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Abstract 

With the rising incidence of diabetic retinopathy (DR), there is an urgent need for 

novel therapies. Presently, several altered metabolic pathways have been implicated in 

the pathogenesis of DR. Recent advances in genomic technologies have identified 

considerable epigenetic alterations that also contribute to DR progression. Long non-

coding RNAs (lncRNAs; >200 nucleotides), critical regulators of gene expression, are 

aberrantly expressed in DR and have not been comprehensively characterized. Our 

microarray analyses using human retinal endothelial cells (HRECs) revealed 

thousands of differentially expressed lncRNAs following high glucose (HG) exposure, 

with profound increases in the lncRNAs MALAT1 and HOTAIR. Using multiple 

techniques, I sought to elucidate the roles of these two molecules in inflammation and 

angiogenesis during DR. My findings demonstrated that MALAT1 is upregulated in 

HG and in diabetic animals, and regulates inflammatory transcripts (IL-6 and TNF-α) 

through its association with polycomb repressive complex 2 (PRC2). Vitreous humors 

from diabetic patients revealed parallel findings. DNA methylation array analyses did 

not demonstrate significant alterations at CpG sites across the MALAT1 gene, but 

inhibition of DNA methyltransferases significantly increased MALAT1 and associated 

inflammatory transcripts. Furthermore, HG upregulated HOTAIR and angiogenic 

transcripts (VEGF-A and ET-1) in HRECs and promoted an association with RNA-

binding proteins, P300 and EZH2. HOTAIR knockdown reduced the expressions of 

angiogenic cytokines, EZH2 and P300. HG did not induce significant hypomethylation 

in HOTAIR CpG regions, while inhibitors for histone methylation, DNA methylation 

and HOTAIR significantly impacted VEGF-A and ET-1 expressions. HOTAIR 

expressions were elevated in the vitreous of DR patients and in the retinas of diabetic 

rodents. HOTAIR knockdown reduced HG-induced oxidative DNA and mitochondrial 

damage. The studies were further extended to delineate how these epigenetic 

mechanisms influence the regulation of a specific vasoactive factor, ET-1, in DR. 

DNA methylation array demonstrated hypomethylation in the ET1 promoter in HG. 

Blocking DNA methylation or histone methylation significantly increased ET-1 

mRNA expressions in control and HG-treated HRECs; while, knocking down 

pathogenetic lncRNAs (MALAT1 and HOTAIR) subsequently prevented glucose-
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induced ET-1 upregulation. Collectively, I uncovered a novel epigenetic paradigm that 

demonstrates a complex web of epigenetic mechanisms that regulate glucose-induced 

transcription of molecules in important pathological processes (inflammation and 

angiogenesis) during DR. 

Keywords

Diabetic retinopathy; retinal microvascular abnormalities; metabolic pathway 

abnormalities; reactive oxygen species; epigenetics; DNA methylation; histone 

modifications; long non-coding RNAs; inflammation; angiogenesis; MALAT1; 

HOTAIR; endothelin-1. 
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Summary for Lay Audience 

Background: Diabetic retinopathy (DR) is a serious eye complication that arises from 

both type 1 and 2 diabetes and is the leading cause of blindness among working-age 

adults in North America. To develop a better understanding of the processes involved 

in the advancement of DR, researchers are currently focusing on the ‘epigenetic 

phenomena’, which include any process that changes gene activity without making 

changes to the DNA sequence. In recent years, the field of epigenetics has shown that 

a special group of RNA molecules called long non-coding RNAs (lncRNAs) may be 

controlling many processes in cancer and heart disease. Although the expressions of 

several lncRNAs have been shown to increase in diabetes, the exact mechanisms of 

how certain lncRNAs contribute to the progression of DR are not known. 

Hypothesis: In this study, we will test the hypothesis that two unique lncRNAs, 

known as MALAT1 and HOTAIR, control inflammation and abnormal blood vessel 

growth that take place in diabetic retinopathy. 

Methods: We will investigate the expressions of MALAT1 and HOTAIR using the 

vitreous fluid from the eyes of diabetic patients (type 1 and type 2) and study the 

functions of these lncRNAs in different cell culture and animal models. 

Expected Results and Significance: Results from this study will provide a better 

understanding on how lncRNAs can control inflammation and blood vessel growth in 

DR. We may use our findings to develop better therapies that can specifically target 

these disease-causing lncRNAs and ultimately reduce inflammation and abnormal 

blood vessel growth from happening, which are associated with severe diabetic eye 

damage. 
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Chapter 1 i 

1 Diabetic retinopathy 

With nearly 642 million people projected to live with diabetes in the year 2040, the 

risk for developing diabetes-related complications will drastically increase [1]. 

Diabetes mellitus (DM) is a chronic degenerative metabolic disease that is 

characterized by sustained hyperglycemia. Hyperglycemia correlates with a number of 

DM-related complications and is one of the preeminent factors for causing vascular 

damage in the human body [2, 3, 4]. The majority of diabetic complications can be 

viewed as either microvascular disease (small vascular injury) or macrovascular 

disease (large vessel injury) [4, 5]. Diabetic retinopathy (DR) remains the most 

prevalent chronic microvascular complication of DM [6, 7]. This debilitating ocular 

condition is also the leading cause of blindness in the working-age population in 

industrialized countries [7, 8]. The relationship between DR and diabetes has been 

reported in several studies with the majority of type 1 diabetic patients and over 60% 

of patients with type 2 DM developing evidence of DR within 20 years of diagnosis 

[9-14]. With the incidence of visual impairment due to DR strongly related to the 

duration of diabetes, DR remains asymptomatic to patients until the pathology 

significantly progresses [14, 15]. In this chapter, I will first highlight both clinical and 

i
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pathological features of DR and then discuss our current understanding of the 

mechanisms involved in the pathogenesis of DR in diabetes. 

1.1 Clinical features 

To impede the progression of non-vision threatening DR to vision-threatening DR, 

distinct clinical features must be noted in the early stages of DR in order to implement 

appropriate treatments plans. 

1.1.1    Non-proliferative diabetic retinopathy (NPDR)  
The earliest stage of disease progression in DR is known as non-proliferative DR 

(NPDR). Although hyperglycemia-induced damage to endothelial cells and capillary 

pericytes in the retinal microvasculature are associated with the preclinical stages of 

DR, the loss of these cells underlies a number of clinical features in NPDR. These 

clinical features are characterized by microvascular abnormalities that consist of 

microaneurysms, intraretinal hemorrhages (dot and blot), increased retinal vascular 

permeability, nerve fiber layer infarcts (cotton wool spots), greater presence of 

intraretinal lipid deposits (hard exudates), and venous beading [16-19]. NPDR can be 

categorized into mild, moderate, severe, or very severe stages based upon the absence 

or presence of the aforementioned clinical features (Figure 1.1). In the natural course 

of DR, the severity of retinal vascular occlusion increases, which in turn leads to 

impaired perfusion and retinal ischemia [19, 20]. The sequelae of increasing ischemia 

include various venous abnormalities and considerable retinal vascular leakage that is 

markedly distinguished by the increased presence of hard lipid exudates and retinal 

hemorrhages [20]. Once the progression of these features surpasses clinically defined 

thresholds, severe NPDR is diagnosed. During this stage, the risk of progression to 

proliferative diabetic retinopathy heightens. Among the severe NPDR patients, nearly 

50% will develop proliferative diabetic retinopathy (PDR) within one year and 15% 

will develop high-risk PDR [21, 22, 23]. Whereas, 75% of patients classified with very 

severe NPDR are at risk of developing PDR within one year and 45% will become 

high-risk PDR during this period [22, 23]. 
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Figure 1.1. Respective clinical features of the various stages in diabetic retinopathy. 

Diabetic macular edema, not depicted, can occur at any point during DR progression, which is 

characterized by retinal thickening or hard intraretinal lipid exudates near the macula. 

Reproduced from Pathogenetic Mechanisms in Diabetic Retinopathy: From Molecules to 

Cells to Tissues (p. 213) by S. Biswas and S. Chakrabarti, 2017, Springer International 

Publishing. 

 

1.1.2    Proliferative diabetic retinopathy (PDR)  
Once diabetic retinopathy advances to the proliferative stage, visual loss becomes 

imminent if left untreated. In order to compensate for the sustained retinal ischemia, 

one of the distinguishing clinical hallmarks of PDR is the presence of 

neovascularization. The formation of abnormal vessels in the retinal circulation may 

occur through both endothelial cell migration and proliferation on or near the optic 

disc (neovascularization of the disk) or elsewhere in the retina (neovascularization 

elsewhere), on the iris (neovascularization of the iris), or into the vitreous cavity of the 

eye [24, 25]. Due to the fragility of the new vessels, the vessels become more 
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susceptible to bleeding, leakage, fibrosis, and contraction, which can result in vitreous 

hemorrhaging, retinal tears, and retinal detachment—crippling ocular complications 

that inevitably lead to vision loss [26-29]. Further, neovascularization of the iris, also 

known as rubeosis iridis, and neovascularization of the anterior chamber angle can 

lead to neovascular glaucoma, a painful ocular disease that may even necessitate 

enucleation of the affected eye [30].  

1.1.3    Diabetic macular edema (DME)  
Diabetic macular edema (DME) represents a common vision-threatening complication 

of DR that is defined as retinal thickening in the macular area [31-34]. Although DME 

has three severity levels, DME can occur at any point during DR progression and 

promotes the breakdown of the blood-retinal barrier via microaneurysms and 

hyperpermeability of capillaries—causing lipids and plasma to be leaked into the 

macula [31, 32, 33]. The increased presence of hard lipid exudates in close proximity 

or at the center of the macula is associated with clinically significant macular edema 

[34]. 

1.2 Pathological features of DR 

There are five distinct vascular lesions underlying the DR response: dysfunctional 

pericytes and endothelial cells, basement membrane thickening, retinal capillary non-

perfusion, retinal neovascularization, and breakdown of the blood retinal barrier. Each 

vascular disorder associated with DR is initiated by the microangiopathic properties of 

the diabetic process, which mainly occurs through numerous growth factors that are 

altered by the changing ocular environment [35]. In this section, we will discuss the 

pathological features of DR in detail as the presence of one or more of these vascular 

disorders will help us understand the pathogenetic mechanisms associated with DR. 

1.2.1    Dysfunctional endothelial cells and pericytes  
One of the earliest pathological features that occur in DR are alterations in the 

microvasculature, which consist of modifications in cellular structure [35, 36]. Two 

essential cell types in the microvasculature are pericytes and endothelial cells, and the 
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interaction between these cells is pivotal in the proper regulation of retinal 

hemodynamics and vascular function [36, 37]. With endothelial cells comprising the 

endothelium, which is the thin monolayer covering found in the interior surface of all 

blood vessels, retinal endothelial cells must ensure that proper nutritional requirements 

and protection of the ocular tissues, critical to vision are met [38, 39]. The general 

structure of the endothelium in the retinal microvasculature consists of adjoining 

endothelial cells that are linked by adherens junctions and tight junctions, which 

constitute much of the blood-retinal barrier (BRB) [40, 41, 42]. An essential 

prerequisite in the development of diabetic retinopathy is the loss of endothelium 

integrity caused by chronic hyperglycemic exposure. Following endothelial cell 

damage, the interendothelial junctions are unable to maintain the precise permeable 

properties that necessitate proper BRB function [43]. Therefore, the presence of 

dysregulated endothelial cell-to-cell junctions in the BRB allows for the extravasation 

of plasma constituents into the retina. Moreover, diabetic animal models have 

demonstrated that the apoptosis of retinal endothelial cells is enhanced by the 

activation of the Fas/Fas ligand (FasL) pathway upon leukocyte adhesion to the 

vascular endothelium [44].  

In the context of maintaining vascular homeostasis, pericytes are important 

multifunctional cells that serve to stabilize blood vessels, form the BRB, regulate 

blood flow, and are involved in angiogenesis, endothelial proliferation, and leukocyte 

recruitment [45, 46]. Pericytes are situated on the abluminal surface of blood 

capillaries and are morphologically characterized as cells that possess finger-like 

projections, which extend along the capillary wall and wrap around endothelial cells 

[47, 48, 49]. While there are several intricate signalling pathways involved in the 

interaction between pericytes, astrocytes, and endothelial cells, the intercellular 

communication between endothelial cells and pericytes appears to determine the 

presence of pericytes on retinal microvessels [50]. One prominent signal transduction 

pathway utilized between pericytes and endothelial cells is the platelet-derived growth 

factor-BB-platelet-derived growth factor receptor subunit B pathway (PDGF-BB-

PDGFRß) [50, 51]. During angiogenic or hypoxic stress, endothelial cells secrete 

PDGF-BB, which binds to the pericyte-specific PDGFRß with a strong affinity [52, 
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53]. Upon binding, the receptor is dimerized, autophosphorylated, and activated, 

which then further initiates the downstream cascade of PDGF-BB signalling, leading 

to pericyte survival, migration, proliferation, attachment, as well as leukocyte 

trafficking [54, 55]. In the case of diabetic retinopathy, both in vitro and in vivo studies 

have shown that hyperglycemic stress induces dysfunctional PDGF-BB-PDGFRß 

signalling, consequently leading to pericyte apoptosis and failure of proper pericyte 

recruitment [55, 56, 57]. The inability to replace damaged retinal pericytes will 

ultimately lead to aberrant retinal vascular morphologies, increased development of 

microaneurysms, endothelial cell hyperplasia, and blood-retinal barrier breakdown 

[58, 59]. Nevertheless, the loss of pericytes coupled with endothelial cell apoptosis 

contributes to the formation of acellular, nonperfused capillaries, which are tubes of 

basement membranes devoid of cell nuclei [44].  

1.2.2    Basement membrane thickening  
The vascular basement membrane (BM) is a thin extracellular sheet-like structure, 

comprised of numerous components (including types IV and V collagen, laminin, 

fibronectin (FN), nidogen, heparan and chondroitin sulfate proteoglycans), that exists 

between pericytes and endothelial cells [60]. The methodical arrangement of the BM 

components and molecular interactions between them manages cell survival and 

provides both a selective permeability barrier and physical support for cell attachment 

[61-64]. Early induction of hyperglycemia can provoke BM thickening in retinal 

capillaries through accelerated synthesis and decreased degradation of BM 

components, which can contribute to the occlusion of capillaries [64, 65]. More 

specifically, hyperglycemic conditions heighten the mRNA expression of FN, laminin 

(subunits beta-1 and gamma-1), and types IV (alpha-1 and alpha-2), and V collagen in 

the retinal BM of both diabetic animals and patients, which can be detected long 

before the onset of morphological lesions due to DR [65-68]. Further, any alterations 

in the vascular BM structure or its components may have detrimental effects on its 

ability to prevent vascular permeability, consequently leading to the development of 

macular edema [69, 70]. Since the careful balance between synthesis and degradation 

of BM components to sustain proper BM turnover is disrupted in DR, an 
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understanding of the mechanisms perpetuating BM thickening and accumulation of 

BM components is essential and will be later described in this chapter. The underlying 

mechanisms possibly include increases in protein kinase C (PKC) activity, polyol 

pathway flux, inflammation, advanced glycation end-product (AGE) accumulation, 

endothelin activity, and growth factor activity [71-78]. 

1.2.3    Breakdown of the blood-retinal barrier  
The preservation of the blood-retinal barrier (BRB) is a mandatory requirement for 

proper vision. Compromised BRB integrity can result in numerous ocular pathologies 

that can have irreparable damage to one’s visual perception; therefore, elucidation of 

the BRB structure is required. The BRB consists of both an inner and outer retinal 

barrier that serves to maintain a specialized environment for the neural retina [79]. In 

the inner BRB, retinal capillary endothelial cells form the inner lining of microvessels 

and are accompanied by pericytes, astrocytes, and glial cells (Müller cells) (shown in 

Figure 1.2) [80]. These endothelial cells are linked together via junctional complexes 

that facilitate the transport of highly selective molecules between the circulating blood 

and the neural retina through either transcellular or paracellular routes [81]. Retinal 

pericytes and astrocytes also interact with the endothelial cells to provide vascular 

integrity [82]. On the contrary, the outer BRB is comprised of retinal pigment 

epithelial cells that are connected by tight junctions; the primary role of the outer BRB 

is to sustain homeostasis in the outer retina [83]. During DR, however, hyperglycemic 

conditions result in both structural and functional alterations to the barrier, which 

subsequently leads to both inner and outer BRB breakdown (Figure 1.3). Following 

BRB damage, large amounts of plasma protein begin to extravasate into the neural 

interstitium, producing high oncotic pressures that will eventually contribute to 

macular edema [84]. As a result of chronic hyperglycemia, several known factors are 

implicated in BRB disruption: dysfunctional endothelial cells, pericytes, Müller cells, 

and astrocytes, increased levels of VEGF, hypoxia, oxygen-free radicals, 

inflammatory mediators, advanced glycated end products, and protein kinase C 

activity [85]. 
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1.2.4    Retinal capillary non-perfusion  
Satisfying the high metabolic demands of the retina requires the maintenance of 

adequate tissue perfusion, which ultimately preserves retinal function. The cessation of 

blood flow to certain areas of the retina is known as capillary non-perfusion (CNP) 

and this phenomenon is associated with occluded vessels, a consequence of glucose-

induced retinal vascular damage [86]. Chronic retinal ischemia is manifested as large 

areas of CNP, which is the underlying cause of retinal neovascularization [87]. In the 

severe stages of non-proliferative DR (NPDR), the considerable presence of hypoxic 

regions resulting from retinal microvascular abnormalities can stimulate the retinal 

endothelial cells to release proinflammatory cytokines [88]. The subsequent release of 

cytokines perpetuates retinal hypoxia by recruiting and activating leukocytes, which 

adhere to the vascular endothelium—contributing to retinal capillary impedance [89, 

90]. In the case of chronic retinal hypoxia, the heightened activation of several 

abnormal biochemical pathways induces the expression of numerous vasoactive 

factors [91]. These factors are instrumental in capillary dropout and the development 

of retinal neovascularization—a distinctive clinical feature of proliferative DR (PDR) 

[92]. Although the exact mechanisms of how retinal ischemia elevates the expression 

of vasoactive factors still require further elucidation, studies within the past decade 

have revealed that the activation of specific transcription factors increase a variety of 

vasoactive mediators implicated in the progression of DR [93-98]. 
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Figure 1.2. An illustration depicting a stable inner blood-retinal barrier in a healthy 

patient. The integrity of the endothelium is maintained by the presence of functional adherens 

junctions and tight junctions. Gap junctions authorize the passage of small molecules, and are 

predominantly located between pericytes and endothelial cells. Furthermore, Müller cells 

provide mechanistic support to the neural retina and also sustain balance of the extracellular 

environment in the retina. While, retinal astrocytes are involved in neuronal signaling and 

assist in managing the barrier properties of endothelial cells. Reproduced from Pathogenetic 

Mechanisms in Diabetic Retinopathy: From Molecules to Cells to Tissues (p. 217) by S. 

Biswas and S. Chakrabarti, 2017, Springer International Publishing. 
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Figure 1.3. An illustration depicting an unstable inner blood-retinal barrier in a patient 

with advanced proliferative diabetic retinopathy. Chronic hyperglycemia compromises 

BRB integrity through numerous factors, which are depicted by letters in this figure: (A) 

Endothelial dysfunction, (B) Pericyte degeneration/apoptosis, (C) Basement membrane 

thickening, (D) Retinal capillary non-perfusion, (E) Neural inflammation and dysfunctional 

astrocytes, and (F) Retinal neovascularization. Reproduced from Pathogenetic Mechanisms in 

Diabetic Retinopathy: From Molecules to Cells to Tissues (p. 218) by S. Biswas and S. 

Chakrabarti, 2017, Springer International Publishing.  

 

1.2.5    Retinal neovascularization  
Angiogenesis is a critical physiological process in growth, development, and wound 

repair that induces the neogenesis of blood vessels from pre-existing vessels. 

However, in the case of DR, pathological retinal angiogenesis (retinal 

neovascularization) is a detrimental complication to vision. As observed in the mid-to 

late-1900s, retinal neovascularization (NV) transpires parallel to areas of CNP 

supporting the notion that vasoactive factors released from ischemic tissues are pivotal 



11 

 

in the development of pathological angiogenesis [99, 100, 101]. The discovery of 

hypoxia-related transcription factors and their role in mediating angiogenesis has shed 

more insight into the complicated pathogenesis of DR. The hypoxia-inducible factor 

(HIF)-1α protein is one such transcription factor that is significantly accumulated in 

the presence of low oxygen levels and subsequently upregulates numerous hypoxia-

regulated gene products [102, 103]. Under normoxia, the tumor suppressor protein, 

von Hippel-Lindau (VHL) binds to HIF-1α, targeting it for degradation through the 

ubiquitin-proteasome pathway [104, 105]. In contrast, hypoxic conditions prevent 

HIF-1α and VHL interaction, which subsequently results in HIF-1α to cumulate, 

dimerise with HIF-1β, and translocate into the nucleus where it binds to the hypoxia-

response elements in the promoters of vasoactive genes [106]. Following the 

activation of transcription, multiple pro-angiogenic factors are then upregulated 

including vascular endothelial growth factor (VEGF), placental growth factor (PLGF), 

stromal derived growth factor (SDF-1), platelet-derived growth factor (PDGF-B), and 

their receptors, and angiopoietin-2 (Ang-2) [107, 108]. In particular, VEGF not only 

stimulates the development of endothelial cells, but it also induces both the 

disassembly of endothelial cell-to-cell junctions, which drives vascular permeability, 

and the sprouting of new vessels in combination with Ang-2 [108, 109]. Before 

sprouting vessels develop, specific subsets of endothelial cells differentiate into either 

tip or stalk cells [110]. The sprouting process is controlled through the antagonistic 

actions of delta-like ligand 4 (Dll4) and Jagged1 ligands in the hypoxia-induced Notch 

signalling pathway [111-114]. As Notch-Dll4 and VEGF-induced signalling increases, 

the specialized endothelial tip cells direct the sprout vessel growth along a specific 

VEGF gradient, comprised of VEGF-A that is detected by VEGF receptor-2 expressed 

on the filopodia of these cells [115]. Although tip cells do not proliferate, the 

proliferative activity of stalk cells is driven by the availability of VEGF, Ang-2, and 

additional growth factors [116]. Together, the interaction between tip and stalk cells 

and the surrounding pro-angiogenic factors stimulate the growth of new blood vessels 

in the retina. It is important to note that within the retina, several cell types can 

produce VEGF: endothelial cells, pericytes, Müller cells, astrocytes, and retinal 

pigment epithelial cells [150]. To further emphasize the role of VEGF in DR, current 
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treatment of DME using intravitreal injections of anti-VEGF agents have met with 

success.  

1.3 Biochemical and molecular mechanisms involved in 

the pathogenesis of DR 

Hyperglycemic insult gives rise to a diverse number of biochemical pathways that are 

implicated in the pathogenesis of DR. As our knowledge over the years has 

significantly developed in regard to the molecular mechanisms attributed to DR, more 

theories begin to emerge and therefore expand and enrich our knowledge of 

preexisting DR mechanisms. Currently, as shown in Figure 1.4, several 

mechanisms/pathways that have an involvement in hyperglycemia-induced DR 

progression have been proposed: polyol pathway, protein kinase C pathway, 

hexosamine pathway, advanced glycation end-products formation, retinal renin-

angiotensin system, and inflammatory mechanisms that include neural-and-immuno-

inflammatory responses. 

1.3.1    Polyol Pathway  
Under normal glucose concentrations in non-diabetic patients, glucose metabolism 

utilizing the polyol pathway comprises only a small portion of total glucose use [117]. 

However, the elevation of intracellular glucose concentrations under diabetic 

conditions activates increased glucose flux through this pathway [118, 119]. Aldose 

reductase, the initial and NAPDH-dependent enzyme present in the polyol pathway, 

plays a critical role in the reduction of glucose to sorbitol [117, 118, 119]. Further 

metabolization of sorbitol is completed by sorbitol dehydrogenase, using NAD+ as a 

cofactor, which allows for the formation of fructose [120]. Hyperglycemic conditions 

serve as a catalyst for enhancing aldose reductase activity, subsequently leading to 

sorbitol agglomeration [119, 120]. Although the polyol pathway and its exact 

mechanism in DR pathogenesis still remains inconclusive, several hypotheses have 

been reported that can ultimately commence and augment cellular damage 

mechanisms after the activation of the polyol pathway: changes in intracellular 
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tonicity (osmotic stress) via the accumulation of sorbitol and fructose, development of 

advanced glycation end-product precursors (methylglyoxal, fructose-3-phosphate, and 

3-deoxyglucosone), decreased Na+/K+ ATPase activity, diminished cellular anti-

oxidant defense mechanisms as a consequence of reduced glutathione levels, protein 

kinase C (PKC) activation by elevated diacylglycerol (DAG) formation, and increased 

generation of reactive oxidant species (ROS) through the hyperglycemic activations of 

poly (ADP-ribose) polymerase and NADH oxidase [121-127].  

 
Figure 1.4. Chronic hyperglycemia in DR gives rise to abnormalities in diverse 

biochemical pathways, which ultimately contribute to and advance DR pathogenesis. The 

application of a large initial stimulus, such as increased glucose levels, can activate a chain of 

reactions that incorporate unique pathways: polyol, hexosamine, neural-and-immuno-

inflammatory, retinal renin-angiotensin, advanced glycation end-products, and protein kinase 

C. The “*” in this figure signifies that reactive oxygen species (ROS) may regulate these 

pathways to some extent. Reproduced from Pathogenetic Mechanisms in Diabetic 

Retinopathy: From Molecules to Cells to Tissues (p. 221) by S. Biswas and S. Chakrabarti, 

2017, Springer International Publishing. 
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1.3.2    Protein Kinase C (PKC) Pathway  
As hyperglycemia elevates DAG levels via the de novo pathway, the subsequent 

elevation of this intracellular messenger activates several isoforms in the PKC family 

that consists of serine/threonine kinases. More specifically, both in vitro and in vivo 

experiments have shown that the hyperglycemic activation of PKC-β can mediate 

VEGF-A levels and increase vascular permeability by phosphorylating endothelial cell 

tight junction proteins. These tight junction proteins are then targeted for ubiquitin-

mediated protein degradation—contributing to blood-retinal barrier breakdown [128, 

129]. PKC-β is also involved in altering nitric oxide (NO) production, endothelial 

nitric oxide synthase (eNOS) expression, and endothelin-1 (ET-1) that consequently 

supports abnormal retinal hemodynamics [130, 131]. While, on the other hand, 

hyperglycemic activation of PKC-δ and Src homology-2-domain-containing 

phosphatase-1 (SHP-1) has been reported to induce retinal pericyte apoptosis through 

the nuclear factor-kappa B (NF-κB) signalling pathway [132]. The combined effects of 

hyperglycemic stimulus and PKC-δ activation can additionally provoke increased 

ROS generation, which will have detrimental consequences on retinal function [130-

133]. Furthermore, the link between PKC activation and increased mitogen-activated 

protein kinase (MAPK) activity has been established—suggesting that the interplay 

between several PKC isoforms and MAPK activity can lead to subsequent 

phosphorylation of numerous transcription factors that heighten the expression of 

multiple stress-related genes associated with DR pathogenesis [134]. 

1.3.3    Hexosamine Pathway  
During intracellular glucose metabolism, the redirection of fructose-6-phosphate from 

the glycolytic pathway to the hexosamine pathway (HSP) can ultimately induce 

increased transcription of pro-inflammatory cytokines, insulin desensitization, and 

oxidative stress—all of which are prominent features contributing to retinal neuronal 

apoptosis [135-138]. Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the 

first and rate-limiting enzyme present in the HSP that catalyzes the conversion of 

fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate, 

respectively—preparing their entry into the HSP [139]. After a series of conversions, 
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the major HSP end product is uridine diphosphate-N-acetylglucosamine, which 

allosterically inhibits GFAT and serves as an important substrate for O-linked N-

acetylglucosamine transferase to facilitate the process of O-linked glycosylation on the 

serine and threonine residues of nucleocytoplasmic proteins [139-142]. In the context 

of diabetes, hyperglycemia elevates both HSP flux and GFAT activity, which leads to 

post-translational over modifications and subsequently alters the expression of 

numerous genes implicated in DR pathogenesis. After all, O-linked glycosylation can 

target transcription factors, signalling molecules, cofactors, and even RNA polymerase 

II [143, 144, 145]. Although O-linked glycosylation may compete with 

phosphorylation for the specific serine and threonine sites on a protein, 

hyperglycemia-induced HSP activation has shown to elevate O-linked glycosylation 

and reduce serine and threonine phosphorylation of the transcription factor Sp1 [146]. 

The successive glycosylation of Sp1 additionally increases the transcription of 

transforming growth factor-beta1 (TGF-β1) and plasminogen activator inhibitor-1 

(PAI-1)—assisting DR development [146, 147].  

1.3.4 Formation of Advanced Glycation End-Products 

(AGEs) 
The perpetual exposure of hyperglycemia to the retina can cause the formation and 

build-up of advanced glycation end-products (AGEs), which participate in endothelial 

dysfunction, chronic inflammation, BRB breakdown and retinal neuronal degeneration 

through a variety of mechanisms [148, 149]. The formation of AGEs is accomplished 

in a series of sequential chemical reactions that initially begins with the non-enzymatic 

interaction between carbonyl groups of intracellular glucose molecules (and other 

reducing sugars) and the free amino groups of intracellular proteins [150]. As a result 

of this interaction, an unstable compound known as a Schiff base is formed and then 

by molecular rearrangement, a more stable compound (an Amadori product) is 

constructed that later metabolizes to AGEs (an irreversible compound) [150, 151, 

152]. Not only can the generation of AGEs modify and alter the function of 

intracellular proteins, but AGE precursors can also diffuse out of a cell and modify 

extracellular matrix components and their matrix receptors such as integrins, and 
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circulating plasma proteins that greatly contribute to retinal microvascular leukostasis 

[153-157]. The receptor for AGEs (RAGE) is ubiquitously expressed on multiple cell 

types and the activation of RAGE, upon the binding of AGE precursors, activates and 

enhances pro-inflammatory and pro-oxidant signal cascades involving MAPK, NF-κB, 

activator protein-1 (AP-1), Janus kinase/signal transducers and activators of 

transcription (JAK-STAT), phosphatidylinositol-3 kinase (PI3K), PKC, VEGF, and 

tumor necrosis factor- alpha (TNF-α) [158-163].    

1.3.5    Retinal Renin-Angiotensin System  
The systemic renin-angiotensin system (RAS) is responsible for regulating blood 

pressure and maintaining the balance of electrolytes. Within the last 30 years, research 

has revealed that local RAS exists in various tissues (including the retina) that are 

independent from the systemic RAS and play a role in sustaining local equilibrium 

[164]. In the eye, the localization of RAS components are found to be predominantly 

expressed on retinal microvessels (endothelial cells and pericytes), various glial cells 

(Müller cells, astrocytes, and microglia), neurons (ganglion cells), and in other 

structures, such as the choroid and ciliary epithelium [165]. In addition to their cellular 

localization, distinct local RAS components have been implicated in ocular 

pathogenesis. For example, studies have reported that DR patients have elevated 

plasma and intraocular concentrations of prorenin, renin, angiotensin II, and 

angiotensin-converting enzyme (ACE)—these levels additionally correlate with DR 

severity [166-169]. Furthermore, in vivo experiments have reported that DR may have 

an association with local RAS imbalances through the activation of the pro-

inflammatory RAS axis (comprised of ACE, renin, the renin receptor, and angiotensin 

II receptor type I) that promotes vasoconstriction and a subsequent reduction in the 

vasoprotective axis (comprised of ACE2, angiotensin-(1-7), and Mas) of RAS [170]. 

Although the retinal RAS signalling mechanisms in DR still require further 

elucidation, several studies have demonstrated that the activation of angiotensin II 

receptor type I by angiotensin II facilitates the upregulation of VEGF/VEGFR-2 

signalling [171, 172, 173]. This upregulation induces vascular permeability and retinal 

neovascularization that assists in BRB breakdown [171, 172, 173]. 
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1.3.6    Inflammatory Mechanisms  
Although acute inflammation is generally the body’s natural way of protecting tissues 

from physiological stress or pathological stimuli, chronic inflammation, however, can 

mediate tissue destruction, enhance fibrosis, and drive angiogenesis. The persistence 

of low-grade inflammation is a prominent feature of DR that is mediated by several 

inflammatory mechanisms that can facilitate retinal vascular damage and 

neovascularization. Nevertheless, insight into the mechanisms regulating immune-and-

neural-inflammation in DR pathogenesis is integral. 

1.3.6.1    Immuno-Inflammatory Response  
The immuno-inflammatory mechanisms involved in the ocular microenvironment 

remain ambiguous, as recent findings only allude to the complex interplay between the 

eye and the inflammatory system [174]. With the eye being an immune-privileged 

tissue, the presence of the inner and outer BRB allow the eye to create its own 

specialized microenvironment to suppress active inflammation and strictly regulate the 

activity of resident intraocular immune cells [174, 175]. The unique composition of 

the ocular immune microenvironment includes various immunosuppressive factors 

such as TGF-β2, alpha-melanocyte-stimulating hormone (α-MSH), neuropeptides, 

macrophage migration inhibitory factor (MIF), and vasoactive intestinal peptide (VIP), 

which restrict the actions of immune-competent cells (macrophages, microglial cells, 

dendritic cells, T-cells, and monocytes) [174-178]. During early NPDR stages, the 

chronic activation of pattern recognition receptors, such as RAGE and toll-like 

receptors expressed on immune-competent cells, can lead to the production of 

abnormal pro-inflammatory cytokines, upregulation of adhesion molecules, activation 

of other ocular resident immune cells, and increased retinal microvascular leukostasis 

[179]. More specifically, DR increases the production of several key ligands (includes 

high-mobility group box-1 (HMGB1) and AGEs) that greatly enhance RAGE 

activation in the retina [180]. Following activation, RAGE can stimulate MAPK and 

p38 signalling which in turn can trigger NF-κB transcription—contributing to pro-

inflammatory cytokine production and ROS generation [181]. Heightened levels of 

inflammatory cytokines can then recruit additional leukocytes (i.e., monocyte 
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chemoattractant protein-1 (MCP-1)) and stimulate VEGF-A activation, which 

upregulates the expression of adhesion molecules [182, 183]. Intercellular adhesion 

molecule-1 is one of the upregulated adhesion molecules expressed on the surface of 

retinal endothelial cells that facilitates the binding of leukocytes to the vascular 

endothelium [183]. Upon binding, leukocytes generate ROS and additional 

inflammatory cytokines that promote retinal vascular permeability—consequently 

jeopardizing BRB integrity [184]. After all, maintenance of BRB integrity is critical 

for the preservation of the intraocular anti-inflammatory immune environment.  

1.3.6.2    Neural Inflammation  
Neural inflammation plays a critical role in DR pathogenesis. The neural retina is 

separated from retinal blood supply by the inner and outer BRBs and is an extremely 

delicate nerve tissue that is mainly comprised of Müller cells, astrocytes, microglia, 

and retinal ganglion cells [185]. Macroglial cells, which include Müller cells and 

astrocytes, have critical functions in maintaining normal retinal physiology: ensuring 

appropriate neuronal functioning by contributing metabolic and physical support 

forming and maintaining BRB integrity, maintaining homeostasis in the extracellular 

environment, and regulating retinal blood flow, metabolic waste product removal, 

local immune responses, and retinal glucose metabolism [186]. In addition to 

macroglial cells providing a local immune response, microglial cells also play an 

important role in initiating and mediating appropriate intraocular immune responses. 

Microglial cells are mononuclear phagocytes that are derived from the bone marrow 

and represent the retinal innate immune cells as they use cytotoxic and phagocytic 

mechanisms to eliminate foreign materials in the eye and lack specificity and memory 

[187, 188]. On the other hand, retinal ganglion cells are involved in transmitting visual 

information to pertinent brain centers that constructs our vision [189]. DR ultimately 

alters the morphology and function of neural retinal components. For example, in the 

early stages of DR, Müller cells can become extremely responsive to the 

hyperglycemia-induced retinal changes and significantly contribute to the 

inflammatory environment by releasing VEGF and decreasing anti-angiogenic factors 

(such as pigment epithelium derived factor (PEDF)) to promote retinal vascular 
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permeability [190, 191]. Müller cells have also shown to induce RAGE activation, 

interleukin-1β (IL-1β), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin E2 

(PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) 

levels by numerous signalling pathways (including MAPK/NF-κB signalling) when 

exposed to high glucose in vitro—suggesting its roles in driving angiogenesis and 

furthering inflammation implicated in DR [190-194]. In regard to astrocytes, in vivo 

experiments have reported that astrocyte densities are significantly decreased in the 

retinas of diabetic rats and astrocytes can potentially excrete various inflammatory 

mediators (including TGF-α, COX-2, PGE2, and IL-1β) during hyperglycemic stress 

[195-199]. DR can also alter microglial morphology and induce microglial 

hyperactivity by RAGE activation—adding to the pro-inflammatory environment by 

releasing key inflammatory mediators [200, 201, 202]. Moreover, chronic 

hyperglycemia and accumulating levels of neurotoxic metabolites in the neuronal 

environment can induce apoptosis in retinal neurons by compromising the function of 

retinal ganglion cells [203]. 

1.4 Interconnection of the Pathways: Oxidative Stress 

Although chronic hyperglycemia can provoke the involvement of multiple abnormal 

biochemical pathways, research has revealed that these pathways are interconnected 

by mitochondrial-derived ROS [153,154]. In aerobic cellular respiration, NADH and 

FADH2 from the tricarboxylic acid (TCA) cycle are generated to donate electrons to 

specific complexes in the electron transport chain (ETC)—NADH provides electrons 

to complex I, while FADH2 supplies electrons to complex II [204]. The electrons from 

both of these complexes are then shuttled through coenzyme Q, complex III, 

cytochrome-C, and finally complex IV, where oxygen is reduced to water [205]. The 

transfer of electrons through these complexes generates energy that is utilized to build 

an electrochemical proton gradient across the inner mitochondrial membrane [206]. 

Energy acquired from the electrochemical gradient regulates the generation of ATP 

through ATP synthase [206]. In the case of diabetes, however, elevated intracellular 

glucose levels lead to increased glucose oxidation in the TCA cycle; therefore, 

producing a substantial amount of electron donors that are then transported to the ETC 
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[154]. Following the increase of electron donors, the voltage across the proton gradient 

rises until a critical threshold is attained, which subsequently impedes the electron 

transfer properties of complex III [207, 208] As a result of the complex III blockade, 

superoxides are constructed at an elevated rate; since, coenzyme Q donates the 

accumulated electrons to molecular oxygen [209]. The build-up of mitochondrial-

derived superoxides then creates breaks in the DNA strands that signals the activation 

for PARP [210, 211]. Consequently, activated PARP inhibits the activity of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a critical enzyme present in the 

cytosol and in the nucleus where it has a role in glycolysis and DNA repair, 

respectively [211, 212, 213]. The reduced capability of cytosolic GAPDH prevents 

glycolysis from completing, causing an aggregation of upstream glycolytic metabolites 

such as glucose, fructose-6 phosphate, fructose 1,6-biphosphate, and glyceraldehyde 

3-phosphate [154]. Depending on the biochemical pathway and its respective 

glycolytic metabolite, the metabolites are subjected to additional modifications by 

pathway-specific enzymes that ultimately activate the major biochemical pathways 

previously mentioned in section 3 (shown in Figure 1.5). Nevertheless, although 

experimental data supports that hyperglycemia activates several downstream 

biochemical pathways and cellular aberrations that contribute to the pathogenesis of 

DR, accumulating research within the last three decades is beginning to demonstrate a 

strong role of epigenetics in such processes [214]. 
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Figure 1.5. Effects of reactive oxygen species (ROS) on a retinal endothelial cell and the 

association of ROS with other biochemical pathways implicated in the pathogenesis of 

diabetic retinopathy. To summarize, the presence of high glucose stimulates the increased 

production of mitochondrial ROS, which induces breaks in DNA strands and activates poly 

(ADP-ribose) polymerase (PARP). As a consequence of PARP activation, glyceraldehyde 3-

phosphate dehydrogenase activity is significantly reduced due to its interactions with PARP. 

Dysfunctional glyceraldehyde 3-phosphate dehydrogenase results in the accumulation of 

glycolytic metabolites upstream of this enzyme, which ultimately activates several 

biochemical pathways. Note, the endothelial junctional complexes, the retinal renin-

angiotensin system, and the neural-and-immuno-inflammatory mechanisms are not shown in 

this figure. Furthermore, there are additional mechanisms of ROS generation that can 

subsequently contribute to cellular dysfunction. This figure only illustrates one of the ROS 

mechanisms in retinal endothelial cells. Reproduced from Pathogenetic Mechanisms in 

Diabetic Retinopathy: From Molecules to Cells to Tissues (p. 222) by S. Biswas and S. 

Chakrabarti, 2017, Springer International Publishing. 
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1.5 ‘Metabolic Memory’ and the Rise of Epigenetics 

Despite improving glycemic control, the early exposure of hyperglycemia can still be 

implicated in late complications and disease progression [215, 216, 217]. This 

phenomenon is known as “metabolic memory” or “legacy effect” and was documented 

in the Diabetes Control and Complications-Epidemiology of Diabetes Interventions 

and Complications Trial (DCCT-EDIC), and the United Kingdom Prospective 

Diabetes Study (UKPDS), respectively [215, 216, 217]. When diabetic patients are 

transiently exposed to hyperglycemia, metabolic abnormalities such as ROS 

generation, PKC activation, increased activation of the hexosamine pathway, AGEs 

formation, and RAGE activation can affect epigenetic mechanisms by altering the 

expression of target-specific genes in cells without modifying the DNA sequence [218, 

219]. These heritable epigenetic alterations can still facilitate DR pathogenesis despite 

the achievement of normoglycemia as epigenetic modifications can sustain constant 

activation of pro-inflammatory genes [220, 221]. The involvement of epigenetic 

changes in diabetes, cancer, and heart disease stresses the importance of understanding 

how epigenetic modifications lead to the manifestation of these diseases [221, 222, 

223]. Major epigenetic modifications that are being explored in depth include DNA 

methylation, histone modifications, and the activity of non-coding RNAs [224, 225].  

1.5.1    DNA Methylation  
Although the epigenetic modifications of DNA remain elusive, studies have reported 

that DNA methylation is typically associated with the silencing of gene transcription 

through the covalent addition of a methyl group on the fifth position of cytosine 

residues within CpG dinucleotide clusters (CpG Islands) [226, 227]. Moreover, the 

DNA methylation reaction involves the interaction between two enzymes that oppose 

each other: DNA methyltransferases (DMNTs) that create and sustain methylated 

DNA patterns, and DNA demethylases that remove methyl groups, such as the ten-

eleven translocase (TET) enzyme [228]. In the context of diabetes, increases in DMNT 

have been reported with DMNT1, a maintenance enzyme among the three major types 

of DMNT, activity heightened in retinal capillary cells [229]. Further, new research 
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has shown that TET2 is activated in diabetes and its activation demonstrates increased 

binding at the promoter region of matrix metalloproteinase-9 (MMP-9)—establishing 

a hypomethylated state in the MMP-9 promoter [230]. Due to the novelty of DNA 

methylation, the exact mechanisms of how the DNA methylation machinery assists 

DR pathogenesis remains unclear.  

1.5.2    Histone Modifications  
Histone modifications are one of the better-characterized epigenetic mechanisms in 

DR. The nucleosome is the fundamental subunit that allows for the composition of 

chromatin, a tightly packaged structure that contributes to the final structure of 

eukaryotic chromosomes. Individual nucleosomes consist of an octamer of histones, 

two molecules of each histone protein (H2A, H2B, H3, and H4), encased by 

approximately 147 base pairs of DNA [231, 232]. Nucleosomes are prone to rapid 

adjustments from external stimuli [231, 232, 233]. More specifically, the core histones 

possess N-terminal tails where a large number of post-translational modifications can 

occur by targeting the amino acid residues in this area [233, 234]. Below, we will 

focus on the most common covalent histone modifications associated with gene 

expression and transcription in DR: histone acetylation and histone methylation [235]. 

1.5.2.1    Histone Methylation  
In order for histone methylation to occur, histone methyltransferases (HMTs) are 

required to facilitate the transfer of methyl groups to amino acid residues including 

arginine and lysine residing in the N-terminal tails of histones [235, 236]. While, on 

the other hand, histone demethylases (HDMCs) possess the capacity to remove methyl 

groups from this area [237]. It is important to note that select amino acid residues 

(such as lysine) can be methylated using one, two, or three methyl groups [220, 237]. 

Depending on the type of stimulus present, the over-modifications performed by either 

HMTs or HDMCs on these amino acid residues will dictate chromatin accessibility to 

transcriptional factors that subsequently regulates the expression of specific genes and 

their respective translated products [231]. For example, studies have reported that the 

methylation of specific lysine residues, such as lysines 9 and 27 in histone H3 and 
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lysine 20 in histone H4 are associated with suppressed gene activity [236-239]. In 

contrast, methylation of lysines 4, 36, and 79 in histone H3 are associated with active 

gene regulation [236-239]. Moreover, epigenetic-related in vitro and in vivo 

experiments have demonstrated that diabetic conditions elevate the activity of lysine-

specific demethylase 1 (LSD1), a type of HDMC, that hypomethylates lysine 9 in 

histone H3 at the promoter region of the MMP-9 gene [240]. Following 

hypomethylation of lysine 9, this amino acid residue is then subjected to increased 

acetylation that promotes NF-κB transcription—contributing to elevated MMP-9 

activity that evokes retinal mitochondrial damage and apoptosis in retinal capillary 

cells [240]. Other hyperglycemic studies have also reported decreased activity of the 

manganese superoxide dismutase gene (SOD2) by increased methylation of lysine 20 

in histone H4, which subsequently increases retinal oxidative stress [241, 242]. 

Furthermore, a multimeric complex known as polycomb repressive complex 2 (PRC2) 

plays a critical role in epigenetic regulation as it is associated with gene suppression 

including microRNAs (miRNAs) by tri-methylating lysine 27 of histone H3 [243, 

244]. Previous work completed by our laboratory studied the role between PRC2 and 

miR-200b in DR, but we will discuss the detailed findings in the subsection discussing 

small non-coding RNAs.  

1.5.2.2    Histone Acetylation  
In addition to methylation, histones can also be acetylated. The acetylation process 

involves the interactions between histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) that facilitates either the addition or removal of acetyl groups 

to lysine residues, respectively [245, 246]. More specifically, the acetylation of lysines 

9, 14, 18, and 56 in histone H3 and lysines 5, 8, 13, and 16 in histone H4 are 

speculated to have a role in chromatin relaxation that augments transcription factor 

recruitment—subsequently contributing to gene activation [220, 247]. The direct 

modification of regulatory proteins and transcription factors can also occur by HATs 

and HDACs [247]. To further demonstrate the importance of HATs in DR, previous in 

vitro and in vivo work from our laboratory demonstrated that P300, a transcriptional 

coactivator that is also a HAT, was markedly expressed in a diabetic environment and 
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its increase in activity led to the overexpression of ET-1, VEGF, and FN—molecules 

that are upregulated in DR [248, 249]. On the other hand, sirtuin (silent mating type 

information regulation 2 homolog) 1 (SIRT1) is an important NAD-dependent 

deacetylase that is implicated in a dynamic range of cellular processes [250, 251, 252]. 

Due to its unique localization in both the nucleus and cytoplasm, SIRT1 is categorized 

as a type III HDAC [252]. In vitro and in vivo results from our laboratory 

demonstrated that chronic hyperglycemia reduces SIRT1 activity, which consequently 

drives ROS formation mediated by the acetylation of forkhead box protein O1 

(FOXO1) through increased P300 activity [253].  

1.5.3    The Emergence of Non-Coding RNAs  
When the sequencing results materialized from the Human Genome Project, it become 

evident that the majority of our genome (>98%) is comprised of non-protein coding 

DNA, while less than 2% of the total genomic sequence is represented by protein-

coding regions (amounts to ~20,000 protein-coding genes) [254, 255]. Furthermore, as 

demonstrated through genomic tiling arrays and large-scale cDNA cloning projects 

[255, 256], the process of transcription is pervasive throughout the mammalian 

genome and is not only restricted to protein-coding regions. In fact, more than 90% of 

our genome is transcribed and the resulting output of transcription produces a dynamic 

network of transcripts that includes thousands of non-protein-coding RNAs [255, 257]. 

Due to the breadth of information that can now be found on different classes of non-

coding RNAs (ncRNAs), I will provide insight into some of the known functions of 

certain small and long ncRNAs, and their implications, in the pathogenesis of DR 

below. 

1.5.3.1    Small Non-Coding RNAs  
Although there are several classes of small non-coding RNAs (sncRNAs), microRNAs 

(miRNAs) are an extensively studied class in the context of disease, which will be the 

primary focus in this section. Being a class of small, endogenous, single-stranded, 

non-coding RNA molecules, active miRNAs typically range from 20 to 25 nucleotides 

in length and post-transcriptionally regulate gene expression [258, 259, 260]. The 
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initial synthesis of primary miRNA molecules transpires in the nucleus where they are 

synthesized by RNA polymerase II and are several kilobases long [260, 261]. 

Similarly, within the nucleus, RNA polymerase III enzymes, Drosha and DiGeorge 

syndrome critical region 8 (DGCR8), further processes these primary miRNA 

molecules into precursor miRNAs that are roughly 70 to 100 nucleotides in length and 

hairpin-shaped [260-265]. Following processing, exportin 5, a nuclear export factor, 

facilitates the transport of precursor miRNAs into the cytoplasm [264, 265]. Once 

reaching the cytoplasm, another RNA polymerase III enzyme, DICER, modifies the 

precursor miRNAs into their active miRNA forms, where they are then incorporated 

into the RNA-induced silencing complex (RISC) with the help of argonaute proteins 

[263, 264, 265]. The formation of RISC then binds to the targeted mRNA by 

interacting with its 3’ untranslated regions (3’-UTR) [260-265]. As a result of this 

binding, the targeted mRNA is subjected to either repressed translation or degradation 

[260-265]. Earlier reports from our laboratory identified alterations of several 

miRNAs in hyperglycemia-induced endothelial cells and in numerous tissues affected 

by chronic diabetes: miR-1, miR-133a, miR-146a, miR-195, miR-200b, and miR-320 

[39, 266-272]. Moreover, our recent findings report a novel regulation mechanism 

between PRC2 and miRNAs through histone methylation in diabetic complications. 

For instance, human retinal microvascular endothelial cells exposed to hyperglycemia 

and diabetic mice and rat retinas demonstrated heightened PRC2 activity, which in 

turn regulated the repression of miR-200b through tri-methylation of lysine 27 in 

histone H3 [270, 271]. Subsequently, reduced miR-200b levels promoted increased 

VEGF levels—contributing to vascular permeability and neovascularization [270, 

271]. In addition to these findings, previous studies from our laboratory reported that 

miR-146a and miR-200b play an integral role in preventing glucose-induced 

endothelial-to-mesenchymal transition (EndMT), a pathogenetic mechanism 

implicated in diabetic complications that induces basement membrane thickening by 

accelerating the production and deposition of extracellular matrix proteins [39, 268]. 
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1.5.3.2    Long Non-Coding RNAs  
Long non-coding RNAs (lncRNAs) are a fundamental class of RNA molecules that 

are defined by their length (greater than 200 nucleotides) and limited protein-coding 

capacities. LncRNAs have putative roles in both biological (i.e. embryonic 

development [273] and pathological processes [274] and can take on unique regulatory 

capacities when governing the expression of genes (Table 1.1). Moreover, certain 

lncRNAs may execute more than one mechanism and present with specific 

functionalities depending on their subcellular localization. For instance, lncRNAs that 

are localized in the cytoplasm are generally involved in post-transcriptional 

modifications that govern the stability and translation potential of mRNAs [275]; 

whereas, lncRNAs primarily residing in the nucleus have implications in organizing 

nuclear architecture [276], alternative splicing [277], and transcriptional regulation 

[278]. Interestingly, certain lncRNAs can also be found in both the nucleus and 

cytoplasm [279], or other cellular compartments (such as the mitochondria [280]), 

where these RNA molecules have versatile roles in shaping the epigenome, 

influencing biological processes (such as transcription and translation), and regulating 

organelle formation and function [281]. Aside from their subcellular localization, the 

site of biogenesis can also classify lncRNAs (Table 1.2). Namely, lncRNAs can be 

broadly categorized as either intergenic (not overlapping with any protein-coding loci) 

or intragenic/genic (overlapping protein-coding genes), where intragenic lncRNAs are 

further classified as ‘antisense’, ‘bidirectional’, ‘intronic’, or ‘sense’ depending on 

their transcriptional orientation on the protein-coding loci. When compared to 

intragenic lncRNAs, long intergenic ncRNAs (lincRNAs), which arise from the 

intergenic regions of the human genome, oftentimes possess greater evolutionary 

conservation at both the sequence and RNA secondary structure level [282, 283]. 

Although particular differences in biogenesis exist between intragenic and intergenic 

lncRNAs, it is plausible that a majority of these lncRNAs share similar modes of 

action, through cis or trans-regulatory mechanisms, in order to govern fundamental 

biochemical and cellular processes.  
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Table 1.1. Regulatory capacities of lncRNAs. Reproduced from The multifaceted roles of 

lncRNAs in diabetic complications: a promising, yet perplexing paradigm by S. Biswas and S. 

Chakrabarti, 2020, Springer Nature.  

Type of Mechanism Description of Mechanism 

 

Scaffold 

LncRNAs can serve as adaptors that tether 

pertinent protein subunits into distinct 

complexes [284]. 

 

Guide 

Once bound to a protein partner (i.e. 

chromatin-modifying enzymes), lncRNAs 

can direct enzymes to select regions of the 

genome [285]. 

 

Enhancer 

Certain lncRNAs can directly enhance the 

activation of neighbouring genes [286]. 

 

 

Decoy/Sponge 

LncRNAs can sequester proteins (i.e. 

transcription factors and alternative splicing 

factors) and small regulatory RNAs (i.e. 

miRNAs) in order to affect their regulation 

of target genes [287, 288]. 
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Table 1.2. Classification of lncRNAs based on their site of biogenesis. Reproduced from 

The multifaceted roles of lncRNAs in diabetic complications: a promising, yet perplexing 

paradigm by S. Biswas and S. Chakrabarti, 2020, Springer Nature. 

LncRNA 

classification 

Subcategory Description of lncRNA subcategory 

 

Intergenic (does not 

intersect with protein-

coding genes) 

 

Long intervening/ 

intergenic lncRNA 

Transcribed from the intergenic DNA 

regions (regardless of orientation) and 

generally possess greater evolutionary 

conserved regions compared to intragenic 

lncRNAs. 

 

 

 

Intragenic/genic 

(overlaps with protein-

coding genes) 

 

Antisense 

Transcribed from the antisense/opposite 

strand of a protein-coding gene and may 

overlap with coding exons.  

 

Bidirectional 

Transcribed in the opposite direction from 

the promoter of a protein-coding gene 

(generally less than 1 kb away). 

 

Intronic 

Transcribed entirely within the intronic 

regions of a protein-coding gene, and does 

not overlap with coding exons.  

 

Sense 

Transcribed from the sense/coding strand of 

a protein-coding gene and may overlap 

coding exons. 

 

In the context of DR, many aberrant lncRNAs have been identified that are expressed 

in the retina during diabetes; however, these lncRNAs have not been comprehensively 

characterized [289]. Therefore, defining the specific roles of each lncRNA becomes 

critical to understanding the interplay between lncRNAs and the pathogenesis of DR. 

Currently, a prominent lncRNA that is upregulated in DR and associated with 

increased inflammatory cytokine production is metastasis-associated lung 
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adenocarcinoma transcript 1 (MALAT1) [290, 291]. As a matter of fact, both in vitro 

and in vivo results from our laboratory identified that hyperglycemia induces an 

upregulation of MALAT1 in endothelial cells, which in turn regulates increased 

expression of inflammatory mediators, IL-6 and TNF-α, through serum amyloid 

antigen three (SAA3) activation [291]. In addition to MALAT1, in vitro and in vivo 

experiments from our laboratory revealed another lncRNA, antisense non-coding RNA 

in the INK4 locus (ANRIL), that is upregulated in human retinal endothelial cells under 

hyperglycemic conditions [292]. High glucose exposure elevated direct ANRIL 

binding to P300 and another component of PRC2, enhancer of zeste homolog 2 

(EZH2). Furthermore, we demonstrated that VEGF regulation might involve ANRIL-

mediated control of PRC2, P300 and miR-200b, since silencing of ANRIL 

simultaneously prevented the glucose-induced expressions of these epigenetic 

molecules and VEGF [292]. Moreover, a recent study from our laboratory has 

demonstrated the ability of H19 (a lncRNA) to mediate the phenotypic switch of 

retinal endothelial cells in diabetic environments (this process is known as endothelial-

to-mesenchymal transition, EndMT; where endothelial cells lose their endothelial 

markers and develop a more mesenchymal phenotype) [293]. More specifically, 

human retinal endothelial cells (HRECs) cultured in high glucose (HG) showed 

decreases in H19 and endothelial cell markers (VE-cadherin and CD-31), while 

mesenchymal markers were significantly upregulated (SM22-α, α-SMA, and FSP-1). 

Remarkably, the overexpression of H19 in HRECs drastically prevented the trends 

elicited by HG, which suggests that the lncRNA H19 has a protective role in impeding 

EndMT in DR. In parallel with our in vitro findings, significant reductions of H19 

RNA levels were also observed in the vitreous humors of PDR patients. As well, 

retinal tissues from H19 knockout non-diabetic mice revealed an EndMT phenotype 

(decreased endothelial markers and increased mesenchymal markers) that was 

comparable to retinal tissues from diabetic wild-type and diabetic H19 knockout mice. 

Further expanding our findings, H19 was found to suppress glucose-induced EndMT 

via the MAPK-ERK1/2 pathway of TGF-β signalling. In addition to H19, another 

lncRNA known as HOX anti-sense intergenic RNA (HOTAIR) has been shown to 

exert regulatory capabilities that promote oncogenesis [297], while other evidences 



31 

 

have suggested that aberrant HOTAIR expressions exist in diabetic kidney disease but 

its dysregulation may not necessarily contribute to disease pathogenesis [298]. Based 

on these reports, it may be possible that disease-specific phenotypes exist for HOTAIR, 

however, current work on this lncRNA in other diabetes models are limited and its 

implications in DR pathogenesis remain elusive. 

Undoubtedly, long non-coding RNAs (lncRNAs) continue to evolve our understanding 

of the genomic landscape. The versatility of these non-protein-coding molecules 

warrants serious consideration for in-depth investigations of their roles in 

pathophysiological mechanisms, as novel information on these critical mediators will 

not only add to the existing molecular paradigms, but such knowledge will also 

contribute to the development of better-targeted diagnostics and therapies. As such, for 

my thesis, I sought to characterize the epigenetic mechanisms of two specific 

lncRNAs, MALAT1 and HOTAIR, in the pathogenesis of DR. 

1.6 Rationale 

In our earlier studies, we performed microarray analyses that examined the global 

expression profiles of lncRNAs in HRECs cultured with 5 mM (mimicking 

euglycemia; NG) or 25 mM D-glucose (mimicking hyperglycemia; HG) for 48 hours 

(GEO: GSE122189; Appendix B, Supplemental Figure 1). Our findings identified 

thousands of differentially expressed long non-coding RNAs (lncRNAs) following 48 

hours of HG stimulation. Among the transcripts, the lncRNAs MALAT1 and HOTAIR 

were profoundly upregulated in HG environments. Based on our previous studies 

linking MALAT1 to inflammation in diabetic complications [291, 294] and prior 

cancer-based studies demonstrating a relationship between HOTAIR and angiogenesis 

[295, 296], my research sought to elucidate for the first time the epigenetic 

mechanisms of MALAT1 in inflammation and HOTAIR in angiogenesis during the 

pathogenesis of DR.  
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1.7 Central Hypothesis 

I hypothesize that the lncRNAs MALAT1 and HOTAIR are intertwined in a complex 

network of epigenetic mechanisms that regulate critical pathogenetic processes (such 

as inflammation and angiogenesis) in DR. To test this hypothesis, three specific aims 

were proposed. 

1.7.1    Specific Aims 
Aim 1: To investigate the implications of MALAT1 in the epigenetic regulation of 

inflammation in DR (Chapter 2).  

Synopsis: In this aim (Chapter 2), we investigated a prominent, cancer-related, 

intergenic lncRNA in DR known as MALAT1. More specifically, we established a 

novel epigenetic paradigm for MALAT1 in DR by employing siRNA-mediated 

MALAT1 knockdown in HRECs, a Malat1 knockout animal model, vitreous humor 

from diabetic patients, pharmacological inhibitors for histone and DNA methylation, 

RNA immunoprecipitation, western blotting, and a unique DNA methylation array to 

determine glucose-related alterations in MALAT1. Our findings indicated that 

MALAT1 is capable of impacting the expressions of inflammatory transcripts through 

its association with components of the PRC2 complex in diabetes. Furthermore, the 

vitreous humors from diabetic patients revealed increased expressions of MALAT1, 

TNF-α, and IL-6. Intriguingly, our DNA methylation array demonstrated that transient 

high glucose exposure in HRECs does not contribute to significant methylation 

alterations at CpG sites across the MALAT1 gene. However, global inhibition of DNA 

methyltransferases induced significant increases in MALAT1 and associated 

inflammatory transcripts in HRECs. Our collective findings demonstrated the 

importance of MALAT1 in inflammation and epigenetic regulation in DR.  

Aim 2: To examine whether HOTAIR is a critical epigenetic mediator of 

angiogenesis in the pathogenesis of DR (Chapter 3). 

Synopsis: In Aim 2 (Chapter 3), we identified the lncRNA HOTAIR in HRECs 

through microarray screening and further examined its expression using several in 
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vitro and in vivo experimental models. As evident by our cellular findings, 

hyperglycemic environments can significantly augment HOTAIR expressions and the 

subsequent upregulation of HOTAIR can directly promote glucose-induced 

angiogenesis, oxidative damage, and mitochondrial aberrations. Similarly, vitreous 

fluid and serum samples from PDR patients and retinas from diabetic animals 

demonstrated significant HOTAIR expressions when compared to non-diabetic 

controls. Furthermore, in vivo knockdown of Hotair prevented early glucose-induced 

increases in several angiogenic markers and diabetes-associated molecules in the 

diabetic retina. Mechanistically, HOTAIR may be exerting its regulatory capabilities 

through its implications in a complex epigenetic axis involving histone methylation 

(PRC2), histone acetylation (P300), DNA methylation (DNMTs), and specific 

transcription factors (CTCF). Taken together, our findings suggest that the versatile 

lncRNA HOTAIR is a critical epigenetic mediator of angiogenesis in the pathogenesis 

of DR and HOTAIR may be a highly effective molecule for diagnostic and therapeutic 

targeting. 

Aim 3: To examine the interrelationships between epigenetic mechanisms 

and specific molecular alterations in DR (Chapter 4). 

Synopsis: Since endothelial cells (ECs) are primary targets of glucose-induced tissue 

damage, in Aim 3 (Chapter 4), we selected a prominent diabetes-related molecule, 

known as endothelin-1 (ET-1), for further follow-up. We carried out the investigation 

in HRECs using multiple approaches in order to identify novel transcriptional 

mechanisms that influence ET-1 regulation in diabetes. ECs were incubated with 5 

mM glucose (NG) or 25 mM glucose (HG) and analyses for DNA methylation, histone 

methylation, or long non-coding RNA-mediated regulation of ET-1 mRNA were then 

performed. DNA methylation array analyses demonstrated the presence of 

hypomethylation in the proximal promoter and 5' UTR/first exon regions of EDN1 

following HG culture. Further, globally blocking DNA methylation or histone 

methylation significantly increased ET-1 mRNA expressions in both NG and HG-

cultured HRECs, while knocking down pathogenetic lncRNAs (including MALAT1 

and HOTAIR) subsequently prevented the glucose-induced upregulation of ET-1 

transcripts. Based on our past and present findings, we present a novel paradigm that 
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reveals a complex web of epigenetic mechanisms regulating glucose-induced 

transcription of ET-1. 

Following the discussion of these aims, in Chapter 5, I will examine the significance 

of my overall work and discuss potential follow-up experiments that could provide 

additional insights into this perplexing transcriptional paradigm. 
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Chapter 2 ii 

2 MALAT1: An Epigenetic Regulator of Inflammation in 

Diabetic Retinopathy 

As the global prevalence of diabetes is projected to rise to 642 million by 2040, there is 

an urgent need for understanding the pathogenesis of diabetic complications to develop 

effective therapeutic agents [1, 2]. Diabetic retinopathy (DR), a debilitating ocular 

complication, is the leading cause of blindness among working-aged adults in 

industrialized nations [3]. The asymptomatic nature of DR, prior to the development of 

vision loss, is concerning, as nearly all type 1 diabetic patients and over 60% of type 2 

diabetic patients will develop evidence of retinopathy within the first 20 years of 

diagnosis [4, 5]. Despite the presence of management strategies, the rate of DR is still 

expected to rise due to the increasing incidence of diabetes, which necessitates the need 

for exploration of new molecular aspects of DR to expand the current scope of therapy.  

In the last two decades, the rapid advent of high-throughput genomic technology has 

made it evident that more than 97% of the human genome is comprised of non-protein-

coding elements, such as non-coding RNAs (ncRNAs) [6]. Although significant 

research has been conducted in annotating the transcripts that arise from these genomic 

regions, a vast amount of information regarding the roles and functions of ncRNAs in 

DR remains elusive.  

Long non-coding RNAs (lncRNAs) are a class of ncRNAs that are greater than 200 

nucleotides in length and have diverse roles in a myriad of cellular processes including 

the ability to repress the expression of nearby protein-coding genes [7], X-chromosome 

inactivation [8], and the modulation of protein activity [9]. In DR, transcriptomic 
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analyses have identified more than 300 lncRNAs that display aberrant expression 

profiles in the retina—with over 80 lncRNAs being overexpressed [10]. Among these 

upregulated lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 

1) is a prominent intergenic lncRNA that is known to be associated with metastasis in 

non-small cell lung cancer (NSCLC) [11]. Since it is accepted that endothelial cells 

(ECs) are main targets of diabetes-induced tissue damage, recent research has also 

revealed novel roles for MALAT1 in diabetic complications. Results from our previous 

study indicate that MALAT1 knockdown in human umbilical vein endothelial cells 

(HUVECs), under hyperglycemic conditions, down-regulates serum amyloid antigen 3 

(SAA3) activation, subsequently reducing the RNA and protein expressions of key 

inflammatory mediators (IL-6 and TNF-α) implicated in diabetic complications [12]. 

Further, augmentation of MALAT1 expression by hypoxia promotes a proliferative 

response in HUVECs [13]. 

In order to understand how lncRNAs, such as MALAT1, regulate the inflammatory 

processes underpinning these pathologies, the complex molecular interplay between 

lncRNAs and other epigenetic events must be examined in an integrated way. Several 

cancer-related studies have revealed that MALAT1 is capable of binding to enhancer of 

zeste homolog 2 (EZH2), the main catalytic subunit of the histone methyltransferase 

polycomb repressive complex 2 (PRC2), and promotes oncogenesis by reprograming 

the chromatin state [14-17]. Furthermore, in the context of DNA methylation, it has 

been previously reported that lung cancer tissues exhibit reduced methylation in the 

MALAT1 promoter, which subsequently enhances MALAT1 expression [18]. However, 

in contrast, others have reported minimal methylation alterations at the CpG island in 

the MALAT1 promoter of esophageal squamous cell carcinoma tissues and concluded 

that CpG island methylation status may not contribute to MALAT1 dysregulation [19]. 

Nevertheless, despite the recent emergence of these epigenetic roles for MALAT1 in 

cancer, the question of whether MALAT1 influences other epigenetic mediator proteins 

to regulate inflammation in DR still remains unanswered.  

Here, we first determined the expression level of MALAT1 in human retinal 

microvascular endothelial cells (HRECs) cultured in high glucose (HG) and 
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subsequently analyzed the expressions of common inflammatory markers (IL-6, TNF-α, 

MCP-1, and IL-1β) along with components of PRC2 (EZH2, SUZ12, and EED) to 

represent histone methyltransferase activity. Following our initial findings, we 

employed MALAT1 knockdown and Malat1 knockout (KO) strategies in HRECs and in 

a mouse model, respectively, to determine the functional role and significance of 

MALAT1 on inflammation and PRC2 activity in DR. Moreover, to substantiate the data 

from our in vitro and in vivo animal experiments, we examined MALAT1 and its 

associated inflammatory markers in the vitreous humor (VH) of diabetic patients 

undergoing vitrectomy. We also examined MALAT1 binding to EZH2 by RNA 

immunoprecipitation in HRECs. As well, we further investigated the effects of HG on 

CpG island methylation status in the MALAT1 promoter of HRECs using a methylation 

array and then explored the impact of specific treatment(s) targeting MALAT1, histone 

methyltransferases, and DNA methyltransferases (DNMTs).  

2.1 Research Design and Methods 

2.1.1    Cell Culture 

We utilized HRECs (Olaf Pharmaceuticals, Worcester, MA, USA) for the in vitro 

experiments. The experimental and culture conditions for HRECs were mentioned in 

our previous studies [44, 58]. Briefly, prior to experimentation, HRECs were plated at a 

density of 4.3x105 cells/mL and used between passages 5 and 6 to reduce variability. 

Cells were grown to 80-90% confluency post-seeding and subjected to serum starvation 

for 24 hours, which was then followed by the administration of specific glucose levels 

(normal glucose [NG], 5 mM; high glucose [HG], 25 mM; and osmotic control [LG], 20 

mM L-glucose + 5 mM D-glucose) at various time points. These glucose levels are 

based on a large volume of previous experiments [12, 32, 44, 58-61]. All cell culture 

reagents were purchased from Sigma (Oakville, Ontario, Canada) unless specified and 

in vitro experiments were performed with six replicates and independently repeated at 

least three times, unless specified.  
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2.1.2    Diabetic Mice Model 

The Western University Council for Animal Care Committee approved all animals used 

in this study and the experiments were performed in accordance with The Guide for the 

Care and Use of Laboratory Animals (NIH Publication 85-23, revised in 1996). Malat1 

knockout (KO) mice, with a C57/BL6 background, were obtained through collaboration 

with Dr. Spector (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 

USA) [22] and only male mice were randomly organized into control and diabetic 

groups. Wild-type (WT) non-diabetic and WT diabetic mice were used as comparators 

to Malat1 KO non-diabetic and Malat1 KO diabetic mice. To generate a type 1 diabetic 

animal model, we used streptozotocin (STZ). STZ injection methods and monitoring 

have been previously described [59]. At two months following diabetes induction, 

animals (n= 6/group) were euthanized and the retinal tissues were either snap-frozen for 

future RNA or protein analyses or were placed in 10% formalin for paraffin embedding. 

2.1.3    Clinical Sample Collection 

The Western Research Ethics Board at the University of Western Ontario, London, 

Ontario, Canada, approved the clinical component of this study. Prior to the 

procurement of surgical specimens, patients provided informed consent and all of the 

samples were handled in accordance with the Declaration of Helsinki. VH was collected 

from patients undergoing pars plana vitrectomy by an experienced vitreoretinal surgeon. 

Specimens were then categorized into two groups: diabetic and non-diabetic. The 

diabetic group comprised of patients diagnosed with proliferative DR (PDR; n= 7; 3 

males and 4 females; mean age ± SD= 61 ± 6.76 years); whereas, the non-diabetic 

group consisted of patients that had no previous history of diabetes mellitus and were 

diagnosed with idiopathic macular hole or a separate non-diabetic ocular condition (n= 

6; 4 males and 2 females; mean age ± SD= 75 ± 3.52 years). As previously described 

[60], VH specimens were centrifuged (12,000g, 10 minutes, 4°C) and the pellet was 

used for RNA extraction using the TRIzol reagent (Invitrogen, Burlington, ON, Canada) 

and subsequently, real-time quantitative reverse transcription-PCR (RT-qPCR). In order 

to avoid contaminating RNA from blood cells, indications of vitreal haemorrhage in the 
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VH specimens were immediately excluded from this study.  

2.1.4    Immunohistochemistry  

To identify blood-retinal barrier (BRB) damage in the eye, paraffin-embedded mouse 

retinal sections were applied for immunohistochemical staining of immunoglobulin G 

(IgG) using anti-mouse IgG antibody (MP Biomedicals, OH, USA), as previously 

specified [44, 61]. Histological slides were evaluated for positive IgG immunoreactivity 

(arbitrarily scored 0-3, with 3 representing maximum IgG reaction) in a masked manner 

by an investigator. 

2.1.5    Enzyme-Linked Immunosorbent Assay (ELISA) 

In order to measure the cytokine levels from the cell supernatants, human IL-6 and 

TNF-α ELISA kits were purchased from ALPCO (Salem, NH, USA) and R&D Systems 

(Minneapolis, MN, USA), respectively. Concentrations for each cytokine were first 

quantified using the BCA protein assay kit (Pierce, Rockford, IL, USA) and equal 

protein concentrations were used for each ELISA (100 µg) according to the 

manufacturer’s instructions. For the IL-6 chemiluminescence assay, the SpectraMax M5 

(Molecular Devices, California, USA) was used to detect luminescence. Whereas, for 

the TNF-α Quantikine ELISA kit, the optical density for each well was determined at 

450 nm and corrected at 568 nm using the Multiskan FC Microplate Photometer 

(Thermo Fisher Scientific, Massachusetts, USA).  

2.1.6    SiRNA Transfection 

HRECs were transfected with either pre-designed siRNAs targeting human MALAT1 

(ID numbers: n272231 [si1-MALAT1] and n272233 [si2-MALAT1], Life 

Technologies), DNMT1 (ID number: s4216 [siDNMT1], Life Technologies) or 

scrambled siRNA (ID number: AM4635, Life Technologies) using Lipofectamine 2000 

(Invitrogen, Burlington, ON, Canada) and Opti-MEM (Life Technologies). A 

lipofectamine-mediated transfection protocol has been indicated in our earlier studies 

[12, 58]. Briefly, 100 nM of siMALAT1, siDNMT1, or scrambled siRNA was used to 
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transfect the cells for 4 hours and subsequently recovered in full medium overnight. The 

following morning, cells were serum starved for 21 hours and were then incubated with 

specific glucose concentrations (5 mM or 25 mM) for 48 hours. MALAT1 and DNMT1 

knockdown were confirmed using RT-qPCR. Following verification of knockdown, 

both siMALAT1s demonstrated similar knockdown activity (~75%) when compared to 

scrambled controls; therefore, we decided to select si2-MALAT1 (ID: n272233) for our 

subsequent experiments. Furthermore, when compared to scrambled HG controls, 

siDNMT1 (ID: s4216) demonstrated a ~72% reduction in DNMT1 RNA expression in 

HG-treated HRECs.  

2.1.7     3-Deazaneplanocin A (DZNep), 5-Aza-2’-

deoxycytidine (5-aza-dC), and Zebularine 

Based on previous literature, 5 µM of DZNep (Cayman Chemical, Ann Arbor, MI), 5-

aza-dC (Sigma, St. Louis, USA), or zebularine (Cayman Chemical) pre-treatment was 

applied to HRECs for 1 hour prior to the addition of D-glucose [44, 58, 62, 67]. DZNep, 

5-aza-dC, or zebularine-treated HRECs and their respective controls were collected at 

48 hours for further analyses.  

2.1.8    CpG Island Methylome Analysis 

Whether a differential methylation pattern exists in a diabetic environment remains 

entirely elusive, therefore we investigated the CpG island methylation status in the 

promoter of the MALAT1 gene in NG or HG-treated HRECs. At the 48-hour mark after 

glucose treatment, HRECs were collected and 1 µg of genomic DNA was used for 

bisulfite conversion using the EZ DNA Methylation Kit (Zymo Research, Irvine, 

California, USA). The bisulfite-converted DNA was then hybridized to the Illumina 

Infinium MethylationEPIC BeadChip array (Illumina, San Diego, California, USA) 

following the manufacturer’s protocol. To achieve the readout from the array, we used 

the HiScan System (Illumina, San Diego, California, USA) and subsequently imported 

the methylated and unmethylated signal intensity data into R 3.4.0 for analyses. The 

methylation intensity was normalized using the Illumina normalization method with 
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background correction using the minfi package. Probes with a detection P-value > 0.01 

were excluded from the downstream analyses. Further, probes known to contain SNPs 

at the single nucleotide extension, or the CpG interrogation, were removed. The beta 

value (β-value) was used to represent the methylation intensity for each CpG locus and 

was calculated from the ratio of unmethylated probe to methylated probe, ranging 

between 0 (no methylation) and 1 (full methylation). Three independent samples were 

used per group.  

2.1.9    RNA Immunoprecipitation (RIP) 

At the 48-hour mark, cell lysates from NG and HG-treated HRECs were collected for 

immunoprecipitation using the Magna RIP RNA-Binding Protein Immunoprecipitation 

Kit  (Millipore, Etobicoke, ON, Canada) following the manufacturer’s instruction [44]. 

Anti-IgG (control) and anti-EZH2 antibodies (Millipore) were used to co-precipitate the 

RNA-binding proteins of interest. The extracted RNAs were then analyzed by RT-

qPCR.  

2.1.10   Western Blotting 

In order to evaluate the protein expression of EZH2 after siMALAT1 and HG 

treatments, western blotting was performed. As previously described [58], cell lysates 

were obtained from HRECs following 48 hours of NG or HG culture with scrambled or 

MALAT1 siRNA. The Bicinconinic acid assay (Thermo Fisher Scientific, IL, USA) was 

used to determine protein concentration, in which 20 µg of protein was used for western 

blotting.  Primary antibody incubation was performed overnight using monoclonal anti-

EZH2 (1:500; Millipore) or for 1 hour using polyclonal anti-β-actin (1:10000; Abcam, 

Toronto, ON, Canada). While, secondary antibody incubation was conducted using anti-

mouse IgG (1:5000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) or anti-rabbit 

IgG (1:5000; Bio-Rad, Hercules, CA, USA) horseradish peroxidase conjugated 

secondary antibodies. Antigenic detection was performed using enhanced 

chemiluminescence following the manufacturer’s instruction (GE Healthcare Life 

Sciences, QC, Canada).  
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2.1.11 RNA Isolation and Quantitative Real-Time 

Polymerase Chain Reaction (RT-qPCR) 

Total RNA was extracted using TRIzol reagent (Invitrogen, Burlington, ON) as 

described [12, 44, 58-61]. After isolation, RNA concentrations were quantified using a 

spectrophotometer (260 nm; Gene Quant, Pharmacia Biotech, USA) and 1 µg of total 

RNA was reverse transcribed to complementary DNA (cDNA) using a high-capacity 

cDNA reverse-transcription kit (Applied Biosystems, Burlington, ON, Canada). In order 

to detect RNA expression, cDNA was amplified in the LightCycler 96 System (Roche 

Diagnostics, Laval, QC, Canada) using SYBR-green master mix (Clontech, Mountain 

View, CA, USA) and specific primers for the genes of interest (Sigma; Appendix A, 

Table S1). We analyzed results using the LightCycler 96 SW 1.1 software (Roche) and 

we calculated expression levels by the relative standard curve method using β-actin as 

an internal control for sample normalization.  

2.1.12    Cell Viability Assay 

As previously described [58], the cytotoxicity of glucose treatments (5 mM and 25 mM) 

in HRECs were determined using the WST-1 Cell Viability Assay (Roche). Viability 

was assessed at various durations of incubation (0, 24, and 48 hours). Absorbances were 

first measured at 450 nm, with the Multiskan FC Microplate Photometer (Thermo 

Fisher Scientific), and then corrected using 690 nm as the reference wavelength.  

2.1.13    Statistical Analysis 

Data are expressed as mean ± SEM, unless specified. To determine statistical 

significance, GraphPad Prism 7 was used to perform Student’s t tests when comparing 2 

conditions or 1-way ANOVA followed by Tukey’s post hoc test for multiple 

comparisons. While, for the clinical samples, non-parametric statistical measures 

(Mann-Whitney U test) were applied. As well, two-sided Pearson Correlations were 

performed to determine a linear association between RNA expressions of MALAT1 and 

PRC2 components, or EZH2 and inflammatory cytokines in HRECs cultured with HG 
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and siMALAT1. Differences below P<0.05 were considered statistically significant. 

2.2 Results 

2.2.1    MALAT1 is upregulated in HRECs exposed to high 

glucose 

Retinal ECs are a fundamental cell type in the retinal microvasculature [20]. Retinal 

ECs are also one of the earliest cells to undergo glucose-induced damage as a 

consequence of DR [21]. Hence, we used HRECs for our in vitro experiments. Of note, 

we have previously reported HG-induced increases in the expression of MALAT1 in 

large vessel ECs [12]. In order to investigate the differential expression patterns of 

MALAT1 and inflammatory markers, we cultured HRECs in HG and examined 

MALAT1, IL-6, TNF-α, MCP-1 and IL-1β RNA expressions at 12, 24, 48, and 72 hours. 

RT-qPCR analyses demonstrated that expressions of MALAT1 and inflammatory 

markers in HRECs peaked at 48 hours following HG incubation (see Appendix A, 

Figures S1A-S1E). Furthermore, no significant differences for MALAT1, IL-6, TNF-α, 

MCP-1 and IL-1β expressions were observed osmotic controls (data not shown). 

Following our findings, we decided to use the 48-hour time point for our subsequent in 

vitro experiments.   

2.2.2    MALAT1 knockdown prevents augmented 

production of inflammatory cytokines and PRC2 

components in vitro 

After observing upregulation of MALAT1 at 48 hours in vitro, we wanted to delineate 

the functional importance of the MALAT1 transcript in inflammation and the role of 

PRC2 complex expression in HRECs. We, therefore, employed a siRNA-mediated 

knockdown approach targeting MALAT1. RT-qPCR analyses confirmed a ~75% 

reduction in total MALAT1 RNA after siRNA treatments when compared to scrambled 

controls (Fig. 2.1A). MALAT1 silencing in HG-treated HRECs dramatically reduced the 
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overall expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) by a 

~74% and a ~93% reduction, respectively, when compared to scrambled controls (Figs. 

2.1B and 2.1C). Similarly, IL-1β and MCP-1 RNA expressions were also significantly 

reduced following siMALAT1 treatment (Appendix A, Figs. S2A and S2B). We 

further expanded our investigation to include the effects on inflammatory proteins after 

siMALAT1 treatment and findings from the ELISAs revealed that after knocking down 

MALAT1 in a HG environment, IL-6 and TNF-α protein levels significantly decreased 

when compared to scrambled HG controls (Figs. 2.1G and 2.1H). The trends observed 

from these experiments are consistent with our previous findings of decreased 

expressions for IL-6 and TNF-α after siMALAT1 transfection in HUVECs [12].  

To examine whether MALAT1 knockdown can affect the components of PRC2, we 

analyzed EZH2, SUZ12, and EED RNA levels in HRECs following siMALAT1 

transfection. As compared with scrambled controls, we found significantly reduced 

EZH2, EED, and SUZ12 RNA levels in HG-treated HRECs transfected with MALAT1 

siRNA (Figs. 2.1D-F). Moreover, to demonstrate MALAT1’s ability to impact PRC2 at 

the protein level, we performed western blotting and examined EZH2 expression after 

MALAT1 knockdown. Our western blot analyses confirmed that EZH2 protein 

expressions were reduced in HRECs transfected with siMALAT1 (Appendix A, Fig. 

S2C). In addition to our western blot data, we performed RNA immunoprecipitation and 

confirmed MALAT1 binding with EZH2. In fact, MALAT1 RNA was significantly 

enriched in the EZH2-antibody precipitated RNA fraction from HG-treated HRECs 

compared to controls (Appendix A, Fig. S2D). 

Furthermore, extending our knockdown analyses, we observed significant positive 

correlations between MALAT1 RNA expression and the RNA expressions of PRC2 

components in HRECs subjected to HG and siMALAT1 treatments (two-sided Pearson 

correlation; Appendix A, Figs. S3A-S3C). As well, positive correlations existed 

between EZH2 RNA expression and the RNA expressions of inflammatory markers, IL-

6 and TNF-α, in the siMALAT1+ HG group (Appendix A, Figs. S3D and S3E). 

Collectively, our findings from the knockdown experiment indicate that MALAT1 RNA 
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levels play an important role in influencing glucose-induced upregulation of 

inflammatory cytokines and components of PRC2 in HRECs.  

Figure 2.1. MALAT1 regulates glucose-induced production of inflammatory cytokines and 

PRC2 components in vitro. RT-qPCR analyses indicating HG-induced upregulation of A) 

MALAT1 transcript, B, C) proinflammatory transcripts (TNF-α, IL-6), and D, E, F) PRC2 

components (EZH2, SUZ12, and EED) in HRECs. SiMALAT1 transfections caused significant 

reductions in glucose-induced upregulation of these transcripts. G, H) ELISAs for protein levels 

of IL-6 and TNF-α (expressed as pg/mL) demonstrated prevention of glucose-induced increases 
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of these peptides following siRNA transfection (data expressed as a ratio to β-actin (mean ± 

SEM); normalized to SCR NG; *=P<0.05, **=P<0.01, ***=P<0.001, and ****=P<0.0001, 

compared to SCR NG or SCR HG; n= 6 from three independent experiments and performed in 

triplicates; SCR= scrambled siRNA; NG= 5 mM D-glucose; HG= 25 mM D-glucose; si1-

MALAT1 (MALAT1 siRNA 1, ID: n272231); and si2-MALAT1 (MALAT1 siRNA 2, ID: 

n272233)).  

2.2.3    Malat1 knockout alleviates diabetes-induced retinal 

inflammatory cytokines and elevated PRC2 expression 

With the genetic ablation of the Malat1 gene not contributing to noticeable 

developmental effects in mice under basal homeostatic conditions [22, 23, 24], we 

decided to use a diabetic Malat1 KO mice model in order to evaluate the direct function 

of the Malat1 gene on inflammation and PRC2 expression in retinal tissues. Malat1 KO 

mice with STZ-induced diabetes and age-and sex-matched controls were monitored for 

2 months. WT-diabetic (WT-D) mice showed hyperglycemia and reduced body weight 

gain (Appendix A, Table S2). Polyuria and glucosuria were also observed in diabetic 

mice (data not shown). Nevertheless, no effects on these parameters were seen 

following Malat1 nullification. 

Our analyses demonstrated that MALAT1 RNA expression was significantly elevated 

(more than ~0.46-fold) in WT-D mice retinas (Fig. 2.2A) compared to WT non-diabetic 

control mice (WT-C). MALAT1 RNA expressions were nearly non-existent in both 

Malat1 KO animal groups (M1 KO-C and M1 KO-D), confirming that MALAT1 

transcripts are depleted in the retinal tissues of this global knockout model (Fig. 2.2A). 

Moreover, our initial findings of MALAT1 upregulation in WT-D mice retinas are 

consistent with previous trends of increased MALAT1 expression in retinas of diabetic 

rats [25, 26].  

Intriguingly, upon Malat1 gene inactivation, significant RNA expression changes were 

observed among IL-6, TNF-α, IL-1β, MCP-1, EZH2, EED, and SUZ12 in retinal tissues 

of diabetic mice (Figs. 2.2B-F; Appendix A, S4A and S4B). When compared to WT-D 
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animals, all inflammatory transcripts were significantly downregulated (>50%) in 

Malat1 KO diabetic animals (Figs. 2.2B-C; Appendix A, S4A and S4B). These 

changes were associated with downregulation of transcripts of PRC2 components in 

Malat1 KO diabetic animals (Figs. 2.2D-F). Together, our data suggests that presence 

of the Malat1 gene is important in regulating diabetes-induced inflammation and PRC2 

components in retinal tissues.  

Figure 2.2. Malat1 knockout alleviates diabetes-induced retinal inflammatory cytokines, 

elevated PRC2 expression, and IgG leakage in vivo. RT-qPCR analyses of the retinas from 

animals, following two months of poorly controlled diabetes showed increased expressions of 

A) MALAT1, B, C) inflammatory transcripts (TNF-α, IL-6), and D, E, F) PRC2 components
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(EZH2, SUZ12, and EED) in WT-D retinas compared to WT-C retinas. Malat1 KO prevented 

such increases in the M1 KO-D group (data expressed as a ratio to β-actin (mean ± SEM); 

normalized to WT-C; *=P<0.05, **=P<0.01, ***=P<0.001, and ****=P<0.0001, compared to 

WT-C or WT-D; n= 6/group). H, I, J, K) IgG staining shows elevated IgG leakage in I) WT-D 

retinas (score 3) and reduced leakage in the K) M1 KO-D retinas (score 1). No changes in IgG 

leakage were observed between H) WT-C (score 0) and J) M1 KO-C (score= 1) animals (scale 

bar= 10 µM). WT-C= Wild-type control; WT-D= Wild-type diabetic; M1 KO-C= Malat1 KO 

control; and M1 KO-D= Malat1 KO diabetic.   

2.2.4    Malat1 knockout diminishes vascular leakage in 

the diabetic retina 

Damage to the blood-retinal barrier (BRB) becomes imminent during the severe stages 

of DR, which can consequently lead to irreparable vision damage [27]. In fact, risk for 

developing vision-threatening complications heightens when a chronic hyperglycemic 

environment allows for increased extravasation of large plasma proteins into the neural 

retina [27, 28]. Therefore, to examine functional alterations in our diabetic animal 

model, we used IgG staining on retinal tissues (Figs. 2.2H-K). Both in WT-C and M1 

KO mice, IgG was mostly limited within the capillaries without any significant staining 

of retinal tissues (scores 0-1; Figs. 2.2H and 2.2J). In contrast, diffuse staining of retinal 

tissues (score 3) were seen in WT-D animals (Fig. 2.2I). Such changes were prevented 

in M1 KO-D mice (score 1; Fig. 2.2K). Taken together, these findings support the 

theory that MALAT1 is implicated in advancing BRB breakdown.  

2.2.5   MALAT1 is upregulated and associated with 

increased inflammatory markers in the vitreous of diabetic 

patients 

Alteration in the VH composition ultimately reflects the retinal environment [29]. In 

individuals with late stage DR, there are increased concentrations of proinflammatory 

cytokines and soluble growth factors in the VH that mediate retinal neovascularization 
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within the eye [30, 31, 32]. Therefore, we decided to examine RNA levels of MALAT1 

and its potential downstream molecules, IL-6 and TNF-α in the diabetic VH. RT-qPCR 

analyses revealed that MALAT1 expression was significantly upregulated in the vitreous 

of PDR patients than that of non-diabetic patients (Fig. 2.3A). PDR patients also 

demonstrated significant upregulations of TNF-α and IL-6 in the VH when compared to 

the vitreous of non-diabetic patients without retinopathy (Figs. 2.3B and 2.3C). In 

summary, our findings suggest that MALAT1 upregulation in the diabetic vitreous is 

associated with a pathogenetic state.   

Figure 2.3. MALAT1 upregulation is associated with increased inflammatory markers in 

the vitreous of diabetic patients. RT-qPCR analyses of the vitreous humors indicate that 

diabetic patients have elevated expressions of A) MALAT1, B) TNF-α, and C) IL-6 transcripts 

(data expressed as a ratio to β-actin (mean± SD); *=P<0.05 and **=P<0.01, compared to 

control vitreous).  
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2.2.6    Histone methylation impacts MALAT1 and some 

of its downstream targets  

With epigenetic reprogramming by pharmacological intervention receiving critical 

recognition and showing considerable promise in cancer trials [33, 34], we decided to 

explore the function of DZNep on HRECs and elucidate the effects of inhibiting 

histone methyltransferases on MALAT1 and inflammation in a diabetic environment. 

Following HG incubation, DZNep-treated HRECs demonstrated significant reductions 

in the RNA expressions of EZH2, EED, and SUZ12, compared to HG-treated HRECs 

(Figs. 2.4D-F). Accompanying the reduction of PRC2 components, HRECs in HG 

following DZNep treatment showed significant reductions in MALAT1 and TNF-α 

RNA expressions when compared to control HG-treated HRECs (Figs. 2.4A-B). 

However, this is in stark contrast to the trends observed for IL-6, IL-1β, and MCP-1; in 

which, the RNA expressions of these transcripts were significantly upregulated after 

DZNep treatment in both NG-and HG-treated HRECs, as compared to control HG-

treated HRECs (Figs. 2.4C; Appendix A, S4C and S4D). 

In order to further verify this surprising observation of IL-6, IL-1β, and MCP-1 

upregulation and to determine whether the same trends observed in the RNA 

expressions exist at the protein level, we selected IL-6 and TNF-α for subsequent 

ELISA assays. Following the addition of both DZNep and HG treatments, HRECs 

demonstrated a significant induction of IL-6 compared to HG-treated HRECs (Fig. 

2.4G), suggesting a positive correlation with the RNA expressions observed in Figure 

2.4C. On the other hand, TNF-α protein levels were significantly decreased in the 

presence of DZNep + HG, as compared to HG-treated HRECs, which is in parallel to 

the trends observed with TNF-α RNA levels (Fig. 2.4H). Our DZNep findings 

demonstrate that PRC2 activity may have an important role in impacting MALAT1, 

TNF-α, IL-6, IL-1β, and MCP-1 expressions. However, of note, the effect of PRC2 

depletion on the expression of IL-6, IL-1β and MCP-1 may also result from an indirect 

effect of decreased TNF-α levels, which needs further exploration.  
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Figure 2.4. Global methylation inhibitor (DZNep) prevents glucose-induced upregulation 

of MALAT1, TNF-α, and PRC2 expressions. RT-qPCR findings indicate HG-induced 

elevations of A) MALAT1, B, C) inflammatory transcripts (TNF-α, IL-6), and D, E, F) PRC2 

components (EZH2, SUZ12, and EED) compared to NG at 48 hours. Such upregulations were 

prevented (except IL-6) following DZNep treatment. Protein levels of G) IL-6 and H) TNF-α 

showed similar patterns (RNA data expressed as a ratio to β-actin (mean ± SEM); normalized 

to NG; *=P<0.05, **=P<0.01, ***=P<0.001, and ****=P<0.0001, compared to NG or HG; 

n= 6 from three independent experiments and performed in triplicates; and protein data are 

expressed as pg/mL).  
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2.2.7    Transient HG treatment does not alter methylation 

status of the CpG island in MALAT1 promoter 

To address whether differential methylation patterns exist in the MALAT1 promoter in 

hyperglycemia, we cultured HRECs in NG and HG conditions and performed a 

genome-wide methylation analysis. Following detection of genome-wide methylation 

(over 830,000 methylation sites), we filtered to specifically examine the sites that 

spanned across the MALAT1 gene, which amounted to 21 probes (Data File S1, doi: 

10.1038/s41598-018-24907-w). We found that the average methylation intensity was 

generally lower across the ‘Shore’, ‘Island’, and ‘Shelf” regions in both NG and HG-

treated HRECs (β-values<0.2) compared to the ‘Open Sea’ region, (β-values= ~0.49, 

Fig. 2.5C). Furthermore, in both NG and HG conditions, HRECs demonstrated the 

lowest degree of methylation in the CpG islands compared to the other regions (β-

values<0.074, Fig. 2.5C). Although eight probe sites indicated a slight reduction in 

methylation after HG treatment (Fig. 2.5B), no comparable differences in methylation 

were demonstrated overall between HRECs in NG and HG conditions (Fig. 2.5C). 



72 

Figure 2.5. Transient HG treatment does not alter methylation status of CpG island in 

MALAT1 promoter; however, DNA methylation inhibition augments glucose-induced 

upregulations of MALAT1, TNF-α, and IL-6 expressions. A) Information on the human 

MALAT1 gene according to the UCSC database. The MALAT1 gene is 8,707 nucleotides in 

length (nucleotide positions in chromosome 11.q13.1: 65,265,233 to 65,273,939) and contains 

a CpG island in its promoter region that is located from positions 65,264,958 to 65,265,398 

(441 nucleotides in size)63. B) An intensity map depicting the β-values of CpG sites across 

the MALAT1 gene, generated by the Illumina methylation array. A β-value of 0 indicates no 
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methylation, while a value of 1 indicates complete methylation at the interrogated site (the 

‘*’ demonstrates a reduction in methylation following HG treatment). C) A bar graph 

illustrating the β-values separated by regions relative to the CpG island in the MALAT1 

promoter. These regions are defined as ‘Island’ (an area of at least 500 base-pairs that 

contains an observed-to-expected CpG ratio greater than 60%), ‘Shore’ (areas 2 kilo-bases 

on either side of an island), ‘Shelf’ (areas 2 kilo-bases on either side of a shore), or ‘Open 

Sea’ (areas outside of the shelf). No significant differences were observed in methylation 

between NG and HG conditions in these regions (data expressed as average β-value per 

region; n=3 independent samples for each NG or HG group). Glucose-induced elevations 

of D) MALAT1, E) IL-6, and F) TNF-α transcripts were further increased following 5-aza-dC 

treatment (data expressed as a ratio to β-actin (mean ± SEM); normalized to NG; *=P<0.05, 

**=P<0.01, ***=P<0.001, ****=P<0.0001, and n.s.= not significant, compared to NG or HG; 

n= 6 from three independent experiments and performed in triplicates).  

2.2.8    Inhibition of DNA methyltransferases (DNMTs) 

increases expression of MALAT1 and inflammatory 

cytokines 

We then examined the effects of inhibiting genome-wide DNA methylation on 

MALAT1, TNF-α, IL-6, IL-1β, and MCP-1 RNA expressions. To produce such an 

environment in vitro, we administered the pan-DNMT inhibitors 5-aza-dC or 

zebularine to HRECs prior to glucose treatment and analyzed the effects of 

methylation loss on RNA expressions using RT-qPCR. Following these treatments, we 

confirmed the reductions of DNMT1, DNMT3A, and DNMT3B (Appendix A, Figs. 

S6A-C and S6F-H). Interestingly, inhibiting the activity of DNMTs in NG and HG 

conditions evoked further increases in MALAT1, IL-6, TNF-α, IL-1β, and MCP-1 RNA 

expressions when compared to control NG and HG-treated HRECs (Figs. 2.5D-F; 

Appendix A, S6D-E and S6I-M). Among the markers analyzed, TNF-α and IL-1β 

demonstrated the greatest upregulations in 5-aza-dC or zebularine-treated HRECs 

(Fig. 2.5F and Appendix A, S4E). The findings implicate that although transient HG 

treatment on HRECs may not generate considerable DNA methylation alterations 
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across the MALAT1 gene region, globally inhibiting the activity of DNMTs impacts 

the expression of MALAT1 and inflammatory transcripts. Therefore, we speculate that 

DNMTs may have a potential role in regulating MALAT1 and inflammatory RNA 

expressions, which needs further characterization. 

To confirm the findings from our pan-DNMT inhibitors, we selected DNMT1, a 

constitutively expressed DNMT, for subsequent siRNA-mediated knockdown 

(Appendix A, Fig. S7A). After silencing DNMT1, we observed overall increases in 

MALAT1, TNF-α, IL-6, IL-1β and MCP-1 RNA expressions in both NG and HG-

treated HRECs (Appendix A, Figs. S7B-F).  

Based on our findings, we propose a diagram for MALAT1 in potentially regulating 

inflammation through independent and dependent pathways in DR (summarized in 

Fig. 2.6). In the independent pathways, DNA methylation may be capable of 

regulating the transcriptional status of MALAT1 and if the actions of DNMTs are 

hindered, MALAT1 RNA expressions could increase. Following upregulation, 

MALAT1 may recruit PRC2 to the promoters of anti-inflammatory genes and 

epigenetically repress these targets, which might subsequently allow for heightened 

transcription of inflammatory genes. On the contrary, in the dependent pathway, the 

MALAT1 transcript and MALAT1 gene may directly interact with inflammatory 

transcripts and inflammatory genes to ultimately provoke a greater inflammatory 

response.  
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Figure 2.6. A schematic depicting the potential involvement of MALAT1 in regulating 

inflammation through epigenetic mechanisms in diabetic retinopathy. Based on our 

findings, we present a diagram for MALAT1 in potentially regulating inflammation by 

independent and dependent pathways in DR. In the independent pathways, indicated by ‘1.’, 

DNA methylation regulates the transcriptional status of MALAT1 and if the actions of DNA 

methyltransferases are hindered, MALAT1 RNA expressions will increase. Following 

upregulation, MALAT1 can recruit PRC2 to the promoters of anti-inflammatory genes and 

epigenetically repress these targets, which will subsequently allow for heightened transcription 
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of inflammatory genes. On the contrary, in the dependent pathway (indicated by ‘2.’), the 

MALAT1 transcript and MALAT1 gene may directly interact with inflammatory transcripts and 

inflammatory genes, respectively, to ultimately provoke a greater inflammatory response 

(Me= methylation; EZH2 + SUZ12 + EED + RBAP48= PRC2 complex components; (+) and 

(-)= feedback loop; 1. = Indirect effect of MALAT1 on inflammation via DNA methylation and 

PRC2 pathways; and 2. = Direct effect of MALAT1 gene activity on inflammation and vice 

versa). Reproduced from MALAT1: An Epigenetic Regulator of Inflammation in Diabetic 

Retinopathy (p. 9) by S. Biswas, A. Thomas, S. Chen, E. Aref-Eshghi, B. Feng, J. Gonder, B. 

Sadikovic, and S. Chakrabarti, 2018, Scientific Reports.  

2.3 Discussion 

When metabolic memory was first described [3, 4], it became clear that understanding 

the processes implicated in this phenomenon are of utmost importance. Epigenetic 

modifications, which can alter the expression of genes without altering the underlying 

DNA sequence, are critical players in metabolic memory [35] and characterizing these 

modifications will help us learn about the intricacies of epigenetic regulation in 

diseases. Recently, the advancements in experimental genome-wide approaches have 

allowed for the identification of lncRNAs, which play various roles in cellular 

physiology and are heavily involved in epigenetic regulation [35, 36]. Further insight 

into the functions of lncRNAs and their association with other epigenetic mechanisms 

in diseases will help with the development of better-targeted therapeutics. Here, not 

only do we show for the first time that the lncRNA MALAT1 is present in the VH of 

diabetic patients, but we present through a series of well-designed in vitro and in vivo 

experiments, a novel epigenetic paradigm for MALAT1 in the pathogenesis of DR. 

MALAT1 was originally discovered in patients with non-small cell lung carcinoma and 

shortly after its discovery, MALAT1 has also been reported in various pathologies such 

as heart disease and diabetes [10-13, 25, 26, 37]. Located on human Chr.11q13.1, the 

MALAT1 gene produces a well-conserved non-coding transcript that is ~8000+ 

nucleotides in length and is further processed by RNAses P and Z, which ultimately 

results in the production of two transcripts: a mature MALAT1 transcript and a ~61-
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nucleotide MALAT1-associated small cytoplasmic RNA (mascRNA) [11, 22]. The 

mature MALAT1 transcript is primarily localized to the nucleus, while the mascRNA is 

exported to the cytoplasm [22, 23, 24, 38].  

The stability of the mature MALAT1 transcript differs across cell-types, where 

MALAT1 has been reported to have a half-life of ~9 hours in human cervical cells 

(HeLa Tet-off) [39], 16.5 hours in human B cells [40], and 3 hours in murine NIH 3T3 

cells [40]. Of note, we have previously reported in HUVECs that MALAT1 expression 

levels increase significantly at 12 hours [12]; whereas, other reports have indicated 

that MALAT1 expression is highest at the 48-hour mark in RF/6A, primary retinal 

ganglion, and Müller cells [10, 26]. Our current results indicate that MALAT1 

expression peaks at the 48-hour mark following HG treatment in HRECs, which is in 

accordance with the findings from Liu et al. and Yao et al. [10, 26]. It is likely that 

MALAT1 transcripts may exhibit similar half-life patterns among specific retinal cells, 

which may explain the variation in MALAT1 expression between HUVECs and 

HRECs. As well, early increases of MALAT1 by HG may regulate specific pre-mRNA 

splicing patterns and potentially activate a degradation mechanism that adjusts the 

MALAT1 expression at later time points [64]. Nevertheless, it is important to note that 

although the initial increase of MALAT1 at 48 hours may appear as a temporary event, 

MALAT1 may be capable of activating persistent epigenetic changes involving its 

downstream targets—despite reductions in MALAT1 expression later in the disease 

course. This phenomenon is best explained by the concept of metabolic memory, 

which has been previously demonstrated with epigenetic changes occurring in the NF-

κB promoter following transient hyperglycemia [65]. 

Knocking down lncRNAs using siRNA-mediated approaches has allowed for critical 

discussion on the efficiency and specificity of these particular knockdowns. Despite 

the notion that siRNAs operate mainly in the cytoplasm, several studies have 

demonstrated that siRNA-programmed RNA-induced silencing complexes (RISCs) 

exist in the nucleus, where siRNAs can still be used to target nuclear lncRNAs [41, 42, 

43]. In fact, previous studies have demonstrated efficient MALAT1 knockdown using 

siRNA-mediated transfections [13-19, 25, 26, 38]. As indicated by our prior work, the 
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selective targeting of MALAT1 via siRNAs resulted in a subsequent reduction of IL-6 

and TNF-α mRNA and protein levels in HUVECs [12], which also resembles similar 

patterns observed in this study. A reduction in MALAT1 with concomitant decreases in 

inflammatory transcripts suggests that MALAT1 promotes an inflammatory phenotype 

in DR. Furthermore, in the context of PRC2, we recently demonstrated that knocking 

down lncRNA ANRIL downregulates the RNA expressions of PRC2 components in 

HG-treated HRECs [44]. Since we observed similar trends in PRC2 expressions after 

siMALAT1 treatment, our findings collectively support the notion that certain 

lncRNAs, such as ANRIL and MALAT1, may act as scaffolds to chromatin-associated 

complexes in order to further modulate the expression of genes in DR [45].  

Under normal physiological conditions, the Malat1 KO mice do not display a 

noticeable phenotype [22, 23, 24]. However, whether Malat1 KO mice will reveal a 

disease-specific phenotype, when subjected to certain pathological conditions, remains 

of great interest. With respect to our in vivo diabetic animal model, our initial findings 

of MALAT1 upregulation in the WT-D mice retinas at 2 months are consistent with 

previous demonstrations of increased MALAT1 expression in the retinas of diabetic 

rats [25, 26]. However, of note, the relative MALAT1 expressions documented from 

these studies were upregulated up to >3-fold at the aforementioned time points [25, 

26]; whereas in our study, the relative MALAT1 RNA expression significantly 

increased to ~1.46-fold in the WT-D retinas at 2 months. We believe the differences 

observed in MALAT1 expressions may be accounted for potential species-specific or 

other unidentified variations [46, 47]. Since we also observed statistically significant 

reductions in the expressions of IL-6, TNF-α, IL-1β, MCP-1, EZH2, SUZ12, and EED 

in the diabetic Malat1 KO retinas, we infer that MALAT1 may be functionally capable 

of controlling the expressions of PRC2 components, through which it may regulate 

inflammation in DR. To further elaborate on the potential transcriptional capabilities 

of MALAT1, intergenic lncRNA transcripts have been previously shown to modulate 

the expression of protein-coding genes in cis by reducing the recruitment of 

transcription factors in the promoter regions of protein-coding genes and subsequently 

activating histone modification cascades to silence gene transcription- also known as 

transcriptional interference [48, 49, 50]. It is also likely possible that prolonged 
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diabetic conditions can enable MALAT1 to act in trans by directly impacting RNA 

polymerase II activity, which could impact the transcription of nearby anti-

inflammatory genes [51]. Moreover, confirming the immunohistochemistry findings 

from our in vivo animal model, previous work by Michalik et al. demonstrated that 

MALAT1 is capable of regulating and enhancing angiogenesis in the neonatal mice 

retina, suggesting a proangiogenic role for MALAT1 during retinal neovascularization 

[13]. Although the main focus of our manuscript has been on MALAT1 and its 

epigenetic role in inflammation, future experiments should elucidate the underlying 

epigenetic mechanisms implicated in the complex crosstalk between inflammation and 

angiogenesis—as both of these processes converge and synergistically influence the 

progression of DR [68]. 

The close proximity of the VH to the lens and retina make it an ideal location to 

administer therapeutic agents to target ocular pathologies [29]. Yao et al. have 

previously indicated that MALAT1 expression levels were significantly downregulated 

in the aqueous humor of patients with primary open-angle glaucoma [26]. However, in 

patients with Alzheimer’s Disease or glioma, the cerebrospinal fluid and the tumor 

itself, respectively, showed MALAT1 upregulation [26]. In contrast, Yan and 

colleagues have reported increased MALAT1 expression in the fibrovascular 

membranes and aqueous humors of diabetic patients [10]. Previous studies have also 

shown that MALAT1 upregulation contributes to epiretinal membrane formation in 

patients with proliferative vitreoretinopathy [52, 53]. In keeping with previous data, 

intraocular administration of MALAT1 shRNA alleviates vascular leakage and 

dampens the inflammatory response in the diabetic rat retina through reduced protein 

expressions of TNF-α, intracellular adhesion molecule-1 (ICAM-1), and vascular 

endothelial growth factor (VEGF) [25]. To our knowledge, this is the first study to 

directly identify MALAT1 RNA from the VH of PDR patients. Although much is 

unknown about the specific mechanisms of lncRNAs in diabetic complications, our 

novel finding suggests the possibility of therapeutically targeting MALAT1 in PDR 

patients. Taken together, a prolonged diabetic environment can ultimately allow for 

increased MALAT1 expression at various locations in the eye, which may associate 

with increased inflammation and subsequent cellular damage [10, 13, 25, 32].  
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Although interactions between lncRNAs and chromatin modification complexes have 

been studied in cancers [66], such studies have not been undertaken in the context of 

DR. MALAT1 has been shown to directly bind to EZH2 in renal cell carcinoma [14], 

mantle cell lymphoma [17], prostate cancer [15], osteosarcoma [16], and gastric 

cancer [54], suggesting an important regulatory relationship between the two 

components. Of particular interest, Wang et al. revealed that MALAT1 could facilitate 

the targeting capabilities of EZH2 and further augment histone 3 lysine 27 

trimethylation (H3K27me3) levels at the target gene loci of EZH2 in prostate cancer 

cell lines [15]. These findings allude to the many pathogenetic capabilities of 

MALAT1. Moreover, our RIP findings demonstrate heightened MALAT1 binding with 

EZH2 in HG-treated HRECs and we have also previously shown similar binding of 

EZH2 to ANRIL in HRECs cultured with HG [44]—suggesting a potential overlap in 

functional mechanism. Therefore, despite observing the expected reductions in 

MALAT1, TNF-α, EZH2, EED, and SUZ12 expression levels after DZNep treatment, 

it was surprising to see an increase in IL-6, IL-1β, and MCP-1 expressions in HRECs 

following DZNep treatment. These data are in keeping with Serresi and colleagues, 

who indicated previously that Polycomb-mediated repression exists on the IL-6 gene 

in NSCLC by H3K27me3 [55]. Furthermore, a similar observation by Lee et al. 

demonstrated that the depletion of EZH2 or estrogen receptor (ER) in ER-positive 

breast cancer cell lines (T47D and MCF7) produced a significant upregulation of IL-6 

and IL-8 expressions at basal levels [56]. In ER-negative breast cancer, EZH2 acts as a 

coactivator for RelA and RelB and this in turn activates a positive feedback loop 

through NF-κB signalling pathways to enhance the expressions of NF-κB targeted 

genes, such as IL-6 [56]. Lee and colleagues concluded that EZH2 is capable of 

context-specific regulation on the expression of NF-κB target genes [56]. These 

findings are supportive of our data. However, since DZNep inhibits global histone 

methylation and is not completely selective [57], further research is warranted on 

elucidating the cellular-specific mechanisms of DZNep treatment in diabetic 

complications.  

Although we did not observe significant methylation changes in CpG sites across the 
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MALAT1 gene after HG treatment, we did notice increased expressions of MALAT1, 

IL-6, TNF-α, IL-1β, and MCP-1 after 5-aza-dC or zebularine treatments in both basal 

and HG conditions. Consistent with the findings from our methylation array, Hu et al. 

reported no effects of CpG island methylation status on MALAT1 expression in 

esophageal squamous cell carcinoma (ESCC) cells [19]. On the other hand, Guo et al. 

analyzed the CpG island methylation patterns in the MALAT1 promoter of lung cancer 

cells (A549) and observed a reduction of methylated sites in lung cancer cells [18]. 

They also demonstrated that a methyl donor could reduce MALAT1 expression in these 

cells—implying that DNA methylation can regulate MALAT1 expression [18]. Taken 

together, the diverse findings documented from previous DNA methylation reports, 

and from our study, imply that disease-and cell-specific responses may exist after 

inhibiting the activity of DNMTs. Despite our observations from this pharmacological 

experiment, it still remains to be determined whether the inhibition of genome-wide 

DNA methylation alters neighbouring (or distal) genes, which in turn may 

substantially impact the transcriptional activity of MALAT1. Future studies should 

include targeted genome editing techniques such as CRISPR-Cas9, to eliminate any 

potential off-targeting effects observed from our 5-aza-dC, zebularine, or siDNMT1 

experiments.  

Overall, our findings collectively demonstrate that MALAT1 is capable of impacting 

the expressions of inflammatory transcripts through its association with epigenetic 

mediators, such as histone and DNMTs. It is important to note that the findings 

described in this manuscript are simply a starting point for future investigations to 

build and develop a more definitive model for lncRNAs in DR. Establishing such an 

all-encompassing model, which includes the interplay of miRNAs and additional 

epigenetic modifications, will enable the development of better-targeted treatment 

strategies. 
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2.5 Appendix A: MALAT1: An Epigenetic Regulator of 
Inflammation in Diabetic Retinopathy 

 
Figure S1: MALAT1 and inflammatory transcripts are upregulated in HRECs following 

high glucose treatment. RT-qPCR analyses of A) MALAT1, B) IL-6, C) TNF-α, D) MCP-1 and 

E) IL-1β expressions in HRECs exposed to 25mM (HG) or 5mM (NG) glucose over a time 

course of 72 hours. MALAT1, IL-6, TNF-α, MCP-1 and IL-1β are upregulated in HG-treated 

HRECs at 48 hours compared to NG (*=P<0.05, **=P<0.01, ***=P<0.001, and 

****=P<0.0001 compared to NG; data expressed as mean ± SEM; n=6/group; normalized to β-

actin, and data represented as a fold change of NG). 
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Figure S2: MALAT1 influences MCP-1, IL-1β, and EZH2 expressions and strongly binds 

with EZH2 in HG-treated HRECs. RT-qPCR analyses indicating reduced RNA expressions 

of A) IL-1β and B) MCP-1 following siMALAT1 treatment in HG-treated HRECs (data 

expressed as a ratio to β-actin (mean ± SEM); normalized to SCR NG; *=P<0.05, **=P<0.01, 

***=P<0.001, and ****=P<0.0001, compared to SCR NG or SCR HG; n= 6 from three 

independent experiments and performed in triplicates). C) Representative Western blot image 

showing EZH2 expressions, with β-actin as a control, in NG or HG-treated HRECs transfected 

with scrambled controls or siMALAT1. Western blots presented (in C) were cropped from the 
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same membrane and were cropped to improve clarity. The bands within the range of the 

molecular marker were retained in this figure and the full-length blots are presented in 

Supplementary Figure S5. D) RNA immunoprecipitation, using an IgG control or EZH2 

antibody, demonstrating elevated MALAT1 binding to EZH2 following HG treatment in 

HRECs. MALAT1 expression was determined by RT-qPCR (****P<0.0001 and n.s.= not 

significant compared to IgG controls; data expressed as mean ± SEM; n=3/group, and results 

are from one experiment that is representative of three independent experiments). SCR= 

scrambled siRNA; NG= 5 mM D-glucose; HG= 25 mM D-glucose; SiM1= siMALAT1 

treatment. 

 
Figure S3: Positive correlations between PRC2 components and MALAT1 expression, and 

between EZH2 and inflammatory transcripts after MALAT1 knockdown in HG-treated 
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HRECs. Pearson correlations between RNA expressions of A-C) MALAT1 and the PRC2 

components, and between D-E) EZH2 and the inflammatory cytokines in HRECs following 

siMALAT1+HG treatments. RNA expressions were normalized to β-actin and n=6 in the 

HG+siMALAT group.  

 

     
Figure S4: IL-1β and MCP-1 transcript expressions are impacted by Malat1 knockout and 

histone methyltransferases. RT-qPCR analyses of the retinas from animals, following two 

months of poorly controlled diabetes showed increased expressions of A) IL-1β and B) MCP-1 

inflammatory transcripts in WT-D retinas compared to WT-C retinas. Malat1 KO prevented 

such increases in the M1 KO-D group (data expressed as a ratio to β-actin (mean ± SEM); 

normalized to WT-C; *=P<0.05, **=P<0.01, ***=P<0.001, and ****=P<0.0001, compared to 

WT-C or WT-D; n= 6/group). Following DZNep and HG treatments, RT-qPCR findings 

indicate elevations of C) IL-1β and D) MCP-1 RNA expressions compared to NG at 48 hours 
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(data expressed as a ratio to β-actin (mean ± SEM); normalized to NG; *=P<0.05 and 

**=P<0.01 compared to NG or HG; n= 6 from three independent experiments and performed in 

triplicates). WT-C= Wild-type control; WT-D= Wild-type diabetic; M1 KO-C= Malat1 KO 

control; and M1 KO-D= Malat1 KO diabetic. 

 

Figure S5: Full length blots of Figure S2C. Red dotted lines indicating the cropping locations. 

A) β-actin was detected first prior to measuring EZH2 expressions, which were detected the 

following day. B) Blot reveals EZH2 expressions, as well as residual β-actin expressions from 

the first imaging run.  
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Figure S6: Global inhibition of DNMTs significantly elevates the RNA expressions of 

MALAT1, TNF-α, IL-6, MCP-1 and IL-1β. HRECs pre-treated with 5-aza-dC demonstrated 

overall reductions in A) DNMT1, B) DNMT3A, and C) DNMT3B transcripts. While, glucose-

induced elevations of D) IL-1β and E) MCP-1 transcripts were further increased following 5-

aza-dC treatment. HRECs were also incubated with zebularine (another pan-DNMT inhibitor) 

and demonstrated similar trends. Reductions in F) DNMT1, G) DNMT3A, and H) DNMT3B 

transcripts were observed; whereas, I) MALAT1, J) TNF-α, and K) IL-6, L) IL-1β, and M) 
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MCP-1 RNA expressions increased following zebularine treatment (*=P<0.05, **=P<0.01, 

***=P<0.001, ****=P<0.0001, and n.s.= not significant compared to NG or HG controls; data 

expressed as mean ± SEM; n=6/group; normalized to β-actin, and data represented as a fold 

change of NG). ZEB= Zebularine.   

 

 
Figure S7: DNMT1 knockdown impacts MALAT1, TNF-α, IL-6, MCP-1 and IL-1β 

transcripts. HRECs transfected with siDNMT1 demonstrated significantly decreased A) 

DNMT1 transcript expression and increased RNA expressions of B) MALAT1, C) TNF-α, D) IL-
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6, E) IL-1β, and F) MCP-1 compared to scrambled controls (*=P<0.05, **=P<0.01, 

***=P<0.001, ****=P<0.0001, and n.s.= not significant compared to SCR controls; data 

expressed as mean ± SEM; n=6/group; normalized to β-actin, and data represented as a fold 

change of NG). HRECs were also incubated with 5 µM Zebularine (a DNA methylation 

inhibitor) and demonstrated similar increases in D) MALAT1, E) TNF-α, and F) IL-6 RNA 

compared to controls (*=P<0.05, **=P<0.01, ***=P<0.001, and ****=P<0.0001 compared to 

SCR NG or SCR HG; data expressed as mean ± SEM; n=6/group; normalized to β-actin, and 

data represented as a fold change of NG). SiDNMT1= siDNMT1 treatment. 

 

 

Figure S8: Cell viability of retinal endothelial cells following glucose treatments across 

various durations of incubation. WST assay showing no significant differences in human 

retinal endothelial cell viability between the two groups following various durations of 

incubation (data presented as mean± SD; n.s.= no significance compared to NG; and 

n=6/group). Legend: NG= normal glucose, HG= high glucose.  
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Table S1: Specific oligonucleotide sequences used for RT-qPCR. 
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Table S2: Body weights and blood glucose levels for the mice at 2 months. Legend: WT-

control=WT-C, WT-diabetic= WT-D, Malat1 KO-control= Malat1 KO-C, and Malat1 KO-

diabetic= Malat1 KO-D [data expressed as mean ± SEM; n=6/group; and ‘*’=significantly 

different from WT-C]. 
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Chapter 3 iii 

3 The long non-coding RNA HOTAIR is a critical 

epigenetic mediator of angiogenesis in diabetic retinopathy 

With diabetes mellitus (DM) projected to impact over 600 million people globally in 

the next 20 years [1], the subsequent risk of acquiring micro- and macrovascular 

complications remain a serious concern. DM is a degenerative metabolic disease that 

is primarily characterized by chronic hyperglycemia, where sustained hyperglycemic 

insults can evoke alterations in biochemical and metabolic pathways that ultimately 

contribute to vascular damage and the pathogenesis of chronic diabetic 

complications [2-4]. Among these complications, diabetic retinopathy (DR) is a 

debilitating microvascular complication of DM and is also one of the leading causes 

of blindness worldwide [5]. Although there are different severity stages for DR, DR 

can be mainly categorized as non-proliferative DR (NPDR) and proliferative DR 

(PDR), where the latter may lead to imminent vision loss due to the presence of 

ocular pathological neovascularization [6]. 

As a result of long-term diabetes, pathological angiogenesis occurs and continuously 

activates various signal transduction cascades that promote the expressions of 

several pro-angiogenic genes, leading to increased concentrations of angiogenic 

factors than angiostatic factors [7-10]. Following upregulation, these angiogenic 

factors act synergistically to mediate the migration and proliferation of retinal 

endothelial cells in pre-existing blood vessels, which ultimately leads to the 

formation of new, abnormal blood vessels that are susceptible to bleeding, leakage, 

fibrosis and contraction [11,12]. Among the regulatory angiogenic molecules, 

vascular endothelial growth factor (VEGF) is a potent angiogenic factor expressed 

by ECs and non-ECs and has been studied extensively in DR. Several pathological 

processes, such as hypoxia [13], oxidative stress [14], advanced glycation end 

                                                
iii

 Content in Chapter 3 contains data under publication review. 



98 

products [15], and inflammation [16], can stimulate VEGF expressions through a 

transcriptional regulation involving a complex milieu of transcription factors [17], 

mediator complexes [18] and non-coding RNAs [19,20]. Indeed, due to VEGF’s 

critical role in DR, the standard first-line therapy for patients with diabetic macular 

edema and PDR consists of intravitreal injections of anti-VEGF and/or steroid 

compounds, which temporarily delay the progression of severe retinopathy. 

However, the use of such therapies comes at a cost to patients, where frequent 

intraocular injections are required, local or systemic adverse effects are associated 

with anti-VEGF compounds [21,22], and 40-50% of eyes with diabetic macular 

edema (another complication of diabetes) can not fully respond to anti-VEGF 

treatments [23]. Undoubtedly, in order to mitigate the effects of DR, a sense of 

urgency is warranted for diabetes research, as exploratory studies will provide novel 

insights into our understanding of ocular angiogenesis and open new avenues for 

better diagnosis and targeted therapies. 

Within the last two decades, the rapid advent of genomic technologies has identified 

long non-coding RNAs (lncRNAs) as a fundamental class of RNA transcripts that 

are larger than 200 base-pairs and possess limited protein-coding capacities. 

LncRNAs are dynamically regulated and present with distinct functionalities that 

facilitate chromatin remodelling and/or help govern the expression of genes involved 

in a multitude of biological and pathological processes, including development [24], 

cancer [25], neurodegeneration [26] and even DR [27,28]. Despite the breadth of 

literature available regarding lncRNAs, limited studies have comprehensively 

characterized the functions of certain lncRNAs in mediating angiogenesis in the 

context of DR. 

Here, we used microarray screening to identify glucose-induced expressions of the 

lncRNA HOTAIR (HOX transcript antisense RNA) in human retinal ECs and then 

investigated its functional implications in the pathogenesis of DR. Examination of 

retinal tissues from diabetic animals and vitreous and serum samples from patients 

with PDR showed that the lncRNA HOTAIR is specifically upregulated in 

hyperglycemic environments. Further mechanistic studies revealed that HOTAIR 
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directly mediates angiogenesis and other glucose-induced aberrations in ECs (such 

as mitochondrial and DNA damage) through its involvement in related epigenetic 

pathways, including histone methylation, histone acetylation, and DNA methylation. 

Collectively, our data highlights the complex regulatory nature of HOTAIR in the 

context of DR and identifies HOTAIR as a potential diagnostic marker and 

therapeutic target for angiogenesis in DR.   

3.1 Materials and Methods 

3.1.1    Cell culture  

Human retinal microvascular endothelial cells (HRECs; Cell Systems, Kirkland, 

WA, USA; catalog number ACBRI 181), mouse retinal microvascular endothelial 

cells (MRECs; Applied Biological Materials Inc., Richmond, BC, CAN), and 

primary lung endothelial cells (MLECs) from C57BL/6J mice were cultured in 

endothelial basal media-2 (EBM-2, Lonza, Walkersville, MD, USA) containing 

endothelial growth media-2 (EGM-2) SingleQuots (Lonza). All cells were grown in 

75 cm2 culture flasks and maintained in a humidified incubator containing 5% CO2 

at 37°C. As described previously [19,27,31], in order to reduce variability for 

experimentation, cells were used between passages three and six and the cellular 

densities were determined accordingly based on the type of culture plates used for 

each experiment. Generally, once 80% confluence was obtained post-seeding, ECs 

were cultured in serum and growth factor-free medium overnight before exposure to 

different D-glucose levels (final glucose concentrations of 5 mmol/L, mimicking 

normoglycemia [NG], and 25 mmol/L, mimicking hyperglycemia [HG]) for various 

durations; the selected glucose levels are based on a large volume of previous 

experiments [9,19,20,27,28,31,38,85,86]. All in vitro or ex vivo experiments were 

independently repeated at least three times and performed with six replicates, unless 

specified. 

3.1.2    siRNA transfections  

HRECs were transfected using scrambled siRNAs (ID number: AM4635 [SCR], 
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Thermo Fisher Scientific) or pre-designed siRNAs targeting human HOTAIR (ID: 

n272221 [si1-HOTAIR], Thermo Fisher Scientific; n272222 [si2-HOTAIR], Thermo 

Fisher Scientific; R-187951-00-0005 [SMARTpool siHOTAIR], Horizon 

Discovery), EZH2 (ID: M-004218-03-0005 [SMARTpool si-EZH2], Horizon 

Discovery), CTCF (ID: M-020165-02-0005 [SMARTpool siCTCF], Horizon 

Discovery), DNMT1 (ID: s4216 [siDNMT1], Thermo Fisher Scientific) or mouse 

Hotair (ID: R-173526-00-0005 [SMARTpool siHOTAIR], Horizon Discovery) 

using Lipofectamine 2000 (Invitrogen, Burlington, ON, Canada) and Opti-MEM 

reduced serum media (Thermo Fisher Scientific). As documented previously by us 

[19,20,27,28,31,38], cells were transfected with 100 nM of each siRNA for 3-4 

hours and subsequently recovered in complete EBM-2 overnight. Cells were then 

serum starved the following morning, between 18-24 hours, and then incubated with 

specific glucose concentrations (5 mmol/L or 25 mmol/L) for 48 hours. Knockdown 

of the target genes were then confirmed using RT-qPCR. 

3.1.3    Enzyme-linked immunosorbent assay (ELISA)  

Human VEGF-A (R&D Systems, Minnesota, USA) and mouse Vegf-a (Invitrogen) 

ELISA kits were used to measure the cytokine levels from HREC supernatants and 

mice retinal tissues, respectively. Cytokine concentrations were quantified using the 

BCA protein assay kit (Pierce, Rockford, IL, USA) and 100 µg protein 

concentrations were used for each ELISA kit according to the manufacturer’s 

instructions. The optical density for each well was determined at 450 nm and 

corrected at 568 nm using the Multiskan FC Microplate Photometer (Thermo Fisher 

Scientific, Massachusetts, USA).  

3.1.4    Endothelial tube formation assay  

When performing the tube formation assay, ~1.5x104 HRECs (pre-treated with either 

SCR siRNA or siHOTAIR) were seeded into a 96-well plate containing 100 µL of 

BD Phenol red-free matrigel matrix (BD Biosciences, Bedford, MA, USA) per well. 

In the presence of growth medium, cells were allowed to attach for one hour in a 

humidified incubator with 5% CO2 at 37°C. Following one-hour incubation, the 
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growth medium was replaced with serum-free medium containing appropriate 

glucose concentrations (5 mM or 25 mM) and/or exogenous VEGF-A protein 

concentrations (50 ng/mL). At the six-hour mark, images were taken at a 40x 

magnification using the Nikon Diaphot microscope (Nikon Canada, Mississauga, 

ON, CAN) with a PixeLINK camera (PixeLINK, Ottawa, ON, CAN) and images 

were captured from at least two field views per well (n= 8 independent 

samples/group). In order to assess the total number of tubules and branching points 

in the images, the WimTube Image analyzer software (Wimasis) was used and these 

results were plotted graphically. 

3.1.5    RNA fluorescence in situ hybridization (RNA-

FISH) 

As previously described [20,27,86], HRECs were seeded at 75% confluency on glass 

cover slips in 12-well plates, serum starved over night, and treated with various 

glucose concentrations (NG or HG) for 48 hours. RNA fluorescence in situ 

hybridization (FISH) was performed according to the manufacturer’s protocol for 

adherent cells (https://www.biosearchtech.com/support/resources/stellaris-protocols) 

and Stellaris FISH probes for Human HOTAIR with Quasar 570 dye (5 nmol; 

Biosearch Technologies, Petaluma, CA, USA) were used for hybridization. HRECs 

were also counterstained with 4´,6-diamidino-2-phenylindole (DAPI; Vector 

Laboratories, Burlingame, CA, USA) and mounted with Vectashield mounting 

medium (Vector Laboratories). Images were captured with the Cytation 5 Cell 

Imaging Multi-Mode Reader (BioTek, Winooski, VT, USA), at a magnification of 

20X, by researchers blinded to the experimental groups. Yellow fluorescent protein 

(YFP), DAPI, and phase contrast filters were used and images were subsequently 

analyzed using ImageJ software (NIH, Bethesda, MD, USA).  

3.1.6    RNA immunoprecipitation (RIP)  

Cell lysates from HRECs cultured in NG or HG were collected for 

immunoprecipitation at the 48-hour mark using the Magna RIP RNA-binding protein 

immunoprecipitation kit (Millipore, Etobicoke, ON, CAN) [20,28], following the 
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manufacturer’s instructions. Anti-IgG (control) and anti-EZH2 antibodies 

(Millipore) were used to co-precipitate the RNA-binding proteins of interest. The 

extracted RNAs were then reversed transcribed to cDNA, analyzed by RT-qPCR and 

normalized to the levels of B-actin mRNA (encoding a housekeeping protein). 

3.1.7 3-Deazaneplanocin A (DZNep), 5-Aza-2’-

deoxycytidine (5-aza-dC) and 2-deoxy-D-glucose (2-DG) 

treatments  

Following the concentrations documented in previous studies, DZNep (Cayman 

Chemical, Ann Arbor, MI, USA; 5 µM), 5-aza-dC (Sigma, St. Louis, USA; 5 µM) or 

2-DG (Sigma; 0.6 mM and 5 mM) pre-treatment was applied to HRECs for 1 hour 

prior to the addition of D-glucose [19,28,31,45]. DZNep, 5-aza-dC or 2-DG-treated 

HRECs and their respective controls were collected at 48 hours for further analyses. 

3.1.8    JC-1 assay  

In order to assess mitochondrial health and functional status, the JC-1 assay was 

employed [38]. Briefly, HRECs were treated with either SCR siRNA or siHOTAIR 

prior to glucose culture and at the 48-hour mark, cells were subsequently incubated 

for 10 minutes with 10 µM of the JC-1 dye (5,5´,6,6´-tetrachloro-1,1´,3,3´-

tetraethylbenzimi-dazolylcarbocyanine iodide; Abcam, Toronto, ON, CAN). 

Following the manufacturer’s instructions, HRECs were then washed three times 

using the JC-1 dilution buffer. In order to stain the nuclear regions, DAPI (Vector 

Laboratories) was used following JC-1 staining. Fluorescence images were captured 

at 20X magnification using the Zeiss LSM 410 inverted laser-scanning microscope 

(Carl Zeiss Canada, North York, ON, CAN) and images were analyzed using 

ImageJ. 

3.1.9    8-OH-dG staining  

Following siRNA pre-treatment, HRECs were plated in eight-chamber tissue culture 

slides and incubated for 48 hours after glucose challenge (NG or HG) [38,85]. 

Following the manufacturer’s instructions, cells were fixed with methanol and then 
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stained for 8-hydroxy-2′-deoxyguanosine (an oxidative DNA damage marker; 8-

OHdG; 1:50, Santa Cruz Biotechnology, Dallas, TX, USA). Nuclear staining was 

also performed using DAPI (Vector Laboratories). Microscopy was performed by a 

blinded examiner, who was unaware of the identity of the samples, using a Zeiss 

LSM 410 inverted laser scan microscope (Carl Zeiss Canada) and the images were 

captured at a 20X magnification and subsequently analyzed using ImageJ. 

3.1.10   Chromatin immunopreciation-qPCR (ChIP-qPCR)  

ChIP assays (Milipore, Temecula, CA, USA) were carried out as previously 

described by us [19]. Briefly, HRECs were pre-treated with either SCR siRNA or 

siHOTAIR and subsequently cultured in NG or HG for 48 hours. Cells were then 

fixed with 1% formaldehyde, incubated for 10 minutes at 37°C, and then lysed and 

sonicated to shear DNA. ChIP assays were performed using anti-trimethyl-Histone 

H3 (Lys27; H3k27me3; Millipore), anti-RNA polymerase II (Millipore), anti-IgG 

(Millipore) and anti-acetyl-Histone H3 (K9, K14, K18, K23, K27; Abcam) 

antibodies. Anti-mouse IgG was used as a negative control. The immunoprecipitated 

DNA was detected by RT-qPCR using promoter-specific primers for VEGF-A: distal 

promoter region (forward: 5’-GTAGTCCCAGGGTGCAACAC-3’, reverse: 5’-

GACTGGCTAGAATGGGCATC-3’, location relative to transcriptional start site 

[TSS]: -4896 bp) and proximal promoter region (forward: 5’-

CGGTGCTGGAATTTGATATTCATTGAT-3’, reverse: 5’- 

TTCAAGTGGGGAATGGCAAGC-3’, location relative to TSS: -189 bp) [87].  

3.1.11    WST-1 cell viability & proliferation assay  

Following glucose and siHOTAIR treatments, the viability of HRECs was 

determined using the WST-1 Cell Viability Assay (Roche) at 48 hours. Using the 

Multiskan FC Microplate Photometer (Thermo Fisher Scientific), absorbances were 

first measured at 450 nm and then corrected using 690 nm as the reference 

wavelength.  
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3.1.12    Electron microscopy  

Following the transfection of HRECs on coverslips, the inserts with attached cells 

were fixed in 2.5% glutaraldehyde in phosphate buffer and processed for EPON 

embedding as previously described [92]. Ultra-thin sections on 200 mesh nickel 

grids were stained with uranyl acetate and lead citrate and examined 

electronmicroscopically (Phillips EM-420 TEM).  

3.1.13  Methylation analysis of CpG sites across HOTAIR 

Differential methylation patterns of CpG sites across the HOTAIR gene were 

identified in HRECs, incubated in NG or HG environments for 2 days (48 hours) or 

7 days (168 hours), using the Illumina Infinium MethylationEPIC BeadChip array 

(Illumina, CA, USA). At each respective time-point, genomic DNA was extracted 

from these cells and 1 µg of DNA was used for bisulfite conversion using the Blood 

& Cell Culture DNA Mini Kit (Qiagen, Toronto, ON, CAN). The HiScan System 

(Illumina, CA, USA) was used to obtain the array readout and the methylated and 

unmethylated signal intensity data were then imported into R 3.5.2 for analysis. 

Following our previously published protocols [55], normalization was performed 

using the Illumina normalization method with background correction using the minfi 

package. Probes with detection p-value >0.01 were excluded from the downstream 

analysis. In addition, probes known to contain single nucleotide polymorphisms 

(SNPs) at the CpG interrogation or the single nucleotide extension were removed. 

Methylation level for each probe was measured as a beta value (β-value), calculated 

from the ratio of the methylated signals versus the total sum of unmethylated and 

methylated signals, ranging between 0 (no methylation) and 1 (full methylation). 

Three independent samples were used per group.  

3.1.14    Diabetic animal models  

The Western University Council for Animal Care Committee approved all animal 

models used in this study and experiments were performed in accordance with The 

Guide for the Care and Use of Laboratory Animals (NIH Publication 85-23, revised 

in 1996). Beginning with our initial two-month in vivo model, male rats (Sprague-
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Dawley; ~175 g, 6 weeks old) or male mice (C57/BL6 background; ~25 g, 8 weeks 

old) were obtained (Charles River, Wilmington, MA, USA) and randomly divided 

into control and diabetic groups. Streptozotocin (STZ) was used to generate a type 1 

diabetic animal model and methods of diabetes induction and monitoring have been 

previously described [9,20,27,28,85,86,88]. At two months following diabetes 

induction, animals were euthanized (n= 8 for both mice groups; n= 5 for control rats 

and n=9 for diabetic rats) and retinal tissues were collected for RNA extraction and 

Hotair RNA levels were assessed using RT-qPCR. 

For our short-term therapeutic in vivo model (4-week duration), wild-type mice were 

obtained (Charles River; C57BL/6J background; ~25 g, 8 weeks old) and randomly 

divided into four groups (n= 6/group): control mice administered intravitreal 

injections of SCR siRNA (negative control) or siHOTAIR, and diabetic mice 

administered intravitreal injections of SCR siRNA or siHOTAIR. Prior to 

administering intravitreal injections, STZ-induced diabetes was first confirmed in 

diabetic animals (>20 mmol/L blood glucose levels) using the above methodologies. 

After the onset of diabetes, a 1 µl solution (100 nmol/L) containing either SCR 

siRNA or siHOTAIR with Lipofectamine 2000 (Invitrogen) was injected into the 

vitreous chamber of the diabetic mice eye once every week for up to three weeks. 

Control mice were also injected similarly with the same volume of SCR siRNA or 

siHOTAIR with Lipofectamine. All mice were anaesthetized using isoflurane 

(2.25% mixed with 900 mL/min O2) and intravitreal injections were performed with 

a 33-gauge needle attached to a 10 µl glass syringe (Hamilton, Reno, USA). Surgical 

positioning of the needle and the general duration of each intravitreal injection have 

been described previously [89]. No post-surgical ocular complications occurred 

throughout the 4-week study. 

3.1.15    Toxicity and Histopathological Analyses  
To determine potential adverse effects of siHOTAIR in mice, toxicity analyses were 

performed in addition to the regular monitoring of mice (C57/BL6 background) [85]. 

Age-matched mice were divided into four groups: SCR siRNA group (negative 

control; 100 nmol/L; n=3), siHOTAIR low-dose group (25 nmol/L; n=3), siHOTAIR 
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middle-dose group (50 nmol/L; n=3) and siHOTAIR high-dose group (100 nmol/L; 

n=3). SCR siRNA or siHOTAIR were intravitreally injected once, as a single-dose, 

and mice were followed-up for 7 consecutive days. Following this time-point, organs 

were excised, fixed in 10% buffered formalin solution and embedded, and sectioned 

into 5 µm thick sections. The tissue sections were then stained with hematoxylin and 

eosin (H&E) for routine histology. A blinded pathologist evaluated the 

histopathological damage using a light microscope and the images were captured 

(Nikon, Japan). Of note, in order to examine long-term toxicity of siHOTAIR, we 

had also performed H&E staining for the mice tissues obtained from our 4-week 

therapeutic model (n= 3/group).  

3.1.16    Clinical sample collection 
The Western Research Ethics Board and Lawson Health Research Institute at the 

University of Western Ontario (London, ON, CAN) approved the clinical component 

of this study. Patients provided informed consent prior to the procurement of 

specimens and all of the samples were handled in accordance with the Declaration of 

Helsinki. Both serum and undiluted vitreous humor (VH) were collected from 

patients undergoing a pars plana vitrectomy by an experienced vitreoretinal surgeon. 

Both specimens were categorized into two groups: control and diabetic retinopathy 

(DR). The DR group comprised of patients diagnosed with advanced stages of DR, 

including proliferative DR (PDR; n= 11; mean age ± SD= 60.9 ± 10.43 years; 10 

males and 1 female), while the control group consisted of patients that had no 

previous history of diabetes mellitus and were diagnosed with idiopathic macular 

hole or a separate non-diabetic ocular condition (n= 10; mean age ± SD= 69.2 ± 8.87 

years; 2 males and 8 females). PDR was defined as the presence of 

neovascularization or fibrous proliferation of the disc or elsewhere on the retina. As 

previously described [27,28], total RNA was extracted from 500 µL of VH samples 

and 200 µL of serum samples using the TRIzol reagent (Invitrogen) and a serum 

RNA extraction kit (Bio Basic Inc., Markham, ON, CAN) following the 

manufacturer’s protocol. After conversion to cDNA, RT-qPCR was used to evaluate 

the expression of HOTAIR in these samples. 



107 

 

3.1.17  RNA isolation and quantitative real-time 

polymerase chain reaction (RT-qPCR)  

As extensively described by us [9,19,20,27,28,31,38,85,86], total RNA was 

extracted using the TRIzol reagent (Invitrogen). Once total RNA was obtained, a 

spectrophotometer (260 nm; Gene Quant, Pharmacia Biotech, USA) was used to 

quantify RNA concentrations in which 1-2 µg of total RNA was reverse transcribed 

to complementary DNA (cDNA) using a high-capacity cDNA reverse-transcription 

kit (Applied Biosystems/Thermo Fisher Scientific). cDNA was then amplified in the 

LightCycler 96 System (Roche Diagnostics, Laval, QC, CAN) using the SYBR-

green master mix (Takara Bio, Mountain View, CA, USA) and specific primers for 

the genes of interest (Sigma; Appendix B, Supplementary Tables 1 and 2). RT-

qPCR results were analyzed using the LightCycler 96 SW 1.1 software (Roche) and 

expression levels were calculated by the relative standard curve method using β-actin 

as an internal control for sample normalization.  

 

3.1.18    Statistical analyses  

Statistical differences were evaluated between groups using GraphPad Prism 7 (La 

Jolla, CA, USA). Data were considered statistically significant if the P value was 

less than 0.05. All quantitative data for the in vitro experiments are presented as 

mean ± SEM, while all in vivo data are presented as mean ± SD. Experiments were 

performed in triplicate (n= 6 per group), unless specified. Statistical significance for 

samples with non-parametric distribution was identified using the Mann-Whitney U 

test, while two-tailed Student’s t-test (when comparing two conditions) or one-way 

ANOVA (for multiple comparisons; followed by Tukey’s post hoc test) was applied 

for parametric variables. 

3.2 Results 

3.2.1    HOTAIR RNA expressions are glucose-dependent 

and appear to follow oscillating patterns with significant 
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elevations at the 48-hour time-point  
Using microarray analyses, we previously explored the global expression profiles of 

lncRNAs in HRECs cultured with NG or HG for 48 hours (Gene Expression Omnibus 

[GEO] ID: GSE122189). Interestingly, following stringent filtering criteria (fold 

change ≤ or ≥ 2 and an adjusted p-value <0.05), thousands of lncRNAs were 

differentially expressed after HG glucose culture; in particular, when examining 

between replicates, 2669-3518 lncRNAs were found to be upregulated and 890-1991 

lncRNAs were found to be downregulated in HRECs challenged with HG (Appendix 

B, Supplemental Figures 1A-C). Among the upregulated lncRNAs, the lncRNA 

HOTAIR was increased by 2.67-fold in HG-treated HRECs compared to NG controls 

(Appendix B, Supplemental Figure 1D). Real-time quantitative reverse 

transcription-PCR (RT-qPCR) further confirmed the elevated expressions of HOTAIR 

following 48 hours of HG culture in HRECs (Figure 3.1A), which were also 

associated with augmented expressions of VEGF-A and ET-1 transcripts (Figure 

3.1C-D). Since lncRNAs have been reported to demonstrate differential expression 

patterns across various time-points [28-30], we investigated HOTAIR RNA 

expressions at 6, 12, 24, 48, and 72 hours. Intriguingly, when compared to their 

respective NG controls, HOTAIR demonstrated significant HG-induced elevations 

only at the 48-hour (Figure 3.1C; p=0.0014). Furthermore, to determine whether 

specific glucose concentrations can influence HOTAIR expressions, we cultured 

HRECs in the presence of 5, 10, 15, 20, and 25 mmol/L (mM) D-glucose for 48 hours. 

As demonstrated by RT-qPCR, HOTAIR RNA expressions peaked significantly 

following 25 mM glucose culture (mimicking hyperglycemia) compared to cells 

cultured with 5 mM glucose (mimicking euglycemia) (p=0.0077; Figure 3.1D). 

Therefore, based on the present findings and our previously published studies 

[19,20,27,28,31], the 48-hour time-point and 5 mM and 25 mM glucose concentrations 

were used for our subsequent in vitro experiments. Of note, for the above experiments, 

no significant differences in HOTAIR expressions were observed when using an 

osmotic control (25 mM L-glucose; data not shown).   
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Figure 3.1. HOTAIR RNA expressions are associated with increased expressions of 

angiogenic markers in HRECs cultured with high glucose (HG) and appear to be 

glucose-dependent with significant elevations at 48 hours. RT-qPCR analyses 

demonstrating HG-induced increases of (A) HOTAIR, (B) VEGF-A, and (C) ET-1 in HRECs 

compared to HRECs cultured in basal glucose levels at 48 hours (normal glucose; NG). (D) 

Expressions of HOTAIR across various time-points. (E) Relative HOTAIR RNA levels 

following different glucose concentrations following 48 hours of culture. β-actin was used as 

an internal control. Statistical significance was assessed using two-tailed Student’s t-test when 

comparing two conditions or one-way ANOVA for multiple comparisons followed by Tukey’s 

post hoc test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data 

represents the mean ± SEM of 3 independent experiments (n=6/group). 

 

To delineate the sub-cellular localization of HOTAIR in HRECs, we performed RNA 

fluorescence in situ hybridization (RNA FISH). RNA FISH showed that HOTAIR can 

be present in both nuclear and cytoplasmic compartments of HRECs, with a 

predominant localization in the perinuclear/cytosolic region (Figure 3.2A). Moreover, 
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further confirming our microarray and RT-qPCR findings, RNA FISH analyses 

demonstrated that HG significantly promotes elevated expressions of HOTAIR when 

compared to NG controls (Figure 3.2B; p<0.0001). Taken together, these data reveal 

that HG is an inducer of HOTAIR expressions and additionally imply an endothelial-

specific role for HOTAIR during HG stress, where HOTAIR may be involved in the 

regulation of nuclear and cytoplasmic processes.   

 

Figure 3.2. High glucose promotes HOTAIR expressions and HOTAIR can be localized 

in the nucleus and cytoplasm of retinal endothelial cells. (A) Visualization of HOTAIR 

localization in HRECs at 48 hours as indicated by RNA fluorescence in situ hybridization 

using Stellaris FISH probes for human HOTAIR with Qasar 570 dye. Cells were also 

counterstained with DAPI to visualize the nuclei. Original magnification, 20X; scale bars, 

100 µm. (B) Mean integrated densities of HOTAIR expressions calculated using ImageJ. 

Statistical significance was assessed using two-tailed Student’s t-test (****p<0.0001). Data 

represents the mean ± SEM of 50 cells captured per sample (n=4-5 independent 

samples/group). 
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3.2.2    HOTAIR directly mediates angiogenesis in vitro  
With previous reports documenting the pro-angiogenic capabilities of HOTAIR in 

nasopharyngeal carcinoma [32] and glioma cells [33], we wanted to examine whether 

HOTAIR can mediate angiogenesis in hyperglycemic environments, since 

angiogenesis is a major pathological process in patients with proliferative diabetic 

retinopathy (PDR). Therefore, in order to determine HOTAIR’s angiogenic role, we 

used HRECs and performed an endothelial cell tube formation assay, which is a 

widely used in vitro assay that models the reorganization stage of angiogenesis and is 

a rapid method that can determine genes or pathways involved in angiogenesis [34]. 

As evident by the images in Figure 3.3, at the 6-hour mark, cells pre-treated with 

scrambled siRNAs (denoted as ‘SCR’) and cultured in the presence of HG have an 

elevated presence of capillary-like structures (tubules) compared to pre-treated SCR 

cells incubated in NG. However, when cells were treated with siHOTAIR, the degree 

of branching and total number of tubules significantly decreased in both NG and HG 

conditions at 6 hours (Figure 3.3B and 3.3C; p<0.0001). Even more intriguing at the 

6-hour mark, when HRECs were pre-treated with siHOTAIR, the presence of both 

exogenous VEGF proteins and HG were not able to completely recover the degree of 

branching and number of tubules compared to HG controls, which implies that the 

knockdown of HOTAIR may be further desensitizing ECs to other external 

angiogenesis-causing factors in HG. These findings encouraged us to explore other 

angiogenic factors [35], such as angiopoietin-like 4 (ANGPTL4), placental growth 

factor (PGF), hypoxia-inducible factor (HIF), interleukin-1 beta (IL-1β), and diabetes-

related molecules including poly [ADP-ribose]-polymerase 1 (PARP1) [36], 

Cytochrome B [37,38], and several additional epigenetic mediators in the next set of 

experiments below.  
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Figure 3.3. HOTAIR directly mediates angiogenesis in vitro. (A) Images captured from the 

endothelial tube formation assay at the 6-hour mark for HRECs treated with scrambled 

siRNAs (SCR), siHOTAIR or exogenous VEGF proteins and cultured in NG or HG 

conditions. The WimTube Image analyzer software was used to calculate (B) the number of 

tubules and (C) the total branching points in each group. Statistical significance was assessed 

using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test 

(****p<0.0001). Data represents the mean ± SEM of 3 independent experiments (n=8/group) 

and images were captured from at least two field views per well. Original magnification, 40X.  
 

3.2.3    HOTAIR knockdown can prevent the induction of 

several angiogenic factors and diabetes-related molecules 

in vitro  
To determine the direct regulatory capabilities of HOTAIR on the aforesaid molecules 

of pathogenetic significance in DR in vitro, we carried out a loss-of-function 

experiment that involved siRNA-mediated knockdown of HOTAIR in HRECs. 

Amongst the three siRNAs tested and albeit significant decreased HOTAIR 
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expressions were observed across all siRNA treatments, the ‘SMARTpool siHOTAIR’ 

evoked the largest reduction of HOTAIR RNA levels (by ~91%, p<0.0001) in HG-

cultured HRECs compared to HG SCR controls (Appendix B, Supplemental Figure 

2). Therefore, as such, we selected the ‘SMARTpool’ siRNA for our subsequent 

downstream analyses. 

Accompanying the reduced HOTAIR levels in siHOTAIR-treated HRECs challenged 

with HG, significantly decreased expressions of various RNA transcripts implicated in 

angiogenesis (VEGF-A, ET-1, ANGPTL4, PGF, HIF-1α; Figure 3.4), DNA and 

oxidative damage (PARP-1 and Cytochrome B; Figure 3.4), and epigenetic regulation 

(EZH2, SUZ12, DNMT1, DNMT3A, DNMT3B, CTCF, and P300; Appendix B, 

Supplemental Figure 3) were also evident when compared to HG controls. These 

findings indicate that the lncRNA HOTAIR is directly implicated in the transcriptional 

regulation of several DR-related molecules. To determine whether these molecular 

changes are also reflected at the protein level, we selected one of the angiogenic 

markers (VEGF-A) for further follow-up via ELISA. In parallel to our RNA results, 

the knockdown of HOTAIR can significantly prevent glucose-induced upregulations of 

VEGF-A proteins in HRECs (Appendix B, Supplemental Figure 4A; p<0.0001). 

Extending our findings, we had additionally examined the expressions of HOXD3 and 

HOXD10, since HOTAIR has been implicated in the transcriptional repression of 

HOXD loci [39]. Indeed, the knockdown of HOTAIR in HRECs cultured with HG can 

induce significant upregulations of HOXD3 (p=0.0473) and HOXD10 (p=0.0001) 

compared to SCR HG controls (Appendix B, Supplementary Figures 4B and 4C). 

We had also investigated the viability of HRECs following siHOTAIR treatment and 

as evidenced by our WST-1 findings, siRNA-mediated knockdown of HOTAIR can 

significantly improve cellular viability compared to SCR controls (Appendix B, 

Supplemental Figure 4D; p<0.0001). Collectively, these results suggest that HOTAIR 

is a critical regulator of glucose-induced EC dysfunction in vitro. 
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Figure 3.4. HOTAIR knockdown can prevent the induction of several angiogenic factors 

and diabetes-related molecules in vitro. RT-qPCR analyses of (A) HOTAIR, (B) VEGF-A, 

(C) ET-1, (D) ANGPTL4, (E) PGF, (F) IL-1β, (G) HIF-1α, (H) PARP1, and (I) Cytochrome b 

expressions following the administration of SCR siRNA or siHOTAIR in HRECs subjected to 

48 hours of NG or HG culture. β-actin was used as an internal control. Statistical significance 

was assessed using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc 

test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents 

the mean ± SEM of 3 independent experiments (n=6/group).  
 

3.2.4    Hotair is significantly elevated in the retinas of 

diabetic mice and rats at 2 months  
Following our in vitro findings, we wanted to confirm in vivo whether HOTAIR had a 

similar pathogenetic phenotype in the retina in diabetes. As such, we employed a 

streptozotocin (STZ)-induced diabetic animal model involving both C57/BL6 mice 

and Sprague-Dawley rats and subsequently extracted retinal tissues after 2 months of 
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diabetes. Diabetic animals showed hyperglycemia and glucosuria (data not shown), as 

well as reduced body weight gain and hyperglycemia (Appendix B, Supplemental 

Figures 8C and 8D). In parallel to the trends observed from our in vitro experiments, 

distinct patterns of Hotair RNA expressions were evident between the retinas of 

control and diabetic animals, with significant upregulations of Hotair in the retinas of 

both diabetic mice (p=0.0281; Appendix B, Supplemental Figure 5A) and rats 

(p=0.0420; Appendix B, Supplemental Figure 5B) at 2 months, suggesting that 

retinal Hotair expressions share a positive association with diabetes. 

After confirming the significance of Hotair in the retina in diabetes, we sought to 

evaluate the therapeutic potential for siRNA-mediated modulation of HOTAIR as a 

new approach to treat DR. In order to determine this, we had first acquired a 

SMARTpool siHOTAIR that specifically targeted mouse Hotair, tested this siRNA 

compound on two EC-specific mouse cell lines (mouse retinal microvascular ECs 

[MRECs] and primary mouse lung ECs [MLECs] (C57/BL6)), and then elucidated the 

therapeutic significance of siHOTAIR using a short-term, one-month, diabetic animal 

model. Beginning with our in vitro and ex vivo experiments, we found that 50 nM and 

100 nM concentrations of siHOTAIR can evoke significant reductions in Hotair RNA 

levels across both EC-lines cultured with HG, when compared to SCR HG controls 

(Appendix B, Supplemental Figure 6). In fact, using a 50 nM concentration, ~79% 

and ~53% reductions were observed in MRECs and MLECs challenged with HG, 

respectively, when compared to SCR HG controls; whereas, at a 100 nM 

concentration, ~80% and ~43% reductions were noted in HG-cultured MRECs and 

MLECs, respectively (Appendix B, Supplemental Figure 6A and 6D). Similarly, 

when compared to controls, statistically significant reductions for both Vegf-a and 

Angptl4 transcripts were also found after Hotair knockdown in MRECs (at a 100 nM 

concentration; Appendix B, Supplemental Figure 6B and 6C). While, conversely, 

significant reductions in these angiogenic transcripts were not observed in MLECs 

(Appendix B, Supplemental Figure 6E and 6F), which suggests that transfection 

efficiencies may differ between EC subtypes. Nevertheless, based on the findings from 

MRECs, we selected the mouse-specific siHOTAIR for our subsequent animal 

experiments.  



116 

 

3.2.5    Intravitreal administration of siHOTAIR is non-toxic 

and prevents early DR-related retinal changes  
We initially performed a toxicology study involving siHOTAIR. Wild-type C57BL/6 

mice were subjected to a one-time intravitreal injection that consisted of either 

scrambled siRNA control (50 nM; SCR) or siHOTAIR at varying concentrations (25 

nM, 50 nM, and 100 nM) and were monitored for seven days and then euthanized for 

tissue collection. No behavioral changes or ocular complications were observed in the 

mice throughout the duration of the experiments. As evidenced by hematoxylin and 

eosin (H&E) staining, no structural abnormalities were observed across retinal, heart, 

lung, liver, and kidney tissues following intravitreal siHOTAIR injection at 25, 50, or 

100 nM concentrations (Appendix B, Supplemental Figure 7). Furthermore, at the 7-

day mark, retinal HOTAIR expressions appeared to be the lowest following a 100 nM 

dose of siHOTAIR (~50% reduction) when compared to SCR controls and other 

siHOTAIR concentrations (Appendix B, Supplemental Figure 8A). Using this 

information, we opted to select 100 nM as the optimal concentration of siHOTAIR for 

our therapeutic animal model.  

To understand the therapeutic effects of siHOTAIR, diabetes was induced in C57BL/6 

mice using STZ injections. All diabetic mice showed significant hyperglycemia and a 

progressive loss of body weight (Appendix B, Supplemental Figures 8B and 8C), as 

well as polyuria and glucosuria (data not shown). Compared to SCR diabetic controls, 

Hotair knockdown did not further affect body weight and blood glucose levels 

(Appendix B, Supplemental Figures 8B and 8C). When examining the pathogenetic 

molecules implicated in DR-related microvascular dysfunction, we found elevated 

RNA expressions of Hotair, Vegf-a, Ctcf, Et-1, Angptl4, Mcp-1, Il-1β, Pgf, Hif-1α, 

p300, polycomb repressive complex 2 [Prc2] components (Ezh2, Suz12, and Eed) and 

Parp1 in the retinal tissues of diabetic mice administered SCR siRNAs (Figure 3.5). 

Whereas, the knockdown of Hotair (a ~58% reduction) could significantly reduce 

diabetes-induced upregulations of Hotair, Vegf-a, Et-1, Angptl4, Mcp-1, Ctcf, Hif-1α, 

p300, Prc2 components (Ezh2, Suz12, and Eed), and Parp1—suggesting that HOTAIR 

knockdown can alleviate early molecular aberrations induced by a diabetic milieu 
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within the retina (Figure 3.5). Of note, we did not observe statistically significant 

changes in retinal expressions of Hoxd3 between SCR and siHOTAIR-treated diabetic 

animals (Appendix B, Supplemental Figure 8D). Furthermore, as indicated by H&E 

stains and in comparison to SCR controls, we did not find any observable cellular 

anomalies or toxic effects in retinal, cardiac, lung, liver, kidney, and brain tissues 

following 1 month of siHOTAIR injections (Appendix B, Supplemental Figure 9). 

 

Figure 3.5. In vivo knockdown of HOTAIR can significantly prevent early glucose-

induced elevations of angiogenic and diabetes-associated molecules in the diabetic retina. 

Non-diabetic and diabetic C57BL/6J mice were administered intravitreal injections of 

scrambled siRNAs (SCR) or siHOTAIR once every week for up to 3 weeks. Animals were 

then euthanized at 4 weeks (1 month) and retinal tissues were isolated and extracted for RNA. 

RT-qPCR was employed to analyze (A) Hotair, (B) Vegf-a, (C) Et-1, (D) Angptl4, (E) Parp1, 

(F) Mcp-1, (G) Il-1β, (H) p300, (I) Ezh2, (J) Suz12, (K) Eed, (L) Pgf, (M) Hif-1α, and (N) 

Ctcf expressions. β-actin was used as an internal control. Statistical significance was assessed 
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using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the 

mean ± SD (n=6/group).  
 

3.2.6    HOTAIR is upregulated in the vitreous and serum 

of diabetic patients  

After establishing HOTAIR’s biological importance in diabetic animals, we wanted to 

determine whether HOTAIR expressions have similar clinical importance from a 

potential biomarker angle. To this extent, we examined HOTAIR expressions in the 

serum and vitreous humor (VH) of patients with DR. Based on our RT-qPCR 

analyses, HOTAIR expressions were distinct and significantly upregulated in the 

vitreous (p<0.0001; Figure 3.6A) and serum (p=0.0021; Figure 3.6B) of patients with 

PDR than that of non-diabetic patients without retinopathy. Moreover, we performed 

two-sided Pearson correlations to determine whether a linear association for HOTAIR 

expressions existed between the two sample types. Interestingly, statistically 

significant correlations for HOTAIR were found between serum and vitreous samples, 

where increased serum HOTAIR expressions positively correlated with increased 

vitreous HOTAIR expressions (p=0.0005, R2=0.482; Figure 3.6C). Taken together, 

our clinical findings suggest that HOTAIR expressions in the vitreous and serum are 

associated with DR and may have potential to be used as a prognostic and diagnostic 

biomarker for DR. 
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Figure 3.6. HOTAIR is upregulated in the serum and vitreous of patients with 

proliferative diabetic retinopathy (PDR). RT-qPCR analyses were used to examine 

HOTAIR expressions in the (A) vitreous and (B) serum from non-PDR (control) and PDR 

patients. β-actin was used as an internal control. Statistical significance was assessed using the 

Mann-Whitney U test. Data represents the mean ± SD (n=10 per control group or n=11 per 

DR group; **p<0.01 or ****p<0.0001). (C) Two-sided Pearson correlations determined that a 

linear (positive) association for HOTAIR expressions existed between the two sample types 

(***p<0.001). Legend: DR= PDR.

3.2.7    HOTAIR knockdown can partially prevent glucose-

induced DNA and mitochondrial damage, as well as 

disruptions of endothelial cell junctions in vitro 
We then wanted to further explore some of the molecular mechanisms for HOTAIR in 

vitro. With a previous report documenting HOTAIR’s implications in mitochondrial 

dysfunction in HeLa cells [40] and based on the localization of HOTAIR from our 
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RNA FISH experiments and the impact of siHOTAIR on Cytochrome B RNA levels, 

we first assessed the mitochondrial transmembrane potential (ΔΨM) in HRECs after 

HOTAIR knockdown through the detection of JC-1 signals. As shown in Figure 3.7, 

HG significantly evoked mitochondrial depolarization (indicated by more green and 

less red fluorescence; low ΔΨM) compared to scrambled NG controls (p<0.0001), 

suggesting that HG induces mitochondrial depolarization/dysfunction in HRECs. 

Conversely, when compared to SCR NG controls, the knockdown of HOTAIR in cells 

cultured with NG can markedly increase mitochondrial activity (indicated by more red 

and less green fluorescence; normal to high ΔΨM; p<0.0001). As expected, HOTAIR 

knockdown partially reduces HG-induced mitochondrial dysfunction/depolarization 

when compared to SCR HG controls (p=0.0459). Collectively, the JC-1 results 

indicate that HOTAIR contributes to mitochondrial aberrations in hyperglycemic 

environments. 

Since it is well documented that HG can induce abnormalities in several glucose 

metabolic pathways that subsequently lead to intracellular oxidative stress and DNA 

damage [3,4,41], we examined the relationship between HG, HOTAIR, and 8-hydroxy-

2’-deoxyguanosine (8-OHdG) levels, a biomarker for oxidative DNA damage [42]. 

Indeed, in comparison to SCR NG cells, HRECs in the presence of SCR siRNAs and 

HG demonstrated significant expressions of 8-OHdG (increase in green fluorescence; 

p<0.0001, Figure 3.8). In contrast, however, HOTAIR knockdown significantly 

reduced glucose-induced increases in 8-OHdG expressions compared to SCR HG cells 

(p=0.0264), which suggests that HOTAIR may be implicated in HG-induced oxidative 

damage. Moreover, an essential prerequisite in the development of DR is the loss of 

endothelium, which is caused by chronic hyperglycemic exposure and demonstrated 

by dysregulated endothelial cell-to-cell junctions [4]. To investigate this in our cell 

culture model, we examined SCR or siHOTAIR-treated HRECs in HG using electron 

microscopy. As expected, HG induced disruptions of cell junctions in HRECs treated 

with SCR siRNAs (Appendix B, Supplemental Figure 17A). However, conversely, 

the knockdown of HOTAIR preserved EC junctional integrity following HG culture 

(Appendix B, Supplemental Figure 17B). These results further suggest that HOTAIR 

contributes to DR-related EC dysfunction.  
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Figure 3.7. HOTAIR knockdown can partially prevent glucose-induced mitochondrial 

depolarization/dysfunction. (A) Images captured from the JC-1 assay, where HRECs were 

pre-treated with scrambled (SCR) siRNAs or siHOTAIR and subsequently cultured in NG or 

HG for 48 hours. Mitochondrial depolarization is indicated by more green and less red 

fluorescence (low ΔΨM, suggesting unhealthy/dysfunctional mitochondrial), while a polarized 

mitochondrial state is indicated by more red and less green fluorescence (normal to high 

ΔΨM, suggesting healthy/functional mitochondria). Cells were also counterstained with DAPI 

to visualize the nuclei. Original magnification, 20X; scale bars, 100 µm. (B) JC-1 red/green 

fluorescence ratio was calculated using ImageJ. Statistical significance was assessed using 

one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the mean ± 

SEM of 20 cells captured per sample (n=8 independent samples/group). 
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Figure 3.8. Knockdown of HOTAIR can significantly prevent glucose-induced oxidative 

damage. (A) Images captured from the 8-OHdG assay, where HRECs were pre-treated with 

scrambled (SCR) siRNAs or siHOTAIR and subsequently cultured in NG or HG for 48 hours. 

8-OHdG is a biomarker for nuclear and mitochondrial oxidative DNA damage, where 

heightened oxidative damage is indicated by strong green fluorescence. Cells were also 

counterstained with DAPI to visualize the nuclei. Original magnification, 20X; scale bars, 100 

µm. (B) Mean integrated densities of 8-OHdG expressions calculated using ImageJ. Statistical 

significance was assessed using one-way ANOVA for multiple comparisons, followed by 

Tukey’s post hoc test (*p<0.05 or ****p<0.0001). Data represents the mean ± SEM of 20 cells 

captured per sample (n=8 independent samples/group).  
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3.2.8  HOTAIR-induced production of DR-related 

molecules depends on glycolytic metabolism  

To have a better understanding of the regulatory mechanisms, we sought to examine 

the upstream role of glucose on HOTAIR and the expression of its target molecules. 

We employed 2-deoxy-D-glucose (an inhibitor of the glycolytic pathway [43]; 2-DG) 

and investigated the effects of this glucose analogue on HRECs in vitro. Accordingly, 

albeit the apoptotic nature of 2-DG (~45-55% viability indicated by trypan blue 

exclusion assay [data not shown]), 2-DG treatment significantly blocked HG-induced 

expressions of HOTAIR, VEGF-A, ET-1, ANGPTL4, MCP-1, IL-1β, CTCF, and 

Cytochrome B (Figure 3.9), which further emphasized the upstream regulatory roles 

played by glucose. Furthermore, inhibiting effective glucose metabolism (at 5 mM of 

2-DG) evoked significant reductions in epigenetic molecules including EZH2, SUZ12, 

EED, and DNMT1, but no differences were observed for DNMT3A and DNMT3B 

(Appendix B, Supplemental Figure 10). Interestingly, even at 5 mM concentrations, 

2-DG treatments also did not induce significant reductions in PARP1 and P300 

expressions and did not augment Cytochrome B expressions, which may suggest that 

the blockade of glycolysis may continue to produce direct oxidative stress through 

nuclear transport mechanisms involving PARP1 and P300 rather than contributions of 

oxidative damage from the mitochondria [44]. Moreover, at 5 mM concentrations, 

HOXD3 and HOXD10 expressions were significantly upregulated in 2-DG-treated 

HRECs cultured with HG (Appendix B, Supplemental Figures 10H and 10I) 

compared to HG controls, further highlighting the inverse relationship shared between 

HOTAIR and HOXD expressions. Taken together and in keeping with previous reports 

that confirm the anti-angiogenic and apoptotic effects of 2-DG on ECs [45], our data 

indicates that glucose works upstream of HOTAIR and inhibiting glucose uptake can 

ultimately prevent the upregulation of HOTAIR and most of its downstream targets. 
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Figure 3.9. Glucose metabolism regulates HOTAIR and most of its downstream targets in 

vitro. RT-qPCR analyses of (A) HOTAIR, (B) VEGF-A, (C) ET-1, (D) ANGPTL4, (E) MCP-1, 

(F) IL-1β, (G) CTCF, (H) Cytochrome B, and (I) PARP1 expressions following 2-deoxy-D-

glucose treatment (0.6 or 5 mM) in HRECs subjected to 48 hours of NG (5mM D-glucose) or 

HG (25 mM D-glucose) culture. 2-deoxy-D-glucose is a potent inhibitor of glycolysis. β-actin 

was used as an internal control. Statistical significance was assessed using one-way ANOVA 

for multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, or n.s.= not significant). Data represents the mean ± SEM of 3 independent 

experiments (n=6/group).  
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3.2.9  Histone methylation epigenetically regulates 

HOTAIR and its downstream targets  

As HOTAIR and PRC2 (a critical histone methyltransferase) have shown a relationship 

in cancer [46,47], we decided to investigate the role of histone methylation in the 

context of diabetes. Beginning with the administration of a global histone methylation 

inhibitor known as 3-deazaneplanocin A (DZNep) [48], we confirmed that HRECs in 

the presence of HG plus DZNep had significantly reduced expressions of PRC2 

components; in particular, EZH2, SUZ12, and EED transcripts were reduced by ~72% 

(p<0.0001), ~48% (p=0.0005), and ~61% (p<0.0001), respectively, when compared to 

SCR HG cells (Appendix B, Supplemental Figure 11A-C). Accompanying the 

reduced expressions of PRC2 components in HRECs treated with DZNep and HG, 

statistically significant reductions were also evident for HOTAIR, VEGF-A, 

ANGPTL4, CTCF, PARP1, P300, and Cytochrome B transcripts when compared to 

SCR HG controls (Figure 3.10). On the contrary, opposite trends were observed for 

ET-1, MCP-1, IL-1β, HOXD3 and HOXD10 transcripts, where DZNep pre-treatment 

plus HG culture of HRECs significantly augmented the expressions of the 

aforementioned molecules (Figure 3.10 and Appendix B, Supplemental Figures 

11D and 11E). These dynamic observations are in keeping with our previous studies 

[20,28] and could suggest that DZNep is not completely selective and as such, may be 

disrupting a number of different cellular crosstalks in ECs within a hyperglycemic 

environment. 

To confirm and expand our experimental findings using DZNep, we selected EZH2 

(the catalytic subunit of PRC2 [49]) and CTCF (a critical transcription factor that can 

maintain chromosome organization and is possibly implicated in the direct regulation 

of HOTAIR [50,51]) for subsequent siRNA-mediated knockdown. Following siRNA 

treatments and when compared to SCR HG controls, we confirmed significant 

reductions for EZH2 (~77% knockdown; Figure 3.11E) and CTCF (~55% 

knockdown; Figure 3.11F). Interestingly, inhibiting the expressions of EZH2 in HG 

conditions also evoked significant reductions in HOTAIR, VEGF-A, ET-1, ANGPTL4, 

CTCF, SUZ12, PARP1, MCP-1, IL-1β, Cytochrome B, and DNMT1 RNA expressions, 
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while significant increases were seen for P300, HOXD3 ad HOXD10 transcript levels, 

compared to SCR HG controls (Figure 3.11 and Appendix B, Supplemental Figure 

12D-F). No significant differences in expressions were observed for DNMT3A and 

DNMT3B following siEZH2 treatment. Taken together, these findings imply that 

EZH2 (the critical component of PRC2) is also directly involved in the transcriptional 

regulation of HOTAIR and several other downstream genes in a hyperglycemic 

environment. Of note, the differences observed between ET-1, MCP-1, and IL-1β 

RNA expressions for DZNep and siEZH2 treatments may have been due to the 

particular selectivity profile for each compound (i.e. siRNAs are generally more 

specific in gene knockdown versus global inhibitors for histone methylation). 

On the other hand, the knockdown of CTCF in HRECs cultured with HG produced 

differential expressions of several genes, including significant increases in HOTAIR, 

ANGPTL4, EED, IL-1β, Cytochrome B, HOXD3, and HOXD10 and significant 

decreases in ET-1, EZH2, PARP1, MCP-1, DNMT1, and P300 transcripts when 

compared to their respective SCR HG controls. As well, no significant differences 

were observed for VEGF-A, SUZ12, DNMT3A, and DNMT3B transcripts after the 

silencing of CTCF in HRECs cultured with HG (Figure 3.11 and Appendix B, 

Supplemental Figure 12). Based on these results, our collective findings allude to the 

diverse roles of CTCF in gene regulation, where siRNA-mediated depletion of CTCF 

can either augment glucose-induced expressions of certain genes (possibly through the 

inability of CTCF to block the interaction between enhancers and promoters, leading 

to subsequent gene induction) or repress the expressions of select genes, which may 

occur due to changes in chromatin architecture that prevent gene induction [51,52]. 
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Figure 3.10. Histone methylation differentially regulates HOTAIR and its downstream 

targets. HRECs were pre-treated with DZNep (a global histone methylation inhibitor) prior to 

NG or HG culture for 48 hours. RT-qPCR was then used to analyze the expressions of (A) 

HOTAIR, (B) VEGF-A, (C) ET-1, (D) ANGPTL4, (E) CTCF, (F) PARP1, (G) MCP-1, (H) IL-

1β, (I) P300, and (J) Cytochrome B. β-actin was used as an internal control. Statistical 

significance was assessed using one-way ANOVA for multiple comparisons, followed by 

Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not 

significant). Data represents the mean ± SEM of 3 independent experiments (n=6/group).  
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Figure 3.11. EZH2 and CTCF are directly involved in the transcriptional regulation of 

HOTAIR and several other downstream genes. RT-qPCR analyses of (A) HOTAIR, (B) 

VEGF-A, (C) ET-1, (D) ANGPTL4, (E) EZH2, (F) CTCF, (G) SUZ12, (H) EED, (I) PARP1, 

(J) MCP-1, (K) IL-1β, and (L) Cytochrome B expressions following the administration of 

scrambled (SCR) siRNAs, siEZH2, or siCTCF in HRECs subjected to 48 hours of NG or HG 

culture. EZH2 is the catalytic subunit of PRC2 (a critical histone methyltransferase) and CTCF 

is an important epigenetic transcription factor involved in the direct regulation of genes. β-

actin was used as an internal control. Statistical significance was assessed using one-way 

ANOVA for multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the mean ± SEM of 3 

independent experiments (n=6/group). 
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3.2.10    HOTAIR binds with histone modifying enzymes 

and regulates VEGF transcription  

We then examined for possible direct relationships shared between HOTAIR and 

critical histone modifying enzymes in HRECs and thus, we performed a RNA 

immunoprecipitation (RIP). In comparison to IgG controls, our results demonstrated 

that HOTAIR RNA levels were distinctly enriched in the precipitated anti-EZH2 and 

P300-antibody fractions obtained from HRECs cultured in HG (p<0.0001; Appendix 

B, Supplemental Figure 13), suggesting that HG promotes strong HOTAIR binding 

associations to EZH2 and P300. Our findings are in agreement with previous reports 

that have documented similar relationships with HOTAIR and these epigenetic 

mediators [53,54]. 

Next, to demonstrate the involvement of histone modifications at the genomic level, 

we performed chromatin immunoprecipitation (ChIP)-qPCR using antibodies for IgG 

(negative control), RNA polymerase II (indicative of transcriptional activity; Pol II), 

H3K27me3 (indicative of transcriptional repression), and pan-H3K9/14/18/23/27 

acetylation (indicative of transcriptional activation). We treated HRECs with 

siHOTAIR and employed primers that specifically spanned across the proximal and 

distal promoter regions of VEGF-A for subsequent ChIP-qPCR analyses. Accordingly, 

compared to NG controls, RNA Pol II levels were significantly enriched in both the 

distal (p<0.0001; Figure 3.12A) and proximal promoter (p<0.0001; Figure 3.12D) 

regions of VEGF-A in HRECs cultured with HG; whereas, the knockdown of HOTAIR 

can markedly reduce Pol II enrichment in these regions compared to HG controls. 

Conversely, under HG stimulation, significant reductions of H3K27me3 enrichment 

were observed in both VEGF-A distal (p<0.0001; Figure 3.12B) and proximal 

promoter (p<0.0001; Figure 3.12E) regions and siHOTAIR treatment significantly 

reversed glucose-induced reductions of H3K27me3 in the VEGF-A promoter. 

Moreover, when compared to NG controls, HG conditions significantly augmented the 

enrichment of H3K9/14/18/23/27 acetylation in both VEGF-A promoter regions, while 

the knockdown of HOTAIR significantly prevented glucose-induced increases in pan-

acetylation levels of H3K9/14/18/23/27 across the VEGF-A distal (p<0.0001; Figure 
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3.12C) and proximal promoter (p<0.0001; Figure 3.12F) regions, compared to HG 

groups. Hence, we concluded that a dynamic interplay exists between HOTAIR, 

histone–modifying enzymes, and RNA Pol II in the transcriptional regulation of genes, 

such that HOTAIR may have an active role in modulating the epigenome during 

hyperglycemic stress. Of note, no significant differences were observed between IgG 

NG and HG groups, confirming the specificity of the antibodies.  

Figure 3.12. HOTAIR can govern the transcriptional status of VEGF-A in hyperglycemic 

environments. ChIP-qPCR analyses examining the enrichment of (A,D) RNA polymerase II 

(Pol II), (B,E) tri-methylation of lysine 27 in histone 3 (H3K27me3; a repressive histone 

mark), and (C,F) acetylation of lysines 9, 14, 18, 23, and 27 in histone 3 (H3K9/14/18/23/27; 

an active histone mark) in the distal (top panel) and proximal (bottom panel) regions of VEGF-

A. In order to determine the role of HOTAIR in transcriptional regulation, HRECs were pre-

treated with scrambled (SCR) siRNAs or siHOTAIR and subsequently cultured in NG or HG 

for 48 hours prior to ChIP-qPCR experimentation. IgG antibodies were used as a negative 

control and β-actin was used as an internal control. Statistical significance was assessed using 

one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test 
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(****p<0.0001 or n.s.= not significant). Data represents the mean ± SEM of 3 independent 

experiments (n=3/group).  
 

3.2.11 Duration-dependent and glucose-induced 

alterations of CpG methylation patterns across the 

HOTAIR gene were not observed in HRECs  
In order to investigate glucose-induced implications of DNA methylation on HOTAIR 

regulation, we incubated HRECs in NG and HG conditions for durations of 2 and 7 

days and then performed a genome-wide DNA methylation experiment using Infinium 

EPIC arrays and quality controls. Following the detection of >860,000 CpG sites 

(probes), we exclusively selected CpG sites that spanned across the HOTAIR gene 

(5kb upstream to 1kb downstream of the gene), which corresponded to 59 probes 

(Figure 3.13). We found that the average methylation intensity was generally lower 

for a majority of the probes (β-values < 0.3), except for 7 probes where slightly greater 

methylation intensities were observed (0.2 < β-values < 0.5; these sites mainly 

corresponded to North/South Shelf and North/South Shore regions; Figure 3.13). 

Furthermore, when examining the methylation patterns between the various groups 

across the HOTAIR genomic region (chromosome 12: 54,351,994 to 54,373,040; 

Appendix B, Supplemental Figure 14A), it was interesting to observe that a stable 

DNA methylation pattern persisted across all groups despite different culture durations 

(2 and 7 days) and glucose concentrations (NG and HG). However, of note, although 

not statistically significant, HRECs stimulated with HG at both 2 and 7 days displayed 

a slight trend towards the reduction of DNA methylation intensities in the HOTAIR 

promoter, compared to their respective NG controls (Appendix B, Supplemental 

Figure 14B). Nevertheless, these findings may allude to the stable epigenetic nature of 

DNA methylation marks in HRECs during hyperglycemic stress [55]. 
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Figure 3.13: DNA methylation profiling of HRECs. (A) Information on the human HOTAIR 

gene according to the UCSC database, where the position of HOTAIR is located on 

chromosome 12: 54,356,092-54,368,740 (hg19) and its approximate size (for transcript variant 

1) is 12,649 nucleotides containing a total of 6 exons (90). (B) Unsupervised hierarchical 

clustering with heatmap using all the CpGs in HRECs that span across HOTAIR, which 

amounted to 59 probes. Interestingly, there are no distinctions between cells treated with 

different concentrations of glucose (5 mM versus 25 mM) and the duration of culture (2 versus 

7 days)—alluding to the stable epigenetic nature of DNA methylation in these cells following 

glucose treatment for different durations. Rows indicated CpGs and columns show the 

samples; the color scale from blue to red indicates the level of methylation from zero to one 

(with zero indicating no methylation and one indicating maximum methylation; n= 3 

independent samples per group indicated by the top panel colors; HR5_2= HRECs cultured in 

5 mM glucose for 2 days, HR25_2= HRECs cultured in 25 mM glucose for 2 days, HR5_7= 

HRECs cultured in 5 mM glucose for 7 days, and HR25_7= HRECs cultured in 25 mM 

glucose for 7 days). 
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3.2.12    Blockade of DNA methyltransferases differentially 

regulates the expressions of HOTAIR and some of its 

targets 

We then wanted to examine the cause-effect relationship of genome-wide DNA 

methylation on the expressions of HOTAIR and its downstream targets. Accordingly, 

we pre-treated HRECs with the DNA de-methylating agent, 5-Aza-2’-deoxycytidine 

(5-aza-dC) prior to NG or HG culture. Following 5-aza-dC administration and 

compared to HG controls, DNMT1, DNMT3A, and DNMT3B RNA levels were 

reduced by ~69%, ~58%, and ~69%, respectively (p<0.0001; Appendix B, 

Supplemental Figures 15A-C). Accompanying the significantly reduced expressions 

of DNMTs in 5-aza-dC-treated HRECs, we also observed significant elevations in 

HOTAIR, ET-1, CTCF, Cytochrome B, MCP-1, IL-1β, HOXD3, and HOXD10 

transcripts, while no significant differences were observed for ANGPTL4, P300, and 

PARP1 expressions (Figure 3.14 and Appendix B, Supplemental Figure 15). 

Intriguingly, however, globally inhibiting the expressions of DNMTs significantly 

prevented glucose-induced increases in VEGF-A RNA expressions (p<0.0001; Figure 

3.14B), which is in keeping with previous observations documented by others [56,57]. 

To further confirm the findings from our 5-aza-dC experiments, we specifically 

silenced DNMT1 (a constitutively expressed DNMT) using a siRNA-mediated 

approach. With a ~71% knockdown in DNMT1 RNA levels following the 

administration of siDNMT1 and HG (p<0.0001; Appendix B, Supplemental Figure 

16A), DNMT3A and DNMT3B also exhibited significant reductions in transcript 

expressions by ~43%  (p=0.0005; Appendix B, Supplemental Figure 16B) and ~51% 

(p<0.0001; Appendix B, Supplemental Figure 16C), respectively.  In parallel, 

significant increases in RNA expressions were observed for HOTAIR, ET-1, CTCF, 

Cytochrome B, PARP1, IL-1β, HOXD3, and HOXD10 after the knockdown of DNMT1 

in HG-cultured cells, relative to SCR HG controls (Figure 3.15 and Appendix B, 

Supplemental Figure 16). Although no significant differences were observed for 

ANGPTL4, P300, and MCP-1 transcripts after knockdown in HG conditions, 

significant reductions in VEGF-A transcripts still remained in siDNMT1-treated 
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HRECs cultured with HG (p<0.0001; Figure 3.15B), confirming the observations 

from our 5-aza-dC experiments. Indeed, it may be possible that depending on the 

genomic location, the inhibition of DNA methylation can have varying methylating 

effects on distal or intragenic regulatory elements with different degrees of CpG 

density, which subsequently dictate the regulation of gene expression [58]. 

Nevertheless, our findings suggest that DNA methylation is critically implicated in the 

regulation of HOTAIR and its target molecules in hyperglycemic environments. 

Figure 3.14. Global inhibition of DNA methyltransferases (DNMTs) can differentially 

regulate the expressions of HOTAIR and its targets. HRECs were pre-treated with 5-aza-dC 

(a pan-DNMT inhibitor) prior to NG or HG culture for 48 hours. RT-qPCR was then used to 

analyze the expressions of (A) HOTAIR, (B) VEGF-A, (C) ET-1, (D) ANGPTL4, (E) CTCF, 

(F) P300, (G) PARP1, (H) Cytochrome B, (I) MCP-1, and (J) IL-1β. β-actin was used as an 

internal control. Statistical significance was assessed using one-way ANOVA for multiple 

comparisons, followed by Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, or n.s.= not significant). Data represents the mean ± SEM of 3 independent 

experiments (n=6/group). 
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Figure 3.15. Selective knockdown of DNMT1 can impact the expressions of HOTAIR and 

some of its downstream targets in vitro. RT-qPCR analyses of (A) HOTAIR, (B) VEGF-A, 

(C) ET-1, (D) ANGPTL4, (E) CTCF, (F) P300, (G) Cytochrome B, (H) PARP1, (I) MCP-1, 

and (J) IL-1β expressions following the administration of scrambled (SCR) siRNAs or 

siDNMT1 in HRECs subjected to 48 hours of NG or HG culture. DNMT1 is a constitutively 

expressed DNA methyltransferase. β-actin was used as an internal control. Statistical 

significance was assessed using one-way ANOVA for multiple comparisons, followed by 

Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not 

significant). Data represents the mean ± SEM of 3 independent experiments (n=6/group).  
 

3.3 Discussion 

The process of physiological angiogenesis is critical for vascular homeostasis, since 

the formation of new blood vessels from pre-existing vasculature provides sufficient 

blood flow, oxygen, and nutrients to metabolically active tissues [59]. A delicate 
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balance between angiogenic and angiostatic factors regulates angiogenesis and any 

shifts in this balance will ultimately dictate the activity of the vascular network. 

However, in disease states such as DR, chronic hyperglycemia drastically alters the 

spatial and temporal kinetics of numerous biochemical and metabolic pathways that 

promote active pathological angiogenesis in the eye, subsequently leading to vision-

threatening complications [4,7-10]. Although it is well-established that pathological 

angiogenesis, as well as macular edema early in the disease progression, is primarily 

mediated by VEGF-A in DR [60], limitations in current anti-VEGF therapies suggest 

that our understanding of the molecular networks underlying the pathobiology of 

ocular angiogenesis remains far from complete. As such, deciphering and exploring 

novel molecular mediators in this network may allow for the development of better-

targeted therapies and diagnostic biomarkers. In recent years, lncRNAs have garnered 

considerable attention due to their critical regulatory capabilities in a number of 

diseases, particularly in cancer. In the context of DR however, several lncRNAs have 

been identified in the diabetic retina but very few lncRNAs have been 

comprehensively characterized.  

In the present study, we provide for the first time direct evidence that the lncRNA 

HOTAIR mediates angiogenesis in DR through a complex web of epigenetic 

mechanisms involving histone methylation, histone acetylation, DNA methylation and 

the CTCF transcription factor. Using cell culture and animal models of diabetes, the 

targeted knockdown of HOTAIR via siRNAs made it evident that the inhibition of this 

lncRNA significantly prevented glucose-induced increases of several angiogenic 

factors, diabetes-associated molecules, and critical epigenetic mediators. 

Mechanistically, HOTAIR can contribute to glucose-induced mitochondrial and DNA 

damage and this lncRNA can also facilitate the epigenetic activation of VEGF-A by 

recruiting RNA polymerase II and acetylation writers (such as P300) to the promoter 

regions of VEGF-A, resulting in heightened VEGF-A expressions and subsequent 

angiogenesis.  As well, HOTAIR and its target molecules can be differentially 

regulated through histone and DNA methyltransferases and CTCF. Collectively, our 

findings provide in-depth mechanistic insights into the epigenetic paradigm behind 

HOTAIR’s regulatory capabilities in DR and based on its clinical implications, 
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HOTAIR may also serve as a novel diagnostic biomarker and therapeutic target for 

DR. 

LncRNAs can exhibit a wide range of stability profiles that are comparable to protein-

coding transcripts. In fact, using genome-wide microarrays, lncRNA half-lives 

(ranging from t1/2< 2 hours to t1/2> 16 hours) were shown to correlate with several 

lncRNA features, including genomic location, splicing, GC percentage, and 

subcellular localization [30]. LncRNAs that were either spliced, localized in the 

cytoplasm, classified as intergenic or cis-antisense, or contained high GC percentage 

were considered more stable than those lncRNAs that were unspliced, classified as 

intronic, nuclear-retained, or contained low GC percentage. Interestingly, the degree of 

stability is critical for regulating lncRNA function, where lncRNAs (particularly those 

residing in the nucleus) with short half-lives have demonstrated rapid turnover in order 

to contribute to the dynamic processes that they regulate [30,61]. Published studies 

have made it evident that cell-specific variations exist for the half-life of HOTAIR, in 

which trophoblasts can exhibit a t1/2 of ~7.7 hours [62], while HeLA cells demonstrate 

a t1/2 of ~1.3 hours [63]. In the present study, although we did not examine HOTAIR 

stability in HRECs, we instead investigated HOTAIR expression levels across various 

time-points and observed oscillating HOTAIR patterns, with significant glucose-

induced elevations at the 48-hour mark. Intriguingly, our results are in keeping with 

similar expression patterns observed for another lncRNA, MALAT1, in HRECs [28], 

which suggests that HREC-derived lncRNAs may have distinct and overlapping 

expression profiles compared to other cell types. Furthermore, based on a previous 

report documenting the long-lasting, activating, epigenetic changes that occur in the 

NF-ΚB-p65 promoter region following transient hyperglycemia [64], it may be 

plausible that initial glucose-induced spikes of HOTAIR expressions could similarly 

induce persisting epigenetic changes that involve altered gene expressions of its 

downstream targets, despite reduced HOTAIR expressions at later time-points. 

Nevertheless, future research is warranted to further validate HOTAIR’s role in 

metabolic memory. 

 



138 

 

The subcellular localization of lncRNAs can provide insights into their potential 

functions. For example, lncRNAs localized in the cytoplasm are typically implicated 

in post-transcriptional modifications that govern mRNA stability and translation [65], 

while nuclear-retained lncRNAs can be involved in transcriptional regulation [66], 

organization of nuclear architecture [67], and alternative splicing [68]. On the other 

hand, certain lncRNAs can also be found in both the nucleus and cytoplasm [69], 

where these versatile RNA molecules shape the epigenome, regulate organelle 

formation and function, and influence transcription and translational processes [70]. In 

order to elucidate the subcellular localization of HOTAIR in ECs and develop potential 

insights into its regulatory capabilities, we performed RNA FISH and found that 

HOTAIR is present in both nuclear and cytoplasmic compartments. Our findings are in 

keeping with previous studies that depict the dual localization patterns for HOTAIR in 

other cells, such as cutaneous squamous cell carcinoma [71] and fibroblasts [72]. 

Extending our RNA FISH findings and on the basis of our mechanistic-based in vitro 

experiments, it quickly became evident that HOTAIR can regulate the expressions of 

several angiogenic and diabetes-associated genes, while simultaneously targeting 

enzymes involved in histone modification and DNA methylation processes. Lending 

further credence to our observations, earlier reports have demonstrated that HOTAIR is 

directly involved in PRC2-mediated silencing of the chromatin, where HOTAIR 

depletion in fibroblasts can lead to a loss of HOXD silencing and H3K27me3 by PRC2 

[53]; while, HOTAIR overexpression in breast cancer cells can promote cellular 

invasiveness through selective, genome-wide re-targeting of PRC2 and H3K27me3, 

which ultimately enables the expression of genes that are conducive to cancer invasion 

[47]. Indeed, additional reports have suggested that HOTAIR may function as a 

molecular scaffold in order to regulate gene expressions through its direct interactions 

with epigenetic mediators, including PRC2 [73] and histone demethylases (LSD1) 

[39]. Based on these findings and the reciprocal relationships documented between 

this lncRNA and other epigenetic mechanisms in cancer (such as DNA methylation 

[74] and histone acetylation [75]), our findings imply that HOTAIR also possesses a 

similar regulatory profile as a critical epigenomic modulator in the pathogenesis of 

DR. 
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In addition to its role as a transcriptional regulator, we demonstrated that HOTAIR 

could also pathogenetically contribute to glucose-induced mitochondrial and oxidative 

DNA damage in ECs, which further highlight the dynamism of HOTAIR in diabetes. 

Although these roles of HOTAIR have not been previously investigated in the context 

of DR, other studies have shown that HOTAIR can mediate DNA damage response in 

ovarian cancer cells, through the regulation of NF-kB activation [76], and maintain 

mitochondrial function in HeLa cells [40]. Intriguingly, the findings by Zheng et al 

further demonstrate that HOTAIR knockdown in HeLA cells is accompanied with 

several mitochondrial aberrations, including dysregulations of 32 proteins associated 

with mitochondrial function, decreased Ubiquinol-Cytochrome C Reductase Complex 

III Subunit VII expressions, elevated mitochondrial swelling, reduced glucose uptake, 

and decreased ΔΨM [40]. In contrast to these findings, we observed that HOTAIR 

knockdown in HRECs could protect the mitochondria in NG and HG environments as 

evidenced by higher ΔΨMs and decreased Cytochrome b expressions (a fundamental 

component for the assembly and function of complex III [77]), compared to SCR HG 

controls. Although it is likely that cell-specific regulations may exist for HOTAIR, 

another possible explanation for our results could be attributed to certain stress-

induced mechanisms involving mitophagy and autophagy. More precisely, prolonged 

hyperglycemia has been reported to evoke significant mitochondrial oxidative stress 

and membrane depolarization in Müller cells, consequently leading to mitochondrial 

fragmentation [78]. Following the induction of mitochondrial dysfunction and 

fragmentation, increased levels of reduced Cytochrome b, along with specific 

mitophagy factors (including autophagy-related genes, ATG11 and ATG32) have been 

shown to trigger non-specific autophagy [79]. Interestingly, a recent study has also 

demonstrated that HOTAIR can promote autophagy by upregulating the expressions of 

ATG7 in pancreatic cancer cells [80], which warrants further research into the 

mechanisms revolving around HOTAIR and mitophagy in diabetes. 

Aberrations in the microvasculature represent one of the earliest pathological 

manifestations of DR. In fact, chronic hyperglycemic exposure can compromise the 

function of ECs and the integrity of the endothelium in the retinal microvasculature, 

which consequently leads to the extravasation of plasma constituents into the retina 
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due to blood-retinal barrier damage [4]. Coupled with chronic ischemic regions in the 

retina (known as capillary non-perfusion), endothelium damage and the heightened 

activation of glucose-induced biochemical pathways further stimulate retinal cells to 

release inflammatory cytokines and vasoactive factors that cause increased vascular 

permeability and lay the foundation for pathological angiogenesis in DR [4,81]. For 

these reasons, we specifically examined retinal ECs in our experiments. Accordingly, 

glucose can directly induce the expressions of HOTAIR and numerous angiogenic 

factors in ECs and diabetic retinas, while the subsequent knockdown of HOTAIR can 

preserve endothelial cell junctions in HG environments and significantly alleviate 

early glucose-induced upregulations of angiogenic factors in both in vitro and in vivo 

models. Our observations on the pro-angiogenic capabilities of HOTAIR are consistent 

with previous reports in cancer, where HOTAIR has been shown to enhance 

angiogenesis by directly targeting the VEGF-A promoter in nasopharyngeal carcinoma 

cells [32] or through transmission of glioma cell-derived extracellular vesicles into 

ECs [33]. Hence, based on these findings, it is no surprise that HOTAIR is involved in 

the pathogenesis of DR, possibly through its role in EC dysfunction. 

With HOTAIR exhibiting pro-oncogenic functions [32,33,46,47,54,71,74-76,80] and 

potential involvement in diabetic kidney disease [91], several emerging studies are 

beginning to address the clinical utility of HOTAIR as a lncRNA biomarker [82]. We 

wanted to delineate the clinical significance of this lncRNA in the context of DR. As 

such, we decided to examine the presence of HOTAIR in VH and serum samples 

because the vitreous fluid can be used to indirectly assess the pathophysiological 

events that take place in the diabetic retina [83] and circulating serum non-coding 

RNAs have been previously associated with the pathogenesis of DR [84]. When 

compared to controls, we found that HOTAIR expression levels are significantly 

upregulated in the VH and serum samples of PDR patients, implying a pathogenetic 

association between HOTAIR and DR. These results are in keeping with our 

previously published findings for another pathogenetic lncRNA, MALAT1, in DR 

[28]—alluding to the potential overlapping patterns shared between pathogenetic 

lncRNAs in certain disease states. Furthermore, to the best of our knowledge, this is 

the first study to identify positive correlations in HOTAIR RNA levels between serum 
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and VH of PDR patients, which raise the possibility of using HOTAIR as a potential 

serum-based biomarker for DR. Although the complete clinical validation of HOTAIR 

as a potential prognostic or diagnostic marker for DR will require larger sample sizes 

with appropriate power calculations, stringent cut-off criteria and determination of 

clinically meaningful endpoints, our results simply provide a proof of principle for the 

pathological significance of HOTAIR in DR and further large-scale investigations are 

undoubtedly warranted.  

In summary, this report establishes for the first time that the lncRNA HOTAIR is a 

critical epigenetic regulator of angiogenesis in DR. Mechanistic experiments 

confirmed HOTAIR’s ability to directly regulate the transcriptional expressions of 

multiple angiogenic factors and DR-associated molecules in vitro and in vivo, possibly 

through a complex epigenetic axis involving PRC2/P300/DNMTs/CTCF. In addition 

to transcriptional regulation, HOTAIR may also have implications in other organelle 

functions, since the knockdown of HOTAIR can partially prevent glucose-induced 

oxidative mitochondrial and DNA damage. We further highlight the clinical 

significance of HOTAIR, where HOTAIR RNA expressions in the vitreous fluid and 

serum strongly correlate with PDR. Taken together, these findings allude to HOTAIR’s 

potential as a possible diagnostic and therapeutic target in DR.  
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3.5 Appendix B: The long non-coding RNA HOTAIR is a 
critical epigenetic mediator of angiogenesis in diabetic 
retinopathy 

Supplemental Figure 1. LncRNA microarray findings from HRECs cultured in NG or HG 

for 48 hours (GEO: GSE122189). (A) Scatter plot demonstrates lncRNA expressions between 

normal glucose (NG) and high glucose (HG) replicates. In general, the scatter plot is a 

visualization method used for assessing the lncRNA expression variation (or reproducibility) 

between the two compared samples (or groups). The values of X and Y axes in the scatter plot 

are the normalized signal values (log2 scaled) of two samples or the averaged normalized signal 

values (log2 scaled) for two groups. The green lines are fold change lines (the default fold 

change value given is 2.0). The lncRNAs above the top green line and below the bottom green 

line indicates more than 2.0 fold change of lncRNAs between the two compared groups or 

samples. (B) Hierarchical clustering for the lncRNAs in all sample groups. “Red” indicates high 

relative expression, and “blue” indicates low relative expression. (C) Venn diagrams depicting 

the total number of lncRNAs that were upregulated (top) or downregulated (bottom) between 

NG and HG replicates. (D) Specific microarray readout for HOTAIR. 
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Supplemental Figure 2. HOTAIR knockdown using three different siRNAs. HRECs were 

pre-treated with scrambled (SCR) siRNAs or specific siRNAs targeting HOTAIR prior to NG or 

HG culture for 48 hours. RT-qPCR was then used to analyze the expressions of HOTAIR. β-

actin was used as an internal control. Statistical significance was assessed using one-way 

ANOVA for multiple comparisons, followed by Tukey’s post hoc test (****p<0.0001). Data 

represents the mean ± SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 3. HOTAIR knockdown can prevent the induction of several 

epigenetic mediators in hyperglycemic environments. RT-qPCR analyses of (A) EZH2, (B) 

SUZ12, (C) EED, (D) DNMT1, (E) DNMT3A, (F) DNMT3B, (G) CTCF, and (H) P300 

expressions following the administration of SCR siRNA or siHOTAIR in HRECs subjected to 

48 hours of NG or HG culture. β-actin was used as an internal control. Statistical significance 

was assessed using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc 

test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents 

the mean ± SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 4. HOTAIR knockdown can reduce VEGF-A proteins, improve 

cellular viability, and prevent glucose-induced decreases of HOXD loci in HRECs. (A) 

VEGF-A ELISA results (expressed as pg/mL) from HRECs that were pre-treated with SCR 

siRNA or siHOTAIR and subjected to NG or HG culture for 48 hours. (B,C) RT-qPCR analyses 

of HOXD3 and HOXD10 expressions following HOTAIR knockdown. β-actin was used as an 

internal control. (D) WST-1 findings for SCR or siHOTAIR-treated HRECs. Statistical 

significance was assessed using one-way ANOVA for multiple comparisons, followed by 

Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). 

Data represents the mean ± SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 5. HOTAIR is significantly elevated in the retinas of diabetic animals 

at 2 months. Non-diabetic (control) and streptozotocin-induced diabetic C57BL/6J mice or 

Sprague-Dawley rats were followed for 2 months. Retinal tissues were isolated and extracted for 

RNA. RT-qPCR was employed to analyze retinal Hotair expressions in (A) mice and (B) rats. 

β-actin was used as an internal control. Statistical significance was assessed using the Mann-

Whitney U test. Data represents the mean ± SD (n=8 per control or diabetic mice group, n=5 per 

control rat group or n=9 per diabetic rat group; *p<0.05). 
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Supplemental Figure 6. SiRNA-mediated knockdown of mus Hotair and its impact on 

angiogenic markers in mouse retinal and lung endothelial cells. RT-qPCR analyses of (A,D) 

Hotair, (B,E) Vegf-a, and (C,F) Angptl4 expressions following the administration of SCR 

siRNA or siHOTAIR in mouse retinal endothelial cells (top panel) and primary mouse lung 

endothelial cells (bottom panel) subjected to 48 hours of NG or HG culture. β-actin was used as 

an internal control. Statistical significance was assessed using one-way ANOVA for multiple 

comparisons, followed by Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, or n.s.= not significant). Data represents the mean ± SEM of 3 independent 

experiments (n=6/group). 
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Supplemental Figure 7. Hematoxylin and eosin (H&E) staining of various mouse tissues 

following siHOTAIR toxicology experiments. Wild-type C57BL/6 mice were subjected to a 

one-time intravitreal injection that consisted of either scrambled siRNA control (50 nM; SCR) 

or siHOTAIR at varying concentrations (25 nM, 50 nM, and 100 nM) and were monitored for 

seven days and then euthanized for tissue collection (n=3 per group). No behavioural changes or 

ocular complications were observed in the mice throughout the duration of the experiment and 

as evidenced by H&E staining, no cellular abnormalities were also observed across (A) retinal, 

(B) heart, (C) lung, (D) liver, and (E) kidney tissues following the one-time intravitreal 

siHOTAIR injection at 25, 50 or 100 nM concentrations (images not shown for 25 nM). 

Original magnification, 40X; scale bar= 5 microns. 

 



154 

 

 

Supplemental Figure 8. In vivo results following the knockdown of Hotair. (A) Relative 

Hotair knockdown expressions, as indicated by RT-qPCR, in the retinal tissues of C57BL/6J 

mice from our toxicology experiments involving different siHOTAIR concentrations (n=3 per 

group). β-actin was used as an internal control. (B,C) Body weights and blood glucose levels of 

all C57BL/6J mice involved in our short-term, one-month therapeutic model, where intravitreal 

injections of scrambled (SCR; 50 nM) siRNAs or siHOTAIR (100 nM) were administered to 

non-diabetic and diabetic mice eyes once every week for up to three weeks. (D) RT-qPCR 

analysis of retinal Hoxd3 expressions at 1 month following siHOTAIR treatment. β-actin was 

used as an internal control. Statistical significance was assessed using one-way ANOVA for 

multiple comparisons, followed by Tukey’s post hoc test (****p<0.0001 or n.s.= not 

significant). Data represents the mean ± SD (n=6/group). 
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Supplemental Figure 9. Hematoxylin and eosin (H&E) staining of various mouse tissues 

following our short-term, 1-month therapeutic animal model involving siHOTAIR. Non-

diabetic (control) and diabetic C57BL/6 mice were subjected to intravitreal injections of 

scrambled (SCR; 50 nM) siRNAs or siHOTAIR (100 nM) once every week for up to three 

weeks. Mice were monitored throughout the duration of the experiment and subsequently 

euthanized for tissue collection at 4 weeks (n=3 per group). Similar to our initial toxicology 

experiments, no behavioural changes or ocular complications were observed in the mice and as 

evidenced by H&E staining, no cellular abnormalities were also observed across (A) retinal, (B) 

heart, (C) lung, (D) liver, (E) kidney, (F) cortical, and (G) hippocampal tissues following 

multiple intravitreal siHOTAIR injections at 1 month. Original magnification, 40X; scale bar= 5 

microns. 
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Supplemental Figure 10. Glycolytic inhibition can impact certain epigenetic molecules and 

may also influence nuclear transport molecules involved in oxidative stress, independent 

of the mitochondria. RT-qPCR analyses of (A) EZH2, (B) SUZ12, (C) EED, (D) P300, (E) 

DNMT1, (F) DNMT3A, (G) DNMT3B, (H) HOXD3, and (I) HOXD10 expressions following 2-

deoxy-D-glucose treatment (0.6 or 5 mM) in HRECs subjected to 48 hours of NG (5mM D-

glucose) or HG (25 mM D-glucose) culture. 2-deoxy-D-glucose is a potent inhibitor of 

glycolysis. β-actin was used as an internal control. Statistical significance was assessed using 

one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the mean ± 

SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 11. DZNep pre-treatment reduces the expression of PRC2 

components and stimulates the transcription of HOXD loci. HRECs were pre-treated with 

DZNep (a global histone methylation inhibitor) prior to NG or HG culture for 48 hours. RT-

qPCR was then used to analyze the expressions of (A) EZH2, (B) SUZ12, (C) EED, (D) 

HOXD3, and (E) HOXD10. β-actin was used as an internal control. Statistical significance was 

assessed using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the 

mean ± SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 12. The knockdown of EZH2 and CTCF can alter glucose-induced 

expressions of certain epigenetic molecules. RT-qPCR analyses of (A) DNMT1, (B) 

DNMT3A, (C) DNMT3B, (D) P300, (E) HOXD3, and (F) HOXD10 expressions following the 

administration of scrambled (SCR) siRNAs, siEZH2, or siCTCF in HRECs subjected to 48 

hours of NG or HG culture. EZH2 is the catalytic subunit of PRC2 (a critical histone 

methyltransferase) and CTCF is an important epigenetic transcription factor involved in the 

direct regulation of genes. β-actin was used as an internal control. Statistical significance was 

assessed using one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the 

mean ± SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 13. High glucose promotes strong binding associations between 

HOTAIR and epigenetic enzymes. RNA immunoprecipitation (RIP) experiments were 

conducted using anti-IgG, anti-EZH2 (catalytic subunit of the histone methyltransferase, PRC2), 

or anti-P300 (a histone acetyltransferase) antibodies on HRECs cultured with NG or HG for 48 

hours. RT-qPCR was then used to determine the fold enrichment of HOTAIR following IgG, (A) 

EZH2 and (B) P300 pulldown. IgG antibodies were used as a negative control and β-actin was 

used as an internal control. Statistical significance was assessed using one-way ANOVA for 

multiple comparisons, followed by Tukey’s post hoc test (****p<0.0001 or n.s.= not 

significant). Data represents the mean ± SEM of 3 independent experiments (n=3/group). 
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Supplemental Figure 14. DNA methylation profiling of HRECs. (A) Panel that depicts the 

stable DNA methylation patterns across the HOTAIR genomic regions shared between HRECs 

cultured with NG or HG for various durations (2 or 7 days). (B) Differential methylation 

patterns in the HOTAIR promoter region. The box plots represent the distribution of median 

methylation values across all of the probes mapping to this region as stratified by glucose 

concentration and culture duration. Center line: median of regional methylation levels across 

samples; lower and upper bounds: first and third quartiles; whiskers: interquartile ranges (n= 3 

independent samples per group).  
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Supplemental Figure 15. 5-aza-dC can decrease the expressions of DNMTs, while 

promoting HOXD3 and HOXD10 gene expressions. HRECs were pre-treated with 5-aza-dC 

(a pan-DNMT inhibitor) prior to NG or HG culture for 48 hours. RT-qPCR was then used to 

analyze the expressions of (A) DNMT1, (B) DNMT3A, (C) DNMT3B, (D) HOXD3, and (E) 

HOXD10. β-actin was used as an internal control. Statistical significance was assessed using 

one-way ANOVA for multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, or n.s.= not significant). Data represents the mean ± 

SEM of 3 independent experiments (n=6/group). 
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Supplemental Figure 16. SiRNA-mediated knockdown of DNMT1 can influence glucose-

induced expressions of DNMTs and HOXD loci. RT-qPCR analyses of (A) DNMT1, (B) 

DNMT3A, (C) DNMT3B, (D) HOXD3, and (E) HOXD10 expressions following the 

administration of scrambled (SCR) siRNAs or siDNMT1 in HRECs subjected to 48 hours of 

NG or HG culture. DNMT1 is a constitutively expressed DNA methyltransferase. β-actin was 

used as an internal control. Statistical significance was assessed using one-way ANOVA for 

multiple comparisons, followed by Tukey’s post hoc test (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, or n.s.= not significant). Data represents the mean ± SEM of 3 independent 

experiments (n=6/group). 
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Supplemental Figure 17. HOTAIR knockdown can prevent glucose-induced disruptions of 

endothelial cell junctions in vitro. Representative images, by electron microscopy, of (A) 

scrambled siRNA (SCR) or (B) siHOTAIR-transfected HRECs after high glucose culture (n=3 

samples per group). Disruptions of endothelial cell junctions can be visualized in SCR plus HG 

cells compared to preservation of junctions in siHOTAIR plus HG cells (a higher magnification 

was inserted in B showing the intact junctions [indicated by the black arrows]). Direct 

magnification, 1950X; scale bar= 2 microns; ‘N’= nucleus. 
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Supplemental Table 1. qPCR primers for human-specific genes. 

 

Supplemental Table 2. qPCR primers for mouse-specific genes. 
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Chapter 4 iv 

4 Endothelin-1 regulation is entangled in a complex 
web of epigenetic mechanisms in diabetes 

With the continuous global rise in diabetes [21], the risk for developing glucose-

induced injuries to the microvasculature also remains high. As a consequence of 

hyperglycemia, microvascular damage gives rise to debilitating complications 

affecting the eyes, kidneys, and peripheral nerves [15]. To minimize the risk of 

subsequent diabetes-induced vessel damage, current therapeutic modalities are 

comprised of lifestyle changes and pharmaceutical intervention [5, 15]. Although these 

therapies may be effective in impeding some progression of late stage diabetic 

complications, the presence of ‘metabolic memory’ contributes to unique molecular 

alterations that may alter an individual’s response to treatments [36]. Epigenetic 

mechanisms comprise the ‘metabolic memory’ phenomenon and identification of 

these mechanisms would expand current therapeutic modalities, allowing for the 

development of targeted treatment strategies. 

Modifications to the epigenome influence gene expression without changing the 

underlying nucleotide sequence [45]. DNA methylation, histone modifications, and the 

activity of non-coding RNAs are examples of such epigenetic mechanisms that are 

involved in metabolic memory [2]. The identification of these processes have been 

made evident by high throughput genomic technologies, however new questions arise 

with respect to our current understanding of the documented mechanistic properties 

for pro-inflammatory markers. 

Endothelin-1 (ET-1) is a prominent peptide in diabetes that has been well documented 

within the last three decades. As previously demonstrated by our laboratory and 

                                                
iv

 Content in Chapter 4 has been adapted from Biswas S, Feng B, Thomas AA, Chen S, Aref-Eshghi 
E, Sadikovic B, Chakrabarti S. Endothelin-1 regulation is entangled in a complex web of epigenetic 
mechanisms in diabetes. Physiological Research: 2018;67(Suppl 1): S115-S125, doi: 
10.33549/physiolres.933836. The work was published under a Creative Commons Attribution 
License.  
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others, aberrations in metabolic pathways can heighten the production of ET-1 and 

subsequently allow for an increased pathologic state in various diabetic complications 

[4, 6, 42]. Using such knowledge and information from ligand-binding studies, drugs 

were developed to target the ET-1 receptors, in order to mitigate cellular dysfunction 

and other effects in diabetic complications [25, 38]. Despite the promising results for 

endothelin receptor antagonists in animal models, investigators discovered that there 

were adverse, undesirable and heterogeneous responses present among numerous 

patients using these drugs—suggesting that there are alternative mechanisms 

implicated in ET-1 regulation [34]. As the mechanistic impact of epigenetic machinery 

on ET-1 production still remains unclear, further characterization is warranted to 

understand such a process. 

In this study, we examined the roles of DNA methylation, histone methylation, and 

long non-coding RNAs (lncRNAs) on ET-1 regulation in retinal microvascular 

endothelial cells (HRECs). We performed a DNA methylation array to identify 

whether unique methylation patterns exist across the ET-1 gene (EDN1) after high 

glucose (HG) incubation. To further follow-up our findings from the methylation 

array, we employed a global DNA methylation inhibitor in HRECs to determine the 

impact of DNA methyltransferases on ET-1 regulation. Next, we subjected HRECs to 

a histone methylation inhibitor to understand the influence of histone 

methyltransferases on ET-1 mRNA production. Moreover, based on our previous 

lncRNA microarray analysis [43], we selected three prominent HG-induced 

upregulated lncRNAs and silenced these lncRNAs to determine the effects on ET-1. 

We then collated our previous and current findings to present an all-inclusive 

epigenetic paradigm for ET-1 regulation. 

4.1 Research Design and Methods 

4.1.1    Cell culture 

Endothelial dysfunction is one of the earliest pathological features during chronic 

hyperglycemia [1]. Hence, we used HRECs (Olaf Pharmaceuticals, Worchester, MA) 

for our experiments. Such experimental conditions have been previously described 



167 

 

[24, 32, 35, 43] and all cell culture reagents were purchased from Sigma (Oakville, 

Ontario, Canada). Based on our previous findings, the 48-hour time point was selected 

for our in vitro experiments. All experiments were independently repeated at least 

three times and performed with six replicates, unless specified.  

4.1.2    EDN1 CpG DNA methylation analysis 

The Illumina Infinium MethylationEPIC BeadChip array (Illumina, CA, USA) was 

used to identify differential methylation patterns of CpG sites across the EDN1 gene in 

HRECs incubated in 5 mM glucose (NG, mimicking euglycemia) and in 25 mM 

glucose (HG, mimicking hyperglycemia). Genomic DNA was extracted from HRECs 

after 48 hours of glucose culture and 1 µg of DNA was used for bisulfite conversion 

using the EZ DNA Methylation Kit (Zymo Research, CA, USA). The HiScan System 

(Illumina, CA, USA) was used to obtain the array readout and the methylated and 

unmethylated signal intensity data were then imported into R 3.4.0 for analysis. 

Normalization was performed using Illumina normalization method with background 

correction using the minfi package. Probes with detection P-value > 0.01 were 

excluded from the downstream analyses. In addition, probes known to contain SNPs at 

the CpG interrogation or the single nucleotide extension were removed. Methylation 

level for each probe was measured as a beta value (β-value), calculated from the ratio 

of the methylated signals versus the total sum of unmethylated and methylated signals, 

ranging between 0 (no methylation) and 1 (full methylation). Three independent 

samples were used per group. 

4.1.3 3-Deazaneplanocin A (DZNep) and 5-Aza-2’-

deoxycytidine (5-aza-dC) 

In order to understand the impact of histone and DNA methylation inhibition on ET-1, 

we used pharmacological inhibitors that globally blocked the methylation process. 

Therefore, based on previous literature, 1 hour pre-treatment of either 5 µM of DZNep 

(Cayman Chemical, Ann Arbor, MI) or 5-aza-dC (Sigma, St. Louis, USA) was applied 

to HRECs prior to addition of D-glucose [35, 43, 46]. DZNep or 5-aza-dC-treated 
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HRECs, and their respective controls, were collected at 48 hours for further analyses. 

4.1.4    SiRNA-mediated transfection 

The lncRNA array analysis from our earlier study identified several upregulated 

lncRNAs in HG-treated HRECs [43]. Therefore, in this study, we selected the three 

most upregulated lncRNAs, which potentially target ET-1, and silenced each of these 

lncRNAs to determine the impact on ET-1 regulation. HRECs were initially 

transfected with either two pre-designed siRNAs targeting human ANRIL (antisense 

RNA to INK4 locus), MALAT1 (metastasis-associated lung adenocarcinoma transcript 

1), or ZFAS1 (zinc finger antisense 1), or scrambled siRNA (catalog number: 

AM4635, Life Technologies, CA, USA) using Lipofectamine 2000 (Invitrogen, ON, 

CA) and Opti-MEM (Life Technologies, CA, USA). Details regarding the 

lipofectamine-mediated transfection protocol can be found in our previous studies [36, 

44]. Following confirmation of knockdown by RT-qPCR, the siRNA sequences with 

the best knockdown were selected for this study: ANRIL (Lincode CDKN2B-AS1; 

catalog number: R-188105-00-0005, Dharmacon, IL, USA), MALAT1 (catalog 

number: n272233, Life Technologies, CA, USA), and ZFAS1 (catalog number: 

n271357, Life Technologies, CA, USA).  

4.1.5 RNA Isolation and Quantitative Real-Time 

Polymerase Chain Reaction (RT-qPCR) 

As previously described, the TRIzol reagent (Invitrogen, Burlington, ON) was used to 

extract total RNA and a spectrophotometer (260 nm; Gene Quant, Pharmacia Biotech, 

USA) was utilized to quantify RNA concentrations [24, 32, 35, 43]. A high-capacity 

complementary DNA (cDNA) kit (Applied Biosystems, Burlington, ON) was then 

employed to reverse transcribe 1 µg of total RNA to cDNA. Next, in combination with 

SYBR-green master mix (Clontech, Mountain View, CA, USA) and specific target 

gene primers (Sigma; Appendix C, Table S1), cDNA was amplified in the 

LightCycler 96 System (Roche Diagnostics, QC, CA) to detect RNA expression. 

Expression levels were further calculated by the relative standard curve method using 
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β-actin as internal control for normalization.  

4.1.6    Statistical analysis 

All statistical tests were performed using GraphPad Prism 7 (GraphPad, CA, USA). 

Data are expressed as mean ± SEM. Student’s t-test or 1-way ANOVA, followed by 

Tukey’s post hoc test, were used as appropriate. Differences with a P value below 0.05 

were considered significant.  

4.2 Results 

4.2.1    Transient HG treatment results in hypomethylation 

of CpG sites in the proximal promoter regions of EDN1 

Technological advancements in next-generation sequencing have allowed for the 

identification of genome-wide DNA methylation patterns, which have critical 

implications in disease pathogenesis. Following our methylation profiling of NG and 

HG-treated HRECs, we exclusively selected the CpG sites that spanned across EDN1, 

which corresponded to 12 probes (File S1, doi: 10.33549/physiolres.933836). All of 

the probes were placed in the ‘Open Sea’ category, since the array did not detect a 

CpG island (defined as regions that have a GC content greater than 50% and are 

greater than 200 base pairs in length [16]) in the EDN1 region—which was also 

confirmed by the UCSC Human Genome Browser (University of California, Santa 

Cruz, CA, USA; Figure 4.1A). Using annotations derived by Illumina, we further 

categorized the probes based on functional location relative to the gene region: 

TSS1500 (region that is -200 to -1500 nucleotides upstream from the transcription 

start site), TSS200 (the region from -200 nucleotides upstream to the transcription start 

site itself), 5’ UTR (can include the region through the first exon), gene body, and 3’ 

UTR. Analyzing the EDN1 regions, there were four probes for TSS1500, five probes 

for TSS200, one probe for 5’ UTR, one probe for gene body, and one probe for 3’ 

UTR. According to our array readout, nearly 58% of CpG sites were hypomethylated 

following 48 hours of HG treatment (Figure 4.1B). In addition, a substantial number 
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of these hypomethylated CpG sites were predominantly located in the TSS200 region 

of EDN1, while a hypomethylated CpG site was also detected in both TSS1500 and 5’ 

UTR regions (Figure 4.1C). Despite the overall methylation intensities between the 

NG and HG groups being low for each gene region (0≤ β-value≥0.119; a value of 0 

indicates no methylation, while a value of 1 indicates maximal methylation), the 

percentage of methylation further reduced at CpG sites in the proximal promoter and 

promoter regions of EDN1 following high glucose treatment.  

 
Figure 4.1. CpG sites in specific regions of EDN1 are hypomethylated following high 
glucose treatment in vitro. A) Information on the human EDN1 gene annotated from the 
UCSC database. EDN1 is located on chromosome 6 and spans from the nucleotide positions 
12, 289, 311 to 12, 296, 209 (6899 nucleotides in size [23]). B) A heat map depicting the 
methylation intensity (in ß-values) of specific CpG dinucleotides across EDN1 in HRECs 
following 48 hours of NG or HG culture. The Illumina methylation array indicates that a ß-
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value of 1 suggests complete methylation at the interrogated site, while a value of 0 indicates 
no methylation. C) A bar graph categorizing the methylation intensities of probes based on 
gene region. The proximal promoter and 5’ UTR/first exon regions demonstrated CpG 
hypomethylation following HG treatment (data expressed as average ß-value per region; N= 3 
independent samples for each NG or HG group). Legend: ‘*’ demonstrates a significant 
reduction in methylation following HG treatment.   
 

4.2.2   Global inhibition of DNA methyltransferases 

increases ET-1 expression 

To further investigate the impact of DNA methylation on EDN1 regulation, we 

administered a DNA demethylating agent in HRECs prior to glucose treatment. 

Following the global inhibition of DNA methyltransferases, we subsequently analyzed 

ET-1 mRNA expression (the main product of EDN1 transcription) using RT-qPCR. 

Interestingly, 5’-aza-dC administration significantly augmented ET-1 expressions in 

both NG and HG-treated HRECs compared to controls (Figure 4.2A). Among the 

groups analyzed, HRECs that were cultured with NG and 5’-aza-dC demonstrated 

comparable ET-1 expression levels to HRECs cultured solely in HG—suggesting the 

importance of DNA methyltransferases in governing the transcriptional activity of 

EDN1. Collectively, both of our DNA methylation experiments indicate that 

hyperglycemic environments can greatly impact DNA methylation patterns in EDN1 

and its transcriptional products.  
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Figure 4.2. Global inhibition of DNA or histone methylation significantly increases ET-1 
mRNA expressions in HRECs. RT-qPCR findings indicate that A) 5-aza-dC treatment 
increases ET-1 expressions in NG or HG-treated HRECs, B) DZNep treatments also showed 
similar patterns of ET-1 upregulation (data expressed as a ratio to β-actin (mean ± SEM); 
normalized to NG; *=P<0.05, ***=P<0.001, and ****=P<0.0001 compared to NG or HG; and 
N= 6 from three independent experiments and performed in triplicates). 
 

4.2.3    Histone methylation is important in ET-1 regulation 

Following demonstration of DNA methylation’s impact on ET-1, we investigated the 

role of histone methylation on ET-1 mRNA expression. Therefore, prior to glucose 

treatment, we subjected HRECs to a global histone methylation inhibitor and 

subsequently analyzed ET-1 mRNA. Similar to the trends observed in our 5’-aza-dC 

experiment, DZNep pre-treatment significantly upregulated ET-1 in both NG and HG-

treated HRECs (Figure 4.2B). Following pharmacologic inhibition of histone 

methylation, the sharp induction of ET-1 expression in both NG and HG-treated 

HRECs alludes to the regulatory capabilities of histone methyltransferases on ET-1 

transcription.    
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4.2.4  lncRNAs regulate ET-1 expression in hyperglycemia 

With lncRNAs gaining widespread recognition as important epigenetic mediators, we 

examined the impact of lncRNAs on ET-1 regulation. Based on the lncRNA array 

analysis from our previous study [43], we selected the top three upregulated lncRNAs 

in HG-treated HRECs for silencing in this investigation: ANRIL, MALAT1, and 

ZFAS1. Compared to scrambled controls, approximately 70%, 75%, and 90% 

knockdown activity was observed in HRECs following siANRIL, siMALAT1, and 

siZFAS1 treatments, respectively (data not shown). Interestingly, the siRNA-directed 

inhibition of ANRIL, MALAT1, or ZFAS1 also significantly reduced ET-1 mRNA in 

HG-treated HRECs (Figure 4.3). More specifically, when compared to scrambled 

controls, ANRIL knockdown contributed to the greatest reduction of ET-1 expression 

in HG-treated HRECs (~75%; Figure 4.3A); while, siMALAT1 (Figure 4.3B) and 

siZFAS1 (Figure 4.3C) demonstrated comparable levels of ET-1 mRNA reduction 

(~37-42%) in HG-treated HRECs. Taken together, the findings observed from our 

knockdown experiments suggest that pathogenetic lncRNAs can also influence 

glucose-induced upregulation of ET-1 in microvascular endothelial cells (ECs). 
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Figure 4.3. ANRIL, MALAT1, and ZFAS1 regulates glucose-induced production of ET-1 
mRNA in vitro. RT-qPCR analyses indicating that A) siANRIL, B) siMALAT1, and C) 
siZFAS1 caused significant reductions in the glucose-induced upregulation of ET-1 transcripts 
(data expressed as a ratio to β-actin (mean ± SEM); normalized to SCR NG; *=P<0.05, 
**=P<0.01, ***=P<0.001, and n.s.= not significant compared to SCR NG or SCR HG; and N= 
6 from three independent experiments and performed in triplicates).  
 

4.3 Discussion 

When a chronic hyperglycemic environment jeopardizes the integrity of the 

endothelium, the risk of advancement to severe diabetic microvascular complications 

dramatically heightens. ECs are one of the earliest cells to undergo dysfunction in 

diabetes, contributing to disease progression [17]. During the development of 

endothelial dysfunction, one well-documented characteristic is the heightened 

production and activity of ET-1 [20, 39]. 
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With the biologically active form being only 21 amino acids in length, the mature ET-

1 peptide can elicit a potent proinflammatory and vasoactive response [31]. ET-1, 

belonging to the group of endothelin peptides, mediates its response through G-

protein-coupled receptor subtypes, ETA and ETB [37]. In the vasculature, ECs 

predominantly express the ETB receptors, while both receptor subtypes can be found 

on vascular smooth muscle cells [31]. Furthermore, the vascular response is 

characterized by the fine balance between the concentrations of ET-1 and its receptor 

subtypes. When this balance becomes disrupted in various pathologies such as 

atherosclerosis and diabetes, enhanced activities of vasoconstriction, inflammation, 

and mitogenesis can subsequently follow [37]. In order to truly understand the 

conundrum behind aberrant activation of the ET-1 axis, the transcriptional regulatory 

features behind ET-1 production must be thoroughly examined. 

Located on chromosome 6, the human EDN1 generates a 2.8-kb transcript that 

encodes for the pre-pro-ET-1 protein [48]. Once pre-pro-ET-1 is generated, the 212-

amino-acid protein then undergoes a series of proteolytic modifications to ultimately 

produce the mature ET-1 peptide [48]. Although post-translational mechanisms are 

moderating ET-1 processing, large bodies of scientific reports indicate that ET-1 

bioavailability is mainly directed by transcriptional regulation [4, 7, 19, 30, 41]. In 

fact, the 6.8-kb spanning mammalian EDN1 can be transcriptionally governed by a 

plethora of transcription factors, which can include hypoxia inducible factor-1, NF-κB, 

activator protein-1, GATA-2, and c-Myc [22, 33, 40, 47]. Despite the well-

documented literature on the various stimuli driving EDN1 transcription, recognizing 

and incorporating novel regulatory mechanisms, such as epigenetic regulation, into the 

current ET-1 signalling paradigm will allow for improved understanding and 

exploration of innovative therapeutics. 

Based on our DNA methylation array, we were able to develop significant insights 

into the glucose-induced methylation patterns present in the regulatory regions of 

EDN1. Specifically, in HRECs, transient high glucose exposure sufficiently evoked 

hypomethylation in the proximal promoter and 5’ UTR/first exon regions of EDN1. In 

association, HG-treated HRECs also demonstrated a significant upregulation of ET-1 
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mRNA at the 48-hour mark. Our findings, together with previous reports by Han et al 

[18] and Feinberg and Vogelstein [11], highlight the importance of reduced 

methylation at CpG dinucleotides in the regulatory regions of actively transcribed 

genes. In fact, hypomethylated CpG sites in the promoter regions of an active gene 

provide a greater degree of accessibility for transcription factors, which will then 

facilitate transcription [9, 10]. Moreover, Vallender and Lahn [44] have previously 

indicated that hypermethylation of CpG regions near intron 1 in Edn1 blocks the 

binding site for the Sp1 transcription factor, which may contribute to Edn1 silencing in 

mice fibroblasts [44]. 

Despite the presence of differential CpG methylation patterns across EDN1 between 

NG and HG-treated HRECs, the administration of a global DNA demethylating agent 

resulted in a significant induction of ET-1 mRNA in both HREC groups. This data is 

in keeping with past reports in which similar trends for ET-1 mRNA were observed in 

fibroblasts [44] and 1833-bone metastatic cells [27] following the complete inhibition 

of DNA methylation. These findings, along with our study, suggest that DNA 

methyltransferases have a critical role in regulating the transcriptional status of EDN1 

and that pathological stimuli may be capable of altering the DNA methylating 

properties of these enzymes in the EDN1 region. 

In the context of histone modifications, globally inhibiting histone methylation 

provoked a significant elevation of ET-1 mRNA in HRECs cultured with NG and HG. 

The profound influence of histone methylation on EDN1 transcriptional activity has 

been previously documented in renal epithelial cells, where aldosterone treatment 

induced specific histone conformation changes that maintained active transcription in 

the EDN1 promoter [41]. Although chronic hyperglycemic environments can facilitate 

chromatin remodeling by histone methylation, histone acetylation can also 

significantly contribute to chromatin state dynamics. Former studies from our 

laboratory have indicated that the upregulation of histone acetyltransferase P300 can 

cause increased EDN1 promoter activity [7], reduced expression of the class II histone 

deacetylase SIRT1 [29], and increased expressions of ET-1 transcripts, extracellular 

matrix (ECM) proteins and vasoactive factors [7, 14]. Collectively, our past and 
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current findings demonstrate that pathologies like diabetes can cause unique 

alterations in histone modification patterns, which may ultimately enhance EDN1 

transcriptional activity and contribute to elevated ET-1 protein levels. 

With lncRNAs greatly influencing the epigenetic landscape, we knocked down three 

pathogenetic glucose-induced lncRNAs in HRECs in order to determine the impact of 

lncRNAs on ET-1 transcript expression. Following siRNA-mediated knockdown of 

ANRIL, MALAT1, and ZFAS1, significant reductions in ET-1 mRNA levels were 

observed. These findings are consistent with the notion that lncRNAs can alter mRNA 

transcription by controlling chromatin structure, transcription factors, nuclear 

organization, or specific protein complexes [26]. To further support these notions, we 

have previously shown that ANRIL can regulate VEGF (vascular endothelial growth 

factor) through its direct interactions with P300 and PRC2 (polycomb repressive 

complex 2; a histone methyltransferase) in HRECs [43]. Such a mechanistic study is 

warranted for ET-1, so that the direct relationship between epigenetic mediator 

proteins and EDN1 can be confirmed in a diabetic context. Moreover, we have 

previously demonstrated the importance of microRNAs (miRNAs) 1 and 320 in ET-1 

regulation [12, 13], miR-200b in mediating PRC2 and P300 activities [28, 35], and 

miR-146a impacting ECM proteins [14], inflammatory cytokines [8], and endothelial-

to-mesenchymal transitioning [3]. Therefore, based on our past and current findings, 

we collated the pertinent information and developed an epigenetic paradigm for ET-1 

regulation (Figure 4.4). 
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Figure 4.4. An illustration depicting the proposed epigenetic paradigm underlying ET-1 

regulation in microvascular endothelial cells in diabetes. Based on our previous and current 

findings, we propose this epigenetic model in which histone modifications, DNA methylation, 

miRNAs, and lncRNAs can possibly influence EDN1 transcriptional activity and ultimately 

ET-1 RNA and protein levels. Legend: GDP= guanosine diphosphate; GTP= guanosine 

triphosphate; lncRNA= long non-coding RNA; miRs= microRNAs; P300= histone 

acetyltransferase, H2A-H4= histones; RNA Pol. II= RNA polymerase II; and = 

acetylation. Reproduced from Endothelin-1 Regulation Is Entangled in a Complex Web of 

Epigenetic Mechanisms in Diabetes (p. 8) by S. Biswas, B. Feng, A. Thomas, S. Chen, E. 

Aref-Eshghi, B. Sadikovic, and S. Chakrabarti, 2018, Physiological Research. 
 

Incorporation of the emerging regulatory mechanisms into the previously understood 

paradigm of ET-1 signalling becomes imperative in the development of novel ET-1-

based therapeutics. Although the findings from our study shed novel insights into the 

epigenetic influence on ET-1 regulation, further mechanistic studies are necessary to 
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elucidate the direct relationship between epigenetic mediator proteins and ET-1 in the 

diabetes context.   
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4.5 Appendix C: Endothelin-1 regulation is entangled in a 
complex web of epigenetic mechanisms in diabetes 
 

Supplemental Table 1. qPCR primers for human ET-1. 
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Chapter 5 v 

5 General Discussion 

5.1 Thesis Summary 

The body of work presented in this thesis describes studies of lncRNAs and their 

molecular mechanisms in the pathogenesis of DR. Namely, through early microarray 

analyses (GEO: GSE122189) involving NG and HG-cultured retinal ECs, I selected 

two of the most prominent glucose-induced lncRNAs for further follow-up: MALAT1 

and HOTAIR. In Chapter 2, I specifically examined the epigenetic implications of 

MALAT1 in inflammation in DR using various cell culture and diabetic animal models. 

I showed that the lncRNA MALAT1 is capable of impacting the expressions of 

inflammatory transcripts (including TNF-α and IL-6) through its association with 

histone methylation and DNA methylation processes. Similarly, I demonstrated in vivo 

that the Malat1 gene is directly involved in DR pathogenesis, as the genetic ablation of 

Malat1 in diabetic animals significantly alleviated diabetes-induced upregulations of 

retinal inflammatory transcripts and prevented vascular leakage, compared to the 

retinas from diabetic animals with a wild-type background. Furthermore, I also alluded 

to the potential clinical significance of MALAT1 in human DR, with distinct 

differences for MALAT1 existing in the vitreous fluid between diabetic patients with 

PDR and non-diabetic patients without diabetes.  

After establishing the relationship between MALAT1 and inflammation, I wanted to 

investigate whether lncRNAs are linked to other critical pathogenetic processes in DR, 

such as angiogenesis. Therefore, based on our microarray findings and previous 

literature in cancer [1, 2], I wanted to delineate whether the lncRNA HOTAIR can 

similarly mediate angiogenic processes in DR, which was the focus of Chapter 3. 

Indeed, in vitro and in vivo experiments involving siRNA-mediated knockdown of 

                                                
v
 Some content in Chapter 5 has been adapted from Biswas S, Sarabusky M, Chakrabarti S. Diabetic 

Retinopathy, lncRNAs, and Inflammation: A Dynamic, Interconnected Network. Journal of Clinical 
Medicine: 2019;8(7): 1033, doi: 10.3390/jcm8071033. This work was published under a Creative 
Commons Attribution License. 
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HOTAIR demonstrated that this lncRNA could directly impact the expressions of 

several angiogenic cytokines, as well as critical epigenetic and DR-related molecules. 

HOTAIR was also shown to be involved in glucose-induced mitochondrial and 

oxidative DNA damage, while mechanistic-based experiments further illustrated that 

HOTAIR may be regulating the transcriptional status of certain angiogenic genes 

through its association with epigenetic RNA-binding proteins, including histone 

methyltransferases, histone acetyltransferases and RNA polymerase II. Moreover, I 

established that DNA methylation mechanisms are also implicated in the regulation of 

HOTAIR and its downstream targets. Extending my in vitro findings, I discovered that 

HOTAIR RNA levels are specifically elevated in the vitreous fluid and serum of 

diabetic patients with PDR, which further allude to the biological significance of 

lncRNAs in human DR. 

In Chapter 4, I examined the interrelationships shared between epigenetic mechanisms 

and specific molecular alterations in DR. As such, using HRECs, I explored the 

implications of DNA methylation, histone methylation, and lncRNAs in the regulation 

of endothelin-1 (ET-1), a well-documented molecule that is dysregulated in diabetic 

complications. My findings indicated that HG environments could induce 

hypomethylation patterns in the promoter regions of ET-1 (EDN1), while global 

blockade of DNA or histone methyltransferases could further augment glucose-

induced elevations of ET-1. In addition to our findings, siRNA-mediated knockdown 

of certain pathogenetic lncRNAs also altered the expressions of ET-1 transcripts, 

which ultimately confirmed the presence of an epigenetic axis in the regulation of ET-

1.  

Taken together, this work has uncovered a novel epigenetic paradigm involving an 

intricate web of epigenetic mechanisms that regulate glucose-induced transcription of 

DR-associated molecules in important pathological processes (inflammation and 

angiogenesis).   
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5.2 LncRNAs: Missing Pieces of the Epigenetic Puzzle in 
DR? 

There is no doubt that the existing molecular network is complex. We know that under 

homeostatic conditions, cellular mechanisms are carried out in a very coordinated 

manner. However, in the event of chronic hyperglycemia, the activities of several 

genes go awry, which significantly alter the spatial and temporal kinetics of various 

signalling pathways and consequently promote damaging cellular processes. 

Interestingly, several studies have made it evident that damaging cellular events (such 

as the generation of oxidative stress) can still mediate the persistence of diabetic 

vascular complications even after glucose normalization—this is known as ‘metabolic 

memory’ [3-8]. Epigenetics, which refer to mechanisms that modify the expression of 

genes without changing the underlying nucleotide composition, is an attractive field of 

study underlying metabolic memory, since these mechanisms have been critically 

implicated in diabetes [9-11]. Epigenetic mechanisms include histone modifications, 

DNA methylation, and the activity of non-coding RNAs and as discussed before, 

several lncRNAs can exert their functionalities through these epigenetic mechanisms 

in various pathologies. Considering the diverse types of epigenetic mechanisms 

present, very few studies exist that take into consideration the complex crosstalk 

between lncRNAs and other epigenetic mechanisms in the pathogenesis of DR. 

Therefore, in my work, several experimental approaches were carried out in order to 

provide some insights into this dynamic epigenetic network and these findings, along 

with observations from current literature, will be discussed below.  

 

5.2.1  Crosstalk between lncRNAs and DNA methylation 

Considered one of the earliest discovered epigenetic mechanisms [12], DNA 

methylation involves the interactions between two opposing enzymes that facilitate the 

methylation status of cytosine residues in CpG dinucleotides: either through the 

addition (via DNA methyltransferases; DNMTs) or removal (via DNA demethylases) 

of methyl groups [13]. Furthermore, genomic regions that contain a high frequency of 

CpG dinucleotides are known as CpG islands (CGIs), which reside in the 
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regulatory/promoter regions of genes, and the CGIs can ultimately determine the 

transcriptional activity of a gene based on its degree of methylation [13, 14]. For 

instance, promoter CGIs that are hypermethylated are associated with gene silencing, 

while conversely hypomethylation is associated with gene activation [13, 14]. Indeed, 

in recent years, the impact of DNA methylation has been documented in DR, where 

previous reports suggest that hyperglycemia can evoke distinct methylation patterns in 

the promoters of miRNAs [15] and several DR-related genes (such as TNF and MMP-

9) [16-18], which further the progression of DR. Adding to these results, findings from 

my MALAT1 and HOTAIR studies demonstrate for the first time that reciprocal 

relationships exist between lncRNAs and DNMTs in the regulation of specific 

inflammatory and angiogenic mediators during DR pathogenesis (Chapters 2 [19] and 

3). In fact, the knockdown of MALAT1 or HOTAIR prevented glucose-induced 

elevations of DNMTs in HRECs, while blocking the actions of DNMTs (through 

siDNMT1 or pan-DNMT inhibitors) exacerbated glucose-induced lncRNA 

expressions and also evoked differential expressions of various downstream targets of 

HOTAIR and MALAT1. These results suggest that both DNMTs and lncRNAs actively 

participate in the transcriptional regulation of several genes under hyperglycemic 

environments. In support of our notion, previous reports in colon cancer [20], 

myogenesis [21], and neural differentiation [22] have revealed that certain lncRNAs 

can regulate gene expressions and DNA methylation in biological or pathological 

processes through their potential association with DNMTs. For example, using ChiRP-

Seq (Chromatin Isolation by RNA purification), Merry et al [20] demonstrated that the 

induction of the lncRNA DACOR1 (DNMT1-associated Colon Cancer Repressed 

lncRNA 1) could enhance DNA methylation at multiple loci without affecting 

DNMT1 protein levels in colon cancer cells [20]. Following additional mechanistic-

based experiments, the authors concluded that DACOR1 could indirectly regulate the 

methylome through its influence on DNMT1 genomic occupancy and/or its ability to 

govern the levels of certain substrates (Cystathionine β-synthase) that are required for 

the generation of key methyl donors utilized by DNMTs. Nevertheless, similar 

mechanistic studies are warranted to further solidify the role(s) of DNMT-associated 

lncRNAs in the context of DR. As well, it still remains to be determined whether the 
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inhibition of DNA methylation through siDNMT1 or pan-DNMT inhibitors alters 

neighbouring (or distal) genes, which in turn may substantially impact the 

transcriptional activity of MALAT1 and HOTAIR. 

We further interrogated the methylation status of individual CpG sites across 

the MALAT1 and HOTAIR genes in both NG and HG-cultured HRECs using a DNA 

methylation array. Interestingly, we observed that transient glucose treatments (48 

hours) did not significantly alter the methylation status of several CpG sites across 

the MALAT1 and HOTAIR gene. One possible explanation for this result may be 

attributed to the stable epigenetic nature of DNA methylation marks during 

hyperglycemic stress. For example, a previous report has documented that active 

global DNA methylation changes can take place prior to the physiological elevation of 

glucose levels in humans [23]. Based on this, although we conducted our DNA 

methylation experiment at one particular time-point, it would be intriguing to see 

whether initial hyperglycemic treatments can provoke persistent, long-lasting changes 

in the methylation status of CpG sites across the MALAT1 and HOTAIR genes. 

Constructing such an in vitro cell culture model involving multiple time-points and 

alternating glucose treatments will provide unique insights behind metabolic memory 

and the regulatory nature of DNA methylation on the biogenesis of lncRNAs during 

the progression of DR. 

5.2.2  The Interplay between lncRNAs and Histone 

Modifications  

Another fundamental epigenetic mechanism involved in the coordination of gene 

expression is histone modifications. Histone-modifying enzymes, including histone 

demethylases, histone methyltransferases, histone deacetylases and histone 

acetyltransferases, coordinate their actions by chemically modifying particular amino 

acid residues within histone proteins (H2A, H2B, H3, and H4), which govern the 

overall conformation of the chromatin and its accessibility to transcription factors for 

gene transcription at that modified region [24-28]. For example, an open configuration 

(euchromatin) can be induced by histone acetyltransferases through the acetylation of 
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lysine residues, which generally leads to active gene transcription [24-26]. Conversely, 

depending on the degree of methylation and the specific residue, histone 

methyltransferases facilitate the methylation of lysine residues that can drive gene 

silencing (a heterochromatin state) or activation [27, 28]. Changes in histone 

modifications have been extensively reported in multiple cancers [29] and in recent 

years, several studies are also documenting the presence of aberrant histone 

modifications in diabetic environments [30-36]. Despite the breadth of information 

available, few studies have addressed the involvement of histone modifications on 

lncRNA-mediated mechanisms in DR. In fact, presently, only studies from our 

laboratory have addressed the influence of histone methylation and acetylation 

processes on lncRNAs in DR, which will be the topic of discussion in the paragraphs 

below. 

Polycomb repressive complex 2 (PRC2) is a multimeric histone methyltransferase 

complex that catalyzes the tri-methylation of lysine 27 on histone 3 (H3K27me3), a 

distinct chromatin mark linked with gene repression [37]. A previous report from our 

laboratory demonstrated that the core components of PRC2 (EZH2, SUZ12, and EED) 

were significantly augmented in HG-cultured HRECs and retinal tissues of diabetic 

rats and mice, which were also accompanied by increased VEGF expressions and 

reduced miR-200b levels (a negative regulator of VEGF) [38]. Interestingly, using 

ChIP-qPCR analyses, HG-cultured HRECs exhibited increased H3K27me3 and 

decreased RNA polymerase 2 associations in the promoter region of miR-200b when 

compared to NG controls. Furthermore, administration of DZNep significantly 

prevented HG-induced reductions of miR-200b, while VEGF RNA and protein levels 

were dramatically decreased in parallel—suggesting that PRC2 can negatively regulate 

miR-200b, while indirectly promoting the expressions of VEGF, in hyperglycemic 

environments.  

Another study from our laboratory indicated for the first time that lncRNAs are closely 

connected with PRC2 functions in DR. Notably, the lncRNA ANRIL (antisense RNA 

to INK4 locus) was shown to exhibit a pathogenetic phenotype in DR through its 

augmented expressions in HRECs and retinal tissues following hyperglycemia [39]. 



188 

 

Moreover, retinal tissues from Anril knockout diabetic mice revealed depressed 

expressions of Ezh2 and Eed RNA levels when compared to retinas from wild-type 

diabetic animals. Similar observations were also reported in HG-cultured HRECs 

following ANRIL silencing—confirming ANRIL’s direct impact on the EZH2 and EED 

subunits of PRC2. On the other hand, administration of DZNep in HG-cultured 

HRECs dramatically reduced both ANRIL and VEGF RNA expressions, which 

suggests that a highly interactive network may exist between these molecules. 

Potential binding interactions between ANRIL and PRC2 were further assessed by 

RNA immunoprecipitation analyses, where it was demonstrated that HG could 

promote strong binding associations between EZH2 and ANRIL. Of note, ANRIL also 

shared a similar relationship with P300, which is a prominent histone acetyltransferase 

involved in the regulation of several glucose-related genes [40-42]. Generally, HG-

induced upregulations of P300 were corrected following ANRIL silencing in HRECs 

and Anril knockout diabetic mice exhibited reduced retinal p300 levels compared to 

retinas from wild-type mice. Interestingly, transfection with siP300 in HG-treated 

HRECs did not alter ANRIL expressions [39]. 

Extending our ANRIL study, I demonstrated in my thesis that two other lncRNAs 

(MALAT1 and HOTAIR) can also significantly influence PRC2 and P300 regulation of 

target gene expressions in DR (Chapters 2 [19] and 3). Indeed, it was evident that 

siRNA-mediated silencing of MALAT1 or HOTAIR is capable of significantly 

preventing diabetes-induced increases of PRC2 components and P300, while the 

inhibition of PRC2 (through DZNep or siEZH2) can evoke differential expressions of 

these lncRNAs and their target downstream molecules. Moreover, strong binding 

associations were apparent between histone modifying enzymes (i.e. EZH2 and P300) 

and these two lncRNAs in HG environments. Interestingly, the knockdown of 

MALAT1 was also shown to directly reduce protein expressions of EZH2 (Appendix 

A, Figure S2C) in HG, while HOTAIR knockdown was capable of governing 

methylation and acetylation statuses in the VEGF-A promoters following HG culture 

(Figure 3.12). These results suggest that lncRNAs may be able to govern the 

expressions of certain histone modifying enzymes in addition to influencing their 

functional capabilities. Supporting our observations, previous reports have shown that 
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MALAT1 and HOTAIR can share direct regulatory relationships with histone 

modifying enzymes [43, 44]. For instance, MALAT1 has been shown to detach EZH2 

from binding with the HIV1-long terminal repeat promoter, subsequently removing 

the PRC2-mediated H3K27me3 mark in this region and relieving epigenetic silencing 

of HIV-1 transcription [43]. Similarly, HOTAIR can tether distinct RNA-binding 

complexes and coordinate their targeting to chromatin for coupled histone 

modifications on target genes. For example, PRC2 has been shown to directly bind to 

the 5’ domain of HOTAIR, while the 3’ domain of HOTAIR binds to a demethylase 

that mediates enzymatic demethylation of H3K4me2 (lysine-specific demethylase 1; 

LSD1) [44]. Intriguingly, the knockdown of HOTAIR in primary foreskin fibroblasts 

was shown to decrease the occupancy of SUZ12 and LSD1 in the proximal promoters 

of HOXD genes [44]. Taken together, these findings allude to the potential abilities of 

lncRNAs to form scaffolds or act as guides with certain chromatin-modifying enzymes 

in diabetic environments. Further mechanistic-based studies are undoubtedly 

warranted that closely examine the relationship between lncRNAs (such as HOTAIR 

and MALAT1) and other key RNA-binding proteins in mediating the pathogenesis of 

DR. 

5.2.3      The Relationship Between lncRNAs and miRNAs 

in DR: Friend or Foe?  

Emerging as critical post-transcriptional regulators of gene expression [45, 46], 

miRNAs are small ncRNAs (~22 nucleotides in length) that can bind to the 3’-UTR of 

their target mRNAs, subsequently leading to mRNA degradation and/or inhibition of 

protein translation [47]. Within the last decade, the implications of miRNAs have been 

well identified in cardiovascular disease [48], cancer [49], neurodegenerative diseases 

[50], and even DR [42, 51-54]. Although I did not examine the role of miRNAs in my 

experimental work, emerging studies in DR are beginning to reveal a unique 

relationship shared between miRNAs and lncRNAs, which will be briefly discussed 

below. 
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Beginning with the lncRNA MIAT (myocardial infarction associated transcript), Yan 

et al. have shown that this lncRNA can function as a molecular sponge/decoy that 

sequesters miR-150-5p, which subsequently promotes the expression of its target 

mRNA (VEGF) in DR [55]. Using bioinformatics, the authors first identified predicted 

binding sites for miR-150-5p on its targets, VEGF and MIAT. These predictions were 

then confirmed in vitro through luciferase assays, which demonstrated that miR-150-

5p directly targeted VEGF and MIAT transcripts. Additional mechanistic-based 

experiments involving miR-150-5p mimics and MIAT overexpressing ECs suggested 

that a dynamic interplay exists between MIAT, miR-150-5p, and VEGF in the critical 

functions of ECs during HG stress. Specifically, VEGF expressions were significantly 

upregulated in MIAT-overexpressing cells, while VEGF expressions were markedly 

reduced with increasing levels of miR-150-5p in MIAT-overexpressing cells. In a 

similar manner, gradual increases in MIAT were capable of restoring miR-150-5p-

induced downregulations of VEGF in miR-150-5p-overexpressing ECs, further 

alluding to the regulatory crosstalk between these molecules. Other studies have also 

alluded to miRNAs as potential negative regulators of lncRNAs and mRNAs. For 

instance, miR-185-5p was shown to directly regulate the lncRNA RNCR3 (retinal non-

coding RNA 3) and the mRNA Krüppel-like Factor 2 (KLF2) [56]. In fact, miR-185-

5p mimics decreased the expressions of RNCR3 and KLF2 and subsequently 

contributed to reduced viability and proliferation in chorioretinal ECs. Moreover, 

inverse regulatory relationships have also been documented for the lncRNA MEG3 

and miR-34a in retinal epithelial cells [57]. Accordingly, HG environments were 

shown to promote the upregulation of miR-34a and downregulations of MEG3 and a 

histone deacetylase (SIRT1), while the overexpression of MEG3 in these cells 

dramatically reversed HG-induced effects. Interestingly, using luciferase assays and 

mimics and inhibitors for miR-34a, the researchers confirmed that MEG3 could 

positively regulate SIRT1 by directly sponging its negative regulator, miR-34a. With 

the consequent downregulation of miR-34a, MEG3 overexpression was shown to 

reduce HG-induced apoptosis and inflammation. Based on these reports, future studies 

should continue investigating the dynamic crosstalks shared between lncRNAs, 
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miRNAs and their target mRNAs, as these findings will provide significant insights 

into perturbed regulatory networks that are implicated in the pathogenesis of DR. 

5.3 Limitations and Future Directions 

Although the findings generated from my experiments highlight the critical regulatory 

capabilities of lncRNAs in DR, one must recognize that inherent limitations oftentimes 

exist in experimental models. Beginning with my in vitro experiments, HRECs were 

grown in monolayers using culture flasks and plates, which constitute a two-

dimensional (2D) cell culture model. As such, it is likely that ECs organized in a 2D 

culture system may not accurately recapitulate the bioactivities of ECs in an in vivo 

environment, since differences in motion and migration, extracellular matrix 

composition, and mechanical responses exist between the structure of ECs in 2D 

culture and in vivo environments [58]. These differences may also contribute to 

variations in gene expressions. Therefore, due to these reasons, it would be interesting 

to implement novel 3D (three-dimensional) cell culture models that could accurately 

model the composition of blood vessels in vivo. 

Furthermore, ECs were the primary cell-type used in my experiments because these 

cells are the earliest (and primary) targets of diabetes-induced tissue damage. 

Considering that the retina is comprised of multiple layers of cells, simply focusing on 

ECs may not provide a complete picture of the molecular events transpiring across the 

retina during DR. Thus, future experiments should examine the expressions of 

lncRNAs in other retinal cell types. For example, in a study by Liu et al., the 

knockdown of MALAT1 was shown to prevent capillary degeneration, microvascular 

leakage, retinal inflammation, as well as diabetes-induced retinal pericyte loss [59]— 

alluding to potential molecular crosstalks shared between various cell types. 

Interestingly, recent evidences have also demonstrated that inflammatory 

environments can induce cerebrovascular ECs to shed endothelial-derived exosomes, 

containing bioactive molecules (i.e. miRNAs), which can subsequently modulate 

pericyte responses [60]. With exosomal lncRNAs being reported in various 

pathologies [61], it would be logical to explore the potential regulatory functions and 
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transport pathways of these extracellular vesicles in cell-to-cell communication (i.e. 

between retinal ECs and pericytes) during DR pathogenesis. 

Although we examined specific subsets of diabetes-related molecules across our 

studies, there is a possibility that we may have missed out on other critical molecules 

regulated by these lncRNAs. As such, future experiments should continue to examine 

the global transcriptome and methylome, using high-throughput sequencing methods, 

after the administration of epigenetic inhibitors (from DZNep to 5-aza-dC) and/or 

lncRNA-specific siRNAs in HRECs. Such findings, through ChIP-Seq, RIP-Seq or 

even DNA methylation arrays, can enable researchers to further elucidate the effects of 

these compounds on the epigenome in its entirety. Similarly, with the optimization of 

next-generation sequencing technologies in the last few years, it would be fruitful to 

perform single-cell RNA-seq using diabetic retinal tissues, as this information will 

help us understand whether discrete and abundant expressions for lncRNAs exist 

among individual cells.   

Furthermore, in our studies, we examined very specific time-points across our cell 

culture and animal models, which impose its own limitations, as we are unable to 

examine the effects of metabolic memory on transcriptional regulation and the long-

term consequences of inhibiting pathogenetic lncRNAs in the retina of diabetic 

animals. For instance, in our diabetic animal models, the one and two-month end-

points were selected because early retinal aberrations can be detected during this time. 

Of course, if graduate degrees did not possess certain time constraints, later end-points 

for diabetes could have definitely been examined using the animal models presented in 

Chapters 2 and 3. Regardless, future work should definitely investigate the long-term 

implications of Malat1 knockout or Hotair knockdown in the retinas of diabetic 

animals. Moreover, unlike Malat1, we were unable to use a global Hotair knockout 

mice model because the targeted deletion of Hotair was shown to cause homeotic 

transformation of the spine and malformation of metacarpal-carpal bones in mice [62]. 

An alternative solution to this limitation could be through the use of a Cre/loxP system 

to generate a retinal tissue-specific or inducible knockout of HOTAIR [63]. 
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Other limitations in my studies include not examining histone and DNA demethylases, 

histone deacetylases, histone phosphorylation, histone ubiquitination and other histone 

modifications. Future studies should definitely investigate these mechanisms, as 

potential crosstalks could exist between different histone modifications and may 

uncover novel interactions shared between lncRNAs and other chromatin-modifying 

complexes. Furthermore, in addition to the double-stranded siRNAs used in our 

MALAT1 and HOTAIR knockdown experiments, future investigations should also 

consider alternative approaches that ensure complete gene knockout or stronger 

knockdowns. For example, CRISPR/Cas9 knockout strategies could be used in 

HRECs to ablate the lncRNAs of interest, while other novel antisense molecules, such 

as locked nucleic acids (i.e. GapmeRs), or short hairpin RNAs (shRNAs) can also be 

used to target the lncRNAs of interest and obtain strong knockdowns in retinal ECs. 

Lastly, in regard to our clinical experiments, further large-scale investigations are 

warranted to determine the complete clinical validation of MALAT1 and HOTAIR as 

potential prognostic or diagnostic markers for DR. As such, larger sample sizes with 

appropriate power calculations, stringent cut-off criteria and determination of 

clinically meaningful endpoints will be required to truly understand the clinical 

significance of these lncRNAs in DR.  

5.4 Concluding Remarks 
In recent years, the rapid advent of genomic technologies has drastically improved our 

capacity to survey the intricate complexities of the genomic landscape. What were 

once considered ‘junk DNA’ or ‘dark matter’, lncRNAs (and other ncRNAs) are now 

proving to be dynamic regulators of gene expression, as these versatile RNA 

molecules can interact with different layers of regulation: epigenetic, transcriptional, 

and post-transcriptional. In this thesis, I have discussed two lncRNAs and their 

regulatory implications in the pathogenesis of DR.  

With new, unannotated lncRNAs frequently being discovered, added efforts must be 

taken to functionally characterize these lncRNAs in the field of diabetes, especially 

DR. Additional mechanistic understanding of lncRNAs will allow us to appreciate the 
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dynamic regulatory networks behind these RNA molecules in pathophysiological 

processes, which will further create novel avenues for research and drug discovery in 

DR. As well, from the lncRNAs I have examined in my thesis, it is quite evident that 

these lncRNAs co-exist in a highly coordinated molecular network. Therefore, going 

forward, future studies should consider implementing integrated experimental 

approaches. Such approaches, and with the help of appropriate computational and 

database-driven tools, will help pinpoint potential lncRNA regions in disease-specific 

contexts. Once the target lncRNA is identified, subsequent gain-of-function and loss-

of-function experiments will further provide in-depth understanding of the lncRNA 

functionalities. Nevertheless, given the pervasive nature of transcription throughout 

the mammalian genome, it is not surprising that other new ncRNA groups (circular 

RNAs, snoRNAs, and piwi-interacting RNAs) are also beginning to emerge as critical 

players in diabetes [64-66], which truly adds new dimensions to this perplexing 

transcriptional paradigm and require further consideration as well.   
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