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Abstract  

PET with targeted probes may better elucidate the molecular and functional basis of 

diseases. The widely used standardized uptake value from static imaging, however, cannot 

quantify the probe uptake processes like perfusion, permeability, binding to and 

disassociation (k4) from target. The overarching thesis goal is to develop a model to enable 

kinetic analysis of dynamic imaging to separate these processes.  

As perfusion delivery is not modelled in the current standard two tissue compartment 

(S2TC) model, I developed a flow modified two tissue compartment (F2TC) model that 

incorporates the blood flow effect. The model’s performances were investigated with 

simulation. It was applied to derive kinetic parameters of [18F]FAZA binding to highly 

hypoxic pancreatic cancer. As a validation, the distribution volume (DV) of [18F]FAZA 

determined with the F2TC and S2TC model were compared with graphical analysis (GA). 

Kinetic analysis requires arterial concentration of the native probe to model the observed 

tissue uptake over time, therefore, a method was developed to correct for the metabolite 

contamination of arterial plasma. 

Based on fractional Euclidean distance of estimated and simulated parameters, F2TC 

model performed better than S2TC model, particularly with longer mean transit time due 

to the neglect of perfusion effect in the latter model. Also, dynamic acquisition longer than 

45 minutes did not improve the accuracy of estimated F2TC model parameters. In the 

pancreatic cancer study: (a) GA showed that [18F]FAZA was reversibly bound to hypoxic 

cells; (b) DV estimated by the F2TC and S2TC model was not and was significantly 

different from GA respectively; (c) k4 and DV estimated by F2TC model could distinguish 

normal and cancerous tissue with 95% sensitivity. TLC-autoradiography identified 

metabolites in 2µL of arterial plasma with radioactivity as low as 17Bq. This high 

sensitivity and the ability to measure multiple (8-12) samples simultaneously could allow 

metabolite correction of arterial plasma to be performed in individual studies.  

Finally, the reversible binding of [18F]FAZA in hypoxic pancreatic tumor cells could be 

due to efflux of reduced products by the multidrug resistance protein. Therefore, kinetic 
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analysis of dynamic [18F]FAZA PET could monitor both hypoxia and drug resistance for 

individualized treatment. 

Keywords 

Dynamic PET, kinetic modelling, flow modified two tissue compartment model, hypoxia, 

[18F]FAZA, [18F]FEPPA, radio-metabolite correction, thin layer chromatography, 

autoradiography, and pancreatic ductal adenocarcinoma 
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Summary for Lay Audience  

PET is an imaging technique that uses targeted molecules (tracers) to monitor disease 

processes in the body. Currently, static “snapshot” imaging is used to image the tracer 

uptake at a single time following injection.  Static imaging cannot differentiate the different 

dynamic processes involved in tracer uptake over time. Dynamic imaging acquired at 

multiple times post injection are required for the analysis of these dynamic processes, 

elucidation of which can improve our mechanistic understanding of disease. The 

overarching goal of my PhD research is to develop a mathematical model for the analysis 

of dynamic images. This analysis, also called kinetic analysis, requires measurement of the 

fraction of native (unmodified) tracer in blood plasma, therefore, I also developed a 

technique to measure such fraction in blood plasma.  

The current mathematical model, standard two tissue compartment model (S2TCM), 

neglects the delivery of tracer by blood flow. I developed a flow modified two tissue 

compartment model (F2TCM) to explicitly take into account of this delivery effect. 

Computer simulation showed the F2TCM is better than S2TCM in more accurately 

measuring the processes involved in the uptake of the targeted tracer, therefore may be 

better in characterizing disease mechanisms. Furthermore, this improved analysis was 

achieved with 45 min of dynamic image acquisition. 

The developed F2TCM was applied to pancreatic cancer to investigate the uptake of 

[18F]FAZA, a targeted tracer that binds to tumor cells deprived of oxygen (hypoxic), 

making them resistant to treatment. It was found that the tracer is not trapped in hypoxic 

cells as commonly believed and it could be pumped out of hypoxic tumor cells via the 

multidrug resistance protein on cell surface. Furthermore two parameters estimated with 

the F2TCM can identify pancreatic cancer with 95% sensitivity.  

The developed technique can measured the fraction of native tracer in blood plasma using 

very small volume of very low radioactivity. Metabolite contamination of blood plasma 

has been plaguing the accuracy of kinetic analysis and calls for measurement of this 
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contamination in individual patients. The high sensitivity and convenience of my technique 

opens up the possibility of measuring the plasma metabolite fraction for individual patients.    
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Chapter 1 

1 Introduction 

Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique for 

monitoring cellular and metabolic function of tissues or organs in vivo. The principle of 

PET is that targeted substrates or ligands specific for particular enzymes or receptors 

respectively, called tracers, are labelled with radioactive element like 18F, 11C and 13N. The 

uptake of the tracer in the targeted tissue as imaged by PET following injection provide 

pharmacokinetic information that can guide drug development and/or shed light on the 

pathogenic mechanisms of diseases. 

 

1.1 The working principle of PET imaging 

The radioactive element in the tracer decays by emitting positrons. The positrons generally 

travels for a short distance before it interacts or collide with electrons from neighboring 

atoms during annihilation process. The interaction produces two 511 keV photons at 180º 

angle which is captured as coincidence photons by two opposite detectors encircling the 

patient. The detectors are usually scintillation detectors that converts high energy photons 

to low energy visible photons which are amplified by photon multiplier tubes. As the 

emitted photons travel through the patient’s body, the photons gets attenuated due to 

scattering and absorption, which needs to be corrected and it depends on the linear 

attenuation correction and the path length. Due to coincidence detection in PET, the 

attenuation path length is the same along the line of response (LOR) while in single photon 

emission computerized tomography (SPECT) the path length depends on the location of 

the emission. Therefore, correcting for attenuation is more difficult in SPECT1. This allows 

for accurate measurement of tracer activity concentration in the subject with PET. 

 

Tracer concentrations in PET are detected as counts. The major advantage of PET is the 

ability to convert the detected counts into activity concentration necessary for 

quantification of metabolic rates. This requires calibration of the system which is done by 
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scanning a 20 cm cylinder phantom with known activity in Bq/mL. The counts in the center 

of the phantom can be measured and since the activity in the center of the phantom is 

known, the conversion factor can be estimated2.  

PET signals are generated by coincidence events which is limited by counting statistics. 

To improve the signal to noise (SNR) of the images in the initial phase of PET acquisition, 

the counts are averaged over certain time interval of 5-10s called frame averaging. 

However, due to the fast wash in and washout of tracer immediately after the tracer 

injection, dynamic images at short time bins are required to capture rapid changes in tracer 

concentration in initial phase, particularly when obtaining the image derived arterial input 

function curve3. This is prone to image noise and low counts. In order to achieve higher 

counting statistics, the sensitivity of the system needs to be improved. The sensitivity is 

measured in terms of noise equivalent count rate (NECR)4, which is a measure of true 

coincidence counts accounting for unwanted random and scatter coincidence. It has a direct 

square root relationship with SNR. 

The most prevalent example of a PET tracer is [18F]fluorodeoxyglucose ([18F]FDG), a 

glucose analog that enters the cell via membrane glucose transporters and is 

phosphorylated by the glycolysis enzyme hexokinase into 18F-fluorodeoxyglucose-6-

phosphate ([18F]FDG-6-P). Because [18F]FDG-6-P is hydrophilic and with the absence of 

phosphatase to dephosphorylate back to [18F]FDG, it becomes trapped in the cell. 

Therefore, accumulation of [18F]FDG-6-P in tissue is a surrogate marker of its metabolic 

(glycolytic) activity. In cancer, because of the Warburg effect5, anaerobic metabolism is 

enhanced, this would lead to upregulated hexokinase activity and more accumulation of 

[18F]FDG-6-P in-situ. PET [18F]FDG imaging can access the metabolic changes in cancer 

following treatment as well as in detecting and staging cancers6,7. Uptake of [18F]FDG is 

highly correlated with tumor malignancy in lung, breast, colorectal cancer and other types 

of cancer7.  

1.2 Quantitative analysis of PET 

Besides being sensitive, PET is a very a specific imaging modality because of the targeted 

tracers developed. Furthermore, it is highly quantitative, meaning that PET image 
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intensities can be calibrated relatively easily to give concentration of the targeted tracer 

both in tissue and arterial blood. As such, PET imaging data, unlike those from other 

imaging modalities, can be used in kinetics modelling to derive information concerning the 

mechanisms of diseases. By kinetics modeling we mean to model transport processes, e.g. 

blood flow, that govern the distribution of the injected targeted tracer to body organs and 

tissues and molecular (biochemical) processes that either convert the native targeted tracer 

into its products, e.g. the phosphorylation of [18F]FDG into [18F]FDG-6-P and possibly 

dephosphorylation or bind the ‘free’ targeted tracer either reversibly or irreversibly to its 

receptor. Through kinetics modeling, quantitative measures of these different processes, 

e.g. blood flow and volume, enzyme activity, receptor concentration and binding potential, 

useful on elucidating the mechanisms of diseases and their response to treatment can be 

obtained in-vivo without resorting to tissue sampling and subsequent histopathology or 

immunohistochemistry. Despite these potential advantages, kinetics modeling in 

quantitative PET analysis is not commonly used either in research or clinical setting 

possibly due to its complexity compared to the more frequently used semi-quantitative 

standardized uptake value (SUV) analysis. In the following subsections, the salient 

differences between SUV and kinetics modeling will be discussed. 

1.2.1 Standardized Uptake Value  

Typically, PET images are quantified from a static (single) image acquired at some time 

after the tracer has been injected, after the tracer has reached a distribution equilibrium 

between blood and the target organ/tissue (not necessarily in all cases). It is quantified with 

a simple metric called standardized uptake value which is the uptake (concentration) of the 

tracer in the target tissue normalized by injected dose and body weight to account for 

distribution of tracer throughout the body8. It is widely used in monitoring cancer  treatment 

responses9 and differentiating malignant from benign tissue10. The major reason why this 

method is preferred over kinetic modeling is the short acquisition time and that 

measurement of arterial tracer concentration is not required which can be cumbersome 

clinically. However, the method has a number of problems including large variability11–14.  

SUV is usually taken at 60 minute or longer post tracer injection (p.i) when the tracer is 

assumed to have reached distribution equilibrium or when the target tissue uptake plateaus. 
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It is impossible to determine the time when the tracer reaches equilibrium from a single 

time acquisition since it is dependent on tracer properties, for instance, slow vs. fast 

clearance, the disease of interest and the research question under investigation15–17. 

Hamberg et al. showed that for lung cancer patient imaged with 18F-FDG, the tracer 

reached distribution equilibrium at 90 min but not at 60 min p.i.. This time difference 

introduced a 46% difference in the SUV which could lead to wrong diagnoses.18. 

Additionally, static images at different time points following tracer injection can lead to 

different interpretation of images. Figure 1.1 shows simulated tissue time activity curve 

(TAC) from two different regions of interest (ROIs). ROI2 showed high influx of the tracer 

followed by continuous washout while ROI1 showed steady accumulation of tracer beyond 

30 minute p.i. (time point 1). The SUV for both ROIs coincides at 80 min p.i. (time point 

2), before and after that time ROI2 SUV was higher than ROI1 and vice versa respectively. 
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The graph demonstrates the dependency of SUVs on time acquisition. The two lines are 

simulated SUV with respective to time at two different regions of interest (ROI). ROI1 shows 

steady uptake of tracer followed by slow washout at later time points while ROI2 shows high 

influx of tracer in the beginning followed by continuous washout. At time point 1, the SUV for 

ROI2 will be higher than ROI1 and vice versa for time point 3 while the SUVs will be the same 

at time point 2. Furthermore, SUV will only provide information on the uptake of tracer but 

not the processes involved like the perfusion delivery. 

3 

Figure 1-1: Dependency of SUV values on time acquisition 
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Hence, SUV measured at a single time can lead to erroneous interpretation of the processes 

involved in the uptake of tracer.  

SUV is usually calculated from ROI and there are several different calculated SUVs. 

SUVmean is the average SUV within the region encircled by the iso-contour at a certain 

threshold percentage of the maximum pixel value within the region. It is dependent on the 

threshold chosen and is subject to inter-observer threshold variability. On the other hand, 

SUVmax is the maximum SUV value, representing highest metabolic pixel for 18F-FDG. It 

is prone to noise variations due to absence of noise averaging when several pixels are 

averaged together12,19,20. SUVtotal is the total uptake of the tracer in the ROI. These 

measures are usually used to classify patients into different response groups - complete 

response, partial response and stable disease. The different SUV measures can vary by as 

much as 90% in individual tumors and there was conflicting categorization of tumor 

response in 80% of the cases9. Furthermore, different institutes use different SUV measures 

making comparison of results based on SUV problematic without standardizing on the 

particular measure used8. 

Another problem is the use of a 18F-FDG SUV threshold of 2.521,22 to classify tumor as 

benign or malignant. In cases of inflammation, the increased uptake of 18F-FDG by 

inflammatory cells could be misinterpreted as tumor. On the other hand, some 

malignancies can have a slow uptake of the tracer, it will exhibit lower SUV values leading 

to a wrong diagnosis if imaging is not delayed beyond the norm. Blood glucose level also 

can affect SUV11,12. Hyperglycemic patients have oversaturated transmembrane glucose 

transporter (GLUT), preventing FDG uptake as both glucose and FDG competes for the 

same GLUT13. Therefore SUV values should not be taken at face value and the patient’s 

underlining physiology should be taken into consideration while interpreting the value. 

Finally, SUV is a ‘snapshot’ of tracer uptake at one time point. Tissue uptake of tracer is 

governed by three processes – perfusion, bidirectional permeability of blood-tissue barrier 

and binding and disassociation from the tissue target. SUV is the combination of all these 

processes. As these processes require more than one parameter to describe, a single image 

acquired at any time is not able to characterize these processes necessary for diagnosis and 

for guiding drug development23.   
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1.2.2 Kinetic modelling 

Tissue uptake of targeted tracer is complex and involves at least the following processes - 

perfusion, bidirectional permeability of blood-tissue barrier and binding and disassociation 

from the tissue target. Sequential PET images taken at multiple time points following tracer 

injection (i.e. dynamic PET) is required to generate data for deciphering these processes 

via kinetics modelling.  There are several fundamental assumptions in kinetics modeling. 

First, a minute amount of the tracer compared to its endogenous compound needs to be 

injected in dynamic PET, such that it does not interfere with the native process(es) targeted 

by the tracer. Second, the targeted process(es) remains stable over the duration of dynamic 

PET when images are acquired. Third, the labelling of the tracer with radioactive element 

does not significantly alter its chemical and molecular properties24. A fundamental 

prerequisite for kinetics modeling, arising from the fact that the tracer is injected 

systematically, is an accurate measure of arterial tracer concentration over time – the 

arterial input function (AIF). One way to measure AIF is by manual blood sampling from 

a peripheral artery. For studies with long acquisition time, long blood sampling can have a 

small risk of complications like hand ischemia and it also exposes the staff to additional 

unnecessary radiation exposure while collecting blood25. A non-invasive approach is to 

measure AIF from left ventricle or arteries in the field of view (FOV) of the PET images – 

image derived AIF 26. The imaging approach affords the opportunity to measure AIF that 

preserves fast wash-in and wash-out of tracer immediately after the tracer injection if fine 

temporal resolution in image acquisition is prescribed in this initial phase. However, due 

to catabolism of the parent tracer with the surrounding chemical component in the blood, 

it can produce radio - metabolites which is the limitation for both imaged derived AIF and 

blood draws. 

One general class of kinetic models is the compartmental model where different 

physiological/molecular states of the tracer are categorized into compartments with the 

conversion rates between compartments describe by rate constants. Over the past 50 years, 

various compartment models have been developed to quantify blood flow, cerebral 

metabolic rate of glucose, and receptor bindings of importance in cancer27. In compartment 

models, the blood vessels are treated as a compartment which carries with it the implicit 
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assumption that ‘fresh’ tracer delivered to the tissue by blood flow is instantaneously and 

uniformly mixed with tracer already in the blood vessels and furthermore the washout of 

tracer from blood vessels is also instantaneous rather than over a period, equal to the blood 

vessel transit time resulting in a tracer concentration gradient from the arterial to venous 

end. This consideration is important because, in dynamic PET imaging, the tracer is 

injected intravenously (systematically) and continues to recirculate throughout the whole 

body. During each transit of tracer through the vessels, there is continuous influx and efflux 

of tracer into the tissue over the transit time rather than instantaneously, failure to properly 

model the transit time but can, therefore, result in erroneous estimates of rate constants. 

The mean transit time effect is investigated in detail in Chapter 2.  

In general, compartments models can be either a priori knowledge or data driven28. In the 

first approach, the prior knowledge is use to define the number of compartments as well as 

their interconnection to describe the kinetic behavior of the tracer. This approach allows 

for the estimation of rate constants that govern the transfer of tracer from one compartment 

to another. One such example, and is commonly used, is the standard two tissue 

compartment model to describe the kinetics of targeted tracers. On the other hand, data 

driven method does not require the number and interconnection of the compartments to be 

explicitly specified. Commonly used data driven approaches include graphical and spectral 

analysis. With graphical analysis, only summary kinetic parameters that are combinations 

of the compartment rate constants are estimated, e.g., unidirectional influx rate of 

irreversibly bound tracer from blood vessels into tissue and distribution volume.  Spectral 

analysis gives spectrum of rate constants which are not interpretable as specific 

compartment rate constants, e.g. the binding or dissociation rate constant of targeted 

tracers.   

1.2.3 Compartment models 

1.2.3.1 Standard two tissue compartment (S2TC) model  

The most commonly used compartment model for targeted tracer is the standard two tissue 

compartment (S2TC) model. As the name implies, the model is comprised of two tissue 
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compartments – one for free or unbound with concentration of Ce(t) and one for tracer 

bound to the target with concentration Cm(t) (Fig 1.2). Note that Ce(t) and Cm(t) are ‘mass’ 

concentration in units like mMole per gram of tissue. Tracer in blood vessels is also 

represented as a compartment with caveats discussed in §1.1.2. 

The tracer kinetics as encapsulated by S2TC model can be concisely expressed by the 

following system of first order linear differential equations:  

(A) Schematic of standard two tissue compartment model. Besides the blood vessel 

compartment, the two tissue compartments are one for free unbound tracer and one for 

bound tracer. The extravascular space (compartment) includes both tissue compartments.  

Rate constants describing the tracer transfer between compartments are defined in the text. 

(B) Corresponding impulse residue function for the model 

Figure 1-2: Standard two tissue compartment (S2TC) model  

Vp 
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𝑑𝐶𝑒

𝑑𝑡
= 𝐾1𝐶𝑝 + 𝑘4𝐶𝑚 − (𝑘2 + 𝑘3)𝐶𝑒 … … … (1) 

𝑑𝐶𝑚

𝑑𝑡
= 𝑘3𝐶𝑒 − 𝑘4𝐶𝑚 … … … (2) 

The rate constants are - K1 is influx rate constant from blood vessel into the free tracer 

compartment in tissue, k2 is the efflux rate constant back to the vessel, k3 is binding rate 

constant to the target and k4 is the disassociation rate constant from the target. The ‘mass’ 

concentration of tracer in the tissue, Q(t) including blood vessels and the two tissue 

compartments can be expressed as:  

𝑄(𝑡) = 𝑉𝑝𝐶𝑝(𝑡) + 𝐶𝑒 + 𝐶𝑚 … . . (3) 

where Vp is the tissue blood volume in units of mL per gram of tissue and Cp(t) is the 

arterial concentration in units of mMole per mL of blood or the AIF. E is the extraction 

efficiency and product of blood flow (F) with E is K1. 

Eqs. (1) and (2) can be solved algebraically using Laplace transform and the solution for 

Q(t) can be expressed as:  

𝑄(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼𝑅𝐹𝐹(𝑡) … … … (4) 

𝐼𝑅𝐹𝐹(𝑡) =  {

0 0 < 𝑡 < 𝑇0

𝑉𝑝𝛿(𝑡) 𝑡 = 𝑇0

𝐺𝑒−𝛼(𝑡−𝑇0) + 𝐻𝑒−𝛽(𝑡−𝑇0) 𝑡 > 𝑇0

… … … (5) 

IRFF(t) is the flow scaled impulse residue function. It is the idealized tissue tracer 

concentration in response to the tracer being injected as a tight bolus into the vessels 

supplying the tissue and ⊗ is the convolution operator, T0 is the delay in tracer arrival at 

the tissue relative to that in the vessel where Cp(t) or AIF is measured. This vessel could 

be the radial artery with manual blood sampling or a major vessel, like the aorta, with image 

derived AIF. The rest of the (model) parameters in Eq (5) are functions of the rate constants 

shown in Fig. 1.2: 
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𝛼 =
𝑘2 + 𝑘3 + 𝑘4 + √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
… … … (6) 

𝛽 =  
𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
… … … (7) 

𝐺 =
𝐾1(𝛼 − 𝑘3 − 𝑘4)

𝛼 − 𝛽
… … … (8) 

𝐻 =
𝐾1(𝑘3 + 𝑘4 − 𝛽)

𝛼 − 𝛽
… … … (9) 

For ease of explanation (application of principle of conservation of mass), Q(t), Ce(t), Cm(t) 

and Cp(t) in Eqs (1-3) are expressed in natural units of mMole per g of tissue or per mL of 

blood. However, through calibration with a water phantom filled with uniform activity and 

assuming a tissue density of 1.0, all these variables can be expressed in consistent units of 

kBq per mL as measured by PET 29. 

Due to the compartmental assumption of blood vessels, delivery of the tracer by blood flow 

(F) is not ‘explicitly’ modeled, ‘fresh’ tracer from the supplying blood vessels is assumed 

to instantaneously mix uniformly with tracer already present and also instantaneously 

washout from the blood vessels.  This assumed tracer transport in blood vessels leads to 

the incorporation of a Dirac delta function of amplitude Vp at t=T0 for the impulse residue 

function, IRFF(t) (Fig. 1.2).  

1.2.3.2 Flow Modified Two Tissue Compartment (F2TC) Model  

To address the shortcomings of assuming blood vessels as a compartment, we developed a 

model where all blood vessels are represented as a ‘pipe’ through which the tracer flows 

from arterial end to venous end with mean transit time W. To more realistically represent 

the delivery and transport of tracer starting at the blood vessels through to the bound 

compartment in tissue, we combine the Johnson-Wilson-Lee model (JWLM)30 and the 

S2TC model.  As in the JWLM, the perfusion delivery of tracer to the blood vessels as well 

as the influx and efflux of tracer to and from the free tracer compartment in the tissue 
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during the transit time were explicitly modelled; this approach results in a tracer 

concentration gradient in the vessel from the arterial to venous end as opposed to the 

instantaneous mixing and washout in S2TC model (Fig. 1.3). 

Schematic of flow modified two tissue compartment model. The tissue compartments, as in 

the S2TC model, are the free and bound pool. Blood vessels are a pipe with concentration 

gradient from the arterial (Ca(t)) to venous (CV(t)) end with mean transit time W. 

Corresponding IRF is below the model. During the transit time of the tracer, the concentration 

of tracer in the tissue is constant, as indicated by the rectangular function in the IRF. The area 

under the rectangular function is the blood volume (Vp).  

 

Figure 1-3: Flow modified two tissue compartment (F2TC) model  
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In F2TC model, tracer transport between the two tissue compartments would lead to the 

bi-exponential decay in the impulse residue function as in the S2TC model. Combining the 

impulse residue function for the JWLM and S2TC model we arrive at that for the F2TC 

model as shown in Eq (10):  

𝐼𝑅𝐹𝐹(𝑡) =  {

0 0 ≤ 𝑡 < 𝑇0

𝐹 𝑇0 ≤ 𝑡 < 𝑇0 + 𝑊

𝐺𝑒−𝛼(𝑡−𝑇0−𝑊) + 𝐻𝑒−𝛽(𝑡−𝑇0−𝑊) 𝑡 ≥ 𝑇0 + 𝑊

… … … (10) 

where W is the mean transit time and G, H, 𝛼 and 𝛽 are described in equations (6-9). 

The difference between the IRFF(t) of S2TC and F2TC model is that instead of a delta 

function (see Eq(5)), the vascular component of F2TC model IRFF(t) is described by a 

rectangular function of constant tracer concentration in the tissue, during the mean transit 

time as the tracer flows from arterial end to venous end. By necessity of conservation of 

mass, the constant tracer concentration here refers to the total tracer ‘mass’ in blood vessels 

as well as the two tissue compartments. Because of the dynamic distribution of tracer, the 

concentration in blood vessels, and individual tissue compartment would not be constant 

during the transit time of blood vessels. Because of its limited spatial resolution, PET is 

not able to differentiate among blood vessels and the tissue compartments, instead it 

measures the aggregate mass, Q(t) as expressed in Eq(3) and as in the S2TC model,  

  

𝑄(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼𝑅𝐹𝐹(𝑡) … … … (11) 

 

where IRFF(t) is given by Eq(10) instead of Eq (5). 

1.2.4 Estimation of S2TC and F2TC model parameters 

Both the S2TC and F2TC model are nonlinear because there are exponential terms in the 

corresponding IRFF(t). To estimate kinetic parameters, these parameters are iteratively 

adjusted from given starting values to fit the measured tissue TAC, Q(t) as closely as 

possible using non-linear least squares optimization method. The goodness of fit is 
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measured by the root mean squared deviations (RMSD) between the measured and model 

fitted curve.  

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

i= 0

… … … (12) 

where xi and yi are the data points of the measured and fitted curve respectively, 𝑖 is the 

index of time points and N is the number of time points in the dynamic PET acquisition.  

The fitted curve with the least RMSD provides the optimal kinetic parameters for the 

measured tissue TAC. For analyzing tracers that are irreversibly bound, the k4 values can 

be set to 0. According to central volume theorem31, blood volume, Vp can estimated as:  

𝑉𝑝 = 𝐹 × 𝑊 … … … (13) 

1.2.5 Graphical Analysis 

Graphical Analysis is based on compartmental model but does not require a priori 

knowledge of the model structure – number of compartments and their specific 

interconnections. It derives summary parameters rather than the rate constants of the model 

by linear regression of transformed AIF and tissue TAC. There are two kinds of graphical 

analysis: Logan plot is used for analysis of reversibly bound tracer and Patlak for analysis 

of irreversibly bound tracer.  The major advantage of the method is that it can be used to 

validate the reversibility or irreversibility of tracer binding without requiring prior detailed 

knowledge of tracer binding mechanism. However, graphical analysis requires the 

transformed data to reach linearity which could be affected by noise32. 

1.2.5.1 Patlak Graphical Analysis 

Patlak plot was initially developed for analysis of influx rate across the blood brain barrier 

for irreversibly bound tracer in the brain. The plot is based on non-linear transformation of 

the tissue TAC and AIF as shown in the following equation: 



28 

 

𝑄(𝑡)

𝐶𝑝(𝑡)
= 𝐾𝑖

∫ 𝐶𝑝(𝑡)𝑑𝑡
𝑇

0

𝐶𝑝(𝑡)
+ (𝑉𝑒 + 𝑉𝑝) … … … (14) 

where 𝑄(𝑡) and 𝐶𝑝(𝑡) are the tissue TAC and AIF respectively. The slope of the linear 

regression of the transformed data is the unidirectional influx rate constant (Ki) which is 

the ratio of the mass of tracer diffused out of vessel to that of the tracer plasma 

concentration under equilibrium distribution condition33. 

The intercept of the Patlak plot is 𝑉𝑒 + 𝑉𝑝, where Ve is the distribution volume of free and 

unbound tracer33–35.  

With the S2TC and F2TC model, the unidirectional influx rate constant of tracer can be 

expressed in terms of the model rate constants as:  

𝐾𝑖 =
𝑘1𝑘3

𝑘2 + 𝑘3
… … … (15𝑎) 

For reversible binding tracer, besides the unidirectional influx rate constant from blood 

vessels to the bound compartment, NET influx rate constant is given as: 

𝐾𝑛𝑒𝑡 =
𝑘1𝑘3

𝑘2 + 𝑘3 + 𝑘4
… … … (15𝑏) 

 

1.2.5.2 Logan graphical analysis 

Logan plot is used for analyzing tracers that are not irreversibly bound to the target, that is, 

k4 is non-zero. The equation describing the plot is:  

∫ 𝑄(𝑡)𝑑𝑡
𝑡

0

𝑄(𝑡)
= VT.

∫ 𝐶𝑝(𝑡)𝑑𝑡
𝑇

0

𝑄(𝑡)
+ 𝐼𝑛𝑡. … … … (16) 

It plots the integral of tissue TAC against integral of arterial TAC, both normalized by Q(t). 

The slope of the curve is the total distribution volume (VT). The plot is linear when the 

intercept (Int.) becomes constant34.  
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𝐼𝑛𝑡. =
𝐶e(t) + 𝐶m(𝑡)

𝐶𝑝(𝑡)
… … … (17) 

Here VT is a theoretical volume defined as the ratio of tracer concentration in the tissue 

(free and bound compartment) to that in blood vessel at distribution equilibrium. Similar 

to Patlak plot, VT can also be expressed in terms of rate constants of the S2TC or F2TC 

model as:  

𝑉𝑇 =
𝐾1

𝑘2
(1 +

𝑘3

𝑘4
) + 𝑉𝑝 … … … (18) 

For a one tissue compartment model or for modelling inert tracers, distribution volume 

(DV) is equivalent to Ve which is DV for free and unbound tracer (excluding Vp)35 and it 

is expressed as:  

𝑉𝑒 = 𝐷𝑉 =
𝐾1

𝑘2
… … … (19) 

1.2.6 Spectral Analysis 

Like graphical analysis, spectral analysis is also data driven rather than based on a proposed 

model. If the distribution of tracer is linear and stationary in time as well as that the PET 

signal (image intensity) is linear with respect to tracer concentration, based on the principle 

of linear superimposition, the tissue TAC corresponding to an intravenous injection of the 

tracer is given by Eq (4). However, instead of two decaying exponentials as in the case of 

S2TC model, the IRF(t) is defined by a pre-defined number of exponents (usually 100-

1000):  

𝐼𝑅𝐹(𝑡) = ∑ 𝐴𝑖𝑒−𝛼𝑖𝑡

𝑛

i=0

… … … (20) 

where 𝑖 is the index of the n predefined exponentials and 𝐴𝑖 is the coefficient of the ith 

exponential. The Ai
’s can be  estimated with linear least square method, preferably with 

non-negative constraint27. The advantage of spectral analysis is that it does not presuppose 
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the number of exponentials (compartments and their interconnection), that is, it is 

‘agnostic’ to compartment structure. This ‘agnostic’ nature of the spectral analysis would 

have the shortcoming that it is difficult to relate exponentials with non-zero Ai
’s to rate 

constants of specific kinetic processes, for example, influx rate constant of tracer from 

blood vessels to tissue or binding rate constant of tracer to its target etc.  

1.3 Cancer Imaging 

Cancer cells are rapidly growing cells and glucose is the main source of energy for their 

metabolism. 18F-FDG is an analog of glucose and like glucose, it is rapidly transported into 

cancer cells. Unlike glucose, 18F-FDG does not partake in the subsequent glycolysis steps 

Schematic illustration of blood vessels in healthy and tumor tissue. In the streamlined healthy 

vascular network, capillaries and venules provide adequate supply of oxygen to meet demand, 

resulting in normoxia.  On the contrary, tumor blood vessels are tortuous and irregular creating 

pockets of nutrient and oxygen deficient regions. In chronic hypoxic, because of diffusion 

limitation, cells that are far away from the blood vessels (~100µm), can experience insufficient 

supply of oxygen and nutrients to meet their metabolic demand, resulting in hypoxia. Acute 

hypoxia is caused by the collapse of blood vessels in different parts of the tumor for a brief 

period because tumor blood flow can occasionally fluctuate quite erratically, cutting off blood 

and oxygen supply to cells in those territories resulting in hypoxia .  

Figure 1-4: Tumor microenvironment 
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after the initial phosphorylation by hexose due to the labelling of 18F in the C-2 position. 

[18F]FDG is trapped in the cells as 18F-FDG-6-P once it is phosphorylated by glycolysis36. 

However, in rapidly growing tumors with heterogeneous distribution of blood vessels, the 

insufficient supply of oxygen can result in a hypovascular core leading to hypoxia because 

of the imbalance between supply and demand for oxygen from glycolysis as well as other 

metabolic and cellular processes. Since [18F]FDG participates in the glycolysis pathway, it 

cannot be used for imaging the decreased level of oxygen (hypoxia) in solid tumor.  

1.3.1 Hypoxia 

Hypoxia is a common feature of solid tumors due to imbalance in the supply and utilization 

of oxygen in the uncontrolled tumor cell proliferation. Hypoxia can be classified into two 

types: chronic and acute hypoxia (Fig 1.4). Chronic hypoxia is caused by diffusion limited 

oxygen transport to the tumor cells. Oxygen and nutrient transport in tissues are dominated 

by diffusion. Cells that are in close proximity to blood vessels consume the available 

oxygen and nutrient while cells further from vessels are oxygen deprived and not capable 

of maintaining their regular cell metabolism. The cells will eventually adapt to the lack of 

oxygen which will affect their response to treatment or die resulting in necrotic regions6,37–

39. Hypoxia is defined as a partial oxygen (pO2) pressure < 5mm Hg compared to normal 

tissues with pO2 > 40mm Hg40,41. 

In solid tumors, the vasculature is not streamlined like the normal tissue (Fig. 1.4). The 

tortuous structure of the vessels may be perfused only by the plasma or may not be perfused 

at all. Despite the presence of vessels, the regional tissues may not be supplied by oxygen. 

Hypoxia can also be caused by raised interstitial fluid pressure resulting in intermittent or 

cycling hypoxia condition. These perfusion limited and short term hypoxia is called acute 

hypoxia which is deemed more resistant to therapy38,42,43. 

1.3.2 Hypoxia and radiation resistance 

In 1953, Grey et al.41 identified the significance of oxygen in radiation treatment and 

hypoxia in treatment resistance. Breathing oxygen before irradiation showed instantaneous 

increase in radio-sensitivity with no significant increase beyond pO2 of 20 mmHg. The 
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radio-sensitivity of high linear energy transfer (LET) radiation like neutrons is not 

significantly affected with increasing oxygen content. Normal cells can sustain ~3 times 

more radiation damage compared to hypoxic cells42,44. With single radiation dose fraction, 

hypoxia can limit radio-sensitivity. On the other hand, with fractionated radiotherapy, re-

oxygenation may occur between radiation fractions. This depends on the dose delivered 

and on the type of cancer cell45,46. 

Radiation kill cells either directly by DNA damage, particularly for high LET radiation like 

electrons and neutrons or indirectly via intermediary products like free radicals. The more 

common cell death is through the indirect method. It refers to interaction of radiation with 

macromolecules in the cytoplasm to liberate high energy electrons which in turn interacts 

with other molecules like water. The electrons interaction with water creates highly 

reactive hydroxyl radicals which can be removed by recombination with other free radicals 

(like 𝐻̇ to produce water) or by hydrogen donated from thiol compounds (such as 

glutathione, GSH) to produce much less reactive (damaging) radicals. The hydroxyl radical 

can combine with oxygen to form highly reactive oxygen species (ROS) like peroxyl 

radical. All these free radicals can easily diffuse and cause damage away from the origin 

of the first interaction. Indirect damage is most common for low LET radiation. Since 70% 

of human body is composed of water, most of the radiation induced injury arises indirectly 

from the products of interaction with water as described above38,47. Therefore, radiation 

cell kill requires oxygen and low oxygen level inhibits DNA double strand break thereby 

enhancing cell survival.6,40,44.  

1.3.3 Chemo-resistance in hypoxia 

Hypoxic cells in an attempt to survive and propagate in an oxygen limited environment, 

are likely to develop a more aggressive tumor phenotype. The gene induced by hypoxia is 

regulated by a transcription factor called hypoxia inducible factor (HIF-1). It induces the 

expression of genes such as vascular endothelial growth factor (VEGF), glucose 

transporter-1 (GLUT-1) and multidrug resistance protein (MDR) which have direct or 

indirect resistance to chemotherapy48,49.  
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VEGF is also called vascular permeability factor since it increases vessel permeability and 

angiogenesis48,50. Increased vessel permeability can lead to increase interstitial fluid 

pressure which would impede the delivery of chemo-drugs by perfusion.  GLUT-1 is a 

transporter protein that facilitates entry of glucose into tumor cells. Under hypoxic 

condition in tumors, overexpression of the protein compensates for the higher energy 

demand of tumors since glycolysis can occur in low oxygen environment to maintain the 

energy supply of tumors51. This alternate pathway could explain why GLUT-1 indirectly 

induce chemo-resistance. The role of MDR is discussed in detail under §1.3.7. 

1.3.4 Pancreatic cancer 

Pancreatic cancer (PCa) also known as pancreatic ductal adenocarcinoma is a cancer of 

ductal epithelium and one of the worst solid cancers because of extremely poor prognosis. 

According to American National Cancer Institute cancer statistics from 2009-2015, the 

overall 5-year survival rate is 9.3% 52. It is difficult to diagnose PCa early since symptoms 

do not appear until it is in an advanced stage or has metastasized. Pancreas is a deeply 

situated organs surrounded by other organs at very close proximity, hence it metastasizes 

easily and it cannot be palpated by health professional during routine exams53. Only 40% 

of patients with localized disease is surgically resectable. It has been established that PCa 

have low oxygen tension. The partial oxygen pressure (pO2) of tumor is <5 mmHg and 

normal pancreatic tissues has a much higher pO2 >24 mm of Hg54. It is highly resistant to 

chemotherapy, radiation therapy and immunotherapy55 and low oxygen tension (hypoxia) 

is one of the contributing factors. 

1.3.5 Treatment options for pancreatic cancer 

Surgical resection alone is not sufficient for pancreatic cancer treatment as invariably 

microscopic disease remains in the resection margins. Whipple surgery, a surgical 

procedure to remove the head of the pancreas along with lymph node dissection, did not 

improve the overall survival56. A randomized trial in 1969 found that patients with 

unresectable pancreatic cancer treated with 5-fluorouracil (5-FU) along with radiation 

therapy had improved survival of 10 months compared to radiation or chemotherapy 
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alone57,58. According to the European Study Group for Pancreatic Cancer 1 Trial, the five 

year survival rate for resected pancreatic cancer was 10 percent for patients receiving 

chemoradiotherapy (CR) while the percentage was much higher (21%) for those who 

received chemotherapy with 5-FU alone59. Another study comparing CR with 

chemotherapy in the American cancer database sponsored by American College of 

Surgeons and American Cancer Society, showed that radiation improved overall survival 

(OS) by ~3 months on average. However, for node negative patients, radiation proved no 

benefit to OS 60. Despite these small improvements in survival, prognosis of PCa is still 

very poor. 

1.3.6 Chemo-resistance in pancreatic cancer 

In pancreatic cancer and in many solid tumors, chemo-resistance is from the failure to 

accumulate enough concentration of cytotoxic drugs due to the efflux of these drugs from 

tumor cells. Proteins mediating the efflux of drugs belong to the ATP binding cassette 

(ABC) transporters. The family of ABC transporter responsible for mediating the drug 

resistance is the ABC family B and C (ABCB, ABCC), particularly the multidrug 

resistance protein (MDR1) P-glycoprotein (P-pg) and multidrug resistance-associated 

protein (MRP) 1-9. MRPs are adenosine triphosphate (ATP) dependent transmembrane 

protein responsible for efflux of organic anion as well as toxins in the cancer cells including 

cytotoxins and drugs. In particular MRP1, MRP2, MRP3 and MRP6 accounts for transport 

of lipophilic compounds conjugated to glutathione, glucoronate and sulfate61,62. MDR1 P-

gp is also a membrane protein that directly efflux toxins out of the cells and it is implicated 

in chemo-resistance62,63. While there is an increased expression of MDR1-Pg and MRP1 

in pancreatic cancer, there is no correlation with tumor staging or grading. Instead, mRNA 

for MRP3 and MRP5 are upregulated in pancreatic cancer and correlated with tumor 

grading64–66. 
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1.3.7 Measurement of hypoxia 

As discussed in §1.3.1-3, oxygen tension is a determinant of response to cancer therapy, 

the ability to measure tumor oxygen tension is of significant importance in treatment 

planning. 

1.3.7.1 Polarography needle electrode system 

Several techniques have been developed in the past to measure tissue oxygen tension. One 

such system is the commercially available Eppendorf pO2 probe. It is invasive requiring 

insertion of the electrode into the tumor; the technique is limited to easily accessible tumors 

like the head and neck tumors, breast cancer and skin lesions42,67. For normal superficial 

tissue, pO2 as measured by the Eppendorf probe is 40-60mmHg while hypoxic tissues have 

pO2 <10mmHg68. In necrotic tumors where the oxygen content is significantly reduced, the 

probe cannot differentiate hypoxia from necrosis.  

Non-invasive imaging techniques to measure hypoxia have been developed, including 

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET).  

1.3.7.2 MRI measurement 

MRI is an anatomical and functional imaging technique with good spatial resolution. 

Different functional information can be achieved with various MRI sequences. Most of the 

MRI images are taken using gradient echo (GRE) sequence generated due to changes in 

T2
* relaxation time. T2

* is a combination of signal due to spin-spin dephasing as well as 

inhomogeneity of the magnetic field.  T2
* weighted GRE sequence is the most commonly 

used blood oxygenation level dependent (BOLD) imaging which is influenced by 

susceptibility due to changes in oxygenation in the blood. BOLD takes advantage of the 

difference in paramagnetism of the deoxy and oxy- hemoglobin in the blood vessel. 

Paramagnetism causes large dephasing of spin-spin lattice which further causes 

inhomogeneity of water proton spins in the surrounding tissues, resulting in shortening of 

T2
* signal69. It measures change in the oxygenation in vasculature rather than the tissue pO2 

which is important in determining the radiosensitivity69,70. BOLD signal only showed 
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correlation with temporal change in pO2 with no correlation in its magnitude. The signals 

can be confounded by several factors like blood flow, hematocrit concentration and the 

interconversion of oxy- and deoxy-hemoglobin43,71,72. For measuring oxygen content in the 

tissues, a technique similar to BOLD – tissue oxygenation level dependent (TOLD) MRI 

can be used. Unlike BOLD, TOLD relies on T1 relaxation which is caused by the presence 

of dissolved oxygen73.  

1.3.7.3 PET imaging  

A more sensitive method capable of measuring cellular oxygen level is PET. Due to 

upregulation of GLUTs in tumor cell membrane74 and as HIF-1𝛼 drives glycolytic 

enzymes75, [18F]FDG could be used as surrogate marker for hypoxia. However, studies 

have reported conflicting results with some reporting that [18F]FDG is not a good marker 

for hypoxia6,76,77. The cause of the discrepancies is because under reduced oxygen, the cells 

adapt to the environment and it undergoes anaerobic glycolysis instead of aerobic ATP 

production pathway. In addition, HIF-1𝛼 is also expressed in normoxic tissues resulting in 

non-specific uptake of [18F]FDG6.  

Multiple hypoxia PET tracers have been developed in the past. Since hypoxic cells have 

limited blood flow to the tissue, sensitivity of the imaging probe is necessary. The contrast 

between the hypoxic region and the normoxia region depends on how much the tracer 

enters into the cell, the fraction of the tracer that undergoes reduction in the tissue, the rate 

of clearance of the tracer from normoxic tissues and the retention time in the hypoxic 

cells78. The commonly used nitroimidazole (NI) based hypoxia PET tracer are 18F-

fluoromisonidazole ([18F] FMISO) and 18F-fluoroazomycin arabinoside ([18F]FAZA). NI 

were initially developed as radiosensitizers for hypoxic cells40.  

In view of the distance the tracers have to diffuse to the tumor cells which varies with 

different tumor types, static image acquisition is not an ideal method to distinguish hypoxia 

from normoxic tissues. Kinetic modelling which models the distribution and assess the 

reaction rate of tracer accumulation is more applicable in quantifying hypoxia79. 
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1.3.7.4 Mechanism of action for nitroimidazoles 

Nitroimidazoles are lipophilic compounds and it enter the cell through passive diffusion. 

NI undergoes certain degree of reduction in all the cells but in the absence of adequate 

oxygen supply, it undergoes further reduction. The nitro groups can be reduced by enzymes 

called nitroreductase, the first step of NI compound breakdown. There are two groups of 

nitroreductase, based on their reduction ability due to one or two electron transfer78,80:  

1. Type 1 nitroreductase: It is oxygen insensitive enzyme, in the presence or absence 

of oxygen, it transfers two electrons from nicotinamide adenine dinucleotide 

phosphate (NADP) to its nitro group of the NI compound, producing nitroso and 

hydroxylamine intermediates. However, the nitroso group is so reactive and the 

Schematic representation of [18F]FAZA imaging. In normoxia, [18F]FAZA is reduced by type 2 
nitroreductase to nitro-oxide radical which in presence of oxygen can revert back to its 
original form and diffuse out of the cell. Under hypoxia condition, the nitro-oxide radical is 
converted into nitroso and hydroxylamine that can covalently bind to macromolecule and 
get trapped in the hypoxic cell. 

Figure 1-5: Binding mechanism of [18F]FAZA (nitroimidazole) in hypoxic cell 
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second two-electron transfer to form hydroxylamine is much faster than the first 

transfer, it is difficult to isolate the two.  

2. Type 2 nitroreductase: It is oxygen sensitive enzyme which catalyzes single 

electron reduction to it nitro anion radical. It forms superoxide radical and due to 

high oxygen affinity, the radical reverts back to its original form. The cycle 

produces oxidative stress by producing large amounts of super-oxides. The 

successive steps is determinant in differentiating normal tissue from hypoxic tissue. 

In absence of oxygen, the re-oxygenation or formation of superoxide radical is 

slowed allowing for further reduction to take place. The superoxide is reduced to 

nitroso and hydroxylamine which binds to macromolecules like DNA, RNA and 

proteins that eventually gets trapped in the cell81. Due to the oxygen-sensitivity of 

this type of nitroreductase, it is of importance in hypoxia imaging.  

1.3.8 Hypoxia tracers  

[18F]FMISO is a first generation hypoxia NI based tracer. It is a lipophilic tracer which 

allows for easy diffusion into the cell. Several studies have shown that the tracer can detect 

hypoxia in different tumors types like glioma, head and neck cancer and breast cancer82–84. 

Gagel et al. found good correlation between measurements from polarography needle and 

[18F]FMISO uptake in head and neck tumor for pO2<10 mmHg after 2 hour of uptake85. 

[18F]FMISO have been shown to be a potential tracer to grade gliomas. Using a tumor to 

blood radio (T/B) threshold of 1.2, the uptake of tracer was in small in low grade tumor 

compared to high grade glioma86. Higher [18F]FMISO uptake was also observed for 

estrogen receptor (ER) positive breast cancer and is shown to be a strong predictor of 

disease free survival84. Due to the slow plasma clearance of the tracer and hence high 

background activity, the tracer needs to be injected for at least two hours before the uptake 

of tracer can be visualized. In addition, it requires very low pO2 <10mmHg for significant 

[18F]FMISO uptake71,72,81,87. 

To address the issue of slow tracer clearance, second generation 2-nitroimidazole was 

developed, [18F]fluoroazyomycin arabinoside ([18F]FAZA). The imaging mechanism is 

similar to [18F]FMISO. The major advantage of [18F]FAZA is that the tracer is more 
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hydrophilic with higher perfusion and higher clearance and hence higher tumor to 

background ratio than [18F]FMISO. Maximal uptake of the tracer is observed at 2 hr p.i. 

while there is continual increase in uptake even at 6 hr p.i. for [18F]FMISO87. [18F]FAZA 

showed significantly higher uptake of tracer in the hypoxic tumors of pancreatic acinar 

tumor cell line compared to [18F]FMISO. Furthermore, the uptake was higher in animal 

breathing normal air than in animals breathing pure oxygen88. [18F]FAZA showed 

promising result in predicting treatment response for murine breast cancer cell line treated 

with chemotherapeutic drug (Triapazamine) along with radiation therapy. Significant 

decreased uptake and decreased tumor growth was shown in rats that underwent 

chemoradiation while radiation only treatment showed delay in tumor growth89.  

1.4 Radio-metabolite production 

For detailed analysis of pharmacokinetics of tracer uptake in the diseased tissues, arterial 

blood sampling from several time points are required (see §1.2.3). The blood samples or 

the imaged derived AIF could be contaminated with metabolites, introducing biases in 

kinetic parameter estimation. Upon introduction of tracer into the blood vessel, it is 

immediately catabolized by chemicals like enzymes, proteases, oxidizing and hydrolyzing 

agent90–92. The biotransformation results in chemically different compounds called 

metabolites while the fraction of parent compound decreases. Metabolites that are tagged 

with radioactive element are called radio-metabolites. PET detects total signal from 

coincidental gamma photons that are emitted due to annihilation event. It is impossible for 

the detector to differentiate if the signal is originating from the innate tracer or from the 

radioactive element attached to the metabolites. Radio-metabolites are problematic in PET 

quantification since metabolites are completely different entity that can have different bio-

distribution93. Therefore, if not accounted for in the blood plasma, can introduce biases in 

quantifying any dynamic PET. In addition, if deeper understanding of the physiological 

and pathological information is needed, detection and identification of the radio-metabolite 

is necessary.  

Fractions of unchanged radiotracer in the blood plasma can be measured using high 

performance liquid chromatography (HPLC), thin layer chromatography (TLC) and other 
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chromatographic technique. Chromatography techniques are usually limited to the number 

of samples that can be analyzed. Blood samples that are taken at later time points suffer 

from noisy counting statistics due to reduced tracer activity 94. Different approaches have 

been adopted for measuring plasma radio-metabolite. One such method is the 

individualized method where fraction of tracer is calculated for each individual patient. 

Since each individual patient are limited to small blood sample, it can introduce error due 

to sparse sampling. Thus, population-based method where a model is fitted through the 

average of the measurement taken across the population is preferred. It removes the 

requirement of metabolite measurement for each individual patient, however, the existence 

of inter-subject variability can be erroneous.  

1.4.1 Separation of radio-metabolites 

Several studies in the past have measured radio-metabolites. One such study was done by 

Rusjan et al., where he determined blood plasma radio-metabolite for [18F]FEPPA binding 

to translocator protein in the brain. The fraction of unmodified tracer was estimated using 

reverse phase HPLC. For the tracer, fast metabolism was observed with 80% metabolized 

in the first 30 minutes. The rate of metabolism slowed with time with the presence of at 

least three radio-metabolites95.  

To account for radio-metabolite in the tissue double input compartment model (DICM) 

was developed. DICM was used by several studies in the past96–98. Tomasi et al., compared 

the kinetic parameters estimated using single input compartment model (SICM), DICM 

and double input spectral analysis (DISA) for two tracers: 5-[18F]fluorouracil (5-[18F]FU) 

and [18F]fluorothymidine ([18F]FLT). For the tracer 5-[18F]FU, the fit of the curve is 

superior with double input method as indicated by Akaike information criteria and the 

quality of the fit. Distribution volume between DICM and DISA were in perfect agreement. 

Furthermore, the influence of DI method is dependent on the tracer. The method is more 

prominent for tracers that have higher metabolism, in this case 5-[18F]FU, compared to 18F-

FLT that has lower rate of metabolism. Radio -metabolite did not show any effect on ki 

estimate97.  
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1.4.2 Chromatography  

The fraction of unmodified or parent tracer in plasma is measured with chromatography 

technique like HPLC, TLC and solid phase extraction (SPE). Chromatography is a 

technique used to separate chemical components or analytes in a solvent using two 

immiscible liquid called phases, one that is usually fixated to a surface (stationary) while 

the mobile one called the mobile phase. The basic principle of chromatographic separation 

is that the solvent or the mobile phase containing the sample is continuously transported 

through the stationary phase. As the mobile phase flows through the stationary phase, the 

interaction between the phases separate or distribute the analytes. The separation is based 

on the properties of the phases, as determined by the intermolecular forces like polarity, 

ion-ion interaction, and size exclusion and so on. For the thesis in chapter 4, the separation 

is based on polarity. Stationary phase in column chromatography is usually a polar solvent 

that is fixated into a packing material like silica while in planar chromatography, silica is 

a thin monolayer fixated on a solid backing like glass or alumina plate. As the mobile phase 

containing the analyte flows through the stationary phase, the difference in the polarity 

separates the individual component. The sample flows through the stationary phase at same 

velocity as the mobile phase. The analyte that has stronger affinity with the stationary phase 

will spend greater proportion of time in the solid phase. In the case of separation based on 

polarity, analyte that is the more polar will flow through at a slower rate compared to 

analyte that are less polar. The differential spatial retention results in the separation of the 

analyte as they move through the system99,100.   

The instrumentation of each individual technique is described below:  

 

1.4.2.1 Thin Layer Chromatography (TLC) 

Thin layer chromatography is a planar chromatographic technique in which the stationary 

phase is supported on a planar surface. For TLC, the stationary phase is a silica gel backed 

on a glass or aluminum plate. In planar chromatography, the sample is spotted on a marked 

position, usually 1 cm from the bottom of the plate, on the silica surface. The mobile phase 

is allowed to develop or evaporate in a development tank with a sealable top. After the 
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development and drying of the spots on the TLC plate, bottom of the plate containing the 

spot is immersed in the mobile phase at an upright position such that the mobile phase front 

is below the sample spots. As the mobile phase permeates through the silica gel by capillary 

action, it separate the analytes based on polarity in the direction of the flow. After the 

mobile phase have migrated to specified distance, usually 1cm from the top of the plate, 

the plate is removed from the tank and air dried. The point at which the mobile phase 

moved furthest is called the solvent front99,101.  

TLC is an economical, simple and robust technique. However, it suffers from low spatial 

resolution and low sensitivity102. This led to the use of high performance TLC (HPTLC). 

It has many improvement compared to TLC in that the particle size of the solid phase in 

HPTLC is smaller (5-15µm) compared to 20 µm for conventional TLC. The smaller and 

more uniform and thinner layer contributes to reduced background noise, higher efficiency 

and tighter spots as a result of reduced spot spreading per plate length. Though HPTLC has 

better performance, the price tag associated with the instrumentation have prevented a rapid 

growth in its utilization99. Different method involved in detecting the radioactivity for 

radioactive sample is discussed in §1.4.3. 

Separation of metabolite with TLC based on differences in polarity. Mobile phase acts as the 
solvent to carry the analyte through the plate by capillary action. In this example, three 
samples are spotted on the TLC plate and after immersing in the mobile phase for some time, 
analytes in the samples are separated by their polarity.  Since silica is solid phase, the least 
polar the analyte is, the furthest it will move from the bottom of the plate.  

Figure 1-6: Separation of metabolites by Thin Layer Chromatography (TLC) 
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1.4.2.2 High Performance Liquid Chromatography (HPLC) 

HPLC have gained popularity in the late 1980’s due to its high performance and less labor 

intensive procedure. The basic principle is the same as TLC. HPLC is a complex instrument 

consisting of several components. It consists of a reservoir containing the solvent or mobile 

phase that delivers sample into HPLC column with a pump. It is designed for delivery at 

constant flow rate and pressure. An injector, either manual or automatic, injects the sample 

into the solvent before being delivered into the column. The column contains stationary 

HPLC is composed of solvent that is pumped into HPLC column by a pump. The sample is 
injected into the solvent before entering the column. The eluent from the column is then 
passed through the detector which is connected to a data processing system creating 
chromatograph. Analyte in HPLC column, coated with polar solvent, are separated according 
to polarity. At time 0, solvent containing sample is injected into the column. With time, as the 
solvent flows through the column, the analyte that is more polar is retained in the column 
longer and is eluted out the last. 

Figure 1-7: Mechanism of radio-metabolite separation using high performance liquid 

chromatography (HPLC) 
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phase, usually silica packed material, responsible for separating the analyte in the mobile 

phase. The eluents containing the analytes are then collected and passed through detectors 

for signal generation. Depending on the properties of the mobile phase, the detector system 

could be UV light absorbance, conductance, fluorescence or a scintillation detector for 

radioactive element (radio-HPLC). The data or signal is then collected by a computer to 

generate chromatograph that can be quantified as concentration of analyte in the 

solvent99,100,103.  

Radio-HPLC is a very sensitive system with high resolution. Both the photons and 

positrons can be detected by scintillation detectors. The eluent tube containing the eluents 

after analyte separation are coiled for larger surface area. The scintillation detector are 

oriented in a way that coincidence photons caused by annihilation photons are detected in 

opposite direction thus reducing background noise93,101. 

There are pros and cons of using HPLC over TLC. TLC is more economical and robust. 

Unlike HPLC where samples are injected serially, TLC can analyze multiple sample at a 

time which is especially important for short lived isotopes101. Therefore, for HPLC which 

requires an operator to be present can be subjected to unnecessary radiation exposure in 

the radioactive samples. HPLC is time limited while TLC is spatially limited. In HPLC 

column, the samples flow though same distance and are separated with time influenced by 

flow rate of the mobile phase. TLC, on the other hand, all samples have same separation 

time and they are separated in space99. The eluting of the column in HPLC with solvent 

can clog the column which will require cleaning and unclogging before operation. This 

results in ‘memory’ contamination since the column is reusable and unlike TLC, it is a 

single use plate. For TLC, there are more robust against minor impurities in the stationary 

phase matrix93,101. HPLC boasts of higher spatial resolution compared to TLC.  

1.4.2.3 Solid phase extraction (SPE):  

Solid phase extraction is a chromatographic technique104 with several advantages over TLC 

and HPLC. It requires less solvent, easier to use, convenient and it can easily be automated. 

It is based on the principle of separation by filtration and decantation by retaining or 

absorbing the analytes from the sample with stationary phase immobilized on a packing 



45 

 

material. Silica is usually used as the packing material contained in a cartridge. The general 

first step of separation is preconditioning the cartridge for removal of contaminants in order 

to improve the efficiency, performance and reproducibility of result. Preconditioning 

involves passing a small volume of appropriate solvent through the cartridge. The sample 

is then loaded into the cartridge, followed by washing with a solvent to elute unnecessary 

interfering matrix while retaining the analytes in the cartridge for further analysis. The 

SPE consists of a cartridge packed with silica gel fiber. The cartridge is preconditioned with a 

solvent before loading the sample. It is then washed to remove unnecessary or waste 

component followed by elution with a solvent to elute out a least polar analyte. Subsequent 

elusions are performed with solvents that are more polar than the previous ones to elute out 

analytes more polar than the preceding ones. The eluted solvents are then passed through 

detector for activity measurement or an HPLC for analyte identification. 

Figure 1-8: Separation of metabolites using Solid Phase Extraction (SPE) 
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analyte is eluted out of the cartridge with a stronger solvent either by gravity or vacuum 

suction mechanisms. For solvent with more than one analyte, second elution is necessary 

but with a stronger solvent 99,104. For extraction based on polarity, the subsequent eluent 

will be more polar than the previous ones. In radioactive samples, the activity of the analyte 

in the eluents are counted using a 𝛾 counter. For identification of the analytes, the eluents 

can be further analyzed by HPLC105.  

Since the separation is based on physical separation, real time separation cannot be 

observed. Hence, it is not possible to estimate the number of times the cartridge need to be 

eluted for extraction of all the metabolites. Another limitation of the technique is the loss 

of analyte on the packing material during filtration process99. It is a very fast method and 

the cartridges (Waters Corporation) are cheap and unbreakable104. Depending on the 

samples analyzed, like HPLC, cartridges with different packing materials are available.  

1.4.3 Detection of radioactivity on TLC 

TLC contains very minute amount of radioactivity which necessitates the use of a very 

sensitive detector or technique for characterization. Some of earlier technique is zonal 

analysis that involves the use of liquid scintillation counting (LSC) method. In this 

technique, spot on the silica gel or the paper containing the separated analytes are scraped 

off, mixed with scintillation fluid and the activity measured using LSC. This technique is 

very time consuming and labor intensive and there is huge probability of losing the 

analyte106,107. Radio-TLC scanner is less labor intensive where 2D chromatographs can be 

acquired. It has low counting and detection efficiency with 1-7 mm of scanning step, 

resulting in poor spatial resolution. For determining the small fraction of radio-metabolite 

containing trace radioactivity, the technique is not a suitable option. The use of 

autoradiography overcomes the limitations. In this system, the TLC plate is placed directly 

on X-ray film for counting. Photo-densitometry or scintillation detector converts the counts 

into a chromatograph as dark spots or regions of different optical density107. For weak 𝛽-

emitter like 3H, long exposure time of hours or weeks is necessary for good signal 

intensity99,106,108. In addition, the lower limit of detection is very high. Though 

autoradiography have high resolution it suffers from very poor sensitivity.  
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In this work, use of a very sensitive detector is required to detect low radioactivity 

contained in 2µL of plasma on the TLC plate. One such system is the Beaver 

autoradiography (ai4r, France), mainly used for analyzing tissue and plant samples. It is 

used for analyzing beta and alpha particles by detecting electrons produced by ionization 

caused by particles emitted from radioactive decay109. The system is based on the principle 

of micro pattern gaseous (Ne + CO2) detector (MPGD)110. It consists of two drift zones 

alternating with two amplification zone, separated by 5𝜇𝑚 thick nickel micromesh with 

varying electric field (Fig. 4.1). The first and third zones are drift zones with low electric 

field (1kV/cm) to guide the electrons into the amplification zone. Due to high electric field 

of 20-30 kV/cm in the amplification zone, enough kinetic energy is imparted to the 

electrons to cause ionization by avalanche effect. Since TLC plate is used as cathode and 

it is comprised of highly insulating material, first drift zone is in contact with the plate to 

prevent back flux of electrons. The electron clouds exiting the second amplification zone 

are captured by the pixelated reading anode. The small thickness of amplification zone 

ensures that the avalanche electron clouds are narrow and hence excellent spatial 

resolution. The system has very high sensitivity of 5x10-4 cpm/mm2 and spatial resolution 

of 50 µm (for high energy beta and beta plus particle)111 and 30µm as measured by 3H (low 

energy beta particle)110. 

 

1.5 Research goal and objectives 

The main goal of the thesis is to improve the accuracy of kinetic model’s parameter 

estimation and apply them in clinical cancer patient data. The objectives were 

accomplished in three stages:  

1. The first objective is to develop a generic model for dynamic PET by incorporating 

the finite transit time of the tracer from the arterial end to venous end into the 

standard compartment model which suffers from non-physiological assumption of 

instantaneous arrival and washout of tracer in the blood vessel. The study utilized 

simulation to estimate the accuracy of kinetic parameters using the developed 

model and the currently used standard compartment model. 
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2. The second objective is to demonstrate that our developed model can be applied to 

real clinical patient data that was scanned with dynamic PET. The estimated 

parameters were compared with parameters estimated with standard compartment 

model and the estimated parameters were utilized in differentiating tumors from 

normal tissues. Furthermore, the reversibility of tracer binding was established 

using model independent graphical analysis method.  

3. The third objective is to correct for radio-metabolite in the blood plasma. Most 

tracers introduced in the body will get metabolized into other radioactive products 

of different identity that can introduce errors in kinetic parameter estimation. 

 

1.6 Thesis outline 

1.6.1 Estimation of kinetic parameters for dynamic PET imaging: A 

simulation study  

Kinetic parameters estimated by the developed F2TC and S2TC model were compared. 

Mean fractional Euclidean distance (FED) averaged all simulated parameter sets was used 

as a measure of accuracy. Mean FED is a measure of bias between the estimated and 

simulated parameter values. The accuracy is compared across factors that could affect the 

parameter estimation - acquisition time, noise level, mean transit time and different models 

(F2TC and S2TC). S2TC model is executed with two different software: our custom 

MATLAB version and a commercially available software called PMOD. Distribution 

volume estimated with the models were also compared with those estimated from graphical 

analysis method. The paper will be submitted under the title – Estimation of Kinetic 

Parameters for Dynamic PET Imaging: A Simulation Study.  

1.6.2 Pharmacokinetic analysis of dynamic [18F]FAZA PET imaging in 

pancreatic cancer patient  

The kinetics behind the binding of [18F]FAZA in hypoxic pancreatic adenocarcinoma 

tumor were investigated with both S2TCM and F2TCM. Model independent graphical 
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analysis model was utilized in estimating the reversibility of tracer binding. The DV from 

F2TC model was compared with DV from graphical method. Furthermore, the estimated 

kinetic parameters from both F2TCM and S2TCM was utilized in distinguishing the 

hypoxic tumor from normoxia tissues. The paper will be submitted under the title – 

Pharmacokinetic Analysis of Dynamic [18F]FAZA PET Imaging in Pancreatic Cancer 

Patient.  

1.6.3 Plasma radio-metabolite analysis of PET tracers for dynamic 

PET imaging: TLC and autoradiography  

Metabolites in the normal animals’ blood plasma (pig and rat) were separated with thin 

layer chromatography (TLC). The low activity of the blood analyte or radio-metabolites 

were detected using Beaver autoradiography. The fraction of unmodified tracers were 

analyzed for [18F]FEPPA and [18F]FAZA, an inflammatory and hypoxia marker 

respectively. Simulation study was done on 10 parameter sets to estimation the error 

introduced if radio-metabolite is not corrected in the blood plasma during kinetic analysis 

of dynamic PET. The paper will be submitted under the title – Radio-metabolite Analysis 

of PET Tracers in Plasma for Dynamic PET Imaging: TLC and Autoradiography 
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Chapter 2  

2 Estimation of kinetic parameters for dynamic PET 

imaging: A simulation study 

2.1 Introduction 

Positron Emission Tomography (PET) imaging with targeted probes can provide 

metabolic, physiologic and molecular information about diseases and their treatment 

responses. It also holds great promise for quantitative imaging, in particular kinetics 

modelling, however this capability is not fully utilized for different reasons. Currently, 

clinical PET is quantified using standardized uptake value (SUV). It is a measure of tracer 

uptake in the tissue normalized by the amount of tracer injected and the body weight 

derived from an image acquired at a single time point after administration of the targeted 

probe. Comparing SUV measured at follow-up to baseline is accepted as a quantitative 

measure of treatment response1. While SUV is simple to use and provides reproducible 

quantitative assessment rather than subjective visual interpretation of PET images, it is an 

imperfect surrogate measure of target concentration/activity. Therefore, the diagnostic 

accuracy of SUV is dependent on the properties of the tracer used, for example, fast vs 

slow blood clearance, and the particular clinical/research question under investigation2–4. 

SUV also varies with the time at which it is measured post administration of the tracer. To 

optimize SUV contrast between target and background tissue would require detailed 

knowledge of the kinetics of tracer, for example, irreversible vs reversible binding, rate of 

binding vs dissociation from target and these rates relative to the bidirectional rates of 

tracer permeation of the blood-tissue barrier5,6. These kinetic properties could vary between 

patients making optimal SUV measurement for individual patients difficult. 

Tissue uptake of targeted tracer is governed by three processes - perfusion delivery, 

bidirectional permeation of the blood-tissue barrier during the finite transit time of the 

blood vessels, interaction with (i.e. binding to and dissociation from) target. SUV measured 

at any time post injection is the balance of these three processes. As each of the uptake 

processes requires at least two parameters to describe (see §2.1 below), it is clear a single 
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image (i.e. SUV) is unable to characterize all three processes. This is the motivation for 

dynamic PET wherein images at multiple time points post injection are acquired in order 

to estimate the three uptake processes. For targeted tracers, the kinetic parameters of 

interest include: the rate constants of binding to and dissociation from target as well as the 

distribution volume (DV). The rate constants provide a measure of target 

concentration/activity and the reversibility of the binding to the target while DV can be 

regarded as the theoretical background subtracted SUV when the different processes 

involved (as discussed above) in the uptake of the probe are in ‘dynamic’ equilibrium and 

is therefore a summary measure of both the bidirectional permeation of the blood-tissue 

barrier as well as the binding and dissociation of the targeted probe.   

One frequently used method to analyze dynamic PET is kinetic modelling wherein a model 

of the tracer uptake processes is used to replicate the tissue uptake vs time or time-activity 

curve (TAC) measured by dynamic PET. Compartment models, in particular, the standard 

two tissue compartment (S2TC) model with the implicit blood compartment, have been 

widely used to analyze dynamic PET studies of targeted tracers. The first tissue 

compartment comprises the free (unbound) tracer in the extravascular extracellular space 

(EES) from the bidirectional permeation of the blood – tissue barrier while the second 

tissue compartment the bound tracer in EES and/or cells. However, modelling blood 

vessels as a well-mixed compartment does not accurately describe the delivery and 

accumulation of the free tracer in the first tissue compartment, hence would affect the 

estimation of the kinetics between the first and second compartment, that is, the binding 

and dissociation of the tracer from its target. We have developed the flow modified two 

tissue compartment (F2TC) model which models the flow of tracer in blood vessels as well 

as the bidirectional permeation of the endothelial barrier between blood vessels and tissue 

during the finite transit time through these vessels, in addition to modelling the free and 

bound tracer in the tissue as two compartments as in the S2TC model. In this simulation 

study, we compared S2TC to F2TC model to investigate the effect of noise, blood vessel 

transit time and permeation, and time duration of the dynamic PET study on model 

parameter estimation. 



61 

 

Besides kinetic modeling, graphical analysis (GA) methods, namely Patlak and Logan7–9, 

have also been developed to analyze dynamic PET data. GA methods were formulated 

using compartments but without specifying a particular model structure (as in S2TC model) 

except for the presence or absence of irreversible or reversible binding to a bound 

compartment with the Patlak and Logan method respectively. Nevertheless, because GA 

methods do not account for  

bidirectional permeation of the blood-tissue barrier during the finite transit time of the 

blood vessels, we will also investigate whether distribution volume (DV) estimated with 

the Logan method could be different from that estimated with the F2TC model.   

 

Compartment models used in the simulation with its corresponding 𝐈𝐑𝐅𝐅(𝐭) (c and d). (a) 

Standard two tissue compartment (S2TC) model with delta function in the 𝐈𝐑𝐅𝐅(𝐭) showing the 

instantaneous arrival of tracer in blood vessel and extraction of tracer into the extravascular 

extracellular space (EES) (c); and (b) our developed flow modified two tissue compartment 

(F2TC) model where the blood flow effect in the 𝐈𝐑𝐅𝐅(𝐭) is represented as a rectangular 

function to model the extraction of tracer into EES over the transit time of vessels (d). ICS is the 

intracellular space 

Figure 2-1: Compartment models for dynamic PET 
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2.2 Methods 

2.2.1 Kinetics Modeling of Tissue TAC 

If the tracer uptake processes are time invariant during the duration of the dynamic PET 

study and PET scanner response (signal) is linear with tracer concentration, then by the 

principle of linear superimposition, the tissue TAC can be modeled as 

𝑄(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼𝑅𝐹𝐹(𝑡) … … …  (1) 

where ⊗ is the convolution operator, 𝐶𝑝(𝑡) is the arterial TAC and 𝐼𝑅𝐹𝐹(𝑡) is the flow 

scaled impulse residue function. 𝐼𝑅𝐹𝐹(𝑡) is the idealized tissue TAC in response to an 

arterial TAC of the form 𝐹 ∙ 𝛿(𝑡) where 𝐹 is blood flow and 𝛿(𝑡) is the Dirac delta function. 

Depending on the kinetic model used, 𝐼𝑅𝐹𝐹(𝑡) incorporates all or some of the three tracer 

uptake processes - perfusion delivery, bidirectional permeation of the blood-tissue barrier, 

interaction with (i.e. binding to and dissociation from) the target. When the arterial TAC is 

measured at a site upstream to the tissue, equation (1) can be modified to account for the 

time delay, 𝑇𝑜 between the tracer arrival at the artery and tissue as follows: 

𝑄(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼𝑅𝐹𝐹(𝑡 − 𝑇𝑜) … … …  (1𝑏) 

 

2.2.2 𝑰𝑹𝑭𝑭 for Standard Two-tissue Compartment (S2TC) Model 

S2TC model is the most commonly used compartment model for targeted tracer where 

blood vessels are assumed to be a compartment (figure 2.1). Free (unbound) tracer from 

the bidirectional permeation of the blood-tissue barrier accumulates in the first tissue 

compartment, also called the extravascular extracellular space. The forward transfer 

(influx) of tracer from blood to EES is governed by the rate constant, 𝐾1, while the efflux 

of tracer from EES to blood by the rate constant 𝑘2. Tracer bound to target constitutes the 

second tissue compartment with 𝑘3 describing the rate constant of target binding of free 

(unbound) tracer in EES and 𝑘4 the dissociation rate constant of the bound tracer back to 

free tracer in EES. The compartmental assumption for blood vessel neglects the finite 

transit time with each circulation of the tracer through the tissue and assumes all blood 
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vessels are filled with tracer at the arterial concentration and leaks into EES 

instantaneously. In reality, during this transit the tracer influx into the EES is not the 

product of 𝐾1 and the arterial concentration as is implicitly assumed in the compartmental 

assumption but has to take into account the spatial gradient of tracer concentration along 

the blood vessels. This would lead to error in the estimation of tracer concentration in the 

EES and consequently error in estimation of 𝐾1 and 𝑘𝑖 , 𝑖 = 2,3,4. Because of the 

compartment assumption for blood vessels, the 𝐼𝑅𝐹𝐹 of the S2TC model consists of a delta 

function of magnitude 𝑉𝑝, the blood volume at time zero for the vascular phase. Besides 

the vascular component delta function, the extravascular component (phase) of the S2TC 

model 𝐼𝑅𝐹𝐹 comprises of a sum of two decaying exponentials to describe the binding to 

and dissociation from the target and washout of the tracer once it has been extracted into 

the first tissue compartment (i.e. EES). Taking the above considerations together, the S2TC 

model 𝐼𝑅𝐹𝐹 (figure 2.1(c)) can be written as in equation (2):  

 

𝐼𝑅𝐹𝐹(𝑡) =  {
𝑉𝑝𝛿(𝑡)                                                            𝑡 = 0

𝐺𝑒−𝛼𝑡 + 𝐻𝑒−𝛽𝑡                                           𝑡 > 0
        … … … (2) 

where 

𝛼, 𝛽 =
𝑘2 + 𝑘3 + 𝑘4 ± √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
                  … … … (3) 

𝐺 =
𝐾1(𝛼 − 𝑘3 − 𝑘4)

𝛼 − 𝛽
; 𝐻 =

𝐾1(𝑘3 + 𝑘4 − 𝛽)

𝛼 − 𝛽
                              … … … (4) 

 

Equations (2-4) show that the S2TC model 𝐼𝑅𝐹𝐹 is characterized by the following 

parameters: 𝑉𝑝 (blood volume), 𝐾1and 𝑘2 (bidirectional permeation of the blood-tissue 

barrier) and 𝑘3 and 𝑘4 (binding to and dissociation from target). As expected, blood flow 

and vascular mean transit time that characterize perfusion delivery are not included in 

the 𝐼𝑅𝐹𝐹. Instead, an amount of tracer equal to the initial value (𝑡 = 0) of the extravascular 

component or 𝐺 + 𝐻 = 𝐾1 is assumed to be instantaneously deposited in the EES as soon 

as the tracer arrives at the vessels. Kinetic analysis of dynamic PET based on the S2TC 
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model makes use of equations (1b) and (2) to find the best fit to the measured tissue TAC 

by iteratively adjusting the fitting parameters 𝐺, 𝐻, 𝛼, 𝛽, 𝑉𝑝 and 𝑇𝑜. Equations (5 & 6) can 

then be used to determine 𝐾1 and 𝑘𝑖 , 𝑖 = 2,3,4 in terms of 𝐺, 𝐻, 𝛼 and 𝛽 as follows: 

𝐾1 = 𝐺 + 𝐻;  𝑘2 =
𝐺𝛼 + 𝐻𝛽

𝐺 + 𝐻
                                                                  (5) 

𝑘3 =
𝐺𝐻(𝛼 − 𝛽)2

(𝐺 + 𝐻)(𝐺𝛼 + 𝐻𝛽)
;   𝑘4 =

(𝐺 + 𝐻)𝛼𝛽

(𝐺𝛼 + 𝐻𝛽)
=

𝛼𝛽

𝑘2
                        (6) 

 

DV of the tracer defined as the ratio of (average) tracer concentration in the two tissue 

compartments (i.e. the EES and the bound compartment) to the blood concentration at 

kinetic (distribution) equilibrium can be calculated from the explicit model parameters as: 

𝐷𝑉 =
𝐾1

𝑘2
(1 +

𝑘3

𝑘4
)                                                                                    (7) 

It follows DV can be viewed as the blood background corrected ‘equilibrium’ SUV without 

having to perform the static imaging at the time of distribution equilibrium which can have 

inter- and intra-patient heterogeneity and may require waiting a long time after injection of 

the tracer. Total DV, VT, is the sum of DV and Vp. Besides DV, there are two other summary 

kinetic parameters of interest. Binding potential (BP), defined as the concentration ratio of 

bound to free/unbound tracer at kinetic equilibrium 10,11, and the net influx rate of tracer 

from blood to tissue indicated by Ki  :  

𝐵𝑃 =
𝑘3

𝑘4
 ;    𝐾𝑖 =

𝑘1𝑘3

𝑘2 + 𝑘3 + 𝑘4
                                                                           (8) 

  

2.2.3 𝑰𝑹𝑭𝑭 for Flow Modified Two-tissue Compartment (F2TC) 

Model 

We propose the F2TC model as a hybrid of the Johnson-Wilson-Lee model 12 and the S2TC 

model. The Johnson-Wilson-Lee (JWL) model is used to describe the perfusion delivery 

of the tracer and the bidirectional permeation of the endothelial barrier during the transit 
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time of the blood vessels while the S2TC model is used to describe the binding to and 

dissociation from the target and washout of the tracer in the first tissue compartment (i.e. 

EES). By combining the 𝐼𝑅𝐹𝐹 for the JWL and S2TC model we arrive at the 𝐼𝑅𝐹𝐹 for our 

proposed F2TC model (figure 2.1d), expressed as: 

𝐼𝑅𝐹𝐹(𝑡) =  {

        
𝐹                                                               0 ≤ 𝑡 < 𝑊
𝐺𝑒−𝛼(𝑡−𝑊) + 𝐻𝑒−𝛽(𝑡−𝑊)                              𝑡 ≥ 𝑊

                    … … … (9) 

 where 𝐺, 𝐻, 𝛼 and 𝛽 are related to 𝐾1 and 𝑘𝑖 , 𝑖 = 2,3,4 as defined for the S2TC model and 

equations (3-6),  𝐹 is blood flow and 𝑊 is the transit time through blood vessels. JWL 

model assumes plug flow in blood vessels, so 𝑊 is also the vascular mean transit time 

(MTT). As shown in equation (9), 𝐼𝑅𝐹𝐹 for the F2TC model is comprised of two periods: 

vascular transit period when the tracer is either in the blood vessels, EES or bound 

compartment and washout period beyond MTT. Because of conservation of mass, 𝐼𝑅𝐹𝐹 is 

a rectangular function equal to 𝐹 during the vascular transit period. One important result 

from the JWL model is that in each circulation of the tracer through the tissue, during the 

transit time of the vessels, the amount of tracer extracted into the EES is equal to the flow 

(𝐹) extraction fraction (𝐸) product and E  is given by 1 − 𝑒−
𝑃𝑆

𝐹   where 𝑃𝑆 is the 

permeability and (perfused) surface area product of blood vessels as first discussed by 

Crone 5. Therefore, 𝐺 + 𝐻 or 𝐾1 is equal to 𝐹𝐸. Instead, in the S2TC model, the extraction 

of the tracer is instantaneous as soon as the tracer arrives. Note also that by the Central 

Volume Principle13, blood volume (𝑉𝑝) is equal to 𝐹 ∗ 𝑊. 

Equations (3-4 & 9) show that the F2TC model 𝐼𝑅𝐹𝐹 is characterized by the following 

parameters: 𝐹 and 𝑊 (perfusion delivery of tracer), 𝐾1and 𝑘2 (bidirectional permeation of 

the blood-tissue barrier) and 𝑘3 and 𝑘4 (binding to and dissociation from target). Kinetic 

analysis of dynamic PET based on the F2TC model makes use of equations (1b) and (9) to 

find the best fit to the measured tissue TAC by adjusting the fitting parameters 

𝐺, 𝐻, 𝛼, 𝛽, 𝐹, 𝑊 and 𝑇𝑜. Equations (5 & 6) can then be used to determine the explicit model 

parameters 𝐾1 and 𝑘𝑖 , 𝑖 = 2,3,4 in terms of 𝐺, 𝐻, 𝛼 and 𝛽 as before and equations (7 & 8) 

for DV, BP and Ki. 
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2.2.4 Simulation Experiments 

As the F2TC model is more realistic (as discussed in §2.3) in describing the tracer kinetics, 

the simulated tissue TACs were generated with the F2TC model for the following 

simulation experiments. 

 

2.2.4.1 Noise Behavior of the S2TC and F2TC Model 

Simulated tissue TACs were generated using ten set of parameters (table 2.1) obtained from 

patients with high grade glioma scanned with [18F]fluoro-ethyl-tyrosine ([18F]FET) PET14. 

F, T0 and W values were selected to cover the range of values seen in CT Perfusion studies 

of stroke and tumor studies in our lab.  The 𝐼𝑅𝐹𝐹 of each parameter set is convolved with 

a simulated arterial TAC (figure 2.2) given by equation (10)15,16:  

𝐶𝑝(𝑡) = [𝐴1(𝑡 − 𝑡0)𝛼 − 𝐴2 − 𝐴3]𝑒−𝜆1(𝑡−𝑡0) + 𝐴2𝑒−𝜆2(𝑡−𝑡0) + 𝐴3𝑒−𝜆3(𝑡−𝑡0) … … … . (10) 

where 𝐴1 = 800, 𝛼 = 1.0, 𝐴2 = 20,  𝐴3 = 20,  𝜆1 = 4 𝑚𝑖𝑛−1 , 𝜆2 = 0.015 𝑚𝑖𝑛−1,  𝜆3 =

0.15 𝑚𝑖𝑛−1, 𝑡0 = 0.15 𝑚𝑖𝑛, to generate ten simulated tissue TAC. The simulated tissue 

TAC for parameter set #1 is shown in figure 2.2.  

Both simulated arterial and tissue TAC were generated at 0.5 s intervals initially and then 

averaged according to the following framing schedule to simulate a 22 min dynamic PET 

protocol – 10 @ 10 s, 5 @ 20 s, 4 @ 40 s, 4 @ 60 s, 4 @ 180 s. The average values were 

placed at the mid-point of each framing interval to give the averaged arterial and tissue 

TAC, 𝐶𝑝,𝑎𝑣(𝑡) and 𝑄𝑎𝑣(𝑡) respectively. For simulations where longer acquisition times 

were used (see §2.4.2), the number of frames of 180 s was increased until it reached the 

specified time of 45 and 60 min.  

Following frame averaging, Poisson noise was introduced into the averaged tissue TAC, 

𝑄𝑎𝑣(𝑡) according to Logan’s random PET noise model17:  

 

𝑄𝑎𝑣̃(𝑡) = 𝑄𝑎𝑣(𝑡) + 𝑒𝜆𝑡𝑆𝐷(𝑡) … … … (11) 
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𝑆𝐷(𝑡) = 𝑥. 𝑆𝑐√
𝑒−𝜆𝑡𝑄𝑎𝑣(𝑡)

∆𝑡
… … … (12) 

where 𝜆 is the decay constant of the PET radionuclide, 𝑄𝑎𝑣̃(𝑡) is the noisy averaged tissue 

TAC, 𝑒−𝜆𝑡𝑄𝑎𝑣(𝑡) is the decayed 𝑄𝑎𝑣(𝑡), and 𝑒𝜆𝑡𝑆𝐷(𝑡) is noise contribution at time t, 𝑥 is 

a random number from a zero mean Gaussian distribution with variance of one, 𝑆𝑐 is noise 

scaling factor and ∆𝑡 is the frame duration. Logan used Sc that ranged from 0.25 to 8. In 

this simulation study, 𝑆𝑐 was set at either 1 or 5 to represent low and high noise 

respectively. For each of the ten simulated tissue TACs, fifty noisy curves were simulated.  

 

2.2.4.2 Effect of Dynamic PET Acquisition Time on the Estimation 

of Model Parameters 

Dynamic PET of reversibly bound tracers requires long acquisition time of 60-90 minutes 

to reach distribution (kinetic) equilibrium. Some studies showed that tracer accumulation 

was still increasing past 90 min (i.e. equilibrium had not been reached)18,19. It is important 

to investigate how the performance of the two models changes with increased dynamic 

PET acquisition time from 22 min (used in §2.4.1) to 45 and 60 min. TACs were simulated 

with the parameters listed in table 2.1 except MTT (W) was set to 20 s for all ten parameter 

Table 2.1: Ten set of parameters used for simulating tissue time activity curve (TAC) 

SET# 
𝑭 

(mLmin-1g-1) 

W 

(s) 

𝑲𝟏 

(mLmin-1g-1) 

𝒌𝟐 

(min-1) 

𝒌𝟑 

(min-1) 

𝒌𝟒 

(min-1) 

𝑽𝒑 

(mLg-1) 

DV 

(mL.g-1) 

1 0.37 7 0.0930 0.5920 0.1840 0.0410 0.043 0.8621 

2 0.27 7 0.1370 0.3310 0.2300 0.0700 0.032 1.7738 

3 0.10 10 0.0740 0.3440 0.1520 0.0370 0.016 1.0988 

4 0.29 10 0.0720 0.4580 0.2880 0.0770 0.048 0.7452 

5 0.44 5 0.2220 0.4720 0.1900 0.0870 0.037 1.4975 

6 0.26 15 0.1940 0.3280 0.2830 0.1720 0.065 1.5646 

7 0.38 8 0.0960 1.0000 0.3060 0.0670 0.051 0.5344 

8 0.20 10 0.1010 0.5180 0.3510 0.0750 0.034 1.1075 

9 0.64 10 0.4790 1.0000 0.2210 0.1370 0.106 1.2517 

10 0.87 15 0.2180 0.4980 0.4480 0.0840 0.218 2.7724 
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sets and noise was simulated with a Sc of 5. The same fitting software as in §2.4.1 was 

used to estimate the model parameters. 

 

2.2.4.3 Effect of MTT on the Estimation of Model Parameters 

Since the bidirectional permeation of the endothelial barrier in the F2TC model occurs 

during the MTT of blood vessels whereas this process is assumed to happen 

instantaneously in the S2TC model, the effect of three different MTTs (5, 10 and 20s) were 

observed while other parameters remained the same (as in table 2.1). The MTTs were 

chosen to cover larger range of MTTs observed in the hypoxic and ischemic regions. An 

acquisition time deemed sufficient from §2.4.2 was used and noise was simulated with Sc 

of 5 in this simulation. The same fitting software as in §2.4.1 was used to estimate the 

model parameters. 

 

2.2.4.4 Kinetic Parameters Estimation by Different Models/software 

As discussed above (§2.2), the compartment assumption for blood vessels in S2TC model 

can lead to error in the EES tracer concentration and subsequently error in estimation of 𝐾1 

and 𝑘𝑖 , 𝑖 = 2,3,4 and summary parameters like Ki, DV and BP. To test for these modelling 

differences, the estimated parameters using F2TC model were compared with those 

estimated using S2TC model (with custom software or PMOD) for the 10 parameter sets 

in table 2.1 for the case of MTT 20s, Sc 5 and acquisition time of 45 minutes. To remove 

the influence of noise but keeping the effect of frame averaging that is ubiquitous in 

dynamic PET to improve the signal to noise ratio of tissue TAC, the same comparison 

between F2TC and S2TC model was repeated with noise set to zero (Sc =0) while keeping 

the other factors the same.   
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2.2.4.5 Numerical Algorithm for the Estimation of Model 

Parameters 

The noisy curves were fitted with both S2TC and F2TC model using software developed 

by ourselves in MATLAB 2019b (The Mathworks Inc.). Besides the in-house custom 

software, PMOD (PMOD Technologies LCC.) was also used for fitting with the S2TC 

model with blood delay estimation. Fitting with either S2TC or F2TC model is a nonlinear 

optimization problem which requires an initial guess of the model parameters as close to 

real values as possible to prevent the solution being trapped in local minima. In our in-

house program, the initial guess was estimated using spectral analysis20. In addition, for 

robust parameter estimation, sequential search of time delay (T0) and MTT were 

implemented. T0 and W (only for F2TC model) were searched from 0 s to 15 s and 0 s to 

25 s respectively at 0.5 s intervals. Within the iterative sequential search for T and W, the 

rest of the other model parameters – G, H, ,   and Vp (for S2TC model) or F (for F2TC 

model) were estimated with the non-linear optimization routine ‘interior-point’ in 

MATLAB. Minimum root mean squared deviation (RMSD) between the fitted curve and 

the simulated curve was used as the measure of the best fitted curve. From the fitting 

parameters 𝛼, 𝐺, 𝛽 and 𝐻 of the best fitted curve, the explicit model parameters 𝐾1 and 

𝑘𝑖 , 𝑖 = 2,3,4 can be calculated using equations (5) and (6). 

 

2.2.4.6 Logan Graphical Analysis for Estimation of Distribution 

Volume 

The Logan graphical analysis plots the tissue TAC normalized time integral of the tissue 

TAC (∫ 𝑄𝑎𝑣̃(𝑠)𝑑𝑠
𝑡

0
𝑄𝑎𝑣̃(𝑡)⁄ ) vs that of the arterial TAC (∫ 𝐶𝑝,𝑎𝑣(𝑠)𝑑𝑠

𝑡

0
𝑄𝑎𝑣̃(𝑡)⁄ ), where 

𝐶𝑝,𝑎𝑣(𝑡) is the averaged arterial activity in a dynamic PET image. As discussed by Logan, 

after some time the plot becomes linear with a slope equal to the VT
7,8,17. The Logan plot is 

usually concave (curving upward) before it becomes linear. Therefore, starting from the 

origin, the derivative of the Logan plot would increase until it reaches a maximum where 

the plot becomes linear. The slope of the Logan plot was determined by linear regression 

of data points from the maximum derivative onwards. VT estimated with the Logan plot, 
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F2TC and S2TC (both software) models from TACs of 45 and 60 min duration at a noise 

Sc of 5 and MTT of 20 s were compared with the ‘true’ (simulated) value by modified 

Bland-Altman analysis21 and non-parametric paired test as in §2.4.4. 

  

2.2.4.7 Analysis of the Simulation Experiment Results 

The performance of S2TC and F2TC model and the fitting software was evaluated in each 

simulation experiment using fractional Euclidean distance (FED) or root sum of squared 

fractional deviations of all explicit parameters from the truth, defined as follows:  

𝐹𝐸𝐷 = √(
𝑝1 − 𝑝1𝑡𝑟𝑢𝑒

𝑝1𝑡𝑟𝑢𝑒
)

2

+ (
𝑝2 − 𝑝2𝑡𝑟𝑢𝑒

𝑝2𝑡𝑟𝑢𝑒
)

2

+ ⋯ + (
𝑝𝑛 − 𝑝𝑛𝑡𝑟𝑢𝑒

𝑝𝑛𝑡𝑟𝑢𝑒
)

2

          (13) 

where 𝑝𝑖, 𝑖 = 1 … 𝑝𝑛 are the explicit F2TC or S2TC model parameters: 𝑛 =

6; 𝑉𝑃, 𝐾1, 𝑘𝑖 𝑖 = 2,3,4, 𝑇0 (W and F  parameter in F2TC model were combined and 

evaluated as Vp). Results on FED of the estimated parameters were displayed either as the 

average and standard deviation (SD) over 50 noisy simulations for each parameter set or, 

as average FED and within group SD of all parameter sets. In the pairwise comparison of 

estimated FED using different models/software under different conditions described above 

(§2.4.1-4), non-parametric paired test (Wilcoxon signed rank test or sign test) on the 

median difference of FED between parameter sets was used. Similarly, to test the null 

hypothesis that the median difference in the parameters estimated by F2TC and S2TC 
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model (with either custom software or PMOD) was not significantly different from zero. 

Non-parametric paired test was used with Bonferroni correction for multiple comparisons. 

Either Wilcoxon signed-rank test or sign test was used based on the distribution of the 

differences between the groups compared. Unlike Wilcoxon signed test, sign test is not 

affected by the symmetrical distribution assumption. All statistical analysis was performed 

with SPSS Statistics for Windows, version 26 (SPSS Inc., Chicago, Ill., USA). 

 

Curves used for simulation. (a) Arterial TAC (b) Tissue TAC for parameter set #1 with MTT of 5 

s and 20 s. Simulated tissue TAC with (c) noise scaling factor of 1 and MTT of 20 s and (d) with 

noise scaling factor of 5 and MTT of 20 s  

Figure 2-2: Curves used for simulation experiment 
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2.3 Results  

2.3.1 Simulation Curves 

Figure 2.2 shows the simulated arterial TAC used in the simulations along with tissue 

TACs simulated using the F2TC model. The tissue TACs were generated using parameter 

set #1 with two different MTTs: 5 and 20 s. Larger value of MTT results in a wider 

rectangular portion in 𝐼𝑅𝐹𝐹. Since tissue TAC is the convolution of arterial TAC with 𝐼𝑅𝐹𝐹, 

a longer MTT or vascular transit period would result in a longer time integral of the arterial 

TAC and hence a higher tissue TAC.    

  

2.3.2 Comparison between F2TC and S2TC Models at Different 

Noise Level 

The average FED and the within group SD of the parameter sets are plotted in figure 2.3(a) 

and figure 2.3(b) for noise Sc of 1 and 5 respectively. For both noise levels, based on non-

parametric test, median FED for F2TC model was statistically lower than S2TC model with 

Comparison of F2TC model and S2TC model with custom software and PMOD at different noise 
level for simulations with parameter sets from Table 2.1. Average FED and within group SD as error 
bar at noise Sc of 1 (a) and 5 (b). Data connected by bracket were different with statistical 
significance indicated by * for P<0.05.  

 

(a) (b) 

Figure 2-3: Comparison of F2TC and S2TC model at different noise level 
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either custom software or PMOD (p<0.0015) and median FED for S2TC model was lower 

with custom software than PMOD (p< 0.0015). As expected, FED for Sc = 5 is higher than 

Sc =1 for all the models/software. 

 

2.3.3 Noise Effect for F2TC and S2TC Models 

Figure 2.4 shows the noise effect on the two models and software using average FED for 

all parameter sets and the within parameter set SD as error bar. For all models and software, 

based on the non-parametric paired comparison (either Wilcoxon signed rank or signed 

test, see §2.7), FED was statistically different between all noise levels (p<0.05) with 

Bonferroni correction for multiple comparisons (N=3 in this case). Largest average FED 

was observed for Sc 5 for both models/software. Though significant, the average FED for 

noiseless and Sc 1 were very close to each other with largest average FED difference of 

0.04 observed in custom S2TC software.  

 

Average FED and within group SD as error bar for F2TC model, S2TC model with custom software 
and PMOD (a) at noise Sc of 0 (noiseless), 1, and 5. Data connected by brackets are different 
with statistical significance indicated by * for P<0.05.  

 

Figure 2-4: Noise effect on F2TC and S2TC model 
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2.3.4 Effect of Dynamic PET Acquisition Time on the Estimation of 

Model Parameters 

Average FED using different data acquisition times for both models/software are shown in 

figure 2.5. Statistical difference in FED was observed for F2TC model when comparing 22 

min with 45 (p<0.0015) and 60 min (p < 0.0015) of acquisition. For F2TC with custom 

software, the parameter estimation error for 22 min was the highest but the error for 45 and 

60 min was comparable suggesting increasing the data acquisition time from 45 to 60 

minute might not improve the accuracy of parameter estimation. This was not the case for 

the S2TC model with both software, the error did not decrease with longer acquisition time 

and no statistical significant difference was found between any time acquisitions for 

custom software. Since increasing data acquisition time beyond 45 min did not 

significantly affect the parameter estimation for the F2TC model, this time was used for 

comparing the effect of MTT and models on parameter estimation. 

 

Average FED with within group SD of all parameter sets as error bar for F2TC model, S2TC model 
with custom software and PMOD for 22, 45 and 60 min of data acquisition time and noise Sc of 
5. Data connected by brackets are different with statistical significance indicated by * for P<0.05. 

 

Figure 2-5: Effect of time acquisition on kinetic models 
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2.3.5  Effect of MTT on the Estimation of Model Parameters 

Figure 2.6 shows the effect of MTT on parameter estimation. For the F2TC model, the 

error in parameter estimation remained the same as MTT increased from 5 to 10 and 20 s, 

despite the error being statistically different between MMT of 10 and 20 s. For S2TC model 

with either custom software or PMOD, the error between MTT of 5 and 10s was small even 

though for custom software it was significant. The error between MTT of 20 s and 5 or 10 

s were all significant with error with MTT of 20 s being the largest. 

 

2.3.6 Estimation of Model Parameters with Different 

Models/software 

Table 2.2 shows the median differences and limits of agreement (LOA) between the 

parameters (both explicit and summary) estimated by F2TC and S2TC (both software) 

model for MTT 20 s, Sc 5 and 45 min acquisition. Limits of agreement is defined Q1-

1.5*IQR and Q3+1.5*IQR where Q1 and Q3 are the first and third quartile respectively, 

Comparison of error in parameter estimation for 5, 10 and 20 s MTT, with F2TC model and S2TC 
model with custom software and PMOD, 45 min acquisition time and noise Sc of 5. Data 
connected by brackets are different with statistical significance indicated by * for P<0.006.  

 

Figure 2-6: Effect of MTTs on model parameters 
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and IQR is interquartile range22. According to non-parametric paired test, the median 

difference between parameters estimated by F2TC model and S2TC model with either 

custom software or PMOD were significantly different from zero (p<0.004) and the error 

was higher for K1, k2 (except PMOD), Vp, DV and BP (all >0.01). Table 2.3 compares the 

error for the case of noiseless simulated curves but still with the frame averaging effect. 

There is a general trend of the error being larger for all kinetic parameters estimated from 

noiseless TAC. Similar to Sc 5 (Table 2.2), larger error was observed for K1, k2, Vp, DV and 

BP. PMOD estimated the kinetic parameters with larger error compared to the custom 

S2TC model relative to the F2TC model. Table 2.4 compares the parameters estimated by 

the F2TC model and custom S2TC model against the simulated (true) parameters showing 

larger median differences for custom S2TC model. Tables 2.5 compare the error in 

estimated parameters for MTT 10 s, Sc 5 and 45 min acquisition. The median difference 

between the parameters estimated by F2TC model and S2TC model (both software) were 

significantly different from zero (except BP), LOA being larger for PMOD software. The 

LOA for MTT of 10 s shown in table 2.5 was smaller than that for MTT of 20 s in table 

2.2.   

Table 2.2: Median and limits of agreement (LOA) of difference between the parameters 

estimated by F2TC and S2TC model (both software) for MTT 20 s, noise scaling of 5 and 45 min 

of acquisition 

 S2TC (Custom) vs F2TC S2TC (PMOD) vs F2TC 

 Median Difference LOA Median Difference LOA 

K1 -0.010* -0.06 to 0.03 -0.021* -0.13 to 0.07 

k2 -0.018* -0.21 to 0.12 -0.006* -0.24 to 0.19 

k3 0.006* -0.02 to 0.03 0.009* -0.05 to 0.08 

k4 0.002* -0.01 to 0.02 0.002* -0.01 to 0.01 

0 
VP 0.016* -0.03 to 0.07 

0 

0.013* -0.04 to 0.08 

0 
DV -0.013* -0.06 to 0.03 -0.108* -0.33 to 0.08 

BP 0.021* -0.32 to 0.30 0.054* -0.51 to 0.72 

Ki -0.0005* -0.004 to 0.002 -0.004* -0.02 to 0.01 

*Median difference significantly different from zero at P<0.05 with Bonferroni correction 
for multiple (N=8) comparisons.  
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Table 2.3: Median and limits of agreement (LOA) of difference between the parameters 

estimated by F2TC and S2TC model (both software) for MTT 20 s, noise scaling of 0 (noiseless) 

and 45 min of acquisition 

 S2TC (Custom) vs F2TC S2TC (PMOD) vs F2TC 

 Median 

Difference 

LOA Median Difference LOA 

K1 -0.016* -0.06 to 0.02 -0.037* -0.38 to 0.20 

k2 -0.037* -0.14 to 0.05 -0.108* -0.66 to 0.31 

k3 0.007 -0.01 to 0.03 0.006 -0.05 to 0.06 

k4 0.003* -0.01 to 0.02 0.005 -0.01 to 0.02 

VP 0.027* -0.01 to 0.07 0.036* -0.12 to 0.24 

DV -0.026* -0.07 to 0.01 -0.115* -0.19 to -0.02 

BP 0.050 -0.40 to 0.34 -0.102 -0.89 to 0.66 

Ki -0.001 -0.003 to 0.001 -0.005* -0.03 to 0.01 

*Median difference significantly different from zero at P<0.05 with Bonferroni correction 
for multiple (N=8) comparisons.  
 

Table 2.4: Median and limits of agreement (LOA) of difference between the simulated 

parameters and parameters estimated by both F2TC and S2TC model (both software) for MTT 

20 s, noise scaling of 5 and 45 min of acquisition 

 F2TC vs Truth S2TC (Custom) vs Truth 

 Median 

Difference 

LOA Median Difference LOA 

K1 -0.004* -0.07 to 0.06 -0.021* -0.12 to 0.07 

k2 0.013 -0.45 to 0.43 -0.047* -0.63 to 0.45 

k3 0.024* -0.12 to 0.16 0.024* -0.10 to 0.15 

k4 0.003* -0.01 to 0.02 0.006* -0.01 to 0.03 

VP 0.012* -0.05 to 0.08 0.033* -0.03 to 0.10 

DV -0.016* -0.09 to 0.06 -0.040* -0.12 to 0.04 

F -0.222* -1.64 to 0.90 N/A 

 BP 0.185 

. 

-1.36 to 1.68 0.139* -1.54 to 1.64 

Ki 0.001* -0.01 to 0.02 -0.001* -0.01 to 0.01 

*Median difference significantly different from zero at P<0.05 with Bonferroni correction 
for multiple (N=8) comparisons.  
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Table 2.5:  Median and limits of agreement (LOA) of difference between the parameters 

estimated by F2TC and S2TC model (both software) for MTT 10 s, noise scaling of 5 and 45 min 

of acquisition 

 S2TC (Custom) vs F2TC S2TC (PMOD) vs F2TC 

 Median 

Difference 

LOA Median 

Difference 

LOA 

K1 -0.005* -0.03 to 0.01 

- 

-0.008* -0.06 to 0.03 

k2 -0.009* -0.09 to 0.05 0.003* -0.13 to 0.13 

k3 0.003* -0.01 to 0.02 0.006* -0.03 to 0.05 

k4 0.001* -0.003 to 0.006 0.001* -0.005 to 0.007 

00 VP 0.008* -0.02 to 0.04 0.005* -0.03 to 0.05 

DV -0.007* -0.04 to 0.02 -0.059* -0.21 to 0.06 

BP 0.017 -0.23 to 0.25 0.060* -0.45 to 0.62 

Ki -0.0002* -0.003 to 0.002 -0.001* -0.01 to 0.01 

*Median difference significantly different from zero at P<0.05 with Bonferroni correction 
for multiple (N=8) comparisons.  

 

2.3.7 Logan Graphical Analysis 

Figure 2.7 compares estimated VT from the Logan plot, F2TC model and S2TC model with 

custom software and PMOD with the true simulated VT value for the cases where MTT was 

20 s for all parameter sets of table 2.1 and an acquisition time of either 45 or 60 min. The 

estimated VT was compared against the ‘true’ value using a modified Bland-Altman plot 

where the x- axis was the average of the estimated VT and the true value while the y-axis 

was the difference between the true and estimated VT. Each plot shows 8 instead of 10 

cluster lines because two sets of two similar VT’s are clustered together. In each plot, the 

solid line is the median difference while the dash are the LOA. For VT estimated by the 

F2TC model and Logan analysis, the median difference from the truth became smaller 

when the acquisition time increased from 45 to 60 min with the F2TC model being more 

accurate than Logan analysis at 60 min (P= 0.2 vs 0.001). The LOA of the F2TC model 

also decreased more than Logan analysis as the acquisition time increased. For VT estimated 

by the S2TC model with custom software and PMOD and 60 min of data acquisition, 

custom software was more accurate than PMOD as well the LOA was larger with PMOD 

than custom software. 
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Modified Bland-Altman plot comparing true DV against estimated DV from 45 min (a, b) and 60 
minute (c-f) of data acquisition. DV’s were estimated with F2TC model (a, c), Logan analysis (b,d), 
S2TC model with custom software (e) and with PMOD (f).  Details of the plots are described in the 
text.   

 

Figure 2-7: Comparison of VT estimated by F2TC, S2TC and Logan with simulated VT 
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2.4 Discussion and Conclusion 

In this study we demonstrated that the compartmental assumption for blood vessels affects 

the accuracy of estimated kinetic parameters because the bidirectional permeation of the 

blood-tissue barrier occurs instantaneously rather than over a period, equals to the transit 

time of blood vessels. The error was estimated as the average FED over all the parameter 

sets where FED is the fractional distance of the estimated from the true set of parameters 

in multidimensional parameter space (see equation 13). There was significantly larger error 

for both the S2TC model software than F2TC model, with PMOD performing the worst. 

As expected, the error was larger for higher noise level for all models/software. Concerning 

the length of acquisition time required for accurate parameter estimation, the F2TC model 

results show that 45 min was comparable to 60 min in the accuracy of estimated kinetic 

parameters and hence is sufficient for parameter estimation from dynamic PET. Due to the 

introduction of mean transit time in the F2TC model, we investigated the effect of MTT 

from 5 to 10 and 20s. For the F2TC model, FED did not change appreciably with MTT 

even though there was significant difference between 10 and 20 s. However, with both the 

S2TC software, increasing MTT from 5 to 20 s introduced a 50% increase in FED. In 

addition, VT estimated by the F2TC model was more accurate than Logan analysis or the 

PMOD software.   

Though F2TC model is used for simulating the tissue TAC, errors were observed when the 

simulated curve was fitted with the same model. There are several reasons for the errors. 

First, estimation of either the S2TC or F2TC model parameters requires the use of non-

linear optimization techniques, which are iterative and depending on the initial estimates 

chosen to start the iteration could converge to a local instead of the global minimum, 

resulting in errors in the estimated parameters 23. In this study, spectral analysis with the 

S2TC model was used to generate the initial parameter estimates that could be ‘close’ to 

the global minimum thereby minimizing this source of error. Linearization of tissue TAC 

would allow linear least squares methods to be used for model parameter estimation, which 

requires much less computation time than iterative non-linear optimization and more 

significantly would converge to the global minimum. However, the linearized tissue TAC 

involves double integral of the original curve, the correlated noise would lead to biased 



81 

 

model parameter estimates 24. Another source of error was frame averaging that is 

invariably used in dynamic PET to improve the signal-to-noise of the tissue TAC. In this 

study, both the arterial and tissue TAC were simulated at 0.5 s interval, frame averaged 

and placed at mid time point of the framing schedule. From table 2.3, it demonstrated that 

frame averaging introduced errors in K1 and k2 estimated by the S2TC model (both 

software) when compared to the F2TC model.  

Figure 2.6 shows that longer mean transit time caused larger average FED of parameters 

estimated using the S2TC model with either custom software or PMOD than F2TC model. 

In dynamic PET imaging, the tracer is injected intravenously (systematically) and 

continues to recirculate throughout the whole body. During each transit of tracer through 

the vessels, there is continuous influx and efflux of tracer into the EES (from nonzero K1 

and k2 values), failure to properly model the transit time can result in erroneous (larger 

bias) K1 and k2 estimate, hence would also affect the downstream k3 and k4. This is 

especially important in conditions like ischemic stroke where there is increased mean 

transit time with decreased cerebral blood flow and blood volume25. Additionally, S2TC 

model’s assumption of instant arrival and washout of tracer led to zero or underestimation 

of blood volume which is not physiological and could explain why some kinetic studies 

did not report on the estimates of blood volume26–28 or was reported as zero29. 

Using FED, figures 2.3-6 showed that the F2TC model is better than the S2TC model with 

either the custom software or PMOD. FED being a summary over all parameters is affected 

by the parameters related to the vascular effect (K1, k2 and Vp) as well as binding to and 

dissociation from target (k3 and k4). Since dynamic PET data are ‘corrupted’ by frame 

averaging and noise, a fair comparison of model performance would have to include these 

effects. Consistent with these considerations, parameter estimates obtained by the S2TC 

and F2TC model on simulated curves that included frame average and noise (see simulation 

procedure in §2.4.1) for MTT 20 s were compared. The error in parameters estimated by 

the S2TC model with custom software was >0.01 for K1, k2, Vp, DV and BP and <0.01 for 

other parameters (table 2.2). With only frame averaging simulation, the error in parameters 

estimated by the S2TC model (both software) was higher (table 2.3). With lower MTT of 

10 s, the error was reduced to <0.01 for all parameters estimated by the S2TC model with 
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the exception of BP. Taken together, these results support our proposition that ignoring the 

transit time effect in blood vessels affect the accuracy in the estimation of vascular 

parameters (K1, k2 and Vp) as well as k3 and k4 albeit the effect on the latter two parameters 

is less than the first group. Of interest, noise seem to reduce the error of estimated 

parameters which could be due to the effect of noise masking the error introduced by frame 

averaging. This effect merits further investigation. Another finding is that accuracy of 

parameter estimates with PMOD was much poorer compared to the custom software we 

developed for the S2TC model. As PMOD is a proprietary software it is difficult to 

diagnosis what was the root cause. 

Logan analysis is independent of the structure of the compartments and should be more 

robust in VT estimation. However, our study showed otherwise − F2TC model estimated 

VT was more accurate than Logan analysis. Similar result was also observed by the Logan’s 

simulation study where VT estimated by Logan analysis was subject to bias when noise was 

present in the tissue TAC 17. The bias increased with VT and noise. The noise dependence 

means that it also depends on the physical half-life of the tracer used - shorter half-life 

means higher level of noise at later time points of the tissue TAC. Logan analysis plots the 

time integral of tissue TAC vs that of the arterial TAC (see § 2.6) and the VT is the slope 

of the linear regression line in such a plot. A fundamental assumption of linear regression 

is that noise in the data is uncorrelated. However, time integrals add noise of the tissue or 

arterial activity at different points together leading to noise correlation. The violation of 

the independence of noise would lead to the observed bias in the estimate of VT 24.  

In this study, we showed that the F2TC model has better accuracy in estimating kinetic 

parameters from dynamic PET imaging than the S2TC model. Noise which is more 

prominent in voxel wise than ROI analysis, influences strongly the accuracy and precision 

of estimated kinetic parameters. Contrary to current practice, we found that 45 minute of 

data acquisition is sufficient for accurate parameter estimation for the 10 sets of parameter 

obtained from [18F]FET. Larger parameter sets covering wider range of physiological 

conditions will need to be further investigated. One major disadvantage of the F2TC model 

is that it is iterative and computationally more expensive due to estimation of W (vessel 

mean transit time) and T0 (tracer arrival time) by sequential step-wise search. However, 
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with machine learning or by executing the program in C++, the fitting time can be 

improved considerably.  
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Chapter 3  

3 Pharmacokinetic Analysis of Dynamic [18F]FAZA PET 

Imaging in Pancreatic Cancer Patient 

3.1 Introduction 

Pancretic cancer (PCa) ranks as the fourth most common cause of cancer death in North 

America because of its lowest overall five-year survival rate 1,2. In 2018 alone, 55,440 

Americans were diagnosed with the cancer and 44,330 died from it according to American 

Cancer Society 3. Diagnosis of PCa is often made at an advanced stage after the tumor has 

metastasized resulting in  poor survival rate 4,5. In addition, PCa is very challenging to treat 

because of  hypoxia induced chemo- and radio-resistance 4,6,7. The non-invasive diagnosis 

of hypoxia in PCa to guide personalized treatment may improve the survival of patients. 

Positron emission tomography (PET) is a non-invasive in-vivo imaging method to study 

the molecular and functional characteristics of cancer. A number of hypoxic tracers have 

been developed of which nitroimidazole (NI) based tracers, [18F]fluoromisonidazole 

([18F]FMISO) and [18F]fluoroazomycin arabinoside ([18F]FAZA), are widely used. 

[18F]FAZA is the preferred hypoxia tracer due to its higher lipophilic property, leading to 

faster delivery into the cells and blood clearance and hence higher tumor to blood ratio 7–

9. In general, the tracer enters the cell through passive diffusion and the nitro group is 

reduced by nitroreductase to NO2
- radical. Under well-oxygenation conditions, the radical 

is oxidized back to its original form and diffuses out of the cells. Under poor oxygenation 

Current view of [18F]FAZA binding in cells under condition of normoxia and hypoxia 

Figure 3-1: [18F]FAZA binding mechanism 
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condition or hypoxia, the highly reactive -NO2 radical damages DNA and traps the 18F 

labelled radical. NO2
- radical can be further reduced to hydroxylamine and its intermediates 

are trapped in the cells by covalently bonding to proteins and macromolecules9–16; normally 

the direct covalent bonding of NO2
- radical to DNA is much faster than further downstream 

reduction via hydroxylamine10,17. With either route of metabolism, [18F]FAZA is assumed 

to be irreversibly trapped in hypoxic cells (Fig. 3.1).  

Dynamic PET provides data on the temporal distribution of a tracer in tissue, which is 

necessary for modelling the pharmacokinetics of the tracer18,19. The classical method of 

analysing the kinetics of NI tracer is standard irreversible two-tissue compartment (S2TC) 

S2TC model (a): free unbound tracer in the blood vessel and extravascular extracellular space 

(EES) and the bound tracer in intracellular space (ICS) are categorized into different 

compartments. K1(𝑚𝐿 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔−1) is the tracer influx rate into EES, k2 (min−1) is the efflux 

rate constant from EES to blood, k3(min−1) is binding rate constant, and k4 (min−1) is 

disassociation rate constant. If tracer binding is irreversible, k4 is zero. (b) F2TC model: The 

EES and ICS compartment are retained as in S2TCM but blood vessels are represented as a 

cylindrical tube, and as tracer traverse the blood vessels, it diffuses into EES creating a 

concentration gradient from arterial to venous end. F(𝑚𝐿 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔−1) is blood flow. The 

corresponding flow scaled impulse residue function (IRFF) is shown below the model. 

Figure 3-2: Kinetic models for dynamic PET 
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model (Fig. 3.2a). One limitation of S2TC model is that it does not model the transit of the 

tracer through blood vessels rather it is lumped together as the product of the tracer 

concentration in (arterial) blood and the blood volume. A consequence is that the estimated 

blood volume can be very small particularly if the dynamic PET study has rapid framing 

rate (5-10 s per frame) in the first phase and the S2TC model fit includes this fast first 

phase. To better describe the transport of tracer into tissue, we combine the Johnson-

Wilson-Lee (JWL) model 20 with the S2TC model to arrive at the flow modified two-tissue 

compartment (F2TC) model. It models the flow of tracer in blood vessels and the 

bidirectional permeation of the blood-tissue barrier during the finite transit time through 

these vessels leading to a concentration gradient from the arterial end to the venous end 

(Fig. 3.2b). In contrast, S2TC model assumes the bidirectional permeation of the blood-

tissue barrier occurs ‘instantaneously’ rather than over a period equals to the transit time 

of blood vessels.    

Contrary to the common understanding of the in-vivo behaviour of NI tracers, some studies 

have shown that the tissue time-activity curve (TAC) is best fitted using a reversible S2TC 

model21,22. In this study, we investigated the nature of [18F]FAZA binding to pancreatic 

tumor in patients using graphical analysis23 and S2TC and F2TC model. As noted above 

F2TC model does while S2TC model does not account for the fact that transport of tracer 

into tissue occurs over the transit time of the blood vessels rather than instantaneously, use 

of both models will show how this effect affects the estimated model parameters. To 

confirm model fitting, depending on the nature of tracer binding, forward transfer rate 

(plasma to tissue influx rate) for irreversible bound tracer24 or distribution volume for 

reversible tracer23 as calculated from the estimated S2TC and F2TC model parameters will 

be compared with that estimated by graphical analysis. Finally the estimated model 

parameters can shed light on the possible pharmacokinetics and hence the mechanisms 

behind the accumulation of [18F]FAZA and washout from tumor cells.  
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3.2 Methods 

3.2.1 Patient population and image acquisition 

The patient cohort consisted of 20 patients with biopsy confirmed and previously untreated 

pancreatic ductal adenocarcinoma. The study was approved by University Health Network 

Research Ethics Board and a signed consent form from each enrolled patient was obtained. 

Details of the patient population and image acquisition were described previously25,26.  

Dynamic images were acquired over 55 min with the following imaging protocol: 12@10s 

intervals, 8@30s, 7@120s and 7@300s. PET scans were acquired with in-line PET/CT 

scanner (Discovery ST-16; GE Healthcare). Whole tumor TAC was derived from regions 

manually contoured by an experienced radiologist in all tumor containing tumor slices. 

Arterial input function (AIF) was obtained from aorta at the same level as the tumor ROIs 

with no metabolite correction. Out of the 20 patients, only 14 patients had TAC from 

normal tissue due to pancreatic atrophy in the remaining patients. 

3.2.2 Dynamic PET analysis 

Whole tumor TAC and AIF from each patient were analyzed in three ways: graphical 

analysis and kinetic analyses using the S2TC and F2TC models. 

3.2.2.1 Graphical analysis 

It is a compartmental analysis technique which is independent of the number and 

connectivity of the compartments and can be used to investigate the nature of the binding 

of [18F]FAZA to tumor. For irreversible binding, when tissue TAC (𝑅𝑂𝐼(𝑡)) and AIF 

(𝐶𝑝(𝑡)) are transformed as shown in Eq (1), a linear Patlak23,24 plot is obtained following a 

short delay where the slope (𝐾𝑖) is the forward transfer rate of tracer from blood to the 

bound pool and the intercept is the blood volume (𝑉𝑏): 

                            
∫ 𝐶𝑝(𝜏)

𝑡

0
𝑑𝜏

𝐶𝑝(𝑡)
= 𝐾𝑖

𝑅𝑂𝐼(𝑡)

𝐶𝑝(𝑡)
+ 𝑉𝑃                                                                 (1) 

On the other hand, Eq (2) shows that for reversible binding, the transformed 𝑅𝑂𝐼(𝑡) and 

𝐶𝑝(𝑡) after a short delay are linearly related (Logan plot23,27) with slope equal to the sum 
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of the extravascular distribution volume (𝐷𝑉) and blood volume (𝑉𝑃) or total distribution 

volume (𝑉𝑇 = 𝑉𝑃 + 𝑉𝐷): 

                           
∫ 𝐶𝑝(𝜏)𝑑𝜏

𝑡

0

𝑅𝑂𝐼(𝑡)
= (𝑉𝑃 + 𝐷𝑉)

∫ 𝑅𝑂𝐼(𝜏)𝑑𝜏
𝑡

0

𝑅𝑂𝐼(𝑡)
+ 𝐼𝑛𝑡.                                              (2) 

If the plot according to either Eq(1) or Eq(2) is linear, then the tracer is irreversibly or 

reversibly bound respectively. 

3.2.2.2 Standard two-tissue compartment model (S2TC) 

In dynamic PET, the measured tissue activity arises from tracer in the blood vessels, free 

unbound tracer in extravascular space and tracer bound in the target. S2TC model 

categorizes these different anatomical/physiological states of the tracer as compartments. 

In this model, the consequence of modeling blood vessels as a compartment is that tracer 

once arrived is assumed to be immediately mixed uniformly with tracer already in the 

vessels and to immediately diffuse out to tissue. This is reflected in the flow scaled impulse 

residue function (IRFF(t)) where the vascular component is a delta function of area equal 

to the blood volume, 𝑉𝑃(𝑚𝑙 ∙ 𝑔−1). IRFF(t) is an idealized tissue TAC if the total amount 

of tracer is injected as a tight bolus into a blood vessel supplying the tissue of interest. The 

tissue TAC, ROI(t) corresponding to a systemic injection of tracer as in dynamic PET is 

obtained by convolution of the AIF with IRFF(t) based on the principle of linear 

superimposition. The above discussion is summarized by the following equations: 

𝑅𝑂𝐼(𝑡) = 𝐶𝑝(𝑡) ⊗ 𝐼𝑅𝐹𝐹(𝑡 − 𝑇0)                                                                        (3) 

where 𝑇0 is the delay (s) in arrival of tracers from the site where AIF is measured to the 

tissue region of interest 

𝐼𝑅𝐹𝐹(𝑡) =  {
𝑉𝑃𝛿(𝑡)                    𝑡 = 0 

𝐺𝑒−𝛼𝑡 + 𝐻𝑒−𝛽𝑡   𝑡 > 0
                                                                (4) 

 

𝛼 =
𝑘2 + 𝑘3 + 𝑘4 +  √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
                                           (5)  

𝛽 =
𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
                                           (6) 
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𝐺 =
𝐾1(𝛼 − 𝑘3 − 𝑘4)

𝛼 − 𝛽
; 𝐻 =

𝐾1(𝑘3 + 𝑘4 − 𝛽)

𝛼 − 𝛽
                                            (7) 

 

𝛼, 𝛽, 𝐺 𝑎𝑛𝑑 𝐻 are fitting parameters estimated from curve fitting and it is expressed in 

terms of the explicit model parameters K1, k2, k3 and k4 as defined in the legend of Fig. 3.2; 

and ⊗ is the convolution operator.  

3.2.2.3 Flow modified two-tissue compartment (F2TC) model  

To avoid the compartmental assumption for tracer in blood vessels with shortcomings as 

discussed above, we developed a new model called flow modified two – tissue 

compartment model (F2TC). It models the bidirectional tracer permeation of the blood-

tissue barrier during the finite transit time through blood vessels (Fig. 3.2b). This is 

reflected in the IRFF(t) where the delta function in the case of S2TC model is replaced by 

a rectangular function with a width equal to the transit time (w) of the tracer from arterial 

to venous end of blood vessels. The rest of IRFF(t)  remains the same as the S2TC model. 

The mathematical representation for F2TC model’s IRFF(t)  is:  

 

𝐼𝑅𝐹𝐹(𝑡) =  {
𝐹                                              0 ≤ 𝑡 < 𝑤

𝐺𝑒−𝛼(𝑡−𝑤) + 𝐻𝑒−𝛽(𝑡−𝑤)             𝑡 ≥ 𝑤
                              (8) 

 

The fitting parameters are the same as the S2TC model except that 𝑉𝑃 is replaced by 𝑤 and 

can be calculated as the product of 𝑤 and 𝐹 according to the Central Volume Principle 28. 

3.2.2.4 Analysis of Tumor and Tissue TAC 

PKIN (PMOD technologies LLC, Zurich, Switzerland) with blood delay option was used 

to fit the S2TC model to the tumor and normal tissue TAC while custom software 

developed in MATLAB (The Mathworks Inc.) incorporating the ‘interior-point’ non-linear 

optimization routine was used to fit F2TC model to the same the TACs. The model that 

better represented the TACs was determined by comparing the root mean square deviations 

(RMSD) between the TAC and the model fit with Wilcoxon signed-rank test and by the 

Akaike Information Criteria (AIC 22) for small sample size  
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𝐴𝐼𝐶 = 𝑁. ln (
𝑅𝑀𝑆𝐷

𝑁
) +

2(𝐾 + 1)(𝐾 + 2)

𝑁 − 𝐾 − 2
                                (9) 

where N is the number of time frames, K is number of parameters in each model. With 

explicit model parameters estimated from curve fitting, important summary parameters like 

𝐾𝑖 =
𝑘1𝑘3

𝑘2+𝑘3+𝑘4
 𝑉𝐷 =

𝑘1

𝑘2
(1 +

𝑘3

𝑘4
) and 𝐵𝑃 =

𝑘3

𝑘4
 can be calculated. 𝐾𝑖 is the net influx rate 

from the blood vessel to the bound pool and BP the binding potential 29,30. Bland-Altman 

plot 31 of median and interquartile extremes of VT estimated with the F2TC and S2TC 

model were compared against those estimated by Logan plot. The extremes are calculated 

as Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third quartile and IQR 

is the interquartile range. Both the summary and explicit parameters estimated by F2TC 

and S2TC model were compared using non-parametric paired test. Depending on whether 

the distribution of the differences between the two sets of parameters is symmetrical or 

asymmetrical, either Wilcoxon signed rank test or sign test, respectively, was used to test 

for significant difference between the two models. Univariable logistic regression of 

explicit model parameters (VP, K1, ki i=2,3,4) and DV was used to determine their 

significance in differentiating normal tissue from cancer. Logistic regression with 

backward elimination of a group of above parameters, each selected if the associated 
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univariable analysis attained a P-value of < 0.1, was used to determine the optimal set of 

parameters to differentiate normal from hypoxic tumors.  

3.3  Results 

3.3.1 Reversibility of [18F]FAZA Binding 

The non-linear Patlak analysis plot vs the linear Logan analysis plot (Fig. 3.3) proved that 

the tracer was reversibly bound contrary to the commonly held view that it is irreversibly 

bound. This result was further corroborated by  pharmacokinetic analysis where the median 

RMSD difference between the model fit and measure TAC in either normal tissue or tumor 

was smaller with reversible F2TC model (both  and  estimated) than the irreversible 

model ( set to zero) (z = 3.78, p<0.005). 

 

Linear plot of Logan analysis (a) and non-linear plot of Patlak analysis (b) indicated that the 

tracer was reversibly bound contrary to the current view of irreversible binding 

 

Figure 3-3: Graphical analysis of [18F]FAZA tissue TAC from a pancreatic tumor 
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3.3.2 Model selection 

As indicated by AIC and RMSD in Fig. 3.4, our developed F2TC model was able to fit the 

tumor and normal tissue TAC better than S2TC model (p = 0.002, p<0.0005 respectively). 

S2TC model also estimated the blood volume (𝑉𝑃) poorly. The average tumor 𝑉𝑃  estimated  

by F2TC and S2TC models, though not significantly different, was 0.1039 and 0.0737 𝑚𝐿 ∙

𝑔−1 respectively with a few S2TC model’s 𝑉𝑃 estimated to be zero which is non-

physiological. According to non-parametric test, the explicit model parameters (Vp, K1, ki 

(i = 2,3,4)) as well as the summary parameter BP and Ki estimated by the F2TC and S2TC 

model were not significantly different (p> 0.05). However, DV and K1/k2 were 

significantly different (p<0.0005). Fig. 3.5 are Bland-Altman plots comparing VT estimated 

by Logan analysis against the F2TC and S2TC model. The median differences (thick black 

line) and extremes of agreement (dash lines) were significantly lower for F2TC model 

compared to S2TC model and VT from F2TC model was not but S2TC model was 

significantly different from that estimated by Logan analysis. Extremes of agreement were 

Q1-1.5*IQR and Q3+1.5*IQR where Q1, Q3 and IQR are 1st and 3rd quartile and 

interquartile range respectively. 

Comparison of F2TC and S2TC model in fitting tumor and normal tissue TAC using (a) RMSD and 

(b) AIC as measure of goodness of fit. The x-axis is patient number. Case #1-20 corresponds to 

tumors and Case #21-34 are normal pancreatic tissues from same patients as 1-20. Normal 

tissues were observable in PET imaging in 14 patients only 

Figure 3-4: RMS and AIC comparison from F2TC and S2TC model fitting 
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3.3.3 Differentiation of Tumor from Normal Tissue 

Among the kinetic parameters estimated with the F2TC model, only k4 and DV were 

significant (p<0.05) in univariable logistic regression analysis to separate normal tissue 

from tumor. Using a subset of kinetic parameters (Vp, DV and k4), each of which had p<0.1 

in univariable analysis, logistic regression with backward elimination identified k4 and DV 

as a significant model (p=0.003) to separate normal tissues from hypoxic cancerous tissues 

(Fig. 3.6a). The model correctly classified 79% of the cases with specificity of 57% and 

sensitivity of 95%. The positive predictive value (PPV) was 76% and negative predictive 

value (NPV) 89%. With the S2TC model, univariate analysis showed that only DV had 

p<0.1 that correctly classified 71% of cases with sensitivity, specificity, PPV and NPV of 

90 %, 43%, 68% and 64% respectively (p = 0.047).  

3.4 Discussion  

The developed F2TC model models the bidirectional permeation of the blood-tissue barrier 

as the tracer traverses the blood vessels over a period equals to the mean transit time, 

Bland-Altman plot comparing total distribution volume (VT) estimated for hypoxic and normal 
tissue with Logan graphical analysis and with (a) F2TC and (b) S2TC model. The solid lines are 
the median differences and dashed lines are explained in the text. 

Figure 3-5: Bland- Altman plots comparing total distribution volume 



97 

 

resulting in a concentration gradient from the arterial to venous end of vessels. On the other 

hand, S2TC model assumes that fresh tracer in arterial blood is instantaneously and 

uniformly mixed with tracer already in the blood vessels and instantaneously washout of 

blood vessels. This unrealistic assumption resulted in a smaller VP estimate than the F2TC 

model and in some cases even a non-physiological estimate of zero. Total distribution 

volume, VT, estimated by the F2TC model for both tumor and normal pancreatic tissue was 

not but that estimated by the S2TC model was significantly different from Logan graphical 

analysis. This result was also supported by both AIC and RMSD of the fit to the tissue 

Distinguishing pancreatic tumor from normal tissue using kinetic parameters estimated with 

F2TC and S2TC model. (a) For the F2TC model, distribution volume (DV) and k4 can distinguish 

the two tissue types with sensitivity of 95% and (b) For the S2TC model, DV achieved a 

sensitivity of 90%. The solid line in each case is the linear discriminator derived from the Youden 

index (Cancer 1950; 3(1): 32-35). For each case, DV for one patient’s hypoxic tumor is large 

due to zero 𝛽 estimate which was not plotted here but was included in the performance metric 

calculations 

Figure 3-6: Differentiation of hypoxic tumor from normal tissue with kinetic parameters 

estimated by F2TC and S2TC model 
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TAC that the F2TC model was more suited than S2TCM for describing the kinetics of 

[18F]FAZA in hypoxic tumor and normal tissue of the pancreas.  

The hypoxic pancreatic cancer tissue can be characterized from the normal tissues using k4 

and DV from the F2TC model with high sensitivity of 95% and negative predictive value 

of 89%. On the contrary, DV from the S2TC model can distinguish the two tissue types 

with lower sensitivity and NPV. DV is a surrogate marker of SUV acquired at sufficiently 

long time after tracer injection, when the blood background is negligible32. Therefore, using 

DV from S2TC model corroborates the usage of SUV for hypoxia imaging in the clinics, 

which is performed at least one hour after injection. Nevertheless kinetic analysis by 

providing k4 and DV could out-perform SUV (DV) in this diagnostic task.  

Mechanisms for hypoxia imaging with nitroimidazole based tracers like [18F]FAZA. The region 

indicated by dashed box is the proposed mechanisms behind the reversibility of tracer binding  

Cell 

Figure 3-7: Proposed binding mechanisms of [18F]FAZA binding 
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Graphical method as well as lower RMSD from the reversible (non-zero 𝛽) F2TC model 

compared to the irreversible model demonstrated that the tracer [18F]FAZA was reversibly 

bound to hypoxic PCa, contrary to the current view that NI based tracers are trapped in 

hypoxic cells. Unlike kinetic modelling, graphical method is independent on the structure 

(connectivity) and the number of compartments in the model which makes it more 

adaptable to prevailing tumor heterogeneity, i.e. a single F2TC or S2TC model may not 

apply to all regions in a tumor. Hence, graphical analysis is a reliable method to determine 

the reversibility of tracer binding. Previous studies also corroborated our finding that the 

kinetics of NI based tracers are best analyzed using reversible S2TC model21,22. 

Nonetheless, the mechanism behind the reversible binding of NI based tracers was not well 

described in the literature.  

A group in Japan studied the mechanism of NI based [18F]FMISO binding in nude mice by 

implanting cells from the human FaDu cancer line 14,33,34. They found that the majority of 

the tumor radioactivity was from low molecular weight metabolite, glutathione (GST) 

conjugate of amino-FMISO (amino-FMISO-GH)14,34,35. Amino-FMISO-GH is highly 

hydrophilic and cannot diffuse out of the cell. However, it could efflux out via the 

adenosine triphosphate (ATP) dependent multi-drug resistant protein (MRP-1)34,36, which 

is highly expressed in pancreatic tumor cells 5,37–39 and is responsible for drug resistance. 

A similar efflux of amino-FAZA-GH could explain the non-trapping of [18F]FAZA in 

hypoxic tissue and hence the estimation of non-zero 𝛽 with kinetics modelling. Since k4 

and distribution volume were comparatively larger for normal than cancerous tissue, it is 

likely that more amino-FAZA-GH was effluxing out of the normal tissue leading to higher 

tracer accumulation and contrast between tumor and normal tissue in SUV imaging.  As 

suggested by Masaki et al., NI based tracers may be imaging a complex processes involving 

nitroreductase, glutathione, and MRP-1 mediated efflux activity34. The tracer, [18F]FAZA 

could be used to monitor MRP-1 activity and glutathionylation; hence could lead to 

personalization of treatment protocol by boosting radiation treatment in high hypoxic 

region and possibly treating high k4 pancreatic cancer with MRP-1 blockers. This 

hypothesis warrants further investigation with more patients.  
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The major drawback of this study is that normal tissue from six patients could not be 

contoured due to tissue atrophy. The image derived AIF was not corrected for radio-

metabolites which could introduce error in the estimation of kinetic parameters. With a 

complete set of normal data, the sensitivity and specificity could improve. The 

measurement of oxygen partial pressure in the tumor of this group of patients was not done 

as the approved ethics protocol did not include this invasive procedure. Nevertheless, 

pancreatic glands in PCa are surrounded by dense desmoplastic reaction for the survival of 

the cancer cells 40. The high sensitivity (95%) in distinguishing the tumor from normal 

tissue agrees with the current view that pancreatic tumor is highly hypoxic due to this 

prevalent desmoplasia and the tracer [18F]FAZA is a specific substrate for nitroreductase 

in hypoxic cells. Furthermore, normal tissue neighbouring PCa may be relatively hypoxic 

compared to that in normal pancreas owing to the dense mass of fibrogen and collagen 

from desmoplasia. This could explain the low specificity observed in separating tumor 

from normal tissue. 

3.5 Conclusion 

We have developed the flow modified two tissue compartment (F2TC) model to analyze 

the kinetics of the hypoxic tracer [18F]FAZA kinetics in pancreatic cancer.  Using the F2TC 

model, the estimated distribution volume (𝐷𝑉) and dissociation rate constant (𝑘4) of the 

tracer were able to distinguish pancreatic cancer from normal tissue with high sensitivity 

(95%) and high negative predictive value (89%). Our result also showed that [18F]FAZA 

was not irreversibly trapped in the putative hypoxic pancreatic cancer cells because the 

glutathione conjugated nitroreductase reduced product can exit hypoxic cells via the MRP-

1 efflux pump.      
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Chapter 4  

4 Plasma Radio – metabolite analysis of PET tracers for 

dynamic PET imaging: TLC and autoradiography 

4.1 Introduction 

To derive molecular/metabolic information from dynamic PET, a kinetic analysis of the 

radiolabeled tracer is required. Obtaining the time concentration curve of the radiotracer in 

blood plasma, the arterial input function (AIF), is crucial to accurately portray the 

pathophysiology. One frequently used method is to sample arterial blood serially and use 

a radiation detector to measure the activity in the blood samples. The detector only detects 

the annihilation photons from the decaying positron-emitting isotope and cannot 

distinguish whether the radionuclide remains attached to the parent tracer or its 

metabolites1. AIF can be image derived obtained by measuring the activity in the arterial 

region in dynamic PET. Regardless of the method, measuring the activity in blood could 

overestimate the AIF because of the metabolite activity. Without correcting for the 

metabolite activity, results from kinetic analysis based on the overestimated AIF would be 

erroneous.  

The metabolites can be separated from the parent tracer using chromatographic technique 

like thin layer chromatography (TLC), solid–phase extraction (SPE), or high performance 

liquid chromatography (HPLC)2,3. A rapid separation method, SPE techniques require a 

high amount of manual manipulation, which may pose a safety hazard from routine use. 

They can also be used to purify samples before they are submitted to HPLC for further 

analysis4. HPLC is widely used in analytical chemistry and pharmaceutical industry and 

research to determine the purity of samples. It has high resolution between metabolites and 

parent tracer with high sensitivity in radioactivity detection due to the use of a scintillation 

detector coupled with a photo-multiplier tube5. However, as a serial analyzer, HPLC can 

only analyze one sample at a time which can take up to 20 min for each sample. These 

instruments rely on finely tuned pumps, sensitive detectors, and various separation media. 

This results in high initial purchasing and upkeep costs. Preparing plasma samples for 
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HPLC analysis can be labor intensive and exposes personnel to additional ionizing 

radiation.  Finally, HPLC separation is susceptible to impurities in the solvent mobile 

phases1.   

An economical alternative to HPLC is TLC which is a simpler version of HPLC. It is not 

susceptible to impurities and multiple samples can be analyzed at the same time. The major 

drawbacks are that TLC suffers from poorer analyte resolution and requires a very sensitive 

detector to detect analytes at low concentration on the TLC plate. Different techniques have 

been developed in the past for radio-TLC. Earlier techniques include the zonal analysis6 

and autoradiography technique where the TLC plate is directly exposed to x-ray film7. 

Later, radio-scanners were developed that measured radioactivity at 1 – 2 mm steps. These 

techniques have poor analyte resolution (albeit from the intrinsic TLC characteristics), low 

sensitivity (MBq/mL range), and usually require long exposure time from hours to months 

for low activity samples and are prone to error5,7. Therefore, our objective was to explore 

a different detection system with improved sensitivity and time efficiency for radio-TLC.  

 

4.2 Materials and Methods  

4.2.1 Beaver autoradiography system  

Beaver autoradiography (ai4r, France) is a multimodality real time digital autoradiography 

system that can image beta and alpha particles8. The detector is based on the principle of 

micro pattern gaseous (Ne + 10% CO2) detector (MPGD). The one we used was designed 

for imaging large samples with high spatial resolution of 50µm (high energy beta and beta 

plus) and sensitivity of 5x10-4
 cpm.mm-2 9. The detector is comprised of two drift zones 

alternating with two amplification zones separated by nickel micromeshes (Figure 4.1). 

The special feature of the drift zone is the low electric field (1kV/cm) that guides the 

electrons from the site of ionization by beta particles from radionuclide decay into the 

amplification zone10. Electrons are multiplied by avalanche effect in the amplification zone 

due to kinetic energy imparted by the high electric field. The amplification zones are 

shallow in depth (50m) to limit the spread of electron avalanche (cloud) and hence 

improve spatial resolution11. The TLC plate is used as the cathode of the detector and serves 
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as the back end of the first drift zone to prevent back flux of electrons. The electron cloud 

exiting the second amplification zone is captured by the pixelated reading anode.  

 

4.2.2 Animal protocol 

All experimental procedures were approved by and performed in accordance with 

guidelines from institutional animal ethics committee. Five farm pigs were procured from 

a farm nearby and two athymic Rowett Nude (RNU) rats were purchased from Charles 

River (Saint Constant, Quebec, Canada). The C57BL/10J mouse used in optimization of 

[18F]FEPPA mobile phase was purchased from Jackson Laboratory (Maine, USA). The 

animals were under no dietary restriction with free food access before each experiment. 

Pigs were first anesthetized with Telazole intramuscular injection (1 mL/kg) while rats and 

mouse by masking with 5% isoflurane, and maintained using isoflurane at 2-3% balanced 

oxygen and medical air. Pigs (33.7 ± 9.33 kg) were used for [18F]FEPPA (21.9 ± 6.34 

Figure 4-1 Schematic diagram of Beaver autoradiography detector system 

Working principle of Beaver MPGD for 𝛽- particle (adapted from J Instrum. 2009; 4:1-911) 
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MBq/kg) analysis. [18F]FEPPA rats (309.75 ± 29.64 g) were used for [18F]FAZA (49.54 ± 

9.39 MBq/kg ) analysis. The tracers were manufactured at the cyclotron/radiochemistry 

facility of our institution following published procedures 12,13. Blood samples were drawn 

at 8 time points post tracer injection (p.i.) – 5, 10, 15, 20, 30, 40, 50 and 60 min. Each rat 

underwent two blood draws, two weeks apart, to make up a total of 4 sets of rat blood 

samples. For rats, blood (0.2 mL) was drawn for each sample from a tail artery using 

heparinized syringe into plasma separator tube. Due to the larger total blood volume of 

pigs, 2mL of blood was drawn for each sample from a cephalic vein into EDTA coated 

tubes.  

 

4.2.3 Blood preparation for metabolite analysis 

The blood samples were immediately placed on ice to prevent further catabolism. Within 

1-2 min after the last sample was taken, all samples were centrifuged at 1,000G in Sero-

fuge II centrifuge (Clay-Adams Company, Inc.) for 5 minutes. The supernatant plasma was 

aspirated for radio-metabolite analysis. 

 

4.2.4 Thin Layer Chromatography (TLC) preparation 

Silica coated TLC plates with F254 fluorescent indicator were purchased from 

MilliporeSigma. Each plate was scored to a height of 9 cm to fit the 13x9 cm holder of the 

Beaver TLC detector. Blood plasma (2 µL) from each blood sample was spotted 1 cm from 

the bottom of the plate with a micropipette. For optimal use of each imaging session with 

the TLC detector, two 5 cm wide plates were used. Five samples including one parent tracer 

reference (0.11 – 0.30 MBq in 3 – 5 mL of isotonic saline) can be spotted on each plate. 

The plate was air dried after spotting then immersed into the mobile phase in a beaker, 

making sure the solution was less than 5 mm high. The beaker was then covered with 

parafilm wax paper. The TLC plate developed for approximately 15 minutes until the 

solvent (mobile phase) front was roughly 1cm from the top of the plate. The plate was then 

removed, air dried, and imaged with the autoradiographic detector for 4 h. 
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4.2.5 Optimization of the mobile phase 

Using different volume fractions of ethyl acetate, methanol, and hexane, the mobile phase 

was optimized for each tracer. The solution that allowed the least polar analyte to migrate 

furthest away from the spotting baseline as well as giving a good separation of the 

metabolites from the unmodified tracer in the autoradiography image was selected as 

optimized solution. Due to poor analyte resolution with TLC, the plasma metabolites did 

not appear as discrete spots. [18F]FEPPA and [18F]FAZA were optimized with blood from 

a mouse and a human volunteer respectively, drawn at 90 min and 60 min p.i. respectively. 

In this study, with the optimized mobile phase (solvent), the parent tracer was always 

closest to the solvent front after the TLC plate was developed. 

 

4.2.6 Image analysis 

Autoradiography images were analyzed with Analyze 12.0 (Analyze Software System). 

Line profiles were generated by summing the detected counts in a 7 mm segment centered 

on the sample “track” at 10 mm intervals. 

For line profiles where the adjacent metabolite peak overlapped with the parent tracer peak, 

the area underneath the latter was estimated with a custom developed program using 

MATLAB (The MathWorks, Inc.). These line profiles were fitted with two Gaussian 

functions.  The parent tracer peak area was determined as the area of the fitted Gaussian 

between the limits of   1.96 , where  is the mean and  is the standard deviation.  For 

spots where the adjacent metabolite peak did not overlap with the parent tracer peak, the 

latter was fitted with a Gaussian function and the parent tracer peak area was similarly 

determined as for the case of overlap.   

The fraction of the parent tracer was calculated using the formula:  

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑛𝑎𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑐𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑖𝑛𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒
 

Each estimated parent tracer fraction for different times p.i. was compared to published 

literature values for validation.  
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4.2.7 Effect of radio-metabolites on kinetic parameter estimation  

The kinetic parameters associated with the tracer uptake are obtained by deconvolving the 

AIF of the parent tracer from the measured tissue concentration curve or tissue time activity 

curve (TAC). A simulation study was performed to observe the effect of blood plasma 

radio-metabolites in the estimation of kinetic parameters. For simulating the tissue TAC, 

our in-house flow modified two compartment (F2TC) model 14 that models the bi-

directional permeation of the endothelial barrier during the transit time of the tracer through 

blood vessels, was utilized. The flow scaled impulse residue function (IRFF(t)) for the 

model is expressed as:  

𝐼𝑅𝐹𝐹(𝑡) =  {

        
𝐹                                                               0 ≤ 𝑡 < 𝑊
𝐺𝑒−𝛼(𝑡−𝑊) + 𝐻𝑒−𝛽(𝑡−𝑊)                              𝑡 ≥ 𝑊

               

where F is the blood flow, W is the mean transit time through blood vessels and G, H, 𝛼 

and 𝛽 are the fitting parameters obtained by iteratively fitting tissue TAC with non-linear 

‘interior point’ optimization technique. The model’s explicit parameters can be calculated 

from the fitting parameters as follows:  

𝐾1 = 𝐺 + 𝐻;  𝑘2 =
𝐺𝛼 + 𝐻𝛽

𝐺 + 𝐻
  

𝑘3 =
𝐺𝐻(𝛼 − 𝛽)2

(𝐺 + 𝐻)(𝐺𝛼 + 𝐻𝛽)
;   𝑘4 =

(𝐺 + 𝐻)𝛼𝛽

(𝐺𝛼 + 𝐻𝛽)
=

𝛼𝛽

𝑘2
   

The explicit parameters are the influx (K1) and efflux (k2) rate constant of tracer through 

the blood tissue barrier and k3 and k4 are the binding and disassociation rate constant of the 

parent tracer to and from the target respectively. 

The measured AIF with metabolite contamination, AIFm was simulated using Feng’s model 

15,16:  

𝐴𝐼𝐹𝑚(𝑡) = [𝐴1(𝑡 − 𝑡0)𝛼 − 𝐴2 − 𝐴3]𝑒−𝜆1(𝑡−𝑡0) + 𝐴2𝑒−𝜆2(𝑡−𝑡0) + 𝐴3𝑒−𝜆3(𝑡−𝑡0)    

where 𝐴1 = 800, 𝛼 = 1.0, 𝐴2 = 20,  𝐴3 = 20,  𝜆1 = 4 𝑚𝑖𝑛−1 , 𝜆2 = 0.015 𝑚𝑖𝑛−1,  𝜆3 =

0.15 𝑚𝑖𝑛−1, 𝑡0 = 0.15 𝑚𝑖𝑛 
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AIFm was simulated at 0.5 s and corrected for radio-metabolite by multiplying with the 

fraction of parent [18F]FEPPA measured in §3.4:   

𝐴𝐼𝐹𝑐 = 𝐴𝐼𝐹𝑚 ∗ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

The corrected AIFC was used to simulated tissue TAC at 0.5 s with ten sets of parameters 

(Table 4.1) from patients with high grade glioma 17. All the curves were frame averaged 

according to the  

Table 4.1: Ten parameter sets used for simulating the effect of radio-metabolite correction in 

blood plasma 

SET# 
𝑲𝟏 

(mLmin-1g-1) 

𝒌𝟐 

(min-1) 

𝒌𝟑 

(min-1) 

𝒌𝟒 

(min-1) 

𝑭 

(mLmin-

1g-1) 

W 

(s) 

𝑽𝒑 

(mLg-1) 

DV 

(mL.g-

1) 1 0.0930 0.5920 0.1840 0.0410 0.37 7 0.043 0.8621 

2 0.1370 0.3310 0.2300 0.0700 0.27 7 0.032 1.7738 

3 0.0740 0.3440 0.1520 0.0370 0.10 10 0.016 1.0988 

4 0.0720 0.4580 0.2880 0.0770 0.29 10 0.048 0.7452 

5 0.2220 0.4720 0.1900 0.0870 0.44 5 0.037 1.4975 

6 0.1940 0.3280 0.2830 0.1720 0.26 15 0.065 1.5646 

7 0.0960 1.0000 0.3060 0.0670 0.38 8 0.051 0.5344 

8 0.1010 0.5180 0.3510 0.0750 0.20 10 0.034 1.1075 

9 0.4790 1.0000 0.2210 0.1370 0.64 10 0.106 1.2517 

10 0.2180 0.4980 0.4480 0.0840 0.87 15 0.218 2.7724 

following frame schedule: 10 @ 10 s, 5 @ 20 s, 4 @ 40 s, 4 @ 60 s, 11 @ 180 s and 1@ 

120 s (total 45 min).  The two sets of kinetic parameters estimated by deconvolving AIFm 

and AIFc from simulated tissue TACs were compared. The difference of the parameters 

estimated with and without metabolite correction was tested for statistical significance 

using non-parametric test − either Wilcoxon signed rank or sign test depending on whether 

the distribution of the differences was symmetric or non-symmetric, respectively. P<0.05 

was declared significant with Bonferroni correction for multiple comparison with 8 

parameters (𝐾1, 𝑘𝑖 (𝑖 = 2,3,4), 𝑉𝑝, 𝐷𝑉, 𝑊, 𝐾𝑖). 
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4.3 Results 

4.3.1 Optimization of the mobile phase 

The separation of radio-metabolites in blood plasma with different mixtures of methanol, 

hexane and ethyl acetate for both tracers is shown in Figure 4.2. The optimized mobile 

phase for [18F]FEPPA and [18F]FAZA were 8% methanol and 10% hexane in ethyl acetate 

(v/v; fourth solution) and 7% methanol in ethyl acetate (v/v; third solution) respectively.  

 

4.3.2 Autoradiography 

Figure 4.3 shows the autoradiographic images obtained from TLC plasma metabolite 

analysis of [18F]FAZA (rat) or [18F]FEPPA (pig), respectively. Each image showed two 

TLC plates with the parent tracer in normal saline as reference on each, as well as plasma 

obtained at different times p.i.. Since the reference parent tracer spot moved the furthest 

Mobile phase optimization for (a) [18F]FAZA and (b) [18F]FEPPA in human and mouse blood 

respectively at 90 min and 60 min (respectively) post injection, using different fractions of 

methanol, ethyl acetate and hexane. For each tracer, five different mixtures were used. For 

[18F]FAZA only blood samples were used while for [18F]FEPPA each blood sample was paired 

with the native tracer in normal saline as the reference. The optimal mobile phase would 

spread the radio-metabolites along the entire lane and move the reference furthest from the 

spotting line. For [18F]FEPPA the fourth solution from the left comprised of 8% methanol, 10% 

hexane and 82% ethyl acetate was optimal while for [18F]FAZA, it was the third solution 

comprised of 7% methanol and 93% ethyl acetate. 

(a) (b) [18F]FAZA [18F]FEPPA 

Figure 4-2: Optimization of mobile phase for [18F]FAZA and [18F]FEPPA 

0 

5 

0 

10 
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from the spotting baseline, it was the least polar analyte. The spots with similar retention 

factors (Rf) to the reference spots were the fractions of the parent tracer in plasma at 

different times p.i.. For [18F]FAZA on the left, the reference spots’ Rf was 0.66 ± 0.01 . 

Most of the activity was from the parent tracer while that at the spotting line could be from 

the more polar radio-metabolites. Significant conversion of tracer to radio-metabolite was 

observed from 50 min p.i.. For [18F]FEPPA on the right, the reference spots’ Rf was 0.54 

± 0. Radio-metabolites were observed as early as 5 min p.i. as indicated by activity directly 

below the reference Rf as well as activity along the spotting line. At 1 h p.i., the parent 

tracer spot almost disappeared as there was almost complete conversion into metabolites 

observed as activity all along the track.  

 

4.3.3 Line profile 

Figure 4.4 shows the line profiles of selected [18F]FEPPA spots − reference, 5 min and 1 h 

p.i. − in the right image of Figure 4.3. For the reference, a well-defined peak was observed 

Autoradiography image of plasma samples obtained from a rat injected with [18F]FAZA (left) 

and from a pig injected with [18F]FEPPA (right). ‘Ref’ is the reference spot on each TLC plate. 

The number above each line shows the time in min at which the blood sample was drawn post 

tracer injection. The direction of motion of the mobile phase (solvent) front from capillary 

action was from bottom to top. The radio-metabolites that did not move with mobile phase 

show up as faint ‘spots’ at the bottom along the spotting line. 

0 

10 

Figure 4-3: Autoradiographic image of TLC for [18F]FAZA and [18F]FEPPA
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due to high signal to noise ratio. At 5 min p.i., three prominent peaks were discernible. The 

peak on the furthest right was the parent [18F]FEPPA, the peak for the least polar radio–

metabolite was close to the parent tracer. The most polar radio-metabolite was located close 

to the spotting baseline. At 1 h p.i., the parent [18F]FEPPA peak was not identifiable. A 

new peak corresponding to radio-metabolites of intermediate polarity was observed and 

the amount of the most polar radio-metabolite increased, as indicated by the area. 

Therefore, the parent [18F]FEPPA was almost completely metabolized to radio-metabolites 

at 1 h p.i..  

 

4.3.4 Fraction of parent tracer versus post-injection time 

Figure 4.5 shows the fraction of parent [18F]FAZA and [18F]FEPPA in blood at different 

times post-injection (p.i.). For [18F]FAZA, the fraction of parent tracer remained relatively 

constant at 91% until 40 min p.i. The fraction then decreased to 62% and 40% at 50 and 

60 min p.i., respectively. On the other hand, close to 50% of activity in blood was from 

[18F]FEPPA metabolites as early as 5 min p.i. and the parent tracer fraction decreased to 

19% at 1 hour p.i. Table 4.2 shows the coefficient of variation (CoV) of the parent tracer 

Line profile of [18F]FEPPA reference, plasma from a pig obtained at 5 min and 1 h post tracer 

injection. The y-axis is detected counts and the x-axis is distance in mm. The corresponding 

autoradiography image is displayed above the profile. The direction of movement of the 

solvent front from capillary action was from left to right  

Figure 4-4: Line profile of autoradiography image 
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fraction arising from inter-subject variability. For [18F]FEPPA, CoV ranged from 0.07 to 

0.43 while [18F]FAZA from 0.01 to 0.25. 

 

4.3.5 Simulation study 

Due to conversion of parent tracer to radio-metabolite, metabolite correction lowered the 

AIF as p.i. time increased (Figure 4.6(a)). When AIFC was deconvolved from the tissue 

TACs, the parameters estimated were statistically different from those estimated by 

deconvolving AIFm; errors greater than 32% were observed for all parameters (Table 4.3). 

The negative values indicate that values estimated by AIFm
  is larger than those estimated 

by AIFc. 

 

Table 4.2: Coefficient of Variation of native tracer fraction for [18F]FEPPA and [18F]FAZA at 

eight time point post tracer injection 

 5 min 10 min 15 min 20 min 30 min 40 min 50 min 60 min 

[18F]FEPPA 0.07 0.13 0.17 0.17 0.24 0.32 0.26 0.43 

[18F]FAZA 0.02 0.03 0.03 0.04 0.01 0.03 0.12 0.25 

 



116 

 

4.4 Discussion 

In this study, we established an alternate method to HPLC to determine the fraction of 

radio-labeled parent tracer at different times p.i. based on inexpensive TLC and a sensitive 

beta detector. Fraction of parent [18F]FAZA and [18F]FEPPA in normal healthy rats and 

pigs (respectively) p.i. were measured and compared to literature values, if available. There 

were large variations in the rate of metabolite production with the same tracer (either 

[18F]FAZA or [18F]FEPPA) and between the two tracers in the same and different animals. 

CoV of parent tracer fraction in blood could be as high as 43%. Since the mobile phase 

Native tracer fraction vs time post injection (p.i.) for (a) [18F]FAZA and (b) [18F]FEPPA. The dashed 

line in (b) is native tracer fraction from (18).The error bar corresponds to standard deviation for 5 

pig blood samples ([18F]FEPPA) and 4 rat blood samples ([18F]FAZA) 

 

(a) (b) 

Figure 4-5: Fraction of parent tracer for [18F]FAZA and [18F]FEPPA 
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optimization and the successful metabolite analyses were performed on different animal 

species as well as human subject, it showed that the mobile phase could be optimized in 

animals and transferred to human population. Furthermore, simulation study investigating 

the effect of radio-metabolite correction in measured arterial curve suggested that large 

error (30 – 400%) can result in the estimation of kinetic parameters if correction was not 

incorporated.  

 

 

 

Curves utilized for simulating the effect of radio-metabolite on kinetic parameter estimation 

in dynamic PET cases. (a) Arterial curve simulated with Feng’s model for measured (not 

corrected, dashed line) and radio-metabolite corrected curve (solid line). (b) Tissue curve 

simulated with parameter set #6 (table 4.1, solid square) and fitted curves obtained with 

measured arterial curve (dashed line) and with radio-metabolite corrected arterial curve (solid 

line).  

(a) (b) 

Figure 4-6: Simulation curve for investigating the effect of radio-metabolite correction in 

blood plasma 
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Table 4.3: Median differences between parameters in table 4.1 estimated using AIF with and 

without metabolite correction using [18F]FEPPA fraction . P value is estimated by non-

parameter test 

Parameter 

K1 

(mLmin-1g-1) 

k2 

(min-1) 

k3 

(min-1) 

k4
 

(min-1) 

Vp 

(ml.g-1) 

DV 

(ml.g-1) 

W 

(min) 

Median -0.001 -0.118 0.105 -0.043 0.006 0.718 0.021 

P 0.75 0.004 0.005 0.004 0.013 0.004 0.083 

* Bias (%) 403 -32.0 51.0 -171 71.0 50.0 166 

*Although the differences in the estimated parameters were not normally distributed, the percentage bias 
was used to approximate the expected error 

The acquired autoradiography images showed clear distinction between radio-metabolites 

and the parent tracer. The large signal difference between reference and plasma sample 

was due to 6.7 times difference in the activity between the two. Reference [18F]FEPPA 

(parent tracer in normal saline) was spotted with activity of 126 ± 17 Bq in 2 uL while 

plasma samples from pigs were lower in activity – at 5 min p.i. the activity was 

approximately 17 Bq in 2 uL. For our metabolite studies, either 15.2 ± 1.8 MBq (41− 

59MBq/kg) or 427 − 1216 MBq (13 − 27 MBq/kg) was administered for the rat 

([18F]FAZA) and pig ([18F]FEPPA), respectively at the time of injection. These were lower 

than other published metabolite studies in mice where doses ranging from 20 – 30 MBq (1 

GBq/kg) 18 to as high as 68 MBq (3.4 GBq/kg) 19 of tracer were administered due to the 

lower sensitivity of the radiation detector used. In our studies, even with >77 times less 

dose (normalized to body weight to account for the body mass of different species), peaks 

corresponding to the parent tracer could be distinguished from radio-metabolites. In the 

few cases where radio-metabolites overlapped with the parent tracer because of similar 

polarity and hence strength of adhesion to the silica media, the parent tracer peak could be 

adequately resolved by the curve fitting procedure discussed in §2.6. Taken the above 

results together, our method of combining TLC and the Beaver proprietary beta particle 

detector has the analyte resolution and sensitivity for blood metabolite determination for 

both [18F]FAZA and [18F]FEPPA in individual large (pig) or small (rodents) animals. 

Nevertheless, by comparing the [18F]FEPPA dose used in our pig studies (13−27 MBq/kg) 
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to the published patient dose (2.5 − 6.2 MBq/kg 20–23) the sensitivity of the detector has to 

be increased by at least 5 times for the method to be used for blood metabolite 

determination in individual patients. 

From the [18F]FEPPA results (Table 4.2), inter-subject variation was observed with more 

pronounced variability at later time points p.i. This supports our view that the current 

practice of using a population average in normal subjects to correct for metabolite 

contamination 24 is not optimal for kinetic analysis and there is a need to determine blood 

metabolite in individual studies. HPLC is the most commonly used method to measure 

metabolite fraction in blood. It is a serial analyzer; samples are analyzed one at a time. 

Because multiple timed samples must be analyzed, HPLC is both labor intensive and time 

consuming if it is used to construct the metabolite fraction curve over ~ 60 min for each 

individual study. This limitation has resulted in the use of population based (even cross 

species) blood metabolite fraction for individual studies with the assumption that the inter-

subject (inter-species) variability in metabolite production is negligible. As our study and 

other studies showed 20,24,25, inter-subject variabilities do exist invalidating the above 

assumption. In contrast, with our method, multiple samples can be analyzed together within 

one imaging session, the exact number of samples depends on the detector size.  Currently, 

we can analyze 8 samples but with a larger detector size, the number of samples can be 

increased to 12 or more making it feasible for individualized radio-metabolite analysis.  

The effect of not correctly accounting for blood radio-metabolite was investigated with 

computer simulation using a previously published kinetics model 14. For all parameter sets 

listed in Table 4.1, the fitting to the simulated tissue time activity curve (TAC) failed when 

radio-metabolite contamination was not corrected for in the arterial TAC. This failure led 

to large errors (30 – 400%) in parameter estimation and possible misinterpretation of the 

tracer pharmacokinetics. For instance,  distribution volume of [18F]FAZA is related to the 

amount and activity of nitroreductase present in hypoxic tissue 26 while that of [18F]FEPPA 

is related to density and activity of translocator protein (TSPO) found on the outer 

mitochondrial membrane 27, particularly within activated immune cells 28.  

Our measured fractions of parent [18F]FEPPA in blood over time p.i. agreed well with those 

obtained by Rusjan et al.20. On the other hand, measured fractions of parent [18F]FAZA 
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over time p.i. were not found in literature. Studies of [18F]FAZA by Verwer et al. showed 

that only 10% of the activity in blood was from metabolites at 70 min p.i. 22 with the use 

of solid phase extraction and HPLC. Our study showed that significant metabolite fraction 

(~ 10%) in blood started at 40 min and increased to 60% at 60 min p.i.. Jans et al 18 also 

used TLC to estimate the metabolite fraction in blood and no metabolite was observed. 

However, there were two mitigating factors with their experiments that could explain the 

difference in the measured metabolite fraction in blood.  First, it was not known whether 

the mobile phase used was optimized for the tracer; second, the detector used may not be 

as sensitive as our one.   

The time required for blood metabolite analysis using our method starting with the 

collected blood samples (excluding the image processing time) comprised of: 5 min of 

centrifugation, 5 min for spotting samples on and drying the TLC plate, and 15 minutes of 

TLC plate development for a total of 25 – 30 minutes. Technically, the solvent front is 

required to move beyond the furthest point the samples or the parent tracer moved during 

development. In our experiments, the parent tracer (either [18F]FAZA or [18F]FEPPA) 

which moved the furthest, moved approximately 4.5 cm while the solvent front moved over 

7 cm. Therefore, the development time can be shortened to 10 min. The autoradiograph 

image was acquired over 4 h in this study. However, one–hour acquisition was tested, the 

acquired image showed good image quality (signal-to-noise ratio) as shown in the 

supplementary figure. Unlike HPLC where it occupies the operator’s attention the entire 

time while the samples are analyzed, here the imaging (1 or 4 h) is completely operator 

independent. 

In comparison, radio – HPLC takes approximately 10 min for each sample analyzed, not 

including sample preparation time. With multiple samples (say 8 samples as in this study), 

the total preparation time required could be over 80 min compared to 10 min with our 

method. Other comparative similarities and differences between our method and HPLC 

include the following. First, our method requires a smaller volume of plasma (2 L) than 

HPLC. Sample volume required, ranging from 1 to 2000 µL, for HPLC depending on the 

size of the column 29. Second, both requires the mobile phase to be optimized for each 

tracer. Third, inexpensive TLC plates can be used for all tracers but can be used only once 
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while different expensive HPLC columns may be required, one for each tracer but each 

column is reusable. Fourth, HPLC columns require regular washing to prevent clogging 

and to remove metabolites from previous runs which can cause residual memory issue1,30; 

these issues do not arise with TLC because a new inexpensive plate is used for each 

metabolite analysis run and TLC is less prone to impurities present in the solvent. Fifth, 

HPLC has superior analyte resolution than TLC which avoids potential overlapping of the 

parent tracer peak with that of metabolites. However, this overlap of peaks can be resolved 

by Gaussian fitting as discussed in §2.6. Since the chemical identity of the radio-

metabolites is not required for metabolite fraction correction, this simple correction method 

is sufficient for our purpose. Finally, the Beaver autoradiography system is marginally 

more expensive than an HPLC, however, it is a multipurpose system with tissue slice 

imaging capabilities able to detect both 𝛼 and 𝛽 particles. Taking all the above comparative 

advantages and disadvantages of our method and HPLC into consideration, we conclude 

that our method is more suited for individualized metabolite measurement in blood than 

HPLC. Note that independent of whether the AIF is measured with timed arterial blood 

sample or is image derived by measuring the activity in an arterial region in dynamic PET 

images, metabolite correction is required.   

There are several limitations with our study. The measured blood metabolite fraction was 

not validated against the reference HPLC method. However, our [18F]FEPPA results agreed 

with literature values measured with reverse phase HPLC (Figure 4.6(b)). The number of 

blood samples used for each tracer was small. Even with this small number of animals, the 

inter-subject variability in metabolite fraction was prominent (Table 4.2) suggesting that 

this result could be the true in vivo situation and the importance to measure metabolite 

fraction for each individual subject. For this study, the plasma whole blood ratio was not 

taken into consideration which could introduce additional errors in kinetic parameter 

estimation. We investigated only two tracers, [18F]FEPPA and [18F]FAZA, as examples. 

Since analyte separation of TLC depends on the polarity of the tracer and its metabolites, 

for other tracers the mobile phase will have to be optimized. We have tested our method 

only with the 18F radionuclide. Since other common PET radionuclides including 11C, 13N, 

68Ga and 89Zr emit - particles in their decay, our method would also work except, like the 
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mobile phase, the limit of radioactivity detection must be determined for each radionuclide 

separately.   

 

4.5 Conclusion 

We were able to measure the fraction of parent radiolabeled tracer in blood after it was 

injected into the body using TLC and the Beaver autoradiography system. This fraction is 

required to correct the arterial input function (AIF) obtained by measuring the activity in 

timed arterial blood samples or in arterial region in dynamic PET images. Without this 

correction, the AIF will be overestimated leading to errors in the kinetic analysis of 

dynamic PET. Although we used two specific tracers, [18F]FAZA and [18F]FEPPA, to 

develop the method, the system can be used for other tracers by optimizing the mobile 

phase for each of them. Due to its capability to analyze multiple (>8) blood samples at the 

same time with preparation time as short as 25 – 30 min, our method will enable 

individualize blood metabolite correction for kinetic analysis of dynamic PET.     
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4.6 Supplementary figure 
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Chapter 5  

5 Conclusion  

Understanding tumor physiology is important for targeted therapy. Some patients respond 

to certain therapy while others do not. One potential cause is the variations in tumor 

pathophysiology of each individual patient. With kinetic analysis of PET targeted tracer 

uptake over time, information on molecular pathways involved in tumor development and 

proliferation in individual patient can be obtained. Therefore, accurate kinetics modelling 

of targeted tracer distribution is important not only in the early diagnosis but also in the 

monitoring treatment response of cancer. The primary goal of this thesis is to develop a 

generic model for kinetic analysis of dynamic PET data acquired with targeted tracers 

which improves upon the standard two tissue compartment (S2TC) model. 

In the following sections §1.1 − §1.3, summary of the thesis research work will be 

provided.  Following the summary, potential future directions of research suggested by the 

completed research projects in this thesis will be discussed 

5.1 Chapter 2 - Estimation of kinetic parameters for 

dynamic PET imaging: A simulation study  

By assuming blood vessels as a compartment, the standard S2TC model models the 

delivery of tracer to the tissue following administration as instantaneously mixing 

uniformly with tracer already in the vessels as well as instantaneously wash-out of the 

vessels to the tissue. The developed flow modified two tissue compartment (F2TC) model 

overcome this non-physiological assumption by modelling blood vessels as a pipe with 

finite transit time from the arterial to venous end. During each tracer transit of blood 

vessels, the bidirectional permeation of tracer through the blood tissue barrier can introduce 

concentration gradient in the vessel, as a result the buildup of tracer in tissue is slower than 

instantaneous wash-out as assumed in the S2TC model.  This delay would lead to error in 

estimating the rate constants governing the bidirectional permeation of the blood-tissue 

barrier as well as the rate constant of binding to and dissociation from the target.   
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The accuracy of kinetic parameters estimated by F2TC and the S2TC model were 

compared with computer simulation where the tracer uptake curve in the tissue was 

simulated using different sets of model parameters to mimic PET dynamic data including 

frame averaging, noise and limited data acquisition time.  For the estimation of kinetic 

parameters based on the S2TC model, we also compared the performance of custom 

software and a commercially available software, PMOD.  There was significantly less 

accuracy in the estimated model parameters for both S2TC model software than F2TC 

model, with PMOD performing the worst. As expected, the error was larger for higher 

noise level for all models/software. Concerning the length of acquisition time required for 

accurate parameter estimation, the F2TC model results show that 45 minute was 

comparable to 60 minute in the accuracy of estimated kinetic parameters and hence is 

sufficient for parameter estimation from dynamic PET. The acquisition time is dependent 

on the parameter set used and hence on the tracer. Due to the introduction of mean transit 

time in the blood vessels in the F2TC model, we investigated the effect of MTT from 5s to 

20s. For the F2TC model, difference between the two MTT was not significant. However, 

with both S2TC software, increasing MTT introduced larger error. In addition, distribution 

volume estimated by F2TC model and S2TC model with the custom software was more 

accurate than Logan analysis or the PMOD software.   

5.2 Chapter 3 - Pharmacokinetic analysis of dynamic 

[18F]FAZA PET imaging in pancreatic cancer patient 

Severe hypoxia in pancreatic ductal adenocarcinoma is a potential cause for its treatment 

resistance and hence low survival rate. The mechanism for hypoxia may differ individually, 

for instance, the rate of oxygen delivery via perfusion relative to rate of tissue (cells and 

stroma) aerobic respiration but can be measured with hypoxia tracer, [18F]FAZA. It is 

currently believed that the tracer becomes trapped in the hypoxic cells after it is reduced 

by nitroreductase, which is active in reduced tissue oxygen content, to intermediate 

product. However, with our F2TC model also validated by the more generalizable 

graphical analysis, it was established that the tracer is reversibly bound which could be due 

to efflux of the reduced products by the multi-drug resistance protein -1 (MRP-1) after the 

intermediates were conjugated with glutathione.  These efflux pumps has been shown to 
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be active in pancreatic tumor cells1–3 . The same conclusion was observed with a study 

done by Masaki et al4–6. This proposition if proven true means that kinetic analysis using 

the developed F2TC model of dynamic PET data acquired with the tracer ([18F]FAZA) can 

not only be used to monitor hypoxia through measuring nitroreductase activity but also 

MRP-1 activity through glutathionylation of the reduced products that contributes to 

treatment resistance. 

Furthermore, kinetic parameters – dissociation rate constant (k4) and distribution volume 

(DV) estimated by F2TC model can differentiate pancreatic tumor from normal pancreatic 

tissue with high sensitivity of 95% and negative predictive value of 89%. Specificity was 

lower at 57% due to the inability to correctly classify normal tissue as true negative. This 

failure could be due to ischemia in normal tissue caused by the dense desmoplasia in the 

neighboring tumor. With the S2TC model, only DV can classify the two tissue types with 

lower sensitivity of 90% and specificity of 43%.  

5.3 Chapter 4 - Plasma radio-metabolite analysis of PET 

tracers for dynamic PET imaging: TLC and 

autoradiography 

To accurately estimate kinetic parameters from dynamic PET, the native or unmodified 

tracer in blood plasma has to be measured. Correction for radio-metabolites in blood 

plasma remains a challenge, particularly, for each individual patient. Several techniques of 

separating radio-metabolites in the blood plasma have been described previously8–10. 

HPLC is the most widely used technique due to its superior analyte resolution. However, 

it is a serial analyzer which is not ideal for scaling up to deal with a large number of samples 

as will be required for plasma metabolite analysis for individual patients. To implement 

automatic analysis of a large number of plasma samples, an alternate technique is 

developed with the use of thin layer chromatography (TLC) which is more economical than 

HPLC along with a very sensitive Beaver autoradiography imaging system (ai4r France). 

The use of TLC in separating radio-metabolites from the native tracer is not novel in itself 

but the use of a beta particle detector based on the principle of micro pattern gaseous (Ne 

+ 10% CO2) detector (MPGD) to detect the low radioactivity from the plasma radio-



131 

 

metabolites makes the developed method novel. The MPGD detector has very high spatial 

resolution (~50m) and high sensitivity11.   

The mobile phase for each tracer needs to be optimized due to their differences in polarity. 

In chapter 4, the mobile phase was optimized for two tracers, [18F]FAZA and [18F]FEPPA, 

using different fraction of ethyl acetate, methanol and hexane. TLC technique requires 

minute (2µL) amount of blood plasma, therefore this technique of radio-metabolite 

measurement could be employed for individual small animal dynamic PET studies. The 

MPGD detector was sensitive enough to detect radioactivity as low as 17Bq. The acquired 

images had good signal-to noise (SNR) with discernible peaks for the native tracer and 

radio-metabolites. Large variations in the plasma radio-metabolite fraction post injection 

of the native tracer were observed both within and between subjects. On average, 

[18F]FEPPA was metabolized as early as 5 minute post injection while significant 

catabolism of [18F]FAZA was observed only after 40 min post injection. The large intra- 

and inter-subject variations in metabolite fraction observed means that the current practice 

of using a population (even cross-species) average metabolite fraction to correct plasma 

activity may lead to erroneous kinetic analysis results for individual patients.  Currently, 8 

samples were measured in one imaging session but with larger detector size (available 

commercially) the number of samples that can be measured at once can be increased to 

more than 12. This makes translation into individualized plasma radio-metabolite fraction 

measurement a possibility.  

5.4 Future work 

This thesis has generated several hypotheses which could be future directions of research 

as discussed in the following:  

5.4.1 Binding mechanism of nitroimidazole based tracers 

Hypoxia imaging tracers, like [18F]FAZA, belong to the family of nitroimidazoles which 

allegedly are irreversible tracers because they become trapped in hypoxic cells after 

reduction of their nitro group12. Our results suggest that the reduced products are further 

processed by glutathionylation and the conjugated products are then effluxed out of 
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hypoxic cells via the MRP-1 pumps.  This hypothesis was established by Masaki et al4 for 

[18F]FMISO, the first generation nitroimidazole-based hypoxia imaging tracer; and needs 

to be confirmed for the second generation [18F]FAZA with further investigation. It would 

be of great interest to investigate if this hypothesis is generally applicable to all 

nitroimidazole-based tracers and to other solid tumors besides pancreatic tumor. Being the 

newer generation of hypoxia imaging tracer, [18F]FAZA is more widely than [18F]FMISO 

in tumor imaging, the establishment of its binding mechanism will assist in the 

personalization of cancer treatment protocol − boosting radiation dose to high hypoxic 

region and possibly treating pancreatic cancer with MRP-1 blockers (see next section). 

5.4.2 Personalized treatment of pancreatic cancer  

Another hypothesis generated from the study is that [18F]FAZA can be used to monitor the 

activity of MRP-1. Specifically hypoxic tumors with upregulated expression and activity 

of MRP-1 could be identified by the measured dissociation rate constant (k4) and be treated 

with MRP-1 inhibitor. MRP-1 inhibition has been investigated in the past for 

neuroblastoma and colorectal cancer13–15. It has been observed that anti-MRP1 inhibitors, 

reversan15 and difloxacin14, are effective in controlling tumor growth as well as sensitizing 

neuroblastoma to conventional chemotherapy. For colorectal cancer, nude mice implanted 

with 5-FU resistant tumor cell line transfected with MRP-1 knockdown, regained 

chemosensitivity to 5-FU and had their tumor growth inhibited compared with mice 

implanted with just 5-FU resistant tumor cell line13. For pancreatic cancer, a hydrophobic 

MRP-Pg chemosensitizer, Reversin R121 along with chemodrugs like 5-FU, cisplatin and 

gemcitabine significantly reduced the MRP-1 expression led to reduced peritoneal, hepatic 

and pulmonary metastasis16. A future study investigating the dose of MRP-1 inhibitors 

based on the estimated dissociation rate constant (k4) and distribution volume (DV) from 

the F2TC model may prove personalization of treatment protocol is possible using dynamic 

PET with hypoxia imaging tracers.  

5.4.3 Validation of radio-metabolite correction  

Since polarity of each tracer and their metabolites differs, the mobile phase for other tracers 

will require optimization. The fraction of native 18F-FAZA need to be verified with HPLC 
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analysis. Though the [18F]FAZA dose injected into pigs was lower than what was currently 

been used for radio-metabolite studies, dose closer to patient dose need to be investigated 

for clinical translation. We observed that metabolism of [18F]FAZA is slower than 

[18F]FEPPA, with significant metabolite fraction only appearing at 40 minute post tracer 

injection. It would be important to investigate the cause behind this delayed catabolism of 

the native tracer. If the dominant source of catabolites is the tissue, the method of plasma 

radio-metabolite correction will differ from the case when the source is catabolism in the 

blood plasma.  
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