkn denotes the kth computational resources available on edge server n. Matrix R represents the

resources required by the V2X basic services where Rku represents the kth computational resources

required by V2X basic service u. A binary row vector −→q denotes the edge servers a vehicle can

communicate with. Let C be the matrix that represents the processing and the transmission latency

between edge servers where Ci j represents the latency between edge server i and edge server j.

Matrix M represents the V2X services needed by V2X applications where Mau = 1 denotes that

application a needs V2X basic service u. Let X denote the placement matrix where Xun = 1 means

that V2X basic service u is placed on edge server n. The column Xu denotes the placement of the

V2X services on edge server n. Dv
a and Dth

a denote respectively the delay experienced by a moving

vehicle v served by application a and the maximum tolerable threshold of this delay. To represent

17

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

the vehicles’ density, γ is used. dv
com and dv

DL denote respectively the communication and download

latency between a vehicle v and a serving edge server. The optimization function used to minimize

the delay of V2X application is as follows:

min
∑
a∈A

Dv
a (3.1)

where:

Dv
a = dv

com + max(Ma � min(X � (γC × −→q)) + dv
DL (3.2)

subject to:

Dv
a ≤ Dth

a ,∀a ∈ A (3.3)

RX ≤ Cap (3.4)

∑
Xn = 1,∀n ∈ N (3.5)

In what follows, the explanation of the equations (3.1)-(3.5).

• Equation (3.1) describes the overall objective which is minimizing the summation of the

delay of all V2X applications experienced by a vehicle requesting their services.

• Equation (3.2) presents the components contributing to the delay of a V2X application. The

delay of a V2X application is the delay of the V2X services it relies on depending on the edge

servers a vehicle can communicate with. Because the functioning of a V2X basic service is

independent of other V2X basic services, the delay of a V2X application is defined as the

maximum of the delay of its constituent V2X basic services. This value is added to the

communication and download link delay.

• Next, the equations (3.3) – (3.5) describe the constraints. Equation (3.3) defines that the

delay of an application should not exceed its maximum defined tolerable delay.

18

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

Figure 3.1: System Model

• Equation (3.4) ensures that the resources allocated to a V2X service do not exceed the avail-

able resource on the hosting edge server.

• Equation (3.5) limits placing only one V2X service on each edge server.

Fig. 3.1 illustrates an example of the communication and processing that takes place for a V2X

application that requires CA and DEN services, given that each server has resources reserved for

migrating applications denoted by VM 3.

The logic governing the realization of the application is as follows:

(1) The vehicle requests the services of an application. This step incurs communication delay

that is denoted by dv
com.

(2) The CA service found on Edge Server 1 requests the necessary information from the LDM.

The processing of the request on the LDM is denoted by C11.

(3) Edge server 1 communicates with the closest server that include DEN basic service. No

delay is considered in this phase.

(4) DEN queries and receives information from the LDM that is closest to the requesting vehi-

cle. The LDM on edge server 1 has accurate information about the requesting vehicle’s surround-

ing environment. This delay is the sum of the processing delay of LDM on edge server 1 and the

transmission delay between edge server 1 and 2. This is denoted by C12.

19

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

(5, 6) These steps represent the CA and DEN response to the requesting vehicle. This delay is

denoted by dv
DL.

For basic service CA, the delay is as follows:

dv
CA = C11 + dv

DL

Similarly, the delay for DEN is:

dv
DEN = C12 + dv

DL

Given that the requests for each basic service are executed in parallel and that these services

are independent in their execution, the delay experienced by a vehicle v requesting the services of

application a is:

Dv
a = dv

com + max{dv
CA, d

v
DEN}

3.4 Experimental Setup and Results

3.4.1 Simulation Setup

In order to evaluate the placement of V2X basic services, a realistic simulation environment must

be created. To this end, Simulation of Urban Mobility (SUMO) [21] was used to extract the

movement of vehicles along a highway. A 4 km highway that resembles HWY 416 IC-712A was

considered as a reference highway. Ontario traffic volume for provincial highways [22] provided

the average daily traffic and the accident rates during summer, winter, weekdays and weekends.

In the simulation setup, the statistics offered by this report were used to emulate moderate and

heavy traffic experienced on HWY 416 IC-712A highway that is expressed through the vehicles

20

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

per hour parameter in SUMO. Regarding the movement of the vehicles, Table 3.1 summarizes the

key parameters that are used in the simulation.

Table 3.1: SUMO vehicle movement parameters

Parameter Value

Maximum Speed 27.7m/s

Maximum Acceleration 2.6m/s2

Maximum Deceleration 4.5m/s2

The V2X applications considered are Platooning (PL), Sensor and Sensor State Mapping (SSM),

Emergency Stop (ES), Pre-crash Sensing Warning (PSW) and Forward Collision Warning (FCW).

Their corresponding performance requirements and service components are presented in Table 3.2

[23, 24]. Choosing these V2X applications stems from their importance and stringent performance

requirements in the realm of the autonomous cars. In addition, in the context of the defined prob-

lem, each of the chosen V2X application offers a unique combination of V2X services.

Table 3.2: Breakdown of V2X applications’ V2X basic service and performance metrics

Application Service(s) Latency(ms) Reliability(%)

PL CA 50 90

SSM CA, DEN, Media 20 90

ES DEN 10 95

PSW CA, DEN 20 95

FCW CA, DEN 10 95

In the simulation procedure, the communication delay between a vehicle and an RSU is 1 ms

[25]. In this model, the processing delay is the amount of time required by a Local Dynamic Map

to process the data requested by other V2X services either placed on the same or different edge

server. In [26], the authors devise an LDM according to the specifications defined by ETSI. The

application defines two Application Programming Interfaces (APIs) that retrieve information of

the IDs of the vehicles driving on the same road and the vehicle driving immediately ahead of

the requesting vehicle. For different number of queried vehicles ranging from 5 to 20 vehicles,

the response time was between 3 and 5 ms with no clear correlation between the size of the data

21

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

and the response time. Consequently, in the simulation setup, the processing delay is generated

uniformly between 3 and 5 ms. In the same context, the authors in [27], assumed the transmission

latency between two edge servers to be between 1 and 5 ms.

Because the simulation procedure takes place under several vehicle densities, the increase of

the data processing and transmission overhead with the increase of number of vehicles is inevitable.

In this regard, the execution cost increases with the number of vehicles in proximity to the vehicle

requesting the V2X application services. As the implementation of LDM did not consider cases

beyond 20 vehicles, the added delay for these cases will be in the form of log(NC/20) where NC

represents the number of cars and the expression is derived from the increase of processing delay

upon the increase in size of the queried data in SQL [28].

Regarding edge servers, 10 edge servers are deployed every 400 m alongside the highway. Each

of the RSUs hosts an LDM, V2X service and an optional migrating service. The computational

requirements of CA, DEN and Media services are those of a small, medium and large VMs. Table

3.3 summarizes the edge server capabilities and the computational requirements of CA, DEN and

Media services. In the experimental procedure, the placement of the V2X basic services is carried

out using the defined optimization function. Next, vehicular traffic simulation is executed for

defined densities that reflect moderate and heavy traffic. The traffic traces were generated for 1500

seconds. Every 10 seconds, a snapshot of the road condition is taken and delays for each V2X

application for each vehicle is calculated. Finally, at the end of the simulation, the average delay

for each V2X application is obtained.

Table 3.3: Computational Requirements

Entity Number of Cores RAM

Edge Server 8 8

CA 2 2

DEN 2 4

Media Service 4 6

LDM 4 2

22

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

3.4.2 Implementation

The optimization function was solved using IBM ILOG CPLEX 12.9.0 through its Python API.

The solution is provided instantly for all simulation scenarios with different vehicle densities on a

laptop with an Intel Core i7-8750 CPU, 2.21 GHz clock frequency and 16 GB of RAM. The final

solution includes the V2X services placed on each edge server.

3.4.3 Results and Discussion

To evaluate the efficacy of the optimization function, the simulation procedure was carried out

using two different traffic scenarios each representing moderate (Scenario 1) and heavy (Scenario

2) traffic models. The results are obtained as an average for five independent runs. To assess

the placement function, the average delay of each V2X application under study is obtained, and

it was compared to the maximum tolerable delay. Additionally, the model is evaluated using the

probability density function the delay of each V2X application. The density function provides a

more thorough overview about the distribution of the delays in terms of detecting extreme values

that are overshadowed by the common values trend. Furthermore, the density functions reveal the

shortcomings of the approaches that are concealed by the calculation of the mean.

The suggested optimization function is an integer linear program (ILP) that is considered part

of the resource allocation problem proved to be NP-complete [29]. This optimization problem

was infeasible, so a new heuristic algorithm that relaxes the delay threshold for each application

by magnitudes of the reliability metric is formulated and successfully executed. This heuristic is

referred to as: Resource and Delay-aware V2X basic services Placement (RDP) . The results of

the simulation process in terms of the average delay and the probability densities of each V2X

application are presented in Figures 3.2-3.5.

Figure 3.2 shows the mean delay for each of the V2X applications. The results clearly show

that the average delay experienced by each V2X application is within the tolerable threshold. These

23

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

PL

SS
M ES

PS
W

FC
W

0

2

4

6

8

10

12

De
la
y
(m

s)

The delay experienced by V2X applications for different vehicle densities
Scenario 1
Scenario 2

Figure 3.2: Average Delay of V2X Applications for different Vehicle Densities

results show that the heuristic algorithm met the stringent V2X application delay requirements. In

terms of the vehicular traffic effect, the mean of delay of each application has slightly increased but

still fulfills the overall objective of the placement function. The vehicles’ density has contributed

to an increase in the average delay of the V2X applications in the range of 1.3% to 4.8% whereby

the SSM application has experienced the greatest variation. This fact shows that the placement of

Media Service, that SSM relies on, is the most sensitive to traffic variation. On the other hand, the

probability density functions tell a different story.

Figures 3.3 and 3.4 depicting the delay distribution for both cases show that the delay is highly

skewed to the left which supports the viability of the approach. However, this is not the case

for FCW application which shows that for each scenario, 20% and 25% of the experienced delay

exceeds the tolerable threshold which is beyond the 5% permitted shown in Table 3.2. In terms of

traffic effect, it is observed that there is a slight right shift of the probability distribution in scenario

2. Additionally, it is observed that some applications have similar probability distributions. This

is attributed to the fact that these applications need the same V2X services, and as it shows, these

services incur the most delay out of the other services that they rely on.

The dispersion of some of the probability density function is due to the limited number of edge

24

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

4.0 5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Probability Density Function of PL

8.0 10.0 12.0 14.0 16.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3
Probability Density Function of SSM

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Delay (ms)

0.0

0.1

0.2

0.3

0.4

Probability Density Function of ES

5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability Density Function of PSW

5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability Density Function of FCW

Figure 3.3: Probability Density Function for 1500 vehicles/hour

25

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

4.0 5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25
Probability Density Function of PL

8.0 10.0 12.0 14.0 16.0 18.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3
Probability Density Function of SSM

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Delay (ms)

0.0

0.1

0.2

0.3

0.4

Probability Density Function of ES

5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

Probability Density Function of PSW

5.0 6.0 7.0 8.0 9.0 10.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

Probability Density Function of FCW

Figure 3.4: Probability Density Function for 1800 vehicles/hour

nodes hosting V2X services. The limited number of edge servers means that vehicles at the start

and the end of the route will suffer from prolonged delay due to the distance separating the vehicles

and the closest V2X basic services. In the cases of continued route, the suggested approach can be

replicated along the highway to ensure that V2X services are delivered as expected.

For comparison purposes and to further cement this study’s approach, a baseline approach that

maximizes the resource utilization at each node server is compared to RDP. The baseline approach

formulates a placement algorithm that takes into consideration only the available resources at each

node. This baseline approach is reffered to as Resource-Aware Algorithm (RAA). The two ap-

proaches were evaluated according to the probability density functions of the delays of ES and

26

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

5.0 6.0 7.0 8.0 9.0
Delay (ms)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The delay for ES Application
RDP
RAA

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Delay (ms)

0.0

0.02

0.05

0.08

0.1

0.12

0.15

0.18

0.2
The delay for FCW Application

RDP
RAA

Figure 3.5: RDP vs RAA

FCW applications. These applications are chosen because of their most stringent delay require-

ments compared to the other applications. The probability densities are depicted in Figure 3.5.

The baseline line approach’s density function shows promising results regarding the ES appli-

cation as the full delay distribution is below the tolerable threshold. More values are concentrated

on the extremes which makes it harder to gauge its value whenever the application is requested.

However, for the case of FCW, this approach fails to be within the tolerable threshold rendering

this approach ineffective for mission-critical applications. This is to be expected given that FCW

application requires CA and DEN basic services. Due to the nature of RAA that overlooks the

delay requirements, one of the five runs may have maximized the overall resource utilization for

the edge servers; thus, deploying more of CA services results in decreasing the utilization which

incurs extra delay for FCW application when requesting the services of CA.

3.5 Conclusion

This chapter addressed the efficient placement of V2X basic service comprising different V2X ap-

plications in an edge computing environment. To this end, an optimization function that minimizes

the delay for multi-component V2X applications consisting of V2X services while considering

the resource requirements of these services under different vehicular traffic conditions is formu-

27

CHAPTER 3. MULTI-COMPONENT V2X APPLICATIONS PLACEMENT IN EDGE COMPUTING
ENVIRONMENT

lated. The approach was evaluated under realistic scenarios where homogeneous edge servers with

limited computational power and variable traffic conditions were considered. Furthermore, the

approach was compared to a baseline approach that only considers the resource requirements of

V2X basic services. The results have shown that the approach guarantees an acceptable quality of

service (QoS), and outperforms other approaches while emulating realistic conditions.

28

Bibliography

[1] J. Barrachina et al., "Road Side Unit Deployment: A Density-Based Approach," IEEE

Intelligent Transportation Systems Magazine, vol. 5, no. 3, pp. 30-39, Fall 2013, doi:

10.1109/MITS.2013.2253159.

[2] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro and S. Cretti, "Cutting Throughput

with the Edge: App-Aware Placement in Fog Computing," in 2019 6th IEEE International

Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International

Conference on Edge Computing and Scalable Cloud (EdgeCom), Paris, France, 2019, pp.

196-203, doi: 10.1109/CSCloud/EdgeCom.2019.00026.

[3] D. Sabella et al., "Toward fully connected vehicles: Edge computing for advanced auto-

motive communications," 5GAA, December 2017. [Online]. Available: https://5gaa.org/wp-

content/uploads/2017/12/5GAA T-170219- whitepaper-EdgeComputing 5GAA.pdf.

[4] H. Hawilo, M. Jammal and A. Shami, "Exploring Microservices as the Architecture of Choice

for Network Function Virtualization Platforms," IEEE Network, vol. 33, no. 2, pp. 202-210,

March/April 2019.

[5] Study LTE Support For Vehicle To Everything (V2X) Services (Release 14), document 3GPP

TR 22.885 V14.0.0, Dec. 2015.

[6] M. Emara, M. C. Filippou, and D. Sabella, "MEC-Assisted End-to-End Latency Evaluations

29

BIBLIOGRAPHY

for C-V2X Communications," in 2018 European Conference on Networks and Communica-

tions (EuCNC), June 2018, pp. 1-9.

[7] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, "Edge-enabled V2X Service

Placement for Intelligent Transportation Systems." IEEE Transactions on Mobile Computing,

doi: 10.1109/TMC.2020.2965929.

[8] R. Yu, Y. Zhang, S. Gjessing, W. Xia and K. Yang, "Toward cloud-based vehicular networks

with efficient resource management," in IEEE Network, vol. 27, no. 5, pp. 48-55, September-

October 2013, doi: 10.1109/MNET.2013.6616115.

[9] X. Yu, M. Guan, M. Liao and X. Fan, "Pre-Migration of Vehicle to Network Services Based

on Priority in Mobile Edge Computing," IEEE Access, vol. 7, pp. 3722-3730, 2019, doi:

10.1109/ACCESS.2018.2888478.

[10] H. Yao, C. Bai, D. Zeng, Q. Liang, and Y. Fan, "Migrate or not? exploring virtual machine

migration in roadside cloudlet-based vehicular cloud," Concurrency and Computation: Prac-

tice and Experience, 27(18):5780-5792, 2015.

[11] J. Xie, Y. Jia, Z. Chen, Z. Nan and L. Liang, "Efficient task completion for parallel offloading

in vehicular fog computing," China Communications, vol. 16, no. 11, pp. 42-55, Nov. 2019,

doi: 10.23919/JCC.2019.11.004.

[12] K. Zhang, Y. Mao, S. Leng, Y. He and Y. ZHANG, "Mobile-Edge Computing for

Vehicular Networks: A Promising Network Paradigm with Predictive Off-Loading,"

IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 36-44, June 2017, doi:

10.1109/MVT.2017.2668838.

[13] J. Du, F. R. Yu, X. Chu, J. Feng and G. Lu, "Computation Offloading and Resource Allocation

30

BIBLIOGRAPHY

in Vehicular Networks Based on Dual-Side Cost Minimization," IEEE Transactions on Vehic-

ular Technology, vol. 68, no. 2, pp. 1079-1092, Feb. 2019, doi: 10.1109/TVT.2018.2883156.

[14] D. Gangadharan, O. Sokolsky, I. Lee, B. Kim, C. Lin and S. Shiraishi, "Bandwidth Optimal

Data/Service Delivery for Connected Vehicles via Edges," in 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), San Francisco, CA, 2018, pp. 106-113, doi:

10.1109/CLOUD.2018.00021.

[15] Z. Xu, X. Li, X. Zhao, M. H. Zhang, and Z. Wang, "DSRC versus 4G-LTE for Connected

Vehicle Applications: A Study on Field Experiments of Vehicular Communication Perfor-

mance," Journal of Advanced Transportation, vol. 2017, pp. 1-10, 2017.

[16] ETSI EN 302 637-2 (V1.3.2), "Intelligent Transport Systems (ITS) Vehicular Communica-

tions: Basic Set of Applications - Part 2: Specification of Cooperative Awareness Basic

Service," 650 Route des Lucioles F- 06921 Sophia Antipolis Cedex - FRANCE, Technical

Report, 2014.

[17] ETSI EN 302 637-3 (V1.2.1), "Intelligent Transport Systems (ITS) Vehicular Communica-

tions: Basic Set of Applications - Part 3: Specifications of Decentralized Environmental Noti-

fication Basic Service," 650 Route des Lucioles F- 06921 Sophia Antipolis Cedex - FRANCE,

Technical Report, 2014.

[18] ETSI TR 102 638 (V1.1.1), "Intelligent Transport Systems (ITS) Vehicular Communications:

Basic Set of Applications - Definitions," 650 Route des Lucioles F-06921 Sophia Antipolis

Cedex - FRANCE, Tech. Rep., 2009.

[19] ETSI TR 102 863 (V1.1.1), "Intelligent Transport Systems (ITS); Vehicular Communica-

tions; Basic Set of Applications; Local Dynamic Map (LDM); Rationale for and Guidance

on Standardization," 650 Route des Lucioles F- 06921 Sophia Antipolis Cedex - FRANCE,

Technical report, 2011.

31

BIBLIOGRAPHY

[20] L. Li, Y. Li, and R. Hou, "A Novel Mobile Edge Computing-Based Architecture for Fu-

ture Cellular Vehicular Networks," in 2017 IEEE Wireless Communications and Networking

Conference (WCNC), 2017.

[21] P. A. Lopez et al., "Microscopic Traffic Simulation using SUMO," in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 2018, pp. 2575-2582,

doi: 10.1109/ITSC.2018.8569938.

[22] Ontario Ministry of Transportation, "Provincial Highways Traf-

fic Volumes 1988-2016," December 31, 2016. [Online]. Available:

https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Theme.aspx?r=702797f=files

[23] 3GPP, "Study Enhancement 3GPP Support for 5G V2X Services (Release 15)," TR 22.886

V15.1.0, March 2017.

[24] 3GPP, "Study Enhancement 3GPP Support for 5G V2X Services (Release 16)," TR 22.886

V15.1.0, December 2018.

[25] D. Martin-Sacristan, S. Roger, D. Garcia-Roger, J. F. Monserrat, A. Kousaridas, P. Spapis, S.

Ayaz, and C. Zhou, "Evaluation of lte- advanced connectivity options for the provisioning of

v2x services," in 2018 IEEE Wireless Communications and Networking Conference (WCNC),

Apr. 2018, pp. 1-6.

[26] H. Shimada, A. Yamaguchi, H. Takada, and K. Sato, "Implementation and Evaluation of

Local Dynamic Map in Safety Driving Systems," Journal of Transportation Technologies,

vol. 05, no.02, pp.102-112, 2015.

[27] S. Maheshwari, D. Raychaudhuri, I. Seskar, F. Bronzino, "Scalability and Performance Eval-

uation of Edge Cloud Systems for Latency Constrained Applications," in Proceedings of the

32

BIBLIOGRAPHY

2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25-27 October

2018, pp. 286-299.

[28] "MySQL 8.0 Reference Manual::13.8.2 EXPLAIN Statement," MySQL. Accessed on: Oct.

19, 2019. [Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/explain.html.

[29] P. M. Pardalos, D. Du, R. L. Graham, N. Katoh, and T. Ibaraki, "Resource Allocation Prob-

lems," in Handbook of Combinatorial Optimization, Boston, MA: Springer, 2013, pp. 905-

1006.

33

Chapter 4

Efficient Execution of Egress Traffic

Engineering Changes

4.1 Introduction

The Internet’s main objective is to route network traffic, consisting of flow of packets, from a

source node to a destination node. To achieve this objective, the set of packets are routed through

routers and different network domains defined as Autonomous Systems (ASes). On a macroscopic

level, the Internet is grouped into a set of domains, each consisting of thousands of routers, called

ASes owned by network operators to facilitate the management of network traffic. Neighboring

ASes are connected through Autonomous System Border Routers (ASBRs) using peer links. Based

on the packets’ destination addresses, some ASes are considered transit domains responsible for

forwarding packets destined to other ASes. To determine the next hop peer link, border routers

utilize Border Gateway Protocol (BGP) [1, 2] that includes many network-related metrics in its

decision making process. These metrics include distance, transmission delay, and the number of

hops that allow routers to identify the best next hop relative to any destination.

Given the enormous variability in network services, their traffic flows cannot be steered through

34

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

ASes in a uniform manner [3]. For that, different ASes form contractual relationships that route an

equitable share of traffic. Accordingly, each AS determine its respective expenses while satisfy-

ing the quality requirements of network applications. This requires averting from the conventional

shortest path algorithms used for network traffic routing which may cause link congestion on short-

est paths [4]. To tackle this problem, network routers are augmented with Traffic Engineering (TE)

[5] capability that steers network traffic on alternative routes different than the conventional ones.

Egress Peer Engineering (EPE) is the TE process that steers traffic exiting one AS network to a

peer AS in the most cost effective way [5]. Generally, the objectives for different interdomain TE

depend on the type of domain or AS under study. For transit domains, the main objective of inter-

domain TE is to maximize their profit by optimizing the utilization of their network resources while

satisfying the users’ QoS requirements. To satisfy their main objectives under resource and QoS

constraints, network operators devise traffic assignment plans that map prefixes defining network

traffic to specific internal network routes. Due to the changing network conditions driven by the

dynamicity of users’ activity and alteration of peering contracts, traffic assignment plans need to

be constantly updated, so that they will not drift away from the TE main objectives that incorporate

business and technical requirements [6]. These circumstances impose network operators to analyze

current network conditions to create a new traffic assignment plan that satisfies these objectives.

Despite the desirable properties of the new plan, applying large scale traffic assignment changes

is risky and can cause many unfavorable results. Some combinations of these changes can lead to

overloaded peer links resulting in packet losses and network disruptions. This can result in many

implications not only on the users’ perceived QoS but also on the trust relationship between peering

ASes. Thus, Execution Plans (EPs) are formulated to offer a smooth transition from an obsolete

old plan to a favorable new plan by breaking down the set of traffic assignment changes into small

subsets called steps.

In this domain, current research prioritizes creating TE policies for inter-domain traffic and the

introduction of Software-defined Networking paradigm [7] to optimize a set of business-related,

35

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

network-related objectives or a combination of both that change the traffic assignments. Network

performance is only evaluated at the start and end states of the network but never during the transi-

tion phase between these states which is the main goal of EPs. A separate line of research focuses

on updating the network routing behavior by applying network reconfigurations such that the net-

work performance quality is preserved. This area of research is coined as "Consistent Network

Update Problem" [8]. While the implementations of these network updates can be a source of

inspiration for this study, they are still an alternative to Interior Gateway Protocol [9] responsible

for routing traffic within each AS which is not the scope of this study. Furthermore, the approaches

apply a flawed evaluation criteria that do not consider monetary cost constraints, bandwidth con-

straints and the frequent network reconfiguration overhead. All of these parameters are pertinent

for evaluating network performance and ensuring its stability during migration process. As a result,

optimization models that generate EPs for inter-domain traffic assignment changes are inexistent

in current scientific literature which leaves network operators with costly, error-prone and poten-

tially unsafe alternatives of manual traffic changes adjustments that follow trial-and-error method.

Therefore, there is a need for the automation of EPE under well-formulated constraints that cap-

ture the infrastructural and business objectives of network operators. Moreover, with regards to

EPs generation process, applying partitioning solutions that are viable in other areas of research,

such as computation offloading, is oblivious to the constraints of the network environment. This

study utilizes a toolkit that provides two plans whereby desirable execution plans need to be im-

plemented to change the state of the network from costly old plan to a better new plan.

This chapter starts by providing a thorough overview about the literature and state-of-the-art

in the field of study. The next section illuminates the system model. The section that follows

presents the evaluation of execution plans. Next, the proposed algorithms are examined. After

that, the experimental procedure and setup are outlined and the results are discussed. Finally, the

last section includes concluding remarks.

36

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

4.2 Related Work

This section provides a thorough explanation of the related work that covers the topics of network

traffic engineering, network consistent updates, application partition and computation offloading.

Based on the reviewed literature, the last section pinpoints the shortcomings of the mentioned work

and accordingly outlines the novelty of this work.

4.2.1 Network Traffic Engineering and Network Consistent Updates

A great deal of research was conducted to study interdomain TE especially with the introduction

of new networking paradigms such as Software-defined Networking (SDN). In [10], the authors

formulate a heuristic that chooses the set of egress routers, in a hybrid network that integrates SDN

nodes, so that the maximum link utilization of the egress link is minimized. In the same context,

Guo et. al [11] propose incremental migration of SDN nodes into the traditional IP networks.

To achieve that objective, the authors utilize a heuristic, a genetic algorithm, which outputs the

fraction and the location of routers to migrate to maximize TE benefits. Other works, such as [12]

focused on devising dynamic TE methods to adapt to the unpredictability of traffic flows. Their

main objective was to ensure balanced loads among different engineered paths of predictable and

unpredictable traffic flows and minimize the maximum link utilization of networks.

In the context of consistent network updates, authors have addressed the migration of traffic

flows from one network configuration to another through the introduction of intermediate stages

that ensure this transition. Brandt et. al [13] create an algorithm that decides if a congestion-free

network flows migration is possible given a start and an end network configuration. Two variations

of the algorithms are devised according to the capacity of the links. The first, which is based on the

findings of Hong et. al [14], is implemented if there exist a free capacity on the links. The second

considers a flow augmentation approach to deal with full capacity networks. Dionysus [15] aims at

dynamically scheduling rule-based network configurations depending on a real-time analysis of the

37

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

behaviour of switches. The algorithm developed is based on the four pillars of consistent network

updates [16]. The migration strategy is evaluated according to the link’s bandwidth capacity, the

switches’ memory resources, and the network configuration’s update process runtime. The authors

of [17, 18] both implement a heuristic that is executed multiple times according to the pre-defined

split of migration sets. While the approach in [18] is evaluated based on minimizing the execution

overhead inherently defined as the number of steps for migration, Ghorbani et. al [17] evaluated

their approach based on links’ bandwidth violation.

4.2.2 Application Partitioning and Computation Offloading

Existing literature related to task allocation mechanisms resembles this study’s objective in finding

methods that divide some service into tasks and offloading their execution to resource constrained

infrastructure. Wang et. al [19] propose a solution for cooperative task execution in a mobile cloud

environment considering the traffic between devices and tasks’ data dependency. To that end,

the authors use dynamic programming to partition the application into tasks and then utilize Best

Fit Decreasing algorithm to offload these tasks to mobile devices. Similarly, in [20] the authors

propose an approach that partitions an application into sub-tasks and offloads them to nearby edge

nodes to minimize the latency and offloading failure due to communication disruptions.

The literature addressing partial offloading of applications, which partition applications to of-

floadable and non offloadable disjoint set of tasks depending on some set objectives, fall in the

same category. In [21], the authors propose an algorithm that aims to find the optimal partitioning

plan which reduces the total application execution time and time complexity while addressing the

instability of network conditions. To that end, the application tasks are mapped into a graph rep-

resentation that is iteratively decomposed by combining offloadable and non-offloadable vertices

until the maximum performance gain is obtained. Similarly, in [22] the approach leverages the

graph representation of application tasks. This time the objective is to minimize the energy con-

38

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

sumption while satisfying the completion time constraints. Finally, the authors of [23] formulate

an optimization function whose decision variable determines the tasks to be offloaded. The main

objective of the optimization function and the developed heuristic is to maximize energy saving

and satisfy execution time deadline. In terms of problem formulation, the work by Sidebottom

et. al [24] formulated heuristics that generate execution plans based on a graph representation

of traffic assignment changes. A two-step process is adopted for execution plans generation. In

the first step each partition represents a graph connected component. In the second step, further

partitioning of the connected components is implemented and evaluated.

4.2.3 Novelty of this study

Regarding the TE related literature, this study focuses on completely different set of objectives.

While the above discussed literature main purpose is to find a new TE method that satisfies a set

of objectives, this study finds an execution plan of traffic assignment changes that are results of

applying some TE policies. The network flow migration related literature have some limitations

in their methodologies, evaluation criteria or results. The work [17, 18] assumed an exact number

of migrations per step which can not be applied in real world scenarios because of the variability

of network sizes and traffic flows. Given these circumstances, intelligent methods need to be

implemented to gauge the number of steps for migrating network flows. Additionally, some of TE

related work lacked incorporating either bandwidth constraints, runtime, or the number of traffic

assignment changes per step in their evaluation criteria. While [16] considers the number of steps

for completing the migrations, the calculated number grows exponentially with the decrease in

the free link capacity. This incurs a significantly large implementation delay when considering

normal traffic conditions where the links are utilized by barely 50%. Furthermore, [15, 17] did not

group the migrations in a single step which results in significantly increasing the reconfiguration

processes for large number of traffic changes.

39

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

In addition, applying the task partitioning and offloading schemes to traffic assignment changes

does not consider the constraints of the EPE networks. One prominent limitation of the above-

mentioned work is the random method used to partition the set of tasks which cannot be applied

to the execution plan steps. Another limitation pertains to the task allocation paradigm that maps

tasks to mobile devices sorted by indexing order. Furthermore, the literature related to partial

partitioning of applications suffer from some limitations which hinders their implementation for

the partitioning of the set of traffic assignment changes. The common limitation of these research

efforts is that they only address the partitioning of the application into two disjoint sets; offloadable

and nonoffloadable. This is considered an oversimplification of the current study that involves not

only finding traffic changes per step but also the number of steps which is only considered two

sets in the aforementioned works. In their environment of study, the authors do not consider the

resource limitations of either the local or remote execution medium which is equivalent to peer

link capacity in this problem.

Lastly, the application partitioning literature have a well-defined evaluation criterion that gauges

a particular QoS metric (latency). Comparatively, this study evaluates different execution plans ac-

cording to weighted quality metrics that consider design (number of steps and their sizes) and

business aspects (monetary cost). The main drawbacks of [24] are that there is no heuristic that

produces good experimental results, and the evaluation criteria include incomparable metrics.

4.3 System Model

In this section, the EPE network structure under study is first presented by an illustrative example.

Then, the notations of the network elements are defined. Finally, the concepts of plan, traffic

assignment and network costs are discussed.

40

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Figure 4.1: EPE Network

4.3.1 Illustrative Example

Figure 4.1 represents the reference model of an EPE network, where each of the Provider Edges

(PE) in AS1 receives a traffic flow destined to AS2 and AS3. AS1 is connected to AS2 and

AS3 using 2 peer links (PL) respectively depicted as grey arcs whereby each link has a limited

bandwidth and cost defined by AS operators. The wavy arrows represent Internal Routes (IR)

which form a many-to-many relationship between PEs and PLs. The yellow arrows denote the

external routes (ER) that transports traffic from border routers connected to PLs to the destination

prefixes. Each of the IRs, PLs, and ERs is associated with a cost function which is expressed as a

motivating example by the charging rate per bandwidth (b) consumed. The cost function of IRs is

denoted by ir, PLs by pl, and ERs by er.

To illustrate EPE network, an example of two traffic flows are presented in the upper left corner

of the figure. The arrow denotes the bandwidth of the traffic to be engineered. As part of the initial

traffic assignment plan, IR 1 and 3 were assigned to steer the traffic entering PE1 and PE2. Due

to the dynamics of the EPE traffic, the cost of the initial traffic assignment plan does not satisfy

the TE objectives anymore. As a result, a new plan that reduces the general cost of TE is devised

which steers the traffic entering AS1 through IR 2 and 4.

41

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

To demonstrate the contribution of the new traffic assignment plan, the notation of the net-

work structures involved and the cost calculations are as follows. Let PE = {pe1, pe2}, PL =

{pl1, pl2, pl3, pl4}, IR = {(pe1, pl4), (pe1, pl3), (pe2, pl1), (pe2, pl2)}, ER = {(pl1, pr1), (pl1, pr4), (pl2,

pr1), (pl2, pr4), (pl3, pr1), (pl3, pr4), (pl4, pr1), (pl4, pr4)}, TR = {(pe1, pr4), (pe2, pr1)}, trpe1,pr4 =

7, trpe2,pr1 = 4. Following the order of IRs and PLs, and ERs, the cost functions associated with

each of their tuples is ir(b) = {10 × b, 9 × b, 13 × b, 11 × b}, pl(b) = {7 × b, 6 × b, 4 × b, 5 × b}, and

er(b) = {2 × b, 9 × b, 2 × b, 9 × b, 8 × b, 3 × b, 8 × b, 3 × b}.

For the initial plan, the total cost for initial traffic assignment is calculated as follows. costpe1,pr4 =

irpe1,pl4(7) + pl4(7) + erpl4,pr4(7) = 10 × 7 + 5 × 7 + 3 × 7 = $126, costpe2,pr1 = irpe2,pl3(4) + pl3(4) +

erpl3,pr1(4) = 13×4+7×4+2×4 = $88. The total cost of the initial plan is $214. Similarly, the cost

of the new plan is as follows. costpe1,pr4 = irpe1,pl3(7)+pl3(7)+erpl3,pr4(7) = 9×7+4×7+3×7 = $112,

costpe2,pr1 = irpe2,pl2(4) + pl2(4) + erpl2,pr4(4) = 11 × 4 + 6 × 4 + 2 × 4 = $76. The total cost of the

new plan is $188. The traffic assignment changes contributed in reducing the costs from $214 to

$188.

4.3.2 EPE Network Elements

In the reference network, there are n PEs, m PLs, and l prefixes (PRs). PLs has an associated

bandwidth. Let B denote the bandwidth where B ∈ Z+. Let I denote the set of PEs where i ∈ I.

Let J represent the set of PLs where j ∈ J. K represents the set of PRs where k ∈ K. IRs are

responsible for forming many-to-many relationship between PEs and PLs IR = I × J. External

routes (ERs) connect PLs to PRs ER ⊆ J × K. Traffic flows (TR) associate PEs to PRs TR ⊆ I × K

where trik ∈ B such that i represents a peer link and k represents a prefix. Each of these structures

has a cost function (c) that maps a bandwidth (b) to a cost (C) (c : b −→ C). These cost functions

are expressed as: ci j represents the cost function of IR that connects i ∈ I and j ∈ J. c j represents

the cost function of PL where j ∈ J. c jk represents the cost function of ER that connects j ∈ J and

42

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

k ∈ K.

4.3.3 Plans and Network Elements Costs

Each plan is a traffic assignment ta that maps TR expressed by the tuple (i, k) to a peer link denoted

by j ∈ J.

ta(i, k) = j | (∃(i, k) ∈ TR) (4.1)

The cost of each network element (Celement) is equal to the bandwidth of the TR (tr) passing

through this element as a function of the cost function associated with each element (celement) which

is expressed as Celement = celement(tr). The cost of assigning network traffic C(ta) is equal to the sum

of the cost of each network element; IR, PL and PR. As such, the cost of traffic assignment ta is

the sum of the cost of the IRs Cint(ta), the cost of PLs Cpeer(ta), and the cost of PRs Cext(ta).

Cint(ta) =
∑

(i, j)∈IR

ci j(
∑

((i,k), j)∈ta

trik) (4.2)

Cpeer(ta) =
∑
j∈PL

c j(
∑

((i,k), j)∈ta

trik) (4.3)

Cext(ta) =
∑

(j,k)∈ER

c jk(
∑

((i,k), j)∈ta

trik) (4.4)

C(ta) = (4.2) + (4.3) + (4.4)

The main objective of the EPE planner is to change the state of the network from a traffic assign-

ment ta to a better set ta′ that reduces the overall cost. Therefore, the differences between ta and

ta′, denoted by the function ∆(ta, ta′), need to be identified. The function ∆(ta, ta′) maps a traffic

flow that is changing (i, k), between ta and ta′, to its destination peer link. The domain of the

function dom(∆(ta, ta′)) represents all the traffic that is changing between ta and ta′. Any element

43

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

of ∆(ta, ta′) assigns the traffic according to ta′.

dom(∆(ta, ta′)) = {(i, k) | ta(i, k) , ta′(i, k)} (4.5)

∆(ta, ta′)(i, k) = ta′(i, k) (4.6)

4.4 Evaluation of Execution Plans

4.4.1 Definition and Notation

An execution plan (ep) is a sequence of steps, each step includes a subset of the traffic assignment

changes dom(∆(ta, ta′)). The defined steps are disjoint sets meaning that a changing traffic appears

in exactly one step. Each ep is an ordered partition of the traffic that is changing where each par-

tition member represents a step. The execution plan is denoted by ep(ta, ta′) where | ep(ta, ta′) |

is the number of steps of this execution plan. tas is the traffic assignment after step s, ta = ta0 is

the start of traffic assignment before the first step and ta|ep(ta,ta′)| is ta′. After defining a partition

of the changes, the next stage is to order the partition elements or steps according to an optimiza-

tion objective. Executing these steps in some sequence, changes the network to a desirable state.

ep(ta, ta′)s denotes the execution plan of step s. Also, ∆tr,s = ep(ta, ta′)s.

ep(ta, ta′)s = dom(∆(tas−1, tas)) (4.7)

|ep(ta,ta′)|⋃
s=1

ep(ta, ta′)s = dom(∆(ta, ta′)) (4.8)

4.4.2 Evaluation Metrics

In order to properly evaluate execution plans, a comprehensive set of metrics must be considered.

44

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

4.4.2.1 Progress Quality (qπ)

The evaluation functions should highly value the execution plans that reduce monetary costs as

early as possible which implies that network state is transitioning rapidly to the desired state. This

is of particular interest to network operators when execution plans take considerable time for its

completion. In this case, network operators desire that the execution plans are reducing the costs

early to avoid any network disruptions or violations of QoS requirements during the execution of

the steps. PLs are constrained by their bandwidth. Therefore, execution plans should consider

this limitation as overloaded PLs can incur huge packet loss and degradation of QoS. Evaluation

functions should heavily penalize execution plans that can overload PLs while executing the steps.

This condition is considered by the significant increase in the execution plan cost.

For progress component qπ, it starts by calculating the ratio πs (Eq. 4.9) of cost reduction

after step s (C(tas) − C(ta′)) to the overall cost reduction C(ta) − C(ta′). It is notable to mention

that πs is equal to 1 if C(tas) = C(ta′) ,it is equal to zero if C(tas) = C(ta0) and πs ∈ [0, 1] if

C(tas) ∈ [C(ta0),C(ta′)]. As such, πs shows the contribution of step s in reducing the cost of an

execution plan. To emphasize the importance of early reduction of cost, qπ ∈ [−1, 1] (Eq. 4.10) is

obtained as the sum of πs of each step weighted by step order s.

πs = 1 −
C(tas) −C(ta′)
C(ta) −C(ta′)

(4.9)

qπ =

∑s
i=1 πs

s
(4.10)

4.4.2.2 Balance Quality (qr)

Execution plans that have a balanced number of traffic changes per step are desirable. The most

balanced execution plan is the one that has equal number of traffic changes per step. As a result,

network disruption is less likely under these conditions. qr ∈ [0, 1] measures how balanced are

the the steps of an execution plan. For that, it first calculates (r) denoting the average difference

45

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

between the maximum and the minimum number of traffic changes among all the steps of an

execution plan (Eq. 4.11) and then qr (Eq. 4.12) is obtained by normalizing r between 0 and 1

such that bigger difference in traffic changes produces a worse result (closer to 0).

r =
maxs|∆tr,s| − mins|∆tr,s|

2
(4.11)

qr = 1 −
r

r + 1
(4.12)

4.4.2.3 Ideal Step Size Quality (q|∆tr,s |)

There is a fine line that determines a favorable number of traffic assignment changes in each step.

This condition is similar to the one considered by Sanvito et. al [25] where the authors argue

about the drastic effects of frequent reconfiguration in the realm of TE. Large number of changes

in a single step would accelerate the transitioning phase; however, at the risk of causing drastic

network changes that the internal structure would not withstand. Conversely, small number of

changes may result in a prolonged execution process which keeps the network in an unstable state

for a long time, a situation deemed unfavorable for satisfying operators’ quality objectives. Given

the importance of this factor in measuring the quality of an execution plan, the evaluation function

formulated incorporates a manually tuned ideal step size parameter. The automated tuning of this

parameter is left for future research. The last metric q|∆tr,s | ∈ [0, 1] describes the difference between

the ideal step size ideal|∆tr,s | and the size of each step given the total number of traffic changes∑
s | ∆tr,s | and the number of steps | ep(ta, ta′) | (Eq. 4.13).

q|∆tr,s | = 1 −
| ideal|∆tr,s | −

∑
s |∆tr,s |

|ep(ta,ta′)| |

ideal|∆tr,s |

(4.13)

46

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Figure 4.2: Flowchart for Evaluating Execution Plans

4.4.3 Process of Execution Plan Evaluation

The quality q(ep(ta, ta′)) of an execution plan is a weighted sum of three quality components: qπ,

qr and q|∆tr,s | such that wπ+wr +w|∆tr,s | = 100. Eq. 4.14 displays how q(ep(ta, ta′)) is calculated. For

the evaluation process, q is normalized such that q ∈ [0, 100]. Each of these components address

one of the aforementioned concerns for a good execution plan.

q(ep(ta, ta′)) = wπqπ + wrqr + w|∆tr,s |q|∆tr,s | (4.14)

Figure 4.2 illustrates the process for evaluating the execution plans produced by any algorithm.

As input, each algorithm takes ta as initial traffic assignment changes and ta′ as the better traffic

assignment changes. The first step initializes the best execution plan denoted by b. Upon producing

new execution plans ep(ta, ta′), the quality q(ep(ta, ta′)) of each of these plans is calculated. In

case the quality of the produced execution plan q(ep(ta, ta′)) is better than the best execution plan

b, b is updated to be ep(ta, ta′). Until the algorithm has execution plans to produce, this process is

repeated. When the algorithm has no more execution plans to generate, the steps of the execution

plans denoted by bs are ordered according to their contribution in reducing the overall cost denoted

by qπ(bs) which reflects one of the conditions for a good execution plan. Finally, after ordering the

steps of an execution plan, this execution plan is implemented and the respective quality metrics

47

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

are obtained.

4.5 Proposed Algorithms

4.5.1 Balanced Size Partitioning (BSP)

One approach for formulating the exhaustive search algorithm, used as a benchmark for comparing

the formulated heuristics, is to generate all possible partitions of the traffic assignment changes

defined as dom(∆(ta, ta’)). These partitions include the ways whereby a given set can be partitioned

into subsets and the permutations of the elements of these subsets. However, the number of ways

a given set can be partitioned explodes in a factorial fashion making this approach infeasible [26].

By definition, a good execution plan produces steps that are balanced in size, where equal num-

ber of traffic changes per step represent the most balanced execution plan. Following this premise

and to mitigate the number of possible permutations, a divide and conquer approach was applied.

This approach results in an algorithm that generates all possible permutations of balanced size

steps. While the search space of BS P is still large, it poses a significant improvement over gen-

erating all possible permutations by discarding the unbalanced steps which serves the formulated

evaluation criteria. For n number of traffic changes, the number of possible step sizes k is in the

range of [1, n]. This formulation represents the Stirling number of the second kind [27]. For each

of the step sizes k, the number of permutations is represented by Eq. 4.15 such that Γ(n) = (n− 1)!

[28].

k−2∏
i=0

(
n − i×n

k
n
k

)
=

(
n
n
k

)
(

1
Γ(k+n

k)
)k−1Γ(n + 1 −

n
k

) (4.15)

Figure 4.3 shows an example of BS P where X = {1, 2, 3, 4} is to be partitioned into balanced

set of size k = 2. According to the formulation above the number of partitions is
(

4
2

)(
2
2

)
= 6.

48

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Figure 4.3: Example of BSP

4.5.2 Unbalanced Node Partitioning Heuristic (UNP)

The first proposed heuristic makes use of the graph representation of the traffic assignment changes

denoted by Peer Links Change Graph PLCG(ta, ta′) = (V, E). In this representation, the vertices V

are peer links and the edges E represent the traffic changes migrating from one peer link to another.

The set of edges E is defined as E = {(j, j′, (i, k)) | (i, k) ∈ dom(∆(ta, ta′)), ta(i, k) = j, ta′(i, k) = j′}

such that i ∈ I, k ∈ K and j, j′ ∈ J where j , j′.

Using this graph, the heuristic, UNP, shown in Alg. 4.1 calculates the difference in the number

of inbound and outbound traffic flows defined as edges for each node and sorts them in decreasing

order (line 2). Next, it chooses the nodes with the most difference in traffic denoted as the top

unbalanced nodes (TU) and creates a partition of size that is equal to the top ones+1 (lines 4-6).

After that, for each of these nodes n the set of edges e connected to it are part of a separate step

(lines 7-11). All the unrelated edges to any of the unbalanced nodes are part of the last step PlenU

(lines 12-14). In case there exists common edges between the unbalanced nodes, the heuristic

generates all possible combinations that attaches these edges to different k steps. Finally, S P is the

set of partitions involving a combination of the top unbalanced nodes (lines 13-15).

The main intuition behind this approach is that there is an intrinsic reason for the high number

of traffic flows involving a particular peer link. The reason is that these peer links are either over-

loaded which means that many changes involving them are classified as outbound or underloaded

where most of the changes are inbound. These interpretations are based on that traffic assignment

changes are devised to optimize the cost and the the resource use. Thus, isolating and executing

49

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

these changes first vastly contributes to reducing the network cost and optimizing the distribution

of load over peer links.

The time complexity of this algorithm is O(V2E) where V represents the number of vertices and

E denotes the number of edges or traffic changes. It creates V
2 number of partitions (line 4) such

that in each iteration | TU | is incremented by 1 till it reaches an order of V (lines 5-6). For each

element of TU, all the edges E are iterated over. To formalize the time complexity between all the

heuristics, the number of traffic changes are denoted by n which in this algorithm is equivalent to

| E |. The best-case time complexity is attained when the number of nodes | V |= 2 which means

that the complexity is O(n). On the contrary, the worst-case complexity takes place when there

exist only one edge between any two nodes which translates to | V |= |E|
2 . In this case, the time

complexity is O(n3).

Algorithm 4.1 Unbalanced Node Partitioning
1: function UnblNodePartition((V, E))
2: S N ← sortByDi f f (V)
3: S P← ∅; TU ← ∅
4: for i← 0 to len(S N)/2 do
5: P← ∅; p← ∅
6: (TU, P)← (TU ∪ S Ni, P ∪ p1 ∪ ... ∪ plen(TU)+1)
7: for k ← 0 to len(TU) do
8: for e ∈ E do
9: Pk ← Pk ∪ e where e. j or e. j′ = TUk

10: end for
11: end for
12: for e ∈ E do
13: Plen(TU)+1 ← Plen(TU)+1 ∪ e where e. j or e. j′ < TU
14: end for
15: S P← S P ∪ P
16: end for
17: return S P
18: end function

50

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Figure 4.4: UNP Algorithm

Figure 4.4 illustrates an example of UNP. The first figure represents the graph representation

of a set of traffic changes. Each node denotes a peer link and each edge in this diagram represents

the number of traffic changes that altered their association from one peer link to another. The red

nodes 3 and 4 are top unbalanced nodes where the difference between their inbound and outbound

number of traffic flows is 2. The second figure which includes three separate graphs denoted by

1), 2), and 3) represents one of the potential steps that are partition members produced by UNP.

In this partitions’ generation process and following the notation of Algorithm 1, TU includes the

nodes 3 and 4 and | P |= 3 which represents the number of steps. Next, the algorithm populates

P0 and P1 representing the first and the second step in the diagram (lines 7-11). After that, the

last step P2, that includes all the edges not connected to either of the top nodes, is populated (lines

12-14). Lastly, P is appended to the set of all partitions. It is notable to mention that as part of

the partitions’ generation process, the common edges of the top unbalanced nodes (3 and 4) are

isolated and distributed between steps. Each of these partitions represents an Execution Plan (EP).

4.5.3 Order Steps Heuristic (OSS)

This algorithm focuses on the intrinsic value displayed by the cost of a plan applying a set of traffic

changes. As previously mentioned, the cost of a plan is the value of using the network elements

that are part of the environment. In the implementation of an execution plan, the main concern is to

avoid overloading peer links which is reflected by the eminent increase of the cost after applying an

undesirable set of traffic assignment changes. Following this prelude, it is obvious that devising a

proper heuristic, that considers the infrastructural limitations, should order the traffic assignments

51

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

in a way that reduces the costs. After that, the heuristic would partition the traffic changes ordering

so that the resultant steps are as balanced as possible. This heursitic is called OrderSteps, and it

consists of two steps shown in Alg. 4.2 and 4.3.

Alg. 4.2 returns the ordered set of traffic assignment changes denoted by oTCs. Firstly, it gets

the set of traffic assingment changes denoted by TCs and computes the cost of assigning each of the

individual traffic changes (i, k) to the traffic assignment plan ta using the Assign function and stores

the traffic assignment change and cost tuple in costs (lines 6-9). After that, costs elements are

sorted in increasing order of assigning individual traffic costs, and the traffic change that contributes

the most in reducing the cost, asc_costs0(i, k), is assigned to the plan and appended to the ordered

set of traffic changes (lines 10-13). The process is repeated recursively until the costs of the ta and

ta′ are equal.

This algorithm implements a recursive function whose input decreases by 1 with every itera-

tion. The input represents the set of traffic changes dom(∆(ta, ta′)). In each iteration, the algorithm

loops through all the traffic changes, thus incurring a time complexity of n representing the set of

traffic changes dom(∆(ta, ta′)) (lines 7-9). Iteratively, this part will be equal to the sum of natural

numbers
∑n

i=0 i =
n(n+1)

2 . Next, a merge sort is implemented of time complexity O(nlogn) in line 10

which iteratively is equivalent to
∑n

i=0(n− i)log(n− i) = Θ(n2logn). As a result, the time complexity

of Alg. 4.2 is O(n2logn).

The set of ordered traffic changes obtained from the first step is the input to the second step,

shown in Alg. 4.3. Alg. 4.3 partitions the input set into balanced size steps and returns the set of

execution plans denoted by sPs of different possible number of steps. The heuristic loops through

all possible number of steps of an execution plan denoted by size. In that loop, the partition part

defining an execution plan and the size of each step sP are initialized (lines 4-6). Next, each of

these partitions is populated according to its size with members of the ordered set (lines 7-10).

Finally, each of the execution plans with size number of steps is attached to sPs (line-14).

This algorithm takes order traffic changes oTCs as input such that | oTCs |= n. The algorithm

52

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Algorithm 4.2 Order Traffic Changes
Require: ta and ta′ are initial and final plans

1: oTCs← ∅
2: function OrderTrafficChanges(ta, ta′)
3: if c(ta) = c(ta′) then
4: return
5: end if
6: TCs← dom(∆(ta, ta′)); costs← ∅
7: for ∃(i, k) ∈ TCs do
8: costs← costs ∪ ((i, k), c(Assign(ta, ta′(i, k))))
9: end for

10: asc_costs← sortByCost(costs)
11: ta← Assign(ta, asc_costs0(i, k))
12: oTCs← oTCs ∪ asc_costs0(i, k)
13: return OrderTrafficChanges(ta, ta′)
14: end function

Algorithm 4.3 Partition Ordered Set
Require: Ordered Set of Traffic Changes oTCs

1: function BalancedSizePartition(oTCs)
2: sPs← ∅
3: for size← 2 to len(oTCs)/2 do
4: part ← ∅; s← ∅
5: part ← part ∪ s1 ∪ ... ∪ ssize

6: sP← len(oTCs)/size
7: for i← 0 to size do
8: for j← i ∗ sP to i ∗ sP + sP do
9: parti ← parti ∪ oTCs j

10: end for
11: end for
12: sPs← sPs ∪ part
13: end for
14: return sPs
15: end function

53

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

iterates over half possible number of partitions sizes equivalent to n
2 (line 3). In each iteration, the

resulting number of iterations of lines 7-11 is equal to the number of traffic changes n. As a result,

the time complexity of Alg. 4.3 is O(n2).

4.6 Experimental Setup and Procedure

4.6.1 Preliminaries

To evaluate the execution plans generated by the proposed algorithms, different networks with

variable number of PEs, PLs and traffic changes were created. The Internal and External Route

cost functions are equal to the distance (d) between the source and destination nodes each of the

routes connect multiplied by the bandwidth (b). The model for creating the network includes a

density parameter that represents the ratio of traffic bandwidth to the peer links’ capacity. Existing

traffic flows’ bandwidth follows an exponential distribution that uniformly assigns them to the

available number of PEs and PLs. Additionally, an ideal step size (isz) parameter representing the

number of traffic changes in each partition is present. Throughout the implementation process, this

parameter was manually tuned and is equal to some fraction of the total number of traffic changes.

4.6.2 Procedure

The best execution plan is produced by BS P as it generates all the possible balanced size partitions,

and accordingly it is considered the oracle implementation used to compare and evaluate other

heuristics. The heuristics were evaluated based on the quality q of their generated execution plans

and their runtime. The small network was used to compare the results of the BS P, UNP and OS S

algorithms due to the feasibility of producing the oracle execution plan within a reasonable period

of time. Three variations of the small network were created: Move, Bal, and 3L2H. The main

difference between these networks is the distribution σ, representing the standard deviation, of the

54

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Table 4.1: Small Network Configurations

Name PEs PLs Traffic Changes σ

Move 3 5 19 0.997
Bal 3 5 19 0.632

3L2H 3 5 19 0.79

number of traffic changes between peer links.

Each of the algorithms was evaluated on these network configurations combined with 50%,

70%, and 100% traffic density parameter which suggests mild and extreme traffic conditions [29]

and eight different combinations of quality metrics weights and two assumptions of isz (7 and 10)

for small size networks. After performing the comparisons, the best heuristic out of the two (UNP,

OS S) was evaluated on a medium and large size networks.

To compare the oracle implementation versus the heuristics, execution plans were generated

for three small networks whereby their respective metrics are presented in Table 4.1. The results

obtained are the average of five independent runs. The implementations were compared based on

the aforementioned evaluation criteria (q) and the run-time (ms). Depending on the run-time, the

network operator would decide if the algorithm can offer solution offline or online. Due to network

dynamicity, traffic assignments are expected to be updated constantly. Therefore, algorithms that

take too long to execute its best solution might be solving a problem that does not exist anymore

[8]. To reflect the state of the peer links and to show that the formulated evaluation criteria realis-

tically mirrors the desired state of the network, the average utilization of the peer links per density

parameter over the steps is reported.

4.6.3 Implementation

The process of creating networks, algorithms, and their evaluation was developed in Google’s Go

Programming Language [30] on a laptop with Intel Core i5, 3.1 GHz clock frequency and 16 GB

of RAM. Traffic flows, old and new traffic assignment plans, peer links’ capacity, and costs are

55

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Table 4.2: Results on Small Networks

Move Bal 3L2H
q (ms) q (ms) q (ms)

BSP 91.36 134,935 88.7 443,206 92.03 120,588

OSS 89.6 1.50 84.82 0.83 90.67 1.509

UNP 61.59 1.98 64.95 0.87 61.41 1.81

provided. To validate the results after implementing the best execution plans, a visualization tool

that shows the process of executing each step provides insights about the state of peer links after

each step. For each set of {network, algorithm, ideal step size, traffic density, weight metrics},

results of execution plans are generated and stored in a separate file. After that, a python script was

created to extract relevant information from each of these files that includes the quality (q) of the

best plan, run-time which is the difference in time between the start of the partitioning process and

when the best plan is generated, and the ratio of average utilization of peer links for the best plan.

4.7 Results and Discussion

In addition to evaluating the algorithms, the following sections will discuss the effect of quality

metrics weights, traffic density, ideal step size, and indepedent runs on the performance of the

algorithms. The following section discusses and compares the algorithms’ speed in converging

to their best result which is defined as the algorithms’ acceleration. After that, the next section

highlights the relationship between quality and runtime. Finally, the last section presents the per-

formance results of the best heuristic on medium and large size networks.

4.7.1 Algorithms Evaluation

The results of implementing BS P, UNP and OS S algorithms on the respective small networks are

presented in Table 4.2 and Figure 4.5. The algorithms are evaluated according to the quality of

their best execution plan and runtime. With respect to different networks, it is observed that BS P

56

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

and OS S have performed better on networks that have more skewed distribution of traffic assign-

ment changes over peer links (Move, 3L2H) which is not the case for UNP. Traffic changes are

distributed more uniformly for Bal which means that execution plans need to migrate a balanced

number of traffic changes of each peer link per step to avoid overloading any of them. Compared to

Move and 3L2H, OS S and BS P perform worse on Bal which means they did not fully abide by the

best aforementioned policy to migrate traffic for this network. Regarding the runtime, it is observed

that BS P takes more time to produce the best result compared to other heuristics irrespective of

the network under study. In the same context, BS P takes considerably more time to generate the

partitions necessary to produce the best result for Bal network which is due to the nature of this

network that considers more equal distribution of traffic changes over peer links. This implies that

BS P has to access a wider search space to find the best execution plan for Bal compared to other

networks. OS S and UNP do not display any noticeable differences in this regard.

Comparing the algorithms, it is observed that UNP and OS S produce their best results faster

than BS P. This can be attributed to BS P being a generative algorithm that tries every possible

combination of balanced size partitions rather than being tailored to the problem which is the case

for OS S and UNP.

For the quality metric, UNP was the worst performing algorithm. This is the result in under-

performing in either qπ or qr and q|∆tr,s |. While qπ shows the algorithm’s capacity for the early

reduction of the cost of plan execution, qr and q|∆tr,s | display the algorithm’s ability to abide by the

expected execution plan principles in terms of the balance in the size of different steps. The results

are expected due to the fact that this algorithm progressively chooses the top unbalanced nodes

according to the initial state of the network and does not update the graph state in terms of the

inbound and outbound traffic flows of each node after top nodes’ associated edges are removed.

Therefore, after choosing the first top node, the second top node would not necessarily be a top

node according to the top node definition which has implications on the balance between steps

of an execution plan. This can degrade the qr and q|∆tr,s | metric performance. By definition, a

57

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

top unbalanced node has considerable difference between inbound and outbound traffic flows. As

such, the execution step including the traffic changes of top unbalanced node means that they can

be mostly either inbound or outbound to that node. In case they are predominantly inbound, this

can lead to this peer link, represented by a node, being overloaded after step execution. This can

prominently increase the cost of plan execution. Conversely, if most of the traffic changes are

outbound destined to a specific peer link, this would overload the destination peer link incurring

an increase in the plan execution cost.

In the same context, OS S falls short off BS P because of this algorithm’s second step that par-

titions the ordered set of traffic changes into balanced subsets. For odd number of traffic changes,

which is the case for the small networks, the implementation does not generate all the possible

combinations of partition sizes. For instance, for 19 traffic changes and two step execution plan,

two balanced size parititions are possible: 9 for the first step and 10 for the second or vice versa.

However, this is not the case for OS S which results in minor differences with respect to oracle

implementation as presented in Table 4.2.

Figure 4.5 depicts the ratio of the actual to the expected peer link capacity following the traffic

density parameter (50%, 70% and 100%). The results presented by Figure 4.5 further consolidate

previous interpretations of the quality metric results of the algorithms. While the good performing

algorithms BS P and OS S display close to 1.0 ratio for both traffic densities, UNP noticeably

falls behind. During steps’ execution, the top unbalanced nodes are offloading their traffic flows,

which appears to be mostly outbound, leading to their under-utilization. This explains why UNP

ratio is considerably under 1.0. Conversely, BS P and OS S have maintained peer link utilization

close to the expected value which is reflected by the 1.0 ratio. This shows that both of these

algorithms successfully found the combinations of traffic flows to be included in each step so

that the bandwidth constraints are not violated or that they do not exceed their expected utilization.

These results emphasize the validity of the evaluation criteria put forth which enforces the balanced

split of traffic assignment changes that contributes in restraining bandwidth constraint violations.

58

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

0.5 0.7 1.0
Traffic Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tu
al
 o
ve
r E

xp
ec
te
d
Tr
af
fic
 V
ol
um

e

Algorithms vs. Traffic Percentage
BSP
OSS
UNP

Figure 4.5: Ratio of Actual to Expected Peer Link Capacity for Different Algorithms

4.7.2 Effect of Quality Metric Weights

To compare the performance of algorithms, eight different combinations of quality metrics were

used. The process of choosing the weights relied on distributing them in a way that ensures that

none of the parameters is fully dominant on the other two. In this way, algorithms produce results

that can be generalized in terms of the effect of each of the progress, balance radius, and ideal

step size on the quality of their respective execution plans. The distribution of weight study can be

leveraged by network operators based on their priorities for TE objectives and the network state.

Assigning larger weight for progress metric wπ implies that network operators are prioritizing their

business goals in terms of reducing TE costs over design objectives, represented by the ideal step

size w|∆tr,s | and balance quality wr. Prioritizing any of the aforementioned metrics has implications

on the network state and users’ perceived QoS. Business objectives are of particular interest for

network operators when execution plans are expected to run for an extended period of time which is

the case for large networks with significantly large number of traffic changes. In this case, network

operators prefer execution plans that can significantly decrease the costs without compromising

the network state by including many reconfigurations in a single step. On the other hand, assigning

59

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

10-50-40 25-50-25 30-40-30 40-30-30 50-10-40 50-25-25 50-40-10 34-33-33
Weights

0

20

40

60

80

Qu
al
ity

Algorithms vs. Weights
BSP
OSS
UNP

Figure 4.6: Weight Effect on Algorithm Peformance

10-50-40
25-50-25

30-40-30
40-30-30

50-10-40
50-25-25

50-40-10
34-33-33

Weights

180000

200000

220000

240000

260000

280000

300000

Ru
nt

im
e

(m
s)

Runtime vs. Weights for BSP

(a) Runtime vs Weights for BS P

10-50-4
0
25-50-2

5
30-40-3

0
40-30-3

0
50-10-4

0
50-25-2

5
50-40-1

0
34-33-3

3

Weights

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ru
nt

im
e

(m
s)

Runtime vs Weights for OSS and UNP

OSS
UNP

(b) Runtime vs Weights for OS S and UNP

Figure 4.7: Weight Effect on Runtime

60

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

higher weights for design-related metrics means that network operators prefer ensuring the safe and

smooth transition from one plan to another. Guaging these metrics relies on a deep knowledge and

thorough inspection of the capabilities of the defined internal routes and their respective switches

to withstand drastic changes. Depending on the urgency of the business or design objectives which

are based on the network state, the network operators decide the distribution of quality weight

metrics.

Figure 4.6 shows the effect of calibrating weights applied in the following order wπ−wr−w|∆tr,s |.

The weights can be categorized into three different priorities: high (50%, 40%), medium (30%,

25%, 33%), and low (10%). Regardless of the algorithm applied, a general trend is observed

where the performance improved with the increase of the progress weight wπ from low (10%) to

high priority (50%). This means that the algorithms performed relatively well, compared to other

metrics, in terms of reducing the cost progressively and as early as possible during step execution.

For BS P and OS S , the improvement of their performance with respect to increasing the weight

of wπ is not as significant as the improvement showed by UNP. This shows that BS P and OS S

performance is not prominently affected by the design metrics which is not the case for UNP. It

is observed that all algorithms are negatively affected by increasing the priority of the balanced

quality metric (wr) (50%, 40%), which is attributed to the extreme sensitivity of this metric in

networks with small traffic changes. A difference in one traffic change would drastically degrade

the quality of qr. Conversely, the algorithms’ performance benefitted from increasing w|∆tr,s | from

10% to 40%. Additionally, when the execution plan evaluation is weight-independent, which the

case for 34− 33− 33, BS P and OS S produce their best execution plans. From these observations,

it is clear that there exists a trade-off between business-related metrics (wπ) and design-related

metrics (wr and w|∆tr,s |), which is more prominent for the graph-based algorithm UNP, that need to

be calibrated following the network’s operator objectives.

Figure 4.7 shows the effect of different quality metric weights on the runtime of BS P, OS S ,

and UNP. For BS P, the time to find the best execution plan is significantly affected by wr. The

61

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Table 4.3: Effect of Ideal Step Size

isz=7 isz=10
q (ms) q (ms)

BSP 90.17 359,311 91.23 103,529

OSS 86.03 1.42 90.7 1.14

UNP 62.39 1.63 62.89 1.49

runtime decreased when the wr decreases from 50% to 10%. BS P displays a similar trend when

increasing wπ from 10% to 50% which is a direct result of the first observation. Increasing the

value of wr forces BS P to try more combinations of balanced size partitions to get the best result. A

similar trend is observed for OS S despite the margins being prominently reduced and with minor

differences regarding the combinations of weights that increase the runtime. Same observations

apply for UNP.

4.7.3 Effect of Ideal Step Size Parameter

This section describes the effect of the step size on the quality of the best execution plans produced

by each algorithm. The importance of this parameter stems from the ability of the underlying

network infrastructure to bear extreme disruptions in the number of traffic changes per step. Given

these circumstances and due to the absence of a clear representation of the state of the underlying

network infrastructure, the ideal step size was manually tuned to include a fraction of the total

number of traffic changes per step. In the case of a small network, the algorithms were evaluated

on two assumptions of the ideal step size (7 and 10) representing one third and half of the total

number of traffic changes (19).

Table 4.3 presents the results of the algorithms with respect to each of the ideal step sizes. In

terms of performance, the heuristics OS S and UNP improve with less execution steps involved.

With 10 as the ideal step size, there exist only two combinations of the balanced number of traffic

changes in a single step; it is either 9 in the first and 10 in the second or vice versa. However, this

cannot be applied when considering 7 as the ideal step size which produces more combinations

62

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Table 4.4: Effect of Traffic Density Parameter

0.5 0.7 1.0
q (ms) q (ms) q (ms)

BSP 93.16 146,436 89.76 151,569 88.82 439,832
OSS 92.19 1.23 88.88 1.32 84.73 1.28
UNP 64.69 1.73 60.81 1.48 62.79 1.48

of the number of traffic changes per step. Due to these circumstances, the ideal step size quality

metric (q|∆tr,s |) is much more prone to aggravate the differences between the desired and the actual

step size when small number of changes per step is involved. In terms of runtime, BS P’s time

taken to produce its best execution plan is cut in half when considering more traffic changes in a

single step. This can be attributed to the reduction of the search space for this algorithm which

facilitates the production of the best result. For 7 as the ideal step size, BS P has to produce all the

combinations of balanced size partitions of size 2 before producing the ones of size 3 which will

naturally mean that the runtime will be greater than that for 10 as the ideal step size.

4.7.4 Effect of Traffic Density Parameter

This section outlines the effect of traffic density parameter, representing the traffic volume percent-

age of peer link’s capacity, on different algorithms in terms of the quality metric q and runtime

(ms). In current implementation, mild and extreme traffic volume conditions were assumed which

put the algorithms under both realistic and rigorous network traffic volumes. This allows network

operators to evaluate their systems under unprecedented increase in traffic which needs swift but

efficient polices to deal with. Such an increase in traffic can be encountered in the case of broad-

casting unplanned live events which necessitate contingency plans to cope with the exponential

increase in the number of viewers.

Table 4.4 presents the results of the algorithms as a function of varying traffic densities. In

terms of runtime, BS P algorithm took triple the time needed to find the best execution plan with

1.0 traffic density compared to the networks with 0.7 and 0.5 traffic densities. This algorithm

63

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

had to access wider search spaces to generate its best possible results with the increase of traffic

density. In terms of quality, both BS S and OS S ’s quality have deteriorated with the increase of

traffic density. Both OS S and BS P quality of execution plans decreased with the increase in traffic

density. For OS S , the decrease in the quality was by about 10% from 92.19 for 50% traffic density

to 84.73 for 100% traffic density. Compared to OS S ,BS P’s decline in performance with the traffic

density is less drastic but still noticeable (4.6%).

This decrease is to be expected given that the algorithms while executing the steps should

reduce the cost progressively which requires moving the traffic between peer links in some way to

avoid overloading them. With 1.0 traffic density, implementing a hard line on the steps so that the

peer links’ capacity is not violated is challenging. This degradation of the quality proves that it is

a conclusive indicator of not only the design requirements of an execution plan but rather on the

state of the peer links.

Regarding UNP, there is no clear correlation between the traffic density and the quality of its

best execution plan. This shows that the main issue for UNP’s bad performance is not only the

possible overload of peer links, but rather not adhering to design quality metrics. These result show

that due to the distribution of the migrating traffic bandwidth, violating any of the quality metrics

is inevitable.

4.7.5 Effect of Independent Runs

Figures 4.8 and 4.9 show the effect of the independent runs on the algorithms performance in terms

of quality (q) and runtime. Each of the configurations {network, ideal step size, traffic density,

weight metrics} was evaluated five times independently for each algorithm. These figures depict

the average quality and runtime for each of these runs of each algorithm. These configurations

were executed five times to detect the existence of possible huge variations in quality and runtime

between one run and another. Regarding the quality, the performance of UNP remained almost

64

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

1 2 3 4 5
Runs

60

65

70

75

80

85

90

Qu
al
ity

Quality vs. Number of Runs

BSP
OSS
UNP

Figure 4.8: Quality vs. Independent Runs

1 2 3 4 5
Run Number

180000

200000

220000

240000

260000

280000

Ru
nt

im
e

(m
s)

Runtime vs Runs for BSP

(a) Runtime of BS P vs. Independent Runs

1 2 3 4 5
Run Number

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Ru
nt

im
e

(m
s)

Runtime vs Runs for OSS and UNP
OSS
UNP

(b) Runtime of OS S and UNP vs. Indepen-
dent Runs

Figure 4.9: Runtime vs. Independent Runs

65

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

static with some minor differences displayed by runs 2 and 4 that are slightly worse and better

than others respectively. Similarly, OS S ’s second and fifth run slightly perform better than the rest

of the runs. For BS P, the first is the worst performing run while the second run is the best. The

small differences can be attributed to rounding the resultant quality when extracting the results.

However, these small differences do not produce much of discerpancy compared to the average of

all runs.

Figure 4.9 shows the performance of algorithms in terms of runtime with respect to independent

runs. The differences between runs are more significant for BS P. While the first run needs on

average around 285,000 ms to produce its best execution plan, this value noticeably drops for the

second run such that it hovers around 185,000 ms. For the third to the fifth run, the differences

are less significant whereby the runtime is between 210,000 ms and 240,000 ms. The differences

can be attributed to the process of allocating, freeing, and occupying threads as the program is

written to execute all of these algorithms leverages the concurrency capabilities offered by Go. It is

observed that for BS P, thread-related processes were relatively faster for the second run. Due to the

negligible differences (fractions of a millisecond) of the independent runs for OS S and UNP, the

above-mentioned interpretation for the variations does not hold. However, a valid explanation for

the differences can be attributed to background processes that are executed synchronously which

may cause some delays during execution of the program.

4.7.6 Algorithms’ Acceleration

While the previous sections showed the superiority of UNP and OS S in producing their best

results in significantly shorter period, this section will study each of the algorithms’ capacity to

progress rapidly to their best execution plan. It is intended to fairly compare BS P’s progress and

quality of its execution plan in the same time frame whereby UNP and OS S produced their best

results. As previously outlined in section IV, each of the algorithms generate execution plans that

66

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

0 100000 200000 300000 400000
time (ms)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

qu
al
ity
 (q

)

Progress of BSP vs. Runtime

Best Execution Plan BSP

(a) Best Execution Plan of BS P vs.
time

1.50 1.51 1.52 1.53 1.54
time (ms)

76.675

76.700

76.725

76.750

76.775

76.800

76.825

76.850

qu
al

ity
 (q

)

Progress of OSS vs. Runtime
Best Execution Plan BSP

(b) Best Execution Plan of OS S vs.
time

0.6 0.7 0.8 0.9 1.0 1.1
time (ms)

51.5

52.0

52.5

53.0

53.5

54.0

54.5

qu
al

ity
 (q

)

Progress of UNP vs. Runtime
Best Execution Plan BSP

(c) Best Execution Plan of UNP vs.
time

Figure 4.10: Best Execution Plan vs. Runtime

are compared according to their quality. Each interim best execution plan quality and runtime is

recorded as part of the process.

Figure 4.10 shows the best execution plans produced by each of the algorithms for the network

configuration of ideal step size 7, traffic density 1.0, network Move, and weights 50-25-25. Ac-

cording to previous sections, this combination took the most time to produce the best execution

plan for BS P. For this reason, it was chosen for comparison purposes. In each of the figures,

the label X denotes the best execution plan produced at that point of time with that quality. As

a first observation, BS P (Fig.4.10-a) produces significantly more execution plans than OS S and

UNP. This is due to BS P being a generative algorithm. The first execution plan produced by OS S

(76.675) has a better quality than both BS P (63) and UNP (51.5). These initial results discard

the comparison between UNP and BS P due to UNP’s extremely poor results. Such a comparison

is important for network operator when extremely fast network reconfigurations is required with

good quality which resembles the one produced by OS S . Despite BS P’s slow start, it displays a

significant progress in producing better quality results. In a short period of time, the quality of the

best execution plan improved from around 63 to close to 80.0.

In order to better visualize the progress of BS P, sampling of the best execution plan according

to its time is implemented. To that end, sampling rates of 100, 10, and 1 ms are considered meaning

that each X in the diagram represents the best execution plan within the timeframes defined. The

67

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

0 100000 200000 300000 400000
time (ms)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

qu
al

ity
 (q

)

Progress of BSP for Sampling Rate 100 vs. Runtime

Best Execution Plan

(a) Best Execution Plans for Sam-
pling Rate 100 of BS P vs. time

0 100000 200000 300000 400000
time (ms)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

qu
al

ity
 (q

)

Progress of BSP for Sampling Rate 10 vs. Runtime

Best Execution Plan

(b) Best Execution Plans for Sam-
pling Rate 10 BS P vs. time

0 100000 200000 300000 400000
time (ms)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

qu
al

ity
 (q

)

Progress of BSP for Sampling Rate 1 vs. Runtime

Best Execution Plan

(c) Best Execution Plans for Sam-
pling Rate 1 BS P vs. time

Figure 4.11: Best Execution Plan After Sampling for BS P vs. Runtime

main intention of the sampling process is to accurately determine the time window where BS P’s

performance starts to get near to OS S ’s. The sampling rate reduced the number of the best execu-

tion plan to 13 from 19 for 100 ms sampling rate, 9 for 10 ms, and 7 for 100 ms. The first execution

plan is added to the each of the figures to showcase the progress of BS P within the sampling rates.

For 100 as the sampling rate, the best execution plan quality within the first interval is around 79

which is better than OS S . However, since the time frame is significantly larger than the runtime

of OS S , the sampling rate is reduced to 10. In the case for 10 as the sampling rate displayed by

Fig.4.11-b, within 2 intervals BS P produces a better-quality execution plan (∼78). Such results

are not satisfactory, and they do not highlight the magnitude of the complexity difference between

BS P and OS S . To achieve that, a stricter sampling rate of 1 ms is applied. As shown in Fig. 4.11-

c, BS P needed five execution plans according to the sampling rate to achieve a comparable result

(76) to OS S (76.8). However, according to the definition of a sampling rate, this does not exhibit

differences in complexity. As a result, an interval [0 : 50] is chosen to show the best execution

plans produced by BS P to compare it to OS S .

Figure 4.12, shows the best execution plans of BS P within the [0 : 50] ms interval and com-

pares it with OS S . To produce better execution plan, BS P needs 50 ms which is 33x the time

required by OS S . This further emphasizes on OS S ’s ability to produce much better in signifi-

cantly shorter period of time.

68

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

0 10 20 30 40 50
time (ms)

64

66

68

70

72

74

76

78

qu
al
ity
 (q

)

Progress of BSP vs. OSS
Best Execution Plan BSP
Best Execution Plan OSS

Figure 4.12: Best Execution Plans for BS P vs OS S

0 1000 2000 3000 4000 5000 6000 7000
time (ms)

55

60

65

70

75

80

85

qu
al

ity
 (q

)

BSP vs. OSS Runtime for Move
Best Execution Plan BSP
Best Execution Plan OSS

(a) BS P vs. OS S for Move

0 20 40 60 80
time (ms)

45

50

55

60

65

70

75

qu
al
ity

 (q
)

BSP vs. OSS Runtime for Bal

Best Execution Plan BSP
Best Execution Plan OSS

(b) BS P vs. OS S for Bal

0 5 10 15 20 25 30 35
time (ms)

55

60

65

70

75

80

85

qu
al

ity
 (q

)

BSP vs. OSS Runtime for 3L2H
Best Execution Plan BSP
Best Execution Plan OSS

(c) BS P vs. OS S for 3L2H

Figure 4.13: Best Execution Plans for BS P vs. OS S

Fig 4.13-a, 4.13-b and 4.13-c show BS P’s progress for the best execution plan compared to

OS S . The network configuration is similar to that of Fig. 4.12 except the weights are 34 −

33 − 33 with different networks. The results depicted by Fig. 4.13 emphasizes the superiority

of OS S in terms of producing very good execution plans in significantly less time compared to

BS P. For OS S , the time required to produce the best result is {1.25, 0.505, 1.3} ms compared to

{7, 200, 90, 33} ms for BS P to get to comparable results. While Figures 4.12 and 4.13 only exhibit

one of the runs for a single network configuration, they clearly demonstrate that OS S is much

more efficient algorithm in producing good execution plans compared to BS P.

4.7.7 Quality vs. Runtime

This section oversees the potential relationship that may exist between the quality of execution

plans generated and the time taken to generate these plans. If any correlation is found, the network

operators can leverage such findings for predictive performance according to runtime which allows

69

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

0 250000 500000 750000100000
0
125000

0
150000

0
175000

0

Runtime (ms)

75

80

85

90

95

qu
al
ity
 (q

)

Quality vs. Runtime for BSP
Move
Bal
3L2H

(a) Quality of BS P vs. Runtime

1 2 3 4 5
Runtime (ms)

65

70

75

80

85

90

95

100

qu
al
ity

 (q
)

Quality vs. Runtime for OSS
Move
Bal
3L2H

(b) Quality of OS S vs. Runtime

0 5 10 15 20
Runtime (ms)

0

20

40

60

80

qu
al

ity
 (q

)

Quality vs. Runtime for UNP
Move
Bal
3L2H

(c) Quality of UNP vs. Runtime

Figure 4.14: Quality vs. Runtime

them to set termination time for execution plans where specific quality is desirable. The analysis is

carried out on each individual algorithm for all the network configurations. Fig. 4.14-a, 4.14-b and

4.14-c are scatter plots that depict the quality of execution plans (q) as a function of their runtime

(ms) for BS P, OS S and UNP respectively.

For BS P, it is observed that the best execution plans are concentrated in [0 : 5, 000] ms run-

time with some relatively poor execution plans within the 75 range. The quality of execution

plans is more distributed and dispersed in the interval [250, 000 : 750, 000]. For the interval

[750, 000 : 1, 000, 000], the quality of executions plans is more concrete and falls in the range of

[88 : 92]. After 1,000,000 ms runtime, the quality experiences the same disparity as in [250, 000 :

750, 000] with significantly less data points. Also, it is observed that the network Bal is prone

to extreme fluctuations in runtime due to the change of other network parameters. Most of the

execution plans implemented on network 3L2H are executed within a small period. While there

is no universal relationship existing between the quality of execution plans of BS P and their run-

time, it is evident that some correlation can be inferred for specific time intervals. These intervals

may belong to network configuration where some of the parameters vary while the others remain

unchanged such as the used network parameter.

For UNP, no correlation between quality and runtime can be extracted as the dispersion is

huge for any interval. Execution plans implemented on 3L2H experience the most dispersion in

terms of quality, and those implemented on Bal experience the less dispersion in terms of runtime.

70

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

Table 4.5: Results of OSS on Medium and Large Size Networks

rand75 rand2010
q (ms) Ratio q (ms) Ratio

OSS 90.97 4.4 1.002 93.167 906,821 1.000

Regarding OS S , good execution plans in the [88 : 97] range are produced when the runtime is re-

ally small (<1ms). For runtime significantly < 1ms, there exists a positive relationship between the

runtime and the quality especially with a single network involved (Bal). However, fast approaching

runtime of 1 ms, a negative correlation exists between quality and runtime where execution plans

mostly belonging to network Bal. For other intervals, no clear correlation exists between quality

and runtime.

4.7.8 Effect of Network Size

Since the results on the small network have proven the superiority of OS S over UNP in terms of

quality and over BS P in terms of runtime while producing comparable results, OS S was further

tested on medium and large size networks. The reason for performing this rigorous testing is to

evaluate the scalability of OS S when the network size and the associated traffic changes increase.

The medium size network denoted by rand75 consists of 7 provider edges, 5 peer links and 44 traf-

fic changes. The set of isz = {22, 15, 11, 9}. The large size network denoted by rand2010 consists

of 20 provider edges, 10 peer links and 1,000 traffic changes. The set of isz = {250, 125, 60, 30, 15}.

OS S was evaluated under the same conditions of traffic density and the combinations of quality

metric weights of the small network. The results of these experimentations are presented in table

4.5.

The results show that OS S is performing well in terms of quality of execution plans, run-time

and ratio of actual to the expected peer link capacity. As for both networks, the OS S produced high

quality (91 and 93) results meaning that the heuristic generated an execution plan that reduces the

cost as early as possible while balancing the number of traffics between partitions. Additionally,

71

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

these results showed that OSS can scale well with the increase in network size as it is producing its

best result for the largest network in ∼15 minutes. Furthermore, the ratio shows that the heuristic

barely violated (0.02%), ratio−1
1 ×100, the constraints imposed on the maximum allowed utilization

of peer links.

Compared to the small networks, the OS S performs better in terms of the quality of execution

plans. This can be attributed to the balanced quality and ideal step size quality metrics. Due to the

significant increase in the number of traffic changes, small differences between the number of these

changes per steps themseleves or between these changes and the ideal step size will not drastically

affect the quality metric involved as opposed to small networks with small traffic changes. An

execution plan of quality 100 is unattainable because that means that it fully reduced the cost in a

single step while adhering to the design parameters set. Executing a plan in a single step violates

the balance quality and ideal step size quality metrics which results in a clear degradation of the

quality of an execution plan.

4.8 Conclusion

This study addressed the efficient implementation of execution plans that promise to change the

network to a more desirable state from the users’ and network operators’ perspectives. To that

end, this study formulated three different algorithms based on mathematical and analytical under-

standing of the problem. Furthermore, evaluation criteria were put forth to study the efficacy of the

execution plans under peer link bandwidth and operator costs constraints. The approaches were

first tested on a small-scale network that served to elect the best performing heuristic. An extensive

analysis of the effect of different parameters involved in the execution plan evaluation on the per-

formance of the developed algorithms was conducted. Next, the best heuristic was re-evaluated;

this time on networks with more traffic changes to test the reliability and the scalability of this ap-

proach. The results have shown that one of the proposed heuristics, Order Steps (OS S), produces

72

CHAPTER 4. EFFICIENT EXECUTION OF EGRESS TRAFFIC ENGINEERING CHANGES

significantly better results while guaranteeing network-related constraints.

73

Bibliography

[1] Y. Rekhter, T. Li and S.Hares, "A Border Gateway Protocol 4 (BGP-4)", IETF, RFC 4271,

Jan. 2006.

[2] N. Feamster, J. Borkenhagen and J. Rexford, "Guidelines for interdomain traffic engineering",

ACM SIGCOMM Computer Communication Review, vol.33, no. 5, pp.19-30, 2003.

[3] S. Li and J. Huang, "Price Differentiation for Communication Networks,"

IEEE/ACM Transactions on Networking, vol.22, no.3, pp. 703-716, June 2014, doi:

10.1109/TNET.2013.2258173.

[4] K. Wang et al., "Betweenness Centrality Based Software Defined Routing: Observation from

Practical Internet Datasets," ACM Transactions on Internet Technolology,19 (2019), 1-19.

[5] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. 2002. Overview and Principles of

Internet Traffic Engineering. RFC 3272. RFC Editor

[6] N. Feamster, J. Winick, J. Rexford, "A Model of BGP Routing for Network Engineering," in

Proc. ACM SIGMETRICS, June 2004.

[7] A. Mendiola, J. Astorga, E. Jacob and M. Higuero, "A Survey on the Contributions of

Software-Defined Networking to Traffic Engineering," IEEE Communications Surveys Tuto-

rials, vol. 19, no. 2, pp. 918-953, Secondquarter 2017, doi: 10.1109/COMST.2016.2633579.

74

BIBLIOGRAPHY

[8] K. Foerster, S. Schmid and S. Vissicchio, "Survey of Consistent Software-Defined Network

Updates," IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1435-1461, Sec-

ondquarter 2019, doi: 10.1109/COMST.2018.2876749.

[9] S. Misra, S. Goswami, "Interior Gateway Protocols," in Network Routing: Funda-

mentals, Applications, and Emerging Technologies , Wiley, 2014, pp.131-157, doi:

10.1002/9781119114864.ch6.

[10] K. Kadiyala and J. Cobb, "Inter-as traffic engineering with SDN," in IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-SDN), 2017, pages

1-7. IEEE, 2017.

[11] Y. Guo, Z. Wang, X. Yin, X. Shi, J. Wu, and H. Zhang, "Incremental deployment for traffic

engineering in hybrid SDN network," in Proc. IEEE 34th International Performance Com-

puting and Communication Conference(IPCCC), Dec. 2015, pp. 1-8.

[12] Y. Takahashi, K. Ishibashi, M. Tsujino, N. Kamiyama, K. Shiomoto, T. Otoshi, Y. Ohsita, and

M. Murata, "Separating Predictable and Unpredictable Flows via Dynamic Flow Mining for

Effective Traffic Engineering," in IEEE International Conference on Communication, 2016,

pp. 1-7.

[13] S. Brandt, K. Forster and R. Wattenhofer, "On consistent migration of flows in SDNs," in

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Com-

munications, San Francisco, CA, 2016, pp. 1-9, doi: 10.1109/INFOCOM.2016.7524332.

[14] C.-Y. Hong et al., "Achieving high utilization with software-driven WAN", in Proc. ACM

SIGCOMM Conf., pp. 15-26, 2013.

[15] X. Jin et al., "Dynamic scheduling of network updates", in Proc. ACM Conf. SIGCOMM,

pp.539-550, 2014.

75

BIBLIOGRAPHY

[16] R. Mahajan and R. Wattenhofer, "On consistent updates in software defined networks," in

ACM SIGCOMM HotNets Workshop, 2013.

[17] S. Ghorbani and C. Matthew, "Walk the line: consistent network updates with bandwidth

guarantees", in Proc. 1st workshop on Hot topics in software defined networks HotSDN 12,

pp.67-72, 2012.

[18] N. Katta, J. Rexford and D. Walker, "Incremental consistent updates", in ACM SIGCOMM

HotSDN Workshop, 2013.

[19] X.Wang, Y. Sui, C. Yuen, X. Chen, C. Wang, "Traffic-Aware Task Allocation for Cooperative

Execution in Mobile Cloud Computing", in Proc. Of IEEE/CIC International Conference on

Communications, 2016.

[20] J. Liu and Q. Zhang, "Offloading Schemes in Mobile Edge Computing for Ultra-reliable Low

Latency Communications," IEEE Access, vol. 6, pp.12825-12837, Feb. 2018.

[21] H. Wu, W. Knottenbelt, and K. Wolter, "An efficient application partitioning algorithm in

mobile environments," IEEE Transactions of Parallel Distributed Systems, vol. 30, no.7,

pp.1464-1480, Jul. 2019.

[22] M. Deng, H. Tian, and B. Fan, "Fine-granularity Based Application Offloading Policy in

Small Cell Cloud-enhanced Networks", in IEEE International Conference on Communica-

tions Workshops (ICC), 638-643, 2016.

[23] S. Cao, X. Tao, Y. Hou and Q. Cui, "An energy-optimal offloading algorithm of mobile

computing based on HetNets," in International Conference on Connected Vehicles and Expo

(ICCVE), Shenzhen, 2015, pp. 254-258.

[24] G. Sidebottom, R. Nekvi and A. Haque, "Safely Engineering Egress Traffic Changes".

76

BIBLIOGRAPHY

[25] D. Sanvito, I. Filippini, A. Capone, S. Paris and J. Leguay, "Adaptive Robust Traffic En-

gineering in Software Defined Networks," in 2018 IFIP Networking Conference (IFIP Net-

working) and Workshops, Zurich, Switzerland, 2018, pp. 145-153, doi: 10.23919/IFIPNet-

working.2018.8696406.

[26] C.Wagner, "Partition Statistics and q-Bell Numbers," Journal of Integer Sequences, Vol. 7,

(2004).

[27] 1.8 Stirling numbers. [Online]. Available: https://www.whitman.edu/mathematics/cgt on-

line/book/section01.08.html. [Accessed: 11-May-2020].

[28] "Gamma Function," from Wolfram MathWorld. [Online]. Available:

https://mathworld.wolfram.com/GammaFunction.html. [Accessed: 12- May-2020].

[29] J. Sushant and et. al ,"B4: Experience with a globally-deployed software defined wan", in

Proc. ACM SIGCOMM 2013 conf on SIGCOMM, pp.3-14,2013.

[30] "Go", [Online]. Available: https://golang.org.

77

Chapter 5

Conclusions and Future Directions

This thesis covered two problems pertaining to the automation of network traffic assignment

changes and placement of vehicular applications. Each of these problems required finding the

best possible solution for a specific objective under environment-imposed constraints. The two

related articles presented novel ideas and implementations and promising results in their respec-

tive fields. The first study investigated the individual components of vehicular applications and

devised an optimization model responsible for the placement of these components considering

the delay requirements of the applications and the resource requirements of their components in

edge environment. Two different implementations of an optimization model were compared, and

one of these implementations, RDP, showed that it can satisfy the set requirements in terms of

resources and delay. The second study examined the implementation of inter-domain network

traffic assignment changes subject to monetary and infrastructural constraints. Three approaches

were created and tested based on evaluation criteria that best reflect the imposed environment con-

straints. The best performing algorithm, Order Step Size (OS S), satisfied the quality requirements

for big networks in significantly short period of time and produced comparable results to the oracle

implementation for small networks. The final chapter of this thesis outlines some of the shortcom-

ings of the conducted work and proposes future directions that can be examined and experimented

78

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

with in each study.

5.1 V2X Applications Placement in Edge Computing Environ-

ment

This article presented the first study that examined the structure of vehicular applications and the

placement of its components. While Resource and Delay-aware V2X service Placement (RDP)

produced satisfactory results on average for all applications, it violated the delay requirements of

the Forward Collision Warning application in 25% of the cases. For that and for other reasons, the

future work in this field will address the following topics:

1. A scalability study of the RDP approach that considers an environment with significantly

more edge servers used for the deployment of vehicular services. This will put the approach

under test and will show if it can be implemented in more realistic scenarios where full

highways are considered. Also, this testing environment will examine the viability of this

approach to be applied in real-time scenarios by reporting the run-time required for solving

large-scale problems. In case long run-time is observed, this opens the horizon for creating

intelligent heuristics that can reduce the run-time but can produce comparable and satisfying

results.

2. A Data-driven approach that utilizes Machine Learning (ML) algorithms can be leveraged

to address the possible scalability issues that may arise. Data can be gathered by running the

formulated optimization models under different environment parameters which include in

the current formulation: edge server computing resources, delay between edge servers, and

vehicle density. This method has been applied in the domain of network function placement

which displays some similar characteristics to V2X applications placement [1, 2]. Addition-

ally, Moubayed et. al. [3] have emphasized the applicability of ML in the domain of V2X

79

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

communications.

3. Because the best proposed algorithm did not fully satisfy the delay requirements of all ap-

plications, a vertical extension of computation resources can mitigate this shortcoming. One

approach for this extension is the inclusion of centralized cloud computing resources used

for the placement of extra vehicular services. Furthermore, the idle resources of vehicles

can be opportunistically leveraged to deploy vehicular services extending those deployed

on edge servers. Conceptually, such an architecture spans an extensive research effort that

encompasses the formation of vehicle clusters virtualizing their resources and studying the

heterogeneous communication protocols mandated by this architecture.

4. While the research conducted is a good first step in this field, the future work should inte-

grate more dynamic and complex environment elements. Here, the main elements targeted

are the vehicles and the edge servers that displayed static characteristics in terms of re-

questing services and the availability of their resources respectively. The future work will

integrate service request distribution that reflects realistic scenarios and examines the cor-

relations that may exist between different applications. Similarly, after considering service

request distributions, the availability of computation resources should mirror the requests’

distribution and the vehicle density in proximity to each edge service. This new more dy-

namic and complex environment will inspire more intelligent methods for the deployment

of V2X services.

5.2 Efficient Execution of Egress Traffic Engineering Changes

This article presented a comprehensive study to automate the implementation of egress network

traffic assignment changes efficiently. The efficiency of these implementations is measured based

on the evaluation criteria that integrate monetary concerns and bandwidth and infrastructural con-

80

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

straints. The best algorithm referred to as OSS adhered to the quality metrics of the evaluation

criteria while producing these results in significantly short period of time; however, it overloaded

the peer links by small margin for small and medium size networks. Therefore, the future work in

this topic will address the following points:

1. Evaluate the best performing algorithm (OS S) using a wider range of network configura-

tions that include the size of the network, number of traffic changes, and cost functions.

This will test the viability of this solution in more rigorous scenarios especially when con-

sidering traffic changes in the order of 1,000s. Additionally, a more comprehensive set of

cost functions will be considered that include but not limited to linear cost functions, piece-

wise functions, and exponential functions. The myriad of combinations possible for the cost

functions can mirror different scenarios applied by network operators to map the bandwidth

passing through their domain peer links.

2. As a direct consequence of the slight overload of the peer links displayed by OSS, future

work will address this shortcoming by integrating the temporary bandwidth consumed by

peer links when some combination of traffic is executed into the evaluation criteria. Adding

this parameter is pertinent to close the gap that can be caused by a cost function that is not

representative of the peer links condition. Weight distributions of the metrics will be applied

and evaluated in a fashion similar to the current implementation.

3. Consider more refined graph-related mapping of traffic assignment changes and apply parti-

tioning algorithms that jointly account for the graph structure and the set evaluation criteria.

The graph representations will include incorporating multi-commodity flow and max-flow

principles and adjusting them so that they can suit the defined problem. In the same con-

text, vertices’ related characteristics such as the number of edges and total bandwidth change

between vertices can be leveraged to draw similarities or differences between them. The rela-

tionships extracted using similarity studies can be utilized to group set of vertices in separate

81

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

steps as part of an execution plan.

4. Current implementation considers that the network traffic flows defined are changing their

assignment from one peer link to another. Future work will integrate the network flows

that have changed their association from being unassigned to assigned to a peer link or vice

versa. The inclusion of these traffic flows will consolidate the authenticity of the networks

in mirroring real-life scenarios to test the approaches previously defined.

82

Bibliography

[1] D. M. Manias, H. Hawilo, M. Jammal and A. Shami, "Depth-Optimized Delay-Aware

Tree (DO-DAT) for Virtual Network Function Placement," IEEE Networking Letters, doi:

10.1109/LNET.2020.2997320.

[2] D. M. Manias et al., "Machine Learning for Performance-Aware Virtual Network Function

Placement," in 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa,

HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.2019.9013246.

[3] A. Moubayed and A. Shami, "Softwarization, Virtualization, Machine Learning For Intelligent

Effective V2X Communications," IEEE Intelligent Transportation Systems Magazine.

83

Curriculum Vitae

Name: Ibrahim Shaer

Post-Secondary American University of Beirut
Education and Beirut, Lebanon
Degrees: 2017 Bachelor of Computer Science (With Distinction)

Honours and Dean’s Honour List
Awards: American University of Beirut

2014-2017

USAID Scholarship
American University of Beirut
2014-2015

Related Work Graduate Teaching and Research Assistant
Experience: University of Western Ontario

2018-2020

Research Assistant
American University of Beirut
2017

Publications: I. Shaer, A. Haque, and A. Shami, “Multi-Component V2X Applications Placement
in Edge Computing Environment,” in ICC, 2020. (accepted)

84

	Network Resource and Performance Optimization in Autonomous Systems: A Connected Vehicles and Autonomous Networks Perspective
	Recommended Citation

	tmp.1598891509.pdf.ZvgBf

