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Abstract 

Hybrid PET/MRI can non-invasively improve epileptic focus (EF) localization prior to 

surgical resection in drug-resistant epilepsy (DRE), especially when MRI is negative. In this 

thesis, we developed an 18F-fluorodeoxyglucose (FDG) PET-guided diffusion tractography 

(PET/DTI) approach to assess white matter (WM) integrity in MRI-negative DRE and 

evaluated its potential impact on epilepsy surgical planning. To validate the potential of 

PET/MRI, we first evaluated the diagnostic competence of PET/MRI in DRE and found that 

PET/MRI provides similar diagnostic information as PET/CT (current clinical standard). For 

the PET/DTI approach, we used asymmetry index (AI) mapping of FDG-PET to guide WM 

fiber tractography around glucose hypometabolic brain regions (potential EF). Fiber 

tractography was repeated in the contralateral brain region (opposite to EF), which served as 

a control for this study. WM fibers were quantified by calculating the fiber count, mean 

fractional anisotropy (FA), mean fiber length, and mean cross-section of each fiber bundle. 

WM integrity was assessed through fiber visualization and by normalizing ipsilateral fiber 

measurements to contralateral fiber measurements. The added value of PET/DTI in clinical 

decision-making was assessed by an experienced epileptologist. In over 60% of the patient 

cohort (n = 14), AI mapping findings were concordant with clinical reports on seizure-onset 

zone. Mean FA, fiber count, and mean fiber length were decreased in 14/14 (100%), 13/14 

(93%), and 12/14 (86%) patients, respectively. PET/DTI improved diagnostic confidence in 

10/14 (71%) patients and indicated surgical candidacy be reassessed in 3/6 (50%) patients 

who had not undergone surgery. FDG-PET coupled with diffusion tractography can be a 

powerful tool for detecting EF and assessing WM integrity around EF in MRI-negative 

epilepsy. PET/DTI could further enhance clinical decision-making in epilepsy surgery. 

 

Keywords 

PET/MRI, PET/CT, drug-resistant epilepsy, fluorodeoxyglucose, MRI-based attenuation 

correction, standardized uptake value, asymmetry index, diffusion tractography  
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Summary for Lay Audience 

Drug-resistant epilepsy (DRE) is a serious neurological condition affecting approximately 

one in three epilepsy patients. Surgical resection of the seizure-onset zone in the brain can 

alleviate seizure occurrence and improve quality of life. However, about 50% of DRE 

patients continue to have seizures after surgery. Poor surgical outcomes can occur when the 

seizure-onset zone and its relationships with surrounding brain regions are not properly 

characterized. Furthermore, absence of a clear structural lesion in the brain can further 

decrease a patient’s chances of achieving long-term seizure freedom after surgery. Recent 

advances in medical imaging have seen the increased use of MRI and PET to non-invasively 

map out brain structure and function in epilepsy. Specifically, multimodal brain imaging 

combining PET and MRI (hybrid PET/MRI) can improve detection of the seizure-onset zone 

prior to surgical resection and could potentially improve surgical outcomes, especially in 

MRI-negative epilepsy. In this thesis, we developed a hybrid PET/MRI approach combining 

PET and diffusion tractography to non-invasively assess structural integrity around seizure-

onset zones in MRI-negative DRE and then evaluated the potential clinical impact of this 

PET/MRI approach on epilepsy surgical planning. To validate the potential of PET/MRI, we 

first assessed the diagnostic competence of PET/MRI in DRE and found that PET/MRI 

provides similar diagnostic information as PET/CT (current clinical standard). For the 

PET/MRI approach, we used PET to detect seizure foci as brain regions showing decreased 

PET activity and then used diffusion tractography to assess structural integrity around seizure 

foci. The added value of the PET/MRI approach in guiding clinical decision-making was 

evaluated by a senior neurologist. Our PET/MRI approach revealed structural alterations 

around seizure foci and improved diagnostic confidence in the majority of our DRE patient 

cohort. Furthermore, the PET/MRI approach indicated surgical candidacy be reassessed in 

some patients who had not undergone surgery. PET/MRI can be a powerful tool for detecting 

seizure foci and assessing structural integrity around seizure foci in DRE. Our hybrid 

PET/MRI approach could be used to further enhance clinical decision-making in epilepsy 

surgery. 
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Chapter 1!!

1! Introduction to Epilepsy Imaging 

1.1! Background and Motivation 
Epilepsy affects approximately 50 million people worldwide and is a chronic 

neurological disorder characterized by seizures – spontaneous, synchronized neuronal 

activity – arising from pathological changes to brain networks.1,2 Seizures typically 

originate in a brain region called the epileptic focus (EF) and then propagate throughout 

surrounding neural networks.3,4 While the exact underlying physiological mechanisms 

responsible for seizure activity remain unknown5, one potential mechanism for seizure 

propagation may be due to removal of interneuronal inhibition by abnormally arranged 

neural networks around the EF.6 Failure to control seizures in epilepsy has been 

associated with increased societal burden and in some patients, may lead to anxiety, 

depression, and chronic migraines.5  

Epilepsy is usually treated in the clinical setting using either medication, dietary 

restrictions, surgery, or neurostimulation.5 When a patient is first diagnosed with 

epilepsy, anti-epileptic drugs (AEDs) are often administered in an attempt to control 

seizures. Most epilepsy patients achieve full seizure control after being administered 

AEDs, however, approximately 30% of epilepsy patients have drug-resistant epilepsy 

(DRE).3,4,7 DRE is a serious neurological condition that is clinically diagnosed when 

seizures persist after administering at least two adequate trials of AEDs.8 If left untreated, 

DRE can lead to progressive memory decline, psychological impairment, social 

stigmatization, decreased quality of life, and increased risk of sudden death in epilepsy 

(SUDEP).2,5,8  

DRE can be treated by surgically removing the EF which is a viable option for alleviating 

seizure occurrence and improving overall quality of life.9,10 However, only about 50% of 

DRE patients achieve long-term seizure freedom after surgery.11,12 Poor surgical 

outcomes can occur when the EF and its relationships with surrounding neural networks 

are poorly characterized prior to surgical resection.13 Past studies have shown that 
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patients with multifocal epilepsy or epilepsy involving the eloquent cortex are at 

increased risk of post-surgical complications such as visual, speech, motor, or cognitive 

impairments.3,4,8,14 Accurate localization of the EF and proper characterization of 

surrounding neural networks are therefore crucial to improving surgical outcomes and 

ensuring long-term seizure freedom in DRE. 

Before surgery, DRE patients undergo presurgical evaluation to detect the EF and assess 

potential surgical candidacy. Presurgical evaluation protocols typically consist of patient 

history, neuropsychological assessment, and prolonged scalp video-

electroencephalography (VEEG) to record seizure events in the brain.7 The current gold 

standard for localizing the EF is intracranial EEG (IC-EEG), where surgeons place 

electrodes in or around the patient’s scalp to record seizure events15,16 (see Figure 1.1).  

 
Figure 1.1: IC-EEG brain monitoring. Electrodes are placed on the surface of the 
patient’s brain to record seizure events. Image courtesy of Dr. David Steven (Chief/Chair, 
Neurosurgery, Western University). 

 

However, IC-EEG is an invasive procedure that is expensive, time-consuming and carries 

risk of side effects such as hemorrhage, edema, or infection.7,16 Structural brain imaging 
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using magnetic resonance imaging (MRI) has been effective in reducing costs and 

improving patient quality of care by aiding or minimizing IC-EEG use. MRI can identify 

structural lesions (EF) that may be removed by surgical resection if MRI findings are 

concordant with VEEG and IC-EEG.7,9 However, approximately one in four DRE 

patients have an EF that is not visible (non-lesional) and cannot be detected by MRI.17 

Consequently, past studies have shown that patients with no clear lesion on anatomical 

MRI (MRI-negative epilepsy) are likely to have recurrent seizures after surgery.11,12 

Thus, MRI-negative epilepsy has brought on an increasing demand for improved non-

invasive methods for localizing the EF prior to surgical resection.  

Recent advances in neuroimaging have provided alternative, non-invasive ways to 

visualize brain structures in vivo and may have promising applications in epilepsy 

surgical evaluation. In MRI-negative epilepsy, functional brain imaging using 18F-

fluorodeoxyglucose positron emission tomography (FDG-PET) can identify the EF as 

brain areas showing decreased FDG uptake, also known as glucose 

hypometabolism.7,10,13,18 While FDG-PET is now well established in most epilepsy 

surgical centers, utility of PET in epilepsy surgery continues to evolve.7 Recent studies 

have also shown that advanced MRI techniques such as diffusion tensor imaging (DTI) 

can map out white matter fiber pathways in the brain to investigate structural connections 

between the EF and surrounding neural networks.5,13    

Although separate FDG-PET and MRI brain scanning remains the current clinical 

standard-of-care for epilepsy imaging, some DRE patients continue to have seizures after 

surgical treatment especially when MRI is negative or equivocal.10 Separate acquisition 

of PET and MRI, which can be several months apart, can introduce registration bias and 

may lead to inaccurate EF localization responsible for surgical failure.19,20 There is 

emerging evidence that multimodal brain imaging combining PET and MRI may further 

improve sensitivity of EF detection over standalone PET, MRI, or IC-EEG.7 Indeed, 

simultaneous acquisition of PET and MRI using hybrid PET/MRI may shed new insight 

into DRE pathophysiology and could potentially improve surgical outcomes especially in 

MRI-negative epilepsy.20–24 Furthermore, while clinical adoption of hybrid PET/MRI is 
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beginning to take place in some epilepsy surgical centers, the potential utility of 

combined PET and DTI in epilepsy surgical evaluation is still yet to be fully assessed. 

1.2! Positron Emission Tomography 

1.2.1! Glucose Hypometabolism in Epilepsy 

Positron emission tomography (PET) is a functional imaging modality that is now widely 

accepted as clinical standard-of-care in most epilepsy surgical centers. Absence of a clear 

lesion on anatomical MRI is a common indication for PET in DRE.7 While other PET 

tracers have been proposed for epilepsy brain imaging, 18F-fluorodeoxyglucose PET 

(FDG-PET) has become well established as the most sensitive functional imaging 

approach for detecting the EF especially when MRI is negative or equivocal.7,18 In MRI-

negative DRE, interictal FDG-PET can detect the EF as brain regions showing decreased 

FDG uptake (glucose hypometabolism).7,10,13,18 Glucose hypometabolism, which can be 

observed both within the EF and in surrounding neural networks13,18, has been associated 

with spread of epileptic activity25 as well as cognitive impairment.26 Furthermore, 

severity and location of FDG-PET hypometabolism in epilepsy may predict surgical 

outcome.18,27 In temporal lobe epilepsy, extent of FDG-PET hypometabolism within the 

EF has been correlated with long-term seizure freedom after surgery.28,29 Conversely, 

FDG-PET hypometabolism that extends beyond the EF, which can occur in bitemporal 

and extratemporal epilepsies, may lead to poor surgical outcome.27,30,31 While the exact 

mechanisms underlying glucose hypometabolism in epilepsy remain unclear, some 

studies have suggested that decreased synaptic activity due to neuron loss from recurrent 

epileptic insults may be responsible for the metabolic alterations observed in DRE.25,32 

Neuronal damage has been previously observed using histopathological staining33 and 

may be responsible for metabolic abnormalities in and around the EF.25 Interestingly, 

suppression of glucose activity in DRE may also be due to inhibition of afferent signals 

between the EF and surrounding healthy brain tissue as a potential protective mechanism 

against further seizure-associated insult.25,34 Nevertheless, utility of FDG-PET in epilepsy 

is evident and further investigation of metabolic dysfunction, as well as its association 

with neuronal damage, may shed new insight into DRE pathophysiology and could 

potentially improve surgical outcomes, especially in MRI-negative epilepsy. 
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1.2.2! Visual PET Assessment 

Glucose hypometabolic regions of interest (ROIs) are typically identified by visual 

inspection of FDG-PET images. An example of visual PET assessment revealing a 

hypometabolic ROI (potential EF) in the right temporal lobe of an MRI-negative DRE 

patient is provided in Figure 1.2. During epilepsy surgical evaluation, visual FDG-PET 

assessment can guide electrode placement in the brain during IC-EEG as well as alter the 

decision to perform surgery if FDG-PET findings agree with EEG and 

electrophysiological reports.7,28,35 

 
Figure 1.2: Visual FDG-PET assessment shows a clear hypometabolic PET ROI (yellow 
circle), indicative of a potential EF, in the right temporal lobe of an MRI-negative 
epilepsy patient. Image is displayed using the radiological convention. This patient was 
confirmed to have right temporal lobe focal epilepsy, determined based on all available 
diagnostic information. 
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1.2.3! Quantitative PET Analysis 

Although visual FDG-PET assessment is well established as routine clinical practice in 

diagnosis of functional pathologies in epilepsy, visual reads are subject to inter-reader 

variability and some hypometabolic brain regions, especially when subtle, can be missed 

altogether.20,36,37 As such, efforts have been made to develop more objective, quantitative 

approaches to aid visual detection of hypometabolic PET ROIs (potential EF). Early 

attempts to quantify FDG-PET in epilepsy measured metabolic asymmetries using 

manually defined a priori brain regions commonly interrogated in visual reads38,39, 

however, this approach was problematic as it still required manual implementation and 

results varied between studies due to different ROI-defining criteria.37 Fortunately, this 

approach has been abandoned and FDG-PET quantification has migrated towards more 

advanced neuroimaging techniques that use semi-quantitative PET analyses, such as 

statistical parametric mapping (SPM) (Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London) and asymmetry index (AI) mapping40, to automate 

detection of metabolic abnormalities on PET. Several studies have shown that semi-

quantitative PET analysis can produce metabolic findings consistent with visual FDG-

PET assessment and may be a reliable tool for aiding EF localization in DRE.20,36,37,40–43 

Consequently, visual FDG-PET readings are now typically augmented using statistical 

comparison of metabolic values between patients and a healthy control database for 

further improving detection of regional FDG-PET abnormalities in epilepsy. 

1.2.3.1! Statistical Parametric Mapping Analysis 

Statistical parametric mapping (SPM) is a voxel-based analysis approach that statistically 

assesses differences in voxel intensities between two groups of interest (typically a 

patient group and a healthy control group).36,37,41 In epilepsy patients, SPM analysis of 

FDG-PET can be used to detect metabolic brain abnormalities through statistical 

comparison of standardized uptake value (SUV) – activity concentration over time 

normalized by net injected dose of FDG and the patient’s body weight – between 

epilepsy patients and healthy controls, as is illustrated in Figure 1.3.20 This group-wise 

SUV analysis is typically conducted using a user-defined statistical threshold after 

spatially normalizing the patient and control PET data to a standard space and correcting 



7 

 

for global metabolism effects in the brain using an appropriate proportional scaling 

technique.37 However, a limitation is that SPM analysis of FDG-PET assesses group-

level differences in SUV and thus can sometimes fail to detect metabolic abnormalities, 

especially interhemispheric asymmetries, in individual patients.37,43 

 
Figure 1.3: SPM analysis can reveal metabolic abnormalities in the brains of epilepsy 
patients through statistical comparison of FDG-PET images between patients and healthy 
controls. In this MRI-negative temporal lobe epilepsy cohort, FDG-PET hypometabolism 
(bright regions using patients < controls) is seen in the middle temporal gyrus. Colorbar 
represents t-values (p < 0.001 was considered statistically significant). Adapted from 
Shang et al., Am J Neuroradiol (2018).20 Image used with permission from the American 
Society of Neuroradiology. 
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1.2.3.2! Asymmetry Index Mapping 

To overcome the group-wise limitation of SPM analysis, other semi-quantitative 

approaches such as asymmetry index (AI) mapping have been proposed to further 

improve specificity of FDG-PET in DRE localization. AI mapping of FDG-PET is an 

automated data-driven approach that calculates the voxel-wise difference in glucose 

metabolism between hemispheres and can be used to assess metabolic asymmetries in 

individual epilepsy patients by considering the contralateral hemisphere (with respect to 

EF) as an inherent control.20,40,43 An example of the typical AI mapping analysis 

workflow is shown in Figure 1.4.40 After spatially normalizing the patient’s FDG-PET 

data to a standard space, the FDG-PET image is flipped about the sagittal plane and a 

voxel-wise AI map is calculated as the difference between the unflipped and flipped 

images. The AI map is then converted to a z-score AI (ZAI) map, where voxels with 

negative ZAI represent FDG-PET hypometabolism (relative to the contralateral 

homologous brain region).43 Lastly, the ZAI map is thresholded by a user-defined negative 

ZAI value to isolate significant metabolic asymmetries on FDG-PET (potential EF) as 

brain regions showing the largest decrease in ZAI.40,43 Past studies have demonstrated that 

AI mapping can successfully detect seizure-onset zones showing FDG-PET 

hypometabolism (sensitivity: 65-70%) in concordance with clinical reports and 

electrophysiological findings37,42,43, suggesting that AI mapping of FDG-PET could be a 

very sensitive biomarker for epileptogenicity and may be a promising tool for improving 

EF localization in DRE. 
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Figure 1.4: Flowchart of a typical AI mapping analysis pipeline. The PET image 
(BPND) is spatially normalized, smoothed, and then thresholded to account for inter-
subject variability in patient anatomy. The thresholded PET image (VBP) is flipped about 
the sagittal plane to generate an AI map (VAI). Adapted from Didelot et al., J Nucl Med 
(2010).40 
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1.3! Diffusion Tensor Imaging 

1.3.1! Water Diffusion 

In the human body, water diffuses in tissue at the microscopic level. This diffusion is 

commonly referred to as Brownian motion, which is defined as random molecular 

movement due to thermal motion.44 Diffusion tensor imaging (DTI) is an advanced MRI 

method that models diffusion of water molecules in the brain and can be used to 

effectively characterize tissue microstructure in vivo.13,45,46 By non-invasively probing 

tissue microstructure, DTI can infer information about tissue integrity and structural 

organization in the brain.44,47,48 

Water diffusion is not the same in all tissue types. In gray matter (GM) and cerebral 

spinal fluid (CSF), water diffuses approximately the same in all directions (isotropic 

diffusion) at the spatial resolution of our DTI measurements (~2 mm), while in white 

matter (WM), water preferentially diffuses along the fiber bundle pathway (anisotropic 

diffusion).47,49 The anisotropic water diffusion in WM is believed to be due to the 

physical arrangement of axons that permit water movement parallel to the fiber bundle, 

but hinder water movement in the perpendicular direction.49 Loss of anisotropic water 

diffusion in WM can be associated with microstructural tissue breakdown and is 

implicated in many neurological and neurodegenerative disorders, such as epilepsy, 

stroke, multiple sclerosis, and Alzheimer’s Disease.49 

1.3.2! The Diffusion Tensor Model 

DTI can non-invasively assess tissue microstructure in the brain using a diffusion tensor 

– a mathematical construct used to model water diffusion – which can be visualized as a 

3D object and describes the movement of water diffusion at a particular voxel in the brain 

(see Figure 1.5).50 Specifically, the shape of the diffusion tensor is characterized by three 

eigenvalues (#1, #2, #3) and three eigenvectors (v1, v2, v3) representing the magnitude and 

direction of water diffusion along the major axes of the tensor, respectively.44,50 Thus, the 

diffusion tensor can describe physical properties of biological tissue, especially in WM 

pathways in the brain where water diffusion is inherently anisotropic, by providing 
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information about the degree of diffusion anisotropy as well as structural orientation of 

neuronal fibers.49 

Diffusion tensors have important applications in the assessment of WM pathways known 

to be implicated in a variety of neurological disorders, including epilepsy. WM pathways 

in the brain can be characterized using DTI-derived scalar values, which are generated by 

fitting diffusion tensors to the diffusion-weighted imaging (DWI) data.47,51,52 A common 

tensor-derived parameter used to assess WM fiber pathways is fractional anisotropy (FA), 

which measures the degree to which water preferentially diffuses along the length of the 

fiber bundle.44,46,51 Mathematically, FA is defined as: 

 

FA!=!"1
2

 
#(λ1!-!λ2)2!+!(λ1!-!λ3)2 + (λ2!-!λ3)2 

#λ1
2!+ λ2

2!+ λ3
2

, 

(1.1) 

where #1, #2, and #3 are the three eigenvalues in the diffusion tensor.50 The three 

eigenvalues are calculated by measuring the apparent diffusion coefficient from the DWI 

signal along at least six non-collinear directions and then using these diffusion 

measurements to estimate the diffusion tensor ellipsoid.44,47 Because #1 represents 

maximal diffusion in anisotropic tissue, FA measures #1 relative to #2 and #3. Thus, FA is 

a measure of diffusion anisotropy and is the most common DTI measurement used to 

infer information about WM integrity in the brain.44,46,47,49,51,52 Of note, the shape of the 

diffusion tensor indicates how anisotropic the tissue is and what FA value is assigned to 

that voxel. For example, a completely isotropic tensor will be a perfect spheroid with 

equal diffusion vectors pointing in all directions in 3D space (#1 = #2 = #3) and has an FA 

value of 0 (no anisotropy). Conversely, in more anisotropic tissue such as WM, the 

tensor’s shape will elongate in the direction of maximal diffusion and FA will approach 1 

(complete anisotropy).44,50 In epilepsy, FA reduction in WM can reveal widespread 

microstructural alterations associated with epileptic activity and may be an important 

biomarker in DRE.5,53,54  
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Figure 1.5: Isotropic and anisotropic diffusion tensor ellipsoids with the three 
eigenvalues labelled. Adapted from Tromp, The Winnower (2016).50 

 

1.3.3! Diffusion Tractography 

WM fiber pathways in the brain can be reconstructed and visualized using advanced 

diffusion MRI techniques such as diffusion tractography. Diffusion tractography can non-

invasively probe tissue microstructure in vivo and may have promising applications in 

neurosurgical planning of epilepsy.49,55 Previous epilepsy studies have shown that 

diffusion tractography can effectively reconstruct WM fiber pathways around seizure-

onset zones as well as assess structural connectivity between EF and surrounding neural 

networks.56,57 While diffusion tractography has not yet been adopted as a widespread 

clinical tool in epilepsy surgical evaluation, the potential clinical utility of diffusion 

tractography is evident and continues to be explored.  

Diffusion tractography algorithms use information about diffusion orientation from each 

voxel in the DWI data to reconstruct WM fiber pathways in the brain. In general, WM 

fiber tracking typically involves three main steps: seeding, propagation, and 
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termination.49,58–60 Seeding involves placement of seed points along voxels of interest 

with similar diffusion orientation (likely to be connected by a WM fiber pathway) and 

these seed points are then used to initiate neural fiber bundle tracking.49,58 While 

tractography algorithms use different seeding point criteria and can generate varying 

results, some tractography methods have been shown to be superior than others. For 

example, streamlines tractography is a multi-directional 3D tractography approach that 

can reconstruct WM tracts by assigning each fiber orientation as a 3D vector, rather than 

a single seed point used in basic voxel-linking single-directional tractography methods, 

and uses that 3D vector to provide more accurate estimations of WM fiber trajectory.59,60 

An example of the streamlines tractography seeding approach is provided in Figure 1.6.59 

After seeding, the streamlines are then propagated by taking small steps along the fiber 

orientation path using a user-defined stepping distance known as the step size.55,61 As 

demonstrated in Figure 1.6, choice of step size is critical to ensuring accurate 

tractography results.59 Too large of a step size can cause streamlines to deviate and go 

into an adjacent WM region, leading to erroneous reconstruction. Conversely, too small 

of a step size can be computationally inefficient.58–60 Previous diffusion tractography 

studies comparing different fiber tracking parameters in WM fiber pathway 

reconstruction have shown that a step size of 0.5–2 mm is a reasonable choice for 

ensuring accurate streamline propagation.55,62  
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Figure 1.6: Schematic representation of streamlines tractography. Left: Fiber 
tractography is initiated using a user-defined seed point (red arrow) and this seed point is 
used to link voxels with similar diffusion orientation (likely to be connected by a WM 
fiber pathway). Right: Streamlines are propagated along the fiber orientation path at an 
incremental distance called the step size (mm). Too large of a step size (white dots) can 
cause the streamline to deviate off-course, leading to inaccurate fiber reconstruction. 
Adapted from Mori & Tournier (2013).59 Image used with permission from Elsevier. 

 

The last step in WM fiber reconstruction is to terminate the streamlines. Most 

tractography algorithms use a termination criterion to stop streamline propagation such as 

a whole brain WM mask from a co-registered anatomical T1-weighted image, an FA 

threshold (usually FA = 0.1–0.2), or a curvature threshold.55,58 Of note, errors in WM 

tractography can still occur due to a variety of other factors such as noise, partial volume 

effects, and crossing fibers.49,59,60 To mitigate these errors, accuracy of WM fiber 

reconstruction can be further improved by supplying the tractography algorithm with a 

priori brain tissue masks – whole-brain WM, GM, and CSF masks – to minimize false 

positive and false negative tracts.59 
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1.3.4! Diffusion MRI Image Analysis Pipeline 

After DWI are acquired, the data must be preprocessed to correct for noise, motion, and 

other image artifacts that can cause biases in DTI scalar maps and WM fiber 

tractography.48,52,58,63 However, multiple approaches exist for preprocessing DWI data 

and performing diffusion tractography. Indeed, there are numerous DWI preprocessing 

pipelines available that offer different methods of data correction and can lead to varying 

FA and tractography results.64–66 It is therefore crucial to select appropriate preprocessing 

steps to ensure accurate and reliable results. We have put together a robust diffusion MRI 

image analysis pipeline, illustrated in Figure 1.7, that can handle clinical data that are 

susceptible to noise, subject motion, as well as GM and WM pathologies. Our pipeline 

uses a variety of different diffusion MRI software packages64–70 to preprocess the DWI 

data and output an FA map as well as images that can be used to perform WM fiber 

tractography (see section 3.2.3 for further details).  

 
Figure 1.7: Diffusion MRI image analysis pipeline. DWI data were preprocessed using 
a variety of different image processing software packages to generate an FA map and 
images that can be used to visualize WM fiber pathways in the brain using diffusion 
tractography. 

 

To validate the accuracy of this pipeline in reconstructing WM fiber pathways in the 

brain, we empirically evaluated the pipeline using a ground-truth WM phantom from the 
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ISMRM 2015 Tractography Challenge71,72 (see Appendix A). Using the raw DWI as 

input, our pipeline can generate a whole-brain tractogram showing all the WM fiber 

pathways in the brain, as illustrated in a representative epilepsy patient in Figure 1.8. 

 
Figure 1.8: Raw DWI data from an epilepsy patient preprocessed using our in-house 
diffusion MRI image analysis pipeline to generate WM fiber pathways in the brain via 
diffusion tractography. 

 

1.4! Hybrid PET/MRI in Epilepsy Imaging 
The current clinical standard-of-care epilepsy imaging protocol for assessing structural 

and functional abnormalities in the brain, indicative of potential EF, is 1.5T/3T MRI 

followed by PET and computed tomography (PET/CT).22 Separate acquisition of PET 

and MRI, which in some cases may be several months apart, can be problematic and may 

result in misalignment and motion biases, making it difficult to accurately detect the 

seizure-onset zone in the brain.19 These co-registration errors can be obviated using 

hybrid PET/MRI scanners, which allow simultaneous acquisition of PET and MRI, and 

may have promising applications in the clinical management of epilepsy. Furthermore, 
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hybrid PET/MRI may be especially useful in improving EF detection through further 

advancements in PET quantification.73–76 However, concerns over PET bias from MRI-

based attenuation correction approaches have limited clinical adoption of hybrid 

PET/MRI.77,78 A few epilepsy studies have attempted to investigate whether these PET 

biases impact clinical diagnosis20–22,43,79, however, these studies did not compare FDG-

PET/MRI findings against the current clinical standard FDG-PET/CT, IC-EEG, surgical 

outcome and gold-standard histopathology. Thus, the diagnostic equivalency of 

PET/MRI against PET/CT in DRE needs to be further assessed, especially when 

improved brain MRI-based attenuation correction approaches (for example 

RESOLUTE)80 are used for PET reconstruction. 

Another promise PET/MRI holds in clinical management of epilepsy is the co-

localization of PET with advanced functional and structural MRI for brain connectivity 

mapping.56 Specifically, the potential clinical utility of combining PET and DTI for 

epilepsy surgical evaluation is yet to be fully investigated. The integration of FDG-PET 

and diffusion tractography may shed new insight into seizure-related structural 

abnormalities in and around the EF, which could minimize potential risks associated with 

surgical resection and improve patient outcomes, especially in MRI-negative epilepsy or 

non-localizing epilepsy where IC-EEG and MRI findings lack concordance.15,56 

1.5! Thesis Objectives 
The overall goal of this thesis is to develop a non-invasive approach using hybrid 

PET/MRI to improve EF localization, especially in MRI-negative epilepsy, as well as 

assess structural integrity around EF, for improving DRE surgical evaluation. However, 

the effect of quantitative PET biases from MRI-based attenuation correction on clinical 

diagnosis of DRE was first assessed. Thus, our specific research objectives were to: 

1) Assess the diagnostic equivalency and clinical value of PET/MRI against PET/CT 

(current clinical standard for FDG-PET imaging) in DRE. This objective is the focus of 

Chapter 2, which has been adapted from the following manuscript draft: 
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Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Iacobelli M, Steven DA, Lam 

Shin Cheung V, Moran G, Prato FS, Thompson RT, Burneo JG, Anazodo UC, Thiessen 

JD. An evaluation of the diagnostic competence of hybrid PET/MRI in clinical 

management of drug-resistant epilepsy. Submitted to Am J Neuroradiol in June 2020. 

Under Review. Manuscript ID: AJNR-20-00760 

2) Develop a non-invasive approach combining FDG-PET and diffusion tractography 

(PET/DTI) for assessing WM integrity around EF in the brains of MRI-negative DRE 

patients. The potential clinical utility of our PET/DTI approach in epilepsy surgical 

evaluation was also assessed. This objective is the focus of Chapter 3, which has been 

adapted from the following manuscript publication: 

Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Steven DA, Suller-Marti A, 

Lam Shin Cheung V, Khan AR, Prato FS, Burneo JG, Thiessen JD, Anazodo UC. 18F-

FDG PET-guided diffusion tractography reveals white matter abnormalities around the 

epileptic focus in medically refractory epilepsy: implications for epilepsy surgical 

evaluation. European J Hybrid Imaging. 2020;4:10. DOI: https://doi.org/10.1186/s41824-

020-00079-7 

Finally, Chapter 4 provides a summary of the work presented in Chapters 2 and 3, and 

also discusses some future directions for this research. 
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Chapter 2!!

2! An evaluation of the diagnostic competence of hybrid 
PET/MRI in clinical management of drug-resistant 
epilepsy 

This chapter has been adapted from the following manuscript draft: 

Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Iacobelli M, Steven DA, Lam 

Shin Cheung V, Moran G, Prato FS, Thompson RT, Burneo JG, Anazodo UC, Thiessen 

JD. An evaluation of the diagnostic competence of hybrid PET/MRI in clinical 

management of drug-resistant epilepsy. Submitted to Am J Neuroradiol in June 2020. 

Under Review. Manuscript ID: AJNR-20-00760 

2.1! Introduction 
Approximately one in three epilepsy patients are diagnosed with drug-resistant epilepsy 

(DRE) – seizures uncontrolled with anti-epileptic drugs – and may be considered for 

surgical resection using an extensive surgical evaluation protocol, which includes 

prolonged video-electroencephalography (VEEG) and MRI, to localize the seizure-onset 

zone (SOZ).1,2 Absence of a clear lesion on MRI in about 25% of DRE patients is 

common.3,4 The lack of a structural lesion significantly lowers a patient’s chances of 

achieving long-term seizure freedom after surgery.5,6 In such cases, functional imaging 

such as FDG-PET can be used to improve SOZ detection. Specifically, interictal FDG-

PET can indirectly locate the SOZ as brain regions showing decreased FDG uptake and 

has been shown to aid detection of SOZ when MRI is negative or equivocal.1,7–9 FDG-

PET can resolve causative epileptic foci when multiple structural lesions are seen on 

MRI10, as well as guide electrode placement in the brain during intracranial EEG (IC-

EEG) monitoring.7  

Hybrid PET/MRI, the simultaneous acquisition of PET and MRI, has promising 

applications in the clinical management of epilepsy.11,12 When PET is simultaneously 

combined with MRI, the accuracy of localizing the SOZ is significantly improved7,10,13–15 

and positive surgical outcomes can increase by up to 23%.7 Salamon et al. (2008) 
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reported that in patients with focal cortical dysplasias, a common cause for apparently 

MRI-negative epilepsy, co-registration of PET and MRI enhances lesion detection and 

reduces the use of IC-EEG.13 What is more important is the promise PET/MRI holds in 

further enhancement of PET quantification. MRI approaches for motion16 and partial 

volume correction of PET17 show significant PET contrast enhancements which translate 

to improvements in lesion localization and lateralization. Anatomical MRI-guided 

approaches for non-invasive PET quantification may negate the need for standardized 

uptake value (SUV) and move clinical PET towards parametric lesion characterization 

and kinetic analysis of features hidden in SUV.18,19 These improvements in PET 

combined with advanced multi-parametric MRI can revolutionize clinical management of 

epilepsy.20   

Despite the potential of hybrid PET/MRI, there have been concerns about its reliance on 

MRI-based attenuation correction (MRAC) approaches, which have been shown to 

produce biases in quantitative PET compared to traditional CT-based attenuation 

correction (CTAC), particularly in the temporal and posterior aspects of the brain – areas 

of the brain commonly implicated in DRE – prone to tissue misclassifications and high 

inter-subject variability in bone density.21,22 However, few epilepsy studies have 

investigated whether these biases have any effect on the diagnostic information provided 

by PET/MRI relative to PET/CT. Previous reports have provided some preliminary 

evidence that MRAC biases do not seem to affect the diagnostic accuracy of hybrid 

PET/MRI in epilepsy23,24, but these studies lacked validation of PET/MRI and PET/CT 

findings against gold standard post-surgical outcomes, such as histopathology. 

Furthermore, new segmentation-based MRAC methods (such as RESOLUTE25) that aim 

to improve bone tissue modelling especially around the base of the skull – a major 

challenge of MRAC – have been shown to reduce MRAC PET biases in the human 

brain.26 In this study, we evaluated the diagnostic equivalency and clinical value of 

PET/MRI for epilepsy imaging against PET/CT, the current clinical standard for FDG-

PET imaging. SUVs and z-scores (number of standard deviations from the population 

mean) were compared between PET/MRI and PET/CT to estimate regional MRAC bias, 

particularly in brain regions often implicated in DRE. Diagnostic accuracy and sensitivity 

of PET/MRI and PET/CT for SOZ detection were also compared using established 
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reference standards (clinical hypothesis and histopathology, respectively) to assess the 

potential clinical utility of hybrid PET/MRI in epilepsy surgical evaluation. 

 

2.2! Materials and Methods 

2.2.1! Patients 

This retrospective study initially consisted of 23 DRE patients recruited from the London 

Health Sciences Centre epilepsy monitoring unit. Data from two patients were excluded 

because of retrospective reconstruction failure of the FDG-PET data. Data from three 

additional patients acquired after the scanner software upgrade were also excluded 

because of MRAC compatibility issues. Thus, this study had a final sample size of 18 

DRE patients (9 females, mean age = 37 ± 13 years). Presurgical evaluation included 

patient history, physical examination, neuropsychological assessment, scalp VEEG, 1.5T 

MRI, and PET/CT of the brain to localize the SOZ. A subset of the patients (n=10) 

underwent surgical resection to remove the SOZ based on the clinical hypothesis, 

determined through multi-disciplinary meetings at epilepsy surgical rounds. Surgical 

outcome was assessed by evaluating degree of seizure freedom using the Engel 

classification27 after a postoperative follow-up period of at least one-year. Patient 

demographics, clinical profile, and surgical outcome are provided in Table 2.1. All 

patients provided written informed consent and the study was approved by the University 

Research Ethics Board. 
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Table 2.1: Study patient demographics and surgical outcomes 
Patient 

# 
Sex Age 

(yr) 
Epilepsy 

Duration (yr) 
Seizure 

Frequency 
Clinical Hypothesis Surgery 

Performed 
[Engel*] 

Histopathology 

1 M 32 2 1–2/day R temp Y [IIIA] Gliosis 
2 M 52 48 – L temp-front N NA 
3 M 29 13 4/week L front N NA 
4 F 18 4 1/month R front Y [IA] GGM WHO I 
5 M 60 19 6/year L temp-front N NA 
6 F 28 1 Unpredictable R temp Y [IIIA] Gliosis 
7 M 53 39 Unpredictable L temp N NA 
8 M 29 6 2–3/month L temp-front Y [IA] Gliosis 
9 F 32 7 – L temp N NA 
10 F 36 21 1/week R front Y [IIIA] FCD Ib 
11 F 45 10 5–7/month L temp Y [IA] HS 
12 M 23 2 1–2/month R temp Y [IV] Gliosis 
13 F 26 9 2–3/month R temp-front Y [IA] Gliosis 
14 M 23 17 3/month L temp Y [IA] Gliosis 
15 F 58 37 – L temp N NA 
16 F 38 31 – R temp N NA 
17 M 55 1 – R temp Y [IA] Unremarkablea 
18 F 33 12 1/week L temp N NA 

Note. Modified from a prior study33, where the sample size has now been increased from n=14 to n=18. 
Abbreviations: –, missing data; F, female; FCD, focal cortical dysplasia; front, frontal lobe; GGM, ganglioglioma; HS, hippocampal 
sclerosis; L, left; M, male; N, no; NA, not applicable; R, right; temp, temporal lobe; temp-front, temporal-frontal lobe; WHO, World 
Health Organization grade; Y, yes. 
*Surgical outcome was assessed one-year following surgery. 
aNo specific structural changes that could explain the etiopathogenesis of patient’s epilepsy.  

 

2.2.2! Data Acquisition 

The 18 DRE patients, who had a prior clinical 1.5T brain MRI scan using an epilepsy 

protocol and had been referred for PET/CT, were scanned in a 3T hybrid PET/MRI 

(Biograph mMR, Siemens Healthineers, Erlangen, Germany) immediately after clinical 

PET/CT (Discovery VCT, GE Healthcare, Waukesha, WI) imaging. PET/MRI was 

acquired ~40 min after intravenous bolus injection of 190 ± 16 MBq of 18F-FDG and 

patients had a fasting blood glucose of 4.3 ± 0.6 mmol/L. Structural MRI was acquired 

during a 45 min list-mode PET imaging session and included; high resolution T1-

weighted MRI (1 mm3 isotropic voxels) acquired using a 3D magnetization-prepared 

rapid gradient-echo sequence (MPRAGE), 3D T2-weighted FLAIR (1 mm3 isotropic 

voxels) and the vendor-provided ultrashort echo time sequence for MRAC. 

In order to compare PET images between PET/MRI and PET/CT negating potential 

scanner biases, we reconstructed only PET images from the PET/MRI. PET images from 

PET/MRI were corrected for scatter and decay while attenuation corrections were 

performed using the RESOLUTE approach25 to generate PETMRAC images and using 
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CTAC to generate PETCTAC images. Each patient’s CT images were first aligned and 

transformed to the RESOLUTE MRAC maps using the expert automated registration 

module in 3D Slicer28 (https://www.slicer.org/; Version 4.8), with custom combination of 

6-parameter rigid and 12-parameter affine registration and normalized mutual 

information as objective function. The patient bed and head holder were removed from 

the CT images using a head mask generated from the RESOLUTE MRAC map. Volume 

compensation was added from the RESOLUTE MRAC images to the CT slices in the 

neck to account for the smaller CT field-of-view. CTAC maps were generated by 

converting from CT Hounsfield units to linear attenuation coefficients for 511 keV 

positron annihilation photons using the bilinear scaling approach.29 The 45-minute list-

mode PET data were reconstructed to one image volume (344 x 344 x 127 matrix) for 

each attenuation correction type using Siemens e7 tools and an iterative algorithm 

(ordered subset expectation maximization with point-spread function model; 3 iterations, 

21 subsets, 3D Gaussian filter with a full-width at half-maximum of 2 mm, 2.09 x 2.09 x 

2.03 mm3 voxel size, and zoom factor of 2.5). 

2.2.3! Qualitative Image Analysis 

In order to assess the diagnostic competence of PET/MRI compared to PET/CT (current 

clinical standard), PETMRAC, PETCTAC, 3T T1-weighted, and 3T T2-weighted images of 

the 18 DRE patients were read by two neuroradiologists with over five and eight years of 

clinical imaging experience, respectively. PETMRAC and PETCTAC were also read by a 

nuclear medicine physician with over five years of clinical PET reading experience. The 

three readers were aware of all clinical information while visually assessing patient FDG-

PET and MRI images. Images were visually inspected for quality and assessed for 

evidence of brain abnormalities using syngo.via MI Neurology (Siemens Healthcare, 

Erlangen, Germany). Rating scales were used to compare image quality, presence of 

image artifacts, and extent of regional FDG-PET abnormalities on PETMRAC and PETCTAC 

images. Image quality was assessed based on image smoothness, noise, resolution, 

sharpness of contours and contrast-to-noise using the following rating scheme: 4 = 

excellent; 3 = good; 2 = acceptable; and 1 = poor. Similarly, presence of image artifacts 

was assigned to one of three categories: 3 = none; 2 = slight; or 1 = considerable. Lastly, 
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extent of regional abnormalities on PETMRAC and PETCTAC was categorized using a 

standard 4-point rating scale: 4 = normal; 3 = mildly decreased; 2 = moderately 

decreased; and 1 = severely decreased.30 Diagnostic accuracy of PETMRAC and PETCTAC 

for detecting the SOZ in the brain was qualitatively evaluated through comparison to a 

reference standard. For this study, the reference standard was the clinical hypothesis 

which was determined based on all available diagnostic information through 

multidisciplinary meetings at epilepsy surgical rounds. Additionally, sensitivity of 

PETMRAC and PETCTAC for SOZ localization was also assessed based on ground-truth 

histopathological findings in DRE patients who underwent surgery (n=10). 

2.2.4! Region-Based Quantitative Assessment of PETMRAC and 
PETCTAC 

We assessed quantitative PETMRAC bias and its potential impact on epilepsy diagnosis by 

comparing regional SUVs and z-scores between PETMRAC and PETCTAC using syngo.via 

MI Neurology software with cerebellar normalization. MI Neurology is used in routine 

clinical assessment to augment visual PET readings and quantify brain pathologies by 

comparing individual patient PET scans against an age-appropriate normal database 

(Scenium VD20).31 Mean SUVs and z-scores (Zdb) were compared between PETMRAC 

and PETCTAC in thirty-six specific a priori brain regions often implicated in DRE.  

To further quantify the agreement between PET/MRI and PET/CT, we used asymmetry 

index (AI) mapping32, an automated data-driven approach, to non-invasively detect 

hypometabolic brain regions (potential SOZ) and compared AI maps between PETMRAC 

and PETCTAC. AI maps were generated as previously described.33 Mean and minimum z-

score AI (ZAI) values were calculated in hypometabolic PET ROIs and compared 

between PETMRAC and PETCTAC. The degree of overlap between PETMRAC and PETCTAC 

ZAI ROIs was also assessed using the Dice similarity coefficient. Diagnostic accuracy and 

sensitivity of PETMRAC and PETCTAC using AI mapping for SOZ detection were 

determined based on the reference standard (clinical hypothesis) and histopathological 

findings, respectively. All data analyses were conducted with knowledge of patient 

clinical reports, diagnostic information, and post-surgical outcomes. 
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2.2.5! Statistical Analysis 

For qualitative evaluation of PETMRAC and PETCTAC images, we assessed inter-reader 

agreement between the three clinical readers using Randolph’s free-marginal multirater 

kappa test (http://justusrandolph.net/kappa/), where a value $ 0.70 indicates adequate 

agreement. For quantitative FDG-PET assessment, we used Pearson product-moment 

analysis to determine the correlation in SUV as well as Zdb across all brain regions 

between PETMRAC and PETCTAC. We used Bland-Altman analysis to assess brain SUV 

and Zdb bias between modalities. Additionally, we used the two-sample t-test to compare 

regional mean SUV between PETMRAC and PETCTAC. For all analyses, p < 0.05 

(uncorrected) was considered statistically significant. 

2.3! Results 
Visual assessment of PETMRAC and PETCTAC revealed similar SUVMRAC and SUVCTAC 

images in all 18 DRE patients, as illustrated in a representative patient (patient #2) in 

Figure 2.1. Interestingly, in this patient, although visual readings were comparable 

between modalities, the PETMRAC Zdb images were slightly exaggerated relative to the 

PETCTAC (Figure 2.1B). However, all three readers reached the same clinical outcome on 

PETMRAC and PETCTAC. In all 18 patients, inter-reader agreement for visual assessment 

was similar between PETMRAC and PETCTAC (overall agreement = 78% and 81%, 

respectively; kappa = 0.70 and 0.75, respectively). Compared to 1.5T MRI, 3T MRI 

revealed 50% more structural lesions. Positive lesions were identified in 5/18 (28%) 

patients on 1.5T MRI and 12/18 (67%) patients on 3T MRI. 
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Figure 2.1: Comparison of visual PET assessment between PETMRAC and PETCTAC in an 
MRI-negative epilepsy patient (patient #2). A) SUV images are well matched between 
PETMRAC and PETCTAC. B) Z-score maps show exaggerated regional hypometabolism 
(especially in the left temporal lobe) in PETMRAC. C) Slices of percent difference SUV 
(!SUV) map show low quantitative bias between PETMRAC and PETCTAC. 

   

Quantitative PET analysis revealed a strong correlation in mean SUV (r = 0.99, p < 

0.001) and mean Zdb (r = 0.92, p < 0.001) between modalities across all brain regions in 

the 18 DRE patients with low SUV and Zdb biases (0.35 ± 0.30 and -0.05 ± 0.64 

respectively), suggesting PETMRAC provided similar metabolic information as PETCTAC 

(Figure 2.2). Regional mean SUV was well matched between PETMRAC and PETCTAC (p 

> 0.05). Similarly, strong correlations in mean SUV and Zdb were also observed in 

specific brain regions included in visual clinical readings (Table 2.2). In these brain 

regions, overall inter-reader agreement, kappa values, mean SUV and mean Zdb were all 

comparable between PETMRAC and PETCTAC. 
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Figure 2.2: Association between PETMRAC and PETCTAC across all brain regions in 18 
DRE patients. A) Regression plots show a tight correlation in mean SUV (r = 0.99, p < 
0.001) and mean Zdb (r = 0.92, p < 0.001) between modalities. B) Bland-Altman plots 
reveal close agreement in SUV (bias: -0.23 to 0.93) and Zdb (bias: -1.31 to 1.21) between 
PETMRAC and PETCTAC. 
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Table 2.2: Qualitative and quantitative regional assessments of diagnostic 
competency between PETMRAC and PETCTAC 

Region PET AC Pearson r 
(SUV) 

Pearson r 
(Zdb) 

Mean SUV 
(g/mL) 

Mean Zdb Inter-reader 
agreement (%) 

Kappa 

Frontal MRAC 
CTAC 

0.99 0.91 8.08 ± 2.17 
8.43 ± 2.23 

-1.10 ± 1.08 
-1.20 ± 1.12 

81 
85 

0.75 
0.80 

Temporal MRAC 
CTAC 

0.99 0.96 7.95 ± 2.08 
8.34 ± 2.15 

-0.85 ± 1.49 
-0.83 ± 1.53 

56 
56 

0.41 
0.41 

Parietal MRAC 
CTAC 

0.99 0.97 8.33 ± 2.25 
8.69 ± 2.32 

-0.55 ± 1.33 
-0.68 ± 1.28 

88 
92 

0.84 
0.90 

Hippocampus MRAC 
CTAC 

0.99 0.95 5.67 ± 1.57 
5.85 ± 1.60 

-0.59 ± 1.67 
-0.83 ± 1.76 

64 
69 

0.52 
0.58 

Occipital MRAC 
CTAC 

0.99 0.97 8.71 ± 2.32 
9.09 ± 2.40 

0.96 ± 1.59 
0.83 ± 1.52 

94 
98 

0.92 
0.97 

Cerebellum MRAC 
CTAC 

0.99 0.84 6.52 ± 1.75 
6.96 ± 1.86 

-2.18 ± 1.91 
-1.60 ± 1.95 

82 
86 

0.76 
0.82 

Note. SUV and Z-score values are reported as mean ± standard deviation. 

 

In thirty-six a priori brain regions commonly implicated in DRE, mean SUV and Zdb 

values were similar between PETMRAC and PETCTAC (Figure 2.3). Most notably, regional 

MRAC SUV and Zdb biases were low (<5% and <0.5, respectively) in all a priori brain 

regions, except for inferior aspects of the brain (Figure 2.4). 
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Figure 2.3: Mean SUV and Zdb values (n=18) in thirty-six a priori brain regions often 
interrogated in DRE. MRAC and CTAC produce similar mean SUV, Zdb and in most 
cases matched outliers (black dots) across all brain regions (p > 0.05). 
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Figure 2.4: Group percent difference in SUV (left) and absolute difference in Zdb (right) 
between PETMRAC and PETCTAC in thirty-six a priori brain regions often interrogated in 
DRE. Error bars indicate standard deviation. Mean MRAC SUV and Zdb biases across all 
thirty-six a priori brain regions were -4.02 ± 2.03% and 0.35 ± 0.27, respectively. Most 
brain regions have <5% SUVMRAC bias or <0.5 Zdb-MRAC bias except regions in lateral 
aspects at the base of the skull (denoted with an *). Abbreviations: cb, cerebellum; front, 
frontal lobe; fg, fusiform gyrus; gr, gyrus rectus; Hg, Heschl’s gyrus; hipp, hippocampus; 
itg, inferior temporal gyrus; ins, insula; mtl, mesial temporal lobe; mtg, middle temporal 
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gyrus; occ, occipital lobe; phg, parahippocampal gyrus; par, parietal lobe; stg, superior 
temporal gyrus; temp, temporal lobe; tp:mtg, temporal pole: middle temporal gyrus; 
tp:stg, temporal pole: superior temporal gyrus; thal, thalamus. 

 

A summary of the qualitative and quantitative findings comparing the diagnostic 

competency of PETMRAC and PETCTAC are provided in Table 2.3. Image quality, presence 

of image artifacts, visual PET assessment, and diagnostic accuracy all showed good 

agreement and were comparable between modalities. In the ten patients who underwent 

surgery, sensitivity of both PETMRAC and PETCTAC in detecting the SOZ was 83% (visual) 

and 70% (AI). In all 18 patients, ZAI maps had high similarity between modalities (mean 

Dice coefficient = 0.88 ± 0.08), as illustrated in a representative patient (patient #11) in 

Figure 2.5. 
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Table 2.3: Qualitative and quantitative assessments of diagnostic competency 
between modalities 
 PETMRAC PETCTAC 
Diagnostic accuracy (visual) 87% 85% 
Diagnostic accuracy (AI) 78% 78% 
Sensitivity (visual; n=10) 83% 83% 
Sensitivity (AI; n=10) 70% 70% 
Image quality agreement (kappa) 92% (0.89) 92% (0.90) 
Image artifact agreement (kappa) 83% (0.75) 88% (0.82) 
Visual PET agreement (kappa) 78% (0.70) 81% (0.75) 
Mean ZAI -2.54 ± 0.41 -2.56 ± 0.42 
Minimum ZAI -4.40 ± 1.22 -4.38 ± 1.21 
Dice coefficient (AI) = 0.88 ± 0.08   
Note. Visual PET agreement is the average concordance in visual PET readings across all 
brain regions between the three clinical readers. Visual PET readings were augmented 
with quantitative PET (Zdb). Mean and minimum ZAI values are reported as mean ± 
standard deviation. 

 

 
Figure 2.5: Visual assessment reveals similar A) attenuation correction, B) SUV, C) Zdb 
and D) ZAI maps (L < R) between PETMRAC and PETCTAC in one DRE patient (patient 
#11). 
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2.4! Discussion 
This study assessed the potential clinical value of hybrid PET/MRI in epilepsy imaging 

for DRE surgical evaluation by first evaluating the diagnostic equivalency of qualitative 

and quantitative PET/MRI against the clinical standard PET/CT and post-surgical 

outcomes. Visual assessments of PET/MRI and PET/CT were similar and yielded 

comparable diagnostic outcome in our DRE patient cohort. Likewise, the quantitative 

bias between PETMRAC and PETCTAC was low and of no practical significance.  

Other studies have attempted to evaluate the clinical value of hybrid PET/MRI in 

DRE.11,12,23,34,35 For example, Shang et al. (2018) assessed concordance between ASL-

MRI and FDG-PET in MRI-negative epilepsy, but did not compare metabolic findings to 

the clinical standard PET/CT.12 Shin et al. (2015) aimed to evaluate the potential added 

value of 3T hybrid PET/MRI in localizing the epileptic focus in DRE compared to 

standalone 1.5T MRI and PET/CT, however, PET/CT was acquired in only 40% of 

patients and use of PET/MRI was not evaluated against IC-EEG and post-surgical 

outcomes.35 Similarly, other studies such as Boscolo-Galazzo et al. (2016), Ding et al. 

(2014) and Paldino et al. (2017) that attempted to assess concordance between PET/MRI 

and PET/CT findings in DRE also lacked validation against post-surgical outcomes, most 

notably gold-standard histopathology.11,23,34 Thus, our study, by comparing PET findings 

to post-surgical and histopathology outcomes, appears to be the first to comprehensively 

demonstrate the potential clinical utility of hybrid PET/MRI in epilepsy imaging using a 

recently optimized MRAC approach. 

The advantages of hybrid PET/MRI in epilepsy extend beyond co-registration and co-

interpretation of PET and structural MRI to co-localization of PET with advanced 

functional MRI and structural connectivity techniques such as diffusion tractography 

imaging.33 Recently, several groups have already shown promising first results when 

assessing patients with epilepsy using simultaneous PET/MRI.11,34,35 These studies 

focused on localization of SOZ using conventional structural MRI and qualitative visual 

FDG-PET assessments. While it is not yet fully known if combined quantitative PET and 

MRI can provide higher rates of SOZ localization compared to qualitative co-

interpretation of PET and MRI, one study has shown that quantitative PET can improve 
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confidence of a clinical reader’s visual assessment of PET.11 As demonstrated here, 

although quantitative PET/MRI using an existing normal PET/CT database to augment 

visual assessments can be limited, these limitations may be compensated for using other 

semi-quantitative approaches, such as AI mapping when a normal database is not 

available or suitable, for example in pediatrics.11,32 Because AI mapping compares 

glucose metabolism between hemispheres within individual patients, it may be less 

sensitive to the attenuation correction approach and could be a promising tool for 

assessing PET/MRI abnormalities in epilepsy, especially if comparison of AI values 

between patients and healthy controls are used. 

Although we found that regional mean SUVs were well matched across brain regions, 

biases in mean SUV from PET/MRI of up to 10% can occur in brain regions at the base 

of the skull where there is greater variability in bone densities and higher proportion of 

mixed tissue signals such as the inferior temporal gyrus, temporal pole, and cerebellum. 

This SUV underestimation is most likely related to inadequate tissue classification in 

MRAC approaches, a challenge for MRI, given that bone and air in sinuses both appear 

black on MRI and can be challenging to distinguish. While these MRAC errors further 

bias quantitative PET and could limit the clinical adoption of hybrid PET/MRI for 

epilepsy imaging, we have demonstrated in our study the diagnostic equivalency of 

PET/MRI to PET/CT, suggesting that these MRAC biases do not seem to affect the 

overall clinical impression provided by PET/MRI, a finding that is consistent with past 

studies.23,24 Nevertheless, if PET/MRI in conjunction with quantitative PET evaluation 

(such as syngo.via MI Neurology) is to be used for improving SOZ localization, then 

further improvements in MRAC as well as consideration of practical issues related to 

PET/MRI scanning such as inaccurate compensation for head pads and the use of 

headphones36, are still required before the use of these novel technologies can be 

recommended as clinical standard of care. It is expected that improvements in brain tissue 

classification and bone modelling from novel machine learning approaches37 will further 

improve PET/MRI performance at the base of the skull, potentially reducing the MRAC 

biases observed in this study.  
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Although we have demonstrated the diagnostic equivalency of PET/MRI to PET/CT in 

this study, the potential added value of hybrid PET/MRI in epilepsy imaging above and 

beyond the current clinical standard – PET/CT and 1.5T/3T MRI – is still yet to be fully 

investigated. It is apparent that 3T MRI provides a clear advantage over 1.5T MRI for 

anatomical localization of DRE as demonstrated here and reported elsewhere.35 However, 

the added value of simultaneous acquisition of PET/3T MRI in providing 

pharmacokinetic modeling of PET38, as well as novel iterative partial volume and motion 

correction algorithms that use MRI to improve PET resolution39 have not been explored 

in DRE, particularly in MRI-negative epilepsy. Recently, Poirier et al. (2020) used AI 

mapping of FDG-PET to guide diffusion tractography of white matter fiber pathways 

around hypometabolic brain regions, revealing macrostructural breakdown around SOZ 

in MRI-negative DRE.33 While the clinical significance of hybrid PET/MRI in epilepsy 

surgical evaluation is still yet to be fully characterized, the potential for hybrid PET/MRI 

is evident. 

 

2.5! Conclusions 
Although PET/MRI has been advocated as standard of care for epilepsy imaging, the 

performance of PET/MRI compared to PET/CT or its clinical value for epilepsy imaging 

has not been fully established. This study demonstrated the diagnostic equivalency and 

clinical value of hybrid PET/MRI in epilepsy imaging against the current clinical 

standard of care. In general, PET/MRI with optimal MRAC can yield similar diagnostic 

performance as PET/CT. Further improvements in MRAC as well as novel approaches 

using fully quantitative PET analysis are likely necessary to evaluate the potential added 

value of hybrid PET/MRI in epilepsy before widespread clinical adoption of hybrid 

PET/MRI in DRE surgical evaluation can take place. 
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Chapter 3!!

3! 18F-FDG PET-guided diffusion tractography reveals white 
matter abnormalities around the epileptic focus: 
implications for epilepsy surgical evaluation 

This chapter has been adapted from the following manuscript publication: 

Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Steven DA, Suller-Marti A, 

Lam Shin Cheung V, Khan AR, Prato FS, Burneo JG, Thiessen JD, Anazodo UC. 18F-

FDG PET-guided diffusion tractography reveals white matter abnormalities around the 

epileptic focus in medically refractory epilepsy: implications for epilepsy surgical 

evaluation. European J Hybrid Imaging. 2020;4:10. DOI: https://doi.org/10.1186/s41824-

020-00079-7 

3.1! Introduction 
Medically refractory epilepsy (MRE) affects approximately 30% of epilepsy patients and 

is defined as a chronic neurological disorder where seizures persist despite administration 

of anti-epileptic drugs (AEDs) (Helmstaedter et al. 2003; Richardson et al. 2004; Jiang et 

al. 2017). In some MRE patients, surgical resection of the epileptic focus (EF) – the brain 

region responsible for seizures – can alleviate seizure occurrence and improve overall 

quality of life (Richardson et al. 2004; Caciagli et al. 2014; Cahill et al. 2019). Positive 

surgical outcomes are highly dependent on accurate identification of the EF to ensure the 

epileptic region is safely removed without harming surrounding healthy brain tissue 

(Bettus et al. 2009). The current gold standard for identifying the EF is intracranial 

electroencephalography (IC-EEG), where either subdural or depth electrodes are used to 

directly locate abnormal brain activity (suspected EF) before surgical resection is 

performed (Knowlton 2006; Blount et al. 2008). However, about 50% of MRE patients 

continue to have seizures after surgery (Téllez-Zenteno et al. 2005; de Tisi et al. 2011). 

Surgery can fail to prevent seizures when the EF is not properly delineated or detected 

prior to resection. Additionally, poor surgical outcomes can occur due to unknown 

interactions between the EF and surrounding neural networks (Aparicio et al. 2016). 
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Recent advances in medical imaging have seen the increased clinical use of magnetic 

resonance imaging (MRI) and positron emission tomography (PET) to non-invasively 

locate the EF and map out the structure and function of surrounding brain regions. 

Anatomical MRI can detect structural lesions responsible for seizures in about 60% of 

MRE patients (Burneo et al. 2015), while other advanced MRI techniques, such as 

diffusion tensor imaging (DTI), can be used to effectively characterize the EF and its 

relationships with surrounding brain regions (Aparicio et al. 2016; Jiang et al. 2017). DTI 

non-invasively characterizes tissue microstructure by providing a three-dimensional 

model of water diffusion in the brain (Basser and Jones 2002; Jones and Cercignani 

2010). In addition, DTI can be used to investigate the structural connectivity of neural 

networks through mapping out diffusion along white matter (WM) fiber pathways (Le 

Bihan et al. 1986; Le Bihan 2006; Aparicio et al. 2016; Sivakanthan et al. 2016). WM 

pathways can be characterized using DTI-derived parameters, which are extracted from 

the diffusion tensor used to model water diffusion at each voxel in the brain. The most 

commonly used tensor-derived scalar is fractional anisotropy (FA), which is a measure of 

WM integrity and describes the tendency of water to preferentially diffuse along the 

length of the fiber bundle (Le Bihan 2006; Mori and Zhang 2006; Soares et al. 2013). 

Recent DTI studies have revealed that severe FA reduction in WM may correspond to 

widespread microstructural abnormalities in MRE (Labate et al. 2015; Jiang et al. 2017). 

To further assess tissue microstructure breakdown, WM pathways can be visualized by 

reconstructing WM fibers using diffusion tractography. Diffusion tractography 

techniques continue to be refined and adapted for neurosurgical planning and these 

techniques have been shown to accurately track WM fibers in temporal lobe regions 

essential for surgical success (Sivakanthan et al. 2016).  

PET, on the other hand, is the most sensitive non-invasive clinical tool for identifying the 

EF especially in cases where MRI is negative or equivocal (Burneo et al. 2015). 18F-

Fluorodeoxyglucose PET (FDG-PET) can be used to detect the EF as brain areas 

showing decreased glucose uptake (glucose hypometabolism) (Sarikaya 2015; Burneo et 

al. 2015; Aparicio et al. 2016; Cahill et al. 2019). Glucose hypometabolic regions of 

interest (ROIs) are often identified by visual assessment of FDG-PET images, however, 

some abnormalities may be missed during this process. Therefore, semi-quantitative 
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approaches such as asymmetry index (AI) mapping have been proposed to aid visual 

detection of hypometabolic PET ROIs (Henry et al. 1990; Rausch et al. 1994; Van 

Bogaert et al. 2000; Didelot et al. 2010; Boscolo Galazzo et al. 2016; Anazodo et al. 

2018; Kamm et al. 2018; Shang et al. 2018). AI mapping investigates metabolic 

abnormalities by measuring the voxel-wise difference in cerebral glucose metabolism 

between hemispheres and has been shown to be a very sensitive biomarker for 

epileptogenicity (Didelot et al. 2010; Boscolo Galazzo et al. 2016). Using AI to 

investigate metabolic asymmetries can be useful because the process may be done on 

individual patients and does not require comparison to a healthy control database. 

Recently, it has been shown that multimodal brain imaging combining PET and MRI 

information may improve seizure site characterization compared to standalone IC-EEG, 

PET, or MRI (Burneo et al. 2015). Opportunely, this finding coincides with increased 

availability of advanced imaging systems that combine PET/MRI into an integrated 

system. Although researchers are starting to implement simultaneous PET/MRI in the 

clinical setting, the combined use of PET and DTI for presurgical evaluation of epilepsy 

is yet to be fully investigated. To our knowledge, only two studies to date have assessed 

whether cortical glucose hypometabolism seen on FDG-PET is related to WM alterations 

identified by DTI in the brains of MRE patients (Lippé et al. 2012; Aparicio et al. 2016). 

However, these studies acquired PET and MRI scans at separate timepoints which can 

introduce registration errors between modalities, making it difficult to accurately detect 

the seizure onset zone in the brain and assess relationships between PET and MRI 

findings. Simultaneous acquisition of PET and MRI data using a hybrid PET/MRI 

scanner acquires both datasets in the same imaging session with intrinsic spatial and 

temporal registration, potentially improving the accuracy of detecting the EF and may 

shed new insight into the pathophysiology of MRE. In this hybrid PET/MRI study, we 

developed a PET-guided diffusion tractography (PET/DTI) approach combining FDG-

PET and diffusion MRI to investigate WM integrity in the brains of MRE patients. AI 

mapping of FDG-PET was used to guide diffusion tractography of WM tracts in MRE 

patients to better understand structural connectivity of WM fibers affected by glucose 

hypometabolic regions (suspected EF). WM fibers were also visually inspected by a 
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neurologist to assess potential clinical impact of PET/DTI on decision-making in epilepsy 

surgery. 

 

3.2! Materials and Methods 

3.2.1! Patients 

The study included 14 MRE patients (6 males and 8 females; mean age = 38 ± 14 years) 

from the London Health Sciences Centre epilepsy monitoring unit (EMU), diagnosed 

after failing two or more adequate trials of AEDs. Clinical assessment in the EMU 

included neuropsychological evaluation, prolonged scalp video-EEG, and 1.5T MRI to 

localize the EF. Patient demographics and clinical profile are provided in Table 3.1. 

Mean epilepsy onset and duration was 23 ± 13 and 15 ± 15 years, respectively. The 

cohort consisted of 10 MRI-negative and 4 MRI-equivocal MRE patients, determined 

based on all available diagnostic information (clinical hypothesis, semiology, and 1.5T 

MRI reports). All patients provided written informed consent. The study was approved by 

the University Research Ethics Board and conducted in accordance with the Declaration 

of Helsinki ethical standards. 
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Table 3.1: Patient demographics and clinical profile 
Patient 
No. 

Sex Age (yr) Onset/ 
Duration (yr) 

Seizure 
Frequency 

1.5T MRI Clinical Hypothesis 

1 M 52 4/48 – Left MTS* Left temporal-frontal lobe 

2 M 29 16/13 4/wk Left temporal FCD* Left frontal lobe 

3 F 18 14/4 1/mo Unremarkable Right frontal lobe 

4 M 60 41/19  6/yr Unremarkable Left temporal-frontal lobe 

5 F 28 27/1 Unpredictable Unremarkable Right temporal lobe 

6 M 29 23/6 2–3/mo Unremarkable Left temporal-frontal lobe 

7 F 32 25/7 – Unremarkable Left temporal lobe 

8 F 36 15/21 1/wk Bitemporal SH* Right frontal lobe 

9 F 45 35/10 5–7/mo Left MTS* Left temporal lobe 

10 M 23 21/2 1–2/mo Unremarkable Right temporal lobe 

11 F 26 17/9 2–3/mo Unremarkable Right temporal-frontal lobe 

12 F 58 21/37 – Unremarkable Left temporal lobe 

13 F 38 7/31 – Unremarkable Right temporal lobe 

14 M 55 54/1 – Unremarkable Right temporal lobe 

Abbreviations: *, equivocal finding; –, missing data; F, female; FCD, focal cortical dysplasia; M, male; MTS, mesial temporal sclerosis; SH, 
subcortical heterotopia.  

 

 

3.2.2! Data Acquisition 

Data were acquired using a 3T hybrid PET/MRI scanner (Biograph mMR, Siemens 

Healthineers, Erlangen, Germany) located at the Lawson Health Research Institute. 

Patients fasted for at least 6 h prior to the study (fasting blood glucose = 4.3 ± 0.6 

mmol/L). PET/MRI were acquired immediately after clinical PET/CT scans (net injected 

dose of FDG = 190 ± 17 MBq, PET/MRI post-injection time = 72 ± 5 minutes) and the 

PET/MRI data were used in this study. Serial MRI scans were performed during a 30-min 

list-mode PET imaging session. An isotropic (1 mm3) high resolution T1-weighted MRI 

and T2-weighted FLAIR MRI were acquired covering the whole brain using a three-

dimensional magnetization-prepared rapid gradient-echo sequence (MPRAGE) and fast-

spin echo sequence (SPACE) respectively to assess evidence of structural abnormalities 

(Brant-Zawadzki et al. 1992). Diffusion-weighted imaging (DWI) was acquired using a 

single shot echo-planar imaging (EPI) sequence with the following parameters: 2 mm 
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isotropic resolution, 64 contiguous slices, b-values = 0, 1000 s/mm2 and 64 diffusion 

encoding directions. Two spin-echo images were acquired in opposite phase-encoding 

directions with b-values = 0 s/mm2 and 6 directions to correct for inherent susceptibility-

induced distortions in DWI. The PET data were reconstructed to one image volume 

(ordered subset expectation maximization algorithm; 3 iterations, 21 subsets, 2 mm full-

width at half-maximum (FWHM) Gaussian filter, 2.5 zoom factor, 344 % 344 % 127 

matrix and 2.09 % 2.09 % 2.03 mm3 voxels). Attenuation correction was performed using 

an ultrashort echo time MRI sequence and an offline MRI-based attenuation correction 

approach (RESOLUTE) (Ladefoged et al. 2015). 

3.2.3! DWI Preprocessing 

Before image preprocessing, all DWI volumes were visually inspected for artifacts to 

ensure only good quality data were used. DWI data were preprocessed using an in-house 

image analysis pipeline that incorporated steps from a variety of different image 

processing software packages (see Figure 1.7). Each patient’s DWI images were first 

denoised using an optimized non-local means filter (Wiest-Daesslé et al. 2008; Coupé et 

al. 2008, 2010) in MATLAB (MathWorks®, Natick, MA) followed by subject motion, 

eddy current, and bias field corrections using FMRIB’s Software Library (FSL) 

(Woolrich et al. 2009), MRtrix3 (Tournier et al. 2019) and ANTS (Avants et al. 2011), 

respectively. Tensors were fit to the data using non-linear least-squares estimation in 

ExploreDTI (Leemans et al. 2009) to generate an FA map. For WM fiber reconstruction, 

all diffusion tractography steps were performed using MRtrix3. A single fiber WM 

response function was estimated from the preprocessed DWI data using a spherical 

harmonics order of 8. The DWI data were upsampled to 1x1x1 mm3 isotropic voxels, and 

the fiber orientation distribution function was calculated by constrained spherical 

deconvolution with a spherical harmonics order of 8 and a whole-brain mask to constrain 

calculations to voxels within the brain. The maximas of the fiber orientation distribution 

function were then extracted and used to visualize the WM fibers. 
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3.2.4! PET Data Analysis 

PET preprocessing steps were completed using FSL, ANTS and SPM12 (Wellcome 

Department of Cognitive Neurology, Institute of Neurology, London). For AI mapping, 

we used the MNI T1 1 mm isotropic image provided by FSL as a template for spatial 

alignment of patient FDG-PET images. To account for geometric distortions in patient 

anatomy between hemispheres, this template was made symmetric by flipping it about 

the sagittal plane and then calculating the mean image of the flipped and unflipped 

images. Each patient’s FDG-PET data were spatially normalized to the symmetric 

template using a three-step registration method in ANTS that consisted of linear and non-

linear warping transformations that aligned brain structures in the PET image as closely 

as possible to the template.  

A voxel-wise standardized uptake value (SUV) map was calculated using: 

SUV!= 
CPET(t)!× BW

Dose
 

where CPET(t) is the activity concentration in each voxel of the spatially normalized PET 

image, BW is the patient’s body weight, and Dose is the net injected dose of FDG. The 

SUV map was smoothed using a FWHM of 2 mm to account for differences in patient 

anatomy. Each patient’s T1-weighted image was spatially normalized to the symmetric 

MNI template and then segmented into gray matter (GM), WM, and cerebrospinal fluid 

tissue probability maps. Because the EF is typically in GM focal regions, we only 

considered SUV values in voxels with at least 30% GM (based on segmentation of the 

aligned T1-weighted MRI). The GM SUV maps were then scaled by the individual mean 

GM SUV in the cerebellum to account for global metabolism effects in the brain 

(Anazodo et al. 2018). The relative GM SUV (SUVr) map was spatially flipped about the 

sagittal plane and a voxel-wise AI map was calculated using: 

AI!= 
I!-!fI

2(I!+!fI)  × 100 
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where I and fI are the unflipped and flipped SUVr images, respectively. To determine 

significant hypometabolic areas on PET, a Z-score AI (ZAI) map was calculated using: 

ZAI!= 
X!- µ
σ

 

where X is the voxel intensity in the AI map, µ is the mean AI of all GM voxels in the 

brain, and σ is the standard deviation AI of all GM voxels. Because we did not know the 

exact distribution of AI values in our sample of patients, we scaled ZAI by the degrees of 

freedom (df) in our sample (Crawford and Garthwaite 2012). For our sample of 14 MRE 

patients, df was 13 therefore we considered ZAI < -1.77 to represent significant 

hypometabolism compared to the contralateral brain region. In each ZAI map, the largest 

focal GM area containing voxels with ZAI < -1.77 was extracted as the hypometabolic 

PET ROI (suspected EF). To validate our AI mapping approach, these PET ROIs were 

compared against clinical findings on seizure onset area, including clinical hypothesis, 

scalp video-EEG, clinical reader assessment of PET SUV images, stereo-EEG (SEEG), 

and surgical outcome (Engel classification and ground-truth histopathology). 

3.2.5! PET/MR Image Reading 

All FDG-PET and MR images were visually inspected by two Neuroradiologists 

(B.Y.M.K. and M.J.). FDG-PET was also inspected by a third reader, a Nuclear Medicine 

Physician (L.S.). FDG-PET was co-registered and overlaid onto MRI. T1-weighted, T2-

weighted, and SUV images were visually assessed using a standard clinical imaging 

software (MI Neurology, SyngoVia, Siemens Healthcare, Erlangen, Germany). To aid 

visual assessment of PET, semi-quantitative analysis was also included in the image 

reading through statistical comparison of SUV values with cerebellar normalization to an 

age-matched healthy control database provided by the software.      

3.2.6! PET-Guided Diffusion Tractography (PET/DTI)  

We developed a PET/DTI approach by using seed-based diffusion tractography to 

investigate structural integrity of WM regions around the hypometabolic PET ROI 

(suspected EF) identified by AI mapping. The PET ROI, which was initially defined in 
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MNI space, was inverse mapped back to the subject’s diffusion space and used as a seed 

to initiate fiber tracking. WM fiber tracts were visualized and quantified using 

Fibernavigator, a novel diffusion tractography tool (Chamberland et al. 2015). In 

Fibernavigator, a 3x3x3 mm3 volume of interest (VOI) was placed in the GM PET ROI 

that was directly adjacent to the closest WM area. This VOI was dilated at incremental 

distances of 3, 9, and 15 mm into surrounding WM (Figure 3.1). Each dilated VOI was 

used as a seed region to generate WM tracts at each distance from the PET ROI. Another 

3x3x3 mm3 VOI was manually defined in the contralateral brain region and dilated to 

generate fibers for the same three distances into surrounding WM. To assess WM tract 

asymmetry between ipsilateral and contralateral WM fiber tracts, WM fiber 

quantification was performed by extracting measurements readily available in 

Fibernavigator, such as fiber count (number of fibers within the bundle), mean fiber 

length (mm), and mean fiber cross-section (CS) (mm2). In addition, the mean FA was 

calculated as the weighted average of all FA values along the length of the tracts. 

Normalized (ipsilateral / contralateral) fiber count, mean FA, mean fiber length, and 

mean CS measurements served as preliminary assessments of WM tract asymmetry and 

the Wilcoxon signed-rank test was then used to compare fiber measurements across the 

three WM distances from the PET ROI (p < 0.05 was considered significant). 
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Figure 3.1: 2D representation of the 3D procedure for tracking WM regions around the 
EF in one MRE patient (patient #9). A) EF (detected by AI mapping of FDG-PET) 
overlaid onto structural MRI. B) EF overlaid onto a WM probability map. Because the 
EF is located in a cortical area (left hippocampus), WM tracking was performed at three 
distances away from the EF: 3 mm, 9 mm, and 15 mm. The coloured regions around the 
EF represent WM areas covering the three distances. These WM regions were used as 
seed ROIs to initiate neural fiber bundle tracking in Fibernavigator. 

 

3.2.7! Clinical Assessment of PET/DTI Findings 

WM fibers around the hypometabolic PET ROI for each patient were visualized by a 

senior Neurologist with over 15 years of practice experience (J.G.B.) in order to assess 

the potential clinical impact of the PET/DTI approach in guiding epilepsy surgical 

evaluation. For each patient, the neurologist first viewed the summary of presurgical 

evaluation findings (clinical hypothesis, scalp video-EEG, 1.5T MRI, PET report from 

PET/CT, SEEG) and then using Fibernavigator, interactively viewed the ipsilateral and 

contralateral WM fibers 3 mm away from the hypometabolic PET ROI identified by AI 

mapping. A distance of 3 mm away from the PET ROI was chosen for this assessment, as 

WM fibers generated from this distance pass directly adjacent to the GM PET ROI and 

are likely to give the best indicator of structural integrity around the epileptic zone. For 
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the clinical assessment of the PET/DTI approach, the neurologist determined whether the 

differences between ipsilateral and contralateral WM fibers around the hypometabolic 

PET ROI (suspected EF) were concordant with the clinical hypothesis. In order to assess 

potential clinical impact of PET/DTI, the neurologist’s confidence after viewing the WM 

fibers was assigned to one of the following categories: unchanged or improved. If 

confidence was improved, the neurologist also reported if reassessment of surgical 

candidacy would be beneficial in patients who had not undergone surgery.    

3.3! Results 

3.3.1! AI Mapping of FDG-PET for EF Localization and 
Lateralization in MRE 

AI mapping was used to detect the EF based on regions showing significant metabolic 

asymmetry between hemispheres in the brain. A visual example of the AI mapping 

results for one MRE patient (patient #9) is shown in Figure 3.2. In this patient, AI 

mapping was able to detect a clear hypometabolic region (suspected EF) in the left 

temporal lobe, which matched the overall clinical hypothesis. 
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Figure 3.2: Images from a 45 year old female MRE patient (patient #9) with a clinical 
hypothesis of left temporal lobe focal epilepsy: A) PET SUV map; B) Anatomical MRI; 
C) PET fused with MRI; D) Z-score map from computer-assisted diagnosis of PET data 
(Siemens Syngo Via); E) Z-score map generated from AI mapping (ZAI map), which 
shows a clear glucose hypometabolic region (green circle) in the left temporal lobe, 
indicative of a potential EF; and F) hypometabolic PET ROI (yellow) from AI mapping 
overlaid onto structural MRI. 

 

Clinical hypothesis, scalp video-EEG findings from the EMU, FDG-PET 

hypometabolism reports from the three clinical readers (3T MRI visual assessment 

reported in Table S1), AI mapping, SEEG, and surgical findings for our cohort of 14 

MRE patients are summarized in Table 3.2. AI mapping findings were concordant with 

the clinical hypothesis in localizing and lateralizing the epileptic region in 12/14 (86%) 

and 9/14 (64%) patients, respectively. AI mapping agreed with scalp video-EEG in 13/14 

(93%) patients for both EF localization and lateralization. Concordance between AI 

mapping and clinical PET readings was 64%/69% (average EF localization/lateralization 

from the three clinical readers). Five patients underwent SEEG prior to surgical resection, 

and EF localization/lateralization concordance with AI mapping was observed in four 

patients. Mean SUV, max SUV, and mean ZAI were decreased in hypometabolic PET 
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ROIs identified by AI mapping (see Table S2). Eight patients underwent surgical 

resection to remove the EF on the suspected epileptogenic side based on all clinical 

information and diagnoses available. After a one-year follow-up, 5/8 (62.5%) patients 

achieved Engel class IA (long-term seizure freedom), 2/8 (25%) patients achieved Engel 

class IIIA (significant improvement, but not completely seizure free), and 1/8 (12.5%) 

patients had Engel class IV (no improvement). AI mapping was concordant with surgical 

findings, where histopathology was performed to determine the ground-truth EF 

classification, in localizing and lateralizing the EF in six and four patients, respectively. 
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3.3.2! PET/DTI – Tracking WM Around Glucose Hypometabolic 
Regions (Suspected EF) 

An example of the WM fiber visualization at each distance away from the hypometabolic 

PET ROI (suspected EF) for one MRE patient (patient #9) is shown in Figure 3.3. In this 

patient, visual assessment revealed noticeable differences between ipsilateral (left) and 

contralateral (right) fiber bundles in WM 3 mm away from the EF. No notable 

differences between ipsilateral and contralateral WM fibers were observed in WM 15 mm 

away from the EF. 

 
Figure 3.3: PET-guided diffusion tractography in one MRE patient (patient #9) with a 
clinical hypothesis of left temporal lobe focal epilepsy. Ipsilateral (left) and contralateral 
(right) WM fibers (coloured lines) are shown for the three WM distances (3, 9, and 15 
mm) away from the EF (yellow) identified by AI mapping of FDG-PET. Fewer WM 
fibers are observed on the ipsilateral side. Differences in WM fibers between ipsilateral 
and contralateral sides appear more prominent at closer distances (3 mm) to the EF. 
Abbreviations: L, left; R, right. 

 

When comparing fiber values across the three distances (3, 9, and 15 mm) into 

surrounding WM, normalized fiber count, mean FA, and mean fiber length were the 

lowest at a distance of 3 mm (Figure 3.4). At 3 mm, normalized mean FA, fiber count, 

and mean fiber length were decreased in 14/14 (100%), 13/14 (93%), and 12/14 (86%) 

patients, respectively. Normalized mean CS was decreased in 7/14 (50%) patients at this 

same distance. Analysis using the Wilcoxon signed-rank test revealed that mean FA was 
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significantly decreased at 3 mm compared to 9 mm (p = 0.0031) and 15 mm (p = 0.0004). 

Fiber count was the lowest at 3 mm and 9 mm, compared to 15 mm (p < 0.01). Mean 

fiber length was significantly reduced across all three distances (p < 0.05). The same 

trend was also observed when DTI scalar measurements were made in the WM seed 

regions used for tracking around the hypometabolic PET ROI, where mean FA was 

decreased at distance 3 mm compared to 9 mm and 15 mm (see Table S3). 

 
Figure 3.4: Quantification of WM fibers around the hypometabolic PET ROI (suspected 
EF) in 14 MRE patients. Ipsilateral fiber measurements were normalized to contralateral 
fiber measurements as a preliminary measure of WM tract asymmetry. Normalized 
values are plotted for the three distances away from the PET ROI. Wilcoxon signed-rank 
test was used to compare normalized fiber measurements across the three distances into 
surrounding WM (p < 0.05 was considered significant). Fiber count, mean fiber length, 
and mean FA are decreased at closer distances to the PET ROI (3 mm) compared to 15 
mm (p < 0.05). Abbreviations: *p ! 0.05, **p ! 0.01, ***p ! 0.001. 
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3.3.3! Clinical Assessment of PET/DTI Findings 

Table 3.3 summarizes findings from the neurologist’s clinical assessment of the 

PET/DTI approach. Eight patients had already undergone surgery. Based on clinical 

hypotheses, the MRE cohort consisted of seven temporal lobe, four extratemporal lobe, 

and three frontal lobe epilepsy patients. Upon inspection of PET/DTI, WM fiber 

abnormalities in the epileptic lobe were observed in 10/14 (71%) patients and these 

findings were concordant with the clinical hypothesis. In all 10 patients, diagnostic 

confidence improved after presentation of PET/DTI. Specifically, PET/DTI was 

contributive in five temporal lobe, three extratemporal lobe, and two frontal lobe epilepsy 

patients. Most importantly, PET/DTI indicated that surgical resection could be beneficial 

in 3/6 (50%) patients who had not undergone surgery. 
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Table 3.3: Clinical assessment of PET/DTI findings 
Patient AI Mapping PET/DTI Confidence after 

PET/DTI 
1 + + ++ 
2 + + ++ 
3 + + + 
4 + + ++ 
5 + + + 
6 + - - 
7 - - - 
8 + - - 
9 + + + 

10 - - - 
11 + + + 
12 + + + 
13 + + + 
14 + + + 

Note: EF localization concordance between AI mapping and the clinical hypothesis is 
reported in the second column. 
Abbreviations: +, concordant with clinical hypothesis or improved confidence after 
PET/DTI; ++, PET/DTI improved confidence and indicated that the patient may benefit 
from an anterior temporal lobectomy; -, discordant with clinical hypothesis or unchanged 
confidence after PET/DTI. 

 

 

3.4! Discussion and Conclusions 

To our knowledge, this is the first study to simultaneously combine FDG-PET and 

diffusion MRI to investigate WM integrity in the brains of MRE patients. We showed 

that AI mapping of FDG-PET can successfully detect hypometabolic brain regions 

(suspected EF) that are concordant with conventional epilepsy surgical evaluation 

techniques (1.5T MRI, EEG, visual PET assessment). We used AI mapping and diffusion 

tractography to develop a non-invasive approach that combines PET and MRI 

information into one integrated tool (PET/DTI). We demonstrated that our PET/DTI 

approach is feasible and can detect epileptic zones in the brains of MRI-negative epilepsy 

patients. We localized seizure-onset sites using AI mapping of FDG-PET and tracked 

WM fibers from these sites to the rest of the brain using diffusion tractography. This was 

achieved by implementing a robust image analysis process standardized for use in each 
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patient and adapting readily available imaging analysis tools for ROI mask generation 

and subsequent fiber tracking. 

The potential clinical impact of PET/DTI in epilepsy surgical evaluation was also 

demonstrated in this study. Specifically, we showed that investigation of WM 

abnormalities adjacent to seizure-onset zones in the brain can improve diagnostic 

confidence in MRE. Furthermore, we found PET/DTI can even indicate that surgical 

resection may be beneficial in some MRE patients who have not undergone surgery. Of 

course, surgical candidacy of these patients would first need to be reassessed through 

future interdisciplinary meetings before concrete decisions to proceed with the resection 

can be made. Nevertheless, our findings suggest that PET/DTI can potentially impact 

clinical decision-making in epilepsy surgery and is a promising tool for advancing 

epilepsy treatment and management.  

Numerous standalone PET and diffusion MRI studies have reported functional and 

structural alterations in MRE (Henry and Pennell 1998; Knowlton 2006; Focke et al. 

2008; Lin et al. 2008; Thivard et al. 2011; James et al. 2015; Labate et al. 2015; Burneo 

et al. 2015; Sivakanthan et al. 2016; Jiang et al. 2017; Güvenç et al. 2018; Cahill et al. 

2019), however, very few studies have assessed relationships between FDG-PET and 

diffusion MRI findings in epilepsy. Similar to our study, one previous report also found 

microstructural alterations (decreased FA and increased apparent diffusion coefficient) in 

WM adjacent to the epileptic zone identified by FDG-PET hypometabolism (Lippé et al. 

2012), while another study revealed that metabolic and structural alterations seen using 

FDG-PET and DTI involve similar brain regions in mesial temporal lobe epilepsy 

(Aparicio et al. 2016). In contrast to (Lippé et al. 2012) and (Aparicio et al. 2016) who 

acquired PET and DTI separately, we used a hybrid PET/MRI scanner to simultaneously 

acquire PET and MRI in our study. While this may appear as a trivial difference, this has 

profound implications. Patients typically undergo PET and MRI scans on different days, 

up to a few months apart. In our cohort, the initial 1.5T MRI evaluation was on average 

eight months prior to the clinically indicated PET/CT. Acquiring PET and diffusion MRI 

scans separately can create spatial and temporal registration problems, making it difficult 

to accurately identify the seizure-onset zone and map its effects on brain structure and 
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function undergoing disease-related changes (Wang et al. 2018; Shang et al. 2018). 

Misalignment errors are usually due to the subject’s head position being different in 

image space between scans which are significantly minimized by hybrid PET/MRI. Co-

registration of PET with MRI through multimodal imaging therefore may allow for 

improved diagnostic accuracy and more precise EF detection than standalone PET or 

MRI, especially in MRI-negative epilepsy (Boscolo Galazzo et al. 2016; Shang et al. 

2018).  

The majority of the patients with temporal lobe epilepsy in our cohort had apparent 

PET/DTI WM abnormalities. This result is consistent with past studies that have 

illustrated the utility of diffusion tractography in revealing microstructural breakdown of 

WM pathways implicated in drug-resistant temporal lobe epilepsy (Ahmadi et al. 2009; 

Sivakanthan et al. 2016), as well as other studies reporting FDG-PET to have higher 

sensitivity for detecting the EF in temporal lobe epilepsy patients (70-90%) who had 

good surgical outcomes compared to those with other types of epilepsy, especially 

extratemporal lobe epilepsy (30-60%) (Sarikaya 2015; Burneo et al. 2015; Aparicio et al. 

2016). The surgical success rates in extratemporal lobe epilepsy are much lower than 

temporal lobe epilepsy (30-40% vs. 60-70%) with likelihood of achieving long-term 

seizure freedom further decreasing in the MRI-negative cases (Téllez-Zenteno et al. 

2005; de Tisi et al. 2011), suggesting the possible involvement of intricate neural 

networks extending beyond the EF in extratemporal lobe epilepsy that may be 

responsible for surgical failure. Interestingly, PET/DTI identified WM abnormalities 

around the EF in 3/4 patients with extratemporal lobe epilepsy in our MRE cohort 

(patients #1, #4, and #11 in Table 3.3) with improved diagnostic confidence observed in 

all three patients. While this is a very small number of patients, we argue this might 

provide some preliminary evidence that PET/DTI may potentially shed new insight into 

neural networks altered in extratemporal lobe epilepsy and is thus a promising tool for 

improving surgical outcomes, even in patients where the EF and its interactions with 

surrounding brain tissue extend beyond the temporal lobe. 

In our study, PET/DTI was unremarkable in four patients (see patients #6, #7, #8, and 

#10 in Table 3.3). Specifically, in patients #6, #7, and #8, all clinical findings lacked 
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concordance, with only patient #6 becoming seizure-free after surgery (see Table 3.2). In 

patient #10, AI mapping was not concordant with visual PET assessment from the three 

clinical readers and the patient showed no improvement after surgery (Engel class IV). 

These findings suggest that the four PET/DTI-negative patients in our study may have 

had a seizure focus with underlying physiological abnormalities that were too subtle to 

confidently detect using neuroimaging. Further research needs to be conducted on why 

functional and structural properties measured using PET and MRI are impaired in some 

epilepsy patients while in others, they appear intact.   

It is well established that FDG-PET is the most sensitive functional imaging tool for 

indirectly identifying epileptic regions based on glucose hypometabolism (Knowlton 

2006; Burneo et al. 2015; Aparicio et al. 2016). However, glucose hypometabolic regions 

identified by PET could extend beyond the true EF especially in extratemporal lobe 

epilepsy and may reflect pathophysiology of seizure propagation from the epileptic zone 

to surrounding neural networks (Sarikaya 2015; Aparicio et al. 2016). Recent studies 

have found that using semi-quantitative approaches, such as AI mapping that extend 

beyond visual reads, can not only detect hypometabolic regions in high agreement with 

other clinical and electrophysiological findings, but can also increase a reader’s 

confidence in their visual assessment of PET (Didelot et al. 2010; Boscolo Galazzo et al. 

2016; Shang et al. 2018). Here, we demonstrated – albeit retrospectively – the utility of 

AI mapping in epilepsy surgical evaluation, where AI mapping was able to successfully 

localize and lateralize the epileptogenic focus in most MRE patients. While it is possible 

that some of the metabolic asymmetries observed could simply reflect normal 

physiological asymmetries in the brain, especially in patients with multi-focal 

hypometabolism, we used a standard AI mapping thresholding approach to isolate 

significant hypometabolic brain regions that has been validated by past studies (Boscolo 

Galazzo et al. 2016; Shang et al. 2018), which gives us confidence that the metabolic 

asymmetries detected in our study are more likely associated with epileptic regions rather 

than normal healthy brain tissue. AI mapping is thus a promising tool for guiding 

assessment of surgical candidacy in epilepsy, especially in MRI-negative cases. 

Furthermore, similar to our findings, past studies have reported FDG-PET 

hypometabolism in contralateral brain regions in some epilepsy patients (Aparicio et al. 
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2016; Cahill et al. 2019), presumably due to spread of epileptic activity across 

hemispheres. Despite these challenges with FDG-PET specificity, we were still able to 

show that FDG-PET can aid detection of the epileptogenic zone and assessment of 

surgical candidacy in epilepsy, especially when combined with DTI. Perhaps the use of 

novel PET tracers targeted to pathogenesis of epilepsy such as imaging reduced synaptic 

density using PET-ligands targeting the synaptic vesicle protein 2A (Finnema et al. 2016) 

as well as receptor imaging using PET tracers targeting serotonin and gamma-

aminobutyric acid (Sarikaya 2015; Galovic and Koepp 2016), could increase the 

specificity of PET in detecting the true EF.   

In this study, we used diffusion tractography to assess structural integrity around MRI-

negative epileptic zones identified by FDG-PET. Although there is no current gold 

standard for validation of WM fibers generated using diffusion tractography techniques, 

there are a number of phantom models adapted to simulate WM pathways in healthy 

human brains and provide some evaluation of tractography approaches. We empirically 

evaluated our diffusion MRI preprocessing and tractography approach to a computer-

simulated WM phantom (Neher et al. 2014). However, this and other phantom models do 

not take into account any GM or WM pathologies present in epilepsy patients (Neher et 

al. 2014; Maier-Hein et al. 2017). As such, we opted not to compare WM fibers between 

epilepsy patients and a healthy control group, and instead assessed structural integrity by 

comparing WM fibers between hemispheres within individual patients. This individual 

assessment is more likely to be of clinical utility in epilepsy surgical centers where 

epilepsy patients are typically evaluated on a case-by-case basis. Nevertheless, we were 

able to show that WM fibers appear to be affected at multiple distances away from the 

epileptic tissue. Interestingly, these abnormalities were most apparent in WM directly 

surrounding the epileptic zone. While no other studies to date have assessed WM fiber 

integrity at different distances from MRI-negative EF sites using WM fiber 

quantification, some studies have shown that diffusion tractography can reveal 

widespread microstructural changes in drug-resistant epilepsy that could be responsible 

for surgical failure (Sivakanthan et al. 2016; Jiang et al. 2017). Our results suggest that 

WM directly adjacent to the epileptic zone is most prone to structural alterations. More 

specifically, we found that out of the three WM distances investigated, WM anomalies 
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were most prominent at an average distance of approximately 3 mm away from the 

epileptic zone. This finding suggests that investigation of WM at this distance from 

epileptic tissue may better inform clinicians about whether surgery is an option, and if so, 

how to properly resect the EF without damaging surrounding healthy brain tissue. This is 

especially important to assess in WM affecting memory, language, and visual pathways 

in the brain, which are of prime importance in perioperative planning (Lin et al. 2008; 

James et al. 2015; Sivakanthan et al. 2016; Li et al. 2019).  

Because our AI mapping procedure detected hypometabolism (suspected EF) in cortical 

brain areas, we were left with the task of developing a method to track surrounding WM 

regions closest to the EF. We sampled WM regions at three incremental distances away 

from the epileptic zone using a VOI placed manually in the part of the EF directly 

adjacent to surrounding WM. This manual implementation poses a few issues. First, 

because we manually defined VOIs in GM regions contralateral to the EF, there is the 

possibility of spatial error between ipsilateral and contralateral VOIs. Second, focal 

cortical dysplasias and other GM/WM pathologies may result in different amounts of 

WM being sampled between ipsilateral and contralateral regions. However, it is 

conceivable that any differences in WM size between ipsilateral and contralateral regions 

are presumably small and are likely offset by the noticeable WM fiber abnormalities 

observed around the EF in the majority of our MRE patient cohort. 

The clinical potential of the proposed PET/DTI approach could be impacted by the 

relatively small size of our heterogeneous MRE patient cohort, making it difficult to draw 

any conclusions regarding what epilepsy patient groups are most likely to benefit from 

PET/DTI. However, the purpose of this hybrid PET/MRI study was to demonstrate the 

feasibility of PET/DTI and provide some preliminary assessment on whether PET/DTI 

could potentially impact clinical decision-making in epilepsy surgery, particularly in 

MRI-negative epilepsy where FDG-PET could instead be used to non-invasively locate 

the EF. Of note, hybrid PET/MRI relies on MR-based attenuation correction (MRAC) for 

PET reconstruction instead of CT-based AC used in PET/CT, which is the current clinical 

standard for FDG-PET imaging in epilepsy. While some studies show that traditional 

MRAC approaches can produce small bias in quantitative PET due to inadequate 
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modelling of bone (Larsson et al. 2013; Andersen et al. 2014), recent reports have 

revealed that these MRAC biases do not significantly impact clinical diagnosis of FDG-

PET readings in epilepsy (Paldino et al. 2017; Oldan et al. 2018). Nevertheless, 

alternative MRAC methods have been proposed to reduce potential bias in reconstructed 

PET (Ladefoged et al., 2017). In our study, we used an improved robust MRAC method 

(Ladefoged et al. 2015) that adequately models bone tissue information to produce 

PET/MR images that provide comparable diagnostic information to PET/CT. 

Because clinical assessment of our PET/DTI approach was retrospectively completed by 

one neurologist, potential interobserver variability could not be determined from this 

study. A potential future direction of this research is to pilot a prospective study to assess 

the clinical utility of combined PET/DTI through interdisciplinary meetings that would 

evaluate MRE patients both with and without including our PET/DTI approach to 

determine whether this approach will have any impact on the final surgical decision in 

these patients.    

In general, this retrospective study demonstrated the feasibility of combining PET and 

DTI to investigate WM integrity in the brains of MRE patients to further enhance clinical 

decision-making in epilepsy surgery. An extension of this study could combine functional 

MRI (fMRI) with DTI and PET to map out the structure and function of brain networks 

in the presence of seizure-related brain abnormalities. fMRI is another non-invasive 

imaging modality that may have promising applications in neurosurgical planning. While 

DTI investigates structural connections, fMRI measures functional correlates between 

brain regions based on differences in blood flow and can be used to effectively map 

neural connections in the brain (Bettus et al. 2009, 2010; Fox and Greicius 2010; Moeller 

et al. 2011; Pittau et al. 2012). By combining structural and functional connectivity 

analysis, we would be able to even better characterize seizure sites in MRE surgical 

candidates. We plan to incorporate PET, DTI, and fMRI modalities into an integrated 

software platform that would allow clinicians to non-invasively probe healthy brain tissue 

and areas around the epileptic zone to further improve neurosurgical planning, especially 

in challenging epilepsy cases where MRI and IC-EEG findings lack concordance. The 

integration and proper use of these non-invasive imaging modalities will help advance the 
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field of epilepsy treatment and management and may lead to completely non-invasive 

epilepsy surgical planning (Knowlton 2006; Sivakanthan et al. 2016). 
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Chapter 4!!

4! Conclusions and Future Directions 

4.1! Conclusions 
The overall goal of this thesis was to develop a hybrid PET/MRI approach to non-

invasively localize EF and assess structural integrity around EF for improving DRE 

surgical evaluation. Our first aim was to assess the diagnostic competence of hybrid 

PET/MRI against PET/CT, the current clinical standard for FDG-PET imaging in 

epilepsy, to evaluate whether quantitative PET biases from MRAC have any significant 

impact on clinical diagnosis of DRE. Our second aim was to develop a PET/DTI 

approach for assessing WM integrity around EF in MRI-negative DRE patients and to 

evaluate the potential clinical utility of PET/DTI in guiding clinical decision making in 

epilepsy surgery. These two research objectives were addressed in Chapters 2 and 3. 

Findings from both chapters will be summarized in this section. 

In Chapter 2, we evaluated the diagnostic equivalency and clinical value of hybrid 

PET/MRI against PET/CT in DRE. Diagnostic equivalency was assessed by comparing 

regional MRAC biases in FDG-PET images between PET/MRI and PET/CT. Clinical 

value of hybrid PET/MRI in DRE localization was assessed by qualitatively and 

quantitively comparing FDG-PET findings from PET/MRI against clinical reports and 

gold-standard post-surgical outcomes. We found that visual FDG-PET readings between 

PET/MRI and PET/CT were similar and yielded comparable diagnostic outcome. 

Likewise, we found that quantitative PET bias was low between PET/MRI and PET/CT, 

suggesting that PET/MRI can provide similar metabolic information as PET/CT. In 

general, PET/MRI with optimal MRAC can yield similar diagnostic performance as 

PET/CT. Indeed, hybrid PET/MRI is a reliable method for detecting EF in DRE and is a 

promising tool for improving epilepsy treatment and management. 

In Chapter 3, we developed a PET/DTI approach combining FDG-PET and diffusion 

MRI to investigate WM integrity in the brains of MRI-negative DRE patients. We used 

AI mapping of FDG-PET to detect the EF and used diffusion tractography to assess WM 
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fiber integrity around the EF. We found that AI mapping of FDG-PET can successfully 

detect seizure-onset zones that are concordant with clinical reports, EEG findings, and 

visual FDG-PET assessment. PET/DTI revealed structural alterations around the EF in 

the majority of our MRI-negative epilepsy cohort. In general, PET/DTI combines PET 

and MRI information into one integrated platform and is a promising tool for improving 

surgical outcomes, especially in MRI-negative epilepsy where we can use FDG-PET to 

detect the EF. Specifically, PET/DTI can improve diagnostic confidence in DRE and 

could potentially impact clinical decision-making in epilepsy surgery. Indeed, 

multimodal brain imaging combining PET and MRI information can help advance 

epilepsy treatment and management, which could lead to improved surgical outcomes 

and better patient quality of life. 

4.2! Future Directions 
The hybrid PET/MRI research discussed in this thesis showed the feasibility of PET/DTI 

in localizing EF and assessing WM integrity around EF in DRE. In the future, we plan to 

incorporate functional MRI (fMRI) into our PET/DTI approach to map out functional 

connections in the brain. Combining PET with DTI and fMRI could provide new insight 

into brain connectivity affected in epilepsy and may improve characterization of EF and 

surrounding brain regions to further enhance neurosurgical planning.  

In this thesis, we found that AI mapping of FDG-PET can detect contralateral 

hypometabolism in some epilepsy patients, a finding that is consistent with past studies.1,2 

While a previous report has suggested that contralateral FDG-PET hypometabolism may 

be a compensatory mechanism against functional deficits in the ipsilateral lobe3, another 

study has shown that bilateral temporal lobe hypometabolism is associated with increased 

epilepsy duration and poorer surgical outcome.4 It is evident that multi-focal 

hypometabolism is an issue, especially in patients who have multiple, non-continuous 

hypometabolic regions extending well beyond the seizure-onset zone and can lead to 

false lateralization of AI mapping. Hence, a course of future direction could further 

improve specificity of AI mapping in EF localization through statistical comparison of AI 

values between patients and an age-matched healthy control FDG-PET/MRI database. 
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There are a few interesting future avenues of epilepsy DTI research that should be noted. 

First, DTI scalar parameters can vary diurnally. Specifically, FA has been shown to 

decrease as the day progresses.5 It would be interesting to investigate whether changes in 

DTI scalar values due to different patient scanning times can significantly affect FA and 

diffusion tractography results in epilepsy. Second, structural integrity of individual WM 

fiber pathways known to be affected in epilepsy, such as the uncinate fasciculus and 

fornix, and their potential relationships to FDG-PET metabolic alterations, especially 

around the EF, could be assessed to even better enhance characterization of EF and its 

relationships with surrounding neural networks. Finally, we plan to further improve our 

diffusion MRI image analysis pipeline by implementing automated quality control steps6 

to enhance detection of bad quality DWI data. 

This thesis demonstrated the potential clinical utility of PET/DTI in epilepsy surgical 

evaluation. In the future, we plan to pilot a prospective study to assess the potential added 

value of PET/DTI in epilepsy surgical decision-making. Efforts are currently underway to 

extend this work to the pediatric population to gain new insight into functional and 

structural alterations that take place in different epilepsy patient groups. The goal is to 

provide clinicians with an interactive platform to non-invasively probe brain areas 

affected by seizures in vivo to determine whether a patient is suitable for surgery. This 

will further minimize potential risks associated with surgical resection, and in turn lead to 

better surgical outcomes and overall quality of life. 
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Appendix A: Empirical evaluation of diffusion tractography 
pipeline using whole-brain tractograms from a white matter 
phantom 
Before diffusion tractography, DWI images are preprocessed to remove noise, subject 

motion, and other image artifacts. Many different approaches exist for preprocessing 

DWI data which can impact the accuracy of WM fiber reconstruction. Here, we 

empirically evaluated our diffusion tractography pipeline (see Figure A.1 below) using 

the ground-truth phantom from the ISMRM 2015 Tractography Challenge 

(http://www.tractometer.org/). Whole-brain WM fiber tracts (tractograms) from both the 

artifact-free phantom and the challenge phantom dataset were scored and compared to an 

online database of other tractograms. This work was accepted and presented at ImNO as 

a conference abstract: 

Poirier SE, Thiessen JD, Anazodo UC (2019). Empirical evaluation of a DTI 

tractography pipeline using whole-brain tractograms from a white matter phantom. 17th 

Annual Imaging Network Ontario (ImNO) Symposium, London, Canada. Abstract. 

Accepted – Oral Presentation. 

Methods: Phantom DWI data preprocessing and pipeline scoring 

The phantom DWI data, which contained noise, motion, and image artifacts, were 

generated using Fiberfox (Neher et al., MRM, 2014) from 25 computer-simulated WM 

bundles with the following parameters; 2 mm isotropic resolution, 32 contiguous slices, 

b-values = 0, 1000 s/mm2 and 32 diffusion-encoding gradient directions. The phantom 

DWI data were preprocessed using our diffusion MR image analysis pipeline to generate 

whole-brain tractograms. Tractograms were scored using the scoring system from the 

ISMRM 2015 Tractography Challenge, which compared streamlines to the ground-truth 

bundles and generated the following parameters; valid bundles (VB) – scored out of 25, 

invalid bundles (IB) – number of bundles that did not exist in ground-truth phantom, 

valid connections (VC), invalid connections (IC), and no connections (NC). 
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Figure A.1: Diffusion tractography pipeline scoring. Phantom DWI data were 

preprocessed to generate whole-brain tractograms. The whole-brain tractograms were 

scored using the scoring system from the ISMRM 2015 Tractography Challenge. 

Results: Pipeline scores 

Scores from the artifact-free phantom: VB = 24/25, IB = 76, VC = 85.78%, IC = 14.21%, 

NC = 0.00%. Scores from the challenge phantom data: VB = 23/25, IB = 70, VC = 

70.37%, IC = 29.63%, NC = 0.00%. Whole-brain tractograms for the artifact-free and 

challenge phantom data are shown in Figure A.2 below. 
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Figure A.2: WM tractograms. Whole-brain tractograms from (A) artifact-free phantom 

and (B) challenge phantom dataset. 

Summary 

We empirically evaluated our diffusion tractography pipeline using a ground-truth 

diffusion phantom dataset. Comparing our whole-brain tractogram scores to the online 

submissions database (http://www.tractometer.org/ismrm_2015_challenge/results), we 

found that our pipeline performed very well across all five scoring parameters (mean 

score percentile = 76 ± 24%) and this gives us confidence that our pipeline is indeed 

accurately reconstructing WM fiber pathways in the brain. 

  



90 

 

Appendix B: Permission for Reproduction of Scientific Articles 
and Figures 

 



91 

 

 
  



92 

 

 



93 

 

 
  



94 

 

Copyright Agreement for European Journal of Hybrid Imaging (Chapter 3) 

 

 
 

 



95 

 

Curriculum Vitae 

 
Name:   Stefan Eric Poirier 
 
Post-secondary  Western University 
Education and  Schulich School of Medicine & Dentistry  
Degrees:   London, Ontario, Canada  

2018-2020 
Master of Science in Medical Biophysics  
Supervisors: Dr. Udunna Anazodo and Dr. Jonathan Thiessen 
Thesis: A hybrid PET/MRI brain connectivity approach for 
improving epilepsy surgical evaluation 
 
Western University 
Schulich School of Medicine & Dentistry 
London, Ontario, Canada 
2013-2018 
Bachelor of Medical Sciences, Honours Specialization in Medical 
Biophysics (Clinical Physics Concentration)  
 

Honours and   Western Graduate Research Scholarship 
Awards:   2018-2020 

$9,000 (Canadian dollar) 
 
Eastern Great Lakes Chapter Society of Nuclear Medicine and 
Molecular Imaging Annual Meeting – Abstract Oral Presentation 
Award Winner 
2019 
$250 (U.S. dollar) 
 
Lawson Internal Research Fund Studentship Award 
2018-2019 
$15,000 (Canadian dollar) 
 
Dean’s Honour List 
2013-2018 
 
Western Scholar 
2013-2018 
 
CIS Academic All-Canadian/OUA Achievement Award Winner 
2014 
 
 



96 

 

Scholar’s Electives – Social Science (Declined) 
Western University 
2013 
 
Western Scholarship of Excellence 
2013 
$2,000 (Canadian dollar) 

 
Related Work  Graduate Teaching Assistant 
Experience:   Western University 

2018-2019 
 
PUBLICATIONS 
 
Manuscripts Submitted (1): 
 

1.! Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Iacobelli M, Steven 
DA, Lam Shin Cheung V, Moran G, Prato FS, Thompson RT, Burneo JG, 
Anazodo UC, Thiessen JD. An evaluation of the diagnostic competence of hybrid 
PET/MRI in clinical management of drug-resistant epilepsy. Submitted to Am J 
Neuroradiol in June 2020. Under Review. Manuscript ID: AJNR-20-00760 

 
Manuscripts Published (1): 
 

1.! Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Steven DA, Suller-
Marti A, Lam Shin Cheung V, Khan AR, Prato FS, Burneo JG, Thiessen JD, 
Anazodo UC. 18F-FDG PET-guided diffusion tractography reveals white matter 
abnormalities around the epileptic focus in medically refractory epilepsy: 
implications for epilepsy surgical evaluation. European J Hybrid Imaging. 
2020;4:10. DOI: https://doi.org/10.1186/s41824-020-00079-7 

 
Conference Publications (11): 
 

1.! Poirier SE, Kwan BY, Jurkiewicz MT, Samargandy L, Steven DA, Suller-Marti 
A, Lam Shin Cheung V, Khan AR, Prato FS, Burneo JG, Thiessen JD, Anazodo 
UC (2020). Positron emission tomography combined with diffusion tensor 
imaging reveals macrostructural breakdown around epileptic foci in non-lesional 
medically refractory epilepsy. 2020 North American Virtual Epilepsy Meeting. 
Abstract. Accepted – Online Poster Presentation. 

 
2.! Dacey MT, Poirier SE, Gomes J, Anazodo UC, McIntyre C (2020). 

Hemodialysis can contribute to acute changes in cerebral volume and white 
matter structure. 2020 ISMRM Virtual Conference & Exhibition. Abstract. 
Accepted – Online Poster Presentation. 

 



97 

 

3.! Poirier SE, Kwan BY, Jurkiewicz M, Steven D, Pavlosky W, Romsa J, Prato FS, 
Thompson RT, Burneo J, Thiessen JD, Anazodo UC (2019). FDG PET-Guided 
Diffusion Tractography Reveals White Matter Abnormalities Around the 
Epileptic Focus in MRI-Negative Epilepsy and Can Be Used to Further Enhance 
Epilepsy Surgical Evaluation. 2019 Eastern Great Lakes Chapter Society of 
Nuclear Medicine and Molecular Imaging (EGLSNMMI) Annual Meeting, 
London, Canada. Abstract. Accepted – Oral Presentation. 

 
4.! Anazodo UC, Dacey MT, Poirier S, Suskin N, McIntyre C, St. Lawrence KS, 

Shoemaker JK (2019). Cardiac rehabilitation is a potential potent neuromodulator 
of disrupted white matter macrostructure in adults with coronary artery disease. 
JCBFM Volume 39 Issue 1_suppl, PB03-F07. Abstract. Published. DOI: 
https://doi.org/10.1177/0271678X19851020 

 
5.! Poirier SE, Kwan BY, Jurkiewicz M, Steven D, Pavlosky W, Romsa J, Prato FS, 

Thompson RT, Burneo J, Thiessen JD, Anazodo UC (2019). PET-guided DTI 
investigation of white matter integrity to improve surgical planning in medically 
refractory epilepsy. Clinical Neurological Sciences (CNS) Departmental Research 
Day, London, Canada. Abstract. Accepted – Oral Presentation.  

 
6.! Poirier SE, Kwan BY, Jurkiewicz M, Steven D, Pavlosky W, Romsa J, Prato FS, 

Thompson RT, Burneo J, Thiessen JD, Anazodo UC (2019). PET-guided DTI 
analysis of white matter integrity to improve epilepsy surgical planning. London 
Health Research Day (LHRD), London, Canada. Abstract. Accepted – Poster 
Presentation. 

 
7.! Poirier SE, Kwan BY, Jurkiewicz M, Steven D, Pavlosky W, Romsa J, Prato FS, 

Thompson RT, Burneo J, Thiessen JD, Anazodo UC (2019). PET-guided DTI 
tractography reveals white matter abnormalities in medically refractory epilepsy: 
applications to epilepsy surgical planning. 17th Annual Imaging Network Ontario 
(ImNO) Symposium, London, Canada. Abstract. Accepted – Poster Presentation. 

 
8.! Poirier SE, Thiessen JD, Anazodo UC (2019). Empirical evaluation of a DTI 

tractography pipeline using whole-brain tractograms from a white matter 
phantom. 17th Annual Imaging Network Ontario (ImNO) Symposium, London, 
Canada. Abstract. Accepted – Oral Presentation. 

 
9.! Anazodo UC, Poirier S, Kwan, BYM, Pavlosky W, Steven D, Romsa J, Prato F, 

Thompson T, Burneo J, Thiessen JD (2017). PET-guided structural connectivity 
analysis of DTI applied to neurosurgical planning in medically refractory 
epilepsy. ISMRM-SNMMI Co-Provided Workshop on PET/MRI, Chicago, USA. 
Abstract. Accepted – Poster Presentation. 

 
10.!Anazodo UC, Poirier S, Kwan BYM, Pavlosky W, Moran G, Thompson RT, 

Stevens D, Prato FS, Burneo J, Thiessen JD (2016). Mapping structure and 
functional connectivity in hypometabolic brain regions of TLE patients using 



98 

 

simultaneous PET/MRI. Epilepsy Research Day, London, Canada. Abstract. 
Accepted – Oral Presentation. 

 
11.!Wang BT, Poirier SE, Guo T, Parrent AG, Peters TM, Khan AR (2016). 

Generation and evaluation of an ultra-high-field atlas with applications in DBS 
planning.  SPIE Medical Imaging, 97840H. Paper. Published. DOI: 
https://doi.org/10.1117/12.2217126 

 
 
 
 


	A Hybrid PET/MRI Brain Connectivity Approach for Improving Epilepsy Surgical Evaluation
	Recommended Citation

	Microsoft Word - StefanPoirier-MScThesisFinal_WORD.docx

