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Abstract

An instrumented rover wheel can collect vast amounts of data about a planetary surface. Plan-

etary surfaces are changed by complex geological processes which can be better understood

with an abundance of surface data and the use of terramechanics. Identifying terrain parameters

such as cohesion and angle of friction hold importance for both the rover driver and the plane-

tary scientist. Knowledge of terrain characteristics can warn of unsafe terrain and flag potential

interesting scientific sites. The instrumented wheel in this research uses a pressure pad to sense

load and sinkage, a string potentiometer to measure slip, and records motor current draw. This

thesis demonstrates the utilization of the instrumented wheel’s data to estimate cohesion, angle

of friction and grain size and demonstrates a machine learning solution for classifying terrain

types with the same data. Mars simulants available at NASA-JPL were used for the collection

of the data. Two machine learning classifiers were explored: Random Forest and Support Vec-

tor Machine. Binary and multi-class classification were both demonstrated and it is proposed

that the classification model can identify terrain types based on the instrumented wheel data.

The Random Forest model performed best in all classification types.

Keywords: Terramechanics, Planetary Science, Machine Learning, Rover Wheels, Ran-

dom Forest, Support Vector Machine

i



Lay Summary

Terramechanics is the study of vehicle-terrain interaction. Terrain characteristics change

depending on geologic processes such as erosion that may have occurred in a region. A change

in terrain characteristics can be observed via terramechanics models which define the interac-

tion of vehicles in the terrain. Through the collection of data on the interaction of a planetary

rover with the surface terrain, terramechanics models can be used to estimate terramechanics

parameters which define terrain characteristics. The identification of these parameters is im-

portant for both the rover driver and planetary scientist as they reveal if the terrain is unsafe

for driving, previously unencountered and/or of scientific interest, and reveal the history of the

planetary region where the rover finds itself. Cohesion, Angle of friction, and grain size are im-

portant parameters that can give insight into the safety for driving or history of the region. This

thesis demonstrates the capability of a ”smart” sensing rover wheel to collect surface terrain

data and the use of this data in estimating terrain parameters, and the identification of terrain

types using machine learning methods. Two classification algorithms were explored: Random

Forest and Support Vector Machine. It is proposed that both binary and multi-class classifica-

tion models can differentiate between Mars simulants used to collect data for this study using

pressure pad, wheel slip, and motor current data.
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Chapter 1

Introduction

1.1 Motivation

The broad motivation for this thesis work is to demonstrate that data collected by an instru-

mented rover wheel can be used to provide planetary scientists with information about terrain

that they cannot otherwise obtain, and in addition, that classification of terrain using this data

may have use in autonomous rover driving. An instrumented rover wheel passively collecting

scientific data as the rover drives and other instruments perform science offers a unique av-

enue for furthering scientific understanding of planetary surfaces. In the context of the data

available for this thesis research, the motivation is to present a method to use the wheel data

from the Barefoot Rover project to estimate terramechanics terrain parameters, classify terrain

using machine learning methods, and investigate a possible path to determine grain size. To the

planetary scientist, terramechanics terrain parameters and grain size are valuable pieces of in-

formation for understanding past geologic processes in a specific region. For autonomous rover

developments, the machine learning research will be most relevant. Terrain classifications can

serve as a crucial piece of information for “go” or “no-go” decisions in an autonomous control

system. The instrument data of interest is; the pressure pad data for estimating the load/contact

area/sinkage of the wheel, the string potentiometer for slip ratio data, the motor current for

estimation of the shear stress at wheel-terrain interface, which come together to allow the esti-

mation of the terramechanics terrain parameters cohesion and angle of friction. Development

of the Barefoot Rover project began at NASA-JPL as a way of enabling Mars rovers to incor-
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porate in-situ terrain data into driving and scientific decisions. The project fuses terramechan-

ics, robotics, and machine learning to prove the feasibility of an instrumented tacticle-sensing

wheel as an instrument for further scientific research and for increased driving safety.

The estimation of terrain parameters, the classification of terrain and insight into grain size

can aid in the following:

• The development of more accurate and representative Mars simulants for terrestrial use.

• The identification of unsafe terrain while a rover is driving on a celestial body.

• The identification of previously unseen terrain characteristics and scientifically interest-

ing areas.

• The development of increasingly autonomous rover driving systems

• Ground truth against previous estimations and orbital data.

The intent of this work is to use regressor tools to estimate terramechanics parameters for

MMS 2mm and GRC-01 Mars simulants, use a multi-class classifier to classify up to four Mars

simulants, and investigate correlation between sinkage exponent - an existing terramechanics

parameter - and the grain size of individual Mars simulants. This work uses data collected by

the novel Barefoot Rover wheel and opens the door to the utilization of such technology for

in-situ terrain study and enhanced rover safety.

The inspiration behind this research came from the development of the Barefoot Rover tech-

nology and how that technology could be used for terramechanics study and machine learning

use cases. The classification of terrain allows for the back-inference of terramechanics param-

eters of a known simulant. This work is a demonstration of what can be achieved with such

instrumented wheels and makes recommendations for deployment on the surface of celestial

bodies like Mars. The Barefoot Rover wheel is unique compared to classical terrain measure-

ment systems like the Bevameter for its ability to directly measure, as it rolls over terrain, wheel

sinkage, wheel entrance and exit angles, and normal pressure exerted on the wheel, which in

current state-of-the-art wheels must be visually or telemetry estimated with error. A Bevame-

ter traditionally collects sinkage and pressure data, however, it is a stationary instrument and

2



the vehicle must stop, take a measurement, move, take another measurement, and so on. The

Barefoot Rover wheel can collect the same data while rolling and supporting a vehicle chassis,

allowing a rover to perform other science with it’s instrument suite. The Bevameter, in addi-

tion, is not practical for deployment on another planet due to it’s size and heavy mass. The

rover would also need to stop and measure repeatedly, with visual estimation of the sinkage,

which does not fit into the context of supporting autonomous rover driving capabilities with

continuous feedback about the vehicle-terrain interaction. Using the Barefoot Rover technol-

ogy allows for passive and direct measurement of terramechanics characteristics as the wheel

rolls.

R. Sullivan [1] and R. E. Arvidson [2, 3] carried out numerous studies using orbital data

and data from the Viking landers and Mars Exploration Rovers (MER) to estimate the surface

cohesion and angle of friction of certain areas of Mars. These studies showed reasonable

estimates could be determined from this approach but they required significant computational

power, required some visual imagery verification and could not be done in near real-time such

as lightweight machine learning applications.

Ding [4] developed and verified terramechanics models for rover wheels equipped with

grousers/lugs. He showed that it was possible to estimate terramechanics parameters reason-

ably well using least squares regression and data from a rover testbed. Sinkage and slip were

implicitly measured using visual means.

The question then posed to be answered with this thesis work was, “If individual terrains

exhibit their own terramechanical characteristics, is it possible to classify them based on these

characteristics, and is it possible to estimate cohesion, angle of friction, and grain size from

raw instrumented rover/instrumented wheel data?”

The demonstration of terrain classification and estimation of terramechanics parameters is

especially useful for rover drivers and planetary scientists. Automated detection of unsafe,

anomalous, or novel terrain can be used to make decisions on the safety of the terrain the rover

is driving into or whether to stop and take further scientific analysis.

3



1.2 Tasks and Thesis Contribution

This research explores the use of instrumented rover wheel data to identify terrain types and

their terramechanics characteristics. Specifically, the pressure pad, string potentiometer and

motor current data can be used to develop a machine learning classification model of known

Mars simulants that were driven upon when the data was collected. This classification can be

done using engineered features and the Random Forest and Support Vector Machine machine

learning algorithms. Additionally, this same data can be used to estimate terrain cohesion and

angle of friction within known ground truth ranges, and be used to estimate sinkage exponent

and a correlation between mean sinkage exponent values for various Mars simulants and their

respective grain sizes.

The technology and data being used to conduct this research is a potentially new method of

utilizing rovers, and specifically their wheels, to study a terrain’s characteristics and to imple-

ment machine learning for terrain type detection.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 contains background about

the instrumented wheel and terrain parameter estimations and a literature review of both ter-

ramechanics and machine learning theory relevant to this thesis. Chapter 3 discusses the in-

vestigation of the instrumented wheels ability to detect changes in terrain and describes the

method and results for the estimation of cohesion and angle of friction from the instrumented

wheel data. Chapter 4 details the methodology behind the machine learning classification of

Mars simulants and presents the results of the classification. Chapter 5 discusses the estimation

of terrain grain size using mean sinkage exponent values. Chapter 6 contains the discussion,

conclusion and possible future work.
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Chapter 2

Background and Literature Review

This chapter reviews background project information, classical terramechanics theory and its

use in analyzing terrain parameters of Mars regolith, and background machine learning theory.

2.1 The Instrumented Wheel

The Barefoot Rover wheel is a solid-cut wheel designed and built to be mechanically similar

to the Curiosity rover wheels. Its development is funded by NASA-JPL and the work is being

done by the Machine Learning and Instrument Autonomy group at JPL.

The final wheel test rig configuration is shown in Figure 2.1. The wheel itself has a radius

of 0.27 m and has a mass of approximately 30 kg. 43 grousers are mounted around the wheel.

Each grouser is 0.445 m long and extends 0.11 m off the pressure pad. The wheel is equipped

with four externally wrapped pressure pad quadrants, which are overlapped and attached to the

wheel to cover the entire outer surface area. The grousers are mounted overtop the pressure

pad and fastened to the rim of the wheel. The wheel structure is mounted on the test rig as is

shown in Figure 2.1. It is important to note that the wheel is powered and drives the rig; the

rig does not drive the wheel. The rig’s purpose is to remain on the rails laid on the ground and

thus guide the wheel down the trough of Mars simulant. It also houses the electrical equipment

required for data collection. A string potentiometer is mounted between the starting end of the

trough and the rig to measure slip ratio throughout each data collection run. On the wheel is an

IMU sensor for the recording of wheel angular location.

5



Figure 2.1: The Barefoot Rover project; wheel, rig, and accompanying instruments.

The wheel is powered by a Midwest Motion DC motor. It’s rated for operation at a motor

current of 5.7 amperes and has a gear ratio of 195.26:1 with a gear efficiency of 70%. The

motor can operate in a “fast” or “slow” configuration, at 301 rpm or 113 rpm, respectively,

and a corresponding wheel rpm of 1.54 and 0.58, respectively. All test runs have been done

with the motor in the “fast” configuration. Forward velocity will of course change as a result

of wheel slip or terrain patterns, such as small smooth dunes, but is nominally 0.043 m/s.

The motor is controlled by an ESCON 50/5 Servo controller which controls the motor speed

through integrated potentiometers. In addition, the ESCON 50/5 outputs motor current draw

to the Arduino mounted inside the electronics box on the rig.

The electronics box on the rig holds the components necessary for collecting and storing

the data obtained during each data collection test run. The main components in the electronics

box are:

• NUC (Next Unit of Computing) computer for running test run python scripts and storing

data
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• Two DC to DC converters to step 48 V down to 12 V

• Arduino to take in ESCON outputs, IMU data

• National Instruments Multifunction I/O device (Black) for measuring strain gauge resis-

tance in F/T sensor

• National Instruments Multifunction I/O device (White) to process data for the NUC

There are seven troughs, each filled with a type of Mars simulant. The seven simulants are:

• Mars Mojave 2mm Simulant (MMS 2MM)

• Mars Mojave Intermediate Simulant (MMS Intr)

• Mars Mojave Coarse Simulant (MMS Coarse)

• Minus-30 (Mins 30)

• GRC-01

• Wedron 730 (WED 730)

• Best 110 (BST 110)

These Mars simulants are dry low-cohesive sands representative of Martian terrain. These

simulants were created to mimic the chemical composition and grain sizes of Mars terrain

encountered in past missions to the red planet. The wheel is tested on all seven troughs. A

single data collection run is carried out by powering the wheel to roll down the length of the

trough at a constant 1.54 rpm. The wheel is not run in reverse after the initial forward roll

because the data collected would not be representative of an undisturbed planetary surface.

The goal is to assess whether the collected data can be used to infer changes in terrain which is

being done by training machine learning classifier models on the collected data and subjecting

them to new collected data that the models have not seen.
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2.2 Background to Terrain Parameter Estimation

Bekker - Wong [5, 6] terramechanics theory are used to estimate the cohesion c and angle of

friction φ of a terrain. Shear stress at the wheel-terrain interface is a crucial piece of informa-

tion to determine cohesion and angle of friction. Ding et al. [4] proposed three methods for

solving for unknown terrain parameters based on in-situ rover data. He developed a simplified

integral model by linearizing the normal and shearing stresses in order to decouple the involved

functions. He solved for terrain parameters using a linear least-squares estimator, hypothetical

data and assumed typical values for terrain shear deformation modulus. The estimated val-

ues of terrain parameters were close to the measured soil parameters. The experimental data

used by Ding was obtained from a single-wheel testbed and from a four-wheeled rover. Using

Ding’s method requires knowledge of the resistance moment which was not measured by the

Barefoot Rover wheel.

Sullivan et al. [1] employed a method to estimate cohesion and angle of friction that relied

on motor current data from MER Spirit and Opportunity. He determined shear stress from

motor current and derived equations based on ratios of electromechanical work to estimate

terrain parameters. These equations were derived from a simplified shear stress model which

does not consider wheel slip and contact area. Both these values were not known and could only

be roughly approximated using images. Using electromechanical work was a more accurate

method to use at the time.

However, the Barefoot Rover wheel is equipped with a pressure pad to measure contact

pressure and a string potentiometer is mounted externally to measure wheel slip. Therefore,

Sullivan’s method of computing shear stress from motor current can be used and input into the

shear stress model which takes into account changing wheel slip and contact area.
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2.3 Terramechanics Theory

Terramechanics is the study of vehicle-terrain interaction, with specific focus on wheeled or

tracked vehicles. The study of terramechanics is used for either engineering vehicles to improve

performance in a given terrain or understanding how a terrain will react under a specific vehicle

loading. Well known vehicle-terrain interaction models have been developed by Bekker and

Wong [5, 6]. The models assign parameters to specific soils which characterize their response

to loading. Both these models aimed to improve vehicle performance. Ding [4] developed a

terramechanics model specific to a lugged rover wheel with the intention of estimating terrain

parameters based upon knowledge of wheel performance.

Bekker’s work provided the foundation for further studies done by Wong and Ding. Both

Bekker and Wong used a bevameter - a tool to apply a known pressure to terrain and mea-

sure output sinkage of a plate of a particular dimension - to analyze pressure-sinkage curves.

Bekker derived his terramechanics theory based on these curves. Bekker and Wong studied a

variety of terrains such as sand, sandy loam, clay, mud, grassy fields, and snow. It was noted by

Bekker that variability in the measurement response was seen to increase in terrains containing

organic material or water due to the non-homogenous nature of the soil itself. Snow and terrain

containing organic material have greater compressibility. Sands, or mineral terrains, are homo-

geneous terrain that exhibit low variability in pressure-sinkage measurements. Mars regolith is

a loose mineral terrain of varying grain sizes.

Bekker and Wong studied a variety of mobility platforms including rigid wheels, chain

tracks, rigid tracks, pneumatic tires, and screw propulsion. Ding focused primarily on the

lugged rigid wheel most similar to a common rover wheel. Lugs, or grousers, are the edged

protrusions on a wheel outer surface to aid in traction and thrust generation. Rigid wheels have

been used on all past and current Mars rovers. A rigid wheel was used in the Barefoot Rover

project and testing was carried out in Mars simulants. Therefore, only rigid wheel interaction

in Mars simulant terrains will be discussed in this thesis.
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2.3.1 Modelling Terrain

Terrain can be treated as either a plastic or elastic material. Most classical terramechanics

material treats terrain as an elastic material until a maximum load or shear stress is met; like

solid mechanics theory.

The Mohr-Coulomb criterion is applied to define the shear stress in relation to the normal

stress at the wheel-terrain interface:

τ = [c + σ tan φ] (2.1)

Terrain is modelled as an elastic material until the maximum shear stress has been reached.

At this point, the terrain is in plastic equilibrium. If the load is increased further, it then enters

a plastic state. The shear curve of this increasing load represents an ideal plastic material and

is then fitted with the equation:

τ = [c + σ tan φ][1 − exp
− j
K

] (2.2)

Where:

• c is terrain cohesion. Cohesion is the shear strength component of terrain that is due to

electrostatic forces between grains and is influenced by hydration, compaction and soil

salt content [7]. Cohesion is one of the parameters to be estimated.

• φ is the angle of friction of terrain. This terrain parameter is the shear strength component

of terrain that is due to grain roughness, size, and the resulting friction generated through

grain interaction. Angle of friction is influenced by grain size and roughness [8]. Angle

of friction is one of the parameters to be estimated.

• The shear stress τ is a known value determined by the motor torque, which is determined

by motor current draw.

• The normal stress, or pressure σ is a known value determined by the load sensed by the

pressure pad and the total wheel contact area.

• The slip deformation j is a function of slip ratio and is a known value for each data

collection run.
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• The shear deformation modulus K is the third parameter to be estimated. It is of less

interest to planetary science than cohesion and angle of friction, and is to be estimated

because it is a wheel-terrain interaction value that represents a curve fit term for equation

2.2. Its estimated values can be used as a third validation to reasonable numbers, and K

is specific to the wheel-terrain interaction.

• The wheel radius r is a known value.

• The wheel contact arc θ is measured by the pressure pad by the number of pixels sensing

ground along the wheel arc.

The shear stress τ can be estimated from the motor torque output, and governs the wheel’s

instantaneous forward thrust. Shear stress is a function of cohesion and angle of friction and

thus they also influence forward thrust. A decrease in either parameter will decrease maximum

thrust. If a torque greater than the shear strength of a terrain is applied, the wheel will slip.

Additional methods of terrain modelling, like the finite element method, are available. This

method requires the user to have prior information about the terrain and necessitates the use

of large computational resources. Mars regolith is practically unknown terrain, and would

require erroneous assumptions to be made for use of this method. A Mars rover has limited

computational resources which are not sufficient to perform the finite element method in-situ

and in near-real-time, as is the intention of this research for the Barefoot Rover project. This

additional method of modelling is impractical for deployment on a Mars rover.

2.4 Rigid Wheel Terramechanics

Bekker-Wong [5,6] classical terramechanics theory has been the basis for studying the terrame-

chanical properties of planetary terrain. Therefore, it is important to first understand this foun-

dation. Both Bekker and Wong developed wheel-terrain interaction models for rigid wheels

that are driven, towed, stationary, and pushed. Spirit, Curiosity, and Mars 2020 (Perseverance)

wheels are rigid [9]. The Barefoot Rover project uses a single rigid powered wheel mounted

on a test rig. Thus, this thesis is limited to the discussion of powered and rigid wheel-terrain
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interaction. An additional requirement is to consider the grousers, or lugs, on the rover wheel.

These are common features on planetary rovers and are used to increase forward thrust.

Wheel Vertical Loading

For a slow-moving rover, a quasi-static state can be assumed to estimate the load on the wheel

given that dynamic forces are negligible under speeds of 10 cm/s [10]. On the Barefoot Rover

wheel, the pressure pad wrapped around its outer surface allows for explicit measurement of the

vertical loading experienced by the wheel. The vertical load force balance is as follows [10]:

W = rb
∫ θ1

θ2

σ(θ) cos θdθ +

∫ θ1

θ2

τ(θ) sin θdθ (2.3)

Figure 2.2: Free body diagram of the vertical forces acting on the rigid wheel. These forces

are the weight on the wheel W, the the normal stress σ and the shear stress τ, which act over

the contact area represented by angle θ [11].
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The terrain-wheel interaction consists of a continuous radial normal stress and tangential

shearing stress [4]. These are divided into forward and rear sections. The rear part occurs from

θ2 to θm and the forward part occurs from θm to θ1, shown in Figure 2.2. Where these two parts

meet is where maximum normal and shearing stress occurs, and is shown by angle θm.

Shibly [10] states that the stress distributions are nearly linear and thus a linear distribution

can be observed. This distribution can then be approximated by linear functions:

σ1(θ) =
θ1 − θ

θ1 − θm
σm (2.4)

σ1(θ) =
θ

θm
σm (2.5)

τ1(θ) =
θ1 − θ

θ1 − θm
τm (2.6)

τ1(θ) =
θ

θm
τm (2.7)

Shibly found an average difference of 9.34% between the linearized and original nonlinear

stress distribution which is considered sufficient to accurately represent the nonlinear equa-

tions. θ2, the wheel exit angle, is assumed to be zero [10]. 2.3 can now be written as:

W = rb
∫ θ1

θ2

σ1(θ) cos θ + τ1(θ) sin θdθ +

∫ θ1

θ2

σ2(θ) cos θ + τ2(θ) sin θdθ (2.8)

The term rb represents the contact area of the wheel and terrain.

Wheel Sinkage and Loading

Figure 2.3 shows the relationsip between the wheel entrance angle, θ1 (θc), wheel sinkage z,

and wheel radius r.

The sinkage of a wheel is defined as:

z = r cos θ1 − r (2.9)

Where θ1 is the contact arc of wheel and terrain. If θ2 is not assumed to be zero as is the

case here, the contact arc is θc = θ1 - θ2, where θ2 is negative from the vertical. Inversely, the
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Figure 2.3: Geometric relationship between wheel radius rw, sinkage z and contact arc angle

θc, or given the previous assumptions, θ1 [11]

contact arc can be determined by sinkage:

θc = arccos[
(r − z)

r
] (2.10)

Bekker [5] used a bevameter on terrains such as snow, sand and mud to characterize a

normal pressure and sinkage relationship. These relationships were established with circular

or rectangular plates that were hydraulically pressed into the terrain with a known pressure.

Their sinkage was then recorded with increasing pressure. These plates, according to Bekker,

behave equivalently (purely in terms of applied load and sinkage) to wheels of corresponding

dimensions. This relationship, shown in Equation 2.11 also reveals information about the

terrain, such as its compressibility and uniformity:

p = [
kc

b
+ kφ]zn (2.11)

Where kc, kφ and n are terrain parameters estimated by applying a curve of best fit to
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collected pressure p and sinkage z data. The sinkage exponent n offers an indication of the

compressibility of the terrain, as it is indicates the amount of sinkage that occurs given an

applied pressure. Different terrains will exhibit different sinkage exponents based on how much

a wheel can sink in the terrain. Nonuniform terrain will show high variability in the resulting

pressure-sinkage plots.

However, deploying a bevameter onto another planetary surface as part of a rover instru-

ment suite is not feasible given its mass and power requirements. Especially in the context

of auntonomous rover developments, a bevameter is even more infeasible. The rover would

be required to stop for each measurement even if the bevameter were automated, whereas, an

instrumented rover wheel like that in the Barefoot Rover project can supply the same informa-

tion as a bevameter passively and while other science is being conducted. Additionally, any

estimation of the sinkage of the bevameter would be empirical, whereas the Barefoot Rover

wheel can explicitly measure sinkage without need for manual or visual estimation.

Sinkage is a critical variable for estimating the cohesion and angle of friction of terrain.

In Section 3.4, contact area and contact arc, both functions of sinkage, are critical variables

needed for the terrain parameter estimation method. Cross [11] states that wheel sinkage has

been difficult to measure autonomously in the past. He mentions several studies that have been

conducted to try to present a robust method to measure sinkage autonomously. While these

methods produced promising results, none are as accurate as an explicit measurement directly

from the wheel itself.

Wheel Torque

The free body diagram of force around the axis of rotation of the wheel is shown in Figure

2.4. This is the relationship between motor/wheel torque T and wheel-terrain interface shear

stresses.

The torque output by the wheel’s motor is needed to overcome the shear stress experienced

at the wheel-terrain interface . The force balance equation about the wheel axis is as follows:

T = r2b
∫ θ1

θ2

τ(θ)dθ (2.12)

Where b is the wheel width in contact with ground. Taking into account the assumption
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that θ2 is zero and the previous linearization assumptions verified by Shibly, Equation 2.13 can

be expanded to:

T = r2b
∫ θ1

θm

τ1(θ)dθ +

∫ θm

0
τ2(θ)dθ (2.13)

According to Ding [4], the motor torque can be estimated from motor current data. For

every data collection run using the Barefoot Rover wheel, motor current is recorded, and this

data is used to compute motor torque for estimating terrain parameters.

Figure 2.4: Relationship between shear stresses at wheel-terrain interface and wheel torque

T [11].
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Wheel Slip

Wheel slip refers to the difference in actual forward velocity versus intended wheel forward

velocity, or, the difference in actual wheel forward displacement versus intended forward dis-

placement. This effect is seen by the observer as “skidding”, or, the wheel spinning faster than

its forward motion.

Slip velocity V j, according to Higa [12], is the difference between the forward velocity rw

and the tangential component of the travelling speed of a wheel Vt, where Vt = rw, and is

represented as follows:

V j = rw(1 − (1 − i) cos θ) (2.14)

Where the wheel slip ratio i is expressed as:

i = 1 −
V
rw

(2.15)

Where V is the nominal forward velocity. Figure 2.5 shows the relationship between slip

velocity V j, wheel angular velocity w and forward velocity V.

For the Barefoot Rover project, wheel slip is measured by an external string potentiometer

mounted on the rig. A string potentiometer measures linear extension by producing an elec-

trical signal that is proportional to the cable’s extension. As the wheel rolls down the trough,

and thus the rig with it, the string potentiometer records the distance travelled. This distance

is compared to expected distance given the wheel angular velocity and time of the data collec-

tion run. It is possible, however, to see the result of slip in the pressure pad data and work is

being done to estimate slip purely from the pressure pad data. Figure 2.6a and 2.6b show this

variation observed in the data.

The slip deformation, j, is a function of slip ratio and is represented by the following equa-

tion [11]:

j = r[θ1 − θ2(1 − i)(sin θ1 − sin θ2] (2.16)

Given the previous assumption that θ2 is equal to zero, equation 2.18 can be expressed as:

j = r[θ1 − (1 − i)(sin θ1)] (2.17)

j = r[θ1 + i sin θ1 − sin θ1] (2.18)
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Figure 2.5: Slip velocity of a rigid wheel [11].

(a) Low wheel slip pressure pad data. (b) High wheel slip pressure pad data.

Figure 2.6: Two conditions of wheel slip shown through a heatmap of the pressure pad data.

The shear stress along the wheel-terrain interface then becomes:

τ = [c + σ tan φ][1 − exp(
−r
K
θ1 + i sin θ1 − sin θ1)] (2.19)

Cross [11] discussed methods proposed to detect the amount of slip a wheel is experiencing

in-situ. These were using encoder data to compare variations in longitudinal velocity between

18



two wheels, using encoder data in combination with z-axis gyro readings to detect any rotation

about the z-axis compared to commanded rotation, and using motor current data to infer slip

based on the difference between expected current draw. These methods, however, do not pro-

duce an explicit value of wheel slip, but only a flag to indicate that slip is occurring. While this

is useful, it is necessary to obtain an accurate slip ratio for the estimation of terrain parameters.

As mentioned, the Barefoot Rover test setup utilizes a string potentiometer to measure slip.

Though accurate, using a string potentiometer anchored to “zero” location is not feasible for a

Mars rover to determine the slippage of its wheels. This is where another use of the pressure

pad data may come to fruition. For actual deployment on Mars, it will be necessary to develop

an alternative method of determining wheel slip and the pressure pad data offers a potential

source of information to accomplish that.

With the addition of directly measuring contact pressure, the shear stress distribution at the

wheel contact surface is now a function of known parameters and the three unknowns c, φ, and

K, of which are to be estimated.

2.5 Machine Learning Classification

Machine learning is the process by which a computer is fed data in a way that allows the

computer to learn the ability to process and perform the desired activity without the need to be

explicitly programmed to do so or fed with similar or extra data. It is the study of the algorithms

and statistical models that allow computers to perform these tasks without explicit instruction.

In traditional programming, a computer is fed data and a program is then run to determine

an output using the provided data set. In machine learning, data and it’s already known output

is provided to the computer which are then both used to create a program, or model, which can

provide the output when presented with new data. The model relies on patterns in the data to

identify a solution.

In classification, a model outputs a decision as to what class the given example data belongs

to. Binary classification and multi-classification refer to classification types which involve two

classes in the data or more than two classes, respectively. Both types of classification will be

discussed in this thesis.
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2.5.1 Features

Features are the basis on which the machine learning model is trained. The data set is con-

structed as an m × n matrix, where m is the number of examples in the dataset, and n is the

number of features. If the data is a time series consisting of four features, each time step is

another example where information about the features has been collected. The labelled class

of each example is a feature in addition to the three others. For example, the machine learning

model for terrain class prediction discussed in this thesis uses the following four features for

training:

• The wheel contact pressure σ

• The wheel slip i

• The motor torque T

• The terrain type class

If a wheel data collection run contains 300 time steps, or time bins of data, then the feature

set is a matrix of dimensions 300 × 4. If a particular terrain type had 10 data collection runs

performed on it, then the feature set describing that terrain is of the dimension 3000 × 4.

Feature engineering may be good practice when not enough information is presented in the

baseline features one chooses to use, or if the data is an m × 1 time series where extracting

features is necessary. It is obvious when there is not enough information contained in the

existing features because the algorithm will not learn sufficiently to produce a model that can

make predictions with reasonable accuracy. Statistical features are common approaches to

feature engineering. For example, the mean or variance of a time series could be used as

a feature. These features are engineered from existing knowledge and may provide further

insight for the construction of a more robust model.

2.5.2 Training, Testing, and Validation

The steps to creating a robust machine learning model may be summarized by the words;

training, testing, and validation. Of course, before that, one must ensure the data being used is
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representative of the problem and offers unbiased insight into say, different terrain classes. And

one must ensure the features being used or that have been engineered offer enough information

for the model to be trained.

The three keywords that are the title of this subsubsection indicate the portion of data being

used from the overall data set. For training, approximately 70-80% of the data is used. For

testing, 20-30% is used. The validation set may not always be necessary but is good practice.

This set of data is 10-15% of the data set and is used after training and testing to validate the ro-

bustness of the model. However, if cross-fold validation to determine optimal hyperparameters

is done, the validation set is not necessary, because cross-fold validation trains the model on

many different arrangements of training data from the overall data set and iterates over the hy-

perparameters in use to find the most optimal training scenario. Cross-fold validation ensures

the model generalizes well to unseen data and helps to avoid over-fitting.

The test set is data which the model has not seen in training. The labelled classes are

not included in this set, so prediction is done on one less feature than training is performed

on. Testing is done to evaluate the predictions made, the selected error metric(s), and identify

whether insufficient features may be in use or if overfitting is occurring. Overfitting is the term

to describe whether the model can predict well only on the data that it has been presented with

and is not robust to new data.

2.5.3 Learning Methods

There are three types of learning in Machine Learning. These are supervised, unsupervised, and

semi-supervised learning. Unsupervised and semi-supervised learning methods are sometimes

more complex as these are used for datasets without labelled data (and in the case of semi-

supervised, for both labelled and unlabelled data). A common use of unsupervised learning is

clustering. The algorithm will assign the data into a number of clusters that it has identified to

build the model. New data is continuously binned into a class. Anomaly detection is commonly

done through unsupervised clustering.

Supervised learning is carried out when the data classes are already known. For each exam-

ple in a feature set, the labelled class is included in the training set. The model is then trained
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via prior knowledge to make predictions on new and unseen data.

Since the data collected by the Barefoot Rover data has labels (the class of simulant the data

is collected from), unsupervised or semi-supervised learning methods are unnecessary and will

not be discussed further.

2.5.4 Decision Tree Classification

A decision tree at its core is a series of if statements, or, yes or no checks. A series of questions

is asked until the solution is determined. Decision trees take a top-down approach. Meaning,

the roots, or the root node, is at the top of the decision tree and the terminal nodes, or, the leaf

nodes, are at the bottom. The root node represents the population of input data of which is

then divided into two predictor spaces that continue down the tree until leaf nodes are reached.

Decision trees are said to be ‘greedy’ because they look for the best split at the current node

and do not consider future splits that may lead to a better tree/model [13].

Decision trees are solely used as supervised learning algorithms. They have the advanta-

geous attribute that they can be used for both regression and classification problems. In the case

of this thesis, the classification decision trees are used. The decision tree is trained on prior

knowledge and creates a set of decision rules (the model) whereby new data can be applied to

these rules and a prediction can be made [14]. Throughout this process, the features fed to the

tree cannot change.

Figure 2.7 shows a simple decision tree example. Within a decision tree, each internal deci-

sion node corresponds to a feature, and each leaf node to a labelled class [14]. The pseudocode

for the decision tree algorithm is as follows:

• Place the best feature of the dataset at the root node.

• Split the training set into subsets, with each subset containing data with the same value

for a feature.

• Repeat the previous steps on each subset until leaf nodes are found for every tree branch.

The ‘best feature’ refers to the feature that has the most influence on the classification

decision. The two most common criterion for determining the best feature is information gain
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Figure 2.7: An example of a basic decision tree [14].

or the gini index.

Information gain estimates the information contained within each feature. It uses infor-

mation theory to measure the entropy of a random variable, x. The entropy of this random

variable, or feature in this case, is defined as:

H(X) = −
∑
xεX

p(x) log p(x) (2.20)

Where H is entropy and p(x) is the probability of the class. The entropy of a feature allows

for its information gain to be calculated. An example of building a decision tree from [14] will

be used to present this concept.

Shown in Figure 2.8, features A, B, C, D are the predictors and E column class labels are

the target variable. The data contained in features A, B, C, D are continuous and must be

discretized for construction of the decision tree.

Random values were chosen to categorize each feature and are shown in Table 2.1 below.

The two steps to calculate the information gain for each feature are to calculate the entropy

of the target and the entropy for each feature. By subtracting a feature’s entropy from the target

entropy, information gain is found. In this particular example, it is a binary classification with

equal class representation and thus the target entropy can be estimated as one. Calculating the

information gain for feature A is done as follows:
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Figure 2.8: Data example from [14].

A B C D

≥ 5 ≥ 3 ≥ 4.2 ≥ 1.4

< 5 < 3.0 < 4.2 < 1.4

Table 2.1: Random values for feature categorization.

• For Feature A ≥ 5 and class == positive: 5
12

• For Feature A ≥ 5 and class == negative: 7
12

• Entropy(5, 7) = −1[( 5
12 ) log2( 5

12 ) + ( 7
12 ) log2( 7

12 )] = 0.9799

• For Feature A < 5 and class == positive: 3
4

• For Feature A < 5 and class == negative: 1
4

• Entropy(3, 1) = −1[(3
4 ) log2( 3

4 ) + ( 1
4 ) log2( 1

4 )] = 0.8113

• Entropy(Target, A) = P(≥ 5)E(5, 7) + P(< 5)E(3, 1) = (12
16 )(0.9799) + ( 4

16 )(0.8113) =

0.9377

The information gain for feature A is then found by subtracting the entropy of feature A

from the entropy of the target which produces an information gain of 0.06225. Doing these
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same steps for features B, C, and D, it is found the B has the highest information gain of

0.7071 and hence is places at the root node.

The gini index evaluates how often a randomly chosen element would be incorrectly iden-

tified [14]. The lower the gini index, the better. The same data in Figure 2.8 is used and the

data is yet again categorized into the same random values shown in Table 2.1.

The gini index calculation for feature A is as follows:

• For Feature A ≥ 5 and class == positive: 5
12

• For Feature A ≥ 5 and class == negative: 7
12

• gini(5, 7) = 1 − [( 5
12 )2 + ( 7

12 )2] = 0.486

• For Feature A < 5 and class == positive: 3
4

• For Feature A < 5 and class == negative: 1
4

• gini(3, 1) = 1 − [( 3
4 )2 + (1

4 )2] = 0.0.375

• gini(Target, A) = (12
16 )(0.486) + ( 4

16 )(0.375) = 0.4582

Following these same steps to calculate the gini index for features B, C, and D results in

feature C yielding the smallets gini index of 0.2 and is thus considered the best feature and

placed at the root node.

For non-binary classification, the calculation of information gain or gini index is increased

in complexity but still follows the same steps. The categorization (discretization) process will

require additional cases for categorization thus increasing the number of terms within the en-

tropy or gini index calculations. All decision trees, however, are built by making splits at

features, with the best feature at the root node which is dependent on the criterion selected.

Decision trees are prone to overfitting, which in the case of the decision tree, often means

that a deep tree with many branches has been constructed based on nuances within the data that

its been presented with. Overfitting reduces accuracy of prediction on unseen data. Overfitting

can be reduced by pruning, which is a method particular to decision trees.

Pruning is the identification of leafs that are producing losses in the model and cutting up

to previous splits until a positive gain is found [13].
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The advantages of a decision tree are that it is easy to explain and visualize. The logic used

by a decision tree is the same approach by which humans make decisions. Additionally, there

are less hyperparameters to tune compared to other algorithms.

The disadvantages of a decision tree are that it is likely to overfit and steps to mitigate

overfitting must be taken. Decision trees produce a lower prediction accuracy for a given

dataset when compared to other machine learning algorithms. Additionally, calculations for

the construction of the decision tree can become complicated when there are many class labels.

The Random Forest is a type of decision tree algorithm that reduces overfitting and increases

accuracy.

2.5.5 Random Forest

The decision tree model suffers from limitations mentioned in the previous subsection, which

leads to poor results and overfitting. The Random Forest model improves upon these limita-

tions. The Random Forest is a model built of several decision trees. An umbrella algorithm

which incorporates multiple algorithms is known as an ensemble method. The result of each

internal decision tree is averaged, or in the case of classification, the majority class prediction

is taken as the predicted class. The combination of many trees reduces overfitting and creates

a more robust model to new data.

Each tree with a decision tree is trained on different subsets of the training set and is thus

biased to that subset. However, the combination of these individual trees makes for a robust

classifier. Within the trees and each node, a random number of features is selected from all

the features. The feature that allows for the best split according to the information gain or gini

index criterion is used for the split. This feature selection is repeated at the next node. Figure

2.9 shows an example of Random Forest architecture.

There are a few major hyperparameters of the Random Forest model to tune. These are:

• The number of trees in the forest.

• The criterion, gini or information gain.

• The maximum depth of the trees. It is the number of splits that the tree is allowed to

make.
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Figure 2.9: Random Forest architecture [15].

In general, the Random Forest was chosen over other classification algorithms for the fol-

lowing reasons:

• It is easy to visualize the solution and explain it as a result of the decision tree created by

the algorithm. The solution is not a black box.

• It is simple to identify the most important feature(s) and gain insight into the data.

• The Random Forest is a low computationally complex algorithm [13].

2.5.6 Support Vector Machine

The Support Vector Machine (SVM) identifies classes by creating a hyperplane that divides the

data into its respective classes. Figure 2.10 shows a number of possible hyperlane solutions

between two classes, the blue circles and red squares. The x and y axis represent the two

features being considered. The green lines are the possible solutions.

The SVM’s purpose is to identify the best solution out of all the green lines. It finds this

solution by maximimizing the the margin between the hyperlane and the closest points of each
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Figure 2.10: Support Vector Machine example [16].

class. Figure 2.11 shows an example of this maximization.

Figure 2.11: Support Vector Machine example showing maximum margin [16].

For a linear SVM to function properly the data must be linearly separable, meaning a line

must be able to be drawn between the classes. Data is not always linearly separable, but the

kernel method transforms data that is not linearly separable into a higher dimension where it

can be separated [16]. Figure 2.12 shows this transformation. The data is projected from a 2-D

space to a 3-D space and separated by a plane rather than a line.

28



Figure 2.12: Support Vector Machine 2-D to 3-D space transformation [16].

Figure 2.13: Non-linear SVM example results [17].

For multi-class classification, usage of an SVM becomes more difficult. One can construct

a multi-class classifier by combining multiple binary classifiers [18]. These are “one-against-
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all” and “one-against-one” methods [18]. However, it is more computationally complex to use

this type of combination [18]. In addition to “one-against-all” and “one-against-one” methods,

a non-linear approach is necessary in this case. Figure 2.13 shows an example of non-linear

results using the Radial Basis Function (RBF), a non-linear kernel method for SVM.
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2.5.7 Logistic Regression

Logistic regression is a multivariate method for modeling the relationship between independent

variables and dependent variables, or in this case, between features and the corresponding

classes [19]. Because the sigmoid function is used, the logistic regression algorithm is able

to model more complex data, or, data that is non-linear. Linear regression fails when data is

non-linear. Figure 2.14 shows an example of the sigmoid function.

Figure 2.14: Sigmoid function [20].

The sigmoid function is represented by the following equation:

y =
1

1 + exp−(mx + b)
(2.21)

x and y are the x and y coordinates of each point, m is the slope of the line, and b is the

y-intercept. Linear regression attempts to fit all the data to a line which, as shown in Figure

2.15, results in predictions outside of y = 1 and y = 0, which is impossible. The data at y = 1

and y = o represent the two classes (in binary classification), respectively.

When using logistic regression, it is assumed that it can handle the non-linear relationships

between features and classes because a non-linear log transformation of the linear regression

is used [19].

Logistic regression can be used for multi-class classification. it is a modified version which

uses the softmax function rather than the sigmoid function [21]. The softmax equation is

represented by the following:

softmax(x)i =
exp xi∑n

j=1 exp x j
(2.22)
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Figure 2.15: Linear vs. Logistic Regression [16].

.

Binary logistic regression can also be used similarily to binary SVM classification with “one-

vs-all” and “one-vs-one” methods [21]. “One-vs-all” and “one-vs-one” do not require use of

the softmax function.

There are drawbacks to the softmax function. Small differences in the input data are taken

out of proportion and biases the classifier towards a particular class [21].“one-vs-all” and “one-

vs-one” methods perform better but are more computationally complex. The solution to logistic

regression classifier is less physically interpretable than a Random Forest decision tree, which

given the problem at hand of classifying terrain with collected data from a wheel rolling on the

terrain, physical interpretation is of utmost importance.

When Logistic regression is compared to an SVM, it can be expected that SVM will per-

form marginally better [22]. Logistic regression is useful for simpler problems but for more

complex datasets that may not be linearly separable, SVMs are recommended [22]. Therefore,

the logistic regression algorithm was not selected for comparison against the Random Forest.

SVM is the selected comparison model.
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2.5.8 Neural Networks

The neural network is a viable type of machine learning method to pursue for this research.

The drawbacks to the neural network compared to the Random Forest are that a neural network

is a black box method and not easily interpretable. Given the physical nature of the problem at

hand, an interpretable solution where one can understand what the algorithm is picking up on

from the data is necessary. In the case of the neural network, there are more hyperparameters

to tune which themselves include a number of options, such as the number of hidden layer, the

number of neurons in those layers, the training algorithm, the activation function, and the intial

weights [23]. In the context of a rover computer, which is less computationally powerful than a

cellphone, computational complexity is an important issue. Neural networks can often require

large amounts of computational resources to run.

A neural network is a powerful tool but not always necessary, especially when considering

classification using tabular data. Neural networks are best used for images, audio, and text

data [23]. With these points in mind, the neural network will be used if the Random Forest or

SVM models do not perform sufficiently well.

2.5.9 Recurrent Neural Networks

RNN’s are a subset under the banner of neural networks of which the LSTM is the most well

known and most powerful model in the subset. In the case of this research, RNN’s and the

LSTM are not applicable because they take into account temporal changes in data, or, time

dependent data [24]. The data in this case is plotted through time, but it is not time dependent.

Terrain does not change with respect to time it changes with respect to physical conditions. As

such, RNN’s were not considered further.

2.5.10 Multi-Layer Perceptron

Multi-Layer Perceptrons were most widely used for computer vision, though, they are now

considered obsolete when compared to new methods like Convolutional Neural Networks [25].

MLP’s are time invariant and thus can be given time independent data such as the data used in

this thesis. The MLP would therefore classify the terrain at each time step in the data without
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considering the previous time step. The MLP is an algorithm to consider if the Random Forest

or SVM models do not perform sufficiently well.

2.5.11 Performance Metrics

In order to express the performance of a machine learning model, it is necessary to select a

metric to do so. A common metric used for classification problems is the confusion matrix.

Confusion Matrix

In binary classification, the confusion matrix categorizes the predictions into four types: True

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) [26]. True

Positive and True Negative indicate a correct classification of either the positive (1) or negative

(0) class. False Positive and False Negative indicate an incorrect prediction of class [26]. The

confusion matrix displays how many correct and incorrect predictions the model made. Figure

2.16 shows a confusion matrix example.

Figure 2.16: Confusion Matrix [27].

For multi-class classification, the confusion matrix is expanded to include all classes. An

example of a multi-class confusion matrix is shown in Figure 2.17. The numbers in each grid

space indicate the number of predictions made corresponding to the actual class and predicted

class. The downward diagonal is where the actual and predicted classes match, and thus ideally

should contain the highest values.

The accuracy of a classification model is calculated based upon the TP, TN, FP, and FN

values. The equation is shown below:

Accuracy =
T P + T N

T P + T N + FP + FN
(2.23)
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Figure 2.17: Confusion Matrix [28].

Precision is a metric which can be calculated from the confusion matrix. Precision defines

- when the classifier predicts the positive class - how often it does this correctly. In the case

of multi-class classification, precision defines how often the classifier is correct when it has

predicted a specific class. The equation is as follows [26]:

Precision =
T P

T P + FP
(2.24)

Recall is yet another metric which can be determined from the confusion matrix. Recall de-

fines when the class is actually positive, how often the classifier predicts this correctly [26]. In

the case of multi-class classification, Recall is how often a specific class is predicted correctly.

The equation is shown below:
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Recall =
T P

T P + FN
(2.25)

F-1 score is the harmonic mean of precision and recall. It takes both precision and recall

into account. A model with a higher F-1 score is performing better than those with lower F-1

scores [26]. The equation is as follows:

F-1 = 2 ×
precision × recall
precision + recall

(2.26)
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Chapter 3

Detection of Terrain Changes and

Terramechanics Parameter Estimation

The previous chapters presented the background information needed to develop a method to

use the data collected by the wheel to estimate terramechanics parameters and classify terrain

using the Random Forest model. The estimation of grain size also builds upon the previous

terramchanics information, though, some more information is needed and will be covered in

Chapter 5. This chapter discusses work that was done in verifying that changes in terrain could

be detected by the wheel instruments. Two test run types are presented that were used for this

verification.

3.1 Methodology

With the intention of estimating terramechanics terrain parameters using the Barefoot Rover

wheel, it was first necessary to confirm that the instruments on the wheel and the test setup

itself could detect changes or transitions in terrain. If it could not, then attempting to obtain

terramechanics parameters would hold no value. The purpose of a wheel of this type is two-

fold; to carry and move a load (a planetary rover chassis) and to collect data about the planetary

terrain surface that can be meaningfully interpreted by on-board post-processing. If the instru-

ments on the wheel could not detect transitions and changes in terrain then the second portion

of that purpose could not be accomplished.
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Two test runs were designed to verify the wheel could detect changes in terrain. These

test runs were Free Slip and Duricrust test runs. Duricrust will be discussed in its respective

section.

3.2 Free Slip Test Runs

Prior to carrying out the Free Slip test runs, all previous test runs that induced wheel slip accom-

plished this by driving two aluminum stakes into the terrain to specific depths and mounting

this to the rig. A restraining force was thus induced on the rig which caused the wheel to

slip as the motor attempted to overcome this force. This method was adequate for testing the

accuracy of the string potentiometer and observing major differences in pressure pad data, but

is not representative of the actual conditions of a planetary rover. An external resistive force

will likely never be experienced by a rover apart from encountering a rock. Wheel slip will be

a result of changing terrain, cemented to loose sand, as an example. This change will also be

smaller in magnitude and require more sensitive instruments than detection of high slip where

the wheel is already experiencing a substantial slip ratio (> 0.6). Free Slip runs aimed to verify

the detection of these natural transitions to a higher fidelity.

To set up this compaction transition, the first half of a MMS 2mm trough was highly com-

pacted and the second half was made to be loose and fluffy. This corresponds to a terrain

transition from higher cohesion to lower cohesion. Figure 3.1 shows the test setup for a Free

Slip run prior to running the data collection run. Note that the transition is not visible to the

naked eye, of which optical navigation systems rely on.

The point of interest for data analysis in this case was at the location of material transition.

The two most important pieces of data were the slip ratio and wheel-terrain contact area. Fig-

ure 3.2 shows the slip ratio data for all four Free Slip data collection runs. The vertical black

bar indicates the time at which the wheel passed over the location of material transition.
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Figure 3.1: Free Slip test run setup.

Figure 3.2: Free Slip test run slip ratio data for all four test runs of this type.
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Figure 3.2 shows that at the location of material transition, slip is detected to increase, as

was expected. The data is plotted over time indicating the length of time the wheel rolled

over the simulant. An increase in slip in approximately the first 80 seconds of the test run is

observed which is attributed to the wheel starting from rest, initially experiencing some slip,

and then settling into steady state. Figure 3.3 shows a normal MMS 2mm flat no-slip run as a

means of comparing data trends and verifying that the trend observed in the Free Slip data is

not one that occurs naturally in other data.

Figure 3.3: Comparison of Slip ratio for a normal flat run

Figure 3.4: Free Slip contact area data.

The contact area results are shown in Figure 3.4. One can observe an increase in contact
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area seen by the pressure pad, as was expected. The point of inflection is noted to be slightly

off from the time at which the wheel crossed over the terrain transition, which is attributed to

the noise levels in the pressure pad data.

The Free Slip test runs showed that the instruments on the wheel and the setup could detect

transitions in terrain that resulted in low magnitude changes in slip and contact area.

3.3 Duricrust Detection

Duricrust is a cemented or highly cohesive terrain layer either on the surface or near to the

surface. This cemented layer is primarily induced by water soluble minerals that remain after

evaporation, one of which is often salt. Duricrust can be dangerous to planetary rovers, as

was observed in the case of MER Spirit which broke through a layer of duricrust and became

immobilized in the low cohesive sand below, effectively ending the mission [29]. It’s detection

is important for improving the safety and traverse capabilities of a rover [30]. Because of this

danger, a duricrust data collection run was designed for the Barefoot Rover wheel to examine

the wheel’s ability to detect this type of terrain. A trough of MMS 2mm sand was hydrated

and left to dry over one week. A hard layer of crusted terrain formed over top loose 2mm sand.

Figure 3.5 shows the trough as it was before carrying out the data collection run. After the

test run, the wheel grouser marks were barely visible on the duricrust because of its level of

cementation.

Only one duricrust test run was performed because of the time needed for getting the sand

in the proper condition and the limited availability of Mars simulant. The results of this singu-

lar data collection run, however, were promising. As is shown in Figure 3.6 and in Figure 3.7,

there is a decrease in slip ratio and wheel-terrain contact area versus normal non-duricrust

MMS 2mm data. The reduction in slip and contact area is the expected result and one which

indicates that the instruments on the wheel and such a setup can detect duricrusted terrain.

Lower slip was expected because duricrust is a hard cemented layer of sand, and therefore the

wheel rolls on it as if it were rolling on pavement. The same applies to sinkage, the wheel

simply cannot sink as much on duricrust because of its cemented nature.
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Figure 3.5: Duricrusted MMS 2mm sand.

Both the Free Slip and Duricrust test runs confirmed that the instruments on the wheel and

using a rover wheel in such a manner is possible and able to detect transitions in terrain to

a level that will be useful for rover driving and for the scientific community. Data like this

accompanied by terrain parameter estimations can be used to flag areas of interest for further

scientific study or to avoid driving further into the forthcoming terrain. Indications of ce-

mentation levels (which indicate certain weathering or geologic processes) can help geologists

understand formation processes on a planetary surface [31].

Figure 3.6: Slip ratio data from the duricrust test run.
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Figure 3.7: Contact area data from the duricrust test run.

It is important to note that for the detection of duricrust, differences in slip and contact area

are not enough alone. The wheel could also be detecting the existence of bedrock underneath

the sandy surface. The existence of bedrock can be checked by using cameras on the rover

to examine if bedrock has been revealed in the rover wheel tracks. Duricrust detection will

require additional instruments for verification and the instrumented wheel data can serve as the

preliminary flag that the rover may be driving into duricrust.
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3.4 Parameter Estimation Method and Results

The previous sections presented the verification that the instruments on the wheel and that the

Barefoot Rover test setup could be used to detect changes in terrain. This sections discuss

the development of the process to which the terramechanics parameters can be estimated from

collected data and the results of this process. The first section describes the method for calibrat-

ing the pressure pad to physical load values and the second section describes the optimization

method for estimating terrain parameters. The second section presents the results.

3.4.1 Methodology

Pressure Pad Calibration

As noted previously, the pressure pad mounted around the outer surface of the wheel shown

in Figure 3.8 does not produce physical load readings unless otherwise calibrated. Thus, cali-

bration was necessary to input wheel contact pressure into the classical terramechanics models

for parameter estimation. The pressure pad is a grid of 96 × 20 pixels, or taxels, which sense

applied load and output a data value. Each quadrant of the pressure pas is 24 × 20 taxels in

size and each taxel has an individual calibration curve from raw output to physical value. It

was not known whether a linear or non-linear calibration curve would be found for each taxel,

or whether all taxels would follow a linear or non-linear calibration. The reasoning behind this

concern was that the pressure pad had been used for quite some time and had likely experienced

degradation. Some taxels may be now insensitive or completely unresponsive. Additionally,

the pressure pad layers may become permanently deformed after prolonged use, resulting in

various base readings for each taxel. Thus, each taxel will have its own calibration curve.

The procedure to calibrate the pressure pad was developed to produce the calibration curves

for the individual taxel. There were two iterations of this procedure which are discussed below.

Figure 3.9 shows the wheel resting on the plank used for calibration. Both procedural iterations

used this plank.

Iteration 1: The wheel was rolled down the plank while collecting pressure pad data with

increasing weights mounted internally. These were done in order of 10, 20, and 30 lb incre-
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Figure 3.8: The Barefoot Rover wheel with pressure pad wrapped around the wheel and under

grousers.

Figure 3.9: The Barefoot Rover wheel resting on calibration plank.

ments. The raw data output and known total loading was compared to form the calibration

curves. To start, it was assumed that each taxel would show a linear calibration curve. Upon

analyzing the slope coefficients of the linear trends an interesting anomaly was observed shown

in Figure 3.10. There are noticeable horizontal regions where the slope coefficient was near or

at zero, which indicated an incorrect fit. It was determined the horizontal regions of poor fit
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were due to the width of the plank, which was less than the width of the pressure pad, and so

created anomalous readings at the edge of the plank. The second iteration of the calibration

runs aimed to fix this.

Figure 3.10: Slope coefficients for the individual pressure pad taxels.

Iteration 2: The wheel was set up so that one edge of the pad aligned with an edge of

the plank. The wheel was then rolled, while collecting pressure pad data, down the plank.

Upon reaching the end of the plank the wheel was reset to the starting angle, offset so that the

opposite edge was aligned with an edge of the plank, whereupon the wheel was then rolled

back up the plank while collecting pressure pad data. In this way, the anomalous edge zones

were blanketed by good data for all the pressure pad taxels. The resulting slope coefficients are

shown in Figure 3.11, where one can see that the poor data regions no longer exist.

It was then necessary to examine the R2 (or R squared) score for each taxel linear fit. This

score indicates how well the collected output data to increasing mounted load follows a linear

trend, as shown in Figure 3.12

Many of the pressure pad taxels follow a linear calibration curve well. There are four no-

ticeable vertically oriented regions of poor fitting. These are where the four pressure pads

overlap to form the single large pad, which created insensitive regions. These are not consid-
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Figure 3.11: Slope coefficients for the individual pressure pad taxels.

Figure 3.12: R2 Score for every pressure pad taxel linear calibration fit.

ered in any analysis of the data and any time bins where wheel contact occurs in these known

regions are removed in post-processing. There are then singular or small groups of taxels which

do not follow a linear calibration fit. These taxels are considered to be insensitive or poorly

performing taxels and are removed by post-processing before data analysis. What remains for

further analysis is approximately 87% of the pressure pad taxels and their output data for each

data collection run.

The calibration was expected to produce physical pressure values which would indicate a

total load on the pressure pad close to that of the wheel itself, which weighs 30 kg, or has a

mass of 294.3 N. This was verified by using the pressure pad data from a flat no-slip MMS

2mm run and applying the calibration to each taxel and summing their output. Load felt by the
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wheel was estimated for each time bin of the data collection run and so an instantaneous, not

bulk, load is produced. The resulting loads are shown Figure 3.13. There is a maximum error

of approximately a 10% compared to the expected 294.3 N load. The rise at the beginning of

the load curve is attributed to the wheel starting its roll and having not yet reached steady state.

The fall may be attributed to the rig taking off some load from the wheel, though this was never

shown to happen. The loading estimation was repeated for several more data collection runs

with similar results. Total instantaneous pressure is determined by dividing the load by contact

area as seen by the pressure pad in the same time bin.

Figure 3.13: The instantaneous load felt by the pressure pad at each time bin during a data

collection run. The red line shows expected wheel loading.

Like most instruments, the pressure pad degrades over time. Taxels on the pad either begin

to malfunction or become entirely insensitive. The fabric and foil-like layers of the pad can

also become permanently deformed after long periods of use, resulting in incorrect base value

data readings. All of this means that the pressure pad should be calibrated once again after

each data collection campaign. The data discussed in this thesis was collected during one data

collection campaign, or, approximately four months of use.
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Terrain Parameter Optimization Method

With the development of contact pressure estimation completed, all required inputs for esti-

mating terrain parameters using the wheel-terrain interface shear stress distribution equation

could be obtained from the wheel data. The equation is again shown below:

τ = [c + σ tan φ][1 − exp
− j
K

] (3.1)

Cohesion c, angle of friction φ, and shear modulus K are to be estimated. The known

variables are then shear stress τ, contact pressure σ, and slip deformation j. The shear stress is

obtained using the following method as described by Sullivan et al. [1]:

τ =
Fs

A
(3.2)

Where A is the wheel contact are and is a known value and Fs is the shear force and is

related to motor torque:

torque = rFs (3.3)

Where r is the radius of the wheel and is a known value. Motor torque can be determined

by collected motor current data and motor efficiency parameters:

torque = Iηκζ (3.4)

Where I is motor current, η is transmission efficiency, κ is torque constant, and ζ is the

gear ratio. All of these values are known for the motor powering the Barefoot Rover wheel.

Following the method outlined in equations 3.2 - 3.4, shear stress is determined. Contact

pressure or, sigma, is known from collected pressure pad data. Slip deformation j is determined

through the following:

j = r(θ + i sin θ − sin θ) (3.5)

Where θ is the contact arc and is a known value measured by the pressure pad and i is the

slip ratio and is a known value measured by the string potentiometer.

To then estimate terramechanics terrain parameters, focus is again turned to equation 3.1.

There are three unknowns and three known values. The shear deformation modulus K is esti-

mated purely because it is not known, however, it holds little physical meaning for terrain and

is not discussed further.
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To estimate three unknowns simultaneously with one equation, the built-in sklearn curve-fit

optimization function was used in Python. The optimization is done over moving windows of

the data for an individual data collection run. The best performance window was determined

to be between two data points, driven by the noisy nature of the wheel data. The optimization

bounds are set to be outside of known ground truth cohesion and angle of friction values for

the particular simulant terrain. In this way, the bounds are not “driving” the solution, the data

is. It was necessary to apply a post-processing running mean smoothing function to the data

prior to the parameter estimation.

Curve-Fit Function

Shear stress is determined at each time step in the data using equations 3.2 - 3.4. If a data

collection run on a simulant type is 300 time steps, then shear stress is a one dimensional time

series of 300 data points. Knowing that shear stress can also be represented by equation 3.1,

this time series can be plotted and represents a function where information about the three

terrain parameters c, φ and K for that terrain is captured. This information is supported by

the known values τ, σ and j in equation 3.1. Fitting a curve to the plotted data allows for the

calculation of the terrain parameters that best fit the plotted time series, which can be achieved

with the curve-fit function [32]. Because there are three variables to identify, multivariate

interpolation is needed, and the least squares method was selected due to the non-linear nature

of the function.

Curve-fit reads in a function, in this case defined as equation 3.1, fits a curve to the provided

y-values and returns the best fit values for the provided function [32]. The curve-fit function

in this case does not fit the entire time series because the raw data contained too much noise

for curve-fit to estimate a proper fit. To deal with the high noise, the data is fed to curve-fit

in windows of three points, which then produces “apparent” rather than bulk terrain parameter

estimates.
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3.4.2 Terrain Parameter Estimation

The previous section discussed the work done, and method development in order to proceed to

estimating terramechanics terrain parameters based upon data collected by the Barefoot Rover

wheel and its accompanying instruments. This section presents the results of terramechanics

terrain parameter estimation for normal flat data collection runs on MMS 2mm and GRC-01

simulants, Free Slip on MMS 2mm simulant, and the duricrusted MMS 2mm simulant.

3.4.3 Nominal flat MMS 2mm and GRC-01

The two simulants discussed in this section were chosen for their greatest dissimilarity in

ground truth cohesion and angle of friction values; a result of their individual characteristics of

soil makeup and grain size.

It is important to note that these parameter estimations are “apparent” cohesion and angle

of friction values. The resulting cohesion and angle of friction values at each time step are the

product of the instantaneous wheel-terrain interaction at that window. These apparent terrain

parameters are then compared to the bulk ground truth values, with the expectation that the

apparent values throughout a data collection run will plot within the bulk ground truth range

bands with little error. Apparent values, rather than bulk estimates, contain greater resolution

in terms of information about changes occurring in the terrain as the rover drives. This greater

resolution is useful for both rover drives and planetary geologists, and for the development of

autonomous rover systems. Figure 3.14 shows the apparent cohesion values of seven MMS

2mm flat data collection runs. The data from seven test runs is simply appended together to

form one larger time series. No averaging or other processing takes place. The horizontal red

bands indicate the ground truth bands for cohesion of the MMS 2mm simulant [33].

From Figure 3.14, it is shown that approximately 90% of the time, the optimization esti-

mation method produces values of cohesion within the known ground truth range. The 10%

of time where the results fall outside of this band only do so with approximately 8% error.

This small error indicates that the data collected and the method used for analysis is sound and

results in useful terrain parameter values.

It is expected that the trend observed in cohesion results should be similar in angle of fric-
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Figure 3.14: The resulting cohesion values of seven flat MMS 2mm data collection runs.

tion results. There should be this correlation because, as discussed previously, both cohesion

and angle of friction are shear strength components of terrain. When the shear strength of a

terrain is reduced by a decrease in cementation or smoothing of grains both components of

shear strength will decrease. Figure 3.15 shows the angle of friction estimations for the same

seven runs shown in Figure 3.14. The expected correlation of trend is observed.

Figure 3.15: The resulting angle of friction values of seven flat MMS 2mm data collection

runs.
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The same cohesion and angle of friction estimates were made from data collected on the

GRC-01 simulant. The data collection runs were of the same flat type and no changes were

made to the wheel and rig setup. Figure 3.16 and Figure 3.17 show the resulting terrain param-

eter estimates. The horizontal red lines again indicate the known ground truth range for each

terrain parameter for GRC-01 [34]. The same correlated trend between the two parameters is

observed.

The results shown in this section showcase how the wheel data and estimation method

produces reasonable cohesion and angle of friction estimates that are, 90% of the time, within

known ground truth ranges. It also highlights that the terrain parameter estimate values change

from simulant to simulant as a result of the collected data, indicating that the instrumented

wheel is able to detect different terrains. The subsequent sections present terrain parameter

estimation results on the previously discussed Free Slip and Duricrust data collection runs.

Figure 3.16: The resulting cohesion values of ten flat GRC-01 data collection runs.
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Figure 3.17: The resulting angle of friction values of ten flat GRC-01 data collection runs.

3.4.4 Free Slip

When the Free Slip data was analyzed to confirm that the wheel and accompanying instruments

could detect slight transitions in terrain, the natural next step was to obtain terrain parameter

estimations from the same data. With decreasing compaction, one would expect, and terrame-

chanics models dictate, that cohesion and angle of friction would decrease as well as a result

of the decreasing shear strength of the terrain. Figure 3.18 shows the cohesion and angle of

friction estimates for a Free Slip Run, with similar results observed for the others.

Figure 3.18: The resulting terrain parameter estimates for a Free Slip data collection run.
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Figure 3.19: The slip ratio data for the data collection run used for Figure 3.18.

The black vertical line indicates the time at which the wheel rolled through the transition

region to less compacted terrain. For reference, the slip ratio data collected on the same data

collection run in Figure 3.18 is shown in Figure 3.19.

What Figure 3.18 shows is that the terrain parameter estimates reasonably represent a com-

paction transition within the same terrain and within an expected value range. Not only are

these terrain estimates made using slip ratio and contact area data, but also are made with shear

stress from motor current data and calibrated pressure pad data.

3.4.5 Duricrust

The terrain parameter estimation for the duricrust data was contrary to that of the other pa-

rameter estimations done. It was expected, or rather hoped, that the estimation method would

produce (as a result of the collected data) terrain parameter values outside and greater than the

known ground truth ranges for the MMS 2mm simulant (the same simulant was used for the

duricrust). Duricrusted terrain is highly cemented and therefore should have a greater cohesion

and angle of friction than nominal MMS 2mm simulant. Ground truth values for duricrust

do not exist and as a result, it was not known what values in particular to expect, but it was

expected that the terrain parameter estimations should be greater than the nominal ranges and

indicate a change in terrain. Figure 3.20 and Figure 3.21 show the resulting terrain parameter
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estimations. The horizontal red lines indicate the known ground truth values for the particular

parameter of normal non-duricrusted MMS 2mm simulant.

Figure 3.20: The cohesion estimates for the duricrust data.

Figure 3.21: The angle of friction estimates for the duricrust data.

As Figure 3.20 and Figure 3.21 show, the resulting terrain parameter values are indeed out-

side and greater than what one would expect for a normal MMS 2mm simulant. This result in-

dicates that this type of instrumented wheel can be used for the detection of anomalous terrains,

or terrains which exhibit characteristics outside of expectation. Not only does this technology

and methodology have applications for the unsupervised in-situ machine learning clustering
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of terrain encountered on Mars, but also in rover safety and as a feedback loop in autonomous

rover driving systems for the flagging or warning of unsafe or previously unencountered terrain

types. Geologists and planetary scientists will find great use in apparent cohesion and angle

of friction knowledge for terrain on Mars and other planetary bodies because this increases

the resolution at which information about the terrain is known and can help them understand

formation processes.

Some further uses for estimating cohesion and angle of friction values on Mars and other

planetary bodies include; the development of more representative Mars simulants using the

terrain parameter estimations as a baseline for the creation of these new simulants. All wheel

data will play a role in this aspect so that simulants here on Earth may interact with tested

rover wheels more alike how they will interact with each other on the target celestial body.

Additionally, the collected data and terrain parameter estimates can be used as a ground truth

for the estimation of terrain makeup using orbital thermal inertia data [2]. For deployment and

any uses in machine learning, it is recommended that unsupervised methods be pursued, as

these are most suited to categorizing unseen and new information, such as terrain previously

undisturbed for thousands of years. Additionally, for deployment, a method to estimate wheel

slip from pressure pad data will need to be developed. Using an external string potentiometer is

not feasible. As discussed previously, there are distinct differences between low and high slip

pressure pad data which may be useful for the prediction of slip ratio using a machine learning

regressor.
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Chapter 4

Terrain Classification

This chapter outlines the methodology and results of the classification of terrain types using

data collected by the Barefoot Rover wheel. The following will be discussed:

• The data, pre-processing and feature selection

• Cross-fold validation and hyperparameter tuning

• Results

4.1 Data, Pre-Processing and Feature Selection

The data used to create the feature set for classification are time series of sensor data from

individual data collection runs. For a given terrain, these time series are combined to form a

larger time series that includes every example of data on that terrain that has been collected (in

the same data collection run configuration, no slip and flat-level terrain). For a given sensor, the

data for each terrain is appended to form a time series of different terrain data for this sensor.

For use in the Machine Learning model, this must be combined with the relevant sensor data

and engineered features and a corresponding class label for each example. Figure 4.1 shows an

example of data for a single feature, before pre-processing.

One can see in Figure 4.1 that outliers exist in the data which represent most likely an

anomaly in the function of the sensor. With reference to Equation 2.14, in order for slip ra-

tio to be negative, V
rw must be greater than 1. This is only possible if V is greater than rw.
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Figure 4.1: Time series of slip ratio data from two terrains: 2MM and GRC-01 simulant. This

is an example for a single feature (pre-filtering).

It is impossible for forward velocity V to be greater than the constant value of rw unless an

external pushing force in the positive direction of forward velocity is applied. This force was

not applied during any data collection run, and therefore, the negative slip values represent an

inconsistency in the sensor readings. The positive outliers are equally as anomalous given that

they suggest the wheel, in approximately five time steps of 9.2 milliseconds each, experiences

an increase in slip ratio from approximately 0.05 to above 0.5. Meaning, that in approximately

0.046 seconds, the wheel forward velocity decreased by about 70% from approximately 0.04

m/s to 0.0129 m/s and then back to 0.04 m/s in another 0.046 seconds. Any such occurrence

would have been noticed during testing, and is unrealistic given the inertia of a 30 kg wheel,

and as such these values are anomalies of the sensor and should also be filtered out. Figure 4.2

shows the result of the filtering.
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Figure 4.2: Time series of slip ratio data from two terrains: 2MM and GRC-01 simulant. The

time series is example data for input into the machine learning algorithm for training and testing

(post-filtering).

The three sensors/engineered features are as follows:

• The pressure pad data is used as a feature. The pad data is calibrated to physical pressure

values as discussed in Section 3.4. The contact pressure feature is thus engineered from

raw data.

• The potentiometer sensor data is used as a feature. This sensor outputs actual distance

travelled, which is compared to the distance the wheel believes it has travelled based on

run time and angular velocity. Slip ratio is then calculated, and is used as an engineered

feature.

• The motor current data is used to engineer the motor torque feature using the method

outlined in Section 3.4.

These three features were selected given their important in classical terramechanics models.

Contact pressure is related to sinkage, and these two parameters are highly influenced by terrain

cohesion and angle of friction [4]. Slip is also a crucial indication of terrain cohesion and angle
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of friction, which are the two terrain parameters which most divide terrains from each other.

These two features combined (pressure and slip) offer significant insight into the behaviour of

terrain. The motor torque is a variable needed to calculate shear stress τ at the wheel-terrain

interface as seen in Section 2.2. The shear stress is influenced once again by cohesion and

angle of friction. Slip and shear stress offer insight into the shearing performance of the wheel-

terrain interaction, while pressure offers insight into the vertical loading performance of the

wheel-terrain interaction. Further features were to be added if found to be necessary, but this

was not the case.

4.1.1 K-Fold Cross Validation and Hyperparameter Tuning

Cross validation is used in Machine Learning to determine the generality of a machine learn-

ing model, or, its robustness to unseen data. K-fold cross validation splits up the dataset, K

number of times, into training and testing sets (sometimes referred to as validation sets) that

are different for each K. In this way, it can be seen what the average performance of the model

is and testing can be done on many different portions of data selected from the overall dataset.

Figure 4.3 shows an example of how the dataset is split for each K.

Figure 4.3: An example of K-fold cross validation [35]

In Figure 4.3, K is equal to ten, and one can see that the accuracy of the model changes

when varying the training and test/validation sets used. For each K, a different 10% of the
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data is selected for testing/validation, but never the same data, and there is no overlap. The

accuracies are averaged to obtain a more holistic perspective on the model’s accuracy.

When multi-class classification is being done, cross validation becomes even more impor-

tant [35]. In general, values of 5 or 10 for K are used, depending on the size of the dataset, as

these values of K historically do not suffer from high variance of results nor high bias [35].

Hyperparameter tuning is done concurrently with K-fold cross validation. Hyperparameters

are metrics of the machine learning algorithm, and for the Random Forest, these are:

• Number of decision trees in the random forest. Usually, the higher the number, the better,

but there is a limit to the benefit [36].

• The maximum depth of the trees. This parameter governs the number of splits made. If

unconstrained, the tree will split until every leaf is pure, where every sample at that leaf

is from the same class [37].

• The minimum number of samples (feature examples) to make a split. This value can

vary from at least one sample at a node to every sample at a node [37].

• The split criterion, either gini or entropy.

• The minimum samples leaf, which is the number of samples required to be contained

within a lead node [37].

• Maximum features, which is the number of features that are considered when looking

for the best split [37].

The metrics to tune for the SVM model are:

• Kernels, these are used to transform the data from low dimensional input space to a

higher dimensional space. This transformation is particularly useful in non-linear prob-

lems [17].

• C (regularisation), is the term which tells the SVM optimization how much error or

misclassification is tolerable [17].
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• Gamma, which governs the distance which is taken into account to calculate the plausible

line of separation [17].

One can determine the “best” model and its corresponding hyperparameters when perform-

ing K-fold cross validation.

K-fold cross validation can require a significant amount of computational power to run as

the model must be trained and tested for each k, and the data split into their respective sets. If

sufficient computational power is not available, this can limit one’s ability to properly perform

cross validation.

4.1.2 Experiment Zero: Binary Classification of GRC-01 and MMS 2mm

Mars terrain simulants

To test the Random Forest’s and SVM’s ability to classify terrain based upon the features

selected, a simple binary classification was performed. The non-linear kernel options were

explored for SVM multi-class classification rather than the linear SVM ”one-vs-all” methods

in an effort to reduce computational complexity. K-fold cross validation was used to tune

the hyperparameters and assess the model’s average accuracy. For cross validation, K was

selected as 5, and the validation was iterated 20 times on portions of the hyperparameter ranges

provided, for a total of 100 fits for validation. Table 4.1 and 4.2 show the range of values,

or setting options, that were provided as possible solutions to the hyperparameter settings.

The ranges were taken from [36] and [17] with adjustment with respect to the number of

features in this thesis work. Table 4.3 and 4.4 show the tuned hyperparameters after K-fold

cross validation.

4.1.3 Experiment One: Multi-Class Classification of GRC-01, MMS 2mm,

and WED-730 Mars terrain simulants

Once binary classification of terrain was verified as possible, a third terrain, WED-730, was

added to the dataset. WED-730 was added with the intention to examine the capabilities of

multi-class classification of these terrain simulants given the features used. Table 4.5 and 4.6

63



Parameter Range

Number of Trees 10:1000

Maximum Depth 10:110

Minimum Samples Split 2, 5, 10

Criterion ‘gini’, ‘entropy’

Maximum Features 1, 2, 3

Minimum Samples Leaf 1:10

Table 4.1: Hyperparameter ranges/options for Random forest using K-fold cross validation

Parameter Range

Kernel ‘rbf’, ‘sigmoid’

C 0.1, 1, 10, 100

Gamma 1, 0.1, 0.01, 0.001

Table 4.2: Hyperparameter ranges/options for SVM using K-fold cross validation

Parameter Tuned Setting

Number of Trees 560

Maximum Depth 54

Minimum Samples Split 2

Criterion ‘entropy’

Maximum Features 2

Minimum Samples Leaf 1

Table 4.3: Tuned hyperparameters for Random Fores binary classification of GRC-01 and

MMS 2mm.

show the tuned hyperparameter settings of this experiment.
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Parameter Range

Kernel ‘rbf’

C 1

Gamma 0.001

Table 4.4: Tuned hyperparameters for SVM using K-fold cross validation

Parameter Tuned Setting

Number of Trees 450

Maximum Depth 54

Minimum Samples Split 2

Criterion ‘entropy’

Maximum Features 2

Minimum Samples Leaf 1

Table 4.5: Tuned hyperparameters for binary classification of GRC-01 and MMS 2mm.

Parameter Range

Kernel ‘rbf’

C 1

Gamma 0.001

Table 4.6: Tuned hyperparameters for SVM using K-fold cross validation

4.1.4 Experiment Two: Multi-Class Classification of GRC-01, MMS 2mm,

WED-730, and MMS Coarse Mars terrain simulants

Once the multi-class classification capabilities of terrain with the dataset was determined, a

fourth terrain, MMS Coarse, was added. This terrain is particularly interesting for use in

discussing the performance of the features used because MMS 2mm and MMS coarse are the

same terrain ground into different grain sizes. Wheel performance will be different on each

terrain, though marginally. Experiment Two was to examine how well the model performed in

classifying similar terrains. Table 4.7 and 4.8 show the tuned hyperparameter settings for this
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experiment.

Parameter Tuned Setting

Number of Trees 450

Maximum Depth 54

Minimum Samples Split 2

Criterion ‘entropy’

Maximum Features 2

Minimum Samples Leaf 1

Table 4.7: Tuned hyperparameters for binary classification of GRC-01 and MMS 2mm.

Parameter Range

Kernel ‘rbf’

C 1

Gamma 0.001

Table 4.8: Tuned hyperparameters for SVM using K-fold cross validation

When considering the options to improve model performance, it is customary to first con-

sider feature engineering and gathering supplemental data [36]. When it was seen that the

selected features performed well, further feature engineering was not done. It was also not

possible to obtain more data (the data set was already quite large) due to the assembly of a

new wheel (with no change to design) and the phasing out of the existing wheel as it’s sensors

degraded. The data used in this thesis work was collected over a year ago when the wheel’s

components were new. For these reasons, hyperparameter tuning was done. Hyperparameter

tuning, and thus cross validation, work to reduce the effects of overfitting [36].
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4.2 Classification Results

The subsequent sections discuss the performance characteristics of the two classifiers used in

this work, including confusion matrices and metrics.

4.2.1 Experiment 0: Binary Classification of GRC-01 and MMS 2mm

Mars simulants

The performance metrics of the two classifiers are shown in Table 4.9. One can see that the

Random Forest model outperformed the SVM model. The confusion matrix is shown in Figure

4.4.

Model Accuracy Precision F1 Recall

Random

Forest
0.94 0.9423 0.9418 0.9407

SVM 0.6149 0.6125 0.6105 0.6106

Table 4.9: Average 10-fold cross validation performance scores.

Figure 4.4: Confusion Matrix for Random Forest binary classification of MMS 2mm (Class 0)

and GRC-01 (Class 1).
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4.2.2 Experiment 1: Multi-Class Classification of MMS 2mm, GRC-01,

and WED-730 Mars simulants

The performance metrics of the two classifiers are shown in 4.10. Once again, the Random

Forest performed better than the SVM. The confusion matrix is shown in Figure 4.5

Model Accuracy Precision F1 Recall

Random

Forest
0.909 0.9083 0.9077 0.9080

SVM 0.5983 0.5688 0.5717 0.6006

Table 4.10: Average 10-fold cross validation performance scores.

Figure 4.5: Confusion Matrix for Random Forest multi-class classification of MMS 2mm

(Class 0), GRC-01 (Class 1), and WED-730 (Class 2).
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4.2.3 Experiment 2: Multi-Class Classification of MMS 2mm, GRC-01,

WED-730, and MMS Coarse Mars simulants

The performance metrics of the two classifiers are shown in Table 4.11. Its clear that through

all three experiments Random Forest is able to better capture information from the data to

classify terrain. The confusion matrix is shown in Figure 4.6

Model Accuracy Precision F1 Recall

Random

Forest
0.8114 0.8122 0.8115 0.8135

SVM 0.4669 0.4342 0.4359 0.4767

Table 4.11: Average 10-fold cross validation performance scores.

Figure 4.6: Confusion Matrix for Random Forest multi-class classification of MMS 2mm

(Class 0), GRC-01 (Class 1), WED-730 (Class 2), and MMS Coarse (Class 3).
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Chapter 5

Estimation of Terrain Grain Size

An area of interest to planetary scientists is the estimation of terrain grain size. Grain size can

be used to infer the history of an area of a celestial body and what geographical processes may

have occurred throughout it’s history. According to Nadine Barlow [31], the size of terrain

materials at a specific location on a planet’s surface depend on the geological processes that

occurred or are occurring in that area. Weathering breaks material into smaller pieces of that

material. Weathering can be an indication of the existence of water in the area in the past [31].

Differences in colour on the surface of Mars are, in addition to other processes and the presence

of various minerals, are due to changing grain size. It can be an indication of the composition

of regolith at that location. Grain size can be interpreted from thermal inertia data, as larger

rocks will hold energy longer than fine grained sands [31]. While external estimations provide

insight, the ideal case is to gain a more direct measurement of grain size from a planetary rover

in-situ. It was investigated whether this could be done with Barefoot Rover data. The ability

of a sand to compress under load is influenced by the grain size of the sand. Larger grains

are unable to pack as closely together as smaller grains. Grain roughness also influences sand

compressibility. The sinkage exponent is a terramechanics terrain parameter that sheds light

on the compressibility of terrain and is shown as N in the following equation [4]:

Fn = rb(θ1 − θ2)[KsrN(cos θm − cos θ1)N] cos θm/2 (5.1)

Where Fn is the load felt by the wheel, r is the wheel radius, b is the contact width, Ks

is the sinkage modulus and is influenced by b. θ1, θ2, and θm are contact angles and where
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the maximum pressure occurs, respectively. Ks = Kc/b + Kφ. Values for Kc and Kφ were

taken from [5] for dry sand and were 3.9 and 0.1, respectively. Ks can then be calculated

for at each time bin using information about b from pressure pad data. All other terms in

5.1 except for N (which is the sinkage exponent, and is to be estimated) can be determined

through Barefoot Rover wheel data. The goal of sinkage exponent estimation is to determine if

a correlation of reasonable bounds exists between sinkage exponent and grain size, in order for

grain size estimates to be made in situ from Barefoot Rover wheel data. The sinkage exponent

estimation was performed in Python, where the scipy minimize function was used to regress

each time step of data to determine sinkage exponent values for eight data collection runs

each for MMS Coarse, MMS Intermediate, and MMS 2mm Mars simulants. The least squares

method ‘SLSQP’ was used for the minimize function. Grain sizes of the three simulants in

question were taken from data collected by an individual at NASA-JPL and was available in

the Barefoot Rover project repository. The three simulants were chosen for their sequential

decrease in grain size from Coarse to 2mm, which would make it more obvious if a strong

relationship between sinkage exponent and grain size existed. A mean sinkage exponent value

for each simulant was determined, along with a variance. These values were plotted against

sinkage exponent of the corresponding simulant and figure 5.1 shows the results of this.

Figure 5.1: Grain size vs. Mean sinkage exponent values for MMS Coarse, MMS Intermediate,

and MMS 2mm (in that order) with error ranges.
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An R2 value of 0.74 is considered a reasonable indication of a linear correlation given the

noise in the data. More sensitive sensors and less noisy data should improve the correlation fit

more.
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Chapter 6

Discussion and Conclusion

Sandy terrains found on the surface of Mars are characterized by their cohesion, angle of fric-

tion, and grain size. Cohesion and angle of friction are important features in terramechanics

mathematical models. Various methods have been employed to determine these characteristics

from in-situ rovers, like Spirit and Curiosity. R. E. Arvidson et al. [2] used a combination

of in-situ data and orbital thermal data to estimate the physical properties of Martian terrain

encountered by Curiosity. Though their results are sound, their method is highly computation-

ally complex and is not feasible for deployment on a rover. In a separate study, R. Sullivan et

al. [1] used Curiosity wheel scuffs and trenches to estimate cohesion and angle of friction of

the terrain. However, they acknowledge that the estimation of sinkage, which as discussed in

this thesis is an important value for estimating terrain characteristics, is not exact and relied on

imagery in addition to rover telemetry.

This previous work, Spirit’s immobilization in duricrust terrain, the limited knowledge

about Martian terrain characteristics, and the need for a low-weight and robust solution mo-

tivated this thesis work. The Barefoot Rover instrumented wheel is a platform to test the

feasibility of an instrumented rover wheel in providing information to gain insight into ter-

rain characteristics, with in-situ measurement and without relying on inaccurate visual aids.

This thesis investigated and demonstrated that the information collected by the Barefoot Rover

wheel can be used to estimate cohesion and angle of friction of different terrains. This the-

sis also demonstrated a Random Forest model is capable of utilizing the Barefoot Rover data

to predict the class of three Mars regolith simulants with 90% accuracy, and four simulants
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with 81% accuracy, the reason for this decrease in accuracy will be discussed in the following

subsection. This thesis also verified that terramechanics based features are effective features

for use in the classification of terrain. In addition, this thesis has been able to show that it is

possible to estimate grain size of the simulant based on the calculated mean sinkage exponent

values for individual simulant types from Barefoot Rover data.

6.1 Cohesion and Angle of Friction Estimation

Cohesion and Angle of Friction were able to be estimated within known ground truth bands for

MMS 2mm and GRC-01 using data collected by the Barefoot Rover wheel. The estimations

occur at every time step in the data, and thus the values are ‘apparent’ and not a bulk value like

the ground truth. The apparent values offer greater resolution to changes in terrain than one

single value for each data collection run. It was shown that the data contained enough infor-

mation in it to distinguish cohesion and angle of friction between loose, gradually cemented,

and fully duricrusted terrain.

6.2 Machine Learning Model Performance

The Random Forest decision tree outperformed the SVM model in every experiment. The Ran-

dom Forest was initially chosen as the algorithm of choice because it’s solution is not a black

box, one can examine the decision tree and gain physical insight into the problem. The algo-

rithm is not computationally complex which is important for Mars rovers with limited com-

puting power, and Random Forest is known for performing well in multi-class classification

problems. Given the performance of the Random Forest it was deemed unnecessary to expand

to other possible machine learning solutions like neural networks. Table 6.1 shows the time

each model took on average to predict on a test set on the author’s 16 GB RAM computer. The

SVM model takes over twice as long to predict and performs worse. In addition, Nitze notes

that computation effort for neural networks has been shown to be much more intensive than for

decision trees, making Random Forest a lightweight and robust solution for limited computa-

tion power [38]. The Perseverance Mars rover has a computer with 256 MB of RAM [39]. A
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newer model cellphone has as much as 2 GB of RAM. With that computer power disparity in

mind, it is evident that utilizing that lowest computationally expensive machine learning model

is important.

Model Time to Predict (seconds)

Random Forest 0.24

Support Vector Machine 0.59

Table 6.1: Model computational performance.

Both algorithms were fed the same data and both were subject to K-fold cross validation

and subsequent hyperparameter tuning. For the Random Forest, accuracy, precision, F1, and

recall were all significantly higher than corresponding values for the SVM model. For the

three class experiment, these were 0.9091, 0.9083, 0.9077, 0.9080, respectively, in comparison

to 0.5983, 0.5688, 0.5717, 0.6006, respectively for the SVM model.

Experiment 1 was multi-class classification of three Mars simulants; MMS 2mm, GRC-01,

and WED-730. This experiment had an accuracy of 91% using the Random Forest. Experiment

2 was multi-class classification of four Mars simulants; MMS 2mm, GRC-01, WED-730, and

MMS Coarse and had an accuracy of 81%. As seen in the Results section, the confusion matrix

of Experiment 2, figure 4.6, showed that the model became confused between class 0 (MMS

2mm) and class 3 (MMS Coarse). The reason for the mis-classification is because the two

simulants are the same terrain at the fundamental level, the only difference being their grain

size. As such, they will share similar characteristics. The model’s confusion between the two

classes was actually a positive result, as it showed that the model was reflecting reality. If the

model had been able to distinguish these two simulants without difficulty, that would have been

cause for concern as for the validity of the data.
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6.3 Feature Importance

The most important feature in the Random Forest model was motor torque, which shear stress

is a direct function of. This feature was engineered from motor current data. Figures 6.1, 6.2

and 6.3 show the feature importances for all three machine learning experiments. In terrame-

chanics, the shear stress at wheel-terrain interface is a defining feature of the wheel-terrain

interaction and encompasses information about the cohesion and angle of friction. The fact

that shear stress is a more important feature than contact pressure and wheel slip is physically

valid as these other two features are lesser pictures of the overall wheel-terrain interaction but

still hold valuable information. The feature importance was obtained using the built-in fea-

ture importances function in the Scikit-learn Python library.

Figure 6.1: Feature importances for Experiment Zero.
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Figure 6.2: Feature importances for Experiment One.

Figure 6.3: Feature importances for Experiment Two.

6.4 Conclusion

This thesis work proves the viability of an instrumented rover wheel in determining terrame-

chanics terrain parameters such as cohesion and angle of friction, the use of machine learning

for classifying terrain using data collected by this instrumented wheel, and again using such

data to estimate terrain grain size. This thesis has given geologic cause that instrumented

wheels should be used in future rover missions. The planetary scientist can benefit greatly
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from knowledge of cohesion, angle of friction, and grain size of terrain. These three pieces of

information can be used to understand what geologic processes may have or be occurring in

specific regions. Previously, the estimation of terramechanics parameters relied on the aid of

often inaccurate imagery estimations and orbital data.

This thesis has also shown that terrain can be classified from instrumented wheel data, sup-

porting both safe driving and autonomous driving endeavours. The rover driver can use terrain

classifications to make driving decisions and an autonomous rover can use this information in

its control system. Random Forest and Support Vector Machine algorithms were utilized to

classify Mars simulants in binary and multi-class classification. Random Forest outperformed

the Support Vector Machine model with a binary terrain classification accuracy of 94% and a

maximum multi-class classification accuracy of 81%.

6.4.1 Future Work

The natural next evolution of this research is the development of a machine learning solution

for planetary deployment. An unsupervised solution is needed, as the terrain types on Mars

are not well understood and they will need to be clustered as data is collected in-situ. This

area of future work can be included within the development of autonomous rover systems, as

the knowledge of terrain features can serve as flags for unsafe terrain or terrains of scientific

interest. A possible evolution of this research is the use a deformable rover wheel (such as

those used during the Apollo landings) to collect similar data. NASA-JPL is currently focusing

research work into deformable wheels for future Mars rovers.

6.4.2 Machine Learning Techniques

This thesis discussed a proof-of-concept demonstration that from instrumented rover wheel

data, terrain simulants can be classified with reasonable accuracy. It indicated that such tech-

nology and methodology can be useful on the surface of Mars with some adjustment for un-

supervised techniques.
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6.4.3 Grain Size Estimation

This thesis provided a brief proof-of-concept that instrumented rover wheel data can be used to

estimate sinkage exponent of terrain and establish a correlation between grain size and sinkage

exponent values. Knowledge of grain size provides insight into geological processes that the

area may have undergone and increases our understanding of celestial surfaces.
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