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Abstract 

Hemodialysis (HD) is the most common form of renal replacement therapy for end-

stage renal disease. However, patients develop complications that are driven by HD-

induced circulatory stress from rapidly removing large fluid volumes during HD, making 

various vascular beds vulnerable to ischemia. By assessing how HD-induced circulatory 

stress affects different organs, it may be possible to characterize the mechanisms behind 

these complications and evaluate therapeutic interventions. This thesis aims to explore 

how HD affects renal and hepatic blood flow and function using CT perfusion imaging. 

For this work, patients received either standard or cooled HD first in a two-visit, crossover 

study design, where imaging was performed before, during and after each HD session. 

Residual renal function is linked to improved clinical outcomes, yet 

characteristically declines upon HD initiation. In the first thesis project, we determined that 

renal perfusion decreases during HD, which could be an early manifestation of HD-

mediated residual renal function loss.  

Although the liver normally clears endotoxin, increased circulating endotoxin levels 

have been found in HD patients. In the second thesis project, we showed that concurrent 

hepatic perfusion redistribution and decreased liver function during HD are likely 

responsible for increased circulating toxin levels. 

Dialysate cooling is a low-cost, feasible intervention that ameliorates HD-induced 

circulatory stress. In the first and second thesis projects, we found that cooling trended 

towards mitigating the drop in renal perfusion during HD and ameliorating the changes in 

liver perfusion and function during HD. 
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If it were possible to accurately assess glomerular filtration rate (GFR) in HD 

patients, HD prescriptions could be adjusted in accordance with residual renal function to 

preserve remaining function. In the third thesis project, we extended the CT perfusion 

technique to measure GFR in HD patients, yielding physiologically realistic GFR values, 

thus demonstrating the feasibility of this approach in terms of reliability and accuracy. 

These findings help explain residual renal function loss and endotoxemia in HD 

patients, and showcases the protective potential of dialysate cooling. In addition, this work 

demonstrates the benefit of using CT perfusion as a functional imaging technique to 

further characterize and evaluate therapies for end-stage renal disease pathologies. 

 

Keywords: end-stage renal disease, hemodialysis, circulatory stress, computed 

tomography perfusion, functional imaging, residual renal function, renal perfusion, 

endotoxemia, hepatic perfusion, dialysate cooling, measured glomerular filtration rate 
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Lay Summary 

Patients with end-stage kidney failure require kidney replacement therapy, with the 

most common type being hemodialysis (HD). This treatment removes several litres of 

fluid in a 3- to 4-hour session, which stresses the ability of a patient’s heart to pump blood 

throughout the body (“circulatory stress”). The goals of this thesis are to explore how 

circulatory stress: 

• affects blood flow to, and function of, different organs 

• leads to other health problems besides kidney failure 

• can be prevented to minimize adverse effects on HD patients 

These goals were achieved using computed tomography perfusion (CTP), a scanning 

technique that measures organ blood flow. We performed CTP on patients before, during 

and after HD treatment. 

The small remaining kidney function is linked to improved quality of life of HD 

patients but declines with HD. In the first thesis project, we found that kidney blood flow 

deceases during HD, which could damage the kidney and cause further loss of what little 

remaining function there is. 

The liver normally clears toxins that it receives from the gut, but HD patients have 

abnormally high blood toxin levels. In the second thesis project, we showed that liver 

blood flow redistributes to receive more toxin-filled blood from the gut and that the liver’s 

detoxification ability was also compromised during HD, leading to increased toxin levels 

in HD patients. 
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Previous research has shown that by slightly lowering the temperature of the HD 

fluid, circulatory stress can be lessened. In the first and second thesis projects, we found 

that cooling helped to maintain kidney and liver blood flow during HD. 

There is currently no rapid, reliable and accurate method to measure remaining 

kidney function in HD patients. In the third thesis project, we extended the CTP technique 

to also measure kidney function in our HD patients. This approach yielded realistic values, 

thus demonstrating the practicality and utility of our unique method. 

These results help explain important health concerns of HD and showcase the 

protective potential of cooling. This work demonstrates the benefit of using CTP as a 

powerful imaging technique to explore and evaluate therapies for end-stage kidney 

failure. 
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CHAPTER 1 

1 Introduction 

1.1 Overview 

Chronic kidney disease is a worldwide health burden, with a reported global 

prevalence of approximately 13% in 2016.1 In Canada, nearly 4 million people are 

estimated to have chronic kidney disease,2 with over 50,000 Canadians living with end-

stage renal disease and about 58% of those are on dialysis.3 Of those, approximately 

75% are receiving hemodialysis,3 which is the most expensive treatment option (costs the 

health care system nearly $100,000 per patient per year4), contributes to the development 

of other clinical problems (e.g., cardiovascular disease and cognitive impairment), and 

results in low survival (5-year survival of 42.8%3).  

Although hemodialysis is a life-saving renal replacement therapy which works by 

extracorporeally removing accumulated waste products and excess fluid volumes, it is 

very socioeconomically draining and physiologically disruptive to the patient. Despite the 

multitude of technological and methodological innovations in hemodialysis over several 

decades, there has been no improvement in survival for end-stage renal disease patients 

receiving this form of renal replacement.5 While this unfortunate reality is in large part due 

to the fact that kidney disease patients already carry a high disease burden upon initiation 

of hemodialysis, it has become increasingly recognized that hemodialysis therapy itself 

plays a major role in the morbidity and mortality of end-stage renal disease patients.6  

Therefore, it is extremely important to study the direct physiological effects of 

hemodialysis on systemic and multi-organ hemodynamics and function, allowing for the 

characterization of clinical complications and development of protective interventions.  
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1.2 The Kidneys 

1.2.1 Normal Renal Physiology 

The kidneys are important for maintaining homeostasis in the body because they 

are responsible for excreting waste products, regulating fluid and electrolyte balance, and 

other specialized endocrine functions.7 Normal renal function ensures that fluid does not 

accumulate in the body and that unwanted waste products from metabolism do not 

buildup in the body. The kidneys receive about 25% of the body’s cardiac output from the 

renal arteries, filtering approximately 180 litres of fluid each day in the incoming blood,8 

before the filtered blood returns via the renal veins back to the systemic circulation (Figure 

1.1A). 

Kidneys are composed of an outer layer (cortex) and inner layer (medulla). Each 

kidney consists of approximately one million nephrons,8 which are the functional units of 

the kidney (Figure 1.1B). Blood enters each nephron through the afferent arteriole, 

passes through the glomerulus and its capillaries, and then flows out through the efferent 

arteriole. As blood circulates through the glomerular capillaries, excess fluid and 

metabolic (potentially toxic) wastes are filtered through the glomerular filtration barrier into 

the Bowman’s capsule (Figure 1.1C).9 The glomerulus functions as a macromolecular 

sieve: it prevents the filtration of plasma proteins and certain large molecular weight 

exogenous tracers while allowing for greater permeability of water and small solutes. The 

water-solute filtrate then proceeds into the renal tubule, where tubular secretion and 

reabsorption at different points modify the filtrate and prepare it for urinary excretion.9 
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Figure 1.1: Basic structure of the kidney, nephron, and renal corpuscle. (A) Kidneys are composed of an 

outer layer (cortex) and inner layer (medulla). They receive about 25% of the body’s cardiac output from 

the renal arteries, filtering approximately 180 litres of fluid each day in the incoming blood, before the filtered 

blood returns via the renal veins back to the systemic circulation. (B) Each kidney consists of approximately 

one million nephrons, which are the functional units of the kidney. (C) Blood enters each nephron through 

the afferent arteriole, passes through the glomerulus and its capillaries, and then flows out through the 

efferent arteriole. As blood circulates through the glomerular capillaries, excess fluid and metabolic wastes 

are filtered through the glomerular filtration barrier into the Bowman’s capsule.  

 

The glomerular filtration barrier is composed of 3 layers: endothelium, glomerular 

basement membrane, and podocytes.9 The glomerular endothelium consists of flattened, 

highly fenestrated cells which are very permeable to water and small solutes, while at the 

same time demonstrate charge-selective properties due to negatively charge 

proteoglycans in the fenestrae.10 The glomerular basement membrane is a thick, fibrous 

network that helps maintain structural integrity and is involved in barrier charge selectivity, 

where it accounts for most of the restriction of fluid and solute flux.10 Podocytes are 

specialized epithelial cells lining the outside of glomerular capillaries that have extending 
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foot processes separated by filtration slit diaphragms. Podocytes help maintain 

glomerular permselectivity by restricting the permeation of macromolecules based on 

size, shape and charge.10 

The kidney normally has several mechanisms to compensate for fluctuations in 

hydration and blood pressure, including the myogenic reflex (pressure receptor-mediated 

dilatation of afferent arteriole in response to ischemia), tubuloglomerular feedback (ATP-

based afferent arteriole constriction/dilation due to increased/decreased solute delivery 

to tubular macula densa cells), and the renin-angiotensin system (ischemia-induced renin 

release which constricts the efferent arteriole).11 Under normal physiological conditions, 

these mechanisms protect the kidney from ischemic challenges and allow for the 

autoregulation of glomerular perfusion, ultrafiltration (UF) pressure, and filtration rate.11 

 

1.2.2 Glomerular Filtration Rate 

The primary measure of renal function is the glomerular filtration rate (GFR), which 

represents the rate of fluid filtered from the glomerulus into the Bowman’s capsule and is 

expressed in mL/min/1.73m2. Glomerular filtration is driven by the hydrostatic and osmotic 

pressure gradients between the glomerular capillaries and the Bowman’s capsule: 

𝐺𝐹𝑅 ∝ [(𝑃𝑔𝑙𝑜𝑚𝑒𝑟𝑢𝑙𝑢𝑠
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

− 𝑃𝐵𝑜𝑤𝐶𝑎𝑝
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

) + (𝑃𝐵𝑜𝑤𝐶𝑎𝑝
𝑜𝑠𝑚𝑜𝑡𝑖𝑐 − 𝑃𝑔𝑙𝑜𝑚𝑒𝑟𝑢𝑙𝑢𝑠

𝑜𝑠𝑚𝑜𝑡𝑖𝑐 )].9 The GFR is used 

clinically to assess the health of the kidneys and as a tool for making informed treatment 

decisions. 

The GFR can be estimated (eGFR) and measured (mGFR) using various 

approaches. eGFR is often assessed using population-based equations which take as 

inputs the individual’s demographic information (age, sex, ethnicity) and an endogenous 
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marker level reading.12 The most common endogenous markers considered for GFR 

assessment are creatinine and urea. Creatinine is a breakdown product of creatine 

phosphate from the metabolism of muscle and protein, while urea is waste product of 

protein digestion that is produced by the liver. In addition to being filtered, creatinine is 

subject to tubular secretion while urea is subject to tubular reabsorption, making both 

markers indirect reflections of GFR.12 

mGFR can be assessed by taking sequential urine and/or plasma samples of 

endogenous or exogenous markers over the course of hours or days.12 mGFR is most 

accurately assessed by performing 24-hour urine collection (since accuracy of plasma 

sampling is confounded by extra-renal clearance) following the administration of inulin, 

an exogenous marker which does not undergo tubular secretion or reabsorption. Other 

common mGFR assessments rely on radionuclide-based urine/plasma sampling of 51Cr-

EDTA (Europe) or 99mTc-DTPA (USA).13 

In addition to using inulin and nuclear medicine techniques, GFR can also be 

assessed using dynamic CT- and MRI-based approaches by computing the filtration rate 

constant (determined from graphical analysis and/or tracer kinetic modelling) and 

measuring the kidney mass (determined from volumetric imaging).14-17 In addition to 

providing useful anatomical and functional information, imaging-based techniques also 

enable the quantification of single-kidney GFR, which has several important clinical 

applications (e.g., renal artery stenosis, kidney transplant/donor, comparing left vs. right 

kidney function, disease characterization/progression/monitoring/diagnosis, etc.). 
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1.2.3 Renal Pathophysiology 

1.2.3.1 Acute Kidney Injury 

Previously known as acute renal failure, acute kidney injury (AKI) is defined as a 

rapid decline in GFR that is represented by either increased serum creatinine levels 

(absolute, ≥0.3 mg/dL; percentage, ≥50%; or 1.5-fold from baseline) or reduced urine 

production (<0.5 mL/kg/hr for >6 hours), where the injury is reversible.18-20 AKI is grouped 

into three main etiologies: prerenal, postrenal, and intrinsic. Prerenal AKI results from a 

decrease in renal perfusion which may be caused by hypovolemia, impaired cardiac 

output, peripheral vasodilation or renal vasoconstriction, where renal parenchyma is 

undamaged following prerenal AKI and injury can be readily corrected with volume 

repletion. Postrenal AKI results from obstruction of the urinary tract and urinary flow, 

mainly due to cancerous tumors and ureteral stones, and can be treated with surgical 

interventions aimed at removing the obstruction. Intrinsic AKI represents the widest 

variety of kidney injury and can result from damage to the renal tubules (acute tubular 

necrosis due to ischemia or nephrotoxicity which goes though stages of injury, plateau, 

and recovery), glomeruli (glomerular damage due to acute glomerulonephritis), 

interstitium (acute interstitial nephritis due to infections or drugs/medications), and 

vasculature (intrarenal vessel damage due to malignant hypertension, atheroembolic 

disease, and vasculitides).21,22 

Another important cause of AKI is contrast-induced nephropathy (CIN), which has 

traditionally defined by a ≥25% (0.5 mg/dL) increase in serum creatinine levels within 48-

72 hours of the administration of contrast media.21 Important risk factors for CIN are older 

age, diabetes, underlying kidney disease, and hypovolemia, with common prophylaxis 
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including using low contrast doses, using iso- and low-osmolarity contrast media, 

employing pre-hydration, and temporary halting the administration of compensatory 

mechanism-attenuating drugs.21 More recently, the American College of Radiology and 

the National Kidney Foundation have separated kidney injury following contrast agent 

administration into contrast-associated AKI (any AKI occurring within 48 hours after the 

administration of contrast media) and contrast-induced AKI (subset of contrast-

associated AKI that can be causally linked to contrast media administration) in order to 

emphasize that many clinical manifestations of AKI may be coincident with, but causally 

unrelated to, intravenous contrast media administration.23 Although AKI resulting from 

CIN has historically been a clinical concern (especially in kidney disease patients who 

have impaired renal clearance of contrast), recent literature has disputed the 

nephrotoxicity of contrast media, with various clinical trials failing to demonstrate contrast-

induced kidney injury.23,24 

 

1.2.3.2 Chronic Kidney Disease 

A long-term decrease in renal function is known as chronic kidney disease (CKD). 

CKD is divided into 5 stages based on GFR and markers/signs of kidney damage, most 

commonly being proteinuria (abnormally high levels of protein in urine). In terms of 

decreasing GFR, the stages of CKD are categorized as follows: 

CKD Stage    1     2     3     4    5 

GFR (mL/min/1.73m2) ≥90  60-89  30-59  15-29  <15 
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The two primary causes of CKD in developed countries are diabetes (diabetic 

nephropathy) and hypertension (hypertensive nephrosclerosis), followed by other 

conditions such as glomerulonephritis, polycystic kidney disease and lupus nephritis.25  

In diabetic nephropathy, proteinuria reflects glomerular damage and increased 

glomerular permeability to macromolecules. Hyperglycemia in these patients may cause 

kidney damage via advanced glycation product accumulation, increased growth factor 

expression, and inflammatory factor activation.26 Increased production of angiotensin II 

due to hyperglycemia causes negative hemodynamic (induction of systemic 

vasoconstriction, increased glomerular arteriolar resistance, increased glomerular 

capillary pressure) and nonhemodynamic (increased glomerular capillary permeability, 

filtration surface area reduction, extracellular matrix protein enhancement, stimulation of 

renal proliferation and fibrogenic cytokines) effects.26 In addition, the glomerular filtration 

barrier is harmed by increasing proteinuria resulting from the diabetic state, where 

decreased size- and charge-selectivity, reduction in slit-pore density, and prominent 

ultrastructural abnormalities lead to decreased filtration barrier effectiveness. In 

particular, decreased expression of nephrin and podocin, along with increased endothelin 

production (induced by hyperglycemia and angiotensin II), result in podocyte injury, 

decreased podocyte density, and increased foot process width, all of which contribute to 

loss of glomerular filtration barrier permselectivity.26  

In hypertensive nephrosclerosis, chronic systemic hypertension is transmitted to 

the glomerular arterioles. Following initial barometric compensation by the afferent 

arteriole, long-term constriction of the smooth muscle cells leads to hypertrophy and 

barotrauma-induced release of inflammatory cytokines and extracellular matrix 
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components (e.g., fibrin and collagen). Hyaline arteriosclerotic lesions form around 

endothelial cells, resulting in narrowing of the arteriolar lumen and chronic ischemia which 

causes glomerular atrophy and hyalinization.27 In addition to the degree of systemic 

hypertension, as well as the transmission of systemic hypertension to the glomerulus, the 

development of hypertensive nephrosclerosis also depends on the tissue’s susceptibility 

to barotrauma, which is based on genetic factors, proinflammatory conditions, and the 

presence of comorbidities (e.g., overactivity of renin-angiotensin system in diabetic 

state).28  

Complications associated with CKD include cardiovascular disease, anemia, 

mineral metabolism abnormalities, and malnutrition.29 Patients with CKD have significant 

morbidity and mortality from cardiovascular disease, sharing similar predictors of more 

rapid progression (diabetes, hypertension, inflammation, anemia, hypervolemia), as well 

as strategies for risk factor reduction. Anemia in CKD is associated with ischemic heart 

disease, left ventricular hypertrophy, and impaired quality of life, and maintenance of 

erythropoiesis (via iron supplementation or erythropoietin stimulating agents) can 

effectively restore hemoglobin levels. Abnormalities in the mineral metabolism of CKD 

patients result in altered serum levels of calcium, phosphorous, parathyroid hormone, and 

vitamin D, and treatment with supplementation and dietary restriction are needed to 

manage hyperparathyroidism and CKD mineral-bone disorder. Malnutrition is common in 

late-stage CKD, and extensive guidelines for assessment of nutritional status and dietary 

management help mitigate the complications of kidney disease.29  

In patients with CKD secondary to diabetic, glomerular, and hypertensive or 

vascular diseases, the strongest predictors of more rapid progression are hypertension 
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and the degree of proteinuria. Treatment of these conditions in order to control CKD 

progression involves lifestyle modification and drug administration (e.g., angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers, etc.).29  

 

1.2.3.3 End-Stage Renal Disease 

Patients who progress to stage 5 of CKD (i.e., GFR drops to <15 mL/min/1.73m2) 

are categorized as having renal failure, or end-stage renal disease (ESRD). In developed 

countries, ESRD is most commonly caused by diabetic nephropathy and hypertensive 

nephrosclerosis (followed by glomerulonephritis), and patients with ESRD develop a 

number of clinical and biochemical disorders related to uremia (abnormally high levels of 

nitrogenous waste compounds, such as urea, in blood).3,7 Accumulation of low- and 

middle-molecular weight toxins leads to a host of deleterious effects such as 

neurotoxicity, reduced drug protein binding, and impaired monocyte function. Loss of 

regulation of fluid and electrolytes necessitates dietary modification for limiting sodium, 

potassium and water intake. Loss of hormonal functions results in defective production of 

erythrocytes and calcitriol, as well as enhanced activity of the renin-angiotensin system.7 

  As survival at this stage of kidney diseases is extremely poor and preservation of 

homeostasis is no longer possible, patients and their healthcare providers must consider 

implementing some form of renal replacement therapy. The decision to initiate renal 

replacement therapy is usually driven by some combination of extremely low GFR (<10 

mL/min/1.73m2), high levels of urea (blood urea nitrogen >120 mg/dL) or creatinine (>10 

mg/dL), and severe clinical manifestations (e.g., refractory hypertension, fluid overload, 

pericarditis, etc.).7 Once the decision to initiate renal replacement therapy is made, it is 
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very important that the patient is prepared both physically (e.g., vascular access for 

dialysis) and mentally (e.g., potentially indefinite treatment).7 

 

1.3 Renal Replacement Therapy 

1.3.1 Kidney Transplantation 

Transplantation is associated with the best survival for all patients, making it the 

preferred method of renal replacement therapy (RRT). It requires the patient to undergo 

thorough clinical workup to help ensure that the transplant surgery is successful.30 

Transplantation can be done with, and is limited by the number/availability of, kidney(s) 

from a cadaver (i.e., deceased donor) or living donor. The 1-year kidney graft survival for 

living and deceased donor transplantation are 95% and 90%, respectively.30  

Although kidney transplant recipients have improved survival compared to patients 

receiving other forms RRT, they are still considered to have CKD (irrespective of GFR or 

presence/absence of kidney damage markers) and frequently have CKD-related 

complications, the prevalence of which increases with declining GFR. The manifestation 

of CKD-related complications in a transplant recipient depends on the duration and 

degree of kidney disease prior to transplantation, as well as the degree of kidney function 

achieved following transplantation (average of approximately 50 mL/min/1.73m2).31  

 

1.3.2 Peritoneal Dialysis 

Peritoneal dialysis (PD) is an alternative RRT modality for ESRD patients that has 

a number of putative benefits, such as being able to be performed at home due to minimal 

mechanical requirements.30 During PD, dialysate is introduced into the cavity of the 
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patient’s own peritoneum, which is lined with a capillary-rich membrane. Solutes and fluid 

are exchanged between dialysate and blood across the porous walls of peritoneal 

capillaries, which act collectively as a dialysis membrane.30  

At the initiation of a PD treatment, dialysate fluid, which contains solutes (e.g., 

sodium chloride, bicarbonate) and an osmotic agent (e.g., glucose), is infused into the 

peritoneal space. The resulting high osmotic pressure gradient across the peritoneal 

barrier (i.e., between dialysate and blood) results in UF, transporting excess water from 

blood to dialysate for removal.32 Water is also transported from dialysate to blood due to 

the hydrostatic pressure gradient between dialysate (higher pressure) and the peritoneal 

tissue interstitium (lower pressure). In addition, bidirectional solute transport through the 

peritoneal barrier occurs during PD primarily via concentration gradient-based diffusion.33 

Following several hours of treatment, the peritoneal cavity is drained, the dialysate 

effluent is discarded, and fresh dialysate is introduced to initiate the next PD cycle.  

As long as a patient does not have any abdominal wall defects, they can have a 

catheter placed and be put on PD.30 However, most patients cannot remain on PD 

indefinitely, and eventually must be switched to hemodialysis (HD). Transferring from PD 

to HD may be due to modality-related (e.g., infections, inadequate dialysis, UF failure, 

catheter problems), system-related (e.g., lack of infrastructure, lack of patient modality 

education/training), and patient-related causes (e.g., patient burnout, loss of residual 

renal function, malnutrition, diabetic/abdominal/respiratory complications).34 
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1.3.3 Hemodialysis 

The most common form of RRT is hemodialysis (HD), which can be done at home 

(conventional, short daily, or nocturnal) or, more commonly, in-center, for 4-hour sessions 

thrice weekly.30 A patient who is to initiate HD requires some form of vascular access for 

repeated access to their circulation, the most preferable form being the arteriovenous 

fistula (surgical anastomosis between an artery and nearby vein which matures to allow 

for frequent needle cannulation). Other vascular access options include arteriovenous 

grafts (interposed synthetic- or bio-graft which connects an artery and vein) and central 

venous catheters.35  

The goal of HD is to remove excess fluid and accumulated metabolic waste 

products, as well as to correct blood electrolyte composition, by the facilitated exchange 

between the patient’s blood and a dialysate fluid across a semipermeable membrane. 

This process is accomplished via diffusion (transport of solutes between blood and 

dialysate based on concentration gradients) and UF (transport of solvent and solutes 

between blood and dialysate based on pressure gradients).7 Therefore, during HD, the 

removal of waste products and excess fluid is accomplished via diffusion and UF, 

respectively. While UF effectiveness can be assessed with pre- and post-HD patient 

weighing (i.e., amount of intradialytic fluid removed), solute removal can be quantified by 

the normalized clearance per dialysis, or Kt/V (K = dialyzer urea clearance, t = dialysis 

duration, V = urea distribution volume). The Kt/V value, which can be computed from  

𝐶 = 𝐶0 ∙ exp[−𝐾𝑡 𝑉⁄ ] → 𝐾𝑡 𝑉⁄ = ln[𝐶0 𝐶⁄ ] (where C0 and C are the pre- and post-dialysis 

blood urea concentrations, respectively), is a marker of dialysis adequacy which has been 

shown to strongly correlate with clinical outcomes.36 
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A typical HD circuit (pictured in Figure 1.2) is made up of two sub-circuits: the blood 

circuit (patient side) and the dialysate circuit (dialysis machine side).7 The blood circuit 

consists of a blood pump (controls blood flow rate), blood pressure sensors, and a 

detector which monitors the presence of air within the blood line. The dialysate circuit 

consists of a conductivity meter (monitors dialysate composition), temperature and 

pressure sensors, flow rate controls, a blood leak detector, dialysate and UF pumps, and 

a dialysate flow equalizer (maintains equal inflow and outflow rates). Following each HD 

session, the system is disinfected by administering chemical agents into the hydraulic 

circuits of the machine.7 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Typical HD circuit, which is made up of two sub-circuits: the blood circuit (patient side, red parts) 

and the dialysate circuit (dialysis machine side, black parts). Adapted from Long-term Hemodialysis by 

Man, Zingraff and Jungers, 1995.7 

 

B 

D 

UF 
BP 

°C 

DP 

Blood 
Pressure 
Monitor 

Blood Pump 

Arterial 
Blood 
Line 

Venous 
Blood 
Line 

Dialyzer 

Air 
Detector 

Ultrafiltration 
Pump 

To Waste 

Water 

Dialysate 
Flow 

Equalizer 

Dialysate 
Pump 

Heater 

Conductivity 
Meters and 

Monitors 

Temperature 
Monitor 

Blood 
Leak 

Detector 

Dialysate 
Flowmeter 

Dialysate 
Pressure 
Monitor 



15 

 

Dialysate and blood both enter and exit a dialyzer, which contains a porous, 

semipermeable membrane across which solutes and solvent are exchanged during HD. 

The hollow-fiber dialyzer is the most commonly used type in the clinic, consisting of 

several thousand bundled hollow fibers (diameter of 200-300 μm, wall thickness of 10-40 

μm). Blood flows within the fibers while dialysate flows between and around the fibers, 

allowing for a high area of contact (and therefore a highly efficient exchange) between 

blood and dialysate.7,36 The dialysate is composed of various electrolytes (e.g., sodium, 

potassium, calcium, magnesium, chloride, acetate, bicarbonate, glucose) and is designed 

to correct solute abnormalities which develop in ESRD patients during the interdialytic 

interval.7 The two commercially available types of HD membranes are cellulose-based 

(chemically treated to improve bioincompatibility) and synthetic (polymer-based, 

biocompatible, increasable pore sizes for improved fluid and solute removal).7,36 

 

1.4 Effects of HD on ESRD Patients 

1.4.1 HD-Induced Circulatory Stress 

Although HD is a life-saving therapy, patients are known to develop a wide range 

of complications. An important driving force behind the development of these 

complications is thought to be recurrent HD-induced circulatory stress,6 which comes 

about as follows: during the interdialytic period, patients accumulate excess fluid and 

become hypervolemic. Then during a typical HD session, correspondingly ambitious UF 

targets (e.g., high UF volume and rate to achieve a desired post-HD dry weight) result in 

a large reduction in plasma volume,6,37 where the rate of fluid removal exceeds the 

plasma-refilling rate (i.e., from extravascular to intravascular compartments), leading to 
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hypovolemia.7,38 A corresponding reduction in cardiac output,39,40 coupled with autonomic 

dysfunction and impaired compensatory physiological responses (e.g., no central 

redistribution of blood volume, no increase peripheral vascular resistance),41 leads to 

intradialytic hypotension (IDH),7,38 which makes vital organs susceptible to ischemic 

challenge and represents the hallmark of systemic HD-induced circulatory stress.6 

Approximately one quarter of HD treatments are complicated by IDH (commonly 

defined as a symptomatic drop in systolic blood pressure >20 mmHg),7,38 which is an 

independent predictor of mortality in HD patients.42 In addition, higher rates of UF (e.g., 

due to higher UF volume requirements and/or shorter HD treatment times) have been 

shown to be independently associated with an increased HD patient risk of mortality.37 

 

1.4.2 Effects of HD-Induced Circulatory Stress on Different Organs 

Patients with ESRD who are on maintenance HD develop a wide range of clinical 

pathologies, and a great deal of research has been dedicated to characterizing the role 

HD-induced circulatory stress in the development of these complications. In particular, 

various functional imaging techniques have been used to study the hemodynamic 

response of multiple vascular beds to HD-induced circulatory stress. This section will 

focus on the effects of maintenance HD on the heart and brain. 

 

1.4.2.1 The Heart 

Cardiovascular disease is the leading cause of mortality in HD patients. Many 

patients have some form of cardiovascular disease at the initiation of HD (e.g., 

atherosclerotic heart disease, heart failure, peripheral vascular disease, previous strokes) 
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and are at increased risk of death due to arrythmias and sudden cardiac arrest.43 To 

explore this pathophysiology, myocardial contractile function and perfusion have been 

assessed in multiple functional imaging studies. 

The hallmark of HD-induced circulatory stress in the heart is myocardial stunning, 

which is the delayed recovery of regional myocardial contractile function after ischemia-

reperfusion despite the absence of irreversible damage and despite restoration of normal 

blood flow.44 Myocardial stunning can be quantified using speckle-tracking 

echocardiography, a 2D ultrasound technique which uses specialized software to track 

naturally occurring myocardial speckle signals over multiple temporal frames in the 

various segments of the left ventricle.45 Next, the magnitude of myocardial deformation in 

different directions is resolved, and strain and strain rate curves are generated, from 

which the longitudinal strain is measured from the apical long-axis image data. 

Longitudinal strain can be assessed globally and segmentally (12 left ventricular 

segments), allowing for the determination of the presence of myocardial stunning (defined 

as a reduction in longitudinal strain of 20% in two or more segments of the left ventricle 

caused by regional wall motion abnormalities (RWMAs)).46,47 Increased development of 

RWMAs has been shown to be associated with greater IDH and UF aggressiveness.48 In 

addition, HD patients who develop RWMAs over the course of their maintenance HD 

therapy have significantly increased mortality and decreased left ventricular ejection 

fraction compared to those patients who do not develop RWMAs.48 

To identify the association between myocardial stunning and perfusion, dynamic 

positron emission tomography (with radiolabeled water, H2
150-PET, and nitrogen-13 

ammonia, 13N-NH3-PET) has been used to demonstrate that myocardial blood flow 
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significantly declines during HD.46,49 Contemporaneous echocardiography was used to 

identify a relationship between development of RWMAs and a greater reduction in 

myocardial perfusion,46 helping to more fully describe the ischemic nature of myocardial 

stunning. As a result, the pathological development of cardiovascular mortality in HD 

patients could now be summarized as follows: myocardial ischemia-reperfusion injury due 

to HD-induced circulatory stress results in myocardial stunning. Over time, recurrent 

episodes of myocardial ischemia and stunning result in RWMAs which persist post-HD. 

The myocardium is permanently damaged and suffers from contractile dysfunctional, 

which eventually leads to arrythmias and sudden cardiac arrest in this patient group.6,44 

This process is depicted in Figure 1.3. 

 

 

Figure 1.3: Pathophysiological progression to cardiac mortality in HD patients. Myocardial ischemia-

reperfusion injury (measured with dynamic PET) due to HD-induced circulatory stress results in myocardial 

stunning (measured with echocardiography). Over time, recurrent episodes of myocardial ischemia and 
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Myocardial Ischemia (measured with dynamic positron emission tomography) 
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Permanent Myocardial Damage Leading to Chronic Contractile Dysfunction 

Arrhythmias and Sudden Cardiac Arrest 
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stunning result in RWMAs which persist post-HD. The myocardium is permanently damaged and suffers 

from contractile dysfunctional, which eventually leads to arrythmias and sudden cardiac arrest in this patient 

group. 

 

1.4.2.2 The Brain 

Cognitive impairment is common in HD patients, who have been shown to suffer 

from important clinical complications such as dementia and depression.50 Although 

cognitive decline develops as kidney disease progresses, the initiation of HD leads to 

even greater levels of cognitive impairment and loss of functional status, which have been 

linked to higher mortality rates in this population.51 Research studies targeting this 

pathophysiology have assessed cerebral hemodynamics, structure and function using 

various imaging techniques. 

Cerebral perfusion has been measured with dynamic H2
150-PET-CT, 

demonstrating a significant decline over the course of HD.52 Surrogate measures of 

perfusion, including cerebral arterial mean flow velocity (with transcranial Doppler 

ultrasound) and cerebral oxygen saturation (with near-infrared spectroscopy), similarly 

revealed that the brain experiences ischemic challenges during HD.53,54 In addition to 

hemodynamics, structural analysis with T1- and T2-weighted magnetic resonance 

imaging (MRI) has revealed three important cerebral pathologies in maintenance dialysis 

patients: silent cerebral infarction (asymptomatic ischemic insult which is a predictor for 

the development of symptomatic infarcts or hemorrhagic stroke),55,56 cerebral atrophy 

(e.g., ventricular enlargement, brain volume reduction, focal lesions),57,58 and 

leukoaraiosis (white matter changes due to ischemia-induced loss of myelin and axons, 

and is a risk for dementia and stroke development).59,60 The presence of these 
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pathologies represents accelerated vascular aging, is a predictor for the development of 

strokes and dementia, and is associated with inflammation, hypertension and vascular 

disease.6  

In order to spatially correlate cerebral structural abnormalities with functional 

measures, diffusion tensor imaging (specialized diffusion-weighted MRI technique), 

which can detect ultrastructural white matter abnormalities and assess white matter 

structural integrity, has been used for brain imaging in HD patients.61 This imaging 

modality quantifies the diffusion of water molecules within tissue using anisotropy 

(assessment of diffusion directionality that represents the integrity of white matter tracts) 

and diffusivity (degree of random water motion that represents white matter structural 

damage) metrics.62 Research studies utilizing diffusion tensor imaging have collectively 

demonstrated two main findings: First, HD patients have significantly different anisotropy 

and diffusivity values compared to healthy controls, indicative of white matter damage 

and structural integrity loss. Second, after imaging the same HD patient group over two 

timepoints separated by 12 months, the observed pattern of quantitative changes (i.e., 

increased anisotropy and decreased diffusivity) matches what is observed in acute 

ischemic stroke models and suggests that HD results in significant brain injury.61-63 

 

1.4.3 Strategies to Ameliorate Circulatory Stress 

As the role of HD-induced circulatory stress in the development and progression 

of complications in ESRD patients has become well-recognized, research studies have 

explored various intra- and inter-dialytic strategies that could help mitigate the negative 

effects of HD. 
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Aggressive UF is one of the primary driving forces of HD-induced circulatory 

stress, and stems from the clinical need to remove a certain amount of fluid and/or 

metabolic waste products during HD in order to bring the patient’s body weight and 

plasma composition to clinically prescribed levels. Conventionally, this is achieved with 

thrice weekly HD at 3-5 hours per session. To lessen the strain of UF (and improve both 

the control of body fluid volume and clearance of middle molecules), HD treatment times 

could be extended, or the weekly frequency of treatments could be increased, both of 

which allow for lower UF rates and more sufficient time for removal of larger molecules.64-

66 In addition to schedule modifications, increased clearance of middle molecules (through 

the use of high flux, synthetic dialysis membranes) can help to ease intradialytic UF 

burden.64,67 Also, biofeedback HD systems, which monitor intradialytic decreases in 

relative blood volume and dynamically lower the UF rate accordingly in order to try and 

avoid IDH, have been used to improve the hemodynamic tolerability of HD.68-70 By 

considering these aforementioned issues, it can be understood why PD exerts less 

circulatory stress compared to HD: treatment times are generally longer with PD, 

intradialytic shifts in fluid volume are more gradual with PD, biocompatibility is inherently 

greater with PD, and myocardial stunning is much less frequent with PD.71,72 

Numerous research studies have explored hemodynamic protection from HD-

induced circulatory stress by applying some form of ischemic preconditioning, which 

involves the application of small, controlled ischemic insults prior to a larger, significant 

insult in order to improve the circulation’s hemodynamic tolerability and reduce the 

magnitude of ischemia-reperfusion injury.73 Ischemic preconditioning can also be applied 

remotely (usually by using a blood pressure cuff, inflated to ~200 mmHg, on a peripheral 
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limb to induce several cycles of transient ischemia-reperfusion), which works to confer 

hemodynamic protection via systemic neuronal and humoral signal transfer.74 Because 

of the consistent, recurrent and predictable nature of HD-induced circulatory stress, HD 

represents a favorable model to study ischemic preconditioning, where HD patients stand 

to potentially benefit greatly from preconditioning interventions.75 So far, while only a 

handful of studies have explored ischemic preconditioning in HD patients, findings have 

been positive (e.g., reduction in HD-induced RWMA development), demonstrating the 

protective potential of this technique.76 

Another strategy to ameliorate the effects of HD-induced circulatory stress is 

dialysate cooling (DC), which involves lowering the temperature of the dialysate (and 

therefore the blood via heat exchange) during HD (typically to 35-36°C).77,78 This is a 

favorable intervention to apply in HD patients because (1) it does not adversely affect 

dialysis adequacy or efficiency, (2) it is universally available and can be implemented at 

little-to-no additional cost, and (3) patients are generally tolerable of the lower 

temperatures.47 Cooling helps improve systemic vascular resistance, promote peripheral 

vasoconstriction, and increase baroreflex sensitivity variability, allowing for increased 

shunting of peripheral blood flow to central organs and vascular beds (which are normally 

at increased risk of HD-induced ischemic insults), as well as an improved vasoactive 

response for the mitigation of IDH. In addition, higher dialysate temperatures have been 

linked to increased hemodynamic instability and higher production of nitric oxide, a 

vasodilatory agent.79,80 Lastly, cooling lessens organ injury by reducing inflammation, 

attenuating oxidative stress, and decreasing free radical production, and has 

demonstrated protective potential in multiple organs in the context of therapeutic 
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hypothermia.81,82 Multiple studies have explored the effectiveness of DC at ameliorating 

the effects of HD-induced circulatory stress, demonstrating that this intervention (1) 

lowers IDH incidence,79 (2) abrogates myocardial stunning,47 and (3) maintains cerebral 

integrity.62 Some patients report being uncomfortable or having cold-related symptoms 

(e.g., shivering) with DC, but alternate cooling approaches such as individualized cooling 

(lowering dialysate temperature to 0.5°C below patient’s core temperature) have shown 

to mitigate these negative side effects compared to standard fixed-temperature 

cooling.62,83,84 

 

1.5 The Liver 

The liver receives approximately 25% of the cardiac output.85 In addition, various 

toxins and products of intestinal absorption are prevented from reaching and entering the 

systemic circulation by the liver, which receives these substances via the portal circulation 

(majority of liver blood flow) and processes them, thereby functioning as a barrier.86 

Therefore, the liver may represent another vascular bed that is vulnerable to HD-induced 

circulatory stress, a hypothesis which to date has been scarcely explored. In addition to 

its effects on hemodynamics, the effects of HD on hepatic function (e.g., liver excretory 

function assessment, liver injury assessment) is currently unclear and valuable to study. 

The liver is the largest visceral organ, carrying out many important functions. 

Hepatocytes (parenchymal liver cells) are involved in uptake, transport, storage, 

synthesis, biotransformation and degradation of a variety of substances, including 

proteins, lipids, carbohydrates, hormones, drugs and bile.87 Blood is supplied to 

hepatocytes through a specialized capillary system of fenestrated sinusoids, which 
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contain Kupffer cells. These macrophagic sinusoidal cells are responsible for 

maintenance of normal liver function, and are involved in processes such as phagocytosis 

of particulate matter, detoxification and clearance of endotoxin, secretion of mediators, 

etc.87 

The liver’s total blood supply is divided into two components: approximately 30% 

comes from the high-pressure, well-oxygenated hepatic artery (branches from abdominal 

aorta), while the remaining 70% comes from the low-pressure, mildly-oxygenated, 

nutrient-rich portal vein (outflow from splanchnic organs).85 These blood supplies meet, 

mix and travel through the network of sinusoids, allowing for exchange of oxygen, 

substrates and metabolites with hepatocytes.87 Due to its unique dual blood supply, the 

liver can effectively regulate its blood flow via the hepatic arterial buffer response, which 

works to increase/decrease hepatic arterial perfusion in response to a decrease/increase 

in portal venous perfusion.85 

 

1.6 Other Important Issues in HD Patients 

1.6.1 Loss of Residual Renal Function 

Most ESRD patients who start on RRT are not completely anuric and still produce 

some small volumes of urine on a daily basis.88 This small level of remaining GFR, known 

as residual renal function (RRF), provides several important physiological advantages 

that cannot be substituted with RRT, such as secretion of organic acids, various 

endocrine functions, and a more liberal fluid intake for patients.89 The presence and 

preservation of RRF after HD initiation is associated with a host of beneficial effects, 

including: better control of serum electrolytes, hypervolemia and hypertension, improved 
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nutrition, reduced blood pressure, left ventricular atrophy and anemia, and higher middle 

molecule clearance.90,91 This latter effect is especially valuable, as middle molecules 

(uremic toxins weighing 500-60000 Daltons) represent relatively large solutes that are 

readily cleared by the native kidneys but are difficult to remove with conventional HD (i.e., 

require high-flux membranes and/or increased treatment time).36 

Preserved RRF is strongly associated with improved HD patient survival.92 Even 

minimal amounts of RRF have been shown to be associated with improved survival, 

where every additional 0.5 mL/min/1.73m2 increase in residual GFR is associated with a 

7% increase in survival and a 250 mL increment in urine output correlates with a 36% 

decrease in the relative risk of death.93 The importance of long-term RRF maintenance 

has been emphasized by the 2006 National Kidney Foundation KDOQI Guidelines, which 

recommended that “one should strive to preserve RKF in HD patients”.94 

Despite its importance in conferring health and survival benefits, RRF 

characteristically declines rapidly in patients with ESRD upon initiation of RRT, with a 

faster rate of decline for HD compared to PD (although both decline by approximately 

50% or more during the first 12 months of RRT).89 This decline has consistently been 

linked to poorer outcomes and increased mortality.95 As RRF declines, more aggressive 

fluid removal in subsequent HD sessions becomes necessary, increasing the burden of 

HD-induced circulatory stress. 

Numerous factors are associated with RRF decline, such as age, CKD cause, 

bioincompatible dialysis membranes, hypertension, and hemodynamic instability during 

HD (e.g., IDH).96 While the pathophysiological mechanism(s) behind RRF loss in HD 

patients remain unknown, it has been hypothesized that recurrent ischemic insults to the 
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kidney parenchyma (i.e., renal manifestation of HD-induced circulatory stress) may cause 

permanent, irreversible injury leading to declining RRF.97,98 However, research studies to 

date have not focused on measuring intradialytic renal perfusion and confirming the 

presence of HD-induced renal ischemia. In addition, the relationship between renal 

perfusion with RRF loss has not been explored, preventing the evaluation of potential 

preservation interventions. 

 

1.6.2 Endotoxemia 

Endotoxin is a gut-derived proinflammatory agent. It is found on the cell wall of 

gram-negative bacteria in the gastrointestinal tract and consists primarily of 

lipopolysaccharide.99 Endotoxin is a natural constituent of portal venous blood and is 

therefore normally received by the liver from the gut.100,101 Under healthy conditions, 

hepatic Kupffer cells efficiently and selectively phagocytose and clear endotoxin,102 

limiting its presence in the systemic circulation. 

However, increased endotoxin levels (i.e., endotoxemia) have been found in HD 

patients, with higher amounts of endotoxin compared to both the general population and 

to earlier stage CKD patients.103 Endotoxemia in HD patients has been shown to be 

associated with drivers of HD-induced circulatory stress (UF and IDH), markers of injury 

and inflammation (cardiac troponin T and C-reactive protein), cardiovascular 

complications (myocardial stunning and left ventricular dysfunction), and a higher risk of 

mortality.103,104 Upon entering the system circulation, endotoxin complexes with CD14 

and lipopolysaccharide binding protein,105 which goes on to activate monocytes and 

macrophages, as well as to increase the levels of proinflammatory cytokines (e.g., TNF-
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α, IL-6).106,107 This results in a systemic chronic inflammatory state, which is characteristic 

of ESRD patients on HD and known to be correlated with an increased risk of 

cardiovascular disease.103 

Increase endotoxin translocation across the intestinal barrier during HD is 

understood to come about as follows: ESRD patients characteristically show signs of gut 

mucosal ischemia (such as gastric intramucosal acidosis),108 which, when compounded 

with intradialytic hemodynamic effects (such as HD-induced circulatory stress leading to 

reduced splanchnic blood volume),109,110 results in mesenteric ischemia.103 This 

hypoperfusion has previously been shown to alter bowel morphology, permeability, and 

hemodynamics, resulting in the disruption of gut mucosal structure and function, and an 

increase in gut permeability.111 Consequently, there is a loss in the selective barrier 

function of the bowel,111 leading to increased translocation of enteric bacterial products 

(such as endotoxin) across the intestinal barrier.112 

Understanding that the liver normally functions as an endotoxin barrier, that there 

is increased translocation of endotoxin during HD, and that HD patients are 

characteristically burdened by endotoxemia, it is reasonable to suggest that HD may 

somehow disrupt liver hemodynamics and function. By studying the liver’s response to 

HD-induced circulatory stress (which may be quite different from other organs due to its 

unique dual blood supply), it may be possible to better understand how HD leads to the 

perpetuation of endotoxemia. In addition, understanding the liver’s role in endotoxemia 

may offer the opportunity to develop effective mitigation strategies. 
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1.6.3 No GFR Measurement Method That Is Accurate and Feasible 

As discussed in section 1.6.1, maintenance of RRF is extremely valuable in terms 

of yielding improved clinical outcomes and quality of life. However, despite its importance, 

a patient’s RRF is rarely taken into account during the design of their dialysis prescription, 

and instead, incident HD patients are most commonly prescribed the clinical standard of 

thrice-weekly HD.113-115 Various studies have demonstrated that compared to patients 

initiating RRT with incremental HD (i.e., starting with once- or twice-weekly HD, and 

increasing frequency of weekly HD sessions in accordance with decreasing RRF), those 

initiating with thrice-weekly HD tended to lose RRF faster in the first 12 months of HD and 

have a lower survival.95,114,115 Therefore, adjusting a patients’ HD prescriptions based on 

changes in their RRF may yield better outcomes for ESRD patients, and the importance 

of this philosophy has been emphasized by the 2015 KDOQI Hemodialysis Adequacy 

Guidelines, which state that “…in patients with significant residual native kidney function 

(Kru), the dose of hemodialysis may be reduced provided Kru is measured periodically to 

avoid inadequate dialysis”.116 

In order to fully realize this treatment philosophy, the assessment of renal function 

(i.e., GFR) must be accurate, reliable and feasible. Estimation of GFR (i.e., eGFR) from 

population-based equations is unsuitable for HD patients, as these equations are based 

on data collected from earlier stage CKD patients and generate erroneous results when 

applied to the ESRD population.12,114 Therefore, measurement of GFR (i.e., mGFR) is 

necessary in this patient group, which is conventionally achieved via urinary or plasma 

clearance of endogenous or exogenous filtration markers. However, a number of 
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disadvantages associated with these mGFR techniques limit their use clinically, 

particularly in HD patients:8,12,13,114,117-119 

• Endogenous marker (e.g., creatinine, urea, etc.) levels directly affected by HD and 

are not in a steady state during the interdialytic period 

• Urine sampling is unreliable (e.g., patient-dependent) and cumbersome (e.g., 24-

hour collection time, may require urinary catheterization, etc.) 

• Plasma sampling takes a long time (i.e., determination of disappearance curve 

takes longer with lower GFR) and is inaccurate due to extrarenal elimination of 

filtration marker (even greater effect at lower GFR) 

• Issues with availability and/or accessibility of certain exogenous markers (e.g., 

inulin in limited supply, 51Cr-EDTA and 99mTc-DTPA not commercially available in 

the United States and Europe, respectively, etc.) 

• No standardization of assays used to measure filtration marker levels 

• Impossible to assess single-kidney GFR 

 These limitations may be overcome by measuring GFR using medical imaging 

approaches. Compared to standard mGFR methodology, imaging-based mGFR can be 

obtained rapidly, does not require urine and/or plasma sampling, and can be assessed 

contemporaneously with additional structural and functional information.14 Over the past 

several decades, a multitude of research studies have explored the use of nuclear 

medicine-, CT-, and MRI-based approaches for measuring GFR in both animal and 

human subjects in various clinical contexts (e.g., renal cell carcinoma, chronic kidney 

disease, etc.), showing strong agreement with standard mGFR methods.16,17,120-124 

However, these techniques have never been applied in the context of ESRD and/or HD 
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patients. Therefore, there is currently no go-to clinical GFR quantification approach 

available for this population that can provide a rapid, reliable and accurate measurement 

of kidney function, which is a key requirement for RRF-based HD prescription adjustment. 

 

1.7 CT Perfusion Imaging of Body Organs 

In order to address these three issues in HD patients (i.e., loss of RRF, 

endotoxemia, no GFR measurement method for patients that is accurate and reliable), it 

is necessary develop methods to measure kidney and liver blood flow and associated 

hemodynamic parameters (particularly, for the case of kidneys, the extraction efficiency 

of glomerulus filtered agents like CT contrast agents). Assessment of kidney perfusion is 

required to confirm that HD-induced circulatory stress causes recurrent kidney ischemia, 

assessment of liver perfusion is required to explore whether HD leads to increased 

endotoxin influx from the gut, and assessment of extraction efficiency of glomerulus 

filtered agents125 is required to test the feasibility of GFR measurement in HD patients. 

Computed tomography perfusion (CTP) imaging was used in these developments. 

 

1.7.1 Overview of CTP 

CTP is a dynamic radiological imaging technique that measures temporal changes 

of the x-ray attenuation characteristics in an object/region of interest (e.g., kidney and 

liver) from an exogenous iodinated contrast agent injected into the systemic circulation.126 

Compared to static imaging with/without contrast (which provides anatomical/structural 

information in a single temporal snapshot), dynamic imaging captures changes occurring 

over time via a series of images performed at a single anatomical location following 
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contrast agent administration, enabling the study of physiological processes that change 

over time.127 Upon contrast injection, CTP allows investigation of two processes in kidney 

function (kidney is used as an illustrative example, and the following discussion applies 

to other organs/tissues): (1) delivery of contrast (as marker for metabolic waste) by blood 

flow to the afferent arterioles, and (2) permeation of the glomerular filtration barrier (the 

basis of glomerular filtration rate measurement, see Chapter 4).128 These two processes 

would lead to a transient increase (wash-in) and decrease (wash-out) of contrast agent 

(concentration) in the kidney over time, which can be measured by a CT scanner as 

changes in x-ray attenuation (or density in Hounsfield units or CT number). Note that x-

ray attenuation is a physical process involving energy much higher than the chemical 

reaction/interaction of contrast agent with the other molecules within the tissue 

microenvironment, making CTP highly linear with contrast concentration, a prerequisite 

for physiological (kinetic) modelling.128 

 

1.7.2 Tracer Kinetic Modelling 

Tracer kinetic modelling mathematically models the processes involved in the 

distribution of blood borne tracer (e.g., CT contrast agent) in the target tissue in as few 

parameters as possible. One class of tracer kinetic models is compartment models, which 

categorize tracer within tissue into two or three compartments – blood, free and bound 

tracer – where within each, tracer is assumed to be uniformly mixed and tracer 

concentration is only dependent on time. Except for the blood compartment, the other 

compartments may not exist in physically reality, but are nevertheless useful 

mathematical constructs to facilitate the description of tracer distribution in tissue over 



32 

 

time once the tracer is introduced into the systemic circulation. Treating blood vessels as 

a compartment assumes that fresh tracer arriving via afferent arterioles will mix 

instantaneously and uniformly with tracer already in the glomerulus and, more 

importantly, will filter through the glomerular filtration barrier at a constant rate. However, 

in real situation, because of the continuous loss of tracer via filtration, there is a tracer 

concentration gradient from afferent to efferent arterioles, so the filtration rate is not 

constant during the blood (vascular) transit time of the glomerulus.128 When tissue tracer 

concentration was measured at time intervals shorter than the vascular transit, Larson et 

al. showed that blood flow estimated with compartment models can be erroneous.129 

To avoid the compartment assumption for blood vessels (so as to minimize error 

in blood flow estimation when the time interval of contrast concentration measurement is 

short as in CTP studies), in this thesis we used a distributed parameter model to model 

the blood vessels as a tube with a concentration gradient from the arterial to the venous 

end.128 This reflects the filtration of solute across the glomerular filtration barrier into the 

Bowman’s capsule as blood travels down the length of the glomerular capillaries. The 

distributed parameter model used is the Johnson-Wilson model shown schematically in 

Figure 1.4.128,130 
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Figure 1.4: Schematic of Johnson-Wilson model. Blood vessels are modelled as a tube. There is filtration 

of solute (contrast) across the blood-tissue barrier (in the case of kidneys, the glomerular filtration barrier) 

into the interstitial space as blood travels down the length of the tube, creating a concentration gradient 

from arterial to venous ends. F = blood flow, Ca(t) = arterial contrast concentration (i.e., arterial input 

function), Ce(t) = venous contrast concentration, PS = permeability-surface area product, Cb(x,t) = 

intravascular contrast concentration, Vb = intravascular volume, Ce(t) = interstitial contrast concentration, 

Ve = interstitial volume. Adapted from CT imaging of angiogenesis by Lee, Purdie and Stewart (Q J Nucl 

Med, Vol 41, p171-187, 2003).131  

 

1.7.3 Deconvolution 

A central concept in tracer kinetic modelling is the flow-scaled impulse residue 

function, RF(t), which is the tissue tracer (contrast) concentration in response to a bolus 

injection of a contrast mass (numerically) equal to blood flow (F) at the afferent 

arterioles.128 If the contrast distribution process(es) in the kidney is unchanging with time, 

then by the principle of superposition, in response to a systemic injection of contrast giving 

rise to contrast concentration at the afferent arterioles, C’a(t), the tissue contrast 

concentration, Q(t), is given by: 

𝑄(𝑡) = 𝐶𝑎
′ (𝑡) ⊗ 𝑅𝐹(𝑡) 

F∙Ca(t) F∙Cv(t) 
Intravascular Space 

Cb(x,t), Vb 

Interstitial Space 

Ce(t), Ve 

PS 

x 
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where ⊗ is the convolution operator. As is usually the case, the afferent arterioles, or 

even afferent artery, is too small to be visualized by CT. As a result, contrast 

concentration, Ca(t), could be measured at a large artery such as the renal artery or aorta. 

In that case, C’a(t) is assumed to be a time-shifted version of Ca(t), which is expressed 

mathematically as: 

𝐶𝑎
′ (𝑡) = 𝐶𝑎(𝑡 − 𝑇0) 

Where T0 is the delay in contrast arrival at the afferent arteriole relative to the large artery 

where Ca(t) is measured. The flow-scaled impulse residue function, RF(t), of the Johnson-

Wilson model (as depicted in Figure 1.5) can be expressed as: 

𝑅𝐹(𝑡) = {
𝐹                                     , 0 ≤ 𝑡 ≤ 𝑀𝑇𝑇

𝐹 ∙ 𝐸 ∙ 𝑒−𝑘(𝑡−𝑀𝑇𝑇)                , 𝑡 > 𝑀𝑇𝑇
 

where k (= FE/Ve) is the efflux rate constant. Thus, the distribution of blood borne contrast 

in the kidney as described by the Johnson-Wilson model can be summarized by four 

parameters – blood flow (F), extraction efficiency of contrast (E), mean transit time (MTT) 

and contrast distribution volume (Ve). 

 In a CTP study, Ca(t) and Q(t) are measured as changes in CT number over time 

(i.e., time-density curve, TDC) in a larger artery region and the kidney, respectively, and 

are used to calculate RF(t) by a mathematical operation called deconvolution. Whereas 

RF(t) is the tissue TDC in response to a Ca(t) that is very brief (delta function) from a bolus 

injection at the afferent arteriole, Q(t) corresponds to a more drawn out Ca(t) from a 

systemic injection. Thus, to get RF(t) from Q(t), the influence of Ca(t) has to be removed 

via deconvolution. This is achieved by iteratively changing the four parameters of RF(t) – 

F, MTT, E and k – and T0 so that the convolution of RF(t) with Ca(t–T0) will minimize the 

sum of squared deviations from the measured Q(t).128 When the measured Ca(t) is 
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systematically deconvolved from Q(t) for each small discrete region (for instance, 3⨯3 

pixels) in a CT image, the different parameters obtained can be assembled together to 

form a parametric (e.g., blood flow, F) map. This process is illustrated in Figure 1.6 in the 

case of computing kidney blood flow. 

 

 

 

 

 

 

 

Figure 1.5: Johnson-Wilson model blood flow-scaled impulse residue function. F = blood flow, E = extraction 

efficiency, MTT = mean transit time, T0 = contrast arrival time, k = F∙E / Ve = efflux rate constant. Adapted 

from CT imaging of angiogenesis by Lee, Purdie and Stewart (Q J Nucl Med, Vol 41, p171-187, 2003).131 
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Figure 1.6: Application of tracer kinetic modelling to the computation of physiologic parameters (e.g., renal 

blood flow). From the dynamic series CT images, the baseline subtracted arterial TDC is deconvolved from 

each baseline subtracted tissue TDC (i.e., individual tissue curve for each 3⨯3 pixel block in the CT image) 

to estimate model (functional) parameters of the flow-scaled impulse residue function (based on non-linear 

least squares curve fitting), yielding parametric maps (such as blood flow). 

 

1.7.4 CTP Imaging of Liver Perfusion 

As discussed in the previous section, measurements of the arterial and the tissue 

time-density curve are required in order to perform deconvolution and extract functional 

parameters related to tissue perfusion. While the tissue enhancement (CT density 

change) of most organs (including the kidneys) results from the inflow of contrast from 

arteries (i.e., Ca(t) measured from aorta), enhancement of liver parenchyma results from 

the combined inflow from the hepatic artery and portal vein.132 However, the portal vein 

⊗                       = 

   F 
 
 
                        e–k(t – MTT) 
F∙E 
 
 

         MTT 

Q(t)                                                     Ca(t)                                                     RF(t) 
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TDC, CPV(t), cannot be approximated by that of the hepatic artery, CHA(t). There is an 

inherent delay between contrast agent delivery through the arterial and portal routes: 

while hepatic arterial blood branches off and arrives directly from the abdominal aorta, 

portal venous blood is delayed and diluted as it passes through and drains from the 

splanchnic organs. Owing to these aspects of the liver’s blood supply, quantification of 

hepatic perfusion can be separated into the hepatic arterial and portal venous 

components by splitting up the arterial input function into two parts: 

𝑄(𝑡) = 𝐶𝑎(𝑡) ⊗ 𝑅𝐹(𝑡) = [𝛼 ∙ 𝐶𝐻𝐴(𝑡) + (1 − 𝛼) ∙ 𝐶𝑃𝑉(𝑡)] ⊗ 𝑅𝐹(𝑡) 

Here, α is the hepatic perfusion index (also known as the hepatic arterial fraction), which 

is the ratio of hepatic artery perfusion to total liver perfusion (i.e., sum of hepatic artery 

and portal vein perfusion) and is computed as an additional parameter during 

deconvolution.132 

 

1.8 Motivation and Objectives of Thesis 

Millions of people around the world are afflicted by CKD. While HD is an effective 

treatment for those who progress to ESRD, it inflicts recurrent circulatory stress during 

each treatment session, thereby perpetuating a host of comorbidities in this patient 

population. The quantitative characterization of these hemodynamic perturbations 

(including GFR measurement) may inform the development of effective adjunctive 

treatments to potentially slow RRF loss and mitigate endotoxemia. 

Because HD is typically administered in a clinical setting, performing hemodynamic 

measurements using non-invasive and minimally disruptive methodology, such as 

advanced functional imaging, is highly desirable. Being able to assess the effects of HD-
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induced circulatory stress on multi-organ hemodynamics during live HD sessions can 

provide novel insights into how certain complications develop in this patient population, 

and how these developments may be slowed or stopped. This thesis will describe the 

application of CTP imaging to ESRD patients on HD in order to explore the effects of this 

treatment modality on renal and hepatic blood flow and function.  

This thesis is divided into three research projects (chapters 2, 3 and 4) with the 

following objectives: 

• Project 1: effects of HD on kidney blood flow, and relationship to RRF loss 

o Examine how HD affects renal perfusion 

o Explore the relationship between changes in renal perfusion and myocardial 

dysfunction (a hallmark of HD-induced circulatory stress) during HD 

o Investigate whether cooling can protect the kidneys from HD-induced 

circulatory stress 

• Project 2: effects of HD liver blood flow and function, and relationship to endotoxemia 

o Examine how HD affects hepatic perfusion and function 

o Explore the relationship between changes in hepatic perfusion and endotoxin 

levels during HD 

o See if cooling can maintain liver hemodynamics and limit systemic exposure to 

endotoxin 

• Project 3: measuring GFR in HD patients using CTP 

o Develop methodology for CTP-based GFR assessment 

o Explore the feasibility of using CTP imaging to quantify GFR in HD patients 

o Assess how GFR changes over the course of HD 
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CHAPTER 2 

2 Renal Perfusion during Hemodialysis: Intradialytic Blood Flow Decline and 

Effects of Dialysate Cooling 

Residual renal function confers survival in patients with end-stage renal disease 

but declines after initiating hemodialysis. We used CT perfusion imaging to explore 

whether hemodialysis-induced circulatory stress causes renal ischemia, which could help 

explain residual renal function loss in this patient population. 

The contents of this chapter were adapted from an original research manuscript 

entitled “Renal Perfusion during Hemodialysis: Intradialytic Blood Flow Decline and 

Effects of Dialysate Cooling”, which was published in the Journal of the American Society 

of Nephrology in 2019 and co-authored by Raanan Marants, Elena Qirjazi, Claire Grant, 

Ting-Yim Lee and Christopher McIntyre. The permissions to reproduce this manuscript 

are provided in Appendix E. 

 

2.1 Introduction 

Most patients on incident hemodialysis (HD) are not completely anuric.1,2 The 

presence and preservation of even minimal amounts3-6 of residual renal function (RRF) 

after HD initiation is associated with better control of serum phosphate, hypervolemia, 

and hypertension, improved nutrition, less anemia, higher middle molecule clearance, 

and improved survival.7-12 Although the importance of long-term RRF maintenance is 

recognized,13 RRF characteristically declines after HD initiation, necessitating more 

aggressive fluid removal in subsequent HD sessions.14,15 This decline is linked to poorer 

outcomes and increased mortality.12,16 
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Observational studies have found that age, chronic kidney disease (CKD) cause, 

bioincompatible dialysis membranes, and elevated blood pressure (BP) are associated 

with RRF decline.9,17,18 Larger epidemiologic studies have confirmed these findings and 

shown that hemodynamic instability during HD (i.e., intradialytic hypotension, IDH) is 

independently associated with RRF loss.14,19 

 Intradialytic circulatory stress is associated with reduced perfusion in multiple 

vulnerable organs.20 Recurring subclinical ischemic injury over many HD sessions is 

linked to increased morbidity and mortality. One strategy that reduces IDH frequency (an 

independent predictor of mortality14) and ameliorates HD-induced circulatory stress is 

dialysate cooling (DC).21,22 This intervention does not adversely affect HD efficiency, is 

generally well tolerated, and can be widely implemented at no additional cost.23 Studies 

have found that myocardial and cerebral perfusion can be preserved using DC, providing 

protection against injury and longer-term organ dysfunction.22,24,25 

Several authors have speculated that HD causes recurrent renal ischemic insults, 

which may cause irreversible injury leading to RRF loss.10,11,26 However, trials to date 

have not focused on measuring HD-induced renal ischemia or describing its relationship 

with RRF loss, preventing the evaluation of potential preservation interventions. We 

therefore conducted a pilot study of whole organ kidney perfusion, measured serially 

during HD using computed tomography (CT) perfusion imaging, to measure intradialytic 

renal perfusion and test two hypotheses: first, that HD is associated with acute renal 

perfusion decline, and second, that DC ameliorates HD-induced changes in renal 

hemodynamics. Confirming quantitatively that HD does in fact result in decreased renal 

perfusion (DRP) will represent the first crucial step toward the pathophysiologic 
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characterization of HD-mediated RRF loss in patients with end-stage renal disease 

(ESRD). 

 

2.2 Methods 

2.2.1 Patients 

Thirty patients (19 men) in total from the London Health Sciences Centre Regional 

Renal Program were enrolled in two experiments (see Study Design below), after giving 

their written informed consent. Adult patients established on HD for at least 3 months and 

who had low RRF (<250 mL/day) were eligible. This group of patients with already low 

RRF was selected to limit any potential effects of contrast-induced nephropathy. 

Exclusion criteria included active infection/ malignancy, pregnancy, breast feeding, 

planned pregnancy, diabetic with hypoglycemia during HD within the past 2 months, and 

known allergy to iodinated contrast agent. These experiments were approved by the 

University of Western Ontario Health Sciences Research Ethics Board and were 

conducted in compliance with the approved protocols, Good Clinical Practice Guidelines, 

and all applicable regulatory requirements. 

 

2.2.2 Study Design 

Two back-to-back pilot experiments were conducted and then the results were 

combined. In the first experiment, 14 patients were recruited to undergo a single session 

of standard dialysate temperature (36.5°C) HD. In the second experiment, 16 patients 

were recruited to undergo two sessions of HD: one session of standard dialysate 

temperature HD and another of cooled dialysate temperature (35.0°C) HD. Patients 
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involved in the second experiment were randomly assigned to receive either standard or 

cooled HD first in a two-visit crossover study design, thereby acting as their own controls. 

Combined findings from the two experiments were divided into “standard HD” 

(14+16=30 standard HD patients) and “standard versus cooled HD” (16 standard and 

cooled HD patients) and analyzed accordingly. All patients underwent uninterrupted HD 

in the CT scanner room. Analysis of the imaging data from the crossover experiment was 

performed with the operator blinded to allocation. Patients, dialysis unit staff, and the 

investigator at the experiment visit were not blinded to the intervention, but were not 

involved in the imaging data analysis. 

 

2.2.3 Dynamic CT Image Acquisition and Analysis 

CT perfusion imaging was performed on a GE Healthcare Revolution 256-slice CT 

scanner at three times during each HD session: immediately before, 3 hours into (i.e., 

peak stress, defined from previous studies of HD-induced myocardial injury), and 15 

minutes after dialysis. For the intradialytic scan, patients were transferred to the CT bed 

without interrupting their HD treatment. After iodinated contrast agent injection (at a rate 

of 5 mL/s, followed by a 30 mL saline flush), dynamic contrast-enhanced CT scanning of 

a 16 cm section of the abdomen was performed without breath hold. The type of contrast 

agent, iopamidol (Isovue 370; Bracco Imaging), was identical in all patients for both 

standard and cooled HD sessions, and was administered at a dose of 1 mL/kg of pre-HD 

patient weight (up to a maximum dose of 70 mL).  

Scan ranges were optimized to encompass as much of both kidneys as possible 

by performing a non-contrast localization scan prior to each CT perfusion scan. The 



56 

 

section was divided into 32 slices of 5 mm thickness each, and was scanned 42 times at 

2.8 second intervals using 120 kV and 22.4 mAs, for a duration of approximately 2 

minutes. Images were reconstructed using 100% Adaptive Statistical Iterative 

Reconstruction (GE Healthcare) to reduce image noise, and then registered using 

nonrigid registration (GE Healthcare) to minimize breathing motion among images of the 

dynamic scan. Registered images were analyzed using CT Perfusion 4D software (GE 

Healthcare). An aortic region of interest (ROI) was selected for generation of renal 

perfusion (i.e., blood flow) maps (this process is described in section 1.7.3). Next, ROIs 

were manually drawn over the kidneys in the blood flow maps to encompass medullar 

and cortical areas. Kidney ROIs were reviewed and verified by three experienced (>10 

years) radiologists. Then, perfusion values were averaged over the selected slices to 

determine mean whole kidney blood flow values. 

DRP was defined as either (1) a drop in blood flow at peak stress ≥2 SEM (SEM 

of the patient group), or (2) a drop in blood flow at both peak stress ≥1 SEM and after HD 

≥1 SEM. 

 

2.2.4 Echocardiography Analysis of Myocardial Stunning 

Myocardial response to HD was assessed to provide a reference to another critical 

organ known to be vulnerable to HD-induced circulatory stress. Echocardiography was 

performed by trained investigators before commencing and 15 minutes before the end of 

HD, using commercially available equipment (1.5–3.6 MHz M4S probe, Vivid-iq; GE 

Healthcare). Standard apical two- and four-chamber views were recorded for offline digital 
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analysis with a semi-automated computer program (EchoPac; GE Healthcare) using two-

dimensional speckle tracking software. 

Images were anonymized and analyzed in random order by the same trained 

investigators (E.Q. and C.G.). Three cardiac cycles at each time point were analyzed to 

derive segmental (12 left ventricular segments) and global longitudinal strain. Myocardial 

stunning (MS) was defined as a reduction in longitudinal strain of >20% in two or more 

segments of the left ventricle caused by regional wall motion abnormalities (RWMAs). 

The number of left ventricular segments exhibiting a reduction in strain of >20% was also 

recorded. 

 

2.2.5 Statistical Analyses 

Kidney perfusion has never been assessed previously in the context of HD and 

inadequate data exist to perform a meaningful sample size calculation. As the initial proof-

of-principle study for hypothesis generation, a sample size of approximately 15 patients 

per pilot experiment is not powered for analysis of the data with inferential statistics. 

However, the proposed sample size has been selected on a pragmatic basis and is 

comparable with published norms22,27,28 and recommendations.29,30 

Statistical analysis was performed using SPSS, version 25.0 (IBM, Chicago, IL). 

Data were analyzed using repeated measures ANOVA with post hoc t tests (with 

Bonferroni correction) and patient baseline-adjusted ANCOVA to detect differences 

between groups. Associations between variables were assessed using the Pearson 

product-moment correlation coefficient, and the McNemar test was used to detect 
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differences between proportions. Two-tailed P values <0.05 were considered statistically 

significant. 

 

2.3 Results 

2.3.1 Clinical Characteristics of Study Population 

Thirty patients (19 men) aged 40–84 years were enrolled in two back-to-back 

experiments. However, one patient could not return for the second visit of the crossover 

experiment and was excluded from the analysis, resulting in 29 standard HD patients, 15 

of which also underwent cooled HD. The median dialysis vintage was 5.3 years (range, 

0.8–46 years). Ten patients had known coronary artery disease, seven had congestive 

heart failure, four had peripheral vascular disease, 15 had diabetes, and 25 had 

hypertension. Dialysis session length ranged from 2 to 4 hours (median, 3.5 hours) and 

ultrafiltration (UF) ranged from 0 to 41 mL/kg (median 23 mL/kg). Table 2.1 presents the 

summary of patient baseline characteristics. 
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Table 2.1: Baseline characteristics of first project study population. 

Characteristics Mean (Range)a 

n (standard HD, cooled HD) 29 (29,15) 

Age 64 (40–84) 

Men, n (%) 19 (66) 

Dialysis vintage, years 5.3 (0.8–46) 

Coronary artery disease, n (%) 10 (34) 

Congestive heart failure, n (%) 7 (24) 

Peripheral vascular disease, n (%) 4 (14) 

Diabetes, n (%) 15 (52) 

Hypertension, n (%) 25 (86) 

Length of HD session, hours 3.5 (2.0–4.0) 

UF, mL/kg 23.3 (0.0–40.9) 

aUnless otherwise specified. 

 

2.3.2 Renal Perfusion 

Baseline renal perfusion and renal hemodynamic response to HD differed between 

both kidneys to a measurable extent for many patients. Therefore, perfusion data analysis 

was on the basis of individual kidneys among all patients. 

 

2.3.2.1 Standard HD 

Perfusion was measured in all 29 patients, resulting in computed values for 57 

kidneys (one patient had a solitary kidney). Average baseline per kidney perfusion was 

33.2±2.9 mL/min/100g (mean±SEM) and correlated with dialysis vintage (r=-0.35; 
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P<0.01). At peak stress, average per kidney perfusion dropped to 81.6%±4.8% of 

baseline (Figures 2.1 and 2.2A). After HD, average per kidney perfusion recovered to 

95.1%±5.2% of baseline (Figure 2.2A). After repeated measures ANOVA, post hoc 

analysis revealed that the intradialytic renal perfusion drop was statistically significant 

compared with pre- and post-HD (P<0.005). Acute DRP during HD was observed in 37 

out of 57 kidneys (65%), where average per kidney perfusion dropped to 61.4%±3.6% of 

baseline during peak stress. For the remaining 20 kidneys (35%), average per kidney 

perfusion increased to 119.9%±5.2% of baseline at peak stress (Figure 2.2A). 

 

 

Figure 2.1: HD-induced decrease in kidney blood flow visualized with parametric renal perfusion maps. 

Renal blood flow at baseline (A and C) and 3 hours into dialysis (B and D) for two patients (top and bottom 

rows). Kidneys have been identified (white arrows and dotted contours) for both patients. 
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Figure 2.2: Plots of changes in renal perfusion during standard and cooled HD. Renal perfusion significantly 

declined during standard HD but not during cooled HD. Percent of baseline per kidney perfusion before, 3 

hours into, and after dialysis, where results are given as average±SEM. (A) In 29 standard HD patients (57 

kidneys), the drop in renal perfusion during HD was statistically significant compared with pre- and post-

HD blood flow values (P<0.005). (B) In 15 standard and cooled HD patients (30 kidneys each), there was 

a smaller decline in renal perfusion during cooled HD (not statistically significant) compared with standard 

HD. 

 

2.3.2.2 Standard versus Cooled HD 

Perfusion was measured in all 15 crossover patients, resulting in 30 paired values 

under standard and cooled HD conditions. Average per kidney perfusion dropped to 

79.1%±5.3% and 89.2%±5.9% of baseline at peak stress during standard and cooled HD, 

respectively (Figure 2.2B). Session-specific, patient baseline-adjusted ANCOVA revealed 

that the decline in intradialytic renal perfusion between dialysis treatments was not 

different (F(1,57)=1.814; P=0.18). Average per kidney perfusion recovered to 94.3% of 

A B 

–––-Patients without Kidney Stunning 
–––-Patients with Kidney Stunning–––– 
–––-All Standard HD 

         Patients 

––– Standard HD Patients 
––– Cooled HD Patients 
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baseline after both standard and cooled HD. DRP was observed in 20 out of 30 kidneys 

(67%) during standard HD and 15 out of 30 kidneys (50%) during cooled HD (not 

significantly different). In those kidneys, however, the perfusion decline (37% below 

baseline) was the same for both dialysate temperatures. 

 

2.3.3 Relationship to Cardiac Injury 

2.3.3.1 Standard HD 

A total of 24 out of 29 patients (83%) exhibited MS. The degree of stunning 

correlated with DRP (r=-0.33; P<0.05) (Figure 2.3A). The McNemar test showed that 

during HD, MS incidence (83%) was significantly higher (P<0.05) than DRP incidence 

(65%). Patients without MS were also protected from HD-induced DRP, where peak 

stress perfusion declined by 4.4%±13.5% relative to baseline (not statistically significant). 

This change in perfusion, however, was not significantly different from the 21%±5.0% 

drop in the MS patients according to patient baseline-adjusted ANCOVA (F(1,52)=1.575; 

P=0.22). 

 

2.3.3.2 Standard versus Cooled HD 

MS was observed in 13 out of 15 (87%) and 11 out of 15 (73%) patients during 

standard and cooled HD, respectively (not significantly different), where DC reduced, 

increased, and had no effect on the number of stunned myocardial segments in eight, 

five, and two patients, respectively. Although the degree of cardiac injury and severity of 

renal insult were not associated during standard HD, they were negatively correlated 
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during cooled HD (r=-0.36; P<0.05) (Figure 2.3B). For both HD subgroups, patients 

without MS experienced milder DRP. 

 

 

Figure 2.3: Plots of changes in renal perfusion versus the number of stunned myocardial segments during 

standard and cooled HD. Decreased renal perfusion was associated with an increased number of stunned 

myocardial segments during standard and cooled HD. Change in per kidney perfusion from baseline to 

peak stress (i.e., 3 hours into dialysis) versus the number of stunned myocardial segments measured with 

echocardiography. The dotted lines represent data trendlines. (A) In 29 standard HD patients (57 kidneys), 

there was a correlation between the degree of cardiac injury and severity of renal insult (r=-0.33; P<0.05). 

(B) In 15 standard and cooled HD patients (30 kidneys each), there was a correlation between the degree 

of cardiac injury and severity of renal insult during cooled HD (r=-0.36; P<0.05) but not during standard HD. 
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2.3.4 Relationship to Dialysis Stress Factors 

2.3.4.1 Standard HD 

Seven out of 29 patients (24%) experienced IDH (symptomatic and drop in systolic 

blood pressure (SBP) >200 mmHg). SBP and mean arterial pressure (MAP) dropped 

significantly during HD to 88.5% (P<0.005) and 91.2% (P<0.05) of baseline, respectively, 

before both recovering to 99% of baseline after HD. Although diastolic BP (DBP) behaved 

similarly, the intradialytic change to 95.6% of baseline was not significant. However, no 

correlations were found between BP changes and MS development and/or changes in 

renal perfusion. 

Mean and total UF were associated with DRP (r=-0.31; P<0.05 and r=-0.26; 

P=0.05, respectively) and more stunned myocardial segments (r=0.30; P<0.05 and 

r=0.27; P<0.05, respectively) (Figure 2.4). DRP (in at least one kidney) and MS occurred 

in most patients. Comparing those patients who did experience DRP and stunning with 

those who did not, there was an association between patients who were taking β-blockers 

and DRP and stunning (r=0.48; P<0.01 for DRP and r=0.54; P<0.005 for MS). Also, there 

was a discrepancy in patient sex, where the male-to-female ratio was 12:9/7:1 for those 

who did/did not experience DRP and 15:9/4:1 for those who did/did not experience MS. 

 

2.3.4.2 Standard versus Cooled HD 

Three out of 15 patients experienced IDH during both HD sessions, and ten out of 

15 patients experienced an SBP drop (.20 mm Hg) during standard HD compared with 

eight out of 15 during cooled HD (not significantly different). Session-specific, patient 

baseline-adjusted ANCOVA revealed that BP changes during HD between dialysis 
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treatments was not statistically significant (F(1,26)=2.814 and P=0.11; F(1,26)=0.582 and 

P=0.45; F(1,26)=0.382 and P=0.54 for SBP, DBP, and MAP, respectively). During 

standard HD, changes in SBP and MAP correlated with MS (r=-0.36; P=0.05 and r=-0.38; 

P<0.05, respectively). During cooled HD, these associations persisted (r=-.45; P<0.05 

and r=-0.43; P<0.05 for SBP and MAP, respectively), and new associations emerged 

between BP changes and the number of stunned myocardial segments (r=-0.44; P<0.05 

and r=-0.40; P<0.05 for DBP and MAP, respectively) and absolute changes in renal 

perfusion (r=0.47; P<0.05 for DBP). 

In terms of thermal symptoms, two out of 15 patients reported feeling cold and/or 

were shivering during standard HD compared with six out of 15 (two same, four new) 

during cooled HD (not significantly different). 

During standard HD, UF metrics were not associated with DRP or severity of 

myocardial injury. During cooled HD, UF metrics remained uncorrelated to DRP but were 

negatively associated with the number of stunned myocardial segments (r=-0.41; P<0.05 

for mean and total UF). 
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Figure 2.4: Plot of changes in renal perfusion and the number of stunned myocardial segments versus the 

mean UF rate during standard HD. Decreased renal perfusion and an increased number of stunned 

myocardial segments were both associated with higher mean ultrafiltration rates during standard HD. 

Change in per kidney perfusion from baseline to peak stress (open circles) and number of stunned 

myocardial segments (solid circles) versus mean UF rate for 29 standard HD patients (57 kidneys). The 

dotted and solid lines represent data trendlines for the renal perfusion and MS data, respectively. The mean 

UF rate was associated with a larger drop in renal perfusion from baseline to peak stress (r=-0.31; P<0.05) 

and a greater number of stunned myocardial segments (r=0.30; P<0.05). 

 

2.4 Discussion 

This study demonstrated that renal perfusion decreased during dialysis, even in the 

absence of significant hypotension, contemporaneously with MS. In addition, DRP and 

MS were minimized with DC (although not to a statistically significant extent). These 

important findings may provide a pathophysiologic explanation and potentially 

preventative intervention for the characteristic rapid decline of RRF in patients on HD. 

 

○ ––– Change in Renal Perfusion 
––– Stunned Myocardial Segments • 
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2.4.1 Renal Perfusion 

Although absolute renal perfusion does not directly represent kidney function, it is 

a major factor in determining GFR and urine output. As such, perfusion values measured 

for this study act as surrogate measures of renal function. 

 

2.4.1.1 Standard HD 

Average per kidney perfusion dropped to 81.6% of baseline during HD and 21 out 

of 29 patients (72%) experienced intradialytic DRP in at least one kidney. This reduction 

in perfusion represents a potential ischemic insult, which is repeated during recurring 

dialysis sessions and could result in cumulative renal tissue damage and a subsequent 

RRF reduction. This mechanism is reinforced by the inverse correlation between baseline 

renal perfusion (RRF surrogate) and dialysis vintage. Perfusion values for patients in our 

study (<105 mL/min/100g, average baseline of 33.2±2.9 mL/min/100g) were markedly 

reduced compared with normal control (typical range, 200–500 mL/min/100g) and earlier 

stage CKD values (approximately 140–300 mL/min/100g) measured in other studies.31-35 

Recovery of perfusion to 95%of baseline after HD suggests that HD-induced DRP 

resolves after UF ends and hypovolemia is relieved. The role of HD-mediated 

hemodynamic instability and transient renal ischemia in progressive RRF decline in 

patients on HD has been alluded to previously.10,11,26,36,37 However, this is the first study 

to directly measure intradialytic renal perfusion and confirm that DRP represents the first 

key step toward characterizing RRF loss in patients on HD. 

Patients with ESRD who are undergoing HD three to four times weekly are 

subjected to recurrent circulatory stress, suggesting repeated episodes of DRP. 
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Interestingly, Ronco et al.38 list the combination of hypoperfusion, prolonged 

hypovolemia, and presence of comorbidities as key factors resulting in subclinical, 

prerenal AKI. Together with our perfusion results, these aforementioned factors are 

present during HD sessions of patients with ESRD. Thus, renal tubular damage due to 

repetitive, intradialytic ischemic AKI may contribute to kidney injury resulting in long-term 

RRF reduction. 

 

2.4.1.2 Standard versus Cooled HD 

DC helped ameliorate HD-induced DRP, where the cooled subgroup experienced 

a smaller decline in renal perfusion at peak stress and had fewer kidneys with DRP 

compared with the standard subgroup, although neither findings were statistically 

significant. Along with other studies that illustrated the protective effects of DC on the 

brain25 and heart,24 this study’s findings demonstrate the global hemodynamic effect of 

HD and the protective potential of DC. 

When considering only kidneys with DRP, the change in perfusion from baseline 

to peak stress was the same for both dialysate temperatures. This suggests that although 

DC reduces DRP incidence, it does not reduce the magnitude of renal ischemia. 

However, because of the difference in the overall number of kidneys with DRP, the decline 

in average per kidney perfusion at peak stress was larger (not statistically significant) for 

standard HD. These results are consistent with those of a similarly designed study by 

Selby et al.,22 which assessed myocardial function. They found that although patients 

undergoing standard HD developed more RWMAs compared with cooled HD, the RWMA 

magnitude (i.e., percentage shortening fraction) was equal between both HD treatments. 
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2.4.2 Relationship to Cardiac Injury 

2.4.2.1 Standard HD 

HD causes transient ischemia in multiple vulnerable vascular beds.20,39,40 In the 

heart, demonstrable injury manifests as MS,41 which was measured with 

echocardiography and observed in 83% of patients. In non-stunning patients, intradialytic 

perfusion changes were lessened compared with all patients collectively. This reinforces 

the notion that MS is a hallmark of HD-induced systemic circulatory stress28,42 and 

suggests that its presence potentiates DRP. The magnitude of MS, characterized by the 

number of stunned segments, was associated with DRP severity, as well as with higher 

mean and total UF. These results suggest that HD-specific factors contributing to DRP 

(e.g., aggressive UF, circulating endotoxins, IDH, etc.) are the same as those responsible 

for intradialytic myocardial injury.42-44 

 

2.4.2.2 Standard versus Cooled HD 

Additional intradialytic cardiac dysfunction may potentiate renal injury. Therefore, 

for patients with minimal urine output, RRF preservation could be achieved by lessening 

the circulatory stress of HD via hemodynamic-protective strategies. Techniques such as 

DC23 and ischemic preconditioning,45 which have shown potential for attenuating the 

burden of dialysis upon the heart24,27 and brain,25 may also protect renal parenchyma 

from recurring intradialytic ischemic insults. 

In this study, DC seemed to help ameliorate intradialytic myocardial injury. Fewer 

patients experienced MS during cooled HD and more patients received benefit from the 

intervention than harm in terms of severity of myocardial injury (i.e., lowering the number 
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of stunned segments with cooling). However, neither of these outcomes were statistically 

significant. These findings are consistent with results of similarly designed studies that 

characterized and compared myocardial injury during standard versus cooled HD.22,24,27 

However, certain shortcomings in the results of those studies (e.g., no difference in left 

ventricular ejection fraction between standard and cooled HD groups24,27) and our work 

suggests that although DC is a favorable intervention in terms of feasibility and 

effectiveness, it may be worthwhile to combine it with other interventions (e.g., 

biofeedback dialysis46-48) to ameliorate HD-induced circulatory stress and myocardial 

injury. 

 

2.4.3 Relationship to Dialysis Stress Factors 

2.4.3.1 Standard HD 

The continual drop in RRF over many HD sessions necessitates more fluid 

removal (i.e., higher UF) to account for increased interdialytic hypervolemia. However, 

higher UF causes greater hemodynamic stress49 and increases IDH incidence, an 

independent predictor of RRF decline.36,50 This coincides with our findings, where DRP 

severity was associated with mean and total UF (r=0.31; P,0.05 and r=0.26; P=0.05, 

respectively), suggesting that UF-induced ischemic injury may be a key factor in 

progressive RRF loss in patients on HD. This establishes a vicious cycle of HD-induced 

RRF decline, followed by a necessitated increase in UF, followed again by RRF decline, 

in keeping with the observed rapid decline shortly after HD initiation. 

RRF declines faster with HD compared with peritoneal dialysis.19,26 Although 

factors such as more gradual shifts in volume and higher biocompatibility play a role in 
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greater RRF preservation in peritoneal dialysis relative to HD,51 another key element is 

dialysis-induced MS as a marker of global circulatory stress. MS incidence is much lower 

in peritoneal dialysis52 compared with HD, suggesting renal perfusion could be better 

maintained during treatment and long-term RRF loss may be slowed as a result. 

The observed renal hemodynamic response of patients to HD-induced circulatory 

stress was heterogenous, similar to other studies of the heart43 and brain.53 Most patients 

exhibited DRP, but some instead demonstrated increased perfusion. Although the cause 

of this heterogeneity in response is unknown, it is well recognized54 and likely due to the 

status of patients’ circulatory compensatory mechanisms. Most patients on HD have 

impaired compensatory mechanisms (chronotropic incompetence,55,56 β-blocker use,57 

reduced baroreflex sensitivity54), increasing their vulnerability to UF-induced hypovolemia 

and IDH, whereas patients with more intact mechanisms are better able to compensate 

for HD-induced circulatory stress. In addition, CKD-related factors, such as increased fluid 

volume retention, altered sympathetic nervous system activity, endothelial dysfunction, 

oxidative stress, inflammation, and increased arterial stiffness, may contribute to varying 

BP response to circulatory stress.58 This may be why no association was observed 

between BP changes and MS development and/or changes in renal perfusion, despite 

significant declines in intradialytic SBP and MAP. 

There was an association between MS and DRP, and patients taking β-blockers 

(but not other antihypertensives). The blockade of b-adrenergic receptors in the heart 

may weaken compensatory mechanisms to offset HD-induced circulatory stress. This 

mechanism is unique to β-blockers57 and likely the cause of the observed correlation. 
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The discrepancy in sex between patients who did versus did not experience MS 

and DRP was apparent in another study that examined HD-induced myocardial injury,42 

where the male-to-female ratio was 28:17 for patients who exhibited RWMAs and 19:6 

for those who did not. In a study assessing stress cardiomyopathy (i.e., acute emotional 

stress leading to MS), 95% of patients were female.59 The authors cite several studies on 

myocardial injury with similar sex-related trends, but the biologic mechanisms behind this 

discrepancy are unknown. 

 

2.4.3.2 Standard versus Cooled HD 

DC did not demonstrate any statistically significant benefit in terms of controlling 

intradialytic BP compared with standard HD. However, patients were not subjected to 

continuous BP monitoring but only episodic checks (e.g., imaging timepoints). It is 

therefore entirely possible that there were BP differences between standard and cooled 

HD that could not be assessed. Also, DC has other effects to improve response to 

ischemic injury that go beyond just increasing peripheral vasoconstriction to limit 

hypotension60 (e.g., increasing ischemic tolerance with moderate hypothermia and effects 

on the splanchnic circulation helping to support circulatory volume61,62). In addition, 

changes in SBP, DBP, and MAP were variably associated with MS and renal perfusion 

changes for standard and cooled HD. The combination of impaired compensatory 

mechanisms and increased BP variability may be the cause of these inconsistent findings. 

During cooled HD, correlations between renal perfusion and UF were abolished, 

whereas correlations between myocardial injury and UF were reversed. Although these 

findings may have been because of a lower relative sample size, they support the idea 
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that DC better maintains hemodynamic stability during UF.63,64 Therefore, HD 

effectiveness could be improved by using DC to more easily achieve patient-specific UF 

requirements. 

Four out of 15 patients (27%) were shivering and/or reported feeling cold only 

during cooled HD. Other studies found similar22,65 and higher63 temperature-related 

symptom incidence. Jefferies et al.27 used patient-individualized body temperature 

dialysate (i.e., 0.5°C below core temperature) to improve DC tolerability, where only one 

out of 11 patients reported cold-related symptoms. This individualized intervention was 

subsequently applied to a larger cohort of 73 patients, with no cooling-related adverse 

events reported.24,25 

 

2.4.4 Limitations 

This early phase study has several limitations. Patients received a radiation dose 

of approximately 8 mSv during each CT perfusion scan. Considering that radiation-

induced cancer manifestation typically takes decades,66 and HD patients are generally 

older and have a low five-year survival rate,67 patients’ lifespans are not expected to be 

affected in any significant way. In addition, only patients with urine output <250 mL/24 

hours were examined to limit contrast-induced nephropathy. As a result, the study 

focused on patients with low baseline RRF, and this group may be predisposed to 

ischemic injury. However, this was proof-of-principle work and further studies are needed 

in patients with higher RRF, including patients on incident HD. 

There appeared to be no significant artifactual effect of contrast media on renal 

perfusion. First, using further exposure to contrast, we demonstrated almost complete 



74 

 

recovery in average perfusion after HD. Second, contrast agent administration was low 

risk (low intravenous dose). Third, crossover experiment patients underwent the same 

HD treatments but exhibited improved renal hemodynamics with DC (despite identical 

contrast exposure). In addition, we have previously demonstrated testosterone-

dependent reduction in renal perfusion, with recovery after discontinuation (using the 

same small contrast load).35 

These were pilot experiments with a modest total sample size of 29 patients. Thus, 

generalizing the findings to the general population should be withheld until a larger, 

randomized, controlled trial is conducted. However, these experiments included detailed, 

multimodal imaging measurements, where both inter- and intra-patient variations were 

assessed. Further studies are required to examine the direct effects of standard and 

cooled HD upon renal perfusion in individuals with higher RRF, and to longitudinally follow 

patients on incident HD with respect to declining RRF. 

 

2.5 Conclusion 

In conclusion, recurrent HD-induced renal ischemia lays the groundwork toward 

pathophysiologically explaining the previously observed relationship between time spent 

on dialysis and declining RRF. In addition, although amelioration of the decline in renal 

perfusion by DC did not reach statistical significance, this intervention, which has already 

been applied in the protection of the brain and heart from HD-induced injury, may provide 

protection from recurrent kidney injury. 
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CHAPTER 3 

3 Exploring the Link between Hepatic Perfusion and Systemic Endotoxemia in 

Hemodialysis Patients 

The liver normally receives and clears gut-derived endotoxin but hemodialysis 

patients have elevated levels of circulating endotoxin. We used CT perfusion imaging to 

assess whether hemodialysis-induced circulatory stress disrupts hepatic perfusion and 

function, which could negatively affect the liver’s control of endotoxemia. 

The contents of this chapter were adapted from an original research manuscript 

entitled “Exploring the Link between Hepatic Perfusion and Systemic Endotoxemia in 

Hemodialysis Patients: A Randomized Crossover Study”, which was submitted for 

publication in Kidney International in 2020 and co-authored by Raanan Marants, Elena 

Qirjazi, Fiona Li, Ka-Bik Lai, Cheuk-Chun Szeto, Philip Li, Ting-Yim Lee and Christopher 

McIntyre. 

 

3.1 Introduction 

Hemodialysis (HD) induces circulatory stress which causes mesenteric ischemia, 

leading to disrupted gut mucosal structure and function.1,2 The resulting increase in 

translocated endotoxin (gut-derived proinflammatory mediators) correlates with a 

multitude of hemodynamic and cardiovascular complications.3 The liver normally receives 

endotoxin from the gut via portal vein blood4 and under healthy conditions, clears it before 

it reaches systemic circulation.5 However, increased endotoxin has been found in HD 

patients compared to the general population and to early stage chronic kidney disease 
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(CKD) patients,3 suggesting that HD may disrupt liver hemodynamics and function, 

allowing more gut-derived products to reach the systemic circulation. 

Multiple organs develop subclinical ischemia due to intradialytic circulatory stress.6 

Functional imaging studies in the heart,7,8 brain9 and kidneys10 have demonstrated these 

ischemic insults can be attenuated using dialysate cooling (DC),11 providing intradialytic 

hemodynamic protection and minimization of chronic organ dysfunction. However, the 

liver’s dual blood supply may allow it to potentially respond differently to HD-induced 

circulatory stress.12 Previous work by our group and others has shown that liver 

hemodynamics and water content are not significantly affected by HD.12-14 Even so, these 

studies have not assessed changes in the fractional supply (from portal vein or hepatic 

artery) and how it is related to endotoxemia in HD patients, or the effect of potentially 

protective interventions. 

Therefore, we conducted an exploratory study of liver perfusion and excretory 

function using computed tomography (CT) perfusion imaging to measure hepatic arterial 

and portal venous blood flow derived separately from the hepatic artery and portal vein, 

respectively, during HD. By assessing intradialytic hepatic perfusion and function, we 

aimed to test the hypothesis that HD disrupts liver hemodynamics and drives 

endotoxemia. In addition, we intended to explore whether DC ameliorates HD-induced 

changes in liver hemodynamics and limits systemic exposure to endotoxin. 
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3.2 Methods 

3.2.1 Patients 

Patients from the London Health Sciences Centre Regional Renal Program 

(London, Ontario, Canada) were enrolled in the study after giving informed consent. Adult 

patients with HD vintage ≥3 months and low residual renal function (<250 mL/day to limit 

any potential effects of contrast-induced nephropathy) were eligible. Major exclusion 

criteria included: chronic liver or intestinal disease (excluding irritable bowel syndrome), 

previous liver transplant or resection, trans-jugular portosystemic shunt insertion, active 

infection/malignancy, current or planned pregnancy, breast feeding, uncontrolled 

diabetes mellitus (defined as recorded hypoglycemia during HD within the last 2 months) 

or known allergy to iodinated contrast agent. 

 

3.2.2 Study Design 

In this crossover study, patients underwent one standard (36.5°C) and one cooled 

(35.0°C) dialysate temperature HD session. Other than dialysate temperature, sessions 

were identical. The session order was randomly assigned, with patients acting as their 

own controls. The randomization list (in blocks of four) was generated by a London Health 

Sciences Centre Kidney Clinical Research Unit medical statistician and revealed to the 

investigator for allocating subjects to the appropriate study group. A washout period ≥7 

days between sessions was scheduled to ensure no significant carry-over effects.15 

During these sessions, we collected baseline characteristics and blood work, assessed 

hepatic function (clearance of indocyanine green), and acquired CT liver perfusion 

imaging. This was a single-blinded study, where patients, HD unit staff and the 
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investigator were not blinded to the intervention, but imaging analysis was performed with 

the operator blinded to allocation. 

This study was approved by the University of Western Ontario Health Sciences 

Research Ethics Board and was conducted in compliance with the approved protocols, 

Good Clinical Practice Guidelines, the Declaration of Helsinki, and all applicable 

regulatory requirements. The study was registered at ClinicalTrials.gov (NCT02997774). 

 

3.2.3 CT Perfusion Imaging 

CT liver perfusion imaging was performed on a GE Healthcare (Waukesha, WI) 

Revolution 256-slice CT scanner just before, 3 hours into (i.e., peak intradialytic stress), 

and 15 minutes post discontinuation of both HD sessions. Patients were moved to the CT 

bed for the intradialytic scan without interrupting HD treatment. Dynamic contrast-

enhanced CT scanning of a 16 cm section of the abdomen was performed, without breath-

hold, following iodinated contrast agent injection (at a rate of 5 mL/s, followed by a 30 mL 

saline flush). Scan regions were optimized to include as much of the liver as possible by 

performing a non-contrast localization scan prior to each CT perfusion scan, and were 

divided into 32 slices of 5 mm thickness each. This region was scanned 42 times at 2.8 s 

intervals using 120 kV and 22.4 mAs for a duration of approximately 2 minutes. Iopamidol 

(Isovue 370, Bracco Imaging) at 1 mL/kg of pre-HD patient weight (up to a maximum dose 

of 70 mL) was used as contrast agent in both HD sessions. Image noise was reduced 

using 100% ASIR (Adaptive Statistical Iterative Reconstruction, GE Healthcare) and liver 

motion from breathing between scans was minimized using non-rigid registration (GE 

Healthcare). 
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CT Perfusion 4D software (GE Healthcare) was used to analyze the registered 

images as follows: aortic and portal venous regions of interest (ROIs) were selected for 

generation of arterial and venous input functions, respectively. Next, model-based 

deconvolution16 was used to compute liver perfusion and the corresponding hepatic 

arterial fraction, yielding total liver, hepatic arterial and portal venous perfusion maps. A 

region was then manually drawn in the perfusion maps of each slice to encompass the 

liver, where blood flow and blood volume thresholds of 200 mL/min/100g and 80 mL/100g, 

respectively (determined from prior sensitivity analysis), were imposed to remove non-

parenchymal blood vessels from the region, yielding a liver parenchyma ROI. A ROI size-

weighted average of the resulting perfusion values over all liver-containing slices was 

performed to obtain mean values (in mL/min/100g) of total, hepatic arterial and portal 

venous perfusion for the whole liver. 

 

3.2.4 Quantification of Perfusion Heterogeneity 

Based on previous work,12,13 we hypothesized that HD may cause heterogeneous 

redistribution of liver perfusion, despite overall perfusion being maintained (Figure 3.1). 

Total liver perfusion heterogeneity was quantified using an in-house MATLAB 

(MathWorks, Natick, MA) program based on an algorithm developed by Brooks and 

Grigsby.17 For this work, the algorithm quantified the magnitude of perfusion gradation 

between all pixel-pair combinations in all liver ROIs. 

A ROI size-weighted average of the heterogeneity values over all the ROIs was 

performed to obtain a mean perfusion heterogeneity value for the whole liver. A summary 

of this procedure is presented in Figure 3.2. 
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Figure 3.1: Insensitivity of global mean to changes in spatial perfusion heterogeneity visualized with hepatic 

perfusion maps. Total liver perfusion at baseline (A) and 3 hours into hemodialysis (B) for a patient. Liver 

parenchyma is outlined with dotted contours. Despite there being no measurable change in average liver 

perfusion between the two time-points, liver perfusion heterogeneity increased by approximately 25%. 
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Figure 3.2: Theoretical basis of heterogeneity quantification algorithm and application of the algorithm in 

this study’s workflow. The heterogeneity quantification algorithm computes the magnitude of pixel intensity 

(e.g., perfusion) gradation between all pixel-pair combinations of the liver in every slice. An example of 

heterogeneity quantification for a single pixel-pair (pixels 1 and 2, with intensities of I1 and I2, respectively, 

separated by distance R) is shown in the case of (A) low, (B) medium, and (C) high heterogeneity. (D) Plot 

of pixel intensity change from I1 versus distance along R for case A, B, and C. (E) Following the generation 

of liver perfusion maps, manually drawn regions of interest were used to segment the liver parenchyma for 

all relevant slices. Next, the heterogeneity quantification algorithm was applied (red arrows) to all non-zero 

pixel-pairs within each resulting region, yielding a perfusion heterogeneity value for each region (i.e., for 

each slice). A region of interest size-weighted average of the heterogeneity values over the selected slices 

was performed to obtain a mean perfusion heterogeneity value for the whole liver. 

 

3.2.5 Assessment of Hepatic Excretory Function 

Indocyanine green (ICG) is a synthetic dye that is solely taken up by hepatocytes 

and excreted in bile,18 where ICG clearance from blood reflects excretory liver function. 

Pulsed-dye densitometry (PDD; DDG devices, Nihon Kohden, Japan) provides a real-

time, non-invasive measurement of blood ICG concentration using optical light at two 

wavelengths: 805 nm for peak optimal ICG absorption and 890 nm for minimal 

absorption.19 Detection of ICG in the blood is based on the fractional change in optical 

absorption between the two wavelengths, where heartbeat-induced blood vessel 

pulsations lead to optical path length changes.20 As a result, PDD measures ICG 

clearance from blood, which reflects excretory liver function. While ICG has historically 

also been used to assess liver blood flow, this application has methodological 

challenges21,22 and was forgone in favor of using CT perfusion imaging in this work. 
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PDD was acquired for approximately 15 minutes following a single ICG bolus 

injection through a peripheral cannula by attaching a finger probe to the patient, 

measuring ICG concentration in blood over time with every heartbeat. These 

measurements were performed just before and 3 hours into every HD session. A 

biexponential fit, based on an open two-compartment model of ICG uptake and excretion, 

was applied to the data in order to extrapolate past the 15-minute point and more 

accurately determine the clearance.23 The ICG clearance rate (mL/min) was calculated 

as the quotient of the ICG dose (mg) and the area under the ICG concentration vs. time 

curve (mg∙min/mL). 

 

3.2.6 Quantification of Endotoxin Levels 

Serum lipopolysaccharide endotoxin quantification was performed using a Limulus 

Amebocyte assay (Cambrex, Verviers, Belgium). Following collection in London, all 

serum samples were shipped to and assayed at the Prince of Wales Hospital in Hong 

Kong, and endotoxin quantification was performed as described previously24 to ensure 

comparability with results generated from our previous studies of endotoxin (all of which 

were analyzed in the same lab). Briefly, samples were diluted to 20% with endotoxin-free 

water and heated to 70°C for 10 minutes to inactivate plasma proteins. The 

manufacturer’s protocol was used to quantify serum lipopolysaccharide. Samples with 

lipopolysaccharide level below the detection limit of 0.01 endotoxin units (EU)/mL were 

taken as 0 EU/mL. Samples were run in duplicate and the background noise was 

subtracted. 
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3.2.7 Statistical Analysis 

Liver perfusion and excretory function were scarcely assessed previously in the 

context of HD and insufficient data exist to support performing a meaningful sample size 

calculation. This was an initial proof-of-principle study for hypothesis generation, with a 

sample size not powered for inferential statistical analysis. However, the sample size is 

comparable with previously published norms7,10,25,26 and recommendations,27,28 and was 

chosen on a partly pragmatic basis. 

All statistical analyses were performed using SPSS, version 25.0 (IBM, Chicago, 

IL). Repeated measure ANOVA with Bonferroni-corrected post-hoc t-tests, and patient 

baseline-adjusted ANCOVA, were used to detect differences between groups and 

subgroups. Pearson’s product-moment correlation coefficient was used to determine 

associations between variables, and McNemar’s test was used to detect differences 

between proportions. Two-tailed P values <0.05 were considered statistically significant. 

Results are presented as mean ± standard error of the mean, unless otherwise specified. 

 

3.3 Results 

3.3.1 Clinical Characteristics of Study Population 

Sixteen patients (ten male) aged 45-84 years were enrolled in this study. One 

patient was unable to return for the second session and was excluded from analysis. 

Fifteen patients completed the study, and Table 3.1 presents the summary of patient 

baseline characteristics, including age, sex, HD treatment details and comorbidities. This 

patient cohort was the same as the project 1 cooled HD cohort. 
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Table 3.1: Baseline characteristics of second project study population. 

Characteristics Mean (Range)a 

n 15 

Age 63 (45–84) 

Men, n (%) 10 (67) 

Dialysis Vintage (years) 3.0 (0.8–25.4) 

Length of Hemodialysis Session (hours) 3.6 (3.1–4.2) 

Ultrafiltration (mL/kg) 23.3 (6.1–40.9) 

Coronary Artery Disease, n (%) 5 (33) 

Congestive Heart Failure, n (%) 3 (20) 

Peripheral Vascular Disease, n (%) 3 (20) 

Diabetes, n (%) 9 (60) 

Hypertension, n (%) 14 (93) 

aUnless otherwise specified. 

 

3.3.2 Hepatic Perfusion 

Average baseline total liver perfusion was 82.7±3.7 mL/min/100g, with an average 

hepatic arterial fraction of 22.6%. Average total liver, hepatic arterial and portal venous 

perfusion changed to 106.7%±5.4%, 101.3%±11.2% and 111.1%±5.1% of baseline at 

peak HD stress, and 105.6%±3.7%, 102.7%±9.6% and 109.1%±6.0% of baseline after 

HD, respectively. None of these changes were statistically significant, but portal vein 

perfusion showed the greatest trend towards changing during HD (P=0.14, Figure 3.3A). 

Perfusion heterogeneity increased by 12.5%±4.4% (P=0.038) and 17.8%±3.7% 

(P=0.001) with respect to baseline during and after HD, respectively (Figure 3.4A). There 
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was an association between intradialytic changes in perfusion heterogeneity and total 

liver perfusion (r=0.70, P=0.003). 

 

 

Figure 3.3: Plots of relative hepatic perfusion to baseline before, 3 hours into and after standard HD (A) and 

cooled HD (B). There were no significant changes in total liver, hepatic artery and portal vein perfusion over 

the course of either standard or cooled HD. However, portal vein perfusion demonstrated the greatest trend 

towards increasing during standard HD (P=0.14). Results are given as average ± standard error of the 

mean (SEM). 

 

3.3.3 Hepatic Excretory Function 

The ICG clearance rate dropped by 14.5%±5.3% (P=0.016) with respect to 

baseline during HD (Figure 3.4A). Changes in ICG clearance rate correlated with changes 

in total liver perfusion (r=0.55, P=0.034) and showed an associative trend with changes 

in perfusion heterogeneity (r=0.49, P=0.06) during HD. See Appendix A for a summary of 

relative changes in liver enzymes from pre- to post-HD (Table A1). 
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3.3.4 Endotoxin Levels 

Average baseline endotoxin levels were 0.292±0.0156 EU/mL and correlated with 

dialysis vintage (r=0.58, P=0.024). Endotoxin increased by 19%±9.1% (P=0.15) and 

28.4%±9.9% (P=0.037) with respect to baseline during HD and after HD, respectively 

(Figure 3.4A). Increased post-HD endotoxin correlated with the presence of congestive 

heart failure (r=0.52, P=0.046) but not with ultrafiltration (UF) metrics (UF volume, mean 

and maximum UF rates). 

 

 

Figure 3.4: Plots of relative endotoxin levels, ICG clearance rate, and hepatic perfusion heterogeneity to 

baseline before, 3 hours into and after standard HD (A) and cooled HD (B). ICG clearance rate (P=0.016) 

and perfusion heterogeneity (P=0.038) significantly changed during standard HD and endotoxin levels 

(P=0.037) significantly changed after standard HD. None of these changes were statistically significant with 

cooled HD. Results are given as average ± standard error of the mean (SEM). 
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3.3.5 Effects of Dialysate Cooling 

In contrast to standard HD, changes from baseline of all hepatic perfusion, hepatic 

excretory function, and endotoxin data during and after cooled HD were not statistically 

significant (Figures 3.3B and 3.4B). Although DC appeared to mitigate the hemodynamic 

and functional HD-induced changes that were observed for standard HD, session-

specific, patient baseline-adjusted ANCOVA revealed that the changes in perfusion (total, 

hepatic arterial, portal venous), perfusion heterogeneity, ICG clearance rate, and 

endotoxin level between dialysis treatments were not statistically significantly different. 

 

3.3.6 Intradialytic Blood Pressure and Adverse Events 

Three patients experienced intradialytic hypotension (IDH) during both HD 

sessions, while ten experienced a systolic blood pressure drop >20 mm Hg during 

standard HD compared with eight during cooled HD (P=0.69). Intradialytic changes in 

blood pressure between dialysis treatments were not statistically significant according to 

session-specific, patient baseline-adjusted ANCOVA (F(1,26)=2.814 and P=0.11; 

F(1,26)=0.582 and P=0.45; F(1,26)=0.382 and P=0.54 for systolic blood pressure, 

diastolic blood pressure, and mean arterial pressure, respectively). During standard HD, 

increased endotoxin levels demonstrated an associative trend with the maximum 

reduction in mean arterial pressure (r=0.47, P=0.08). In terms of adverse events from DC, 

only thermal symptoms were reported: six patients reported feeling cold or experienced 

shivering during cooled HD, compared to two during standard HD (P=0.13). 
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3.3.7 Exploratory Analysis of Hepatic Perfusion Heterogeneity 

Patients were divided into those with and without an increase in total liver perfusion 

heterogeneity during standard HD (defined as an increase in perfusion heterogeneity at 

peak dialytic stress ≥2 SEM of the patient group), yielding eight and seven patients with 

and without increased perfusion heterogeneity, respectively. 

The subgroup of patients with increased perfusion heterogeneity had improved 

intradialytic ICG clearance (average decrease from baseline of 9.9%) and better 

maintenance of post-HD endotoxin levels (average increase from baseline of 18.8%) 

compared to the subgroup without increased perfusion heterogeneity (average decrease 

in ICG clearance from baseline of 18.2%, average increase in endotoxin levels from 

baseline of 39.3%). In addition, the subgroup of patients with increased perfusion 

heterogeneity received less benefit from DC in terms of the aforementioned functional 

measures (average decrease in ICG clearance from baseline of 10.9%, average increase 

in endotoxin levels from baseline of 8.4%), as compared to the subgroup without 

increased perfusion heterogeneity, who did appear to benefit from DC (average increase 

in ICG clearance from baseline of 2.1%, average increase in endotoxin levels from 

baseline of 1.7%). 

Nevertheless, subgroup-specific, patient baseline-adjusted ANCOVAs were run 

for the aforementioned subgroup comparisons, revealing that none of the changes in ICG 

clearance or endotoxin levels between subgroups were significantly different. A summary 

of these findings, as well a comparison to these results for all patients collectively, is 

shown in Figure 3.5. 
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Figure 3.5: Plots of relative endotoxin levels and ICG clearance rate to baseline before, 3 hours into and 

after standard HD (A) and cooled HD (B) for patients with (n=8) and without (n=7) increased perfusion 

heterogeneity, and all patients (n=15). Increased perfusion heterogeneity during HD seemed to affect 

endotoxin levels and ICG clearance rate. (A) For standard HD, patients with increased perfusion 

heterogeneity appeared to have better intradialytic ICG clearance and improved maintenance of post-HD 

endotoxin levels compared to the subgroup of patients without increased perfusion heterogeneity (not 

statistically significant). (B) For cooled HD, the opposite was true (not statistically significant). 

 

3.4 Discussion 

This is the first study to demonstrate that redistribution of liver perfusion and 

attenuation of hepatic function occur together during HD. In addition, this is the first time 

Percent of Baseline Values 

Endotoxin Levels 

All Patients (n = 15) 

Patients with Increased Perfusion Heterogeneity (n = 8) 

Patients without Increased Perfusion Heterogeneity (n = 7) 

A B 

ICG Clearance Rate 

All Patients (n = 15) 

Patients with Increased Perfusion Heterogeneity (n = 8) 

Patients without Increased Perfusion Heterogeneity (n = 7) 



97 

 

DC has been applied to prevent liver injury and endotoxemia. The important findings of 

this work may help to better understand how HD negatively affects the liver and results in 

the exacerbation of endotoxemia in maintenance HD patients, while also providing 

preliminary evidence for a potentially preventative intervention to limit systemic toxin 

exposure during HD and over the long-term. 

 

3.4.1 Effects of Hemodialysis on Hepatic Perfusion, Hepatic Excretory Function and 

Endotoxemia 

In this work, hepatic perfusion was measured using CT perfusion imaging, an 

approach which has been previously validated.29 Overall liver perfusion did not 

significantly change during HD. While there is a paucity of data regarding intradialytic liver 

perfusion measurements, our findings are consistent with prior work.12,13 These findings 

likely resulted from the liver’s dual blood supply system which may have protected it from 

subclinical perfusion shifts associated with reduction in hepatic arterial flow,30 although 

further work is needed to elucidate details of this mechanism. In addition, intradialytic 

portal vein perfusion showed the greatest trend towards changing, rising to 111% of 

baseline during HD. As portal venous blood is toxin-laden,4 this finding suggests that HD-

induced circulatory stress may increase endotoxin influx from the gut to the liver following 

translocation, and may be responsible for the trend towards increasing endotoxin levels 

during HD. 

Liver perfusion heterogeneity was also assessed in this study, as significant 

perfusion changes may occur in small discrete liver regions and this signal would be lost 

if averaged over the entire liver volume (balanced by other areas shunting increased 
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blood flow). There are various approaches to quantify medical image heterogeneity (i.e., 

texture analysis31,32), and while each analysis technique has its advantages and 

applications, we chose to implement the algorithm developed by Brooks and Grigsby17 

due to its intuitiveness and ease of implementation with respect to our data. This algorithm 

yields a single statistic per image, providing a simple, quantitative method of comparing 

images based on heterogeneity. We observed with this algorithm a significant increase in 

hepatic perfusion heterogeneity during HD. While never studied in the context of HD, liver 

perfusion heterogeneity has been assessed for various types of liver injury,33-35 

consistently demonstrating a relationship with hepatic injury. In addition, changes in liver 

excretory function (i.e., ICG clearance rate) were related to changes in hepatic perfusion 

and perfusion heterogeneity in this work. 

Previous studies (including in dialysis patients36,37) performed ICG-based 

measurements of hepatic function,38 which in this work, was assessed by measuring the 

ICG clearance rate with the optical PDD technique. Because clearance of ICG and 

endotoxin occurs fully18 and partially39 within hepatocytes, respectively, and given that 

our patients had minimal residual renal function and a likely higher reliance on hepatic 

clearance, the ICG clearance rate therefore represents a suitable surrogate measure of 

hepatic endotoxin clearance. 

Excretory liver function significantly declined during HD, as measured with PDD-

based ICG clearance. Previous work has demonstrated that decreased ICG clearance 

following hepatic injury is linked to increased production of reactive oxygen intermediates 

and neutrophil elastase,40 and occurs together with increased expression of endothelin-

1,41 all of which mediate liver cell injury and/or dysfunction.40,42,43 In addition, endotoxin 
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itself has also been shown to induce oxidative stress44,45 and attenuate ICG 

clearance.46,47 Raised levels of these and other inflammatory mediators have been 

characterized in ESRD and HD patients,3,44,45,48-51 suggesting that the liver is susceptible 

to recurrent HD-induced circulatory stress via inflammatory mediators which negatively 

affect hepatic function and cause hepatic injury (see Appendix A, Table A1). 

We have previously demonstrated that renal perfusion significantly declines at 

peak dialytic stress,10 representing repetitive, intradialytic episodes of ischemic acute 

kidney injury.52 The potential negative relationship between kidney injury and the liver’s 

clearance function has been previously discussed in the context of acute kidney injury53,54 

and ESRD,13,55 and may be an important additional factor contributing to HD-induced 

hepatic dysfunction and increased endotoxemia. 

In this work, endotoxin was quantified using a Limulus Amebocyte assay in a 

manner described previously.24 Although the sensitivity of this technique has been 

criticized,56 we have taken measures to establish internal consistency of our current 

measurements to ensure that our findings were not artefactual. Firstly, serum samples 

were collected before, during and after HD, yielding three endotoxin measurements per 

patient per study visit. As these samples were stored, shipped, and analyzed identically 

to one another, any potential issues with endotoxin quantification methodology would 

affect all three samples equally (save for minor fluctuations). Therefore, while the absolute 

measures of endotoxin may not be completely accurate, the relative changes in endotoxin 

from baseline levels (which we present and focus on) still hold true and provide scientific 

value. Secondly, the endotoxin quantification methodology used in this work is the same 

as what was done in our group’s previous studies.3,57-59 Given our familiarity and expertise 
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with this methodology, along with the convincing, positive results it has enabled us to 

produce previously (e.g., endotoxin levels in HD patients correlate with negative clinical 

outcomes and reduced survival3), we felt confident applying it to the current study as well. 

The baseline endotoxin levels measured in this work (0.29 EU/mL) are consistent 

with findings in other studies of dialysis patients.56,60 Endotoxin levels trended towards 

increasing during HD, and increased markedly from baseline after HD. This escalation 

has been attributed to increased endotoxin translocation from mesenteric injury and 

compromised gut mucosal permeability,1,2 which is repeated during recurring dialysis 

sessions. This mechanism is reinforced by the strong correlation observed between 

baseline endotoxin levels and dialysis vintage. In addition, other than an associative trend 

between increased endotoxin levels and maximum reduction in mean arterial pressure 

during HD, we did not find evidence of HD-induced circulatory stress (i.e., UF metrics and 

IDH) being linked to endotoxemia, differing from the results of other studies.3,59 This 

suggests (a) that in our patients, endotoxemia was driven more by liver hemodynamic 

and excretory functional changes than by direct effects of circulatory stress (i.e., UF 

metrics and IDH), and (b) that more generally, it may be the combination of direct effects 

of circulatory stress together with changes in hepatic hemodynamics and excretory 

function which contribute to increased endotoxin levels characteristically seen in HD 

patients. 

Based on the results of this study (italicized items below), we propose the following 

pathway by which HD perpetuates endotoxemia in ESRD patients:  

1: Mesenteric ischemia (due to HD-induced circulatory stress) disrupts gut mucosal 

structure and function, and increases bowel wall permeability.  
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2: Endotoxin more readily translocates across the intestinal barrier.  

3: More endotoxin arrives to the liver from the gut via portal vein perfusion, which trends 

towards increasing during HD.  

4: Decreased ICG clearance rate during HD represents compromised hepatic excretory 

function, likely due to increasing levels of endotoxin and other inflammatory mediators.  

5: Further increase in post-HD endotoxin levels, likely resulting from the combination of 

more endotoxin arriving to the liver and lowered hepatic clearance function.  

6: Recurrent cycles over many HD sessions lead to higher circulating endotoxin levels in 

ESRD patients. 

 

3.4.2 Initial Description of Dialysate Cooling Effects 

We demonstrated that DC did not negatively affect liver hemodynamics and 

function, or worsen endotoxemia, and may even have helped improve these metrics 

compared to standard HD, albeit this was not statistically significant. This is plausible 

because cooling potentiates better maintenance of organ perfusion due to peripheral 

vasoconstriction,61 increased baroreflex sensitivity variability,62 and reduced IDH.62,63 

Also, in the context of therapeutic hypothermia, cooling mitigates organ injury via several 

potential mechanisms of action (e.g., reducing inflammation, attenuating oxidative stress, 

decreasing free radical production), demonstrating effectiveness in multiple organs.64,65 

Therefore, it is reasonable to assume that DC-induced maintenance of liver perfusion and 

mitigation of hepatic injury could result in improved control of endotoxin levels. However, 

the beneficial changes of DC observed in this study were not statistically significantly 

different compared to changes during standard HD, and further work is needed to 
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demonstrate the protective potential of DC for preserving hepatic function and mitigating 

endotoxemia. 

The DC results of this work corroborate with findings of similarly designed studies 

assessing myocardial injury7,8,25 and renal ischemia10 during cooled HD. The 

effectiveness of DC was not universal in those studies (e.g., no difference in left 

ventricular ejection fraction between standard and cooled HD groups,8,25 no difference 

between decreased kidney perfusion between standard and cooled HD groups10) or in 

our work. In addition, four of our 15 patients (27%) experienced cold-related symptoms 

(e.g., shivering, feeling cold) during cooled HD only, which is consistent with the incidence 

of temperature-related symptoms reported in other studies.7,66,67 These findings suggest 

although DC shows promise as an intradialytic intervention, combining cooling with other 

interventions (e.g., ischemic preconditioning68,69) and/or implementing other cooling 

techniques (e.g., DC based on pre-HD body temperature8,25) may more effectively 

ameliorate HD-induced circulatory stress and cooling-related symptoms. 

 

3.4.3 Exploratory Analysis of Hepatic Perfusion Heterogeneity 

Patients were divided into those with and without an increase in total liver perfusion 

heterogeneity during HD (due to well described association with hepatic injury33-35). 

Patients with increased perfusion heterogeneity had smaller relative increases in 

endotoxin levels post-HD and smaller relative decreases in ICG clearance during HD 

compared to patients without increased heterogeneity. Although these findings were not 

statistically significant (potentially due to small subgroup sizes) they suggest that 

increased heterogeneity may represent protection from hepatic injury, or a consequence 
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of it. Mehrabi et al.33 speculated that “increased heterogeneity of liver perfusion … 

probably can be seen as a basic physiological reaction to trauma”, which in this context 

is HD-induced circulatory stress. Regardless of interpretation, increased heterogeneity 

was linked to increased perfusion, suggesting that higher levels of perfusion are required 

to redistribute blood flow and to increase perfusion heterogeneity. More studies are 

needed to better elucidate the relationship of perfusion heterogeneity with liver function 

during HD. 

DC had intriguing and potentially important effects on patients when split into those 

with and without an increase in total liver perfusion heterogeneity during HD, although 

these results did not reach statistical significance. Patients with increased perfusion 

heterogeneity seemed to receive less benefit from cooling in terms of controlling 

endotoxin levels and maintaining ICG clearance. However, patients without increased 

heterogeneity appeared to benefit greatly from DC. As postulated earlier, it may be that 

increased intradialytic liver perfusion heterogeneity represents some form of intrinsic 

hepatic functional protection, and since cooling reduces the changes in heterogeneity, it 

acts to effectively attenuate this heterogeneity-based protective effect. Interestingly, DC 

and increased perfusion heterogeneity may be two competing protective effects which 

work to preserve liver function and limit endotoxemia. 

 

3.4.4 Limitations 

There are several limitations associated with this early phase study. First, our study 

did not examine the relationship between changes in ICG clearance and cardiac output 

during HD, which may have had significant effects on hepatic function measurements. 
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Second, this was a pilot study with a limited sample size of 15 patients, and generalization 

of findings should be withheld until a larger, randomized controlled trial is performed. 

However, this study incorporated imaging and functional measurements for assessment 

of both inter- and intra-patient variations. Third, only patients with low baseline renal 

function (urine output <250 mL/24 hours) were assessed to minimize the risk of contrast-

induced nephropathy damaging significant residual renal function, and this patient group 

may be predisposed to hepatic injury. However, this was a proof-of-principle study, and 

future experiments are required to examine the direct effects of standard and cooled HD 

upon endotoxemia and liver hemodynamics in individuals with higher residual renal 

function, and to longitudinally follow patients new to HD with respect to increasing 

endotoxin levels. 

 

3.5 Conclusion 

In summary, HD-induced circulatory stress resulted in redistribution of liver 

perfusion and attenuation of hepatic excretory function. Endotoxin levels peaked after 

HD, and higher endotoxin levels in end-stage renal disease patients may result from the 

combination of two intradialytic effects: decreased hepatic clearance of endotoxin, and a 

trend towards increased toxin-laden portal vein perfusion to the liver. In addition, although 

mitigation of endotoxin via improved maintenance of hepatic perfusion and function with 

DC did not reach statistical significance, this intervention, which has already been applied 

in the protection of the brain, heart and kidneys from HD-induced injury, warrants further 

study on its protective effects from endotoxemia. 
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CHAPTER 4 

4 Measuring Glomerular Filtration Rate in End-Stage Renal Disease Patients on 

Hemodialysis using CT Perfusion Imaging 

Accurate assessment of residual renal function in end-stage renal disease patients 

is critical for adjusting the hemodialysis prescription but no clinical method exists currently 

which can accurately and efficiently measure glomerular filtration rate in these patients. 

Using CT perfusion imaging, we developed and applied a novel glomerular filtration rate 

measurement approach in hemodialysis patients which has the potential to become an 

accessible clinical renal function assessment technique in this population. 

The contents of this chapter were adapted from an original research manuscript 

entitled “Measuring Glomerular Filtration Rate in End-Stage Renal Disease Patients on 

Hemodialysis using CT Perfusion Imaging”, which was submitted for publication in 

Radiology in 2020 and co-authored by Raanan Marants, Christopher McIntyre, and Ting-

Yim Lee. 

 

4.1 Introduction 

The current clinical protocol for measuring kidney function (i.e., glomerular filtration 

rate, GFR) in end-stage renal disease (ESRD) patients on hemodialysis (HD) is 

cumbersome, time-consuming and inaccurate.1-3 This is problematic because adjusting 

HD prescription based on changes in a patient’s residual renal function (RRF) is an 

important aspect of clinical care4 that is difficult to address and often disregarded.1,3 If it 

were possible to readily and rapidly obtain accurate GFR measurements, RRF-based HD 

prescription adjustments may have yielded better outcomes for ESRD patients. 



113 

 

Presently, there is no way to accurately measure GFR in ESRD, which is 

commonly assessed using population-based equations (using demographic information 

and serum creatinine/urea levels) or urine/plasma sampling of endogenous/exogenous 

markers.2 While these approaches represent the current gold standard in nephrology 

practice, they have important limitations to consider,2 including: 

• Population-based equation accuracy decreases with kidney disease progression 

• Endogenous marker levels directly affected by HD and fluctuate during HD cycle 

• Impossible to perform single-kidney GFR assessment 

These limitations may be overcome with imaging-based GFR measurement. While 

many previous studies have explored such methodologies in animal and human 

subjects,5,6 these techniques have never been applied to ESRD and/or HD patients. In 

this technical development, we propose using computed tomography perfusion (CTP) 

imaging to measure GFR in HD patients. If appropriately implemented, we believe that 

CTP imaging has the potential to become an accessible clinical GFR measurement 

method in ESRD patients on HD, providing a rapid, reliable and accurate measurement 

of kidney function. 

 

4.2 Methods 

4.2.1 Patients and Study Design 

Patients from the London Health Sciences Centre Regional Renal Program 

(London, ON) were enrolled after giving informed consent. Adult patients with HD vintage 

≥3 months and low RRF (<250 mL/day to limit any potential effects of contrast-induced 

nephropathy) were eligible. Exclusion criteria included: active infection/malignancy, 
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pregnancy, breast feeding, planned pregnancy, diabetic with hypoglycemia during HD 

within the last 2 months or known allergy to iodinated contrast agent. 

In this crossover study, patients underwent one standard (36.5°C) and one cooled 

(35.0°C) dialysate temperature HD session. During both sessions, HD was administered 

using a Fresenius 5008 machine (Waltham, MA) with a high-flux polysulfone membrane. 

Session order was randomly assigned, with patients acting as their own controls. A 

washout period ≥7 days between sessions was scheduled to prevent significant carry-

over effects. During each session, we collected baseline characteristics and blood work, 

and acquired CT renal perfusion imaging. Patients, hemodialysis unit staff and the 

investigator were not blinded to the intervention, but imaging analysis was performed with 

the operator blinded to allocation. This study was approved by the University of Western 

Ontario Health Sciences Research Ethics Board and was conducted in compliance with 

the approved protocol, Good Clinical Practice Guidelines and all applicable regulatory 

requirements. 

 

4.2.2 CT Perfusion Imaging 

CT renal perfusion imaging was performed on a GE Healthcare (Waukesha, WI) 

Revolution 256-slice CT scanner before, during (i.e., peak intradialytic stress), and after 

HD for both sessions. Patients were moved to the CT bed for the intradialytic scan without 

interrupting HD treatment. Iopamidol (Isovue 370, Bracco Imaging), at 1 mL/kg of pre-HD 

patient weight (up to a maximum dose of 70 mL), was the non-ionic, low-osmolar 

iodinated contrast agent used for both sessions. 
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Dynamic contrast-enhanced CT scanning of a 16 cm long abdominal region, 

selected to include as much of both kidneys as possible, was performed without breath-

hold following contrast agent injection into an antecubital vein at 5 mL/s injection rate. 

The selected region was divided into 32 slices of 5 mm thickness each and scanned 42 

times at 2.8 s intervals using 120 kV and 22.4 mAs for a duration of approximately 2 

minutes. Image noise was reduced using 100% Adaptive Statistical Iterative 

Reconstruction (GE Healthcare). Reconstructed images were co-registered with non-rigid 

transformation (GE Healthcare) to minimize kidney misregistration from breathing motion.  

The registered images were analyzed with the CT Perfusion 4D software (GE 

Healthcare). An aortic region of interest (ROI) was selected for generation of arterial input 

function (AIF, Ca(t)) from the registered dynamic images. Next, the AIF was deconvolved 

from the time-density curve of each 3⨯3 kidney voxel, Q(t), based on the Johnson-Wilson 

model of contrast distribution in kidney7 to compute various functional parameters, 

yielding parametric maps of renal perfusion (F) and permeability-surface area product 

(PS)8 for all slices containing the kidneys. In the deconvolution process, the parameters 

of the Johnson-Wilson model – F, K, k and MTT – were iteratively changed to minimize 

the sum of squared deviations of the convolution of the blood flow-scaled impulse residue 

function, RF(t), with Ca(t) from Q(t) as shown in Figure 4.1. 

 

4.2.3 GFR Quantification 

To improve corticomedullary differentiation for accurate cortical delineation, the 

second quarter of the dynamic series CT images (i.e., timepoints 11-21 of 42) were 

summed together for each slice. This timepoint range was chosen to maximize contrast 
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enhancement in the cortex (i.e., cortical phase), which occurs in early timepoints (e.g., 1-

10) for healthy kidneys but occurs later in diseased kidneys.9,10 Next, a dynamic threshold 

was applied separately for each slice of each kidney of every patient, and was chosen by 

anatomically matching the segmented cortical region to the contrast-enhancement cortex 

of the summed image as closely as possible (see Figure 4.2). This process yielded a 

segmented cortical ROI which was superimposed onto the corresponding F and PS 

parametric maps for all relevant slices. The GFR was then computed as follows: 

𝐺𝐹𝑅𝑝𝑖𝑥𝑒𝑙,𝑖 = 𝐾 ∙ 𝑀 
 

𝐺𝐹𝑅𝑝𝑖𝑥𝑒𝑙,𝑖 = (𝐹 ∙ 𝐸) ∙ (𝑉 ∙ 𝐷) 

𝐺𝐹𝑅𝑝𝑖𝑥𝑒𝑙,𝑖 = [𝐹 ∙ (1 − 𝑒−
𝑃𝑆
𝐹 )] ∙ [(𝐴 ∙ 𝑇) ∙ 𝐷] 

K = filtration rate constant, M = pixel mass 

F = perfusion, E = extraction efficiency 

V = pixel volume, D = tissue density 

PS = permeability-surface area product 

A = pixel area, T = slice thickness 

𝐺𝐹𝑅𝑠𝑙𝑖𝑐𝑒 = ∑ 𝐺𝐹𝑅𝑝𝑖𝑥𝑒𝑙,𝑖

𝑁𝑝

𝑖=1
 Np = number of cortical pixels in image slice 

𝐺𝐹𝑅𝑘𝑖𝑑𝑛𝑒𝑦 = 𝐵𝑆𝐴 ∙ ∑ 𝐺𝐹𝑅𝑠𝑙𝑖𝑐𝑒,𝑖

𝑁𝑠

𝑖=1
 

Ns = number of image slices in kidney 

BSA = 1.73m2 / patient’s body surface area 

For this work, A = (0.88 mm)2, T = 5 mm and D = 1.050 g/mL11 in all cases. 
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A 

 

B 

                

                           

Figure 4.1: GFR measurement by analyzing CTP images with a tracer kinetic model. (A) Schematic of 

Johnson-Wilson model applied to the glomerular capillaries (red region) and Bowman’s capsule (yellow 

region) in the kidney. Contrast is delivered by perfusion (F) to the glomerulus and in the mean transit time 

F ∙ Ce(t) 

F ∙ Ca(t) 

 
K 

𝑘 
⊗                       = 

F 
 
 
                      e–k(t – MTT) 
K 
 
 

     MTT 

Q(t)                                                     Ca(t)                                                     RF(t) 
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(MTT) it takes to travel from the afferent arteriole to the efferent arteriole, it is filtered through the glomerular 

barrier into the Bowman’s capsule. The filtration process is governed by the influx (K) and efflux (k) rate 

constant. (B) From the dynamic series CT images, the arterial input function, Ca(t), and each 3⨯3 pixel 

tissue time-density curve in the kidney, Q(t), were obtained. Ca(t) is deconvolved from Q(t) to calculate the 

flow-scaled impulse residue function, RF(t), based on the Johnson-Wilson model, yielding parametric maps 

(e.g., perfusion, permeability-surface area product) which are used to compute GFR as explained in the 

text. The ⊗ symbol is the convolution operator. 

 

4.2.4 Statistical Analysis 

GFR has seldom been measured in HD patients previously; inadequate data exist 

for a meaningful sample size calculation. This was an initial proof-of-principle study to 

explore the feasibility of our methods, with a sample size not powered for inferential 

statistical analysis 

Statistical analysis was performed using SPSS, version 25.0 (IBM, Chicago). Data 

were analyzed using primarily non-parametric statistical tests. Differences between 

groups and associations between variables were assessed using the Wilcoxon signed-

rank test and the Spearman rank-order correlation coefficient, respectively. Associations 

between GFR and perfusion data were assessed (on a per kidney basis) using the 

Pearson product-moment correlation. Two-tailed P values <0.05 were considered 

statistically significant. Results are presented as the mean ± standard error of the mean 

(SEM), unless otherwise specified. 
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Figure 4.2: Image processing steps for CTP-based GFR measurement. (A) Average of entire dynamic 

series CT images with poor corticomedullary differentiation. (B) Summation of cortical phase timepoints 

(i.e., second quarter of dynamic series CT images) only, demonstrating a minor yet noticeable improvement 

in corticomedullary differentiation. (C) Application of dynamic threshold (anatomically matching the 

segmented cortical region to the contrast-enhanced cortex of the summed image as closely as possible), 

(D) allowing for creation of cortical region masks. (E) Cortical region masks were superimposed onto the 

perfusion and permeability-surface area product map, (F) yielding values that were used to calculate GFR 

(as described in section 4.2.3). 

 

4.3 Results 

Of the sixteen patients enrolled, ten were excluded from the analysis to measure 

GFR because either one or both kidneys was not completely captured in the CTP 

scanning. Six patients completed the study and were analyzed. A summary of patient 

baseline characteristics is presented in Table 4.1. 

Of the six patients, only one was randomized to receive cooled HD during the first 

visit, while the other five all received standard HD during the first visit. Consequently, 

analyzing the results based on organizing the patients by HD type (i.e., standard HD or 

cooled HD) did not significantly alter any of the relevant findings or conclusions of this 

work. Therefore, the results will be presented based on organizing the patients by study 

visit (i.e., first or second visit). A summary of the patient-specific HD session details is 

shown in Table 4.2. 
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Table 4.1: Baseline characteristics of third project study population. 

Characteristics Mean (Range)a 

n 6 

Age 62 (45–84) 

Men, n (%) 2 (33) 

Dialysis Vintage (years) 3.3 (0.8–25.4) 

Length of HD Session (hours) 3.5 (3.0–4.0) 

UF (mL/kg) 21.3 (8.6–38.5) 

Coronary Artery Disease, n (%) 1 (17) 

Congestive Heart Failure, n (%) 1 (14) 

Peripheral Vascular Disease, n (%) 2 (33) 

Diabetes, n (%) 1 (17) 

Hypertension, n (%) 5 (83) 

aUnless otherwise specified. 

 

Table 4.2: Patient-specific HD session details. 

Patient 
Number 

HD Type of Visit 1 / 2 
Days Between 

Visits 
HD Sessions 

Between Visits 
HD Vintage 

(months) 

1 Standard / Cooled 14 5 48 

2 Standard / Cooled 14 5 14 

3 Standard / Cooled 49 20 22 

4 Standard / Cooled 35 14 9 

5 Cooled / Standard 7 2 117 

6 Standard / Cooled 7 2 302 
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Pre-HD GFR values are presented in Table 4.3. The average baseline left kidney, 

right kidney, and total GFR values for the first visit were 2.6±0.9, 1.7±0.5, and 4.3±1.0 

mL/min/1.73m2, respectively. The average baseline left kidney, right kidney, and total 

GFR values for the second visit were 2.6±1.1, 1.5±0.4, and 4.0±1.2 mL/min/1.73m2, 

respectively. There were no significant differences between the corresponding GFR 

values between the two visits (2.6±0.9 to 2.6±1.1 mL/min/1.73m2 for left kidney GFR, 

P=0.917; 1.7±0.5 to 1.5±0.4 mL/min/1.73m2 for right kidney GFR, P=0.075; 4.3±1.0 to 

4.0±1.2 mL/min/1.73m2 for total GFR, P=0.345). These findings are summarized in Table 

4.3. In addition, Figure 4.3 presents the changes in single-kidney and total GFR over the 

course of the two study visits. See Appendix B for a summary of GFR (Table B1), 

perfusion (Table B2) and extraction efficiency (Table B3) values for all patients. 

 

Table 4.3: Average pre-HD GFR values. Results are presented for the left kidney, right 
kidney, and both kidneys for the first and second study visits. 

 
Mean Baseline GFR ± SEM (mL/min/1.73m2) 

Visit 1 Visit 2 

Left Kidney 2.6 ± 0.9 2.6 ± 1.1 

Right Kidney 1.7 ± 0.5 1.5 ± 0.4 

Total 4.3 ± 1.0 4.0 ± 1.2 
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Figure 4.3: Changes in single-kidney and total GFR over the two HD visits, where GFR was assessed 

before, during and after HD for each visit. Right kidney, left kidney and total GFR values are represented 

by the light gray, dark gray, and black curves, respectively. The average baseline GFR was not significantly 

different between the first and second visit for the left kidney (P=0.917), right kidney (P=0.075), and total 

GFR (P=0.345). Results are given as average ± SEM (standard error of the mean). 

 

4.4 Discussion 

4.4.1 GFR 

Among the two visits, average baseline total GFR ranged between 4 and 4.5 

mL/min/1.73m2, while average baseline single-kidney GFR ranged between 1 and 3 

mL/min/1.73m2. Overall, these values are physiologically reasonable and may accurately 

represent true RRF. 

Measured GFR trended towards decreasing pre- to post-HD over the course of 

both visits. Firstly, These findings coincide with previous work which demonstrated that 

Visit 1 Visit 2 
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renal function is maximal pre-HD and minimal post-HD.12 Secondly, measured cortical 

perfusion (see Appendix B, Table B2) trended towards decreasing during HD over the 

course of both visits (consistent with first project13), while measured extraction efficiency 

(see Appendix B, Table B3) did not appear to change during HD over the course of both 

visits. These findings help to explain why GFR, which is directly proportional to the product 

of F and E, trended towards decreasing over the course of HD. 

Szeto el al.14 previously observed an RRF loss rate of -0.083±0.094 mL/min/month 

following continuous ambulatory peritoneal dialysis initiation in 645 ESRD patients. 

Combining this rate (which has been shown to be identical between HD with high-flux 

polysulfone membranes and continuous ambulatory peritoneal dialysis15) with our 

patients’ baseline GFR measurements and dialysis vintages yields an average baseline 

GFR at dialysis initiation of approximately 11.7 mL/min/1.73m2. This estimate is 

consistent with recent trends in Canadian patients’ GFRs at HD initiation.16 

 

4.4.2 Methodology 

In this work, per pixel GFR was computed as the product of the filtration rate 

constant and pixel mass, where only cortical pixels were considered. The filtration rate 

constant describes the clearance constant of contrast from glomerular capillaries to 

Bowman’s capsule in nephrons,17 and the exclusive use of cortical pixels arises from the 

fact that glomerular filtration occurs entirely within the cortical segment of the nephron 

(i.e., in the renal corpuscle – glomerulus and Bowman’s capsule).18 

Previous studies that used imaging techniques to compute GFR have employed 

Patlak graphical analysis or various compartment modelling approaches.5,6,17,19 However, 
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underlying assumptions behind these methodologies (e.g., negligible contrast transit time 

through blood vessels in tissues, negligible efflux of contrast from Bowman’s capsule 

back to glomerulus) are likely violated in the case of ESRD/HD renal pathophysiology.9,20 

Conversely, the Johnson-Wilson model accounts for transit and potential bidirectional 

exchange in the renal corpuscle as contrast flows through the glomerulus.7 

Renal structural and functional homogeneity, as well as corticomedullary 

differentiation, diminishes as kidney disease progresses.17,21 Therefore, imaging the 

entire kidney (compared to a single slice) and augmenting cortical contrast enhancement 

(by summing cortical phase images) are necessary for avoiding single-slice extrapolation 

bias and improving cortical pixel delineation, respectively, allowing for accurate GFR 

measurement. 

Our proposed CTP-based GFR measurement approach overcomes important 

shortcomings associated with current clinical GFR assessment. GFR measurement could 

be confounded by extra-renal clearance, as well as tubular secretion or reabsorption, of 

the GFR agent (including contrast) used for the measurement.2 These confounding 

effects undermine the utility of commonly used GFR measurement methods, as well as 

endogenous and exogenous filtration markers. Standard clinical GFR measurement 

methods are based on measuring the blood or urine clearance of GFR agents. Since 

blood goes everywhere in the body, the removal mechanisms of these agents could be 

glomerular filtration, other extra-renal clearance routes as well as tubular mechanisms. In 

addition, while urine collection does ensure that one is measuring what is cleared by the 

glomerulus, creatinine and urea are secreted and reabsorbed, respectively, by the 

proximal tubule of the nephron, making GFR measurements based on urinary clearance 
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of these agents inaccurate. On the other hand, our CT-based method directly measures 

the removal of contrast in blood delivered to the afferent arterioles of glomeruli by limiting 

the analysis to the cortical region of the kidney, making this technique free of influence of 

extra-glomerular sources of clearance, as well as tubular secretion or reabsorption. The 

rapid scan time also ensures that F·E can be reliably estimated by the deconvolution 

method. Finally, CTP is a favorable imaging modality because it yields additional useful 

anatomical and functional information. This modality is also readily available and relatively 

inexpensive compared to magnetic resonance and nuclear medicine approaches. 

 

4.4.3 Potential Weaknesses, Limitations and Concerns 

We performed three contrast-enhanced scans for this work, but only one (pre-HD) 

would be necessary in a clinical setting. Previous work has shown that HD with high-flux 

polysulfone membranes clears contrast media22 and that iopamidol in particular is cleared 

by HD,23 suggesting that pre-HD CTP-based GFR quantification does not result in 

significant contrast agent retention. While contrast media have historically been 

discouraged from clinical use in kidney disease patients, recent reports have questioned 

the nephrotoxic nature of contrast media, where there has been no conclusive evidence 

of contrast-induced nephropathy in HD patients.24 

Our approach carries a few additional limitations. Firstly, each GFR measurement 

requires a ~8 mSv dose CTP scan. However, CTP-based GFR measurement could be 

performed infrequently, limited to decisions regarding HD dosing/scheduling adjustments. 

In addition, the time needed for radiation-induced cancer manifestation25 is much greater 

than HD patient life expectancy.26 Secondly, we did not validate our findings against any 
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other GFR assessments. However, there is in fact no gold standard GFR assessment 

technique for ESRD patients on HD.2 Thirdly, renal tissue density was assumed to be 

1.050 g/cm3. While this value is for healthy tissue, there is no published ESRD kidney 

density data available. Finally, our approach is based on certain technical requirements, 

including hardware (CTP-capable scanner with sufficient coverage) and software 

requirements (noise reduction and motion correction); even though they are becoming 

more widely available. 

 

4.5 Conclusion 

The results of this work represent the first imaging-based assessment of GFR in 

HD patients. Using CT perfusion imaging, physiologically realistic GFR values were 

measured over the course of two HD sessions. These preliminary findings demonstrate 

the feasibility of this approach in terms of reliability and accuracy, and provide early 

evidence of the clinical potential that CT perfusion imaging has for GFR measurement in 

ESRD patients on HD. 
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CHAPTER 5 

5 Summary and Future Directions 

For the better part of a century, hemodialysis (HD) has been used to treat 

individuals with impaired renal function.1 As the medical field progressed and technology 

advanced, HD-based renal replacement therapy has been become more effective, 

efficient, and safe. However, despite the evolution of this important treatment modality, 

end-stage renal disease (ESRD) patients on HD continue to suffer from various 

comorbidities, substandard quality of life, and low rates of survival.2 By exploring how HD 

impacts different organs and vascular beds, along with the downstream clinical 

consequences of these effects, the mechanisms behind the development of HD 

complications can be understood and potential therapeutic solutions can be developed.  

This philosophy was applied to the research projects of this thesis, where 

computed tomography perfusion (CTP) imaging was used to non-invasively assess multi-

organ hemodynamics during HD. CT perfusion is a dynamic contrast-enhanced imaging 

technique that can provide absolute measurements of various hemodynamic parameters. 

All three projects were based on data collected from a single clinical trial, where HD 

patients were randomized to receive either standard or cooled HD first in a two-visit, 

crossover study design. During each visit, CTP imaging was performed before, during 

and after HD without any interruption to the patient’s treatment. 

The novel findings of our research studies provide important groundwork regarding 

the effects of HD on the kidneys and liver, and the therapeutic potential of dialysate 

cooling (DC) for the hemodynamic and functional protection of these organs. In this final 

chapter of the thesis, the project objectives will be revisited, important research findings 
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will be summarized, clinical impact will be considered, and potential future research 

directions will be discussed. 

 

5.1 Summary of Projects: Motivations, Objectives and Findings 

5.1.1 Project 1: kidney blood flow and residual renal function loss 

The maintenance of even minimal levels of residual renal function (RRF) in ESRD 

patients correlates with improved clinical outcomes and survival.3 However, RRF 

characteristically declines rapidly upon the initiation of HD,4 with recurrent renal ischemic 

insults hypothesized to be responsible.5 This hypothesis was tested in the first project of 

this thesis, which had the following objectives: 

1. Examine how HD affects renal perfusion 

2. Explore the relationship between changes in renal perfusion and myocardial 

dysfunction (a hallmark of HD-induced circulatory stress) during HD 

3. Investigate whether cooling can protect the kidneys from HD-induced circulatory 

stress 

Renal perfusion and myocardial injury (i.e., myocardial stunning) were evaluated 

using CTP imaging and speckle-tracking echocardiography, respectively. The most 

important findings of this project are as follows: 

1. Renal perfusion deceased to 81.6% of baseline (P<0.005) during HD and 

recovered to 95.1% of baseline after HD 

2. There was a correlation between the severity of renal ischemia and the number of 

stunned myocardial segments during HD (r=-0.33; P<0.05) 
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3. With DC, renal perfusion deceased to 89.2% of baseline during HD and recovered 

to 94.3% of baseline after HD 

We demonstrated that renal perfusion significantly deceases during HD and that 

DC trends towards mitigating this decrease. In addition, renal ischemia correlated with 

myocardial injury during HD. Recurring renal ischemic insults over many HD sessions 

represents the preliminary pathophysiological characterization of HD-mediated residual 

renal function loss in this patient population. 

 

5.1.2 Project 2: liver blood flow and function, and endotoxemia 

Endotoxemia correlates with the presence of cardiovascular complications and a 

higher mortality risk, and is commonly found in HD patients, who have increased 

endotoxin levels compared to healthy people and earlier stage chronic kidney disease 

(CKD) patients.6 The liver is normally responsible for clearing endotoxin,7 suggesting that 

HD may disrupt liver hemodynamics and function. This idea was explored in the second 

project of this thesis, which had the following objectives: 

1. Examine how HD affects hepatic perfusion and function 

2. Explore the relationship between changes in hepatic perfusion and endotoxin 

levels during HD 

3. Investigate if cooling can maintain liver hemodynamics and limit systemic exposure 

to endotoxin 

Hepatic perfusion, hepatic function (i.e., clearance rate of indocyanine green, ICG) 

and endotoxin levels were assessed using CTP imaging, pulse-dye densitometry and the 
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limulus amoebocyte lysate assay, respectively. The most important findings of this project 

are as follows: 

1. During HD, portal vein perfusion increased to 111.1% of baseline (P=0.14) and the 

ICG clearance rate deceased to 85.5% of baseline (P=0.016) 

2. Endotoxin levels increased to 119.6% of baseline during HD (P=0.15) and to 

128.4% of baseline after HD (P=0.037) 

3. With DC, all of these changes were mitigated: portal vein perfusion changed to 

100.8% of baseline during HD, ICG clearance rate changed to 95.2% of baseline 

during HD, and endotoxin levels changed to 107.8% and 105.3% of baseline 

during and after HD, respectively 

We showed that there is concurrent redistribution of hepatic perfusion and 

decrease in liver function during HD, and that DC trends towards ameliorating these 

changes. Together, these changes help explain the high prevalence of endotoxemia 

observed in HD patients. 

 

5.1.3 Project 3: measuring GFR in HD patients using CTP 

The current clinical protocol for assessing glomerular filtration rate (GFR) in ESRD 

patients on HD is cumbersome, time-consuming and inaccurate,8 causing the adjustment 

of a patient’s HD prescription in order to optimize renal replacement therapy to be difficult 

to perform and often ignored in the clinical setting.9 However, CTP-based measurement 

of GFR has the potential to overcome the limitations of conventional measurement 

techniques10 and was the focus of the third project of this thesis, which had the following 

objectives: 
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1. Develop methodology for CTP-based GFR assessment 

2. Explore the feasibility of using CTP imaging to quantify GFR in HD patients 

3. Assess how GFR changes over the course of HD 

The filtration rate constant and cortical mass of the kidneys were measured by 

applying distributed parameter-based tracer kinetic modelling analysis and boosting 

corticomedullary differentiation, respectively, to CTP images. The most important findings 

of this project are as follows: 

1. Baseline measured GFR values were 2.6 and 2.6 mL/min/1.73m2 (left kidney) and 

1.7 and 1.5 mL/min/1.73m2 (right kidney) for the first and second visits, respectively 

2. Total baseline measured GFR values were 4.3 and 4.0 mL/min/1.73m2 (not 

significantly different) for the first and second visits, respectively 

3. GFR appeared to fluctuate over the course of HD during both study visits (first visit: 

before to during to after HD → 4.3 to 2.2 to 2.4 mL/min/1.73m2, second visit: before 

to during to after HD → 4.0 to 2.3 to 3.3 mL/min/1.73m2) 

Our novel methodology yielded physiologically realistic GFR values in actual HD 

patients. These results, together with the speed, utility and accessibility of CTP imaging, 

showcases the clinical feasibility of this approach. 

 

5.2 Clinical impact 

The novel methodology and important findings outlined in the research projects of 

this thesis have the potential to impact the clinical management of HD patients in a 

positive and meaningful way. The hemodynamic and functional measurements we 

performed help to identify some of the previously unexplored effects of HD-induced 
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circulatory stress on the kidneys and liver, which introduces new avenues for clinical 

research and therapeutic intervention. 

 

5.2.1 Heterogeneity of hemodynamic response to HD 

One of the most prominent features of our renal and hepatic perfusion data was 

the observed heterogeneity in hemodynamic response to HD-induced circulatory stress. 

In particular, we found that renal perfusion decreased during HD in approximately two 

thirds of patients, with the remaining third having no change, or even an increase, in 

kidney blood flow. Similarly, changes in hepatic perfusion (total, hepatic arterial, portal 

venous) during HD varied among patients, with about half of patients having increased 

blood flow and the other half having decreased blood flow. By studying this heterogeneity 

in response (which is characteristic of HD patients11-13) in more patients, we might be able 

to predict an individual’s hemodynamic response to HD and develop strategies to mitigate 

the potential negative effects. 

The primary factors involved in determining how a vascular bed will 

hemodynamically react to HD-induced circulatory stress include: (1) the cardiac output 

response, (2) the baroreflex sensitivity, and (3) additional organ-specific autoregulatory 

mechanisms.11 These factors have been explored and described to varying degrees in 

CKD and ESRD, but have not yet been integrated together with perfusion measurements 

to fully describe the heterogeneous response of patients to HD. In particular, (1) cardiac 

output has been shown to decrease during HD,14,15 (2) patients with compromised 

baroreflex sensitivity have been found to be more vulnerable to ultrafiltration,11 and (3) 

the kidney’s hemodynamic regulation mechanisms (e.g., myogenic reflex, 
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tubuloglomerular feedback, renin-angiotensin system) become impaired in kidney 

disease.16-18 The relationship between kidney disease and/or HD, and the liver’s 

hemodynamic regulation (e.g., hepatic arterial buffer response, hepatorenal reflex19,20), is 

unknown. 

We conducted a preliminary analysis of the relationship between changes in 

cardiac output, blood pressure, and renal/hepatic perfusion in our patients. Based on the 

Stewart-Hamilton equation, cardiac output was determined from CTP21-23 as follows: 

𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑

𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛– 𝑣𝑠– 𝑡𝑖𝑚𝑒 𝑐𝑢𝑟𝑣𝑒
 

There were a few key findings of this analysis:  

• During HD, there were significant drops in cardiac output (P=0.01) and blood 

pressure (P=0.001), coinciding with the results of previous studies14,24 

• During HD, changes in cardiac output correlated with changes in renal perfusion 

(r=0.38, P=0.004) and hepatic perfusion (r=0.66, P=0.007) 

• Approximately half of patients demonstrated a drop in both cardiac output and 

blood pressure during HD, but these patients did not necessarily have a 

corresponding decrease in organ perfusion, suggestive of organ-specific 

autoregulatory activity 

o Project 1: 14/29 patients (48%) demonstrated a drop in both cardiac output 

and blood pressure during HD → of these, 11/14 (79%) patients 

demonstrated a drop in renal perfusion 

o Project 2: 8/15 patients (53%) demonstrated a drop in both cardiac output 

and blood pressure during HD → of these, 4/8 (50%) patients demonstrated 

a drop in hepatic perfusion 
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These interesting results help to emphasize the importance of studying the hemodynamic 

response to HD-induced circulatory stress, as well as the role of CTP in measuring multi-

organ perfusion and cardiac output (i.e., possible to assess renal perfusion, hepatic 

perfusion and cardiac output from a single CTP scan). 

 

5.2.2 CTP for hemodynamic and functional measurements in HD patients 

Patients with ESRD typically receive their HD treatments in a clinical setting (rather 

than at home). Therefore, the ideal modality for acquiring intradialytic hemodynamic 

measurements is one that is minimally invasive, does not disrupt HD treatment, and can 

be performed rapidly. These criteria are satisfied by CTP, an imaging modality that is 

readily available, relatively inexpensive, and that can perform multi-organ physiologic 

measurements in approximately two minutes without disrupting HD. While magnetic 

resonance imaging and positron emission tomography can be used to perform 

intradialytic perfusion measurements,14,25-27 these modalities are hindered by 

contraindications (metal, pacemaker, etc.), availability, and scan time concerns, limiting 

their use for this application. The research projects of this thesis were the first to ever use 

CTP for acquiring hemodynamic measurements during HD. Despite its advantages, CTP 

imaging has a couple of drawbacks: it requires the administration of exogenous contrast 

media, and it exposes the patient to ionizing radiation. However, the severity of these 

drawbacks has been ameliorated with time, thanks to innovations in technology, 

improvements in methodology, changes in clinical practice, and conducting of higher-

quality clinical trials.  
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The main sources of evidence for contrast-induced nephropathy (CIN) are based 

on studies with some combination of the following aspects:28 

• Use of “unsafe” contrast media (i.e., ionic, high-osmolarity, etc.) 

• Contrast was administered intraarterially for invasive angiocardiographic 

procedures 

• No control groups where contrast material was not administered 

• Not designed to directly assess the relationship between intravenous contrast 

media administration and CIN 

To date, no large-scale randomized control trials have been conducted to more 

definitively conclude whether modern contrast-enhanced imaging protocols (e.g., CTP) 

cause CIN, particularly in patients with GFR <30 mL/min/1.73m2.29 However, over the 

past decade or so, a number of reviews, observational studies controlling for known 

confounders, meta-analyses, and retrospective studies utilizing propensity-matched 

analysis have consistently found that the incidence of diminished renal function does not 

significantly differ between patients receiving contrast-enhanced versus non-contrast 

imaging scans.28,29 While more work is required to accurately and confidently characterize 

the relationship between contrast administration and changes in renal function, the clinical 

utility of CTP (and other modern contrast-enhanced imaging techniques), together with 

the current level of scientific evidence, supports the use of this modality for performing 

the important intradialytic hemodynamic and functional measurements presented in the 

research projects of this thesis. 

Patients involved in our studies received a radiation dose of approximately 8 mSv 

during every CTP scan. This dose is equivalent to about ten abdominal radiographs and 
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is approximately three times greater than the local natural annual background dose (~3 

mSv).30 While this dose is nontrivial, it is important to note that, as previously mentioned 

in chapter 4, it typically takes decades for radiation-induced cancer to manifest.31 Patients 

with ESRD receiving maintenance HD have an average age of >60 years and a life 

expectancy of under five years.32 Considering these time frames, the lifespan of HD 

patients exposed to radiation from medical imaging is likely not be affected in any 

significant way. In addition, CT dose-reduction techniques and technologies have been 

the focus of many research initiatives, with various approaches finding their way into the 

clinical workflow. For example, automatic exposure control (modulation of tube current 

based on regional x-ray attenuation) and iterative reconstruction, together with gradual 

improvements in filter and detector designs and technologies, are all current 

advancements in CT dose-reduction that are currently being implemented.33,34 Novel 

approaches that are being researched, such as compressed sensing (reconstruction of 

reduced-projection image data) and machine learning techniques (e.g., deep learning for 

reconstruction and/or denoising of low-dose image data), represent exciting prospects in 

dose-reduction technology.35,36 

 

5.2.3 Effectiveness of DC 

In all the research projects of this thesis, DC was applied as a therapeutic 

intervention to ameliorate HD-induced circulatory stress. We implemented a fixed-

temperature cooling approach, whereby the dialysate was cooled to 35°C for all patients, 

regardless of baseline body temperature or body temperature fluctuations during HD. It 

was consistently found that with DC, changes in perfusion and function did not differ 
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significantly from changes seen during standard HD. Although this prevented us from 

concluding that DC was an effective intradialytic intervention in these studies, we did 

observe that cooling did not cause harm in terms of worsening the severity of changes in 

perfusion and function during HD, and even trended towards positively affecting these 

metrics. 

Two plausible reasons for the ineffectiveness of DC in our studies are (a) that we 

used a fixed-temperature cooling approach, and (b) that there was only a single session 

of cooled HD.  

Several forms of DC have been explored in research studies, with the most 

prevalent types being fixed-temperature cooling (as in our studies), baseline-temperature 

cooling (based on pre-HD body temperature), and feedback-temperature cooling (based 

on continual monitoring of body temperature during HD to adjust DC level).37-39 While 

being the easiest to implement, fixed-temperature cooling ignores the relatively wide 

range of baseline body temperatures among individuals.40 As a result, DC could range 

from <0.5°C to >2°C depending on the individual, helping to explain why its effectiveness 

and tolerability was not universal in our studies. On the other hand, trials implementing 

baseline-temperature cooling or feedback-temperature cooling have observed a greater 

effectiveness of DC, demonstrating the importance of an individualized approach to DC.41-

43 While it is possible to implement baseline-temperature cooling universally, feedback-

temperature cooling requires additional resources (e.g., biofeedback temperature 

monitoring device) that limits its clinical uptake.37,38 

Most research studies exploring DC were similar to ours in terms of design, where 

patients were randomized to receive a single or a few sessions of standard or cooled HD 
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first before being crossed over to the other arm of the study.37,38 While this sort of design 

is appropriate for evaluating acute HD-induced hemodynamic and functional changes 

(e.g., IDH, renal and hepatic perfusion, myocardial stunning, etc.), it does not enable the 

study of long-term consequences of DC on downstream clinical outcomes. For instance, 

although we observed only trends toward improvements in renal and hepatic perfusion 

and function with DC during a single HD session, it may be that if this intervention was 

implemented consistently over the course of several months/years that significant clinical 

outcomes (e.g., smaller decline in RRF, lower levels of endotoxemia, etc.) could be seen. 

Because of the different types of cooling approaches, various metrics for 

determining cooling efficacy, and limited longitudinal study of cooling effectiveness, the 

clinical potential of DC has been questioned and its clinical uptake has been slow. 

However, there is currently a large-scale, multi-center randomized control trial being 

conducted (MyTEMP trial44) that aims to definitively demonstrate the effectiveness of 

baseline-temperature DC by reporting major cardiovascular outcomes over the course of 

several years. 

 

5.3 Next Steps 

Moving forward, there are several important and exciting next steps related to the 

research work of this thesis. Our work has demonstrated that CTP is a favorable imaging 

modality for use during HD: scan time is very short, axial coverage is generous (i.e., can 

image multiple structures in a single scan), and there is no interruption to HD treatment. 

Therefore, CTP can be used for assessing the effects of HD-induced circulatory stress 

on other organs and vascular beds, as well as evaluating the efficacy of other therapeutic 
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interventions. As alluded to in previous sections, it may be worthwhile to explore other 

types of DC, other intradialytic therapeutic interventions entirely, or even combining 

multiple interventions, for ameliorating HD-induced circulatory stress and maintaining 

renal and hepatic perfusion and function during HD. 

The first and second projects of this thesis were performed with a relatively small 

number of participants and assessed intradialytic changes in renal and hepatic perfusion 

and function over the course of just a single standard HD session. It would be interesting 

to perform longitudinal studies with more participants where metrics of interest (e.g., 

intradialytic change in renal and hepatic perfusion) are correlated with the corresponding 

clinical outcomes of relevance over a longer time period (e.g., changes in RRF and 

endotoxemia levels after one year). These kinds of analyses would give greater context 

to, and increase the clinical value of, the perfusion and function measurements performed 

in this thesis. 

Next, while no true gold standard GFR measurement approach exists for ESRD 

patients on HD, some sort of validation study is necessary to strengthen the findings of 

the third project. As the best metrics to evaluate the clinical utility of a technique are 

clinical outcomes and survival, it may be worthwhile to perform a study where these 

metrics (in addition to, for instance, residual urine output volume) are correlated to HD 

patient GFR values measured using both our CTP-based technique, as well as measured 

using inulin clearance with timed urine collection. If our CTP-based approach yields the 

better results, then it has the potential to become the new gold standard GFR 

measurement technique in HD patients. 
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Finally, we have begun working on a collaborative, multidisciplinary project that is 

focused on designing and running virtual HD sessions. Using CTP data from HD patients, 

we are able to generate 3D reconstructions of multi-organ perfusion (Figure 5.1) for fractal 

dimension texture analysis and heterogeneity quantification. Then, by combining the 

reconstruction data together with various biophysical inputs (e.g., mathematically 

optimized spatial blood flow distribution, organ shape, blood vessel morphometry, 

autoregulation mechanisms, etc.), a mathematical model of the patient-specific response 

to HD-induced circulatory stress can be generated. From here, it would be possible to 

simulate and run in silico sessions of HD while having full control over the various 

adjustable technical and clinical parameters. This will allow us to predict the patient-

specific response to HD, as well as to optimize treatment parameters accordingly, prior 

to exposing ESRD patients to the circulatory stress of HD. 

 

Figure 5.1 CTP-based 3D reconstructions of multi-organ perfusion. Reconstructions of the liver and kidneys 

are shown. Image courtesy of Dr. Sanjay Kharche. 
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Appendices 

Appendix A: Supplementary Results for Chapter 3 

In addition to liver excretory function, hepatic injury due to HD-induced circulatory 

stress was also assessed by measuring liver enzyme levels before and after standard 

and cooled HD. A summary of the relative changes in enzyme levels from baseline is 

presented in Table A1. 

 

Table A1: Changes in liver enzyme levels with respect to baseline following standard and 

cooled HD. The measured enzymes included aspartate transaminase, alanine 

transaminase, alkaline phosphatase, and gamma glutamyl transpeptidase, and were 

used as measures of liver injury resulting from HD-induced circulatory stress. 

Liver Enzyme 

% Change Relative to Baseline 

After Standard HD After Cooled HD 

Aspartate Transaminase +19.7 +16.1 

Alanine Transaminase +10.0 +11.3 

Alkaline Phosphatase +11.8 +7.5 

Gamma Glutamyl Transpeptidase +16.7 +11.8 
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Appendix B: Supplementary Results for Chapter 4 

The GFR was measured in 6 patients whose kidneys were completely captured 

with CT perfusion scanning. Summaries of computed GFR values, renal cortical perfusion 

values, and renal cortical extraction efficiency values for these patients are given in 

Tables B1, B2, and B3, respectively. 

 

Table B1: Calculated GFR based on CT perfusion imaging measurements. Results are 

organized according to visit (visit 1 or visit 2, top half of table) and HD type (standard HD 

or cooled HD, bottom half of table), where imaging was performed before, during and 

after HD. GFR was computed for left (L) and right (R) kidneys separately, then summed 

together for total (T) GFR. Shading represents HD sessions where dialysate cooling was 

applied. 

 GFR (mL/min/1.73m2) – Organized by Visit 

Pt 
# 

Visit 1 Visit 2 

Before HD During HD After HD Before HD During HD After HD 

L R T L R T L R T L R T L R T L R T 

1 6.6 1.6 8.2 4.0 0.6 4.6 3.2 0.4 3.6 7.7 1.1 8.8 3.5 0.9 4.4 3.7 1.3 5.0 

2 1.0 0.6 1.6 0.5 0.3 0.7 1.0 0.6 1.7 1.1 0.5 1.6 0.2 0.2 0.5 0.9 0.7 1.6 

3 1.0 1.7 2.7 0.7 1.3 2.1 0.7 1.2 1.9 0.8 1.8 2.6 1.0 2.1 3.0 1.7 2.6 4.3 

4 0.7 0.4 1.0 0.0 0.3 0.4 0.3 0.3 0.6 0.2 0.1 0.3 0.4 0.2 0.6 0.5 0.4 0.9 

5 3.2 3.4 6.5 2.0 1.9 3.9 2.2 2.0 4.2 3.5 3.0 6.5 1.8 1.9 3.7 2.7 2.6 5.3 

6 3.0 2.5 5.5 0.7 0.8 1.5 1.3 1.3 2.6 2.1 2.3 4.4 0.8 0.8 1.6 1.4 1.0 2.4 

 GFR (mL/min/1.73m2) – Organized by HD Type 

Pt 
# 

Standard HD Cooled HD 

Before HD During HD After HD Before HD During HD After HD 

L R T L R T L R T L R T L R T L R T 

1 6.6 1.6 8.2 4.0 0.6 4.6 3.2 0.4 3.6 7.7 1.1 8.8 3.5 0.9 4.4 3.7 1.3 5.0 

2 1.0 0.6 1.6 0.5 0.3 0.7 1.0 0.6 1.7 1.1 0.5 1.6 0.2 0.2 0.5 0.9 0.7 1.6 

3 1.0 1.7 2.7 0.7 1.3 2.1 0.7 1.2 1.9 0.8 1.8 2.6 1.0 2.1 3.0 1.7 2.6 4.3 

4 0.7 0.4 1.0 0.0 0.3 0.4 0.3 0.3 0.6 0.2 0.1 0.3 0.4 0.2 0.6 0.5 0.4 0.9 

5 3.5 3.0 6.5 1.8 1.9 3.7 2.7 2.6 5.3 3.2 3.4 6.5 2.0 1.9 3.9 2.2 2.0 4.2 

6 3.0 2.5 5.5 0.7 0.8 1.5 1.3 1.3 2.6 2.1 2.3 4.4 0.8 0.8 1.6 1.4 1.0 2.4 
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Table B2: Measured renal cortical perfusion based on CT perfusion imaging. Values are 

organized according to visit (visit 1 or visit 2, top half of table) and HD type (standard HD 

or cooled HD, bottom half of table), where imaging was performed before, during and 

after HD. Cortical perfusion was measured for left (L) and right (R) kidneys separately. 

Shading represents HD sessions where dialysate cooling was applied. 

 Renal Cortical Perfusion (mL/min/100g) – Organized by Visit 

Pt 
# 

Visit 1 Visit 2 

Before HD During HD After HD Before HD During HD After HD 

L R L R L R L R L R L R 

1 121.6 36.9 79.6 24.1 59.6 15.9 154.1 28.2 98.9 30.0 97.6 41.7 

2 22.6 22.4 21.0 17.6 34.1 20.7 24.5 22.9 9.2 9.2 27.9 25.6 

3 22.1 31.7 18.4 26.4 32.0 29.6 34.9 38.8 27.0 45.4 57.3 102.5 

4 25.2 11.6 27.0 11.0 14.8 12.0 8.8 7.6 19.0 6.8 14.9 10.7 

5 24.2 26.3 24.8 24.9 24.7 32.3 32.4 30.3 27.9 31.7 36.4 32.1 

6 15.3 12.7 7.9 5.6 13.5 11.2 17.3 16.3 12.6 7.6 11.6 9.8 

 Renal Cortical Perfusion (mL/min/100g) – Organized by HD Type 

Pt 
# 

Standard HD Cooled HD 

Before HD During HD After HD Before HD During HD After HD 

L R L R L R L R L R L R 

1 121.6 36.9 79.6 24.1 59.6 15.9 154.1 28.2 98.9 30.0 97.6 41.7 

2 22.6 22.4 21.0 17.6 34.1 20.7 24.5 22.9 9.2 9.2 27.9 25.6 

3 22.1 31.7 18.4 26.4 32.0 29.6 34.9 38.8 27.0 45.4 57.3 102.5 

4 25.2 11.6 27.0 11.0 14.8 12.0 8.8 7.6 19.0 6.8 14.9 10.7 

5 32.4 30.3 27.9 31.7 36.4 32.1 24.2 26.3 24.8 24.9 24.7 32.3 

6 15.3 12.7 7.9 5.6 13.5 11.2 17.3 16.3 12.6 7.6 11.6 9.8 
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Table B3: Measured renal cortical extraction efficiency based on CT perfusion imaging. 

Values are organized according to visit (visit 1 or visit 2, top half of table) and HD type 

(standard HD or cooled HD, bottom half of table), where imaging was performed before, 

during and after HD. Cortical extraction efficiency was measured for left (L) and right (R) 

kidneys separately. Shading represents HD sessions where dialysate cooling was 

applied. 

 Renal Cortical Extraction Efficiency – Organized by Visit 

Pt 
# 

Visit 1 Visit 2 

Before HD During HD After HD Before HD During HD After HD 

L R L R L R L R L R L R 

1 0.4591 0.6155 0.5589 0.4875 0.6711 0.5371 0.4030 0.6439 0.5187 0.7694 0.5151 0.6214 

2 0.7055 0.7204 0.5762 0.5022 0.6261 0.9079 0.7617 0.6716 0.6736 0.7177 0.7414 0.7407 

3 0.5148 0.5338 0.6191 0.6722 0.4160 0.6027 0.4364 0.4854 0.7017 0.6231 0.4900 0.3379 

4 0.4115 0.6803 0.3755 0.8949 0.5919 0.6781 0.4380 0.5513 0.3354 0.6582 0.6135 0.6835 

5 0.7356 0.7374 0.5642 0.6478 0.7121 0.5100 0.6539 0.6803 0.5337 0.5597 0.5620 0.6487 

6 0.7259 0.6809 0.5754 0.7001 0.6689 0.5985 0.7230 0.7001 0.4165 0.5635 0.6624 0.6001 

 Renal Cortical Extraction Efficiency – Organized by HD Type 

Pt 
# 

Standard HD Cooled HD 

Before HD During HD After HD Before HD During HD After HD 

L R L R L R L R L R L R 

1 0.4591 0.6155 0.5589 0.4875 0.6711 0.5371 0.4030 0.6439 0.5187 0.7694 0.5151 0.6214 

2 0.7055 0.7204 0.5762 0.5022 0.6261 0.9079 0.7617 0.6716 0.6736 0.7177 0.7414 0.7407 

3 0.5148 0.5338 0.6191 0.6722 0.4160 0.6027 0.4364 0.4854 0.7017 0.6231 0.4900 0.3379 

4 0.4115 0.6803 0.3755 0.8949 0.5919 0.6781 0.4380 0.5513 0.3354 0.6582 0.6135 0.6835 

5 0.6539 0.6803 0.5337 0.5597 0.5620 0.6487 0.7356 0.7374 0.5642 0.6478 0.7121 0.5100 

6 0.7259 0.6809 0.5754 0.7001 0.6689 0.5985 0.7230 0.7001 0.4165 0.5635 0.6624 0.6001 

 

 

 

 

 

 

 



152 

 

Appendix C: Copyright Release Form for Figure 1.2 
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Appendix D: Copyright Release Form for Figures 1.4 and 1.5 
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