
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-11-2020 10:00 AM

Performance Evaluation, Comparison and Improvement of the Performance Evaluation, Comparison and Improvement of the

Hardware Implementations of the Advanced Encryption Standard Hardware Implementations of the Advanced Encryption Standard

S-box S-box

Doaa Ashmawy, The University of Western Ontario

Supervisor: Reyhani-Masoleh, Arash, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Doaa Ashmawy 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Ashmawy, Doaa, "Performance Evaluation, Comparison and Improvement of the Hardware
Implementations of the Advanced Encryption Standard S-box" (2020). Electronic Thesis and Dissertation
Repository. 7179.
https://ir.lib.uwo.ca/etd/7179

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F7179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7179?utm_source=ir.lib.uwo.ca%2Fetd%2F7179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key
cryptography. The efficient computation of AES is essential for many computing platforms. The S-
box is the only nonlinear transformation step of the AES algorithm. Efficient implementation of the
AES S-box is very crucial for AES hardware. The AES S-box could be implemented by using look-
up table method or by using finite field arithmetic. The finite field arithmetic design approach to
implement the AES S-box is superior in saving the hardware resources. The main objective of this
thesis is to evaluate, compare and improve the finite field hardware implementations of the forward,
inverse and combined AES S-box in terms of area and/or delay. Both the composite field GF((24)2)
and the tower field GF(((22)2)2) are considered. Our first improvement is the optimization of the
input and output linear mappings of the S-box in order to design a more compact circuit. Our
second improvement aims at modifying the architecture of the S-box to achieve a higher speed.

We used multiplication of the S-box input by an 8-bit binary field element to optimize the
input and output transformation matrices of the S-box as suggested in [54, 80]. A Matlab® search
is then conducted to find more compact linear mappings for the S-box. The simulation results
show no area improvement for the GF((24)2) S-box [69], however an improvement of 4.25 GEs
in STM 65nm technology is realized for the GF((22)2)2) S-box [70]. We also used the fast S-
box architectural improvement in [54], in addition to optimizing and searching the extended linear
input mappings to improve the speed of Reyhani et al. fast S-box [69]. The improved fast S-box,
Fast 3, is the fastest and most efficient (measured by area × delay) AES S-box available in the
literature, up to our knowledge. We also improved the area and delay of the inversion circuit of the
lightweight and fast S-boxes in [69], by slightly modifying the exponentiation block and designing
a new subfield inverter block. The improved inversion circuit leads to a more compact and a faster
lightweight S-box and it yields a lower area fast S-box.

Moreover, we show that the “tech. XORs” concept proposed by Maximov et al. [54] to estimate
the delay of the S-box is not accurate. We show how to use the logical effort method [74] instead
to estimate and compare the delay of previous and improved S-boxes, regardless of the CMOS
technology library used for the implementation.

We verified all the codes at the RTL level using Mentor Graphics Modelsim®, by comparing
against the legitimate S-box outputs. We synthesized the designs using STM 65nm CMOS standard
cell library and we used VHDL coding as the design entry method to Synopsys Design Compiler®.
The synthesis results confirm the lower area and/or delay of the improved S-box designs and match
our space and timing analyses.

Keywords: AES, S-box, Finite field GF(28), Multiplicative inverse in GF(28), Polynomial
basis, Normal basis, Redundant normal basis, Composite field GF((24)2), Tower field GF(((22)2)2),
Logic-minimization heuristics, VHDL, ASIC, Gate Equivalents

i

Summary for Lay Audience

The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key
cryptography. The efficient computation of AES is essential for many computing platforms. The
S-box is the only nonlinear transformation step of the AES algorithm. Efficient implementation of
the AES S-box is very crucial for AES hardware. The AES S-box can be implemented efficiently in
hardware using finite field arithmetic. The S-box input mapping is a linear transformation matrix
that is used to map all the bytes at the input of the S-box to a different field, where the S-box
computations will be done more efficiently. The output mapping is the linear transformation matrix
that combines the inverse isomorphic mapping used to re-map the computations back to the S-box
original field and the affine transformation step of the S-box.

In this thesis, we evaluated, improved and compared several previous forward, inverse and
combined AES S-boxes in terms of implementation area and/or critical path delay. We improved
the implementation area of some S-boxes by optimizing the aforementioned input and output map-
pings. We improved other designs by modifying the architecture of the S-box to reduce the delay.
Matlab® is used to search for the most compact linear mappings. We verified all the codes using
Computer-Aided Design (CAD) tools and we used Very high speed integrated circuit Hardware
Description Language (VHDL) coding as a design entry method to the CAD tool in order to obtain
the simulation results. The simulation results obtained from the CAD tool confirm the improved
performance of the proposed S-boxes and match our space and timing analyses.

ii

Acknowledgements

First, I would like to thank my supervisor Dr. Arash Reyhani-Masoleh for his continuous guidance,
encouragement and advice during the course of this thesis. Moreover, I would like to thak Dr.
Mostafa Taha for lending me his experience in CAD tools and MATLAB® simulations. Finally, I
would like to thank my family for their unwavering support and patience throughout my degree.

iii

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents iv

List of Tables vii

List of Figures ix

List of Appendices xii

List of Abbreviations xiii

1 Introduction 1
1.1 Advanced Encryption Standard . 1

1.1.1 What is AES . 1
1.1.2 Literature Review of AES Hardware Implementations 3

1.2 AES S-box Algorithm . 5
1.2.1 Forward AES S-box . 5
1.2.2 Inverse AES S-box . 7
1.2.3 Combined Forward/Inverse AES S-box 7

1.3 Logic Minimization Algorithms . 7
1.4 Motivation and Significance . 9
1.5 Thesis Outline . 10

2 Preliminaries 12
2.1 Reyhani et al. Composite Field GF((24)2) S-box 12

2.1.1 Composite Field GF((24)2) Construction 12
2.1.2 Inversion over Composite Field GF((24)2) 13

2.2 Reyhani et al. Tower Field GF(((22)2)2) S-box . 14
2.2.1 Tower Field GF(((22)2)2) Construction . 14
2.2.2 Inversion over Tower Field GF(((22)2)2) 15

2.3 Conclusion . 16

3 Implementation Results and Comparisons of Forward, Inverse and Combined AES
S-boxes 17
3.1 Forward, Inverse and Combined AES S-boxes . 17
3.2 Behavioural and Structural VHDL Coding . 18
3.3 Implementation Results and Comparisons of Forward AES S-boxes 18

3.3.1 Comparisons of the Space and Time Complexities 18
3.3.2 ASIC Synthesis Results and Comparisons 20

3.4 Implementation Results and Comparisons of Inverse AES S-boxes 22

iv

3.4.1 Complexity Analysis of Inverse S-boxes 22
3.4.2 ASIC Synthesis Results and Comparisons 22

3.5 Implementation Results and Comparisons of Combined AES S-boxes 23
3.5.1 Complexity Analysis of Combined S-boxes 23
3.5.2 ASIC Implementation Results . 23

3.6 Conclusion . 24

4 Improved GF((24)2) Forward AES S-box 25
4.1 Introduction . 25
4.2 Improved Lightweight and Fast AES S-boxes . 25

4.2.1 Improved Exponentiation . 25
4.2.2 New Subfield Inverter . 27
4.2.3 Space and Time Complexity Analyses . 28
4.2.4 ASIC Synthesis Results and Comparisons 28

4.3 Additional Transformation Matrices . 30
4.3.1 Multiplying by a Binary Field Element η 30
4.3.2 Modified AES S-box Architecture . 33
4.3.3 Matlab® Results . 33

4.4 Improved Fast AES S-box Architecture . 34
4.4.1 The Modified Fast S-box, Fast 1 . 35
4.4.2 The Modified Fast S-box, Fast 2 . 39
4.4.3 Complexity Analysis . 42
4.4.4 Comparisons of the Space and Time Complexities 42
4.4.5 Calculating Delay in CMOS Circuits . 43
4.4.6 ASIC Synthesis Results and Comparison 46

4.5 Additional Extended Transformation Matrices . 47
4.5.1 Complexity Analysis . 51
4.5.2 Comparisons of the Space and Time Complexities 51
4.5.3 ASIC Synthesis Results and Comparison 51

4.6 Conclusion . 53

5 Improved GF(((22)2)2) Forward AES S-box 55
5.1 Introduction . 55
5.2 Architecture of the Improved AES S-box . 55
5.3 Input and Output Mappings of the Improved AES S-box 56

5.3.1 Input Mapping of the Improved AES S-box 57
5.3.2 Output Mapping of the Improved AES S-box 58

5.4 Modified Inversion over GF(((22)2)2) . 59
5.4.1 Multiplication over GF((22)2) . 59
5.4.2 Squaring with Scaling . 60
5.4.3 Modified Exponentiation Computation 60
5.4.4 Modified Subfield Inversion over GF((22)2) 62
5.4.5 Modified Output Multipliers . 63

5.5 Implementation Results and Comparisons . 65
5.5.1 Complexity Analysis of the Improved AES S-box 65
5.5.2 ASIC Implementation Results . 65

5.5.2.1 Individual Blocks . 65
5.5.2.2 Overall Design . 66

5.6 Conclusion . 67

v

6 Summary and Future Work 68
6.1 Thesis Summary . 68
6.2 Future Work . 68

Appendix A Additional Figures for Chapter 3 77

Appendix B Additional Figures for Chapter 4 86

Curriculum Vitae 95

vi

List of Tables

3.1 Space complexity comparison of some forward S-boxes. 20
3.2 Time complexity comparison for different S-boxes. 21
3.3 ASIC comparisons of the S-Box architectures. 21
3.4 Gate count of some inverse S-box circuits. 22
3.5 ASIC Implementation results for some Inverse S-box. 23
3.6 Complexity comparison of different combined S-box designs. 23
3.7 ASIC Implementation results of different combined S-boxes. 24

4.1 The truth table of the inverter over GF(24) generated by the ONB-I [69]. 28
4.2 Space and time complexities for different blocks and the GF((24)2) inversion of the

entire improved S-boxes. 29
4.3 ASIC synthesis results for the improved exponentiation and the improved subfield

inverter. 29
4.4 ASIC synthesis results for the two S-boxes in [69] using the improved exponentia-

tion and improved subfield inverter. 29
4.5 The number of XOR2 gates and the maximum delay of specific Tout matrices. . . . 35
4.6 Fast 1 implementation of transformations. 38
4.7 Fast 2 implementation of transformations. 42
4.8 Space and time complexities of the modified S-box architecture Fast 1 and Fast 2. . 43
4.9 Space complexity comparison of different fast S-boxes. 43
4.10 Time complexity comparison for different fast S-boxes. 43
4.11 The input capacitance, Cin of some basic gates in Samsung’s STD90/MDL90 0.35

µm library normalized to S L [47]. 44
4.12 The parasitic delay of some basic gates normalized to pinv [74]. 45
4.13 The logical effort of some basic gates [74]. 45
4.14 Normalizd delay values for different fast S-boxes using the method of logical effort. 46
4.15 ASIC comparisons of the fast S-Box architectures. 47
4.16 Testing Tout entries for 1’s in order to determine the 4 signals that will be used to

extend Tin. i is the row number, 1 ≤ i ≤ 8. 50
4.17 Fast implementation of transformations in (4.41) for ν = 1000, Generator #1 and

η = 48 (Fast 3 design). 51
4.18 Space and time complexities of the modified fast S-box architecture, Fast 3. 52
4.19 Space complexity comparison of different fast S-boxes. 52
4.20 Time complexity comparison for different fast S-boxes. 52
4.21 ASIC comparisons of the S-Box architectures . 53

5.1 The number of XOR2 gates and the maximum delay results for some Toutnew matrices. 57
5.2 Equations used to implement the input mappings of the improved forward S-box. . 58
5.3 Equations used to implement the proposed output mappings of the improved forward-

only S-box. 59
5.4 The truth table of the inverter over GF((22)2) using the field represented by {ν =

[0010] = ωα4,N = [10] = ω}. 62

vii

5.5 Complexity comparison of the improved and the original forward S-box designs. . 65
5.6 ASIC synthesis results for the three blocks of the inversion and the entire inversion

over the tower field at STM 65nm technology. 66
5.7 ASIC Implementation results for the improved forward S-box. 66

viii

List of Figures

1.1 The AES cipher. 2
1.2 The encryption process of the AES-128 algorithm. 3
1.3 The AES S-box transformation step. 6
1.4 The forward AES S-box using composite/tower field inversion. 7
1.5 The inverse AES S-box using composite/tower field inversion. 7
1.6 The combined forward/inverse AES S-box. 8

2.1 The architecture of the S-box using GF(((24)2) in the NB representation. 13
2.2 Reyhani et al. composite field S-box. 14
2.3 The architecture of the S-box using GF(((22)2)2) in the NB representation. 14
2.4 Reyhani et al. tower field S-box. 16

4.1 The improved exponentiation computation block for the S-box architecture. 26
4.2 The modified subfield inverter circuit. 28
4.3 Input and output transformations used in the S-box of [69]. 30
4.4 The modified input and output transformations. 33
4.5 The S-box architecture in [69]. 35
4.6 The modified fast S-box architectures, Fast 1. 36
4.7 The modified fast S-box architectures, Fast 2. 39
4.8 Influence of the load on the normalized delay values of the different fast S-boxes. . 46
4.9 Area in GEs of the proposed Fast 2 S-box as compared to previous work [69, 54]

at different input delay constraints for the STM 65nm library. 47
4.10 Improved fast S-box architecture. 49
4.11 Area in GEs of the proposed Fast 3 and Fast 2 S-boxes as compared to previous

work [69, 54] at different input delay constraints for the STM 65nm library. 54

5.1 The overall architecture of the improved forward S-box using GF(((22)2)2) in the
NB representation. 55

5.2 The overall architecture of the improved forward S-box using GF(((22)2)2) in the
NB representation. 56

5.3 The architecture of the modified exponentiation block. 61
5.4 The modified subfield inverter block. 62
5.5 Area in GEs of the improved forward S-box circuit as compared to previous work

[70] at different input delay constraints targeting the STM 65nm library. 66

A.1 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 1000, Generator #1.(b) The maximum delay of Tin as a function of η
for the case of ν = 1000, Generator #1. 78

A.2 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 1000, Generator #2.(b) The maximum delay of Tin as a function of η
for the case of ν = 1000, Generator #2. 78

ix

A.3 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 1000, Generator #3.(b) The maximum delay of Tin as a function of η
for the case of ν = 1000, Generator #3. 79

A.4 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 1000, Generator #4.(b) The maximum delay of Tin as a function of η
for the case of ν = 1000, Generator #4. 79

A.5 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 0111, Generator #1.(b) The maximum delay of Tin as a function of η
for the case of ν = 0111, Generator #1. 80

A.6 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 0111, Generator #2.(b) The maximum delay of Tin as a function of η
for the case of ν = 0111, Generator #2. 80

A.7 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 0111, Generator #3.(b) The maximum delay of Tin as a function of η
for the case of ν = 0111, Generator #3. 81

A.8 (a) The number of XOR2 gates required to implement Tin as a function of η for the
case of ν = 0111, Generator #4.(b) The maximum delay of Tin as a function of η
for the case of ν = 0111, Generator #4. 81

A.9 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 1000, Generator #1.(b) The maximum delay of T′in as a function of η
for the case of ν = 1000, Generator #1. 82

A.10 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 1000, Generator #2.(b) The maximum delay of T′in as a function of η
for the case of ν = 1000, Generator #2. 82

A.11 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 1000, Generator #3.(b) The maximum delay of T′in as a function of η
for the case of ν = 1000, Generator #3. 83

A.12 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 1000, Generator #4.(b) The maximum delay of T′in as a function of η
for the case of ν = 1000, Generator #4. 83

A.13 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 0111, Generator #1.(b) The maximum delay of T′in as a function of η
for the case of ν = 0111, Generator #1. 84

A.14 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 0111, Generator #2.(b) The maximum delay of T′in as a function of η
for the case of ν = 0111, Generator #2. 84

A.15 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 0111, Generator #3.(b) The maximum delay of T′in as a function of η
for the case of ν = 0111, Generator #3. 85

A.16 (a) The number of XOR2 gates required to implement T′in as a function of η for the
case of ν = 0111, Generator #4.(b) The maximum delay of T′in as a function of η
for the case of ν = 0111, Generator #4. 85

B.1 (a) The number of XOR2 gates required to implement Tinnew as a function of η for
the case of {ν = [0010],N = [01]}, Generator #1.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [01]}, Generator #1. 87

x

B.2 (a)The number of XOR2 gates required to implement Tinnew as a function of η for
the case of {ν = [0010],N = [01]}, Generator #2.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [01]}, Generator #2. 87
B.3 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [01]}, Generator #3.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [01]}, Generator #3. 88
B.4 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [01]}, Generator #4.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [01]}, Generator #4. 88
B.5 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [10]}, Generator #1.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [10]}, Generator #1. 89
B.6 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [10]}, Generator #2.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [10]}, Generator #2. 89
B.7 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [10]}, Generator #3.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [10]}, Generator #3. 90
B.8 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0010],N = [10]}, Generator #4.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0010],N = [10]}, Generator #4. 90
B.9 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [01]}, Generator #1.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [01]}, Generator #1. 91
B.10 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [01]}, Generator #2.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [01]}, Generator #2. 91
B.11 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [01]}, Generator #3.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [01]}, Generator #3. 92
B.12 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [01]}, Generator #4.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [01]}, Generator #4. 92
B.13 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [10]}, Generator #1.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [10]}, Generator #1. 93
B.14 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [10]}, Generator #2.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [10]}, Generator #2. 93
B.15 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [10]}, Generator #3.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [10]}, Generator #3. 94
B.16 (a) The number of XOR2 gates required to implement Tinnew as a function of η for

the case of {ν = [0111],N = [10]}, Generator #4.(b) The maximum delay of Tinnew

as a function of η for the case of {ν = [0111],N = [10]}, Generator #4. 94

xi

List of Appendices

Appendix A Additional Figures for Chapter 3 . 77
Appendix B Additional Figures for Chapter 4 . 86

xii

List of Abbreviations

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

CAD Computer-Aided Design

CBC Cipher Block Chaining

CPD Critical Path Delay

DES Data Encryption Standard

ECB Electronic Code Book

GEs Gate Equivalents

IoT Internet of Things

ISE Instruction Set Extension

LUT Look-Up Table

LWC Lightweight Cryptography

MSB Most Significant Bit

NB Normal Basis

NIST National Institute of Standards and Technology

PB Polynomial Basis

PQC Post-quantum Cryptogrphy

RFID Radio-Frequency IDentification

RNB Redundant Normal Basis

ROM Read-Only-Memory

RTL Register-Transfer Level

SPN Substitution-Permutation Network

VHDL Very-high-speed integrated circuit Hardware Description Language

xiii

Chapter 1

Introduction

The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key
cryptography. The efficient computation of AES is essential for many computing platforms. The
S-box is the only nonlinear transformation step of the AES algorithm. Efficient implementation
of the AES S-box is very crucial for AES hardware. The AES S-box could be implemented by
using Look-Up Table (LUT) method which stores all 256 predefined 8-bit values of the S-box in
a Read-Only-Memory (ROM). The S-box could also be implemented using composite/tower field
arithmetic. The finite field arithmetic design approach to implement the AES S-box is superior to
LUTs in saving the hardware resources. The main objective of this research is to evaluate, compare
and improve the composite/tower field hardware implementations of the AES S-box.

In this Chapter, we will give a brief introduction to the AES algorithm and its only non-linear
step, the S-box. We will also review the logic minimization algorithms used to minimize the
implementation area of linear mapping circuits used at the input and output of the S-box. This is
an essential step before stating the motivation and significance of the thesis.

1.1 Advanced Encryption Standard

In this section, we will explain the AES algorithm used for encryption/decryption. A literature
review of AES hardware implementations is also provided.

1.1.1 What is AES

The Advanced Encryption Standard (AES) [31], also called the Rijndael algorithm, is a symmetric
block cipher algorithm that was adopted by the National Institute of Standards and Technology
(NIST) as a replacement of the Data Encryption Standard (DES) algorithm back in 2001. AES is
essentially a subset of the Rijndael algorithm [25] which was the winner of a five-year competition
among fifteen block cipher algorithms. The AES can be implemented in software and/or hardware
to encrypt/decrypt electronic data. It works as a Substitution-Permutation Network (SPN) with
four main operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The SubBytes op-
eration uses the Rijndael S-box which is the main non-linear substitution step of AES. The AES
algorithm is a symmetric encryption algorithm, meaning encryption and decryption are performed
by mainly the same steps. It is a block cipher, where the data is encrypted/decrypted in blocks of
128 bits. The original Rijndael algorithm allows other block sizes, but the AES standard only per-
mits 128-bit blocks. The AES cipher is shown in Figure 1.1. Here, the input data block is arranged
as 4 × 4 matrix of bytes, called the state. Each data block is processed by several transformation
rounds, where each round involves four steps. Three different key sizes are allowed according to
the level of security needed: 128 bits, 192 bits, or 256 bits, and the corresponding number of trans-
formation rounds for each is 10 rounds, 12 rounds, or 14 rounds, respectively. The “AES-128”,

1

CHAPTER 1. INTRODUCTION

Cipher Key Plaintext

AES Cipher

Ciphertext

128-bit128/192/256-bit

AES-128/AES-192/AES-256

128-bit

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Round 0

Round 1-9/11/13

Round 10/12/14

Figure 1.1: The AES cipher.

“AES-192” and “AES-256” refer to the 128 bits, 192 bits and 256 bits cryptographic key lengths,
respectively. The original key is used to compute a series of Round Keys, one for each of these
rounds in a routine called key expansion.

Figure 1.2 shows the encryption process of the AES-128 algorithm. The length of the input
block, the output block and the state is 128 bits. The length of the key is 128 bits and the number
of round functions is 10. The state is a 4 × 4 matrix of bytes, or 4 columns. Each column is
a 32-bit word or alternatively 4 bytes. The three steps, namely ShiftRows, MixColumns, and
AddRoundKey, are linear such that the output 128-bit block for such steps is a linear combination
(bit-wise, modulo 2) of the outputs for each separate input bit. The SubBytes (S-box) operation is
the only nonlinear step of the AES algorithm, where each input byte is replaced by the result of
applying the S-box function to that byte. In the key schedule routine, 10 sets of round keys are
calculated from the initial key.

In the beginning of the encryption process, the AES-128 cipher performs an initial round,
where the initial key is added to the state. After the initial round, there are 9 identical rounds then a
slightly different final round. For rounds 1 to 9, the round function is identical and is implemented
as follows:

1. AddRoundKey: A bit-wise XOR operation is used to add the round key to the state.

2. SybBytes: Two steps, the first step involves finding the multiplicative inverse of the input
byte in GF(28), except for the element {00}, which is mapped to itself. We use two hexadec-
imal numbers to represent a byte, e.g. the element {00} refers an input byte of value zero.
The second step is applying an affine transformation, which is a multiplication by a matrix
M followed by the addition of a constant vector h.

3. ShiftRows: Cyclically shift the rows of the state to the left by a different number of bytes,
except for the first row which is not shifted.

4. MixColumns: Independently mix the columns of the state into new columns. This is done
by considering each column as a four-term polynomial over GF(28) then multiplying it mod
(x4 + 1) with the fixed polynomial a(x) = {03}x3 + {01}x2 + {01}x + {02}.

2

CHAPTER 1. INTRODUCTION

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

𝐌

𝐺𝐹 28 𝐺𝐹 28

Multiplicative

Inverse

in

𝐺𝐹(28)

g

𝒉

s
8 8 8

f

8

S-box

MixColumns

𝑎 𝑥 = 03 𝑥3 + 01 𝑥2 + 01 𝑥 + {02}

∗ 𝑎 𝑥 𝑚𝑜𝑑(𝑥4 + 1),

ShiftRows

Figure 1.2: The encryption process of the AES-128 algorithm.

For the AES-128 inverse cipher, the AES-128 cipher operations are inverted and implemented in
reverse order. The AddRoundKey is its own inverse and the round keys are used in reverse order
from the encryption process. The three other transformations needed for decryption in the inverse
cipher are as follows:

1. InvSubBytes: Two steps, first apply the inverse affine transformation then find the multi-
plicative inverse in GF(28).

2. InvShiftRows: Shift the last three rows of the state in the opposite direction (i.e. to the right)
from the ShiftRows. The first row stays the same.

3. InvMixColumns: Each column is considered as a four-term polynomial over GF(28) and
multiplied mod (x4 + 1) with the fixed polynomial a−1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}.

1.1.2 Literature Review of AES Hardware Implementations

The implementations of the AES algorithm are based on the use of hardware only, software only
or a hybrid approach using an Instruction Set Extension (ISE). In a hardware only AES implemen-
tation, the AES algorithm is executed by using a dedicated hardware module (e.g. an ASIC chip).
In a software only implementation, the execution of the AES is performed by software instruc-
tions (e.g. an assembly language AES implementation on an 8-bit microcontroller). The hybrid
ISE approach uses both the hardware and software to implement the AES algorithm (e.g. use both
hardware on the host core and new instructions added to the base Instruction Set Architecture (ISA)
to execute AES) [49]. The focus of this research will be the hardware only AES implementations.

Since its introduction in 2001, many articles about AES hardware implementations that target
area [57, 7, 8, 37, 3], speed [52, 51, 80] or power consumption [58, 29, 34, 77] have been published.
In 2001, Satoh introduced a compact AES encrypt/decrypt hardware architecture while optimizing
the S-box [72]. The S-box is optimized for low area by using the tower field GF(((22)2)2) over
polynomial basis to compute the multiplicative inverse of the S-box input byte. Different through-
puts are achieved by varying the number of S-boxes used per round. The highest throughput is
achieved by using 20 S-boxes per round, where 16 S-boxes are used for calculating the round
function and 4 S-boxes are deployed by the key expansion routine to determine the separate round
keys. Same as Satoh article, the article [56] also used the tower field GF(((22)2)2) to perform the
Galois field inverse of the S-box.

3

CHAPTER 1. INTRODUCTION

To reduce the area of implementation, 8-bit AES designs that uses either a single S-box or two
S-boxes are deployed. In the first case, where only one S-box is adopted, the S-box operation is
interleaved between the round function and the key expansion, thus increasing the number of clock
cycles/block and decreasing the throughput. To increase the throughput, two S-boxes could be
utilized, the first S-box would be used for the normal round operation and the other S-box for the
key expansion routine. The grain of sand 8-bit AES encrypt/decrypt compact core by Feldhofer
et al. [30] introduced a low-resource (i.e. low area and low power consumption) hardware imple-
mentation. It occupies an area of 3400 Gate Equivalents (GEs) and supports both encryption and
decryption. The number of clock cycles that are required to encrypt one 128 bits block of data is
1032 cycles and the maximum clock frequency is 80 MHz. The throughput can be computed as
128 bits ÷ 1032

80×106 s = 9.9 Mbps, which is relatively low. The article mentioned that the decryption
performs nearly the same as encryption. A single S-box is used for SubBytes and InvSuBytes oper-
ations as well as for the key expansion. The S-box used in the implementation is based on the finite
field GF(28) arithmetic operations rather than Look-Up Table (LUT) method and is adopted from
[85], where a pipeline register is added to reduce the critical path of the S-box therefore increasing
the clock frequency. This comes with the adverse effect of an increased number of clock cycles
necessary for the encryption process.

Canright introduced his compact combined forward/inverse AES S-box in 2005 [20, 21]. It
uses subfields of 4 bits and of 2 bits to calculate the multiplicative inverse of the S-box input
byte. He also examined several choices of bases for each subfield, including the normal basis
one as [72]. A very compact encrypt/decrypt AES algorithm based on Canright combined S-box
was later published in [22]. It reduces the number of bit operations for encryption, by combining
the affine transformation of the forward S-box and the Galois multiplications by constants of the
MixColumns step. For decryption, it integrates the inverse affine transformation of the inverse
S-box and the InvMixColumns Galois scalings step.

The 8-bit AES encryption circuit in [34] adopted two S-boxes, one S-box is used for round
computation and the other S-box is used for key expansion. As a result, no interleaving of oper-
ation is required and the number of clock cycles required for ciphering one block of data is set
theoretically to 160 cycles. Because of its low energy and relatively small area (3100 GEs), [86]
used the AES design in [34] to build an energy efficient 8-bit AES encryption core that can be used
to secure Internet of Things (IoT) networks.

The AES Encrypt/Decrypt design in [51] minimized the circuit area by optimizing the encryp-
tion and decryption composite field polynomials, separately. The AES computations are performed
in the GF((24)2) composite field, where equivalent composite field representations are derived for
the Affine, InvAffine, MixColumns and InvMixColumns steps.

The compact 8-bit AES encryption core in [57] used only one S-box for both round computa-
tion and key expansion, leading to a reduced area of 2400 GEs. As a result of sharing the S-box
between the round function and the key schedule module, the number of clock cycles needed to
encrypt one 128 bits block of data is increased to 226 clock cycles. Due to the increased number of
clock cycles/block, the energy efficiency of this design is not optimum. Both area and energy are
important criteria in determining the energy efficiency of a certain implementation [76]. Despite
having a larger area, Hamalainen design [34] is more energy efficient than Moradi core [57] as it
is more than 40% faster [86].

The AES encryption only core in [57] was later refined to provide both encryption and decryp-
tion functionalities in Atomic AES [7], which was followed by Atomic AES v2.0 [8] to further
refine the area of implementation. In 2017, the same architecture was modified into a serialized
one-bit Encryption/decryption AES circuit in [37]. It has a very compact area, however it needs
1776 clock cycles for encryption and 2512 clock cycles for decryption, which drastically increase

4

CHAPTER 1. INTRODUCTION

the latency.
A very compact 8-bit both encryption and decryption AES-128/192/256 hardware core was

introduced in [3]. The serialized (i.e. 8-bit) AES-192 and AES-256 circuits are of greater impor-
tance for lightweight cryptography applications in the next era of quantum computers due to their
increased security levels.

Recently, [26] introduced an energy-efficient 8-bit AES architecture suitable for resource-
constrained applications. The circuit reduces the data movement, hence the energy, by directly
multiplexing the bytes into the data path and updating the state register only once per round using
a technique called register renaming. The energy efficiency is increased because there is no need to
shift the bytes through the state register, i.e. it reduced the data movement. Also there is no storage
for intermediate results between the AES rounds, which saves the area. The energy-efficient S-box
in [12] was utilized in this architecture due to its lower glitching, hence lower energy [5].

An important aspect of the AES is the mode of operation. There are several different modes in
which AES can be used [28]. e.g. the Cipher Block Chaining (CBC) works in a feedback mode
of operation, where the result of encrypting one block is used to encrypt the next block. The CBC
mode can not be pipelined for improved speed because of the feedback nature of operation. The
Electronic Code Book (ECB) and the Counter (CTR) modes can be pipelined as they do not require
feedback blocks from previous ciphers.

In the following section, we will explain the S-box step of the AES algorithm.

1.2 AES S-box Algorithm

The S-box is a nonlinear function that involves finding the multiplicative inverse of the input byte
in the finite field GF(28), except for the input zero which is mapped to itself [31]. The S-box works
independently on each byte of the input. The S-box could be implemented in hardware using the
Look-Up Table (LUT) method or by using composite field arithmetic. In the LUT method, the
input byte is used as an index to a table (256 bytes table) stored in memory to find the output
byte. This method is fast but allocates a large amount of hardware resources to store, address
and fetch the output bytes. A more efficient hardware implementation could be realized by using
composite/tower field arithmetic to compute the inverse of the S-box input byte [72, 85, 20]. By
utilizing the finite field arithmetic to compute the inverse of the S-box input byte, the inversion
circuit could be shared for decryption such that only the inverse affine transformation has to be
computed for the inverse S-box.

The S-boxes implemented using the finite field arithmetic will be evaluated, compared and
improved in this thesis.

According to the type of data processing needed, either encryption or decryption, a forward
AES S-box or an inverse AES S-box will be used. A combined forward/inverse AES S-box is also
used for AES encryption/decryption engines. Each will be explained in the following sections.

1.2.1 Forward AES S-box

The forward S-box depends on performing an inversion over the GF(28) field of AES, as defined
over the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1, followed by an affine transformation
and addition with a constant as shown in Figure 1.3. If the input to the S-box is g, where g is
an element in GF(28) generated by the irreducible polynomial q(x). Let α be a root of q(x), then
g = (g7, · · · , g1, g0) ∈ GF(28) is represented in polynomial basis representation as g =

∑7
i=0 giα

i,
gi ∈ GF(2), 0 ≤ i ≤ 7, where gis are the coordinates of g ∈ GF(28). For convenience, these
coordinates will be denoted in vector notation as g = [g7, · · · , g1, g0]tr, where tr denotes the

5

CHAPTER 1. INTRODUCTION

𝐌

𝐺𝐹 28 𝐺𝐹 28

Multiplicative

Inverse

in

𝐺𝐹(28)

g

𝒉

s
8 8 8

f

8

Figure 1.3: The AES S-box transformation step.

transposition.
Let f = (f7, · · · , f1, f0) ∈ GF(28) be the multiplicative inverse (or inverse in short) of the

non-zero S-box input, i.e., f × g = 1, where g , 0. Then, the first step in the S-box computation
is to find the inverse f = g−1 for g , 0. For g = 0, f = 0. Let s = (s7, · · · , s1, s0) ∈ GF(28) be
the S-box output. Then in the second step of the S-box computation, the affine transformation is
calculated as:

s = Mf ⊕ h (1.1)

s =



s7

s6

s5

s4

s3

s2

s1

s0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1





f7

f6

f5

f4

f3

f2

f1

f0


⊕



0
1
1
0
0
0
1
1


(1.2)

where ⊕ is the modulo 2 addition (XOR), bit #7 is the most significant bit, and M is the affine
transformation matrix.

An efficient hardware implementation of the S-box can be realized by using finite field arith-
metic as shown in Figure 1.4. The finite field arithmetic is used to compute the multiplicative
inverse of the S-box input byte. To lower the cost of finding the multiplicative inverse in GF(28),
the following 3 steps are often adopted:

1. Map all elements of GF(28) at the input of the S-box to a composite field GF((24)2) or to a
tower field GF(((22)2)2), using an isomorphism function X−1.

2. Compute the multiplicative inverse over GF((24)2) or over GF(((22)2)2).

3. Re-map the computation results to GF(28), using the inverse isomorphism function X.

As shown in Figure 1.4, we denote the matrix that is used to map the 256 Galois field elements
at the input of the S-box, i.e used for input isomorphic mapping of the S-box, as X−1. The matrix
that is used to convert in the other way around is denoted as X. Therefore, the S-box input vector
g = [g7, · · · , g1, g0]tr is converted to the corresponding vector representation in the corresponding
field as i = X−1 × g. As a result, the output of the forward S-box can be computed using (1.1) as

s = MX × o ⊕ h (1.3)

where f = X×o is used to convert the output of the inversion circuit, o = i−1 ∈ GF((24)2)/GF(((22)2)2)
back to the binary field GF(28).

6

CHAPTER 1. INTRODUCTION

𝐗−1 −1 𝐗 𝐌

𝐺𝐹 28 𝐺𝐹 28

Composite/Tower

field inversion

g
i o f

𝒉

s
8 8 8

Figure 1.4: The forward AES S-box using composite/tower field inversion.

−1 𝐗

𝐺𝐹 28 𝐺𝐹 28

Composite/Tower

field inversion

g k
s

𝒉

8 8 8
𝐌𝐗 −1

Figure 1.5: The inverse AES S-box using composite/tower field inversion.

1.2.2 Inverse AES S-box

The inverse S-box performs the reverse of the forward S-box operation. Let g be the input of
the inverse S-box. One can find out that the input mapping of the inverse S-box is the reverse
operation of the output mapping of the forward S-box as shown in Figure 1.5. In other words the
input mapping of the inverse S-box generates:

k = (MX)−1 × (g ⊕ h) = (MX)−1 × g ⊕ h′, (1.4)

where h′ = (MX)−1 × h is a fixed binary 8-bit vector.
It is noted that adding with fixed vectors can easily be implemented by changing the corre-

sponding XOR gate to XNOR gate.

1.2.3 Combined Forward/Inverse AES S-box

In the combined forward/inverse S-box shown in Figure 1.6, the inversion over the GF(28) field
of AES is shared between the forward and the inverse S-boxes. Based on the operation needed,
either encryption or decryption, the input and output mappings of the forward or the inverse S-box,
respectively are chosen using a set of multiplexers as shown in Figure . We use the notation X−1

e to
refer to the input mapping used in the encryption path and X−1

d to refer to the decryption one.

1.3 Logic Minimization Algorithms

In this section, we will review the logic minimization algorithms used to minimize the input and
output linear mappings of the AES S-box.

IfA = Tr×B, whereA and B are elements in two different isomorphic fields and Tr is a generic
transformation matrix, then logic minimization algorithms are used to find the smallest number of
gates that is required to implement the transformation matrix Tr. The best solution could only be

7

CHAPTER 1. INTRODUCTION

−1

𝐺𝐹 28 𝐺𝐹 28

Composite/Tower

field inversion

g s

𝒉’

8

𝐌𝐗𝐝
−1

𝐗𝐞
−1

𝐌𝑿𝒆

𝑿𝒅

𝒉

8

Figure 1.6: The combined forward/inverse AES S-box.

found by an exhaustive search over all possible circuits, which quickly becomes infeasible at large
input transformation matrices.

Paar proposed a heuristic that works by iteratively selecting the XOR gate which is the most
common in the target equations [61, 62]. The matrix is then appended by adding this gate, and the
target equations are updated accordingly. This gate-selection and matrix-updating continues until
there is a single ‘1’ in each row of the matrix.

Canright used an exhaustive search over all possible solutions [21], as the target matrices were
relatively small (8×8). In order to manage this time-consuming search, he searched within a small
subset of the tower fields that he studied (only 27 cases out of the 432 fields). The smallest circuit
that was found required 13 XOR gates at the input matrix X−1 and 11 XOR gates at the output
matrix MX of the AES S-box.

Boyar and Peralta showed that the algorithms used by both Canright and Paar are cancellation-
free, where the selected gates must always result in an output with a Hamming weight that is the
addition of the Hamming weights of the inputs [18]. i.e. Canright and Paar did not use the inter-
mediate values that were calculated once for other computation steps. Hence, in these solutions,
XOR gates are never used to cancel-out common terms. This means that the exhaustive search
conducted by Canright did not exhaust all the actually possible solutions. Hence, they proposed a
new heuristic algorithm, the Normal-BP heuristic, that is not cancellation-free.

Using the Normal-BP heuristic, Boyar and Peralta did not find any smaller implementation
for the matrices used by Canright. As a work around, and being supported by fast searching
algorithms, they included all the linear equations in the inner circuit of Canright S-box (parts of the
tower field inversion circuit) that directly followed the input matrix X−1 and those that preceded
the output matrix MX into the input and output transformation matrices, respectively. The new
extended-input matrix became 22 × 8 and the new extended-output matrix became 8 × 18. These
new matrices are computationally intractable for the exhaustive search algorithms, and interesting
targets for the fast heuristic-based algorithms. The extended-input matrix directly computes 22
equations at a cost of 23 XOR gates. For comparison, the original Canright circuit would need 27
gates to solve these equations (13 for the 8×8 input matrix X−1 followed by 14 extra gates to solve
the 14 extra equations). Similarly, the extended-output matrix required 30 XOR gates.

Visconti et al. proposed a tweaked algorithm that sometimes works better for dense matrices
[81]. It depends on computing the common path of the target matrix using its boolean complement,
which has a lower density, before applying the regular Normal-BP heuristic algorithm.

Reyhani et al. proposed several improvements to the Normal-BP algorithm [69]. They pro-
posed three alternatives, namely Improved-BP, Shortest-Dist-First and Focused-Search logic min-
imization algorithms. They also added a delay-controlled option to the Normal-BP algorithm so
that the improved algorithm could find the best circuit at a certain maximum delay. The focused-
search algorithm is a speed-optimized variant of exhaustive search and is not cancellation-free.

8

CHAPTER 1. INTRODUCTION

The focused-search logic-minimization algorithm outperforms all previous logic-minimization al-
gorithms, as demonstrated by [69]. The focused-search algorithm is slow as it slightly moves
toward being an exhaustive search.

Maximov et al. proposed a new technique called the floating multiplexers, where the shared
part between two linear inputs to the multiplexer is pushed after the multiplexer in order to save
the hardware [54]. By using floating multiplexers, it is possible to save the circuit area as the
shared part will only need to be computed once instead of twice in the case that we compute it for
both inputs to the multiplexer. They used this idea to design a subfiled inverter with only 9 gates
and depth 3. The floating multiplexers are also used to get a very compact combined S-box, by
including the multiplexers in the minimization algorithm and sharing parts of the input and output
mappings of the forward and the inverse S-box to further reduce the area.

Recently, Tan et al [75] proposed two heuristics that improves the Normal-BP algorithm,
namely A1 and A2, to minimize the number of XOR gates in linear circuits. This is done by
implementing the outputs (targets) that have the minimal number of XOR gates first. A1 and A2
algorithms were used on the MixColumns diffusion matrix of the AES block cipher, the resulting
circuit requires only 94 XOR gates, which was a new record. A new record of 92 XOR gates was
recorded in [53], which is currently the smallest number of XOR2 gates implementation of the
MixColumns transformation step available in the literature, up to our knowledge. The previous
implementation record of 97 XOR gates was reported in [44] and improved to 95 XOR gates in
[11]. Since the implementation area of a 3-input XOR gate is less than the sum of the areas of two
2-input XOR gates in most technology libraries, the authors of [11] explained how to use a tree
based heuristics to convert a circuit from only using 2-input XOR gates to using both 2-input XOR
gates and 3-input XOR gates. As a result, they were able to provide more compact results for some
linear circuits than previous work.

It is worth mentioning that there are some available tools that can handle both linear or non-
linear layers in a circuit. Examples are [18, 84, 73, 38].

1.4 Motivation and Significance

The AES S-box is the main component of the AES algorithm and plays an important role in deter-
mining the overall efficiency of the hardware implementation. Faster and/or more efficient S-boxes
were proposed in [19, 15, 78, 69], while faster and/or more efficient combined forward/inverse
S-box were proposed in [45, 52, 59, 79]. In addition, an automated search for a field representation
in GF((24)2) was conducted in [51, 33] to optimize the area of high speed AES cores to be suitable
for memory encryption engines.

The research for S-box designs that are more compact than Canright was explored in a line of
work by Boyar et al. [16, 18, 17, 14], Reyhani-Masoleh et al. [69, 68, 70] and Maximov et al.
[54]. Generally speaking, for the forward S-boxes proposed in these contributions and the inverse
S-boxes proposed in [14, 70, 54], the authors moved all the linear operations in the input and the
output of the composite/tower field inversion circuit to the input and output isomorphic mappings,
respectively. Then, logic-minimization heuristics were used to reduce the number of XOR gates
that is required to implement the extended isomorphic mappings. The currently smallest design of
the AES forward S-box can be found in [54]. Note that, although the number of gates of the inverse
S-box design in [14] is smaller than Canright [21], the actual implementation area of Canright [21]
is smaller as tested in both STM 65nm and NanGate 15nm technologies. [69] used the composite
field representation GF((24)2), whereas [21], [14] and [68, 70] used the tower field representation
GF(((22)2)2).

In this thesis, we evaluated some of the most prominent forward, inverse and combined AES

9

CHAPTER 1. INTRODUCTION

S-boxes available in the literature. We improved some previous forward S-boxes for Application-
Specific Integrated Circuit (ASIC) implementation. We analyzed the hardware complexity and
compared the implementation results of different S-boxes. Very-high-speed integrated circuit
Hardware Description Language (VHDL) coding was used as a design entry method to Synop-
sys Design Compiler® and STM 65nm CMOS standard cell library was used for logic synthesis.
For each and every code, we verified the codes using the S-box testbenches and Modelsim® and
by comparing against the legitimate S-box outputs.

We improved the area and the delay of the exponentiation block and the area of the subfield
inversion block of the S-box inversion circuit in [69]. As a result, the area and the delay of the
lightweight S-box improved and the area of the fast S-box reduced too while maintaining the same
critical path delay.

For the lightweight S-box proposed in [69], we conducted a search over all input transformation
matrices of the S-box that are modified by multiplying the S-box input by an 8-bit binary field
element in order to find a lower area one than [69]. We did not find such a matrix.

We also improved the speed of the fast S-box proposed in [69], by modifying its architecture
so that no output mapping is needed as suggested in [54]. We searched over all extended input
transformation matrices that are multiplied by an 8-bit element in order to find a lower delay and a
lower area one. This resulted in the fastest S-box to date, up to our knowledge.

We explained and used the method of logical effort to linearly model the critical path delay of
some previous and improved S-boxes. This is done in order to standardize the calculation of the
S-box delay among the different technology libraries used in the synthesis process.

Using the same technique of modifying the input and output transformation matrices of the
S-box by multiplying the input byte by a binary field element that ranges from 1-255, we improved
the area of the low area forward S-box proposed in [68]. Due to the different field representation
selected by the logic minimization algorithm, we redesigned the inversion circuit of the improved
S-box correspondingly.

1.5 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we reviewed some formulations from
Reyhani et al. composite field GF((24)2) S-box [69] and Reyhani et al tower field GF(((22)2)2)
S-box [70]. This is an essential step to understand the underlying S-box architectures before in-
troducing our improvements in Chapter 4 and Chapter 5. In Chapter 3, different AES forward,
inverse and combined AES S-boxes are evaluated and compared in terms of area and delay. Some
previous AES S-boxes are improved by using more area and delay efficient gates.

The starting point of Chapter 4 is Reyhani et al. composite field S-box proposed in [69]. In
Chapter 4, we improved the lightweight and the fast S-boxes by slightly modifying the exponen-
tiation stage and designing a new subfield inverter stage. Using the improved exponentiation and
new subfield inverter blocks, the improved lightweight S-box has a smaller area and delay than
[69] and the improved fast S-box has a smaller area and same delay as [69]. We derived the matrix
form of multiplying the S-box input by an 8-bit field element, then we use this matrix to modify
the input and output transformation matrices of the lightweight S-box. We conducted a search
over all the distinct field representations and all the values of the 8-bit field element, using the
focused-search logic minimization algorithm [69], in order to find a lower complexity input map-
ping of the lightweight S-box. We also modified the fast S-box architecture by removing the output
mapping as suggested in [54] and extending the input transformation matrix. We searched over all
the extended input transformation matrices that are modified by multiplying the S-box input by a
binary field element that ranges from (1-255). The resulting improved fast S-box is currently the

10

CHAPTER 1. INTRODUCTION

fastest and most efficient (as measured by area × delay) S-box available in the literature, up to our
knowledge.

We also used the method of logical effort [74] to linearly model the critical path delay of the
S-box in order to standardize the calculation of the delay among different technology libraries used
in the synthesis process. We used this method to evaluate and compare the delay of previous and
improved fast S-box architectures. The results obtained from the logical effort method match those
obtained from Synopsys Design Compiler® for the delay.

In Chapter 5, we started with the low area S-box proposed in [70]. We multiplied the input
of the S-box by an 8-bit binary field element and then we did a search over all input mappings of
the S-box for a lower complexity input matrix. The logic minimization algorithm is then applied
to the output transformation matrices corresponding to the lowest complexity input matrices in
order to select the improved mappings. As a result of the different field representation selected by
the logic-minimization algorithm for the improved mappings, the inversion circuit is re-designed.
Our analysis and the ASIC implementation results show that the improved S-box outperforms the
original scheme in terms of area.

Finally, Chapter 6 highlights the contributions of this thesis and lists the future work.

11

Chapter 2

Preliminaries

In this Chapter, we will review the underlying architecture and necessary formulations of both
Reyhani et al. composite field GF((24)2) S-box proposed in [69] and Reyhani et al. tower field
GF(((22)2)2) S-box introduced in [70]. Both structures will be improved later in Chapter 4 and
Chapter 5.

2.1 Reyhani et al. Composite Field GF((24)2) S-box

In [69], Reyhani et al. used the composite field implementation for the S-box. The matrix used for
the input isomorphic mapping of the S-box is denoted as as X−1 [21]. Therefore, the S-box input
vector g = [g7, · · · , g1, g0]tr represented in the binary field is converted to the corresponding vector
representation in the used composite field, i.e., i = [a0, a1, a2, a3, b0, b1, b2, b3]tr as i = X−1

× g. The
corresponding composite field S-box is shown in Figure 2.1. The internal dashed block in this
figure performs the inversion of i = (a0, a1, a2, a3, b0, b1, b2, b3) over the composite field GF((24)2)
as o = (w0,w1,w2,w3, z0, z1, z2, z3) = i−1 ∈ GF((24)2) which can be converted back to the binary
field as f = X × o = X×[w0,w1,w2,w3, z0, z1, z2, z3]tr. As a result the output of the composite field
S-box can be computed using (1.2) as s = MX × o ⊕ h.

2.1.1 Composite Field GF((24)2) Construction

The elements are converted to an isomorphic composite field GF((24)2). The irreducible polyno-
mial over GF(24), namely

p(y) = y2 + µy + ν = (y + γ)(y + γ16), (2.1)

is used to construct the composite field. In (2.1), γ is its root and the subfield elements
µ, ν ∈ GF(24) should be chosen so that this polynomial is irreducible over GF(24). Then, {γ, γ16}

is the Normal Basis (NB) and every element g in GF(28) can be mapped to its composite field rep-
resentation over GF(24) as g = Aγ + Bγ16, where A = (a0a1a2a3) and B = (b0b1b2b3) are subfield
elements in GF(24) and ai and bi are their binary coordinates, respectively.

The subfield GF(24) is generated using the irreducible all-one-polynomial (AOP) with degree
four, i.e.,

r(t) = t4 + t3 + t2 + t + 1. (2.2)

If β is a root of r(t), i.e., r(β) = 0. Then, the type-I optimal normal basis (ONB-I) {β, β2, β22
, β23
}

is used for representing field elements and their efficient computations over GF(24) [66]. Then,
any field element A = (a0a1a2a3) ∈ GF(24) can be represented as A = a0β + a1β

2 + a2β
22

+ a3β
23

.

12

CHAPTER 2. PRELIMINARIES

2 𝜈

−1

4

4

8

Exponentiation

Subfield

Inverter

Output

Multipliers

4

4

8

𝑊

𝑍

𝐴

𝐵

𝐺𝐹(24) 𝐺𝐹(24)

𝐗−1

𝐺𝐹 28

g
8

𝑖 𝐌X

𝐺𝐹 28

𝒉

s
8 8

𝐺𝐹((24)2) field inversion

𝑜
𝐷 𝐸

44

𝐺𝐹 (24)2 𝐺𝐹 24)2

Figure 2.1: The architecture of the S-box using GF(((24)2) in the NB representation.

2.1.2 Inversion over Composite Field GF((24)2)

The inverse of g = Aγ + Bγ16 in the composite field GF((24)2) can be written as [36, 61], g−1 =

(gr)−1gr−1, where r = 24×2−1
24−1 = 17. Then, g−1 = (g17)−1g16 can be computed as

g−1 = (gg16)−1g16

= [(Aγ + Bγ16)(Bγ + Aγ16)]−1(Bγ + Aγ16)
= [AB(γ + γ16)2 + (A + B)2γγ16]−1(Bγ + Aγ16)
= EBγ + EAγ16 = Wγ + Zγ16,

(2.3)

where

E = D−1 = [g17]−1 = [AB(γ + γ16)2 + (A + B)2γγ16]−1, (2.4)

W = EB and Z = EA. Since γ and γ16 are roots of (2.1), then γ + γ16 = µ and γγ16 = ν. Thus,
D ∈ GF(24) in (2.4) is simplified to

D = ABµ2 + (A + B)2ν. (2.5)

By taking µ = 1 ∈ GF(24), then (2.1) and (2.5) would respectively become

p(y) = y2 + y + ν = (y + γ)(y + γ16), (2.6)

and

D = AB + (A + B)2ν. (2.7)

The underlying arithmetic operations for the GF((24)2) inversion are shown in Figure 2.1. The
inversion over GF((24)2) requires an addition, a squaring, three multiplications and multiplication
by the constant ν (scaling), which are implemented over subfield GF(24). The GF((24)2) inversion
consists of three main blocks, namely exponentiation computation, subfield inverter, and output
multipliers.

The overall architecture of Reyhani et al. composite field S-box is highlighted in Figure 2.2.
The input and output transformation blocks are responsible for converting elements between the
AES binary field GF(28) and the corresponding elements in the composite field GF((24)2). The
input transformation block accepts an 8-bit element g from the GF(28) field, and generates two
4-bit field elements A and B, and the mod-2 addition between every two bits in each of the two
elements of A and B, i.e., A jk and B jk , where A jk is a set that contains a j ⊕ ak, and B jk contains
b j ⊕ bk, both for 0 ≤ j, k ≤ 3, and j , k. The output transformation block accepts the result of the
two subfield multipliers; W and Z (5 bits each), and generates the corresponding element s, i.e.,
the S-box output, in the AES GF(28) field.

13

CHAPTER 2. PRELIMINARIES

10

10

20
−1

Exponentiation

Subfield

Inverter

Output

Multipliers

17

𝐺𝐹((24)2) field inversion

𝐗−1
𝐺𝐹 28

g
8

𝐌X×T1

𝐺𝐹 28

𝒉

s
8 8

5

5

W′

Z'

𝑎01
𝑎02
𝑎03
𝑎12
𝑎13
𝑎23

𝑏01
𝑏02
𝑏03
𝑏12
𝑏13
𝑏23

𝐺𝐹 (24)2 𝐺𝐹 (24)2

𝐺𝐹 24 𝐺𝐹 24

Figure 2.2: Reyhani et al. composite field S-box.

2 𝜈

−1

4

4

8

Exponentiation

Subfield

Inverter

Output

Multipliers

4

4

8

𝑊

𝑍

𝐴

𝐵

𝐺𝐹((22)2) 𝐺𝐹((22)2)

𝐗−1

𝐺𝐹 28

g
8

𝑖 𝐌X

𝐺𝐹 28

𝒉

s
8 8

𝐺𝐹(((22)2)2) field inversion

𝑜𝐷 𝐸

44

𝐺𝐹 (22)2)2 𝐺𝐹 (22)2)2

Figure 2.3: The architecture of the S-box using GF(((22)2)2) in the NB representation.

2.2 Reyhani et al. Tower Field GF(((22)2)2) S-box

In [70], the authors used the tower field implementation for the S-box. The matrix used for in-
put isomorphic mapping of the S-box is denoted as as X−1 [21]. The S-box input vector g =

[g7, · · · , g1, g0]tr is converted to the corresponding vector representation in the used tower field,
i.e., i = [a0, a1, a2, a3, b0, b1, b2, b3]tr as i = X−1

× g. The corresponding tower field S-box archi-
tecture is shown in Figure 2.3. The inversion of i = (a0, a1, a2, a3, b0, b1, b2, b3) is performed over
the tower field GF(((22)2)2) as o = (w0,w1,w2,w3, z0, z1, z2, z3) = i−1 ∈ GF(((22)2)2) which can be
converted back to the binary field as f = X × o = X×[w0,w1,w2,w3, z0, z1, z2, z3]tr. As before, the
output of the tower field S-box can be computed using (1.2) as s = MX × o ⊕ h.

2.2.1 Tower Field GF(((22)2)2) Construction

Here, a field element g = (g7, ..., g0) ∈ GF(28) is converted to an isomorphic tower field i =

(a0, a1, a2, a3, b0, b1, b2, b3) ∈ GF(((22)2)2) defined using the irreducible polynomial over GF((22)2):

p(y) = y2 + y + ν = (y + γ)(y + γ16), (2.8)

where γ (its root) and ν are subfield elements in GF((22)2) that should be chosen so that
this polynomial is irreducible over GF((22)2). Then, {γ, γ16} is the NB over GF((22)2) and ev-
ery element g in GF(28) can be mapped to its tower field representation over GF((22)2) as i =

(a0, a1, a2, a3, b0, b1, b2, b3) = Aγ + Bγ16, where A = (a0, a1, a2, a3) and B = (b0, b1, b2, b3) are
subfield elements in GF((22)2).

Similarly, the subfield GF((22)2) is generated using the irreducible polynomial over GF(22) of

q(z) = z2 + z + N = (z + α)(z + α4), (2.9)

with its root α that generates the NB {α, α4} over GF(22). In (2.9), N ∈ GF(22) should be se-
lected so that q(z) is irreducible over GF(22). Therefore, any subfield element A = (a0, a1, a2, a3) ∈

14

CHAPTER 2. PRELIMINARIES

GF((22)2) can be represented with respect to the NB {α, α4} by A = A0α + A1α
4 where A0 =

(a0, a1), A1 = (a2, a3) ∈ GF(22). The RNB {α, α4, 1} is used to represent field elements over
GF(22), where α + α4 = 1 ∈ GF(22). The hat notation is used to represent the coordinates with
respect to the RNB. Therefore, the element A can also be represented by A = Â0α + Â1α

4 + Â2,

where Âi ∈ GF(22), and Ai = Âi + Â2 for i = 0, 1 as α + α4 = 1.
To construct the binary field GF(22), the irreducible all-one-polynomial (AOP) with degree 2,

r(t) = t2 + t + 1 = (t + ω)(t + ω2), (2.10)

is used to generate the NB {ω,ω2} over GF(2). Therefore, the field elements A0, A1 ∈ GF(22)
can be represented as A0 = (a0, a1) = a0ω + a1ω

2 and A1 = (a2, a3) = a2ω + a3ω
2, respectively. As

a result, any subfield element A = (a0a1a2a3) ∈ GF((22)2) can be represented as

A = (a0ω + a1ω
2)α + (a2ω + a3ω

2)α4, (2.11)

where ai are the binary coordinates. The RNB {ω,ω2, 1} is also used to represent an element
over GF(22), where ω + ω2 = 1 ∈ GF(2). Similarly, the hat notation is used for the coordinates
with respect to the RNB. Therefore, A0 can also be represented as A0 = â0ω + â1ω

2 + â2 where
âi ∈ GF(2), i ∈ [0, 2] are the coordinates of A0 with respect to the RNB. Hence ai = âi ⊕ â2 for
i = 0, 1 as ω + ω2 = 1.

To make p(y) in (2.8) irreducible, the constant ν in (2.8) can take any of the following 8 differ-
ent values: {[1000],[0100],[0010],[0001],[1110],[1101],[1011],[0111]}. The 4-bits of each value
represent the coefficients of νi, i ∈ [0, 3] in ν = (ν0ω + ν1ω

2)α + (ν2ω + ν3ω
2)α4. Similarly, the

constant N in (2.9) can take any of the following 2 values: {[10],[01]}, where the 2-bits represent
the coefficients of N = N0ω + N1ω

2.

2.2.2 Inversion over Tower Field GF(((22)2)2)

The multiplicative inverse of g = Aγ + Bγ16 in the tower field GF(((22)2)2) can be written as
g−1 = (g17)−1g16 [36, 61]. Since g16 = Bγ+ Aγ16, one can define D = g17 = (Aγ+ Bγ16)(Bγ+ Aγ16),
which can be simplified to

D = A × B + (A + B)2ν. (2.12)

Then, g−1 = D−1(Bγ + Aγ16). Assuming that g−1 = Wγ + Zγ16, where W,Z ∈ GF((22)2), the
outputs of the inversion g−1 ∈ GF(((22)2)2) can be found by computing

W = B × D−1 = B × E
Z = A × D−1 = A × E, (2.13)

where E = D−1.
The inversion over tower field in Figure 2.3 consists of the following steps:

1. Convert the input g to an equivalent element in the tower field representation A and B.

2. Use A and B to compute D in (2.12).

3. Find E, the multiplicative inverse of D.

4. Find W = B × E and Z = A × E, which represent the output in tower field representation.

5. Convert the outputs W and Z (which corresponds to inversion output o in the tower field) to
an equivalent element in the binary field f , which is the inversion output.

15

CHAPTER 2. PRELIMINARIES

9

9

18
−1

Exponentiation

Subfield

Inverter

Output

Multipliers

17

𝐺𝐹(((22)2)2) field inversion

6

6

𝐺𝐹 28

𝒉

s
8 8

W’

Z′

𝐗−1𝐺𝐹 28

g
8

𝑎01
𝑎02
𝑎13
𝑎23
𝑎𝑝

𝑏01
𝑏02
𝑏13
𝑏23
𝑏𝑝

𝐌𝐗× 𝐓

𝐺𝐹(((22)2)2) 𝐺𝐹(((22)2)2)

𝐺𝐹((22)2) 𝐺𝐹((22)2)

Figure 2.4: Reyhani et al. tower field S-box.

The overall architecture of Reyhani et al. tower field S-box is highlighted in Figure 2.4. In the
beginning, the 8-bit input g is processed through the input isomorphic mapping to find the equiva-
lent elements A and B, of 4-bit each, in the tower field representation. The GF((22)2) elements A

and B represent the inputs of the inversion circuit. Some XOR gates from the tower field inversion
are included into the input and output mappings of the S-box. The input mapping generates A and
B, of 4-bit each, and also {a01, a02, a13, a23, ap} and {b01, b02, b13, b23, bp}, where a jk = a j ⊕ ak and
b jk = b j ⊕ bk for 0 ≤ j, k ≤ 3, and j , k. Also, ap = a02 ⊕ a13 and bp = b02 ⊕ b13 which are the
parities of A and B, respectively.

Similarly, the output mapping implements the last stage of the output multipliers. The GF((22)2)
multiplier output is represented as six terms (6-bit output) denoted by W ′ and Z′ as RNB6 (6-bit
redundant normal basis) representation, before reduced to four terms (4-bit output). Therefore, the
output mapping of the forward S-box accepts two redundant RNB6 elements with a total of 12 bits,
and generates an 8-bit output in the binary field of GF(28) as shown in Figure 2.4.

2.3 Conclusion

In this Chapter, we reviewed the preliminaries of the two recent S-boxes proposed in [69, 70]. This
is an essential step before introducing our area and delay improvements to the aforementioned
S-boxes in Chapter 4 and Chapter 5.

16

Chapter 3

Implementation Results and Comparisons
of Forward, Inverse and Combined AES
S-boxes

In this Chapter, we will evaluate and compare some previous and improved forward, inverse and
combined AES S-boxes. For every code, we first verify the code at the Register-Transfer Level
(RTL) using Mentor Graphics Modelsim®, by comparing against the legitimate S-box outputs.
The design is then synthesized using STM 65nm standard cell library where VHDL coding is
utilized as the design entry method to Synopsys Design Compiler®.

3.1 Forward, Inverse and Combined AES S-boxes

In this section, we will provide a review about some AES S-boxes introduced in the literature. The
AES S-boxes that represent the most significant designs, in terms of area and/or delay, up to our
knowledge, will be implemented and compared in this Chapter.

Canright S-box has been known as the most compact S-box design since its introduction back in
CHES’05. Canright implemented tower field inversion using normal basis, instead of polynomial
basis [21]. In Addition, he conducted an exhaustive search through all the subfield representa-
tions (a total of 432 fields) to reduce the overall implementation area. Kasper et al. [40] used
Canright S-box in a bit-sliced software implementation of AES. The authors converted each logic
gate of Canright S-box to its equivalent CPU instruction. As a result of using Canright optimized
S-box, the instruction count of [40] improved by 15%. Boyar-Peralta proposed logic-minimization
heuristics that could reduce the gate count of Canright S-box from 120 gates to 113 gates, however
synthesis results did not reflect much improvement. In the track of lightweight S-boxes, Boyar,
Peralta, along with others proposed several logic-minimization heuristics to reduce the gate count
of Canright S-box [18, 17]. They did not explore substantially different subfields, but they focused
on reducing the number of gates that are needed to implement Canright circuit itself. They pro-
posed a reduction in the gate count of the S-box circuit from 120 gates in Canright circuit to 115
gates in [18, 17], to 114 gates in [81], and to 113 gates in [14]. In CHES’15, Ueno et al. proposed
an S-box that has a slightly higher area, but significantly faster than the previous designs, hence
it was the most efficient (measured by area × delay) S-box implementation to that date. Ueno et
al. used their fast S-box later to design an AES architecture with a very short critical path delay in
[80].

The design of Canright S-box did not target fast application. Hence, the track of high-speed/higher-
efficiency S-boxes received more research focus. [71, 39, 60, 59, 78] are some papers that fall in
this latter category. Boyar et al. also proposed low-depth circuits for Canright S-box using delay-

17

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

controlled logic-minimization heuristics [19, 15].
In 2018, Reyhani et al. proposed two new S-box designs, based on a new composite field

GF((24)2) [69]. The first design, the lightweight S-box, was the smallest S-box, in terms of the ac-
tual ASIC implementation area, as compared to previous work. The second design, the fast S-box,
was the fastest and most efficient S-box design then. They also proposed new logic-minimization
heuristics that give smaller and faster circuits than Boyar-Peralta. Later in 2019, Reyhani et al. in-
troduced three new lightweight designs for the forward, inverse and combined AES S-boxes [70],
based on a new tower field GF(((22)2)2). Each design had the smallest area compared to previous
designs in its respective category.

Maximov et al. recently proposed new circuit minimization techniques for smaller and faster
S-boxes [54]. It is worth mentioning that Maximov fast design is currently the fastest and most-
efficient S-box design. Also, Maximov bonus S-box is currently the smallest S-box design, up to
our knowledge.

3.2 Behavioural and Structural VHDL Coding

The S-box circuit can be coded in VHDL using either behavioral or structural coding. This is done
so we can reach to the optimum circuit, in terms of area and/or delay for each block of the S-
box. In behavioral modeling, we define the circuits based on their input-output relationship (their
behavior), and let the Computer-Aided Design (CAD) tool selects the best implementation based
on the available gates in the target library. In the structural modeling, we define the exact gates
and circuit structure based on formulations or circuit diagram very precisely, with no optimization
in the gate selection by the CAD tool. By modeling the circuit structurally, we are enforcing the
desired synthesis results on the CAD tool. We also compared the ASIC implementation results
of the behavioral modeling against the structural modeling in order to select the optimum imple-
mentation. By observing the synthesis results of both structural and behavioural VHDL coding
of the circuit, we are able to select a coding style that is capable of meeting the required design
constraint, either area, delay or both.

3.3 Implementation Results and Comparisons of Forward AES
S-boxes

In this section, we will evaluate and compare the implementation results of some previous and
improved forward AES S-box circuits. All the implementation areas in Gate Equivalents (GEs)
estimated in this section are computed based on the area of individual gates in the STM 65nm
technology library.

3.3.1 Comparisons of the Space and Time Complexities

In this section, we will list the space and time complexities of the fastest and most compact forward
AES S-box architectures available in the literature, up to our knowledge. In addition, we will list
the space and time complexities of the improved S-box architectures proposed in this thesis.

Tables 3.1 and 3.2 provide the hardware complexity and time delay of 19 previous and im-
proved S-boxes. We chose five of the most lightweight schemes, namely Canright [21, 20], and
the 113-gate design in [14], which was found using the Boyar-Peralta heuristic [18] while exhaus-
tively searching through all the ties, Reyhani et al. lightweight S-box [69], Reyhani et al. low
area S-box [70] and Maximov et al. bonus S-box [54]. In addition, we chose five of the fastest

18

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

schemes, namely the two Boyar et al. designs in [19] and [15], along with the Ueno et al. design
[78], Reyhani et al. fast S-box [69] and Maximov et al. fast S-box [54]. The space complexity
comparison of fast designs helps in detecting where the speed improvements came from and also
in validating the CAD tool results.

The gate count for Canright S-box is obtained from [21] and [20]. Let us denote the 113-gate
design in [14] as Boyar-Op113, the 16-depth circuit, with 128 gates in [19] as Boyar-Dp16-1, and
the new 16-depth circuit, with 125 gates in [15] (which is available in [14]) as Boyar-Dp16-2.

The Boyar-Op113 scheme requires 113 gates (81 XOR with 32 AND operations). The Boyar-
Dp16-1 scheme uses 94 XOR2/XNOR2 with 34 AND operations, while the Boyar- Dp16-2 scheme
uses 91 XOR2/XNOR2 with 34 AND operations. We improved the 113-gate S-box of [14] to
use NAND gates instead of AND gates, resulting in the first S-box circuit to have an actual lower
implementation area than the one proposed by Canright (not just the gate count). We also improved
the low-depth circuits of [19, 15]. It is cheaper and faster to use NAND gates instead of AND
gates in the ASIC implementations. Therefore, the improved schemes is obtained by changing the
AND gates to NAND gates and tracing the results of such changes by replacing some XOR to
XNOR and some XNOR to XOR. Boolean algebra are used whenever the input of an AND gate
is complemented to change the AND gate to a NOR gate. To adjust the complement of the other
AND input, its complement is moved to the gate that generates it and the complement of this gate
is traced to all the other gates. At the end, the correctness of the improved schemes is verified by
testbenches and using the CAD tool.

The gate count of the original Boyar-Op113 [14], the Boyar-Dp16-1 [19], and the Boyar-Dp16-
2 [15] schemes as well as those of the improved schemes are presented in Table 3.1. In Table 3.1,
we also provided the GEs for all S-box architectures using the corresponding GEs of the gates
from the STM CMOS 65nm technology. In our GEs calculations, we used XOR2/XNOR2 (2
GEs), AND2 (1.25 GEs), OR2 (1.25 GEs), NAND2 (1 GE), NAND3 (1.25 GEs), NOR2 (1 GE),
and NOT (0.75 GEs).

The gate count of the GF((24)2) inversion of the original scheme proposed by Ueno et al. is
provided in [78] as (51 XOR2 + 38 AND2 + 16 OR2 + 4 NOT) gates. However, no information
regarding the gate count of the input matrix (denoted by ∆ f in their paper) and output matrix
(denoted by ∆l in their paper) is provided in the paper. We drove the gate counts of the input and
output matrices (14 and 26) to minimize the total number of XOR2/XNOR2 gates needed in these
blocks. Most importantly, we made sure the delays of these transformation matrices are the same
as the ones proposed in [78], namely 2DX and 3DX, respectively. As a result, the delay of the entire
S-box remains the same as the one proposed in [78], i.e., 11DX + 3DA + 1DO. The same Critical
Path Delay (CPD) was obtained by the CAD tool after coding the original Ueno et al. [78] S-box
architecture in VHDL. Since the original Ueno et al. S-box used several AND gates, we improved
the design using NAND gates by changing the corresponding formulations of all stages and blocks
in their architecture.

The CPD of those schemes are also compared in Table 3.2. These delays are obtained from
the corresponding papers and are also verified by the codes. More importantly, we used the CAD
tool to provide the CPD in terms of the number and type of gates. The results from the CAD tool
match the ones provided in the corresponding papers except for the Boyar-Op113 scheme which is
reduced to the depth of 27 from the depth of 28 mentioned in [15]. The CPD and the gate counts
for the improved schemes are derived by analysis of the improved formulations, and verified using
the CAD tool. As seen from Table 3.1, Maximov bonus S-box has the smallest area among all
previous and improved lightweight schemes, namely Canright, Boyar-Op113, improved Boyar-
Op113, Reyhani lightweight, improved lightweight, Reyhani low area and improved low Area.
Also, from Table 3.2, Maximov fast S-box is faster than the previous four fast schemes, however

19

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

Table 3.1: Space complexity comparison of some forward S-boxes.

Design Hardware Complexity GEs*

Lightweight
Canright [20] 80X+34ND+6NR 200

Boyar-Op113 [14] 81X+32AD 202
Improved Boyar_Op113 81X+32ND 194

Reyhani Lightweight [69] 63X+3X3+27ND+7NR+4O3+4NT 182.25
Reyhani Low Area [70] 48X+7X3+1XN3+32ND+6NR+2O3+2O4+6NT 177.75
Maximov Bonus [54] 64X+27ND+5NR+6MX 172

Imp. Lightweight (Proposed) 63X+30ND+6NR+4AOI12+4OAI212+4NT 178
Imp. Low Area (Proposed) 44X + 8X3 + 1XN3 + 32ND + 6NR + 2O3+2O4 + 6NT 173.5

Fast
Boyar-Dp16-1 [19] 94X+34AD 230.5
Imp. Boyar-Dp16-1 94X+30ND+4NR 222
Boyar-Dp16-2[15] 91X+34AD 224.5

Imp. Boyar-Dp16-2 91X+30ND+4NR 216
Ueno et al. [78] 91X+38AD+16OR+4NT 256.5

Imp. Ueno 91X+35ND+4N3+13NR+4NT 238
Reyhani Fast [69] 79X+39ND+4N3+3NR+4NT 208

Maximov Fast [54] 78X+4AD+37ND+5NR+6MX 215
Fast 1 (Proposed) 93X+51ND+4N3+3NR+4NT 248
Fast 2 (Proposed) 88X+51ND+4N3+3NR+4NT 238
Fast 3 (Proposed) 77X+42ND+6NR+4AOI12+4OAI212+4NT 218

∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, X3 is XOR3 =

3.75GEs, XN3 is XNOR3 = 4GEs, AD is AND2 = 1.25GEs, OR is OR2 = 1.5GEs, ND is NAND2 = 1GE, N3 is
NAND3 = 1.25GE, NR is NOR2 = 1GE, O3 is OAI32 = 2GEs, O4 is OAI222 = 2.5GEs, AOI12 is AND2 into NOR2
= 1.25GEs, OAI212 is 2 OR2 into NAND3 = 2GEs, NT is NOT = 0.75GEs and MX is MUX21 = 2GEs.

our proposed Fast 3 S-box has the same number of gates on the critical path. Both Maximov fast
S-box and the proposed Fast 3 S-box has a depth of 12 gates.

3.3.2 ASIC Synthesis Results and Comparisons

We coded all the above-mentioned S-boxes (original and improved ones) in VHDL and present
their ASIC results in Table 3.3. For each and every code, we verified the codes using the S-box
testbenches and Modelsim®. The results are collected at conservative wire load models and the
critical path delays are reported by the CAD tool when there is no load at the external output. The
power consumptions are included as reported by the CAD tool at relaxed constraints using a clock
frequency of 100 MHz.

The original code for the Canright scheme was obtained from [21], where they provide a be-
havioral modeling (in Verilog) for the combined S-box/inverse S-box core. We revised it, with
minimal changes, to a behavioral modeling of an S-box-only core, leading to a hardware cost of
208.5 GEs (denoted Canright_Beh. in the table). Then, we wrote a structural code following the
formulations written in the paper, in order to exactly match the hardware complexity provided in
the report, leading to a hardware cost of 200 GEs (denoted Canright_Str. in the table). Note that in
[41], the authors mention that the Boyar-Peralta S-box [18] can be implemented in 193.8 GEs by
converting AND gates to NAND gates, but they did not detail on the exact equations used.

The results listed in Table 3.3 show that Maximov bonus S-box is the smallest area S-box,
while our proposed improved lightweight S-box is the fastest and most efficient (measured by area
× delay) S-box design among other lightweight S-boxes considered.

Similarly, our proposed Fast 3 S-box is the fastest and most efficient S-box design in the fast
S-box category to date. Reyhani fast S-box is the lowest in implementation area in the fast S-box
category.

20

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

Table 3.2: Time complexity comparison for different S-boxes.

Design CPD*

Lightweight
Canright [20] 19DX + 3DND + 1DNR

Boyar-Op113 [14] 21DX + 6DA

Improved Boyar_Op113 21DX + 6DND

Reyhani Lightweight [69] 15DX + 1DX3 + 1DND + 1DO3 + 1DNT

Reyhani Low Area [70] 12DX + 3DX3 + 2DND + 1DO4 + 1DNT

Maximov Bonus [54] 20DX + 1DND + 2DNR + 1DMX

Imp. Lightweight (Proposed)
15DX + 1DNR + 1DND+

1DAOI12 + 1DOAI212 + 1DNT

Imp. Low Area (Proposed) 13DX + 3DX3 + 2DND + 1DO4 + 1DNT

Fast
Boyar-Dp16-1 [19] 14DX + 2DA

Imp. Boyar-Dp16-1 14DX + 1DND + 1DNR

Boyar-Dp16-2[15] 13DX + 3DA

Imp. Boyar-Dp16-2 14DX + 2DND

Ueno et al. [78] 11DX + 3DA + 1DO

Imp. Ueno 10DX + 4DND + 1DN3 + 1DNT

Reyhani Fast [69] 11DX + 5DND + 1DNT

Maximov Fast [54] 8DX + 1DA + 1DND + 1DNR + 1DMX

Fast 1 (Proposed) 8DX + 5DND + 1DNT

Fast 2 (Proposed) 8DX + 5DND + 1DNT

Fast 3 (Proposed)
7DX + 1DND + 1DNR+

1DAOI12 + 1DOAI212 + 1DNT
∗X = XOR2/XNOR2, X3 = XOR3, A = AND2, ND = NAND2, N3 = NAND3, NR = NOR2, O3 = OAI32, O4 =

OAI222, AOI12 = AND2 into NOR2, OAI212 = 2 OR2 into NAND3, NT = NOT and MX = MUX21.

Table 3.3: ASIC comparisons of the S-Box architectures.

Design
Area Delay Power Area-Time

µm2 GE ns µW product
Lightweight

Canright_Beh. [21] 433.68 208.5 1.287395 42.125 268.422
Canright_Sr. 416 200 1.252811 41.023 250.562

Boyar-Op113 [14] 420.16 202 1.522775 39.365 307.601
Improved Boyar-Op113 403.52 194 1.34606 40.471 261.136

Reyhani Lightweight [69] 379.08 182.25 1.197698 38.085 218.28
Reyhani Low Area [70] 369.72 177.75 1.168615 34.731 207.721
Maximov Bonus [54] 357.76 172 1.382479 36.437 237.786

Imp. Lightweight (Proposed) 370.24 178 1.102665 37.549 196.274
Imp. Low Area (Proposed) 360.88 173.5 1.2450 34.57 216.001

Fast
Boyar-Dp16-1 [19] 479.44 230.5 0.960458 44.020 221.386

Improved Boyar-Dp16-1 461.76 222 0.905652 44.797 201.055
Boyar-Dp16-2 [15] 466.96 224.5 0.956535 42.724 214.742

Improved Boyar-Dp16-2 449.28 216 0.911743 43.645 196.936
Ueno et al. [78] 533.52 256.5 0.831007 48.178 213.153

Imp. Ueno 495.04 238 0.772424 49.609 183.837
Reyhani Fast [69] 432.64 208 0.779697 42.750 162.177

Maximov Fast [54] 447.2 215 0.686869 41.398 147.677
Fast 1 (Proposed) 515.84 248 0.636572 49.310 157.870
Fast 2 (Proposed) 495.04 238 0.627886 47.807 149.437
Fast 3 (Proposed) 453.44 218 0.626698 46.580 136.62

21

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

3.4 Implementation Results and Comparisons of Inverse AES
S-boxes

In this section, we will evaluate and compare the implementation results of some previous and
improved inverse AES S-box circuits. All the estimated implementation areas (in GEs) in this
section are computed based on the area of individual gates in the STM 65nm technology library.

3.4.1 Complexity Analysis of Inverse S-boxes

In this section, we will compare the hardware complexity of 6 inverse AES S-box architectures,
namely Canright [21], the 121-gates circuit, denoted Boyar_I121, as proposed in [14], along with
our improved version of the Boyar_I121 circuit where we replaced all the AND gates by NAND
gates with necessary changes for correct operation. We also will include the inverse S-box pro-
posed in [70], denoted Reyhani inverse, Maximov et al. bonus inverse S-box and Maximov et
al. fast inverse S-box proposed in [54]. The gate count of each inverse S-box design is listed in
Table 3.4. It is noted that Maximov bonus inverse S-box is the smallest inverse S-box among other
considered inverse S-boxes.

Table 3.4: Gate count of some inverse S-box circuits.

Design Hardware Complexity GEs*

Canright [21] 81X + 34ND + 6NR 202
Boyar_I121 [14] 87X + 34AD 216.5
Imp. Boyar_I121 87X + 34ND 208

Reyhani Inverse [70] 47X + 10X3 + 32ND + 6NR + 2O3 + 2O4 + 6NT 183
Maximov Bonus [54] 63X+27ND+5NR+6MX+1NT 170.75
Maximov Fast [54] 78X+41ND+5NR+6MX 214

∗All GE values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, X3 is XOR3 =

3.75GEs, AD is AND2 = 1.25GEs, ND is NAND2 = 1GE, NR is NOR2 = 1GE, O3 is OAI32 = 2GEs, O4 is OAI222
= 2.5GEs, NT is NOT = 0.75GEs and MX is MUX21 = 2GEs.

3.4.2 ASIC Synthesis Results and Comparisons

For the inverse S-box, we have written the VHDL codes for the designs of the inverse S-boxes
proposed by Canright [21], and Boyar et al. [14], denoted as Boyar_I112, in addition to improved
Boyar_I112, Reyhani inverse S-box [70], Maximov bonus inverse S-box and Maximov fast inverse
S-box [54]. Implementation results using STM 65nm technology are presented in Table 3.5. The
results are collected at conservative wire load models and the critical path delays are reported by
the CAD tool when there is no load at the external output. The power consumption values are
included as reported by the CAD tool at relaxed constraints using a clock frequency of 100 MHz.

It is noted that the reported area from the CAD tool for the Canright design is lower than the
area complexity of the inverse S-box mentioned in [21]. The formulations for original Boyar et. al
inverse S-box design are obtained from [14]. We improved the inverse S-box designed by Boyar
et al. in [14]. For the improved Boyar et. al inverse S-box design, we used Boolean Algebra to
obtain the equivalent formulations. Our improved design uses NAND, NOR, XOR and XNOR
gates, whereas the original Boyar et al. [14] inverse S-box uses AND, XOR, and XNOR gates. As
shown in Table 3.5, the improved Boyar_I121 design is more compact and faster than the original
Boyar_I121 inverse S-box. Moreover, Maximov bonus inverse S-box [54] is the most compact
inverse S-box and Maximov fast inverse S-box [54] is the fastest inverse S-box up to date.

22

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

Table 3.5: ASIC Implementation results for some Inverse S-box.

Inverse S-box
Area CPD Power

µm2 GE ns µW
Canright [21] 420.16 202 1.168 41.320

Boyar_I121 [14] 450.32 216.5 1.231 42.22
Improved Boyar_I121 432.64 208 1.182 43.06

Reyhani [70] 380.64 183 1.387 35.41
Maximov Bonus [54] 355.16 170.75 1.388 35.99
Maximov Fast [54] 445.12 214 0.648 41.23

Table 3.6: Complexity comparison of different combined S-box designs.

Design Hardware Complexity GEs*

Canright [21] 94X+34ND+6NR+2NT+16MXI 257.5
Reyhani [70] 57X+12X3+32ND+6NR+2O3+2O4+6NT+14MXI+2MX 239

Maximov Bonus [54] 79X+27ND+5NR+16MX 222
Maximov Fast [54] 104X+41ND+6NR+13MX+12MXI 302

∗All GE values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, X3 is XOR3 =

3.75GEs, ND is NAND2 = 1GE, NR is NOR2 = 1GE, O3 is OAI32 = 2GEs, O4 is OAI222 = 2.5GEs, NT is NOT =

0.75GEs, MX is MUX21 = 2GEs and MXI is MUXI21 = 1.75GEs.

3.5 Implementation Results and Comparisons of Combined AES
S-boxes

In this section, we will evaluate and compare the implementation results of 4 combined AES S-box
circuits. All the estimate implementation areas (in GEs) in this section are computed based on the
area of individual gates in the STM 65nm technology library.

3.5.1 Complexity Analysis of Combined S-boxes

Table 3.6 compares the hardware complexity analysis of four combined forward/inverse S-box
schemes proposed in the contributions [21] , [70] and [54]. The estimated implementation areas
(in GEs) are computed based on the area of individual gates in the STM 65nm technology library.
Table 3.6 shows that Maximov bonus combined S-box is smaller than both Canright and Reyhani.

3.5.2 ASIC Implementation Results

We used VHDL coding as a design entry to the Synopsys Design Vision® for logic synthesis. All
the combined S-boxes are evaluated using the STM 65nm CMOS standard-cell library. The results
are collected at conservative wire load models and the CPDs are reported by the CAD tool when
there is no load to the external output. The power consumption values are included as reported by
the CAD tool at relaxed constraints using a clock frequency of 100 MHz.

Table 3.7 highlights the ASIC reported results for four combined S-boxes, namely Canright
[21], Reyhani [70], Maximov bonus and Maximov fast [54]. The table also shows the area in
terms of GEs, CPD and power consumption as reported by the CAD tool. As shown in Table 3.7,
Maximov bonus combined S-box is more compact than both Canright [21]) and Reyhani [70]. Also
Maximov fast combined S-box is currently the fastest combined S-box available in the literature,
up to our knowledge.

23

CHAPTER 3. IMPLEMENTATION RESULTS AND COMPARISONS OF FORWARD, INVERSE AND
COMBINED AES S-BOXES

Table 3.7: ASIC Implementation results of different combined S-boxes.

Combined S-box
Area CPD Power

µm2 GE ns µW
Canright [21] 535.6 257.5 1.344 54.41
Reyhani [70] 497.12 239 1.355 48.72

Maximov Bonus [54] 461.76 222 1.363 48.81
Maximov Fast [54] 628.16 302 0.758 59.07

3.6 Conclusion

In this chapter, we evaluated and compared some of of the best designs for the forward, inverse and
combined AES S-boxes as well as our improved versions. The designs were verified by extensive
simulation codes. The space and timing complexity analyses as well as the ASIC implementation
results were used to compare the various circuits. We improved the area and delay of some previous
S-boxes, by using more area efficient logic gates as NAND and NOR instead of the less area
efficient AND gates, and making the necessary changes in order to keep the correct operation of
the S-box. We also included the simulation results of the 5 proposed improved S-boxes, namely
the proposed lightweight, the proposed low area, the proposed Fast 1, the proposed Fast 2 and the
proposed Fast 3. The proposed improved S-boxes will be discussed later in more detail in Chapter
4 and Chapter 5.

24

Chapter 4

Improved GF((24)2) Forward AES S-box

4.1 Introduction

In 2018, Reyhani et al. [69] proposed two AES S-box architectures, lightweight S-box and fast
S-box. The lightweight S-box was the most compact design, establishing a new milestone in the
area of AES S-box design since Canright [21] introduced his S-box in 2005. The fast design was
the fastest and most efficient design as compared to previous work. In this Chapter, we will suggest
some modifications to the lightweight and fast S-boxes in [69] in order to improve the area and/or
delay. Our improved fast S-box, Fast 3 is currently the fastest and most efficient (as measured by
area × delay) S-box to date, up to our knowledge.

In section 4.2, improved blocks of the inversion circuit of the lightweight and fast S-boxes are
derived. In section 4.2.1, an improved lower area and higher speed exponentiation block is derived.
In section 4.2.2, a new smaller area subfield inverter will be derived and used in the two S-boxes
proposed in [69]. Multiplication by a binary field element in matrix form is derived in section 4.3,
and used to modify the input and output transformation matrices of the lightweight S-box. The
focused-search logic minimization algorithm [69] is then used to search for a minimal circuit for
the transformation matrices, in order to reduce the area of the lightweight S-box. In section 4.4,
two new fast S-box architectures, Fast 1 and Fast 2, are derived and the ASIC synthesis results are
obtained. The synthesis results confirm an improvement in the speed of the two new architectures.
In section 4.5, the extended input transformation matrix for the fast S-box is derived and a search
is conducted to find a lower area architecture, Fast 3. All the improved S-boxes are implemented
in hardware and the ASIC simulation results are compared to previous work.

4.2 Improved Lightweight and Fast AES S-boxes

In this section, we will improve the area and delay of the exponentiation block and the subfield
inverter proposed in [69]. The improved blocks will be used to reduce the area and delay of both
the lightweight and the fast S-boxes proposed in [69].

4.2.1 Improved Exponentiation

In this section, we will derive an improved exponentiation stage for the S-box. The new exponen-
tiation stage will have a lower complexity and a lower delay than the corresponding one in [69].
Using equation (21) from [69], we can write the output D of the exponentiation block as

d0 = (a0b0) ⊕ (a12b12) ⊕ a1 ⊕ b1 ⊕ (a02b02) ⊕ (a13b13)
d1 = (a1b1) ⊕ (a23b23) ⊕ a13 ⊕ b13 ⊕ (a02b02) ⊕ (a13b13)
d2 = (a2b2) ⊕ (a03b03) ⊕ a12 ⊕ b12 ⊕ (a02b02) ⊕ (a13b13)
d3 = (a3b3) ⊕ (a01b01) ⊕ a01 ⊕ b01 ⊕ (a02b02) ⊕ (a13b13)

(4.1)

25

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

0a

12a
0b

12b

13a

13b

02a

02b

0d

1d

2d

3d

13a

13b

02a

02b

1a

1b

23a

23b

2a

2b

03a

03b

02 02() 'a b

13 13() 'a b

01b
01a

3b
3a

02 02() 'a b

13 13() 'a b

02 02() 'a b

13 13() 'a b

02 02() 'a b

13 13() 'a b

Figure 4.1: The improved exponentiation computation block for the S-box architecture.

To simplify d0 in (4.1), we will use (a1⊕b1) = (a12⊕b12⊕a02⊕b02⊕a0⊕b0), then (a0b0⊕a0⊕b0) =

(a0 ∨ b0), (a12b12 ⊕ a12 ⊕ b12) = (a12 ∨ b12) and (a02b02 ⊕ a02 ⊕ b02) = (a02 ∨ b02), where ∨ represents
an OR operation. Similarly, to simplify d1, we will use (a13b13 ⊕ a13 ⊕ b13) = (a13 ∨ b13). For
d2, we will use (a12 ⊕ b12) = (a13 ⊕ b13 ⊕ a03 ⊕ b03 ⊕ a02 ⊕ b02). then (a03b03 ⊕ a03 ⊕ b03) =

(a03 ∨ b03), (a02b02 ⊕ a02 ⊕ b02) = (a02 ∨ b02) and (a13b3 ⊕ a13 ⊕ b13) = (a13 ∨ b13). Similar property
(a01b01 ⊕ a01 ⊕ b01) = (a01 ∨ b01) is used for d3. Therefore, the following formulations can be
obtained for D

d0 = (a0 ∨ b0) ⊕ (a12 ∨ b12) ⊕ (a02 ∨ b02) ⊕ (a13b13)
d1 = (a1b1) ⊕ (a23b23) ⊕ (a02b02) ⊕ (a13 ∨ b13)
d2 = (a2b2) ⊕ (a03 ∨ b03) ⊕ (a02 ∨ b02) ⊕ (a13 ∨ b13)
d3 = (a3b3) ⊕ (a01 ∨ b01) ⊕ (a02b02) ⊕ (a13b13)

(4.2)

To minimize the chip area in our ASIC implementations, we use NAND and NOR gates instead
of AND and OR gates, respectively. This is because NAND and NOR gates have lower chip
area and delay as compared with AND and OR gates, respectively [83]. Therefore, the following
formulations can be obtained from (4.2)

d0 = (a0 ∨ b0)′ ⊕ (a12 ∨ b12)′ ⊕ (a02 ∨ b02)′ ⊕ (a13b13)′

d1 = (a1b1)′ ⊕ (a23b23)′ ⊕ (a02b02)′ ⊕ (a13 ∨ b13)′

d2 = (a2b2)′ ⊕ (a03 ∨ b03)′ ⊕ (a02 ∨ b02)′ ⊕ (a13 ∨ b13)′

d3 = (a3b3)′ ⊕ (a01 ∨ b01)′ ⊕ (a02b02)′ ⊕ (a13b13)′
(4.3)

Figure 4.1 shows the circuit used for implementation of (4.3). In the first level of XOR gates,
the XOR gates are changed to XNOR gates to reduce the delay. Since the inverting of both inputs

26

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

of an XOR gate does not affect its operation, the XOR gates used to get di, 0 ≤ i ≤ 3, does not need
to be changed to XNOR. Figure 4.1 shows that the highest delay of the improved exponentiation
is 2DX + 1DNOR, taking into account that the delay of NOR gate is slightly higher than NAND
gate. Based on Figure 4.1 and equation (4.3), one can find the space and time complexities of
the improved exponentiation computation block as follows. Note that the two NAND gates that
generate (a02b02)′ and (a13b13)′ are shared. The two NOR gates that generate (a02 ∨ b02)′ and
(a13 ∨ b13)′ are shared as well.

Proposition 4.2.1 The improved exponentiation block consists of 12 XOR2/XNOR2 (2-input XOR/XNOR),

6 NAND2 (2-input NAND), and 6 NOR2 (2-input NOR) gates with the critical path delay of

2DX + 1DNR, where DX is the delay of one XOR2/XNOR2 gate and DNR is the delay of one NOR2

gate.

4.2.2 New Subfield Inverter

In this section, we will design a new subfield inverter block, in order to decrease its depth to only
3 gates and to decrease its implementation area as well. The subfield inverter block generates the
inverse of its input D = (d0d1d2d3) =

∑3
i=0 diβ

2i
over GF(24) and its output is E = D−1 ∈ GF(24).

If ei ∈ GF(2), is the ith, 0 ≤ i ≤ 3, binary coordinate of E represented with respect to the ONB-I,
then, E = (e0e1e2e3) =

∑3
i=0 eiβ

2i
. We can obtain ei as follows.

Lemma 4.2.2

ei = [(d′i di+2)′((did′i+2)′ ∨ (di+1d′i+3)′)(d′i+3 ∨ (di+2 ∨ d′i di+1)′)]′, 0 ≤ i ≤ 3 (4.4)

Proof:
The subfield inverter is a combinational circuit which can be explained by its truth table. The

truth table of the inverter is shown in Table 4.1. Then, from the e0 column, one can represent e0 as
an OR operation (∨) of the corresponding minterms, i.e.,

e0 = m2 ∨ m3 ∨ m5 ∨ m6 ∨ m7 ∨ m11 ∨ m12 ∨ m15

= (m2 ∨ m3 ∨ m6 ∨ m7) ∨ (m3 ∨ m7 ∨ m11 ∨ m15) ∨ (m5 ∨ m7) ∨ m12.
(4.5)

One can simplify the first term of (4.5) as m2 ∨m3 ∨m6 ∨m7 = d′0d2. Also, the second terms of
(4.5) can be simplified as m3 ∨ m7 ∨ m11 ∨ m15 = d2d3. The third term of (4.5) m5 ∨ m7 = d′0d1d3.
The fourth term is m12 = d0d1d′2d′3. Therefore,

e0 = d′0d2 ∨ d2d3 ∨ d′0d1d3 ∨ d0d1d′2d′3.
= d′0d2 ∨ d0d1d′2d′3 ∨ d3(d2 ∨ d′0d1).
= [(d′0d2 ∨ d0d1d′2d′3)′(d3(d2 ∨ d′0d1))′]′

= [(d′0d2)′((d0d′2)′ ∨ (d1d′3)′)(d′3 ∨ (d2 ∨ d′0d1)′)]′
(4.6)

If the input is changed from D = (d0d1d2d3) =
∑3

i=0 diβ
2i

to its left cyclic shift D′ = D2−1
=∑3

i=0 diβ
2i−1

= (d1d2d3d0), then its inverse at the output will be changed from E = (e0e1e2e3) =

D−1 to E′ = (D′)−1 = (D2−1
)−1 = (D−1)2−1

= (e1e2e3e0). In other words, the cyclic shifts at the
inverse input will result in the same cyclic shifts at its output. Let us denote the 0th coordinate
of E = (e0e1e2e3) as the function e0 = I(d0d1d2d3) in terms of its input D = (d0d1d2d3) (see
the formulation presented in (4.6) for the detail of the Boolean function I). Then, the bit 0 of
E′ = (e1e2e3e0), i.e., e1, is obtained when the input is D′ = (d1d2d3d0). Therefore, one can find
e1 = I(d1d2d3d0) and so other coordinates of E = D−1, say ei, for 1 ≤ i ≤ 3, can be found similarly
by adding (i modulo 4) with D, i.e., ei = I(didi+1di+2di+3). This is similar to to the idea proposed
in [50, 82, 65] for multiplication operation. Replacing D = (d0d1d2d3) by D = (didi+1di+2di+3)
concludes the proof.

27

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.1: The truth table of the inverter over GF(24) generated by the ONB-I [69].

d0d1d2d3 e0e1e2e3 d0d1d2d3 e0e1e2e3

0000
0001
0010
0011
0100
0101
0110
0111

0000
0100
1000
1110
0001
1010
1101
1001

1000
1001
1010
1011
1100
1101
1110
1111

0010
0111
0101
1100
1011
0110
0011
1111

OAI212

e0/2

di+2

d'i

di+1

d'i+3

di

d'i+2

di+3

di

di+1

di+2

ei

AOI12

Figure 4.2: The modified subfield inverter circuit.

As shown in Figure 4.2, e0 in (4.6) can be implemented using an OAI212 gate (two 2-input OR
into 3-input NAND), which has five inputs. The first input is from the NAND2 gate (d′0d2)′, the
second and third inputs from the two NAND2 gates that generates (d0d′2)′ and (d1d′3)′. The fourth
one comes from d′3, and the last one from the AOI12 gate (2-input AND into 2-input NOR) that
generates (d2 ∨ d′0d1)′. By sharing the NAND2 gates between the different ei’s, only 4 NAND2
gates are needed. Those NAND2 gates will generate (d′0d2)′, (d0d′2)′, (d1d′3)′, (d′1d3)′. Hence, we
can conclude the following for the subfield inverter.

Proposition 4.2.3 The improved subfield inverter block consists of 4 OAI212 (two 2-input OR into

3-input NAND), 4 AOI12 (2-input AND into 2-input NOR), 4 NAND2 (2-input NAND), and 4 NOT

gates with the critical path delay of DAOI12 + DOAI212 + DNOT where DAOI12 is the delay of one

AOI12 gate, DOAI212 is the delay of one OAI212 gate, and DNOT is the delay of a NOT gate.

4.2.3 Space and Time Complexity Analyses

The space and time complexities of the improved exponentiation block and the improved subfield
inverter, along with the input and output transformation blocks and the output multipliers block
as presented in [69], are summarized in Tables 4.2. This table also shows the space and time
complexities of the improved GF((24)2) inversion and the entire improved AES lightweight and
fast S-box architectures. The corresponding GEs of all the blocks are also presented. GE is the
chip area in terms of an equivalent of 2-input NAND gates. The provided GEs are based on the
used STM 65nm CMOS technology.

4.2.4 ASIC Synthesis Results and Comparisons

The ASIC synthesis results are obtained using the Synopsys Design Vision®. The ASIC synthesis
results for the improved exponentiation and the improved subfield inverter presented in section

28

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.2: Space and time complexities for different blocks and the GF((24)2) inversion of the entire im-
proved S-boxes.

Block/ Space Complexity* Time
Target X ND NR AOI12 OAI212 NT GE Complexity

Input Transformation Block
Light. 19 38 5DX

Fast 24 48 3DX

GF((24)2) Inversion
Imp. Exp. 12 6 6 36 2DX + 1DNR

Imp. Inv. 4 4 4 4 20 1DAOI12 + 1DOAI212 + 1DNT

Mult. 16 20 52 2DX + 1DND

Output Transformation Block
Light. 16 32 6DX

Fast 21 42 3DX

Total Complexity of Improved S-Box

Light. 63 30 6 4 4 4 178
15DX + 1DNR + 1DND+

1DAOI12 + 1DOAI212 + 1DNT

Fast 73 30 6 4 4 4 198
10DX + 1DNR + 1DND+

1DAOI12 + 1DOAI212 + 1DNT
∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, ND is NAND2 =

1GE, NR is NOR2 = 1GE, AOI12 is AND2 into NOR2 = 1.25GEs, OAI212 = 2 OR2 into NAND3 = 2GEs, NT is
NOT = 0.75GEs.

Table 4.3: ASIC synthesis results for the improved exponentiation and the improved subfield inverter.

Block
Area Delay Power

µm2 GE ns µW
Improved Exp. 74.88 36 0.106154 3.1677

New Subfield Inv. 41.6 20 0.082485 1.5242

4.2.1 and 4.2.2, respectively are shown in Table 4.3. The technology library used was STM 65nm
CMOS standard library and the CORE65LPSVT standard cell library which is optimized for low
power applications. The area, delay and power for all the considered blocks are generated by the
CAD tool with relaxed constraints at a clock frequency of 100 MHz.

We used the improved exponentiation and the improved subfield inverter for both the lightweight
and the fast S-boxes proposed in [69] and the ASIC synthesis results are summarized in Table 4.4.
From Table 4.4, the improved lightweight S-box has 4.25 GEs less area than [69], an improvement
of 2%. It also leads to a reduction in the critical path delay of the improved lightweight S-box. For
the fast S-box design, the area is 10 GE less than [69], an improvement of 5%, with approximately
the same delay. The efficiency, measured as area × delay of the improved fast S-box is increased
by 5%.

Table 4.4: ASIC synthesis results for the two S-boxes in [69] using the improved exponentiation and im-
proved subfield inverter.

Architecture
Area Delay Power

µm2 GE ns µW
Lightweight S-box [69] 379.08 182.25 1.197698 38.085

Improved Lightweight S-box 370.24 178 1.102665 37.549
Fast S-box [69] 432.64 208 0.779697 42.750

Improved Fast S-box 411.84 198 0.776748 40.476

29

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

𝐗−1 −1 𝐗 𝐌

𝐺𝐹 28 𝐺𝐹 28

g

𝒉

s
8 8 8

𝐺𝐹((24)2)

𝐓1

𝐌𝐗×𝐓1

A

4

B

4

5

5

W

Z

4

4

g−1

8

Figure 4.3: Input and output transformations used in the S-box of [69].

4.3 Additional Transformation Matrices

In this section, we will modify the input to the lightweight S-box in [69], by multiplying it by a
binary field element η that ranges from (1 − 255) and then check if there will be any improvement
in the implementation area of the input and output transformation matrices of the S-box. By
multiplying by η, we are increasing the variety of transformation matrices by 255 times, which
might lead to a better area and/or delay mappings. This idea was first proposed in [54], however,
we will derive the necessary formulations and modify the S-box architecture in [69] based on those
formulas. We will also analyze, using Matlab®, all the results of applying the focused-search logic
minimization algorithm [69] in order to find a better architecture for the fast S-box.

4.3.1 Multiplying by a Binary Field Element η

In this section, we will derive the matrix form of multiplying the input to the S-box g by an 8-bit
binary field element η.

As show in Figure 4.3, the input to the S-box in [69] is g, where g is an element in GF(28)
generated by the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1. If α is a root of q(x),
then g = (g7, · · · , g1, g0) ∈ GF(28) is represented in Polynomial Basis (PB) representation as
g =

∑7
i=0 giα

i = αtrg, where α = [α7, · · · , α1, 1]tr, g = [g7, · · · , g1, g0]trand tr denotes the
transposition.

We will modify the input to the S-box, by multiplying it by an 8-bit binary field element η that
ranges from (1 − 255), and then study its effect on the logic minimization results of the new input
and output transformation matrices. To find the matrix form of this multiplication, the binary field
element, η = (η7, · · · , η1, η0) ∈ GF(28) is represented in polynomial basis as η =

∑7
i=0 ηiα

i =

αtrη, η = [η7, · · · , η1, η0]tr. We will use Theorem 1 from [67] to find the matrix form of this
multiplication. In [67], they used the polynomial basis representation α′′ = [α0, · · · , α6, α7]tr,
but we will use the notation α = [α7, · · · , α1, 1]tr. i.e. we are starting with the Most Significant
Bit (MSB). For example, in our notation {01100011} identifies the specific finite field element
α6 + α5 + α + 1, while in [67] it identifies the element α + α2 + α6 + α7. As a result of the different
notation adopted for the field elements, our matrices will be slightly different than [67].

Theorem 4.3.1 [67]

For AES irreducible polynomial q(x) = x8 + x4 + x3 + x + 1, let c =
∑7

i=0 ciα
i = αtrc be the

multiplication of g and η ∈ GF(28). Then, the coordinates of c can be obtained from

c = [c7, , · · · , c1, c0]tr = (QtrL + U)g = Cg

where g = [g7, · · · , g1, g0]tr,

30

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

L =



η7 0 0 0 0 0 0 0
η6 η7 0 0 0 0 0 0
η5 η6 η7 0 0 0 0 0
η4 η5 η6 η7 0 0 0 0
η3 η4 η5 η6 η7 0 0 0
η2 η3 η4 η5 η6 η7 0 0
η1 η2 η3 η4 η5 η6 η7 0


,

U =



η0 η1 η2 η3 η4 η5 η6 η7

0 η0 η1 η2 η3 η4 η5 η6

0 0 η0 η1 η2 η3 η4 η5

0 0 0 η0 η1 η2 η3 η4

0 0 0 0 η0 η1 η2 η3

0 0 0 0 0 η0 η1 η2

0 0 0 0 0 0 η0 η1

0 0 0 0 0 0 0 η0



,

and the 7 × 8 binary reduction matrix, Q is obtained from

[α14, · · · , α9, α8]tr ≡ Q[α7, · · · , α1, 1]tr(mod q(x)).

Proof:
First, the reduction matrix Q is the 7 × 8 binary matrix obtained from the following equation

α↑ ≡ Qα(mod q(x)) (4.7)

where α↑ = [α14, · · · , α9, α8]tr

The reduction matrix can be obtained by writing the representation of α14, · · · , α9, α8 in poly-
nomial basis using the AES irreducible polynomial q(x) as

Q =



1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1
1 0 1 0 1 0 1 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1


(4.8)

The multiplication of g and η can be represented in PB as

p = (
∑7

j=0 ηiα
j)(
∑7

i=0 giα
i) =
∑14

k=0 pkα
k

p = (η7α
7 + η6α

6 + η5α
5 + η4α

4 + η3α
3 + η2α

2 + η1α
1 + η0α

0)
×(g7α

7 + g6α
6 + g5α

5 + g4α
4 + g3α

3 + g2α
2 + g1α

1 + g0α
0)

(4.9)

where pk =
∑

i+ j=k ηig j, 0 ≤ i, j ≤ 7, 0 ≤ k ≤ 14
Then the multiplication, c, of η and g can be written as c =

∑7
i=0 ciα

i = p mod (q(x)), where p

can be written as

p = α⇑
tr
p (4.10)

where α⇑ = [α14, · · · , α, 1]tr =

 α↑
α

 and p = [p14, · · · , p1,, p0]tr

Using (4.7), we can write

α⇑ =

[
Q
I8

]
α (4.11)

31

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

, where I8 is the 8 × 8 unity matrix.
To simplify the expression in (4.9), we can define the following two Toeplitz matrices L and

U, where L is an 7 × 8 lower triangular matrix and U is an 8 × 8 upper triangular matrix

L =



η7 0 0 0 0 0 0 0
η6 η7 0 0 0 0 0 0
η5 η6 η7 0 0 0 0 0
η4 η5 η6 η7 0 0 0 0
η3 η4 η5 η6 η7 0 0 0
η2 η3 η4 η5 η6 η7 0 0
η1 η2 η3 η4 η5 η6 η7 0


(4.12)

U =



η0 η1 η2 η3 η4 η5 η6 η7

0 η0 η1 η2 η3 η4 η5 η6

0 0 η0 η1 η2 η3 η4 η5

0 0 0 η0 η1 η2 η3 η4

0 0 0 0 η0 η1 η2 η3

0 0 0 0 0 η0 η1 η2

0 0 0 0 0 0 η0 η1

0 0 0 0 0 0 0 η0


(4.13)

Using L and U, we can define the following two vectors, which are functions of g and η
d = Lg
e = Ug
Since pk =

∑
i+ j=k ηig j, 0 ≤ i, j ≤ 7, 0 ≤ k ≤ 14, then dk = pk, 0 ≤ k ≤ 7, and el = pl+m, 0 ≤

l ≤ 7 then

p =

 d
e

 =

 L
U

 g
and using (4.10), (4.11), we can write that

c = p mod (q(x) =

 Q
I8

αtr  L
U

 g = αtr

[Qtr I8

]  L
U

 g

Then c = αtr(QtrL + U)g
Using (4.8), (4.12)

QtrL =



η7,5,4 η6,5 η7,6 η7 0 0 0 0
η6,4,3 η7,5,4 η6,5 η7,6 η7 0 0 0
η5,3,2 η6,4,3 η7,5,4 η6,5 η7,6 η7 0 0
η7,4,2,1 η5,3,2 η6,4,3 η7,5,4 η6,5 η7,6 η7 0
η7,6,5,4,3,1 η7,6,5,4,2 η7,6,5,3 η7,6,4 η7,5 η6 η7 0
η6,3,2 η7,4,3 η5,4 η6,5 η7,6 η7 0 0
η7,5,2,1 η6,3,2 η7,4,3 η5,4 η6,5 η7,6 η7 0
η6,5,1 η7,6,2 η7,3 η4 η5 η6 η7 0


(4.14)

From (4.13) and (4.14), the multiplication c = (QtrL + U)g, of a binary field element η and the
input to the S-box g can be written in matrix form as

c =



η7,5,4,0 η6,5,1 η7,6,2 η7,3 η4 η5 η6 η7

η6,4,3 η7,5,4,0 η6,5,1 η7,6,2 η7,3 η4 η5 η6

η5,3,2 η6,4,3 η7,5,4,0 η6,5,1 η7,6,2 η7,3 η4 η5

η7,4,2,1 η5,3,2 η6,4,3 η7,5,4,0 η6,5,1 η7,6,2 η7,3 η4

η7,6,5,4,3,1 η7,6,5,4,2 η7,6,5,3 η7,6,4 η7,5,0 η6,1 η7,2 η3

η6,3,2 η7,4,3 η5,4 η6,5 η7,6 η7,0 η1 η2

η7,5,2,1 η6,3,2 η7,4,3 η5,4 η6,5 η7,6 η7,0 η1

η6,5,1 η7,6,2 η7,3 η4 η5 η6 η7 η0


g = Cg (4.15)

32

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

𝐗−1 −1 𝐗 𝐌

𝐺𝐹 28 𝐺𝐹 28

g

𝒉

s
8 8 8

𝐂

𝐺𝐹((24)2)

𝐓1 𝐂

𝐗−1𝐂 𝐌𝐂𝐗 × 𝐓1

g𝜂

8

A

4

B

4

5

5

W

Z

4

4

8

g𝜂 −1
g−1

8

Figure 4.4: The modified input and output transformations.

4.3.2 Modified AES S-box Architecture

In this section, we will include the matrix C derived in (4.15) in the S-box architecture shown
in Figure 4.3. To study the effect of multiplying by C, we will modify Figure 4.3 by adding the
matrix C before the isomorphic mapping block X−1 as shown in Figure 4.4. To reflect the effect of
adding the block C to the input, we add the block C at the output between the inverse isomorphic
mapping block X and the affine transformation matrix M. The input transformation block accepts
an 8-bit element g from the GF(28) field, and generates two 4-bit field elements A and B, and the
mod-2 addition between every two bits in each of the two elements of A and B, i.e., A jk and B jk ,
where A jk is a set that contains a j ⊕ ak, and B jk contains b j ⊕ bk, both for 0 ≤ j, k ≤ 3, and j , k.
The output transformation block accepts the result of the two subfield multipliers; W and Z and
generates the corresponding element s, i.e., the S-box output, in the AES GF(28) field.

As a result, the modified 20 × 8 input transformation matrix, Tin can be defined as

Tin =


X−1C

atr
i j

btr
i j

 for 0 ≤ i, j ≤ 3, i , j (4.16)

where the rows of (X−1C) generate the coordinates of A and B as ai = atr
i g and bi = btr

i g,
respectively. The next 12 rows of Tin generate ai j = ai ⊕ a j = (atr

i ⊕ atr
j)g and bi j = bi ⊕ b j =

(btr
i ⊕ btr

j)g. At the output of the S-box, the modified output transformation matrix, Tout is used to
get the output, s of the S-box as

s = Tout × f10 ⊕ h (4.17)

where f10 = [w0w1w2w3w4z0z1z2z3z4]tr is the output of composite field inversion, represented in
the RNB, h = [01100011]trand

Tout = MCX × T1 (4.18)

where T1 is the 8 × 10 matrix that converts from the Redundant Normal Basis (RNB) repre-
sentations of W =

∑3
i=0 wiβ

2i
+ w4 and Z =

∑3
i=0 ziβ

2i
+ z4 at the outputs of the GF((24)2) inverter

back to the non-redundant NB representations.

4.3.3 Matlab® Results

In this section, we will code equations (4.16) and (4.18) in Matlab®. We will use 255 value for η
to derive 255 new C matrices according to (4.15). Note that the case η = 1 is already done in [69]
and corresponds to Figure 4.3 . The 255 new C matrices will be used along with 8 different X−1

matrices. That means a total of 2040 Tin and 2040 Tout transformation matrices will be derived.
We will use the focused-search logic minimization algorithm [69] to check the number of XOR2
gates required for the 2040 Tin matrices and the maximum delay associated with each one. For the

33

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

2040 Tout, we will only apply the logic minimization algorithm to certain matrices (19 matrices),
that correspond to a low complexity and low delay Tin.

The input transformation matrix Tin in (4.16) depends on the binary transformation matrix
X−1 that is used for isomorphic mapping between the fields GF(28) and GF((24)2). In Table 1
[69], 32 binary transformation matrices X−1 can be used to convert from GF(28) to GF((24)2).
Those 32 matrices were optimized by the focused-search logic minimization algorithm and they
selected the case that results in the minimum gate-count for their lightweight S-box. For the input
transformation matrix, they chose an input matrix that requires 19 XOR2 gates and a propagation
delay of 5DX. For the output transformation, they chose an output matrix that requires 16 gates
with a delay of 6 gates (6DX).

We noticed that from the 32 binary transformation matrices X−1, only 8 are different. The other
24 matrices are similar, where the rows of X−1 are shuffled versions of each other. Running the
logic minimization algorithm for those 28 similar X−1 matrices will give the same number of XOR
gates for each matrix, i.e. the same hardware complexity. As a result, we only tested the 8 different
X−1 matrices in our new architecture in Figure 4.4.

For each X−1, we derived, using Matlab®, 8 different input transformation matrices Tin in (4.16)
and 8 different output transformation matrices Tout in (4.18). Then for each X−1, we multiply by
η = (1 − 255). We applied the focused-search logic minimization algorithm [69] on each Tin, for
all values of the arbitrary binary field element η, a total of 8 × 255 = 2040, in order to select the
smallest area one. The results of the Matlab® simulations are shown in Figures A.1, A.2, A.3, A.4,
A.5, A.6, A.7 and A.8. Those figures show the number of XOR2 gates used to implement each Tin

as a function of η, as well as the maximum delay associated with each matrix. We can conclude
that for the 2040 input transformation matrices, we did not find a matrix with a lower number of
XOR gates than the 19 gates used in [69], however we did find some matrices with a delay less
than 5DX.

For Tout, it has 10 input signals, i.e. 10 columns, while Tin has only 8. The search time of the
logic minimization algorithm depends exponentially on the number of input signals and will be
much larger for Tout than Tin. To find a minimal solution for the output matrix, we only evaluate
Tout matrices for the specific cases of X−1 and η that corresponds to an already low complexity and
low delay Tin. Each X−1 is associated with a specific 4-bit GF(24) element called ν and a Generator
(1 − 4). ν is the 4-bit field element in GF(24) chosen so that the polynomial p(y) = y2 + y + ν

is irreducible over GF(24). The generator, can be used to generate all the non-zero field elements
by raising it to a positive integer power i ∈ [0, n − 2], where n is the size of the field. By choosing
η, ν and Generator #, a specific Tout will be optimized. We choose the cases where the number of
XOR2 gates required for Tin is equal to 19 gates, and where the maximum delay is equal to or less
than 5DX. We applied the logic minimization algorithm to the corresponding Tout, and the results
are summarized in Table 4.5.

For all the 19 cases in Table 4.5, we could not find an output matrix where the number of gates
is less than 16, but we could find some with a maximum delay less than 6DX.

We can conclude from the Matlab® simulations for Tin and Tout that multiplication by a binary
field element η = (1 − 255), did not lead to any improvement in the area of the input and output
transformations of the GF((24)2) S-box. However it might lead to an improvement in the speed of
the lightweight S-box as we will explain in section 4.4.

4.4 Improved Fast AES S-box Architecture

In this section, we will derive the necessary formulas for modifying the architecture of the fast
S-box [69] in order to improve its speed. We will also use the method of logical effort [74] to find

34

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.5: The number of XOR2 gates and the maximum delay of specific Tout matrices.

ν Generator # η # XOR2 Max. Delay
1000[69] 4 1 16 6DX

1000 4 12 16 8DX

1000 4 80 16 8DX

1000 4 176 16 8DX

1000 4 237 16 8DX

1000 3 42 17 5DX

1000 3 74 18 6DX

1000 3 76 17 5DX

1000 3 85 18 6DX

1000 3 117 18 6DX

1000 3 125 17 5DX

1000 3 187 18 6DX

1000 3 209 18 6DX

1000 3 227 17 5DX

1000 3 248 17 5DX

0111 4 15 18 5DX

0111 4 29 18 5DX

0111 4 68 18 5DX

0111 4 156 18 5DX

0111 4 202 18 5DX

Subfield
Inverter

NAND-XOR

NAND-XOR

10

5

5

10

6

6

8 20

4

6

4

Input
Transformation

4 4

Exponentiation
Computation

6XOR

10 8

Output
Transformation

Output
Multipliers

8(2)GF

inT
20g

4 2((2))GF

jkA

A

B

jkB

17g

4(2)GF 4(2)GF

, jkA A

, jkB B 4 2((2))GF

outT

8(2)GF

jkE
10fD E

W

Z

g s

4 2((2)) GF Inversion

Figure 4.5: The S-box architecture in [69].

the minimum possible critical path delay of the S-box. The method of logical effort uses a linear
delay model and it could provide a standard method to calculate the critical path delay of the S-box
independent of the technology library used for synthesis.

Figure 4.5 shows the S-box architecture used in [69]. By eliminating the output transformation
matrix Tout and the output multipliers block, we can reduce the delay of the S-box. This idea was
first proposed in [54], however we will derive the formulas for a different S-box architecture.

In the following section, we will derive the formulations for the modified fast S-box for two
cases. The first one uses the transformation matrices of [69], while the second one uses the result
of section 4.3.3 to derive a faster and a lower area S-box, based on the reduced maximum delay
values obtained from the simulations.

4.4.1 The Modified Fast S-box, Fast 1

The first modified fast S-box architecture, Fast 1 is shown in Figure 4.6. A new 28-bit signal g28

is computed in parallel to the GF((24)2) inversion. A 32NAND+8XOR4 block is needed, which
will add a hardware complexity of 32 NAND2 and 24 XOR2 gates. The modified fast S-box is
based on the S-box architecture in Figure 4.5. Fast 1 architecture corresponds to the case ν = 1000,

35

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Generator #4 and the binary field element is simply η = 1.
The 8-bit input g is applied to the 20 × 8 input transformation matrix, Tin to produce the 20-bit

signal g20 as

g20 =



a0

a1

a2

a3

b0

b1

b2

b3

a01

a02

a03

a12

a13

a23

b01

b02

b03

b12

b13

b23



= Ting =



0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1
1 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1
0 1 1 1 1 1 0 1
1 0 1 0 0 1 1 1
0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 0
1 1 1 0 1 1 1 0
0 0 1 0 1 1 0 0
1 1 1 0 0 1 1 0
0 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 1 1 0 1 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0
0 1 0 1 1 0 1 0
1 0 1 1 0 0 0 0





g7

g6

g5

g4

g3

g2

g1

g0


, (4.19)

The 4-bit signal output from the exponentiation block, D is applied to the subfield inverter
block. The output from the subfield inverter, E is multiplied by a set of signals produced by the
input transformation matrix, g20 to derive the 10-bit signal f10. The 8 × 10 output transformation
matrix Tout is applied to f10 to produce the final output of the S-box, s as in (4.20).

In the modified fast S-box architecture in Figure 4.6 , the idea is to remove the output trans-
formation matrix, Tout to reduce the critical path delay of the fast S-box by 3DX. This is done
by removing the output multipliers block and the output transformation block and then derive the
equations needed to find the output of the S-box s directly from the output of the subfield inverter,
E. Those equations depend on the specific output transformation matrix used. In [69], they used
the following equation to derive the S-box output s, based on the results of the logic minimization
algorithm for Tout, as

10

10

20
−1

Exponentiation

Subfield

Inverter

𝑔17

𝐺𝐹 28

g
8

s8
𝐓𝑖𝑛𝑛𝑒𝑤 𝐠20

32NAND2+8XOR4

28

𝐠28
𝐺𝐹 24 𝐺𝐹 24

𝐺𝐹 (24)2
𝐺𝐹 28

𝐷 𝐸

4 4

𝑏0, 𝑏01, 𝑏13, 𝑏23

4

𝐺𝐹((24)2) inversion + affine transformation

Figure 4.6: The modified fast S-box architectures, Fast 1.

36

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

s =



s7

s6

s5

s4

s3

s2

s1

s0


= Tout × f10 ⊕ h =



0 1 0 0 1 0 0 0 1 1
1 1 1 0 1 1 1 1 0 1
1 1 0 1 1 0 1 1 1 1
1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1





w0

w1

w2

w3

w4

z0

z1

z2

z3

z4



⊕



0
1
1
0
0
0
1
1


. (4.20)

where W = (w0w1w2w3w4) =
∑3

i=0 wiβ
2i

+w4 and Z = (z0z1z2z3z4) =
∑3

i=0 ziβ
2i

+z4 are the 10-bit
signal, f10 at the output of the multipliers block in Figure 4.5. The formulations to generate wi and
zi, 0 ≤ i ≤ 4 are derived in [69] as

w0 = (e0b0)′ ⊕ (e12b12)′

w1 = (e1b1)′ ⊕ (e23b23)′

w2 = (e2b2)′ ⊕ (e30b30)′

w3 = (e3b3)′ ⊕ (e01b01)′

w4 = (e02b02)′ ⊕ (e13b13)′

(4.21)

z0 = (e0a0)′ ⊕ (e12a12)′

z1 = (e1a1)′ ⊕ (e23a23)′

z2 = (e2a2)′ ⊕ (e30a30)′

z3 = (e3a3)′ ⊕ (e01a01)′

z4 = (e02a02)′ ⊕ (e13a13)′

(4.22)

To derive architecture in Figure 4.6, we evaluate s directly, by substituting (4.21) and (4.22) in
(4.20). We can derive the following equation for s

s7 = e0(b02 ⊕ a12) ⊕ e1(b3 ⊕ a03) ⊕ e2(b03 ⊕ a02) ⊕ e3(b12 ⊕ a1)
s6 = e0(b3 ⊕ b02 ⊕ a3 ⊕ a02) ⊕ e1(b2 ⊕ b13 ⊕ a2 ⊕ a13) ⊕ e2(b13 ⊕ b0 ⊕ a13 ⊕ a0)

⊕e3(b02 ⊕ b13 ⊕ a02 ⊕ a13) ⊕ 1
s5 = e0(b1 ⊕ b02 ⊕ a13 ⊕ a02) ⊕ e1(b2 ⊕ b03 ⊕ a0 ⊕ a13) ⊕ e2(b13 ⊕ b02 ⊕ a3 ⊕ a02)

⊕e3(b2 ⊕ b13 ⊕ a02 ⊕ a1) ⊕ 1
s4 = e0(b0 ⊕ a13 ⊕ a02) ⊕ e1(b2 ⊕ a0 ⊕ a13) ⊕ e2(b13 ⊕ a3 ⊕ a02) ⊕ e3(b23 ⊕ a02 ⊕ a1)

s3 = e0(b13 ⊕ a23) ⊕ e1(b01 ⊕ a13) ⊕ e2(b2 ⊕ a0) ⊕ e3(b0 ⊕ a01)
s2 = e0(b13 ⊕ b02) ⊕ e1(b0 ⊕ b13) ⊕ e2(b3 ⊕ b02) ⊕ e3(b02 ⊕ b1)

s1 = e0b23 ⊕ e1b13 ⊕ e2b0 ⊕ e3b01 ⊕ 1
s0 = e0(b03 ⊕ a13 ⊕ a02) ⊕ e1(b1 ⊕ a0 ⊕ a13) ⊕ e2(b3 ⊕ a3 ⊕ a02)

⊕e3(b02 ⊕ a02 ⊕ a1) ⊕ 1

(4.23)

The 8-bit S-box output, s in (4.23) requires 32 NAND2 operations between the 4-bit output
of the subfield inverter, E and 32 signals. 8 XOR4 gates are then used to sum up the 4 sub-
results to derive each si, 0 ≤ i ≤ 7. We denote the 28-bit new signal as g28, it depends linearly
on A jk = {a01, a02, a03, a12, a13, a23}, and B jk = {b01, b02, b03, b12, b13, b23}. In addition to g28, the
32NAND2+8XOR4 will need the signals b0, b01, b13, b23 to formulate s1 in (4.23). Each bit of g28

is a linear combination of some terms of A jk and B jk. Those 28 linear combinations in (4.23) are
added to the input linear mapping of the S-box to formulate a new 48 × 8 input transformation
matrix, Tinnew . Hence, we include 28 extra signals in the logic-minimization problem and use the
focused-search logic minimization algorithm as proposed in [69] to minimize Tinnew . By using the
input transformation matrix in (4.19), we can write the new input transformation matrix as

Tinnew =

[
Tin

Tinext

]
(4.24)

where Tin is given in (4.19) and Tinext is given as

37

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

g28 = Tinextg =



o20 = b02 ⊕ a12

o21 = b3 ⊕ a03

o22 = b03 ⊕ a02

o23 = b12 ⊕ a1

o24 = b3 ⊕ b02 ⊕ a3 ⊕ a02

o25 = b2 ⊕ b13 ⊕ a2 ⊕ a13

o26 = b13 ⊕ b0 ⊕ a13 ⊕ a0

o27 = b02 ⊕ b13 ⊕ a02 ⊕ a13

o28 = b1 ⊕ b02 ⊕ a13 ⊕ a02

o29 = b2 ⊕ b03 ⊕ a0 ⊕ a13

o30 = b13 ⊕ b02 ⊕ a3 ⊕ a02

o31 = b2 ⊕ b13 ⊕ a02 ⊕ a1

o32 = b0 ⊕ a13 ⊕ a02

o33 = b2 ⊕ a0 ⊕ a13

o34 = b13 ⊕ a3 ⊕ a02

o35 = b23 ⊕ a02 ⊕ a1

o36 = b13 ⊕ a23

o37 = b01 ⊕ a13

o38 = b2 ⊕ a0

o39 = b0 ⊕ a01

o40 = b13 ⊕ b02

o41 = b0 ⊕ b13

o42 = b3 ⊕ b02

o43 = b02 ⊕ b1

o44 = b03 ⊕ a13 ⊕ a02

o45 = b1 ⊕ a0 ⊕ a13

o46 = b3 ⊕ a3 ⊕ a02

o47 = b02 ⊕ a02 ⊕ a1





g7

g6

g5

g4

g3

g2

g1

g0


(4.25)

The theoretical minimum critical path delay of Tinnew is 3DX, as the maximum number of non-
zero entries in Tinnew is 8. The maximum allowed delay Dmax is set to 3DX, then the focused-search
logic minimization algorithm is applied. The corresponding formulations for Tinnew are presented
in Table 4.6. For the input transformation block Tinnew , the presented implementation in Table 4.6
requires 51 XOR2 gates with a propagation delay of 3 XOR2 gates (as required).

Table 4.6: Fast 1 implementation of transformations.

a0 = a1 ⊕ g3 (2DX) a1 = g2 ⊕ g0 (1DX) a2 = a3 ⊕ a23 (3DX)
a3 = g5 ⊕ g0 (1DX) b0 = b13 ⊕ o41 (3DX) b1 = t4 ⊕ t3 (3DX)
b2 = a0 ⊕ g6 (3DX) b3 = a03 ⊕ o21 (3DX) a01 = g3 (0DX)

a02 = a03 ⊕ a23 (3DX) a03 = a13 ⊕ g3 (2DX) a12 = a13 ⊕ a23 (3DX)
a13 = g5 ⊕ g2 (1DX) a23 = t6 ⊕ g1 (2DX) b01 = t6 ⊕ t5 (3DX)
b02 = g5 ⊕ g4 (1DX) b03 = g7 (0DX) b12 = o27 ⊕ o44 (3DX)
b13 = t0 ⊕ t2 (2DX) b23 = b02 ⊕ g7 (2DX) o20 = o46 ⊕ o29 (3DX)
o21 = t6 ⊕ t1 (2DX) o22 = a13 ⊕ o44 (3DX) o23 = o44 ⊕ o30 (3DX)
o24 = g1 (0DX) o25 = t6 ⊕ g4 (2DX) o26 = t0 ⊕ g2 (2DX)
o27 = g7 ⊕ g5 (1DX) o28 = t2 ⊕ a0 (3DX) o29 = a13 ⊕ t6 (2DX)
o30 = a1 ⊕ o27 (2DX) o31 = a03 ⊕ o25 (3DX) o32 = o46 ⊕ t3 (3DX)
o33 = a13 ⊕ g6 (2DX) o34 = t3 ⊕ g4 (3DX) o35 = t1 ⊕ o44 (3DX)
o36 = a23 ⊕ b13 (3DX) o37 = t5 ⊕ o29 (3DX) o38 = g6 (0DX)
o39 = t1 ⊕ o33 (3DX) o40 = o26 ⊕ o33 (3DX) o41 = a1 ⊕ t4 (2DX)
o42 = t6 ⊕ a0 (3DX) o43 = b23 ⊕ o41 (3DX) o44 = t0 ⊕ g6 (2DX)
o45 = o26 ⊕ g7 (3DX) o46 = b02 ⊕ g1 (2DX) o47 = t0 ⊕ o21 (3DX)
t0 = g3 ⊕ g1 (1DX) t1 = g4 ⊕ g0 (1DX) t2 = g6 ⊕ g4 (1DX)

t3 = a1 ⊕ g7 (2DX) t4 = g5 ⊕ g1 (1DX) t5 = t0 ⊕ g4 (2DX)
t6 = g7 ⊕ g6 (1DX)

As shown in Figure 4.6, the 28 new signals g28, in addition to the 4 signals b0, b01, b13, b23 are
applied to the 32NAND2+8XOR4 block. This block consists of 32 NAND2, 24 XOR2/XNOR2

38

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

gates. This block is used to compute the S-box output s = (s7, · · · , s1, s0) ∈ GF(28) in (4.23).
This is done by performing the 32 AND operations in (4.23) using 32 NAND2 gates, and then
XOR the corresponding four terms in each s j, 0 ≤ j ≤ 7 using 8 XOR4 (an XOR4 is a two-level
binary tree of 3 XOR2 gates). Note that inverting both inputs of the XOR2 gate does not change
its operation. As a result, the use of 32 NAND2 instead of 32 AND2 to implement the 32 AND
terms in (4.23) does not change the S-box output s. In the second level of the binary tree of XOR2
gates used to implement the 8 XOR4 part of the block, four XOR2 gates have been replaced with
XNOR2 gates in order to incorporate the effect of adding the constant h = [01100011]tr.

4.4.2 The Modified Fast S-box, Fast 2

In the following, we will derive the architecture of the second modified fast S-box, Fast 2 shown
in Figure 4.7. It has a better performance than Fast 1 dervied in section 4.4.1. Fast 2 architecture
corresponds to the case ν = 1000, Generator #2 and the binary field element η = 3.

We noticed from the Matlab® simulations in Figure A.2 that the focused-search logic mini-
mization algorithm gives a very interesting result. As opposed to the fast implementation proposed
in [69], where the fast input transformation matrix at η = 1 using ν = 1000 and Generator #4
requires 24 XOR2 gates with a maximum delay of 3DX, we can notice that the point at η = 3
for the case ν = 1000 and Generator #2 requires only 20 XOR2 gates with a maximum delay of
3DX. This is an interesting result as it will save 4 XOR2 gates from the implementation area of Tin

while keeping the maximum delay at 3DX as required by the fast S-box. The binary transformation
matrix (X−1) corresponding to this point, where ν = 1000, Generator #2 and η = 3 is derived from
Matlab® as

X−1 =



1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 1
1 1 0 1 0 0 0 1
0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1


Hence, using Matlab®, the inverse of X−1 is given by

10

10

20
−1

Exponentiation

Subfield

Inverter

𝑔17

𝐺𝐹 28

g
8

s8
𝐓𝑖𝑛𝑛𝑒𝑤 𝐠20

32NAND2+8XOR4

28

𝐠28
𝐺𝐹 24 𝐺𝐹 24

𝐺𝐹 (24)2
𝐺𝐹 28

𝐷 𝐸

4 4

4

𝐺𝐹((24)2) inversion + affine transformation

𝑎0, 𝑎01, 𝑎13, 𝑎23

Figure 4.7: The modified fast S-box architectures, Fast 2.

39

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

X =



1 0 1 1 1 1 0 1
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0
1 0 0 1 0 1 0 1
1 0 0 1 1 0 1 0
0 0 0 0 0 0 1 1
1 1 1 0 1 1 1 0
1 1 1 1 1 1 0 1


From (4.15) and using Matlab®, the binary matrix used to multiply by the binary field element

η = 3 is

C =



1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


As a result, X−1

new can be written as

X−1
new =X−1C =



0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 1
0 1 1 1 0 0 0 1
0 1 1 1 0 1 1 1


At the output of the S-box, Tout = MCX × T1, where

M =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


Therefore

s =



s7

s6

s5

s4

s3

s2

s1

s0


= Tout × f10 ⊕ h =



1 0 1 1 1 1 1 1 0 1
0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0 1 0
0 1 1 0 0 1 1 1 1 0
1 1 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 0
1 1 0 1 1 1 0 1 0 0





w0

w1

w2

w3

w4

z0

z1

z2

z3

z4



⊕



0
1
1
0
0
0
1
1


. (4.26)

40

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Therefore, the new extended-input (Tinnew) transformation matrix can be found as follows:

Tinnew =

[
Tin

Tinext

]
(4.27)

where

g20 =



a0

a1

a2

a3

b0

b1

b2

b3

a01

a02

a03

a12

a13

a23

b01

b02

b03

b12

b13

b23



= Ting =



0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 1
0 1 1 1 0 0 0 1
0 1 1 1 0 1 1 1
0 1 0 1 1 0 0 1
1 0 1 0 0 0 0 1
0 0 0 1 1 1 0 0
1 1 1 1 1 0 0 0
0 1 0 0 0 1 0 1
1 0 1 1 1 1 0 1
0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0





g7

g6

g5

g4

g3

g2

g1

g0


, (4.28)

and

g28 = Tinextg =



o20 = b3 ⊕ b12 ⊕ a3 ⊕ a02

o21 = b02 ⊕ b13 ⊕ a2 ⊕ a13

o22 = b1 ⊕ b02 ⊕ a13 ⊕ a0

o23 = b0 ⊕ b13 ⊕ a02 ⊕ a13

o24 = b12 ⊕ a3 ⊕ a12

o25 = b03 ⊕ a02 ⊕ a13

o26 = b02 ⊕ a1 ⊕ a02

o27 = b1 ⊕ a0 ⊕ a13

o28 = b1 ⊕ a01

o29 = b02 ⊕ a0

o30 = b12 ⊕ a23

o31 = b3 ⊕ a2

o32 = b03 ⊕ a3 ⊕ a01

o33 = b1 ⊕ a2 ⊕ a01

o34 = b3 ⊕ a13 ⊕ a2

o35 = b02 ⊕ a02 ⊕ a3

o36 = b3 ⊕ b01 ⊕ a0

o37 = b2 ⊕ b01 ⊕ a2

o38 = b13 ⊕ b2 ⊕ a13

o39 = b02 ⊕ b3 ⊕ a23

o40 = b0 ⊕ a03

o41 = b2 ⊕ a1

o42 = b13 ⊕ a3

o43 = b23 ⊕ a02

o44 = b1 ⊕ b02 ⊕ a3

o45 = b2 ⊕ b03 ⊕ a12

o46 = b13 ⊕ b02 ⊕ a1

o47 = b2 ⊕ b13 ⊕ a03



(4.29)

The focused-search logic minimization algorithm [69] is used, with no maximum delay con-
straint set, to minimize Tinnew in (4.27). The corresponding formulations for Tinnew are presented

41

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

in Table 4.7. For the input transformation block Tinnew , the presented implementation in Table 4.7
requires 46 XOR2 gates with a maximum propagation delay of 6 XOR2 gates. We can notice from
table 4.7 that the maximum delay of all 20 bits of g20 in (4.28) is still 3DX, as a result, the critical
path delay of Fast 2 will not be increased by applying no maximum delay constraint on Tinnew ,
while saving some area from the design. The maximum delay of g28 signal is 6DX. The g28 signals
will be implemented in parallel to the exponentiation and subfield inverter block, thus not affecting
the S-box delay.

If we apply a maximum delay constraint of 3DX to Tinnew , the logic minimization algorithm
would give a hardware complexity of 51 XOR2, while the maximum delay for all Tinnew signals,
including g20 in (4.28) and g28 in (4.29), will be 3DX. This result will not lead to any improvement
of the CPD of the S-box, as g28 is not on the critical path of the S-box, and the S-box will have the
same delay whether we use the 46 XOR2 implementation or the 51 XOR2 one. As a result, it is
better to use the implementation in table 4.7 to save 5 XOR2 gates, while keeping the same delay
for the S-box.

As shown in Figure 4.7, the 28 new signals g28, in addition to the 4 signals a0, a01, a13, a23 are
applied to 32NAND2+8XOR4 block. Four XOR2 gates have been replaced with XNOR2 gates in
order to incorporate the effect of adding the constant h = [01100011]tr in (4.26).

Table 4.7: Fast 2 implementation of transformations.

a0 = g4 ⊕ g3 (1DX) a1 = g6 ⊕ g0 (1DX) a2 = a0 ⊕ a02 (3DX)
a3 = g2 (0DX) b0 = a02 ⊕ g6 (3DX) b1 = b12 ⊕ b2 (3DX)
b2 = a1 ⊕ o41 (2DX) b3 = b23 ⊕ b2 (3DX) a01 = a0 ⊕ a1 (2DX)
a02 = o23 ⊕ g5 (2DX) a03 = a0 ⊕ g2 (2DX) a12 = o29 ⊕ o26 (3DX)
a13 = a1 ⊕ g2 (2DX) a23 = a02 ⊕ a03 (3DX) b01 = g4 ⊕ g1 (1DX)
b02 = g7 ⊕ g4 (1DX) b03 = b01 ⊕ b13 (2DX) b12 = g7 ⊕ g1 (1DX)
b13 = g7 ⊕ g2 (1DX) b23 = g2 ⊕ g1 (1DX) o20 = g6 ⊕ g4 (1DX)
o21 = a12 ⊕ g4 (4DX) o22 = o30 ⊕ g0 (5DX) o23 = g7 ⊕ g0 (1DX)
o24 = b03 ⊕ o21 (5DX) o25 = o26 ⊕ g1 (3DX) o26 = o20 ⊕ g5 (2DX)
o27 = o33 ⊕ a23 (4DX) o28 = o33 ⊕ a2 (4DX) o29 = g7 ⊕ g3 (1DX)
o30 = b12 ⊕ a23 (4DX) o31 = a2 ⊕ b3 (4DX) o32 = a2 ⊕ o25 (4DX)
o33 = b01 ⊕ g0 (2DX) o34 = o32 ⊕ g6 (5DX) o35 = a13 ⊕ o26 (3DX)
o36 = o42 ⊕ o40 (5DX) o37 = o39 ⊕ g7 (6DX) o38 = b02 ⊕ g5 (2DX)
o39 = o43 ⊕ o40 (5DX) o40 = a23 ⊕ g6 (4DX) o41 = g5 ⊕ g4 (1DX)
o42 = g7 (0DX) o43 = b23 ⊕ a02 (3DX) o44 = b3 ⊕ g4 (4DX)
o45 = o30 ⊕ g5 (5DX) o46 = a13 ⊕ g4 (3DX) o47 = b0 ⊕ g3 (4DX)

4.4.3 Complexity Analysis

The space and time complexities of the modified fast architectures Fast 1 and Fast 2 derived in
section 4.4.1 and 4.4.2, respectively along with all the blocks used in Figure 4.6 and Figure 4.7 are
summarized in Table 4.8. The corresponding GEs of all the blocks are also presented. GE is the
chip areas in terms of an equivalent of 2-input NAND gates. The provided GEs are based on the
used 65nm CMOS technology.

4.4.4 Comparisons of the Space and Time Complexities

In this section, we compare the space and time complexities of the modified fast S-box architectures
Fast 1 and Fast 2 derived in section 4.4.1 and section 4.4.2, respectively against the fastest S-boxes
available in the literature.

Tables 4.9 and 4.10 provide the gate count and time delay of two S-boxes and compare them
with the proposed architectures. We chose two of the fastest schemes, namely Reyhani et al. fast

42

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.8: Space and time complexities of the modified S-box architecture Fast 1 and Fast 2.

Block/ Space Complexity* Time
Target X ND N3 NR NT GE Complexity

Modified Input Transformation Block
Tinnew1 (4.24) 51 102 3DX

Tinnew2 (4.27) 46 92 6DX
**

GF((24)2) Inversion and Affine Transformation
Exponentiation 14 7 3 38 3DX + 1DND

Subfield Inverter 4 12 4 4 28 3DND + 1DNT

32NAND2+8XOR4 24 32 80 2DX + 1DND

Total 42 51 4 3 4 146 5DX + 5DND + 1DNT

Total Complexity of Modified Fast S-Box (Figure 4.6)
Fast 1 93 51 4 3 4 248 8DX + 5DND + 1DNT

Fast 2 88 51 4 3 4 238 8DX + 5DND + 1DNT
∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, ND is NAND2 =

1GE, N3 is NAND3 = 1.25GEs, NR is NOR2 = 1GE, NT is NOT = 0.75GEs.

∗∗The maximum delay for all g20 signals is 3DX .

Table 4.9: Space complexity comparison of different fast S-boxes.

S-boxes
Gate count

GE
X AD ND N3 NR NT MX

Reyhani Fast [69] 79 - 39 4 3 4 - 208
Maximov Fast [54] 78 4 37 - 5 - 6 215
Fast 1 (Proposed) 93 - 51 4 3 4 - 248
Fast 2 (Proposed) 88 - 51 4 3 4 - 238

∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, AD is AND2 =

1.25GEs, ND is NAND2 = 1GE, N3 is NAND3 = 1.25GEs, NR is NOR2 = 1GE, NT is NOT = 0.75GEs, MX is
2-to-1 noninverting MUX = 2GEs.

design [69] and Maximov et al. fast S-box [54]. The space complexity comparison of fast designs
helps in detecting where the speed improvements came from and also in validating the CAD tool
results.

We provides the GEs for all S-box architectures using the corresponding GEs of the gates from
the CMOS 65nm technology. The critical path delay (CPD) was obtained by the CAD tool after
coding the four S-boxes listed in VHDL.

4.4.5 Calculating Delay in CMOS Circuits

Finding the critical path delay of the S-box is crucial in determining its speed. In 2019, Maximov et
al. [54] introduced the concept of “Tech. XOR depth” in an attempt to standardize the calculation
of the critical path delay of the S-box among different technology libraries. We will show that the
“Tech. XOR depth” concept can not be used as a standard method to measure the delay of the
S-box.

In Table 6 of [54], they proposed to normalize the delay of any basic gate by the delay of an
XOR2 gate. They used the standard cell library Samsung’s STD90/MDL90 0.35 µm [47] to get

Table 4.10: Time complexity comparison for different fast S-boxes.

S-Boxes CPD*

Reyhani Fast [69] 11DX + 5DND + 1DNT

Maximov [54] 8DX + 2DNR + 1DAD + 1DMX

Fast 1 (Proposed) 8DX + 5DND + 1DNT

Fast 2 (Proposed) 8DX + 5DND + 1DNT
∗X = XOR2/XNOR2, AD = AND2, ND = NAND2, NR = NOR2, NT = NOT, MX = 2-to-1 noninverting MUX.

43

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.11: The input capacitance, Cin of some basic gates in Samsung’s STD90/MDL90 0.35 µm library
normalized to S L [47].

Std. Cell* XR XN AD ND OR NR INV MX MXI
Cin at input A 1 1 0.8 1.1 0.7 1

1
0.8 0.6

Cin at input B 1.5 2 0.8 1.1 0.7 1 0.8 0.6
∗XR = XOR2, XN = XNOR2, AD = AND2, ND = NAND2, OR = OR2, NR = NOR2, INV = NOT, MX = 2-to-1
noninverting MUX, MXI = 2-to-1 inverting MUX.

the maximum delay of each basic gate, at the same value of the load capacitance at the gate’s
output. They used a normalized value of S L = 2 at the output of each gate along the critical path
of the S-box, where S L refers to standard load and for the specific technology library used [47],
1 S L = 0.01352 pF. The delay model in the Samsung’s STD90/MDL90 0.35 µm library uses an
effective capacitance CEFF as an index to the delay table of each gate. The effective capacitance
CEFF approximates the distributed interconnection wire resistance and capacitance at the output of
the gate. In [54], they used the same value for this index capacitance (S L = 2) for all the gates
on the critical path to calculate the CPD. Afterwards, they used the maximum delay of the XOR2
gate calculated using the same load value of S L = 2 to normalize the path delay with respect to
the delay of the XOR2 gate. They refer to the dealy of each gate normalized to the delay of the
XOR gate as a number of “Tech. XOR depth”. This is not accurate as the output capacitance of
each gate on the critical path is different from S L = 2. Table 4.11 shows the input capacitance of
some basic gates in Samsung’s STD90/MDL90 0.35 µm library. If we neglect the paths that are
branching from the critical path as [54] and only model the critical path, then the load capacitance
of one gate on the critical path will depend on the input capacitance of the following gate on the
critical path. For example, if the critical path of the S-box has 1 XOR2 gate followed by a NAND2
gate, then the capacitive load of the XOR2 gate will be the same as the input capacitance of the
NAND2 gate (i.e. S L = 1.1). In case that the gate has different input capacitances for its inputs,
e.g. XOR2 and XNOR2, we should determine which gate’s input is on the critical path and use
the corresponding input capacitance value from Table 4.11 as a load for the previous gate. After
determining the load capacitance of each gate along the critical path, each load capacitance should
be used as an index to the delay table of the corresponding gate to calculate the gate’s delay. The
critical path delay will be the sum of the individual gate delays on the path.

We conclude that the “Tech XOR depth” concept suggested in [54] is not accurate for calculat-
ing the path delay. To get a better insight into the path delay, we could use the method of logical
effort [74]. We will only model the critical path and neglect branching as [54]. The logical effort
provides a simple method to estimate the minimum possible delay of a circuit based on the linear
delay model. In this method, the normalized delay d of a gate is expressed as the sum of the stage
effort f and the parasitic delay p . The gate delay d is normalized in units of τ, where τ is the
delay of an ideal fanout-of-1 inverter with no parasitic capacitance [74]. By normalizing the gate
delay to τ, the circuits can be compared based on the topology rather than the speed of standard
cell library used in the synthesis process. The inverter delay can be written as τ = 3RC, where R

is the effective resistance of an nMOS transistor and C is the transistor output capacitance. The
normalized gate delay d can be expressed relative to this inverter delay as d = f + p, where p is
the parasitic delay inherent to the gate with no load attached and f is the effort delay. The inverter
has three units of diffusion capacitance, 3C on its output, so the parasitic delay is τ = 3RC. If
we normalize the inverter parasitic delay pinv to τ, we will have pinv = 1. Table 4.12 shows the
parasitic delays of some common gates relative to the inverter parasitic delay pinv.

The effort delay f depends on the complexity and fanout of the gate, f = gh, where g is the
logical effort of the gate and h is its electrical effort. The logical effort g represents the complexity
of the gate relative to an inverter. The inverter has a logical effort of 1. Table 4.13 shows the

44

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.12: The parasitic delay of some basic gates normalized to pinv [74].

Gate XOR2 XNOR2 NAND2 NOR2 NOT MUX21
Parasitic Delay p 4 4 2 2 1 4

Table 4.13: The logical effort of some basic gates [74].

Gate XOR2 XNOR2 NAND2 NOR2 NOT MUX21
Logical effort g 4 4 4

3
5
3 1 2

logical effort of some basic gates used in standard cell libraries. For example, the 2-input NAND
gate has a logical effort of 4

3 ,which means that the NAND2 gate will take 4
3 more time to drive a

given load than an inverter. The electrical effort h = Cout
Cin

, where Cout is the capacitance at the output
of the gate and Cin is the input capacitance of the gate. In case that the gate is driving identical
copies of itself, the term fanout is used to refer to the electrical effort of the gate. In Table 4.13,
there is no 2-input AND or 2-input OR gates. The non-inverting gates, like AND and OR are built
from multiple stages of inverting gates. For example, to build a 2-input AND gate, we can use
a NAND2 followed by an inverter. A 2-input NAND gate that delivers the same current as the
inverter is called NAND2-1x.

We can use the logical effort method to estimate the minimum possible delay D of an N-stage
path. The path delay D can be written as [83]

D = NF
1
N + P (4.30)

where, F is the path effort, P is the path parasitic delay and N is the number of stages (i.e.
gates) on the path under consideration. The path effort F is defined as

F = GBH (4.31)

where, G is the path logical effort, B is the path branching effort and H is the path electrical
effort.

The path logical effort is defined as G =
∏

gi, where gi is the logical efforts of stage (i.e. gate)
i along the path.

The path electrical effort H = CL
Cin

, where CL is the load capacitance of the path and Cin is the
input capacitance presented by the path.

To account for branching between stages of a path, the branching effort of stage i, bi, is defined
as the ratio of the total capacitance seen by the stage i to the capacitance on the path. Then the path
branching effort B =

∏
bi is the product of the branching efforts between stages.

In a path that does not branch, B = 1, then the path effort F is defined as

F = GH (4.32)

To find the normalized critical path delay of the S-box using the logical effort method, we will
only model the critical path rather than the entire circuit (i.e. B = 1, no branching from the critical
path). This allows us to simplify the comparison between the different S-boxes listed in Table 4.10.
We will illustrate the steps for the Fast 2 design.

The path logical effort G = 48 × (4
3)5 × 1

The path electrical effort H = CL
Cin

, where CL is the capacitance at the output of the critical path
and Cin is the capacitance at the input of the critical path.

The path parasitic delay P = (8 × 4) + (5 × 2) + 1
The number of stages N = 14
Then from (4.30), the normalized critical path delay of Fast 2 S-box at a unity path electrical

effor is DFast2 = 77.26. We summarize the normalized delay of the other S-boxes at a unity path

45

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.14: Normalizd delay values for different fast S-boxes using the method of logical effort.

S-Boxes D at CL
Cin

= 1

Reyhani Fast [69] 100.37
Maximov Fast [54] 78.73
Fast 1 (Proposed) 77.26
Fast 2 (Proposed) 77.26

2 4 6 8 10 12 14 16 18 20

Critical Path Electrical Effort

70

75

80

85

90

95

100

105

110

115

N
o

rm
a

liz
e

d
 D

e
la

y

Fast 2

Maximov

Reyhani

Figure 4.8: Influence of the load on the normalized delay values of the different fast S-boxes.

electrical effort in Table 4.14.
We can plot the the minimum delay values in Table 4.14 as a function of the electrical effort of

the critical path, CL
Cin

as shown in Figure 4.8. The Fast 2 design has a lower normalized delay for all
the values of electrical effort considered.

4.4.6 ASIC Synthesis Results and Comparison

CAD tools are very fast and accurate at evaluating complex delay models. We use Synopsys Design
Compiler® in order to give an estimate of the critical path delay, as well as the area and power
estimates of the different S-boxes considered. The overall implementation results are presented in
Table 4.15. We propose two fast structures: Fast 1 and Fast 2. Logic synthesis was done using
VHDL as a design entry to the Synopsys Design Vision®. The technology library used was STM
65nm CMOS standard library and the CORE65LPSVT standard cell library which is optimized for
low power applications. The area, delay and power for all the considered S-boxes are generated
by the CAD tool with relaxed constraints at a clock frequency of 100 MHz. We coded the above-
mentioned two fast S-boxes in VHDL and present their ASIC results in Table 4.15. For each and
every code, we verified the codes using the S-box testbenches and Modelsim

®
. The delay value

results from the CAD tool confirm that our normalized delay analysis in Figure 4.8 are correct and
that Fast 2 design is the fastest S-box among the four S-boxes considered.

From Table 4.15, the new fast S-box, Fast 2, is the currently fastest S-box in the literature, to
our knowledge. The new S-box is about 24% faster than the fast S-box design in [69] with 14%
increase in area. It is 9% faster than the fast S-box design in [54] with 11% more area. While the
depth of the Fast 2 design is 14 gates and the depth of [54] is 12 gates, Fast 2 design is faster than

46

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.15: ASIC comparisons of the fast S-Box architectures.

S-Box
Area Delay Power Area-Time

µm2 GE ns µW product
Reyhani Fast [69] 432.64 208 0.779697 42.750 162.177

Maximov [54] 447.2 215 0.686869 41.398 147.677
Fast 1 (Proposed) 515.84 248 0.636572 49.310 157.870
Fast 2 (Proposed) 495.04 238 0.627886 47.807 149.437

0.3 0.4 0.5 0.6 0.7 0.8

Critical Path Delay (ns)

150

200

250

300

350

400

450

A
re

a
 (

G
E

)

Fast 2

Maximov

Reyhani Fast

Figure 4.9: Area in GEs of the proposed Fast 2 S-box as compared to previous work [69, 54] at different
input delay constraints for the STM 65nm library.

[54] as confirmed by the normalized delay values in Table 4.14 and the synthesis results in Table
4.15. This is due to the better circuit topology used in Fast 2 design and the smaller path effort.
The critical path in Fast 2 has less path logical effort than [54], which reduces the path effort in
(4.32).

In Figure 4.9, we evaluate the proposed Fast 2 S-box design against previous works under
different delay constraints as an input design requirement for the CAD tool. The CAD tool is free
to select different output strengths for each gate to reduce the delay of the critical path. Gates with
higher output strengths have a smaller delay than their regular counterparts at a slight increase of
the synthesized area. We have started at the non constraint delay and area values. Timing constraint
are then reduced by 20 ps until the timing constraint could not be met and the slack is violated.

The Fast 2 design has the highest speed among the other two S-boxes considered in Figure
4.9. Fast 2 design has a lower area than Reyhani fast S-box under all timing constraints consid-
ered. Maximov fast S–box achives a lower area than Fast 2 and Reyhani fast under tighter timing
constraints.

4.5 Additional Extended Transformation Matrices

In this section, we will derive the extended 52 × 8 input transformation matrix T′in for the fast S-
box architecture shown in Figure 4.10. We will also conduct an exhaustive search over all possible
extended 52 × 8 input transformation matrices in order to find a fast S-box with a minimal area,
without sacrificing its speed.

47

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

The S-box architecture shown in Figure 4.5 is based on composite field GF((24)2). As pointed
out in section 4.3.2, the input to the S-box can be modified by multiplying it by a binary field
element η = (1− 255). The matrix form, C, of multiplication by η is defined by (4.15). As a result,
the 20 × 8 input transformation matrix Tin can be defined as

Tin =


X−1C

atr
i j

btr
i j

 for 0 ≤ i, j ≤ 3, i , j (4.33)

The first and the last 4 rows of (X−1C) are denoted as atr
i and btr

i , 0 ≤ i ≤ 3, respectively. The
rows of (X−1C) generate the coordinates of A and B as ai = atr

i g and bi = btr
i g, respectively. The

next 12 rows of Tin generate ai j = ai ⊕ a j = (atr
i ⊕ atr

j)g and bi j = bi ⊕ b j = (btr
i ⊕ btr

j)g.
The 20 × 8 input transformation matrix Tin defined in (4.33) computes the 20 bits of:

g20 = [a0a1a2a3b0b1b2b3a01a02a03a12a13a23b01b02b03b12b13b23]tr

from the S-box input vector g = [g7, · · · , g1, g0]tr as follows

g20 = Tin × g (4.34)

The 10-bit signal at the output of the multipliers block are denoted as W = (w0w1w2w3w4) =∑3
i=0 wiβ

2i
+ w4 and Z = (z0z1z2z3z4) =

∑3
i=0 ziβ

2i
+ z4. The formulations to generate wi and zi, 0 ≤

i ≤ 4 are derived in [69] as

w0 = (e0b0)′ ⊕ (e12b12)′

w1 = (e1b1)′ ⊕ (e23b23)′

w2 = (e2b2)′ ⊕ (e30b30)′

w3 = (e3b3)′ ⊕ (e01b01)′

w4 = (e02b02)′ ⊕ (e13b13)′

(4.35)

z0 = (e0a0)′ ⊕ (e12a12)′

z1 = (e1a1)′ ⊕ (e23a23)′

z2 = (e2a2)′ ⊕ (e30a30)′

z3 = (e3a3)′ ⊕ (e01a01)′

z4 = (e02a02)′ ⊕ (e13a13)′

(4.36)

At the output, the equations that are required to convert from the RNB back to the NB are
included into MX, resulting in Tout matrix. The output of the S-box s is defined as

s = Tout × f10 ⊕ h (4.37)

where f10 = [w0w1w2w3w4z0z1z2z3z4]tr is the output of composite field inversion, represented
in the RNB and h = [01100011]tr as presented in (1.2). The output transformation matrix Tout is
written as

Tout = MCX × T1 (4.38)

where T1 is the 8×10 matrix that converts from the RNB representations of W =
∑3

i=0 wiβ
2i

+w4

and Z =
∑3

i=0 ziβ
2i

+ z4 at the outputs of the GF((24)2) inverter back to the non-redundant NB
representations. MCX = M ×C ×X is the 8 × 10 output transformation matrix, in which M is the
S-box affine transformation as presented in (1.2), C is the matrix form of the binary field element
η as given by (4.15), and X is the inverse of the input binary matrix, X−1 used for isomorphic
mapping from GF(28) to GF((24)2).

The S-box architecture in Figure 4.5 can be optimized for speed by removing the output trans-
formation matrix Tout from the critical path. The resulting improved fast architecture is shown in
Figure 4.10. In this improved fast S-box architecture, the output s of the S-box can be written

48

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

10

10

20
−1

Improved

Exponentiation

Improved

Subfield

Inverter

𝑔17

𝐺𝐹 28

g
8

s8
𝐓′𝑖𝑛 𝐠20

32NAND2+8XOR4

32

𝐠32
𝐺𝐹 24 𝐺𝐹 24

𝐺𝐹 (24)2
𝐺𝐹 28

𝐷 𝐸

4 4

𝐺𝐹((24)2) inversion + affine transformation

Figure 4.10: Improved fast S-box architecture.

according to (4.37) as

s =



s7

s6

s5

s4

s3

s2

s1

s0


= Tout ×



w0

w1

w2

w3

w4

z0

z1

z2

z3

z4



⊕ h (4.39)

By substituting f10 = [w0w1w2w3w4z0z1z2z3z4]tr from (4.35) and (4.36)

s =



s7

s6

s5

s4

s3

s2

s1

s0


= Tout ×



(e0b0)′ ⊕ (e12b12)′

(e1b1)′ ⊕ (e23b23)′

(e2b2)′ ⊕ (e30b30)′

(e3b3)′ ⊕ (e01b01)′

(e02b02)′ ⊕ (e13b13)′

(e0a0)′ ⊕ (e12a12)′

(e1a1)′ ⊕ (e23a23)′

(e2a2)′ ⊕ (e30a30)′

(e3a3)′ ⊕ (e01a01)′

(e02a02)′ ⊕ (e13a13)′



⊕ h (4.40)

The entries of the 8 × 10 output transformation matrix Tout depends on the matrix C corre-
sponding to the binary field element η = (1−255). It also depends on the chosen 8×8 input matrix
X. The binary matrix X in turn depends on the chosen ν and the field generator. As previously
mentioned in section 4.3.3, there are only 8 different input binary matrices X, corresponding to
ν = 1000, ν = 0111 and Generator # 1, 2, 3 and 4. For each matrix of the 8 different input matrices
X, and using Matlab®, we use (4.33) to calculate the input transformation matrix Tin at the differ-
ent values of η = (1 − 255), a total of 2040 different matrices. We also use (4.38) to compute the
corresponding output transformation matrices Tout. Each output transformation matrix Tout is then
substituted in (4.40) and multiplied by f10. Each row of Tout, when multiplied by f10 will result
in 4 AND operations between e0, e1, e2 and e3, respectively and 4 other terms that depend on the
0′s and 1′s in that row as shown in Table 4.16. e.g., if a row of Tout has all 1′s, then the 4 AND
operations will be the following

e0(b0 ⊕ b03 ⊕ b01 ⊕ b02 ⊕ a0 ⊕ a03 ⊕ a01 ⊕ a02)
e1(b12 ⊕ b1 ⊕ b01 ⊕ b13 ⊕ a12 ⊕ a1 ⊕ a01 ⊕ a13)
e2(b12 ⊕ b23 ⊕ b2 ⊕ b02 ⊕ a12 ⊕ a23 ⊕ a2 ⊕ a02)
e3(b23 ⊕ b03 ⊕ b3 ⊕ b13 ⊕ a23 ⊕ a03 ⊕ a3 ⊕ a13)

49

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.16: Testing Tout entries for 1’s in order to determine the 4 signals that will be used to extend Tin. i
is the row number, 1 ≤ i ≤ 8.

Tout (i, 1) (i, 2) (i, 3) (i, 4) (i, 5) (i, 6) (i, 7) (i, 8) (i, 9) (i, 10)
term1 b0 - b03 b01 b02 a0 - a03 a01 a02

term2 b12 b1 - b01 b13 a12 a1 - a01 a13

term3 b12 b23 b2 - b02 a12 a23 a2 - a02

term4 - b23 b03 b3 b13 - a23 a03 a3 a13

By using conditional statements that test whether the Tout entry is zero or one, we can determine
which columns of Table 4.16 will be XORed together to get the 4 terms that will be ANDed with
e0, e1, e2 and e3. According to (4.40), row 1 of Tout will be used to get the 4 terms used to derive s7

and row 2 will be used for s6, etc. As a result, we will have an additional 32 signals, termed g32.
The 32 signals, g32, will be used to extend the 20 × 8 input transformation matrix Tin. g32 will

be later used by the 32NAND+8XOR4 block shown in Figure 4.10 to get the output of the S-box,
by performing and AND operation between e0, e1, e2 and e3 and the corresponding 4 signals from
g32. We use Matlab® to extend each 20×8 input transformation matrix Tin in (4.33) into the 52×8
input transformation matrix T′in, where

T′in =

[
Tin

Tin32

]
(4.41)

where g32 = Tin32g
The focused-search logic minimization algorithm is then used to perform an exhaustive search

over all possible T′in matrices (a total of 2040 matrices) in order to find the smallest number of
XOR2 gates required to implement T′in . We noticed that for certain T′in matrices, some rows
are repeated versions of each other. As a result those rows will be implemented by the logic
minimization algorithm using the same formulations, which lower the area of implementation. We
will have 52 formulations resulting from the logic minimization algorithm for each T′in matrix.
As shown in Figure 4.10, the first 20 signals, g20 will be used by the exponentiation block. The
following 32 signals, g32, will be used by the 32NAND+8XOR4 block to get the output of the
S-box s . e.g. s7 can be computed by performing 4 AND operations between e0, e1, e2, e3 and the
logic minimization results for rows 21 − 24 of T′in, o20 − o23, then XOR the four resulting terms
from the AND operations using 1 XOR4, which is a two level XOR tree consisting of 3 XOR2.
Replacing AND by NAND in the 32NAND+8XOR4 block will not affect the operation of XOR2,
as inverting both inputs of an XOR2 does not affect its operation.

We applied the focused-search logic minimization algorithm [69] on each T′in, with no timing
constraints, for all values of the arbitrary binary field element η, a total of 8× 255 = 2040, in order
to select the smallest area one. The results of the Matlab® simulations are shown in Figures A.9,
A.10, A.11, A.12, A.13, A.14, A.15 and A.16. Those Figures show the number of XOR2 gates
used to implement each of the 2040 T′in as a function of η as well as the input binary matrix X−1.

We can see from the implementation area graph shown in Figure A.9 (where ν = 1000 and
Generator #1), at η = 4, 48, 91 and 153, the implementation area of T′in is only 37 XOR2 gates. We
choose the case of η = 48 as the maximum delay associated with this circuit is only 7DX, instead of
8DX for η = 4, 91, 153. For this specific T′in, we have to constraint the maximum delay of the first
20 rows, which corresponds to g20, to 3DX so that the delay of the improved fast S-box won’t be
affected. In order to achieve that, we use the first 20 rows of T′in as input the focused-search logic
minimization algorithm [69], with a timing constraint of 3DX. The result of the logic minimization
algorithm shows that we will need 4 auxiliary signals that will be needed by the logic minimization
algorithm to minimize T′in such that the delay of g20 is 3DX. We find that using those 4 auxiliary
signals also reduced the maximum delay of g32 to 6DX. The final formulations are shown in Table

50

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.17: Fast implementation of transformations in (4.41) for ν = 1000, Generator #1 and η = 48 (Fast 3
design).

a0 = a1 ⊕ a01 (3DX) a1 = g5 ⊕ g4 (1DX) a2 = b3 ⊕ o44 (3DX)
a3 = o43 ⊕ o44 (3DX) b0 = b01 ⊕ b1 (3DX) b1 = b2 ⊕ b12 (2DX)
b2 = g7 ⊕ g5 (1DX) b3 = b2 ⊕ g1 (2DX) a01 = o29 ⊕ o41 (2DX)
a02 = g7 (0DX) a03 = o29 ⊕ o43 (3DX) a12 = o41 ⊕ b3 (3DX)
a13 = o41 ⊕ o43 (3DX) a23 = b3 ⊕ o43 (3DX) b01 = o40 ⊕ g4 (2DX)
b02 = b12 ⊕ b01 (3DX) b03 = b01 ⊕ b13 (3DX) b12 = g3 ⊕ g2 (1DX)
b13 = b12 ⊕ g1 (2DX) b23 = g1 (0DX) o20 = o34 ⊕ g6 (5DX)
o21 = o29 ⊕ g6 (4DX) o22 = a0 ⊕ g6 (4DX) o23 = o39 ⊕ g0 (5DX)
o24 = b3 (2DX) o25 = b12 (1DX) o26 = b1 (2DX)
o27 = b03 (3DX) o28 = b2 ⊕ g0 (2DX) o29 = a1 ⊕ t0 (3DX)
o30 = g2 (0DX) o31 = g6 ⊕ g0 (1DX) o32 = b1 ⊕ g6 (3DX)
o33 = g5 ⊕ g1 (1DX) o34 = o28 ⊕ o37 (4DX) o35 = t0 ⊕ o20 (6DX)
o36 = a13 ⊕ g5 (4DX) o37 = b01 ⊕ g3 (3DX) o38 = b12 ⊕ o28 (3DX)
o39 = b23 ⊕ o51 (4DX) o40 = a3 (3DX) o41 = a12 (3DX)
o42 = a1 (1DX) o43 = a03 (3DX) o44 = a23 (3DX)
o45 = a13 (3DX) o46 = a0 (3DX) o47 = a01 (2DX)
o48 = a1 ⊕ o28 (3DX) o49 = b2 ⊕ o37 (4DX) o50 = b3 ⊕ g0 (3DX)
o51 = b1 ⊕ g4 (3DX) t0 = t3 ⊕ g3 (2DX) t1 = a1 ⊕ t2 (2DX)
t2 = g2 ⊕ g0 (1DX) t3 = g7 ⊕ g6 (1DX)

4.17.
The implementation in Table 4.17 requires 41 XOR2 gates with a maximum propagation delay

of 6 XOR2 gates. We can notice from table 4.17 that the maximum delay of all 20 bits of g20

in (4.41) is still 3DX, as a result, the critical path delay of the new S-box will not be increased.
The maximum delay of g32 signal is 6DX. The g32 signals will be implemented in parallel to the
exponentiation and subfield inverter block, thus not affecting the S-box delay.

We will use the formulations in Table 4.17 to build the fast S-box in Figure 4.10. We will use
the improved exponentiation block and the improved subfield inverter derived in section 4.2.1 and
section 4.2.2, respectively. We will refer to this design as Fast 3.

4.5.1 Complexity Analysis

The space and time complexities of the modified fast architecture Fast 3 derived in section 4.5,
along with all the blocks used in Figure 4.10 are summarized in Table 4.18. The corresponding
GEs of all the blocks are also presented. GE is the chip areas in terms of an equivalent of 2-input
NAND gates. The provided GEs are based on the used 65nm CMOS technology.

4.5.2 Comparisons of the Space and Time Complexities

In this section, we compare the space and time complexities of the modified fast S-box architec-
tures, Fast 2 and Fast 3, against the fastest S-boxes available in the literature. Table 4.19 and Table
4.20 provide the gate count and time delay, respectively of two S-boxes and compare them with
the proposed architectures. We chose two of the fastest schemes, namely Reyhani et al. fast design
[69] and Maximov et al. fast S-box [54]. We provides the GE for all S-box architectures using the
corresponding GE of the gates from the CMOS 65nm technology. The CPD was obtained by the
CAD tool after coding the four S-boxes listed in VHDL.

4.5.3 ASIC Synthesis Results and Comparison

CAD tools are very fast and accurate at evaluating complex delay models. We use Synopsys
Design Compiler® in order to give an estimate the critical path delay, as well as the area and power

51

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.18: Space and time complexities of the modified fast S-box architecture, Fast 3.

Block/ Space Complexity* Time
Target X ND NR AOI12 OAI212 NT GE Complexity

Extended Input Transformation Block
T′in Table 4.17 41 82 6DX

**

GF((24)2) Inversion and Affine Transformation
Imp. Exp. 12 6 6 36 2DX + 1DNR

Imp. Inv. 4 4 4 4 20 1DAOI12 + 1DOAI212 + 1DNT

32ND2+8XR4 24 32 80 2DX + 1DND

Total 36 42 6 4 4 4 136
4DX + 1DND + 1DNR+

1DAOI12 + 1DOAI212 + 1DNT

Total Complexity of Modified Fast S-Box (Figure 4.10)

Fast 3 77 42 6 4 4 4 218
7DX + 1DND + 1DNR+

1DAOI12 + 1DOAI212 + 1DNT
∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, ND is NAND2 =

1GE, NR is NOR2 = 1GE, AOI12 is AND2 to NOR2 = 1.25GEs, OAI212 is 2 OR2 to NAND3 = 2GEs, NT is NOT
= 0.75GEs.

∗∗The maximum delay for g20 signals is 3DX .

Table 4.19: Space complexity comparison of different fast S-boxes.

S-boxes
Gate count*

GE
X AD ND N3 NR AOI12 OAI212 NT MUX21

Reyhani Fast [69] 79 - 39 4 3 - - 4 - 208
Maximov Fast [54] 78 4 37 - 5 - - - 6 215
Fast 2 (Proposed) 88 - 51 4 3 - - 4 - 238
Fast 3 (Proposed) 77 - 42 - 6 4 4 4 - 218

∗All GEs values are estimated using STM 65nm technology where X is XOR2/XNOR2 = 2GEs, AD is AND2
=1.25GEs, ND is NAND2 = 1GE, N3 is NAND3 =1.25GEs, NR is NOR2 = 1GE, AOI12 is AND2 into NOR2 =

1.25GEs, OAI212 is 2 OR2 into NAND3 = 2GEs, NT is NOT = 0.75GEs, MUX21 is 2-to-1 noninverting MUX
=2GEs.

Table 4.20: Time complexity comparison for different fast S-boxes.

S-Boxes CPD*

Reyhani Fast [69] 11DX + 5DND + 1DNT

Maximov Fast [54] 8DX + 2DNR + 1DAD + 1DMUX21

Fast 2 (Proposed) 8DX + 5DND + 1DNT

Fast 3 (Proposed) 7DX + 1DND + 1DNR + 1DAOI12 + 1DOAI212 + 1DNT
∗X = XOR2/XNOR2, AD = AND2, ND = NAND2, NR = NOR2, AOI12 = AND2 into NOR2, OAI212 = 2 OR2
into NAND3, NT = NOT = 0.75GEs, MUX21 = 2-to-1 noninverting MUX .

52

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

Table 4.21: ASIC comparisons of the S-Box architectures

S-Box
Area Delay Power Area-Time

µm2 GE ns µW product
Reyhani Fast [69] 432.64 208 0.779697 42.750 162.177

Maximov Fast [54] 447.2 215 0.686869 41.398 147.677
Fast 2 (Proposed) 495.04 238 0.627886 47.807 149.437
Fast 3 (Proposed) 453.44 218 0.626698 46.580 136.62

estimates of the different S-boxes considered. The overall implementation results are proposed in
Table 4.21. We propose the Fast 3 structure. Logic synthesis was done using VHDL as a design
entry to the Synopsys Design Vision®. The technology library used was STM 65-nm CMOS
standard library and the CORE65LPSVT standard cell library which is optimized for low power
applications. The area, delay and power for all the considered S-boxes are generated by the CAD
tool with relaxed constraints at a clock frequency of 100 MHz. We coded the above-mentioned
fast S-boxes in VHDL and present their ASIC results in Table 4.21. For each and every code, we
verified the codes using the S-box testbenches and Modelsim

®
. The delay value results from the

CAD tool confirm that Fast 3 design is the fastest and the most efficient (as measured by Area-Time
product) S-box among the four S-boxes considered.

From Table 4.21, the modified fast S-box, Fast 3, is the currently fastest S-box in the literature,
to our knowledge. The new S-box is about 24% faster than the fast S-box design in [69] with 5%
increase in area. It is 10% faster than the fast S-box design in [54] with 1% more area.

In Figure 4.11, we evaluate the proposed Fast 3 and Fast 2 S-box designs against previous
works under different delay constraints as an input design requirement for the CAD tool. The
CAD tool is free to select different output strengths for each gate to reduce the delay of the critical
path. Gates with higher output strengths have a smaller delay than their regular counterparts at a
slight increase of the synthesized area. We have started at the non constraint delay and area values.
Timing constraint are then reduced by 20 ps until the timing constraint could not be met and the
slack is violated. Fast 3 design has the same speed as Fast 2, however it has 8% less area. Fast 3
unconstrained design is the fastest, however Maximov fast S-box achieves a lower area at tighter
timing constraints.

4.6 Conclusion

In this Chapter, we improved the area and the delay of the exponentiation stage. We designed a
new subfield inverter block and the synthesis results confirm an improvement in the area of the
subfield inverter. We also modified the input and output transformation matrices of the lightweight
S-box, by multiplying the input of the S-box by a binary field element, and then study the effect
of the new transformations on the implementation area and the speed of the S-box. We also used
the method of logical effort [74] to linearly model the critical path delay of the S-box in order to
standardize the calculation of the delay among different technology libraries used in the synthesis
process. We also derived two modified fast S-box architectures, Fast 1 and Fast 2, and the synthesis
results show a great improvement in the speed. An extended input transformation matrix is derived
and a search is conducted in order to find a lower area improved fast architecture. The synthesis
results show that the new fast design, Fast 3, is 24% faster than Reyhani fast S-box [69], with only
5% increase in area. It is also 10 % faster, with just 1% more area, than Maximov fast S-box [54],
which is currently the fastest S-box in the literature, up to our knowledge.

53

CHAPTER 4. IMPROVED GF((24)2) FORWARD AES S-BOX

0.3 0.4 0.5 0.6 0.7 0.8

Critical Path Delay (ns)

150

200

250

300

350

400

450

A
re

a
 (

G
E

)

Fast 3

Fast 2

Maximov

Reyhani Fast

Figure 4.11: Area in GEs of the proposed Fast 3 and Fast 2 S-boxes as compared to previous work [69, 54]
at different input delay constraints for the STM 65nm library.

54

Chapter 5

Improved GF(((22)2)2) Forward AES S-box

5.1 Introduction

In this chapter, we will improve the AES forward S-box using tower field representation GF(((22)2)2)
over normal basis that was introduced in [70]. The input and output transformation matrices of the
tower field S-box are modified, by multiplying the input to the S-box by an 8-bit binary field ele-
ment that ranges from (1-255). A search is conducted in order to find a lower area input and output
mappings of the S-box. The improved S-box is smaller than the original design [70] by 4.25 GEs
and smaller than the lightweight S-box [69] by 8.75 GEs in STM 65nm technology, where GE is
the equivalent of NAND2 gates. Due to the different field representation selected for the input and
output mappings of the improved S-box than [70], a slightly different inversion circuit is derived
in this chapter. The modified inversion circuit has the same area and delay as the original one in
[70].

5.2 Architecture of the Improved AES S-box

In this section, we introduce the overall architecture for the improved forward S-box. The design
introduced by Reyhani et al. [70] in 2019 will be the starting point of this Chapter. Using the idea
proposed in [54], we will multiply the input of the S-box by a binary field element η that ranges
from (1 − 255) and track the complexity of the new input and output transformation matrices in
order to find a lower area mappings. The inversion circuit of the S-box would need to be changed
a little if the field chosen based on the new transformations change, which was the case as will be
illustrated in section 5.4.

The improved architecture is highlighted in Figure 5.1. As shown in this figure, the inversion is
done over the tower field GF(((22)2)2). In the beginning, the 8-bit input g is multiplied by a binary
field element η, that ranges from (1− 255). The multiplication by an 8-bit binary field element can
be represented in matrix form as C. The matrix C was derived before in (4.15), and will be used

𝐗𝐹
−1 −1 𝐗𝐹 𝐌

𝐺𝐹 28 𝐺𝐹 28

g

𝒉

s
8 8 8𝐂

𝐺𝐹(((22)2)2)

𝐓 𝐂

𝐗𝐹
−1𝐂 𝐌𝐂𝐗𝐹𝐓

g𝜂

8

A

4

B

4

6

6

W’

Z′

4

4

8

g𝜂 −1
g−1

8

Figure 5.1: The overall architecture of the improved forward S-box using GF(((22)2)2) in the NB represen-
tation.

55

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

9

9

18
−1

Re-designed

Exponentiation

Re-designed

Subfield

Inverter

Re-designed

Output

Multipliers

17

Re-designed 𝐺𝐹(((22)2)2) field

inversion

6

6

𝐺𝐹 28

𝒉

s
8 8

W’

Z′

𝐗−1𝐂𝐺𝐹 28

g
8

𝑎01
𝑎02
𝑎13
𝑎23
𝑎𝑝

𝑏01
𝑏02
𝑏13
𝑏23
𝑏𝑝

𝐌𝐂𝐗𝐓

𝐺𝐹(((22)2)2) 𝐺𝐹(((22)2)2)

𝐺𝐹((22)2) 𝐺𝐹((22)2)

Figure 5.2: The overall architecture of the improved forward S-box using GF(((22)2)2) in the NB represen-
tation.

here to get the new input mapping of the forward S-box as X−1
new = XF

−1C. The 8-bit input g is
processed through the input isomorphic mapping (X−1

new = X−1
F C) to find the equivalent elements A

and B, of 4-bit each, in the tower field representation. The GF((22)2) elements A and B represent
the inputs of the inversion circuit. The 18 × 8 input mappingTinnew generates A and B, of 4-bit
each, and it also generates {a01, a02, a13, a23, ap} and {b01, b02, b13, b23, bp}, where a jk = a j ⊕ ak and
b jk = b j ⊕ bk for 0 ≤ j, k ≤ 3, and j , k. Also, ap = a02 ⊕ a13 and bp = b02 ⊕ b13 which are the
parities of A and B, respectively. The modified input mapping matrix can be written as

Tinnew =


X−1

F C
atr

i j
btr

i j

 for 0 ≤ i, j ≤ 3, i , j (5.1)

Similarly, the output mapping implements the last stage of the output multipliers, T (Sec. 5.4.5).
The GF((22)2) multiplier output is represented as six terms (6-bit output) denoted by W ′ and Z′ as
RNB6 representation, before reduced to four terms (4-bit output). Therefore, the output mapping
of the forward S-box accepts two redundant RNB6 elements with a total of 12 bits, and generates
an 8-bit output in the binary field of GF(28). To cancel the effect of multiplying the input of the
S-box by η, the matrix C is also included in the output mapping of the forward S-box as shown in
Figure 5.1. As a result, the new output mapping is the 8 × 12 output matrix defined as

Toutnew = MCXFT (5.2)

The improved architecture is highlighted in Figure 5.2.

5.3 Input and Output Mappings of the Improved AES S-box

In this section, we will study the effect of multiplying the input of the S-box by η = (1 − 255),
on the input and output mappings between the AES binary field in GF(28) and the 16 possible
GF(((22)2)2) tower field representations over normal basis considerd in [70]. We noticed that
among the 16 possible tower field representations, only 4 field representations are unique and
the other 12 representations are replicas of those 4, where the corresponding isomorphic map-
ping matrices, XF

−1, are row-wise related. The 4 unique field representations correspond to
{ν = [0010],N = [01]}, {ν = [0010,N = [10]}{ν = [0111],N = [01]}, {ν = [0111],N = [10]}.
Since there are 4 possible unique mappings per field [70], corresponding to Generators #1, #2, #3
and #4, leading to a total of 4 × 4 = 16 mappings. Also, we have 255 different values of η, then
there are a total of 16 × 255 = 4080 different input transformation matrices and 4080 different
output transformation matrices that could be used for input and output mappings, respectively.

For each X−1
F , we derived, using Matlab®, 16 different input transformation matrices Tinnew as

defined by (5.1), and 16 different output transformation matrices Toutnew as defined by (5.2). Then

56

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

Table 5.1: The number of XOR2 gates and the maximum delay results for some Toutnew matrices.

ν N Generator # η # XOR2 Max. Delay
[0010] [01] 4 1 171 4DX

1

[0010] [10] 3 49 19 5DX

[0010] [10] 3 210 18 4DX

[0010] [10] 3 227 19 6DX
1The output mapping of the original forward S-box [70] reuires 17 XOR2 gates with a maximum delay of 4DX .

for each X−1
F , we multiply by η = (1 − 255) using the matrix form, C, of η derived in (4.15). We

applied the Focused-Search logic-minimization algorithm proposed in [69] on each Tinnew for all
the values of the arbitrary binary field element η, i.e. a total of 16 × 255 = 4080, in order to select
the smallest area one. The results of the Matlab® simulations are shown in Figures B.1, B.2, B.3,
B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13, B.14, B.15 and B.16. Those figures show the
number of XOR2 gates used to implement each of the 4080 Tinnew as a function of η, as well as the
maximum delay associated with each matrix.

In the original forward S-box [70], the used field is {ν = [0010] = ωα4,N = [01] = ω2} and
Generator #4. The input mapping requires 19 XOR2 gates with a maximum delay of 7DX, while
the output mapping requires 17 XOR2 gates with a maximum delay of 4DX. As can be seen from
Figure B.7, the field represented by {ν = [0010] = ωα4,N = [10] = ω} and Generator #3 gives a
more compact implementation of 16 XOR2 gates for Tinnew . This compact implementation of Tinnew

occurs at η = 49, 210, 227, where the associated maximum delay for all three transformations is
7DX. To decide which η could be better in saving the area of the improved S-box, we run the
focused-search logic minimization algorithm on the corresponding Toutnew matrices and the results
are summarized in Table 5.1. For all the 3 cases in Table 5.1, we choose the second one, where the
improved output mapping requires only 18 XOR2 gates with a maximum delay of 4DX.

We can conclude from the Matlab® simulations for Tinnew and Toutnew that multiplication of the
S-box input by a binary field element η = (1 − 255) could improve the area of the input and output
transformations of the S-box. Using the field {ν = [0010] = ωα4,N = [10] = ω}, Generator #3 and
η = 210 reduce the area of the input and output mapping of the forward S-box in [70] by 2 XOR2
gates, while keeping the maximum delay at the same level. However, the inversion circuit of the
S-box needs to be slightly changed due to the different field representation we are using than [70].
In the following section, we will introduce the equations used for the input and output mapping of
the improved S-box

5.3.1 Input Mapping of the Improved AES S-box

We used Matlab® to get the input transformation matrix defined in (5.1). The binary input matrix
X−1

F corresponds to the selected field {ν = [0010] = ωα4,N = [10] = ω} and Generator #3 is used.
The multiplication matrix C is computed from (4.15) for the case of η = 210. As a result, the input
mapping of the improved forward S-box is defined as follows:

57

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

i =



a0

a1

a2

a3

b0

b1

b2

b3

a01

a02

a13

a23

ap

b01

b02

b13

b23

bp



= Tinnew × g =



0 0 0 0 0 0 1 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0
0 1 1 1 0 0 0 0
0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0
1 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0
0 1 0 1 1 1 0 1
0 1 0 0 0 0 0 1
1 1 1 1 1 1 0 0
1 1 1 0 0 0 0 0
1 0 1 1 1 1 0 1



×



g7

g6

g5

g4

g3

g2

g1

g0


. (5.3)

The implementation of (5.3) is highlighted in Table 5.2 and its complexity is presented below.

Proposition 5.3.1 The input mapping of the improved forward S-box can be implemented using

16 XOR2 gates, with a maximum delay of 7DX, where DX is the delay of a 2-input XOR2 gate.

Table 5.2: Equations used to implement the input mappings of the improved forward S-box.

a0 = g1 0DX b0 = b2 ⊕ b02 2DX

a1 = a01 ⊕ g1 3DX b1 = g2 0DX

a2 = b13 ⊕ g7 5DX b2 = g4 ⊕ g3 1DX

a3 = a23 ⊕ a2 6DX b3 = b2 ⊕ b23 3DX

a01 = a23 ⊕ ap 2DX b01 = bo ⊕ g2 3DX

a02 = a2 ⊕ g1 6DX b02 = g6 ⊕ g0 1DX

a13 = ap ⊕ a02 7DX b13 = b3 ⊕ g2 4DX

a23 = g3 ⊕ g2 1DX b23 = ap ⊕ g6 2DX

ap = g7 ⊕ g5 1DX bp = b23 ⊕ b01 4DX

5.3.2 Output Mapping of the Improved AES S-box

As mentioned before, the output mapping of the improved forward S-box calculates s =(Toutnew ×

o) ⊕ h, where Toutnew = MCXFT which is provided below for the selected field {ν = [0010] =

ωα4,N = [10] = ω} and Generator #3 at η = 210.



s7

s6

s5

s4

s3

s2

s1

s0


=



1 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 1 0
1 1 0 1 1 0 1 1 1 0 0 1
1 1 1 0 0 1 0 1 1 0 1 1
0 1 0 0 0 1 0 1 0 1 0 0
1 1 0 1 1 0 1 0 1 0 0 0


×



w′0
w′1
w′2
w′3
w′4
w′5
z′0
z′1
z′2
z′3
z′4
z′5



⊕



0
1
1
0
0
0
1
1


, (5.4)

where w′i and z′i , 0 ≤ i ≤ 5, as required by (5.25) in Sec. 5.4.5. The implementation of (5.4)
is highlighted in Table 5.3. In this table, a 3-input XOR (XOR3) and a 3-input XNOR (XNOR3)

58

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

are represented by ⊕3 and �3, respectively. The delay of these gates is represented by DX3 in this
table. It is noted that each XOR3 gate can be implemented using 2 XOR2 gates and one XNOR3
gate can be implemented by one XOR2 and one XNOR2 gates with a delay of 2DX. As a result,
one can obtain the complexities of this block.

Table 5.3: Equations used to implement the proposed output mappings of the improved forward-only S-box.

s7 = ⊕3(t1,w0,w2) DX3 + DX s6 = �3(t3, z0, z2) DX3 + DX

s5 = w1 � w3 DX s4 = t0 ⊕ z4 DX3 + DX

s3 = t1 � s0 2DX3 + DX s2 = ⊕3(z2, z4, t4) 2DX3 + 2DX

s1 = t2 � t3 2DX s0 = ⊕3(t0, s5, z2) 2DX3

t0 = ⊕3(w0,w4, z0) DX3 t1 = z1 ⊕ z5 1DX

t2 = w1 ⊕ w5 1DX t3 = z1 ⊕ z3 1DX

t4 = t2 ⊕ s7 DX3 + 2DX

Proposition 5.3.2 The output mapping of the improved forward S-box can be implemented us-

ing 8 XOR2/XNOR2 and 5 XOR3/XNOR3 gates with the maximum delay of 2DX3 + 2DX. If only

XOR2/XNOR2 is used, it requires 18 XOR2/XNOR2gates, with a maximum delay of 4DX, where

DX and DX3 are the delay of a XOR2/XNOR2 and a XOR3/XNOR3, respectively.

5.4 Modified Inversion over GF(((22)2)2)

Inversion over tower field GF(((22)2)2) is the core block in the forward S-box. In this section, we
slightly modify the inversion design over GF(((22)2)2) provided in [70] in order to use the selected
field {ν = [0010] = ωα4,N = [10] = ω}. As shown in Figure 5.1, the inversion over tower field
consists of exponentiation, subfield inversion and output multipliers. In this section, we illustrate
the designs for these three blocks according to the new field used.

The first block in Figure 5.1 is the exponentiation block, which generates D = g17 as required in
(2.12). Since we selected ν = ωα4, (2.12) can be written as D = A×B+(A+B)2ωα4 which requires
multiplication, squaring and scaling over GF((22)2). In the following subsections, we first analyze
these operations to find the coordinates of D = (d0d1d2d3) = (d0ω + d1ω

2)α + (d2ω + d3ω
2)α4 for

the new tower field.

5.4.1 Multiplication over GF((22)2)

Let A = A0α+A1α
4 and B = B0α+B1α

4 be subfield elements over GF((22)2) where Ai, Bi ∈ GF(22),
i = 0, 1. Also, we will use the RNB representation to define the output of their multiplication as
C = A × B = Ĉ0α + Ĉ1α

4 + Ĉ2, where Ĉ0, Ĉ1, Ĉ2 ∈ GF(22) can be computed as

Ĉ0 = A0B0,

Ĉ1 = A1B1,

Ĉ2 = (A0 + A1)(B0 + B1)ω.
(5.5)

Here, we used αα4 = η as implied from (2.9), and η = ω following the mapping selection.
As seen from (5.5), multiplication in GF((22)2) requires three multiplications over GF(22). Since
the polynomial used to define the GF(22) field in (2.10) is an AOP with degree 2 (m = 2) and
is irreducible, we use the type-I optimal normal basis (ONB-I) multiplication scheme proposed
in [66] for m = 2.

Lemma 5.4.1 From [66], let A0 = a0ω + a1ω
2 ∈ GF(22) and B0 = b0ω + b1ω

2 ∈ GF(22) be

represented in the ONB-I {ω, ω2}. Then, the coordinates of their multiplication, represented in the

redundant normal basis (RNB) {ω, ω2, 1}, can be calculated as follows: Ĉ0 = A0B0 = a0b0ω +

a1b1ω
2 + a01b01 where a01 = a0 ⊕ a1 and b01 = b0 ⊕ b1.

59

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

Since A1 = a2ω + a3ω
2 ∈ GF(22) and B1 = b2ω + b3ω

2 ∈ GF(22), one can use Lemma 5.4.1 to
find (A0 + A1)(B0 + B1) = a02b02ω + a13b13ω

2 + apbp. As a result, (5.5) can be computed as

Ĉ0 = a0b0ω + a1b1ω
2 + a01b01

Ĉ1 = a2b2ω + a3b3ω
2 + a23b23

Ĉ2 = apbpω + a02b02ω
2 + a13b13

(5.6)

where a jk = a j ⊕ ak and b jk = b j ⊕ bk for 0 ≤ j, k ≤ 3, and j , k. Also, ap = a02 ⊕ a13 and
bp = b02 ⊕ b13 which are the parities of A and B, respectively.

5.4.2 Squaring with Scaling

If we denote V = (A + B)2ωα4 = V0α + V1α
4, with V0,V1 ∈ GF((22)2). Using (5.5), one can find

A2 = A2
0α + A2

1α
4 + (A0 + A1)2ω and similar expression for B2. Since (A + B)2 = A2 + B2, we can

simplify the computation of the coefficients of V to:

V0 = (A0 + A1 + B0 + B1)2ω2

V1 = (A1 + B1)2ω
(5.7)

Representing the equations in GF(22), similar to (5.6), one can find that

V0 = (a13 ⊕ b13) + (a02 ⊕ b02)ω
V1 = (a2 ⊕ b2) + (a3 ⊕ b3)ω2 (5.8)

where a13 = a1 ⊕ a3, a02 = a0 ⊕ a2 and b13 = b1 ⊕ b3, b02 = b0 ⊕ b2.

5.4.3 Modified Exponentiation Computation

The output of exponentiation block, i.e., D, can be computed by adding C = Ĉ0α + Ĉ1α
4 + Ĉ2

with V = V0α + V1α
4. Then, one can obtain the coefficients of D with respect to the RNB as

D = D̂0α + D̂1α
4 + D̂2, where

D̂0 = Ĉ0 + V0

D̂1 = Ĉ1 + V1

D̂2 = Ĉ2

(5.9)

Using (5.6) and (5.8), we can simplify the RNB coefficients of D to:

D̂0 = (a0b0 ⊕ a02 ⊕ b02)ω + a1b1ω
2 + (a13 ⊕ b13 ⊕ a01b01)

D̂1 = a2b2ω + (a3b3 ⊕ a3 ⊕ b3)ω2 + (a23b23 ⊕ a2 ⊕ b2)
D̂2 = apbpω + a02b02ω

2 + a13b13

(5.10)

We can represent D in the NB as D = D0α + D1α
4, with Di = D̂i + D̂2 for i = 0, 1. Then, the

GF(22) coefficients of D = (d0ω + d1ω
2)α + (d2ω + d3ω

2)α4 can be found as:

d0 = (a0b0 ⊕ (ap ∨ bp) ⊕ a01b01 ⊕ a13b13)
d1 = (a1b1 ⊕ a02b02 ⊕ (a13 ∨ b13) ⊕ a01b01)
d2 = ((a2 ∨ b2) ⊕ apbp ⊕ a23b23 ⊕ a13b13)
d3 = (a3b3 ⊕ (a23 ∨ b23) ⊕ a02b02 ⊕ a13b13)

(5.11)

Here, we use a02 ⊕ b02 ⊕ a13 ⊕ b13 = ap ⊕ bp then ap ⊕ bp ⊕ apbp = ap ∨ bp to obtain d0. For the
computation in d1, we replace a13 ⊕ b13 ⊕ a13b13 by a13 ∨ b13. For d2 we replace a2 ⊕ b2 ⊕ a2b2 by
a2∨b2. Similarly, a3⊕b3⊕a2⊕b2 = a23⊕b23 then a23⊕b23⊕a23b23 = a23∨b23 is used to simplify
d3. Also, for low cost implementation, we replace all AND and OR operations in (5.11) to NAND
and NOR operations, respectively, without changing their functions. As a result, one can obtain
the following lemma for the exponentiation block.

Lemma 5.4.2 The coordinates of the new exponentiation block that computes D = g17 = (d0d1d2d3) =

(d0ω + d1ω
2)α + (d2ω + d3ω

2)α4 are obtained as follows.

60

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

a0

b0

ap

bp

a01

b01

a13

b13

(a01b01)'

a02

b02

a1

b1

a13

b13

a2

b2

ap

bp

a23

b23

(a13b13)'

d0

d1

d2

d3

(a13b13)'

a3

b3

a23

b23

(a02b02)'

(a01b01)'

(a13b13)'

(a02b02)'

Figure 5.3: The architecture of the modified exponentiation block.

61

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

OAI222

d0/2

d1/3

d'2/0

d0/2

d'2/0

d'3/1

d3/1

d'2/0

e1/3

e0/2

OAI32

0/2 1/3d d

d1/3

d'3/1

d'3/1

d'2/0

Figure 5.4: The modified subfield inverter block.

Table 5.4: The truth table of the inverter over GF((22)2) using the field represented by {ν = [0010] =

ωα4,N = [10] = ω}.

d0d1d2d3 e0e1e2e3 d0d1d2d3 e0e1e2e3

0000
0001
0010
0011
0100
0101
0110
0111

0000
1100
1000
0100
0011
1010
0111
0110

1000
1001
1010
1011
1100
1101
1110
1111

0010
1101
0101
1110
0001
1001
1011
1111

d0 = a0b0 ⊕ (ap ∨ bp) ⊕ a01b021 ⊕ a13b13

d1 = a1b1 ⊕ a02b02 ⊕ (a13 ∨ b13) ⊕ a01b01

d2 = (a2 ∨ b2) ⊕ apbp ⊕ a23b23 ⊕ a13b13

d3 = a3b3 ⊕ (a23 ∨ b23) ⊕ a02b02 ⊕ a13b13

(5.12)

The architecture of new exponentiation block used in the new inversion over GF(((22)2)2) is
shown in Figure 5.3 and its complexity is presented below.

Proposition 5.4.3 In the improved S-box, the exponentiation computation block (Figure 5.3), with

original formulations presented in (5.12), consists of 4 XOR2 (2-input XOR), 4 XOR3 (3-input

XOR), 8 NAND2 (2-input NAND), and 4 NOR2 (2-input NOR) gates with the critical path delay of

DX + DX3 + DNAND where DX, DX3, and DNAND are the delays of one XOR2 gate, one XOR3 and

one NAND2 gate, respectively.

5.4.4 Modified Subfield Inversion over GF((22)2)

Let D = (d0d1d2d3) be the input of the subfield inverter. The output of the new subfield inverter is
E = D−1 = (e0e1e2e3) = E0α + E1α

4 ∈ GF((22)2), where E0 = e0ω + e1ω
2, E1 = e2ω + e3ω

2 and
ei ∈ GF(2), 0 ≤ i ≤ 3, are its coordinates.

The subfield inverter is a 4-bit input 4-bit output combinational circuit which can be designed
using truth table design method. We used Matlab® to find the inversion truth table as shown in
Table 5.4. Using this table one can obtain the following.

Lemma 5.4.4 Let E = D−1 represented by E = (e0e1e2e3) = E0α + E1α
4 ∈ GF((22)2), where

E0 = e0ω + e1ω
2 and E1 = e2ω + e3ω

2. Then, the coordinates of E0 and E1 are

e0 = d2d′3(d0 � d1) ∨ d3(d0 ∨ d′2)
e1 = d2(d0 ⊕ d1) ∨ d3(d′1 ∨ d2)

(5.13)

62

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

and

e2 = d0d′1(d2 � d3) ∨ d1(d2 ∨ d′0)
e3 = d0(d2 ⊕ d3) ∨ d1(d′3 ∨ d0)

(5.14)

respectively.

We implemented the above formulations and several other equivalent functions to obtain the
optimum design with the least area and delay in the ASIC implementation. In order to reduce the
area and improve the speed of the ASIC implementations of (5.13) and (5.14), we use compound
OR-AND-Invert (OAI) gates, such as OAI22 and OAI32 gates, instead of using AND/OR as well
as NAND/NOR gates [70]. One can convert the formulations in Lemma 5.4.4 to the following
using Boolean algebra and De Morgan’s laws. As a result, we conclude the following.

Corollary 5.4.5 [70] The coordinates of E0 can be found from

e0 = ((d′2 ∨ d3 ∨ (d0 ⊕ d1))(d′3 ∨ (d0 ∨ d′2)′))′
e1 = ((d′2 ∨ (d0 ⊕ d1)′)(d′3 ∨ (d′1 ∨ d2)′))′

(5.15)

Similarly, the coordinates of E1 can be found by switching all indices in (5.15) between 0 and

2, i.e., 0↔ 2 and between 1 and 3, i.e., 1↔ 3.

Using the compound gate OAI222 (instead of OAI22 and a NOR2), as shown in Figure 5.4,
we can slightly improve the area of subfield inversion. One can find the following formulations by
applying Boolean algebra and De Morgan’s laws to (5.15) for e0 and e1:

Corollary 5.4.6 The coordinates of E0 can be found from

e0 = ((d′2 ∨ d3 ∨ (d0 ⊕ d1))(d′3 ∨ (d0 ∨ d′2)′))′
e1 = ((d′2 ∨ (d0 ⊕ d1)′)(d1 ∨ d′3)(d2 ∨ d′3))′

(5.16)

Similarly, the coordinates of E1 can be found by switching all indices in (5.16) between 0 and

2, i.e., 0↔ 2 and between 1 and 3, i.e., 1↔ 3.

Using 4 NOT gates at the inputs of Figure 5.4, one can obtain the following regarding the time
and space complexities of the modified subfield inverter.

Proposition 5.4.7 In the improved forward S-box, the space complexity of the proposed subfield

inverter block over GF((22)2) includes 2 XOR2, 2 NOR2, 2 OAI222, 2 OAI32 and 6 NOT gates.

The time complexity of the proposed subfield inverter is 1DOAI222 + 1DXOR2 + 1DNOT .

5.4.5 Modified Output Multipliers

One can use the formulations presented in section 5.4.1 to obtain the formulations for two output
multipliers that generate Z = A × E and W = B × E. Starting with the formulations for Z = A × E,
let A be represented as in (2.11) and similarly represent E as E = (e0ω+e1ω

2)α+ (e2ω+e3ω
2)α4 ∈

GF((22)2), where E is the field element generated by the subfield inverter, with coordinates of
ei ∈ GF(2), i ∈ [0, 3]. Let us represent Z = A × E with respect to the RNB as Z = A × E =

Ẑ0α + Ẑ1α
4 + Ẑ2. Then, using (5.6), one can obtain

Ẑ0 = a0e0ω + a1e1ω
2 + a01e01

Ẑ1 = a2e2ω + a3e3ω
2 + a23e23,

Ẑ2 = apepω + a02e02ω
2 + a13e13.

(5.17)

To implement (5.17), the ai j and ap signals are available from the implementation of exponen-
tiation block. However, 5 additional XOR gates are required for the implementation of the ei j and

63

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

ep signals used in (5.17). To reduce the CPD, we convert the representations presented in (5.17)
from the RNB to the NB. Using a01e01 = a01e0 ⊕ a01e1, we can simplify Ẑ0 to

Ẑ0 = (a1e0 ⊕ a01e1)ω + (a0e1 ⊕ a01e0)ω2. (5.18)

Similarly, using a23e23 = a23e2 ⊕ a23e3, Ẑ1 can be simplified to

Ẑ1 = (a3e2 ⊕ a23e3)ω + (a2e3 ⊕ a23e2)ω2. (5.19)

The computation of ep is in the longest path which reduces the speed of the output multiplier.
To design a fast multiplier, we use ep = e02 ⊕ e13 in the expression of Ẑ2 in (5.17), so that:

Ẑ2 = (ape02 ⊕ a02e13)ω + (a02e02 ⊕ a13e13)ω2. (5.20)

One can write Z = (z0, z1, z2, z3) = Z0α+Z1α
4 = (z0ω+z1ω

2)α+(z2ω+z3ω
2)α4, with Zi = Ẑi+Ẑ2

for i = 0, 1 and so the coordinates of Z are as follows:

z0 = a1e0 ⊕ a01e1 ⊕ z′4
z1 = a0e1 ⊕ a01e0 ⊕ z′5
z2 = a3e2 ⊕ a23e3 ⊕ z′4
z3 = a2e3 ⊕ a23e2 ⊕ z′5

(5.21)

where

z′4 = ape02 ⊕ a02e13
z′5 = a02e02 ⊕ a13e13

(5.22)

Similarly, one can optimize the formulations for W = B×E by replacing the coordinates of A by
the ones of B to obtain the coordinates of W = (w0,w1,w2,w3) = (w0ω+ w1ω

2)α+ (w2ω+ w3ω
2)α4

as:

w0 = b1e0 ⊕ b01e1 ⊕ w′4
w1 = b0e1 ⊕ b01e0 ⊕ w′5
w2 = b3e2 ⊕ b23e3 ⊕ w′4
w3 = b2e3 ⊕ b23e2 ⊕ w′5,

(5.23)

where

w′4 = bpe02 ⊕ b02e13
w′5 = b02e02 ⊕ b13e13

(5.24)

Note that the two signals e02 = e0 ⊕ e2 and e13 = e1 ⊕ e3 are shared among the two multipliers.
Instead of using AND gates, one can design the logical circuit of these multipliers using NAND
gates by simply replacing all AND operations to NAND [70]. Such replacements do not change
the multiplication operation because the two inputs of XOR gates are complemented which result
in no change at the output of XOR gates. Using NAND gates is cheaper and faster in the ASIC
implementation. We can conclude the following for the multipliers used in the improved forward
S-box.

Lemma 5.4.8 For the improved forward S-box, the output of multipliers, i.e., W ′ = (w′0,w
′
1,w

′
2,w

′
3,w

′
4,w

′
5)

and Z′ = (z′0, z
′
1, z
′
2, z
′
3, z
′
4, z
′
5) are represented in the RNB6 representation and so their coordinates

can be obtained as follows

w′0 = b1e0 ⊕ b01e1 z′0 = a1e0 ⊕ a01e1

w′1 = b0e1 ⊕ b01e0 z′1 = a0e1 ⊕ a01e0

w′2 = b3e2 ⊕ b23e3 z′2 = a3e2 ⊕ a23e3

w′3 = b2e3 ⊕ b23e2 z′3 = a2e3 ⊕ a23e2

w′4 = bpe02 ⊕ b02e13 z′4 = ape02 ⊕ a02e13

w′5 = b02e02 ⊕ b13e13 z′5 = a02e02 ⊕ a13e13,

(5.25)

64

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

where each coordinate is implemented using two NAND2 and one XOR gates in a two-level of

NAND2-XOR2 as shown in Figure 5.2.

As a result, one can obtain the space and time complexities of the two output multipliers in the
improved forward S-box as follows.

Proposition 5.4.9 In the improved forward S-box, the output multipliers consist of 14 XOR2 and

24 NAND2 gates with the longest propagation delay of DNAND + 2DXOR2.

5.5 Implementation Results and Comparisons

In this section, we evaluate the implementation results of all the modified blocks along with the
overall improved forward S-box. All the estimate implementation areas (in GEs) in this section are
computed based on the area of individual gates in the STM 65nm technology library.

5.5.1 Complexity Analysis of the Improved AES S-box

Table 5.5: Complexity comparison of the improved and the original forward S-box designs.

Design HW Complexity GEs∗

Reyhani et. al. [70] 48X + 7X3 + 1XN3 + 32ND + 6NR + 2O3 + 2O4 + 6NT 177.75
Improved S-box 44X + 8X3 + 1XN3 + 32ND + 6NR + 2O3 + 2O4 + 6NT 173.5

∗All GE values are estimated using STM 65 technology where X is XOR2/XNOR2 = 2GEs, X3 is XOR3 = 3.75GEs,
XN3 is XNOR3 = 4GEs, AD is AND2 = 1.25GEs, ND is NAND2 = 1GE, NR isNOR2 = 1GE, O3 is OAI32 =

2GEs„ O4 is OAI222 = 2.5GEs, NT is NOT = 0.75GEs.

Table 5.5 compares the hardware complexity analysis of the improved forward S-box against
the original forward S-box [70].

5.5.2 ASIC Implementation Results

We use VHDL coding as a design entry to the Synopsys Design Vision® for logic synthesis. All the
individual blocks as well as the improved forward S-box and the original S-box [70] are evaluated
using the STM 65nm CMOS standard-cell library. Note that results are collected at conservative
wire load models and tthe CPDs are reported by the CAD tool when there is no load to the external
output.

5.5.2.1 Individual Blocks

We coded all blocks of the improved S-box in two different modeling methods using VHDL. The
first type of modeling is the structural modeling where we code all the blocks exactly as presented
in equations and/or figures, with no optimization in the gate selection by the CAD tool. Then,
we use behavioral modeling by defining the input/output relationship of each block and allowing
optimization by the CAD tool to select the most compact circuit. In Table 5.6, we compare the
results of structural modeling against behavioral modeling for each block of the improved forward
S-box. In this table, the power consumption values are included as reported by the CAD tool at
relaxed constraints using a clock frequency of 100 MHz. Note that the maximum clock frequency
can be obtained from the CPD. Later, we evaluate the improved forward S-box design under more
tight constraints.

Table 5.6 lists synthesis results for the modified exponentiation block (Sec. 5.4.3), the modified
subfield inversion block (Sec. 5.4.4) and the output multipliers (Sec. 5.4.5) using both structural
modeling and behavioral modeling. The table shows that structural modeling of all the blocks
results in a more compact design than behavioral modeling.

65

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

Table 5.6: ASIC synthesis results for the three blocks of the inversion and the entire inversion over the
tower field at STM 65nm technology.

Block
Imp. Ref

Area CPD Pow.
(S-box) µm2 GE ns µW

Exp Str. Fig. 5.3 72.8 35 0.144 2.63
Beh. (5.12) 74.88 36 0.144 2.32

sub Inv. Str. Fig. 5.4 40.56 19.5 0.073 1.41
Beh. (5.4) 43.68 21 0.083 1.22

Mult. Str (5.21),(5.23) 108.16 52 0.119 3.69
Beh. (5.21),(5.23) 108.16 52 0.120 3.74

Cascading the Three Blocks
Tower Inv. Str. Fig. 5.1 221.52 106.5 0.504 19.35

Beh. Fig. 5.1 226.72 109 0.575 19.63

Table 5.7: ASIC Implementation results for the improved forward S-box.

S-box Area CPD Power
µm2 GE ns µW

Reyhani et. al [70] 369.72 177.75 1.169 34.73
Improved S-box 360.88 173.5 1.245 34.57

5.5.2.2 Overall Design

In this section, we compare the actual ASIC implementations results of the improved forward S-
box against the original compact design [70]. Table 5.7 highlights the ASIC reported results for the
improved forward S-box using the STM 65nm CMOS standard-cell library. This table also shows
the area in terms of GE, CPD and power consumption as reported by the CAD tool. We compared
the results of the improved forward S-box architecture against the original design [70]. As seen
from the table, the improved architecture of the forward S-box saves 4.25 GE over the original
forward S-box proposed in [70].

In Figure 5.5, we evaluate the improved forward S-box against original work [70] under differ-
ent delay constraints as an input design requirement for the CAD tool. The CAD tool is free to use
gates with different output strengths to improve the delay of each gate at a slight increase of the
design area. These figures show that the improved forward S-box circuit results in a more compact
design than the previous work [70] across tighter delay constraints.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Critical Path Delay (ns)

150

200

250

300

350

400

A
re

a
 (

G
E

)

Reyhani S-box

Improved S-box

Figure 5.5: Area in GEs of the improved forward S-box circuit as compared to previous work [70] at different
input delay constraints targeting the STM 65nm library.

66

CHAPTER 5. IMPROVED GF(((22)2)2) FORWARD AES S-BOX

5.6 Conclusion

In this chapter, we improved the area of AES forward S-box design in [70] by 4.25 GEs. Using
the focused-search logic minimization algorithm, we have found a new input and output mapping,
using the tower field GF(((22)2)2) which results in more compact linear transformation blocks. For
the new field selected, we have derived the formulations and re-designed the corresponding blocks.
Moreover, we have verified our designs by extensive simulation codes and implemented our design
along with the original one as proposed in [70]. Our analysis and the ASIC implementation results
show that the improved S-box outperforms the original scheme in terms of the area.

67

Chapter 6

Summary and Future Work

6.1 Thesis Summary

In this thesis, we evaluated, improved and compared several forward, inverse and combined AES S-
boxes available in the literature in terms of area and/or delay. For each and every code, we verified
the codes using the S-box testbenches and Modelsim® and by comparing against the legitimate
S-box outputs. We also introduced several improvements to the lightweight and the fast AES
S-boxes proposed in [69]. The improved fast S-box, Fast 3, is currently the fastest and most
efficient (measured by area × delay) S-box available in the literature, up to our knowledge. We
improved the low area S-box proposed in [70] as well and re-designed the GF(28) inversion circuit,
correspondingly.

The contributions of this thesis are

• Extensive simulations and comparisons of previous forward, inverse and combined AES S-
boxes.

• Improving the area of the composite field AES S-box proposed in [69].

• Optimizing the area of the tower field AES S-box proposed in [70] and re-designing the
inversion circuit correspondingly.

• Improving the delay of the composite field AES fast S-box in [69].

• The proposed Fast 3 design is currently the fastest and most efficient AES S-box available in
the literature, up to our knowledge.

6.2 Future Work

AES will remain a key security component for a number of sectors like banking and internet
commerce. Several internet protocols, e.g. HTTPS, FTPS, SFTP, WebDAVS, OFTP, and AS2
use AES for security purposes [3]. Also, the lightweight implementation of AES-192 and AES-
256 will be of greater importance in the era of quantum computers, as a larger key size will be
necessary to compensate for the security reduction due to the key search attacks with Grover’s
algorithm [32]. AES-256 is also used in 8 candidates of the NIST Post-quantum Cryptography
(PQC) project [64, 23].

In addition, in 2013, NIST initialized the Lightweight Cryptography (LWC) project [63, 55]
to evaluate and standardize lightweight cryptographic algorithms to be used to secure resource-
constrained devices (e.g. Radio-Frequency IDentification (RFID) tags [43, 48], IoT [35, 42], sen-
sor networks [46], embedded systems [1], health networks, automotive applications, etc.). 32
candidates are selected to continue for Round 2 and the finalists will be announced by the end of

68

CHAPTER 6. SUMMARY AND FUTURE WORK

September 2020. Hardware implementation and benchmarking of the LWC project candidates will
be very beneficial in the evaluation process.

An important research direction is the energy efficiency of cryptographic algorithms used to
secure resource-constrained devices [27]. The security algorithm should guarantee the throughput
requirement of the target application. Also, it should add minimal area, cost, and energy overhead
to the system. Most resource-constrained devices are battery operated or depend on harvesting
power from the environment. As a result, the energy efficiency of the cryptographic algorithm
is of great importance in order to fit security into the energy budget of the constrained device
[6, 4, 9, 10].

Another research direction is the transistor level optimization of AES. By utilizing new low
power custom gates, an optimized full custom CMOS design of AES could be designed for con-
strained applications [2].

In the future, the following developments can be pursued

• Fabricate the S-boxes on chip and compare the actual delay and area values against the
synthesis results from the CAD tool.

• Optimize at the gate/transistor level in ASIC implementations.

• Hardware implementation of a countermeasure against side-channel attacks for the AES S-
box, e.g. threshold implementations [13, 24].

• Design and implementation of a full lightweight AES-128/192/256 encryption/decryption
hardware core.

• Design and implementation of an energy-efficient lightweight block cipher suitable for IoT.

• Hardware implementation and benchmarking of NIST Lightweight Cryptography (LWC)
projects.

69

Bibliography

[1] Shady Agwa, Eslam Yahya, and Yehea Ismail. Power efficient aes core for iot constrained
devices implemented in 130nm cmos. In 2017 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 1–4. IEEE, 2017.

[2] Nabihah Ahmad and SM Rezaul Hasan. Low-power compact composite field aes s-box/inv
s-box design in 65 nm cmos using novel xor gate. Integration, 46(4):333–344, 2013.

[3] Fatih Balli and Subhadeep Banik. Six shades of aes. In International Conference on Cryp-

tology in Africa, pages 311–329. Springer, 2019.

[4] Subhadeep Banik, Andrey Bogdanov, Tiziana Fanni, Carlo Sau, Luigi Raffo, Francesca
Palumbo, and Francesco Regazzoni. Adaptable aes implementation with power-gating sup-
port. In Proceedings of the ACM International Conference on Computing Frontiers, pages
331–334, 2016.

[5] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari,
Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In Inter-

national Conference on the Theory and Application of Cryptology and Information Security,
pages 411–436. Springer, 2015.

[6] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring energy efficiency
of lightweight block ciphers. In International Conference on Selected Areas in Cryptography,
pages 178–194. Springer, 2015.

[7] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-aes: A compact
implementation of the aes encryption/decryption core. In Orr Dunkelman and Somitra Ku-
mar Sanadhya, editors, Progress in Cryptology – INDOCRYPT 2016, pages 173–190, Cham,
2016. Springer International Publishing.

[8] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-aes v 2.0. IACR

Cryptol. ePrint Arch., 2016:1005, 2016.

[9] Subhadeep Banik, Andrey Bogdanov, Francesco Regazzoni, Takanori Isobe, Harunaga Hi-
watari, and Toru Akishita. Round gating for low energy block ciphers. In 2016 IEEE Inter-

national Symposium on Hardware Oriented Security and Trust (HOST), pages 55–60. IEEE,
2016.

[10] Subhadeep Banik, Andrey Bogdanov, Francesco Regazzoni, Takanori Isobe, Harunaga Hi-
watari, and Toru Akishita. Inverse gating for low energy encryption. In 2018 IEEE Interna-

tional Symposium on Hardware Oriented Security and Trust (HOST), pages 173–176. IEEE,
2018.

[11] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest linear pro-
grams. In International Workshop on Security, pages 109–128. Springer, 2019.

70

BIBLIOGRAPHY

[12] Guido Bertoni, Marco Macchetti, Luca Negri, and Pasqualina Fragneto. Power-efficient asic
synthesis of cryptographic sboxes. In Proceedings of the 14th ACM Great Lakes symposium

on VLSI, pages 277–281, 2004.

[13] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. A
more efficient aes threshold implementation. In International Conference on Cryptology in

Africa, pages 267–284. Springer, 2014.

[14] Joan Boyar, Morris Dworkin, Rene Peralta, Meltem Turan, Cagdas
Calik, and Luis Brandao. CMT: Circuit minimization team,
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html, last accessed on: 1st march,
2020.

[15] Joan Boyar, Magnus Find, and René Peralta. Low-depth, low-size circuits for cryptographic
applications. In Boolean Functions and their Applications BFA- The 2nd International Work-

shop on, Os, Hordaland, Norway, July 3-8, 2017, Proceedings, 2017.

[16] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear straight-line program
for computing linear forms. In Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathe-

matical Foundations of Computer Science 2008, 33rd International Symposium, MFCS 2008,

Torun, Poland, August 25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer

Science, pages 168–179. Springer, 2008.

[17] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with appli-
cations to cryptology. Journal of Cryptology, 26(2):280–312, 2013.

[18] Joan Boyar and René Peralta. A new combinational logic minimization technique with ap-
plications to cryptology. In Paola Festa, editor, Experimental Algorithms, 9th International

Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010, Proceedings, volume
6049 of Lecture Notes in Computer Science, pages 178–189. Springer, 2010.

[19] Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-box. In Dimitris
Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, Information Security and Pri-

vacy Research - 27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012,

Heraklion, Crete, Greece, June 4-6, 2012, Proceedings, volume 376 of IFIP Advances in

Information and Communication Technology, pages 287–298. Springer, 2012.

[20] David Canright. A very compact Rijndael S-box. Technical report, Naval Postgraduate
School Technical Report: NPS-MA-05-001, 2005.

[21] David Canright. A very compact S-box for AES. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International Workshop,

Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes

in Computer Science, pages 441–455. Springer, 2005.

[22] David Canright and Dag Arne Osvik. A more compact aes. volume 5867, pages 157–169,
08 2009.

[23] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on post-quantum cryptography, volume 12. US Department
of Commerce, National Institute of Standards and Technology, 2016.

71

BIBLIOGRAPHY

[24] Joan Daemen. Changing of the guards: A simple and efficient method for achieving uni-
formity in threshold sharing. In International Conference on Cryptographic Hardware and

Embedded Systems, pages 137–153. Springer, 2017.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndaels: AES - The Advanced Encryption

Standard. Information Security and Cryptography. Springer, 2002.

[26] S. N. Dhanuskodi, S. Allen, and D. E. Holcomb. Efficient register renaming architectures
for 8-bit aes datapath at 0.55 pj/bit in 16-nm finfet. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, pages 1–14, 2020.

[27] William Diehl, Farnoud Farahmand, Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. Com-
parison of hardware and software implementations of selected lightweight block ciphers. In
2017 27th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE, 2017.

[28] Morris Dworkin. Recommendation for block cipher modes of operation. methods and tech-
niques. Technical report, National Inst of Standards and Technology Gaithersburg MD Com-
puter security Div, 2001.

[29] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a grain of sand. IEE

Proceedings - Information Security, 152:13–20(7), October 2005.

[30] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. Aes implementation on a grain of sand. IEE

Proceedings - Information Security, 152(1):13–20, 2005.

[31] PUB 197 FIPS. Specification for the advanced encryption standard (AES). National Institute
of Standards and Technology, US Department of Commerce„ November 2001.

[32] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of

the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[33] Shay Gueron and Sanu Mathew. Hardware implementation of AES using area-optimal
polynomials for composite-field representation GF((24)2) of GF(28). In Paolo Montuschi,
Michael J. Schulte, Javier Hormigo, Stuart F. Oberman, and Nathalie Revol, editors, 23nd

IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA, USA, July 10-

13, 2016, Proceedings, pages 112–117. IEEE Computer Society, 2016.

[34] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen. Design and implementation
of low-area and low-power aes encryption hardware core. In 9th EUROMICRO Conference

on Digital System Design (DSD’06), pages 577–583, 2006.

[35] Chung-Wen Hung and Wen-Ting Hsu. Power consumption and calculation requirement anal-
ysis of aes for wsn iot. Sensors, 18(6):1675, 2018.

[36] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and computation, 78(3):171–177, 1988.

[37] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-sliding: A generic
technique for bit-serial implementations of SPN-based primitives - applications to AES,
PRESENT and SKINNY. In Wieland Fischer and Naofumi Homma, editors, Cryptographic

Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,

Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer

Science, pages 687–707. Springer, 2017.

72

BIBLIOGRAPHY

[38] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimizing implemen-
tations of lightweight building blocks. IACR Transactions on Symmetric Cryptology, pages
130–168, 2017.

[39] Yong-Sung Jeon, Young-Jin Kim, and Dong-Ho Lee. A compact memory-free architecture
for the AES algorithm using resource sharing methods. Journal of Circuits, Systems, and

Computers, 19(5):1109–1130, 2010.

[40] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm. In Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems, pages 1–17. Springer,
2009.

[41] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. Efficient and high-performance
parallel hardware architectures for the AES-GCM. IEEE Trans. Computers, 61(8):1165–
1178, 2012.

[42] Ho Keun Kim and Myung Hoon Sunwoo. Low power aes using 8-bit and 32-bit datapath
optimization for small internet-of-things (iot). Journal of Signal Processing Systems, 91(11-
12):1283–1289, 2019.

[43] Mooseop Kim, Jaecheol Ryou, Yongje Choi, and Sungik Jun. Low power aes hardware
architecture for radio frequency identification. In International Workshop on Security, pages
353–363. Springer, 2006.

[44] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter linear straight-
line programs for mds matrices. IACR Transactions on Symmetric Cryptology, pages 188–
211, 2017.

[45] P. C. Liu, H. C. Chang, and C. Y. Lee. A 1.69 gb/s area-efficient AES crypto core with com-
pact on-the-fly key expansion unit. In European Solid-State Circuits Conference - ESSCIRC,

Proceedings, pages 404–407, Sept 2009.

[46] Zhenglin Liu, Yonghong Zeng, Xuecheng Zou, Yu Han, and Yicheng Chen. A high-security
and low-power aes s-box full-custom design for wireless sensor network. In 2007 Interna-

tional Conference on Wireless Communications, Networking and Mobile Computing, pages
2499–2502. IEEE, 2007.

[47] Samsung Electronics Co. Ltd. STD90/MDL90 0.35µm CMOS Standard Cell Library for
Pure Logic/MDL Products Databook, 2000, https://www.digchip.com/datasheets/download_
datasheet.php?id=935791&part-number=STD90.

[48] Adam SW Man, Edward S Zhang, Vincent KN Lau, Chi Ying Tsui, and Howard C Luong.
Low power vlsi design for a rfid passive tag baseband system enhanced with an aes cryptog-
raphy engine. In 2007 1st Annual RFID Eurasia, pages 1–6. IEEE, 2007.

[49] Ben Marshall, G Richard Newell, Dan Page, Markku-Juhani O Saarinen, and Claire Wolf.
The design of scalar aes instruction set extensions for risc-v. 2020.

[50] J. L. Massey and J. K. Omura. Computational method and apparatus for finite field arithmetic,
1986. US Patent 4,587,627.

[51] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu, G. Chen, and
R. Krishnamurthy. 340 mv-1.1 v, 289 gbps/w, 2090-gate NanoAES hardware accelerator
with area-optimized encrypt/decrypt GF(24)2 polynomials in 22 nm tri-gate CMOS. IEEE

Journal of Solid-State Circuits, 50(4):1048–1058, 2015.

73

BIBLIOGRAPHY

[52] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K. Hsu, H. Kaul, M. A. An-
ders, and R. K. Krishnamurthy. 53 gbps native GF(24)2 composite-field AES-encrypt/decrypt
accelerator for content-protection in 45 nm high-performance microprocessor. IEEE Journal

of Solid-State Circuits, 46(4):767–776, 2011.

[53] Alexander Maximov. Aes mixcolumn with 92 xor gates. IACR Cryptol. ePrint Arch.,
2019:833, 2019.

[54] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques for smaller and
faster aes sboxes. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 91–125, 2019.

[55] Kerry McKay, Lawrence Bassham, Meltem Sönmez Turan, and Nicky Mouha. Report on
lightweight cryptography. Technical report, National Institute of Standards and Technology,
2016.

[56] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. A systematic evaluation
of compact hardware implementations for the rijndael s-box. In Cryptographers Track at the

RSA Conference, pages 323–333. Springer, 2005.

[57] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing
the limits: A very compact and a threshold implementation of aes. In Kenneth G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, pages 69–88, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[58] Sumio Morioka and Akashi Satoh. An optimized s-box circuit architecture for low power
aes design. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 172–186. Springer, 2002.

[59] Kenta Nekado, Yasuyuki Nogami, and Kengo Iokibe. Very short critical path implementa-
tion of AES with direct logic gates. In Goichiro Hanaoka and Toshihiro Yamauchi, editors,
Advances in Information and Computer Security - 7th International Workshop on Security,

IWSEC 2012, Fukuoka, Japan, November 7-9, 2012, Proceedings, volume 7631 of Lecture

Notes in Computer Science, pages 51–68. Springer, 2012.

[60] Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshitaka Morikawa.
Mixed bases for efficient inversion in F((22)2)2 and conversion matrices of subbytes of AES.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 234–
247. Springer, 2010.

[61] Christof Paar. Efficient VLSI architectures for bit parallel computation in Galios fields. PhD
thesis, University of Duisburg-Essen, Germany, 1994.

[62] Christof Paar and Martin Rosner. Comparison of arithmetic architectures for reed-solomon
decoders in reconfigurable hardware. In Proceedings. The 5th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines Cat. No. 97TB100186), pages 219–225.
IEEE, 1997.

[63] NIST Lightweight Cryptography Project. https://csrc.nist.gov/projects/lightweight-
cryptography, last accessed on: 1st july, 2020.

[64] NIST Post-Quantum Cryptography Project. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography, last accessed on: 1st july, 2020.

74

BIBLIOGRAPHY

[65] Arash Reyhani-Masoleh and M. Anwar Hasan. A new construction of massey-omura parallel
multiplier over GF(2m). IEEE Trans. Computers, 51(5):511–520, 2002.

[66] Arash Reyhani-Masoleh and M. Anwar Hasan. Efficient multiplication beyond optimal nor-
mal bases. IEEE Trans. Computers, 52(4):428–439, 2003.

[67] Arash Reyhani-Masoleh and M. Anwar Hasan. Low complexity bit parallel architectures for
polynomial basis multiplication over GF(2m). IEEE Trans. Computers, 53(8):945–959, 2004.

[68] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New area record for the aes
combined s-box/inverse s-box. In 2018 IEEE 25th Symposium on Computer Arithmetic

(ARITH), pages 145–152. IEEE, 2018.

[69] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. Smashing the implementa-
tion records of aes s-box. IACR Transactions on Cryptographic Hardware and Embedded

Systems, pages 298–336, 2018.

[70] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New low-area designs for the
aes forward, inverse and combined s-boxes. IEEE Transactions on Computers, 2019.

[71] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, and Pankaj
Rohatgi. Efficient Rijndael encryption implementation with composite field arithmetic. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware and

Embedded Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16,

2001, Proceedings, volume 2162 of Lecture Notes in Computer Science, pages 171–184.
Springer, 2001.

[72] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael hard-
ware architecture with S-box optimization. In Colin Boyd, editor, Advances in Cryptology

- ASIACRYPT 2001, 7th International Conference on the Theory and Application of Cryp-

tology and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings,
volume 2248 of Lecture Notes in Computer Science, pages 239–254. Springer, 2001.

[73] Ko Stoffelen. Optimizing s-box implementations for several criteria using sat solvers. In
International Conference on Fast Software Encryption, pages 140–160. Springer, 2016.

[74] Ivan Sutherland, Robert F Sproull, Bob Sproull, and David Harris. Logical effort: designing

fast CMOS circuits. Morgan Kaufmann, 1999.

[75] Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear programs. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):203–230, Nov.
2019.

[76] Stefan Tillich, Martin Feldhofer, and Johann Großschädl. Area, delay, and power charac-
teristics of standard-cell implementations of the aes s-box. In International Workshop on

Embedded Computer Systems, pages 457–466. Springer, 2006.

[77] Kun-Lin Tsai, Fang-Yie Leu, Ilsun You, Shuo-Wen Chang, Shiung-Jie Hu, and Hoonyong
Park. Low-power aes data encryption architecture for a lorawan. IEEE Access, 7:146348–
146357, 2019.

[78] Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Yasuyuki Nogami, and Takafumi Aoki.
Highly efficient GF(28) inversion circuit based on redundant GF arithmetic and its application
to AES design. In Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware

75

BIBLIOGRAPHY

and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,

September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science,
pages 63–80. Springer, 2015.

[79] Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki. A high throughput/gate
AES hardware architecture by compressing encryption and decryption datapaths - toward ef-
ficient cbc-mode implementation. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International Confer-

ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture

Notes in Computer Science, pages 538–558. Springer, 2016.

[80] Rei Ueno, Sumio Morioka, Noriyuki Miura, Kohei Matsuda, Makoto Nagata, Shivam Bhasin,
Yves Mathieu, Tarik Graba, Jean Luc Danger, and Naofumi Homma. High throughput/gate
aes hardware architectures based on datapath compression. IEEE Transactions on Computers,
2019.

[81] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper bounds for
the expected circuit complexity of dense systems of linear equations over gf (2). Information

processing letters, 137:1–5, 2018.

[82] Charles C. Wang, Trieu-Kien Truong, Howard M. Shao, Leslie J. Deutsch, Jim K. Omura,
and Irving S. Reed. VLSI architectures for computing multiplications and inverses in GF(2m).
IEEE Trans. Computers, 34(8):709–717, 1985.

[83] Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems perspective.
Pearson Education India, 2015.

[84] Clifford Wolf. Yosys open synthesis suite.(2016). URL http://www. clifford. at/yosys, 2016.

[85] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An asic implementation
of the AES SBoxes. In Topics in Cryptology — CT-RSA 2002, pages 67–78, 2002.

[86] W. Zhao, Y. Ha, and M. Alioto. Aes architectures for minimum-energy operation and sili-
con demonstration in 65nm with lowest energy per encryption. In 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 2349–2352, 2015.

76

Appendix A

Additional Figures for Chapter 3

77

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

19

20

21

22

23
N

um
be

r o
f X

O
R

2
G

at
es

nu = 1000, Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

M
ax

. D
el

ay

nu = 1000, Generator # 1

(b)

Figure A.1: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 1000, Generator #1.(b) The maximum delay of Tin as a function of η for the case of ν = 1000,
Generator #1.

50 100 150 200 250

Eta

20

21

22

23

24

N
um

be
r o

f X
O

R
2

G
at

es

nu = 1000, Generator # 2

(a)

50 100 150 200 250

Eta

3

4

5

6

7

8

9

10

M
ax

. D
el

ay

nu = 1000, Generator # 2

(b)

Figure A.2: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 1000, Generator #2.(b) The maximum delay of Tin as a function of η for the case of ν = 1000,
Generator #2.

78

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

19

20

21

22

23
N

um
be

r o
f X

O
R

2
G

at
es

nu = 1000, Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
ax

. D
el

ay

nu = 1000, Generator # 3

(b)

Figure A.3: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 1000, Generator #3.(b) The maximum delay of Tin as a function of η for the case of ν = 1000,
Generator #3.

50 100 150 200 250

Eta

19

20

21

22

23

24

N
um

be
r o

f X
O

R
2

G
at

es

nu = 1000, Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

M
ax

. D
el

ay

nu = 1000, Generator # 4

(b)

Figure A.4: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 1000, Generator #4.(b) The maximum delay of Tin as a function of η for the case of ν = 1000,
Generator #4.

79

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

19

20

21

22

23
N

um
be

r o
f X

O
R

2
G

at
es

nu = 0111, Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
ax

. D
el

ay

nu = 0111, Generator # 1

(b)

Figure A.5: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 0111, Generator #1.(b) The maximum delay of Tin as a function of η for the case of ν = 0111,
Generator #1.

50 100 150 200 250

Eta

19

20

21

22

23

N
um

be
r o

f X
O

R
2

G
at

es

nu = 0111, Generator # 2

(a)

50 100 150 200 250

Eta

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

M
ax

. D
el

ay

nu = 0111, Generator # 2

(b)

Figure A.6: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 0111, Generator #2.(b) The maximum delay of Tin as a function of η for the case of ν = 0111,
Generator #2.

80

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

19

20

21

22

23
N

um
be

r o
f X

O
R

2
G

at
es

nu = 0111, Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
ax

. D
el

ay

nu = 0111, Generator # 3

(b)

Figure A.7: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 0111, Generator #3.(b) The maximum delay of Tin as a function of η for the case of ν = 0111,
Generator #3.

50 100 150 200 250

Eta

19

20

21

22

23

24

N
um

be
r o

f X
O

R
2

G
at

es

nu = 0111, Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

M
ax

. D
el

ay

nu = 0111, Generator # 4

(b)

Figure A.8: (a) The number of XOR2 gates required to implement Tin as a function of η for the case
of ν = 0111, Generator #4.(b) The maximum delay of Tin as a function of η for the case of ν = 0111,
Generator #4.

81

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

36

38

40

42

44

46

48

50

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 1000, Generator # 1

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

15

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 1000, Generator # 1

(b)

Figure A.9: (a) The number of XOR2 gates required to implement T′in as a function of η for the case
of ν = 1000, Generator #1.(b) The maximum delay of T′in as a function of η for the case of ν = 1000,
Generator #1.

50 100 150 200 250

Eta

40

42

44

46

48

50

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 1000, Generator # 2

(a)

50 100 150 200 250

Eta

6

7

8

9

10

11

12

13

14

15

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 1000, Generator # 2

(b)

Figure A.10: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 1000, Generator #2.(b) The maximum delay of T′in as a function of η for the case of ν = 1000, Generator
#2.

82

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

38

40

42

44

46

48

50

52

54

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 1000, Generator # 3

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 1000, Generator # 3

(b)

Figure A.11: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 1000, Generator #3.(b) The maximum delay of T′in as a function of η for the case of ν = 1000, Generator
#3.

50 100 150 200 250

Eta

40

42

44

46

48

50

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 1000, Generator # 4

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 1000, Generator # 4

(b)

Figure A.12: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 1000, Generator #4.(b) The maximum delay of T′in as a function of η for the case of ν = 1000, Generator
#4.

83

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

40

42

44

46

48

50

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 0111, Generator # 1

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

15

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 0111, Generator # 1

(b)

Figure A.13: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 0111, Generator #1.(b) The maximum delay of T′in as a function of η for the case of ν = 0111, Generator
#1.

50 100 150 200 250

Eta

42

43

44

45

46

47

48

49

50

51

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 0111, Generator # 2

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

15

M
a

x
D

e
la

y
o

f
T

in
 5

2
x8

nu = 0111, Generator # 2

(b)

Figure A.14: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 0111, Generator #2.(b) The maximum delay of T′in as a function of η for the case of ν = 0111, Generator
#2.

84

APPENDIX A. ADDITIONAL FIGURES FOR CHAPTER 3

50 100 150 200 250

Eta

38

40

42

44

46

48

50

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 0111, Generator # 3

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 0111, Generator # 3

(b)

Figure A.15: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 0111, Generator #3.(b) The maximum delay of T′in as a function of η for the case of ν = 0111, Generator
#3.

50 100 150 200 250

Eta

42

43

44

45

46

47

48

49

50

51

52

N
u

m
b

e
r

o
f

X
O

R
 G

a
te

s
fo

r
T

in
 5

2
x8

nu = 0111, Generator # 4

(a)

50 100 150 200 250

Eta

5

6

7

8

9

10

11

12

13

14

15

M
ax

 D
el

ay
 o

f T
in

 5
2x

8

nu = 0111, Generator # 4

(b)

Figure A.16: (a) The number of XOR2 gates required to implement T′in as a function of η for the case of
ν = 0111, Generator #4.(b) The maximum delay of T′in as a function of η for the case of ν = 0111, Generator
#4.

85

Appendix B

Additional Figures for Chapter 4

86

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0010, N = 01

 Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0010, N = 01

 Generator # 1

(b)

Figure B.1: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #1.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #1.

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0010, N = 01

 Generator # 2

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

13

M
a
x
.
D

e
la

y

nu = 0010, N = 01

 Generator # 2

(b)

Figure B.2: (a)The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #2.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #2.

87

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0010, N = 01

 Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

13

14

M
a
x
.
D

e
la

y

nu = 0010, N = 01

 Generator # 3

(b)

Figure B.3: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #3.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #3.

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0010, N = 01

 Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

13

M
a
x
.
D

e
la

y

nu = 0010, N = 01

 Generator # 4

(b)

Figure B.4: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #4.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [01]}, Generator #4.

88

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0010, N = 10

 Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0010, N = 10

 Generator # 1

(b)

Figure B.5: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #1.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #1.

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0010, N = 10

 Generator # 2

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
a
x
.
D

e
la

y

nu = 0010, N = 10

 Generator # 2

(b)

Figure B.6: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #2.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #2.

89

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

16

17

18

19

20

21

22
N

u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0010, N = 10

 Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

13

14

M
a
x
.
D

e
la

y

nu = 0010, N = 10

 Generator # 3

(b)

Figure B.7: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #3.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #3.

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0010, N = 10

 Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0010, N = 10

 Generator # 4

(b)

Figure B.8: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #4.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0010],N = [10]}, Generator #4.

90

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0111, N = 01

 Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0111, N = 01

 Generator # 1

(b)

Figure B.9: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #1.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #1.

50 100 150 200 250

Eta

17

18

19

20

21

22

23

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0111, N = 01

 Generator # 2

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
a
x
.
D

e
la

y

nu = 0111, N = 01

 Generator # 2

(b)

Figure B.10: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #2.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #2.

91

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0111, N = 01

 Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0111, N = 01

 Generator # 3

(b)

Figure B.11: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #3.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #3.

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0111, N = 01

 Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
a
x
.
D

e
la

y

nu = 0111, N = 01

 Generator # 4

(b)

Figure B.12: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #4.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [01]}, Generator #4.

92

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0111, N = 10

 Generator # 1

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
a
x
.
D

e
la

y

nu = 0111, N = 10

 Generator # 1

(b)

Figure B.13: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #1.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #1.

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0111, N = 10

 Generator # 2

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

13

14

M
a
x
.
D

e
la

y

nu = 0111, N = 10

 Generator # 2

(b)

Figure B.14: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #2.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #2.

93

APPENDIX B. ADDITIONAL FIGURES FOR CHAPTER 4

50 100 150 200 250

Eta

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s
nu = 0111, N = 10

 Generator # 3

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

M
a
x
.
D

e
la

y

nu = 0111, N = 10

 Generator # 3

(b)

Figure B.15: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #3.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #3.

50 100 150 200 250

Eta

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

N
u
m

b
e
r

o
f
X

O
R

2
 G

a
te

s

nu = 0111, N = 10

 Generator # 4

(a)

50 100 150 200 250

Eta

4

5

6

7

8

9

10

11

12

M
a
x
.
D

e
la

y

nu = 0111, N = 10,

 Generator # 4

(b)

Figure B.16: (a) The number of XOR2 gates required to implement Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #4.(b) The maximum delay of Tinnew as a function of η for the case of
{ν = [0111],N = [10]}, Generator #4.

94

Curriculum Vitae

Name: Doaa Ashmawy

Post-Secondary University of Western Ontario
Education and London, ON, Canada
Degrees: 2016 Master of Engineering in ECE

Related Work Graduate Teaching and Research Assistant
Experience: University of Western Ontario

2016-2019

Instructor
Benha University
2010-2013

Publications:

[1] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. Smashing the implementation
records of AES S-box. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 298–336, 2018.

[2] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New area record for the AES
combined S-box / inverse S-box. In 2018 IEEE 25th Symposium on Computer Arithmetic
(ARITH), pages 145–152. IEEE, 2018.

[3] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New low-area designs for the
AES forward, inverse and combined -boxes. IEEE Transactions on Computers, 2019.

95

	Performance Evaluation, Comparison and Improvement of the Hardware Implementations of the Advanced Encryption Standard S-box
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	Introduction
	Advanced Encryption Standard
	What is AES
	Literature Review of AES Hardware Implementations

	AES S-box Algorithm
	Forward AES S-box
	Inverse AES S-box
	Combined Forward/Inverse AES S-box

	Logic Minimization Algorithms
	Motivation and Significance
	Thesis Outline

	Preliminaries
	Reyhani et al. Composite Field GF((24)2) S-box
	Composite Field GF((24)2) Construction
	Inversion over Composite Field GF((24)2)

	Reyhani et al. Tower Field GF(((22)2)2) S-box
	Tower Field GF(((22)2)2) Construction
	Inversion over Tower Field GF(((22)2)2)

	Conclusion

	Implementation Results and Comparisons of Forward, Inverse and Combined AES S-boxes
	Forward, Inverse and Combined AES S-boxes
	Behavioural and Structural VHDL Coding
	Implementation Results and Comparisons of Forward AES S-boxes
	Comparisons of the Space and Time Complexities
	ASIC Synthesis Results and Comparisons

	Implementation Results and Comparisons of Inverse AES S-boxes
	Complexity Analysis of Inverse S-boxes
	ASIC Synthesis Results and Comparisons

	Implementation Results and Comparisons of Combined AES S-boxes
	Complexity Analysis of Combined S-boxes
	ASIC Implementation Results

	Conclusion

	Improved GF((24)2) Forward AES S-box
	Introduction
	Improved Lightweight and Fast AES S-boxes
	Improved Exponentiation
	New Subfield Inverter
	Space and Time Complexity Analyses
	ASIC Synthesis Results and Comparisons

	Additional Transformation Matrices
	Multiplying by a Binary Field Element
	Modified AES S-box Architecture
	Matlab® Results

	Improved Fast AES S-box Architecture
	The Modified Fast S-box, Fast 1
	The Modified Fast S-box, Fast 2
	Complexity Analysis
	Comparisons of the Space and Time Complexities
	Calculating Delay in CMOS Circuits
	ASIC Synthesis Results and Comparison

	Additional Extended Transformation Matrices
	Complexity Analysis
	Comparisons of the Space and Time Complexities
	ASIC Synthesis Results and Comparison

	Conclusion

	Improved GF(((22)2)2) Forward AES S-box
	Introduction
	Architecture of the Improved AES S-box
	Input and Output Mappings of the Improved AES S-box
	Input Mapping of the Improved AES S-box
	Output Mapping of the Improved AES S-box

	Modified Inversion over GF(((22)2)2)
	Multiplication over GF((22)2)
	Squaring with Scaling
	Modified Exponentiation Computation
	Modified Subfield Inversion over GF((22)2)
	Modified Output Multipliers

	Implementation Results and Comparisons
	Complexity Analysis of the Improved AES S-box
	ASIC Implementation Results
	Individual Blocks
	Overall Design

	Conclusion

	Summary and Future Work
	Thesis Summary
	Future Work

	Appendix Additional Figures for Chapter 3
	Appendix Additional Figures for Chapter 4
	Curriculum Vitae

