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Abstract 

Climate warming is increasing the frequency of climate-induced tree mortality events. While 

drought combined with heat is considered the primary cause of this tree mortality, little is 

known about whether high temperatures alone can induce mortality, or whether rising CO2 

will increase survival. I grew tamarack in two experiments combining warming (0-8 ˚C 

above ambient) and CO2 (400-750 ppm) to investigate whether high growth temperatures led 

to carbon limitations and mortality. Using glasshouses, +8 ˚C warming with ambient CO2 

(8TAC) led to 40% mortality despite thermal acclimation of respiration. Dying 8TAC 

seedlings had lower needle carbon concentrations and lower ratios of photosynthesis to 

respiration, indicating carbon limitation. Using growth chambers, no seedlings died, and 

carbon flux results contradicted those of the glasshouses. Overall, environmental conditions 

in the glasshouses were more representative of the field than growth chamber conditions, and 

my work highlights that warming can directly induce mortality. 

Keywords 

Climate change, tree mortality, Larix laricina, carbon starvation, acclimation, 

photosynthesis, respiration, temperature 
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Summary for Lay Audience 

Trees will be negatively impacted by warming caused by climate change and may be less 

able to fix enough carbon from the atmosphere to maintain growth or even survive. Previous 

studies have found that plants can adjust their physiology (i.e. acclimation) to respond to 

long-term changes in temperature and CO2. Under ideal circumstances, acclimation helps 

plants deal with climate stress by maximizing carbon gain and minimizing carbon loss, 

thereby maintaining growth and tree health. However, the number of climate-induced tree 

mortality events has been increasing as the climate warms. Tree die-offs have been linked to 

a combination of drought and heat stress, but whether heat stress alone can result in mortality 

has received little attention. I investigated whether high growth temperatures would cause 

carbon stress and mortality in tamarack, a common tree in Canada’s northern forests. I grew 

tamarack in two experiments (using either glasshouses or growth chambers) with warming 

(of up to 8 ˚C) and high CO2 (up to 750 ppm) to simulate future climate scenarios. In the 

glasshouses, seedlings reduced carbon losses through acclimation, but carbon gain was 

unresponsive to warming. The +8 ˚C warming with ambient CO2 led to 40% mortality, which 

correlated with low needle carbon concentrations and low ratios of carbon gain to carbon 

loss. The growth chamber experiment was designed as a follow-up to measure a greater 

number of seedlings, but surprisingly there was no mortality in this study. As well, growth 

chamber seedlings increased carbon gain with warming, but carbon losses were unaffected, 

the opposite of what I saw in the glasshouse. For both experiments, high CO2 stimulated 

carbon gain, which offset mortality in the glasshouses. The glasshouse experiment was more 

similar to conditions experienced in the field (e.g. natural light and daily temperature 

changes). I therefore argue that tamarack will have strong acclimation to warming (resulting 

in lower carbon loss) paired with stimulated carbon gain under high CO2. While warming 

alone induced carbon limitations and subsequent mortality in seedlings, carbon gain 

associated with high CO2 will likely offset carbon stress in the future.   
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Chapter 1  

1 General Introduction 

1.1 Climate Change  

Despite the warnings of scientists, greenhouse gas (GHG) emissions continue to increase 

and contribute to global warming. The main GHG emissions include carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O). Since the pre-Industrial era, there have 

been significant increases in GHGs due to fossil fuel burning and land use change (IPCC, 

2014). Pre-Industrial CO2 concentrations have been estimated at ~280 ppm, while the 

highest CO2 values seen in the past 420,000 years have reached only ~300 ppm (Petit et 

al., 2013). But atmospheric CO2 is currently rising at a rate of 2.0 ppm/year, leading to a 

current CO2 concentration of 413 ppm (NOAA, 2020). If GHG emissions continue at 

current rates, we will see substantially higher CO2 concentrations and significant 

warming in the decades to come. 

The Fifth Assessment report by the Intergovernmental Panel on Climate Change (IPCC) 

outlined four future scenarios depending on socioeconomic trajectory and mitigation of 

GHG emissions, referred to as Representative Concentration Pathways (RCPs) (IPCC, 

2014). We are currently on the “business as usual” trajectory, i.e. if GHG emissions 

continue at current rates. The “business as usual” trajectory is referred to as RCP8.5 and 

represents very high GHG emissions. Under RCP8.5, the IPCC has predicted mean 

global temperatures will rise 2.6-4.8 ˚C by the years 2081-2100. However, it is important 

to note that this warming will not be uniform across all latitudes. Higher latitudes are 

expected to experience greater warming than the tropics (IPCC, 2014; Serreze et al., 

2000). Northern latitudes, which encompass the North American boreal forest, can expect 

to see warming of mean annual temperatures up to 8 ˚C by 2100. The faster warming rate 

projected in high northern latitudes has been hypothesized to be due to shifts in 

atmospheric circulation, the large-scale movement of air, and therefore heat, around the 

earth (Serreze et al., 2000). Disproportionate movement of air to higher latitudes coupled 

with atmospheric warming is thus driving a more severe temperature shift near the poles 
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(Byrne & Schneider, 2018). Warming will also not be uniform seasonally or diurnally. 

Warming is projected to be more pronounced in the winter than the summer and at night 

than during the day, which could affect boreal productivity year-round (IPCC, 2014; 

Kreyling et al. 2019). 

There have already been observable changes in plants living in northern latitudes in 

response to on-going climate change. For example, terrestrial net primary production 

(NPP) of these latitudes has increased as moderate warming has resulted in longer 

growing seasons due to earlier spring thaw (Barichivich et al., 2013; Danielewska, 

Urbaniak, & Olejnik, 2015; Randerson, Field, Fung, & Tans, 1999). While small 

increases in temperature can be beneficial to plants, we must also consider how larger 

increases can be detrimental to vegetation and how this will impact our biomes. 

1.2 The Boreal Forest 

The boreal forest biome is the largest land-based biome in the world, spanning the high 

latitudes of North America, northern Europe and Asia. The boreal biome provides many 

ecological and economic services. The forest industry contributes billions of dollars every 

year to the Canadian economy through wood and paper production, making it of great 

economic importance (Gauthier, Bernier, Kuuluvainen, Shvidenko, & Schepaschenko, 

2015). The boreal forest also acts as a habitat for many animals. Arguably, the most 

important ecosystem service of this biome is carbon (C) sequestration. The entire boreal 

biome stores ~800 Gt C in biomass, soil, peat and detritus C pools (Apps et al., 1993). 

The Canadian boreal forest alone stores 186 Gt C and takes up 62 Mt of atmospheric CO2 

each year (Kurz et al., 2013). Carbon sequestration by vegetation mitigates the amount of 

CO2 added to the atmosphere annually from anthropogenic sources, and therefore slows 

down climate change (Dusenge, Duarte, & Way, 2019). For boreal forests to continue to 

serve as sinks for atmospheric C, boreal trees will need to maintain positive C balances 

by taking up more CO2 for photosynthesis than the amount of CO2 they release through 

respiration as temperatures increase.  

The boreal region is primarily composed of forests, wetlands and lakes (Apps et al., 

1993). The boreal forest of North America is mainly dominated by cold-tolerant 
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coniferous (cone-bearing) trees, such as Picea glauca, Picea mariana, Larix larcina, 

Abies balsamea, and Pinus banksiana (Brandt, 2009). Deciduous broad-leaved trees, such 

as Populus tremuloides and Betula papyrifera, also co-occur with these conifers. Boreal 

biomes experience high seasonal temperature variation and relatively low annual rainfall 

compared to other forest regions (Bonan & Shugart, 1989). Low soil temperatures limit 

nutrient availability, as mineralization of bound nutrients is dictated by microbial activity, 

which increases with warming (Nedwell, 1999). Permafrost, which underlays 40-50% of 

Canada, can also limit nutrient uptake by restricting the rooting zones of trees (Lawrence 

& Oechel, 1983; Yuan & Chen, 2010). Variable soil moisture drives community 

composition of different sites across Canada, as boreal species prefer different levels of 

soil moisture (Bonan & Shugart, 1989). For example, Picea mariana (black spruce) and 

Larix laricina (tamarack) favour wetter sites, whereas Picea glauca (white spruce) 

favours drier sites. While the Larix genus (Larch) is distributed across the boreal biome, 

tamarack is found only in North America’s boreal forests.  

1.2.1 Tamarack, a Deciduous Conifer 

Tamarack is a deciduous conifer native to North America, widely distributed in the boreal 

forest from the northern United States to northern Canada (Brandt, 2009). Across the 

boreal forest, tamarack dominates wetlands, disturbed forest edges and woodland zones 

north of evergreen-dense areas (Gower & Richards, 1990). Overall, conifers are well 

suited for the boreal biome as they are cold-tolerant and efficient in their use of nutrients 

and water (Gower & Richards, 1990), important traits in a place where nutrient 

availability is low. Evergreen conifers are well equipped for harsh conditions because of 

their early investment into needle longevity, ultimately resulting in lower C and nutrient 

requirements later (Reich, Rich, Lu, Wang, & Oleksyn, 2014). So, what makes a 

deciduous conifer such as tamarack widespread across the North American boreal forest?  

With the rapid rate of global warming, northern trees are unlikely to be able to adapt to 

future climates, but phenotypic plasticity could facilitate their survival (Kramer, 1995). 

Phenotypic plasticity is defined as “the range of phenotypes a single genotype can 

express as a function of its environment” (Nicotra et al., 2010). Deciduous conifers are 

considered to be more phenotypically plastic than evergreens, as they produce new 
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needles each spring. This allows them to utilize the “live fast, die hard” strategy of 

producing larger, cheaper needles that do not need to withstand winter desiccation 

(Gower & Richards, 1990). Greater investment in larger needles leads to higher rates of C 

uptake in larch species than in co-occurring evergreen conifers (Gowin, Lourtioux, & 

Mousseau, 1980; Kloeppel, Gower, Vogel, & Reich, 2000; Reich, Kloeppel, Ellsworth, & 

Walters, 1995). Larch species also have higher nitrogen-use-efficiency than evergreen 

species and have 25-49% greater leaf nitrogen (N) concentrations in their needles 

compared to evergreen needles (Gower & Richards, 1990). The trade-off of having 

higher rates of C uptake and leaf N are that deciduous species also have higher rates of C 

losses through shoot respiration (Reich et al., 1998), findings which have been supported 

in tamarack (Tjoelker, Oleksyn, & Reich, 1998; Tjoelker, Oleksyn, & Reich, 1999a; 

Islam & Macdonald, 2005). Larch species also have lower water-use-efficiency than 

evergreens, which is why they favour wetlands (Gower & Richards, 1990). Tree C, water 

and N relations will be affected by climate change and the phenotypic plasticity of larch 

could be advantageous for survival of this species in a changing climate. Understanding 

the response of tamarack to increasing temperatures and CO2 will help to predict the 

future growth and C sequestration potential of a major component of the Canadian boreal 

forest. 

1.2.2 Future Canadian Boreal Forest: C Sink or C Source? 

A major question is whether boreal forests will shift from being C sinks, as they currently 

are, to C sources with global warming. A large proportion of Canadian boreal C is 

accumulated in peatlands, soil, and permafrost deposits, with the rest residing in living 

plant biomass (Bradshaw & Warkentin, 2015). With warming, permafrost loss and 

subsequent soil respiration rates are increasing, leading to greater amounts of C being 

released into the atmosphere (Bond-Lamberty & Thomson, 2010). Through modelling of 

mean C flux estimates, it is predicted that the Canadian boreal forest will shift from a C 

sink to C source by the end of 2100 (Bradshaw & Warkentin, 2015; Metsaranta, Kurz, 

Neilson, & Stinson, 2010; Miquelajauregui, Cumming, & Gauthier, 2019). Global 

vegetation models expect decreases in forest productivity and increases in soil 

decomposition, leading to overall greater C losses from the boreal ecosystem with 
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increases in temperature. However, the response of modelled boreal C gains to climate 

change could be positive or negative depending on the severity of warming considered.  

Small shifts in temperature can increase the length of the growing season and therefore 

increase net primary production (Beck et al., 2011; Danielewska et al., 2015; Richardson 

et al., 2018), but large shifts in temperature make plants more susceptible to mortality 

(Allen et al., 2010). There is already evidence of decreasing C uptake in boreal trees with 

a mean temperature increase of 1.5 ˚C (IPCC, 2014). The Canadian boreal forest C sink 

was reduced by half from 1990-1997 to 2000-2007, largely due to high tree mortality 

rates driven by climate change (Pan et al., 2011). Additionally, increases in temperature 

will not be equally matched with increases in precipitation, leading to greater vapour 

pressure deficits (VPD; IPCC 2014) and more frequent droughts (McDowell et al., 2016), 

both of which lead to greater water stress on forests.  

1.3 Tree Mortality 

In 2010, there were 88 large-scale documented cases of mortality linked to climate 

change globally (Allen et al., 2010) and this number has only increased since then 

(Aleixo et al., 2019; Allen, Breshears, & McDowell, 2015; Zhang, Shao, Jia, & Wei, 

2017). Climatic stresses, such as warming and high VPD, make trees susceptible to forest 

fires and insect outbreaks, which are often the final cause of death (Adams et al., 2017). It 

has been estimated that 12% of global biomass C losses were caused by tree death from 

the years 2001-2014 (Pugh, Arneth, Kautz, Poulter, & Smith, 2019). Tree mortality will 

have large effects on terrestrial C pools over time. The boreal forest of Canada, as 

described above, has already seen reductions in overall C pools, as well as increases in 

the mortality rates of four common tree species (Populus tremuloides, trembling aspen; 

Pinus banksiana, jack pine; black spruce; and white spruce; Peng et al., 2011). A meta-

analysis by Zhang et al. (2017) found that gymnosperms, including conifers, have higher 

mortality (7.1%) compared to angiosperms (4.8%) due to climate change stressors, with 

the differences in mortality deriving from the relative abilities of these two plant groups 

to mitigate climatic stress.  
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1.3.1 Main Abiotic Causes of Mortality 

The two main hypotheses for climate change-related abiotic tree mortality are hydraulic 

failure and C starvation (Anderegg, Berry, & Field, 2012; Wiley, Hoch, & Landhäusser, 

2017; Sevanto et al., 2014; Zhang et al., 2017; Adams et al., 2017; Meir, Mencuccini, & 

Dewar, 2015). Hydraulic failure and C starvation are both hypothesized to occur as a 

result of water stress driven by global warming. Elevated temperatures in the spring and 

summer increase VPD and decrease soil moisture, creating water demands that plants 

cannot meet, leading to mortality via a loss of xylem conductivity (hydraulic failure) or a 

depletion of internal C pools (C starvation; Williams et al., 2013).  

1.3.2 Hydraulic Failure  

Hydraulic failure occurs when rates of transpiration are greater than root water uptake 

rates, leading to xylem cavitation (Sevanto et al., 2014). Drought-induced tree death is 

therefore caused by irreparable damage to xylem and phloem transport (Anderegg et al., 

2012). As such, hydraulic failure can be characterized by rapid declines in leaf water 

potential and low hydraulic conductivity at the point of death. Before this point, 

cavitation of the xylem is repairable if soil moisture is restored, transpiration is reduced, 

and/or available carbohydrates are used to lower the osmotic potential of xylem cells 

(Anderegg et al., 2012). Coordination between xylem and phloem tissues is critical for 

the movement of hormones, water, and carbohydrates throughout the tree. Hydraulic 

failure is the main cause of drought-induced die-offs of trembling aspen and woodland 

conifers in the USA (Gitlin et al., 2006; Worrall et al., 2008). However, water 

conservation strategies that can decrease the chance of hydraulic failure can negatively 

impact survivability by diminishing carbohydrate pools required for repairs.  

1.3.3 Carbon Starvation: An Overview 

Carbon starvation occurs when plants close their stomata under high VPD and drought 

stress to conserve water, reducing C gain through photosynthesis. Because respiratory 

losses remain high, especially under elevated temperatures, this creates a negative C 

balance where plants use more C than they gain. Under stress, plants will use stored C 

pools to buffer negative C balances and fuel metabolism (Sala, Woodruff, & Meinzer, 
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2012). Carbon starvation is therefore characterized by low carbohydrate reserves with 

minimal changes to leaf and xylem water potentials (Sevanto et al., 2014). Under climatic 

stress, trees with high C reserves are therefore more likely to survive (Dietze et al., 2014; 

Sala et al., 2012). However, negative C balances can be sustained by stored C for only 

short durations. 

Allen et al. (2015) characterized the cause of recorded tree mortality events related to 

climate change as a combination of both hydraulic failure and C starvation. While C 

starvation is often in response to water stress, temperature alone may also be able to drive 

a C budget imbalance. Carbon fluxes are temperature-sensitive: photosynthetic C gain 

has a unimodal response to changes in leaf temperature, whereas respiration increases 

exponentially with increasing leaf temperatures (Sage & Kubien, 2007; Atkin, Millar, & 

Day, 2000). The high respiratory costs of warming can be observed through decreased C 

pools in plants that cannot replenish these C pools effectively. All tissue types (e.g. 

leaves, stems and roots) respire, but photosynthesis is limited to foliar and stem tissue, 

and the ratio of leaves to other tissues often decreases as plants grow (Dietze et al., 2014). 

Seedlings are also more vulnerable to C budget imbalances due to relatively small soluble 

C pools (Dietze et al., 2014). 

In studies that aim to study C stress, seedlings are often grown under shade to reduce C 

gain and photosynthetic rates are not measured (Wiley et al., 2017). Wiley et al. (2017) 

found that the survival times of aspen seedlings decreased with increasingly opaque 

shade treatments (lower C gain) and increased warming treatments (from 20 ˚C to 28 ˚C; 

higher C losses). Shoot respiration rates were 41% higher under warming and C pools 

were depleted, leading to shorter survival times (Wiley et al., 2017). Although some 

researchers have used shade to induce C stress, there is a lack of studies on C starvation 

under ecologically relevant experimental designs where C gains are also being 

considered.  

Most of the current research done on boreal tree species has been conducted on either 

evergreen conifers or deciduous broad-leaved trees, leaving a gap in our knowledge of 

deciduous conifers (Hartmann, Ziegler, & Trumbore, 2013; Mantgem et al., 2009; Peng 
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et al., 2011; Wiley et al., 2017). Compared to other deciduous trees, larch species have 

small C pools, similar to evergreen conifers (Hoch, Richter, & Korner, 2003). However, 

larch species also have lower water use efficiency than evergreen conifers, which, when 

combined with low C storage, may put them at a disadvantage for combating C stress 

compared to other Canadian boreal tree species (Gower & Richards, 1990). 

Understanding the vulnerability of tamarack to climatic stressors will help predict the 

future community composition of the boreal forest.  

1.4 Carbon Fluxes 

The sugars available for plant development and metabolism are ultimately determined by 

the C balance of plants, specifically the relative rates of photosynthesis and respiration. A 

positive C balance refers to when the amount of sugars produced through photosynthesis 

is greater than the use of these sugars for metabolism and growth, resulting in storage of 

unused sugars (Sala et al., 2012). The opposite is a negative C balance, when the use of 

sugars for metabolism is greater than the production by photosynthesis and stored C 

pools are depleted. If a positive C balance cannot be reached and all stored sugars are 

used, C starvation will occur. To understand how warming can affect the C balances of 

plants, we first need to understand the fundamentals of photosynthesis, specifically C3 

photosynthesis. 

1.4.1 C3 Photosynthesis  

Photosynthesis is the process by which plants convert light energy into sugars using CO2 

and water (Atkin et al., 2000). Photosynthesis can be broken down into two main 

components: light-dependent reactions, also referred to as the photosynthetic electron 

transport chain (ETC), and light-independent reactions, referred to as the Calvin-Benson 

cycle (Taiz & Zeiger, 2010; Figure 1.1). Both processes take place in chloroplasts, with 

the ETC operating in the thylakoid membrane. The light-dependent reactions start when 

photosystem II (PSII) absorbs a 680 nm wavelength photon and uses it to excite 

chlorophyll in the reaction center of PSII. When excited, PSII becomes unstable and 

transfers an electron (e-) to oxidized pheophytin through a process known as charge 

separation. The oxygen evolving complex (OEC) oxidizes water into oxygen (O2) 
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Figure 1.1. Simplified schematic of photosynthesis. Light energy is absorbed by 

photosystem II (PSII) and used to excite chlorophyll in the reaction center. An electron 

(e-) is lost from PSII to a close-by electron acceptor, pheophytin. The e- moves through 

the electron transport chain along a decreasing redox potential until it is reenergized at 

photosystem I (PSI) to create NADPH (nicotinamide adenine dinucleotide phosphate 

hydrogen). ATP (adenosine triphosphate) is also produced by ATP synthase using an 

electrochemical gradient produced by the H+ gradient across the thylakoid membrane. 

This e- is replaced with an e- from the oxidation of water at the OEC. The products of the 

electron transport chain are then used by the Calvin-Benson cycle to fix CO2, produce 

sugars and regenerate RuBP. P680, primary electron donor for PSII; P700, primary 

electron donor for PSI; H+, proton; ADP, adenosine diphosphate; Pi, inorganic phosphate; 

NADP+, nicotinamide adenine dinucleotide phosphate; Rubisco, Ribulose-1,5-

bisphosphate carboxylase/oxygenase; 3-PGA, 3-phosphoglycerate; G3P, glyceraldehyde-

3-phosphate; RuBP, Ribulose-1,5-bisphosphate. Redrawn and modified from Taiz and 

Zeiger (2010).  
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replacing the electron in chlorophyll, and also generates a proton (H+). The e- initially 

transferred from chlorophyll is then transferred along the ETC through a series of 

oxidation-reductions involving plastoquinone, cytochrome b6f, and plastocyanin, until it 

reaches photosystem I (PSI). PSI absorbs a 700 nm photon, creating the redox potential 

needed to reduce NADP+ (nicotinamide adenine dinucleotide phosphate) to NADPH 

(nicotinamide adenine dinucleotide phosphate hydrogen) by the action of ferredoxin (Fd). 

The oxidation of water and the transfer of e-s from plastoquinone to cytochrome b6f 

transports H+ molecules into the thylakoid lumen. This acidification of the thylakoid 

lumen creates an electrochemical potential gradient which drives an ATP (adenosine 

triphosphate) synthase, producing ATP in the stroma. The products from the light-

dependent reactions, ATP and NADPH, are then utilized by the Calvin-Benson cycle. 

In the Calvin-Benson cycle, CO2 is fixed by the enzyme Ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) to ribulose-1,5-bisphosphate (RuBP), forming 3-

phosphoglycerate (3-PGA). The 3-PGA molecules are first phosphorylated using ATP, 

and then undergoes a reduction using NADPH to form two molecules of glyceraldehyde-

3-phosphate (G3P). The G3P molecules are then utilized in two ways: to make glucose 

(which requires two G3P molecules per glucose) and to regenerate RuBP to continue the 

Calvin-Benson cycle (which requires ten G3P molecules). The regeneration of RuBP also 

requires additional ATP.   

The Calvin-Benson cycle relies on the enzyme Rubisco for the initial carboxylation step. 

Rubisco is a dual function enzyme capable of both carboxylation (the fixation of CO2 to 

RuBP) or oxygenation (the fixation of O2 to RuBP) depending on which molecule the 

active site binds. The process of RuBP oxygenation is referred to as photorespiration 

(Miziorko & Lorimer, 1983). In the photorespiratory pathway, RuBP is oxygenated to 

form one 2-phosphoglycolate molecule and one molecule of 3-PGA (Peterhansel et al., 

2010). The 2-phosphoglycolate is then converted back into 3-PGA through a series of 

steps that require ATP and NADPH, with the 3-PGA finally being utilized by the Calvin-

Benson cycle. The photorespiratory pathway is often considered wasteful since the 

pathway requires reductants and ATP, and it releases previously fixed CO2.  
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The balance between photosynthesis and photorespiration depends on temperature and 

the relative concentrations of CO2 and O2 within the cell. Under increasing temperatures, 

the solubility of CO2 decreases more than that of O2, resulting in a decreased ratio of 

[CO2] to [O2] and an increase in photorespiration (Tenhunen, Weber, Yocum, & Gates, 

1979). Under warming, the kinetic properties of Rubisco also result in higher specificity 

for O2 to the active site of RuBP than CO2 (Tcherkez, 2016). On the contrary, under 

elevated CO2 (EC) conditions, higher CO2 substrate availability increases photosynthesis 

and suppress photorespiration. With climate change, there will be increases in both 

temperature and CO2, which will affect the balance between photorespiration and 

photosynthesis, and therefore the C balance of C3 plants.  

1.4.2 Plant Respiration 

Respiration, like photorespiration, is heavily influenced by temperature and determines 

plant C balance. Mitochondrial respiration occurs in all aerobic organisms, consuming 

sugars to fuel metabolism, growth and reproduction. Plant respiration can be broken 

down into three steps (Figure 1.2). The first step is glycolysis, where sugars, such as 

fructose and sucrose, are converted into pyruvate, resulting in a net production of ATP 

(Plaxton & Podestá, 2006; Atkin, Millar, & Day, 2000). Pyruvate is converted into acetyl 

coenzyme A (Acetyl-CoA) before entering a mitochondrion, which releases CO2. The 

second step involves the citric acid cycle, which uses the C molecules from Acetyl-CoA 

to produce CO2, reductants and ATP. These reductants include nicotinamide adenosine 

diphosphate hydrogen, NADH, and flavin adenine dinucleotide, FADH2. Lastly, the 

mitochondrial electron transport chain uses these reductants to make more ATP through 

an ATP synthase by utilizing a proton gradient. For every molecule of glucose, 

respiration produces six CO2, six H2O, and ~38 ATP molecules.  

1.4.3 Acclimation of Photosynthesis 

Thermal acclimation of photosynthesis will be critical for the survival of C3 plants under 

future warming. Leaf C uptake can be measured as the net CO2 assimilation rate (Anet), 

which is the gross rate of photosynthesis minus CO2 losses from respiration and 

photorespiration. It is not usually practicable to separate out measurements of respiration 
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Figure 1.2. Simplified schematic of plant respiration. Triose phosphates made by 

photosynthesis are used in mitochondrial respiration to produce energy in the form of 

ATP (adenosine triphosphate) and by-products (CO2 and H2O). G3P, glyceraldehyde-3-

phosphate; Pyr, pyruvate; Acetyl-CoA, acetyl coenzyme A; CO2, carbon dioxide; NADH, 

nicotinamide adenosine diphosphate hydrogen; FADH2, flavin adenine dinucleotide; 

ATP, adenosine triphosphate; ETC, electron transport chain. Redrawn and modified from 

Atkin and Tjoelker (2003).  

or photorespiration from CO2 uptake in the light, which is why Anet is frequently used in 

the literature.  

Anet can function between ~0 ˚C and 30 ˚C in cold-tolerant plants, such as boreal conifers 

(Sage & Kubien, 2007). The temperature optimum (Topt) of photosynthesis represents the 

temperature where Anet is highest (Figure 1.3). There are three main outcomes of 

acclimation to warming in terms of how Anet is affected by temperature: a) an increase in 

Topt, resulting in an increase in Anet at the new growth temperature (Agrowth); b) an increase 

in Topt, resulting in a decrease in Agrowth; and, c) an increase in Topt resulting in a similar 

Agrowth between cool- and warm-grown plants (Way & Yamori, 2014). Acclimation can 

therefore be characterized by a shift in Topt and subsequent changes to Anet. 
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Figure 1.3. Conceptual temperature response curves for photosynthetic acclimation. 

Net CO2 assimilation rates of plants grown at a cool growth temperature (blue solid lines) 

and at a warm growth temperature (red dashed lines). Blue circles indicate the 

photosynthetic temperature optimum (Topt) of the cool-grown plants and red circles 

indicate Topt of the warm-grown plants. Photosynthetic thermal acclimation can result in a 

range of changes (A: increase, B: decrease and C: similar) in net CO2 assimilation rates at 

the new growth condition, even if Topt increases in each scenario. Redrawn from Way and 

Yamori (2014).  

Photosynthetic capacity, a measure of the maximum capacity of a leaf to fix CO2, can 

also be used to quantify photosynthetic thermal acclimation (Way & Yamori, 2014). 

Photosynthetic capacity consists of both the maximum rate of electron transport, Jmax, and 

the maximum rate of Rubisco carboxylation, Vcmax. Both Vcmax and Jmax can be estimated 

by measuring Anet at a range of intracellular CO2 (Ci) concentrations under saturating 

light (Figure 1.4), using the Farquhar-von Caemmerer-Berry model of C3 photosynthesis 

(Farquhar, von Caemmerer, & Berry, 1980). This model is used to derive the biochemical 

limitations of photosynthesis, including Rubisco carboxylation, regeneration of RuBP, 

and triose-phosphate utilization (TPU) (Gu, Pallardy, Tu, Law, & Wullschleger, 2010; 

Sage & Kubien, 2007). Rubisco limitations are common under low CO2 concentrations 

when there is not enough CO2 substrate to saturate Rubisco carboxylation capacity. 

Therefore, Vcmax can be calculated using the initial slope of CO2 consumption to rising Ci. 

Once Ci increases above ~400 ppm CO2, the regeneration of RuBP using NADPH and 

ATP from the electron transport chain becomes limiting, and Jmax can be calculated. 

Lastly, at very high CO2 concentrations, inorganic phosphate availability begins to limit 
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Anet, as the ability to use triose phosphates to make sucrose and starch slows. This TPU 

limitation is observable when the A/Ci curve flattens out at high CO2, since TPU-limited 

photosynthesis is CO2-insensitive. 

 

 

Figure 1.4. A representative A/Ci curve fitted using the Farquhar-Berry-von 

Caemmerer model of leaf photosynthesis. A/Ci curves are modeled using net CO2 

assimilation rate (Anet) measured over a range of intracellular CO2 concentrations (Ci). 

Rubisco carboxylation is limiting net photosynthesis at low Ci (red line, Ac), RuBP 

regeneration becomes limiting above ~400 ppm (blue line, Aj), and triose phosphate 

regeneration is limiting at very high CO2 concentrations (dashed grey line, Ap). The black 

line represents the limiting rate of the A/Ci curve, based on the minimum Anet of the three 

limitations. Data from Chapter Two of a Larix larcina seedling grown at ambient 

temperature.  

Elevated growth temperature and CO2 both affect Jmax and Vcmax. Hypothetically, if all 

else remains equal, plants should decrease their photosynthetic capacity if it is 

advantageous to maintain the same Anet at a warmer temperature. In contrast, plants could 

increase their photosynthetic capacity to maximize Anet at warmer growth temperatures if 

water and nutrient availability are not limiting, which is often the case (Way & Yamori, 
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2014). Thus, any change (positive or negative) of Vcmax and Jmax indicates an adjustment 

of photosynthetic capacity to warming, and may represent thermal acclimation (Way & 

Yamori, 2014). Photosynthetic capacity can also be affected by growth under EC. Long-

term exposure of plants to EC often results in a decrease in photosynthetic capacity 

(Ainsworth & Rogers, 2007; Albert, Mikkelsen, Michelsen, Ro-Poulsen, & van der 

Linden, 2011; Moore, Cheng, Sims, & Seemann, 1999). Under EC, plants are able to 

maintain high photosynthetic rates with less investment in Rubisco, since CO2 substrate 

availability is high. Leaf N can act as a proxy for Rubisco (Reich et al., 1998). Therefore, 

reported decreases in total leaf N are often indicative of decreases in photosynthetic 

capacity.  

1.4.4 Acclimation of Respiration 

Measurements of respiration rates in the dark (Rdark) can be made on dark-acclimated 

plants, eliminating the confounding presence of photosynthesis. Dark respiration is the 

parameter used in this thesis to quantify respiration. While respiration is relatively 

insensitive to short-term variation in CO2, it is sensitive to temperature, and thus thermal 

acclimation is critical for minimizing future C losses from vegetation. The Q10, defined as 

the proportional change in an enzyme’s activity per 10 ˚C change in temperature, can be 

used to quantify this thermal sensitivity. Most enzymes have Q10 values between 2-3. 

However, the Q10 of respiration can vary with environmental conditions (Atkin & 

Tjoelker, 2003). Over a six month span, respiratory thermal acclimation in Eucalyptus 

pauciflora resulted in higher Q10 values in the winter compared to the summer (Atkin, 

Holly, & Ball, 2000). The Q10 and subsequent rates of respiration also vary across plant 

functional types, seasons, and biomes (Atkin & Tjoelker, 2003; Villar, Held, & Merino, 

1995). For example, the mean Q10 of Arctic plants is 2.56, while the mean Q10 of tropical 

plants is 2.14 (Tjoelker, Oleksyn, & Reich, 2001). An Arctic plant will thus be more 

sensitive to short-term warming compared to a tropical plant with a lower Q10. 

Comparisons of Q10 differences across seasons and biomes show how growth 

environments, in terms of both acclimation and adaptation, can have large impacts on 

respiration in response to shifts in temperature.  
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There are two main types of thermal acclimation of respiration (Figure 1.5; Atkin & 

Tjoelker, 2003). Type I acclimation refers to a change in the Q10, e.g. a change in the 

temperature sensitivity of respiration (Covey-Crump, Attwood, & Atkin, 2002). Type II 

acclimation refers to a shift in the entire temperature response curve of respiration, 

resulting in a new Y intercept (Tjoelker et al., 1999a; Tjoelker, Oleksyn, & Reich, 

1999b). Type II acclimation is thought to mitigate C losses more effectively than Type I 

acclimation by decreasing respiration rates under warming. However, Type I acclimation 

makes plants less sensitive to acute changes in temperature by decreasing the Q10. All 

plant tissues respire, so it is also possible to compare shoot and root respiration to 

understand total plant C loss. Understanding how different plant species acclimate to 

changing temperatures and CO2 concentrations will be necessary when considering how 

global C pools will be affected by climate change in the future.  

 

Figure 1.5. Type I and type II acclimation of respiration to temperature. Short-term 

response of respiration in a plant grown at a cool temperature (blue line) and the same 

plant exposed to long-term warming (red line). A) Type I acclimation, where warming 

results in a decrease in the Q10; and B) Type II acclimation, where warming results in a 

complete downward shift in the respiration temperature response curve. Redrawn from 

Atkin and Tjoelker (2003).  

In comparison to photosynthesis and photorespiration, which occur primarily in leaf 

tissue, respiration happens in all plant tissues. This means that, as plants grow, plant 

respiration costs increase (Loveys et al., 2003; Poorter et al., 1991). However, unlike 

photorespiration, plant respiration is relatively insensitive to short-term changes in CO2 
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concentrations (Amthor, Koch, Willms, & Layzell, 2001). Acclimation to long-term 

shifts in warming may help plants reduce C losses under global warming.   

 

1.4.5 Response of Tamarack to Elevated Temperature and CO2 

The responses of tamarack, specifically photosynthesis and respiration, to increasing 

growth temperature and CO2 have not been well-studied. In a pioneering experiment, 

Tjoekler et al. (1998) found that tamarack seedlings grown in chambers had lower Anet 

after long-term exposure to EC (580 ppm), but there was no thermal acclimation of 

photosynthesis. Tamarack seedlings also displayed thermal acclimation of respiration by 

decreasing respiration rates under warming treatments (Tjoelker et al., 1999a). Despite 

this, slow-growing conifers in their study, including tamarack, had greater respiratory 

losses through shoots and roots compared to other plant functional types. But in a 

previous study  conducted in the Way  lab, Dusenge, Madhavji, and Way (2020) found 

contrasting acclimation photosynthesis responses of tamarack seedlings grown in 

glasshouses and exposed to warming (up to 8 ˚C above ambient) and CO2 enrichment (up 

to 750 ppm). Photosynthetic capacity of tamarack was reduced in response to warming, 

resulting in similar Anet across the treatments, and the Topt increased with warming. But 

similar to Tjoelker et al. (1998), tamarack seedlings thermally acclimated shoot 

respiration to warming (Dusenge et al., 2020). Overall, tamarack seedlings had higher 

biomass when grown under moderate warming but had decreased biomass and increased 

mortality under extreme warming with no CO2 effect (Dusenge et al., 2020). Tjoelker et 

al. (1998) and Dusenge et al. (2020) both found that photosynthesis was stimulated by EC 

when measured under growth conditions.  

The most surprising finding by Dusenge et al. (2020) was that tamarack seedlings had 

high mortality under ambient +8 ˚C warming in combination with AC (8TAC), but this 

mortality was offset by EC. The seedlings were well-watered, so water stress (i.e. 

hydraulic failure) was unlikely. The survival of ambient +8 ˚C seedlings supplemented 

with EC indicated that greater C gains prevented C stress. This led me to the question: are 

tamarack seedlings dying from C starvation under ambient +8 ˚C warming with ambient 
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CO2? If so, this would be the first study to show that C starvation may be induced directly 

by warming without any water stress. 

1.5 Rationale and Objectives 

Tamarack is an important tree species in the Canadian boreal forest and contributes to the 

boreal forest’s C sequestration potential. The overarching objective of my thesis was to 

investigate if C starvation in tamarack seedlings led to mortality under extreme warming. 

By examining the C fluxes of tamarack, I planned to model C balances to understand the 

responses of growth, performance and survival of seedlings under future climate 

conditions.  

1.5.1 Chapter 2: Glasshouse Experiment 

Using the same experimental design as Dusenge et al. (2020), tamarack was grown from 

seed in glasshouses under warming, with and without CO2 enrichment. I planned to test 

the C starvation hypothesis by comparing C fluxes and percent foliar C of dying vs. 

healthy 8TAC seedlings. Under C starvation, dying seedlings would have decreased 

ratios of photosynthesis to respiration and lower foliar C concentrations compared to 

healthy seedlings. Carbon fluxes of healthy seedlings across all treatments would also be 

measured to evaluate acclimation, performance and growth of tamarack across the 

treatments. By modelling C balance across all treatments, I could test if healthy 8TAC 

seedlings had overall lower C balances than seedlings form other treatments and whether 

this made them more vulnerable to C stress.  

1.5.2 Chapter 3: Follow-up Growth Chamber Experiment 

Following the glasshouse experiment, the goal of my second experiment was to use 

growth chambers to measure a greater sample size of dying seedlings and to test C 

starvation with a C rescue (plants displaying signs of mortality would be moved into the 

EC treatment to test whether a recovery could be made). However, the growth chamber 

experiment resulted in zero mortality of 8TAC seedlings. The goal then became to 

investigate whether this greater survival in the growth chamber study (compared to the 
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glasshouses) was due to greater acclimation of C fluxes under constant temperature and 

light conditions.  
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Chapter 2  

2 Elevated CO2 and Warming Effects on Plant C Fluxes, 

Growth, and Mortality: Evidence for Carbon Starvation at 

High Temperatures Without Water Stress 

2.1 Introduction 

With atmospheric CO2 concentrations increasing at ~2.0 ppm per year, global 

temperatures are projected to increase 2.0-4.5 ˚C by the year 2100 (Cramer et al., 2014). 

Warming is predicted to be most extreme in northern latitudes, which could experience 

temperature increases of more than 8 ˚C by the end of the century (Oppenheimer et al., 

2014; Serreze et al., 2000). This warming will directly impact the boreal forest, which 

accounts for 30% of global forests and acts as a significant carbon (C) sink (Brandt, 

2009; Kurz et al., 2013). The ability of the boreal forest to continue sequestering C is 

largely dictated by both the growth and mortality of boreal plants and the balance 

between the C fluxes of boreal vegetation and soil organisms. Plant growth, mortality and 

physiological processes are sensitive to changes in temperature and CO2, meaning that 

these processes will be affected by future climate conditions and could feed back on the 

C sink strength of the boreal forest.  

Increased temperatures and atmospheric CO2 concentrations have already intensified 

climatic stress on vegetation, leading to greater tree mortality globally. Since 1970, there 

have been over 88 documented large-scale tree mortality events, and tree mortality has 

been identified as a major contributor to future vegetation shifts (Allen et al., 2010; Allen 

et al., 2015). Many forest mortality events have been linked to global change-related 

droughts, where high temperatures and drought occur simultaneously. Tree die-offs have 

therefore been largely attributed to water stress causing either hydraulic failure (i.e. 

catastrophic xylem cavitation) or C starvation (where low stomatal conductance 

suppresses photosynthetic C gains, but respiratory C losses remain high) (Adams et al., 

2017; Allen et al., 2010; Anderegg et al., 2012; Hartmann et al., 2018; Mcdowell & 

Sevanto, 2010; Sevanto et al., 2014). Regardless of the cause of mortality, tree die-offs 

are already proving to be detrimental to the boreal biome. High latitude regions in North 
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America are also experiencing increases in tree mortality rates associated with climate 

change, with boreal tree species experiencing increased mortality of up to 4.7% per year 

since 1963 (Peng et al., 2011). But while warming was positively correlated with 

mortality rates for all plots in their study, water deficits were positively correlated with 

mortality rates only in western Canada (Peng et al., 2011), indicating that temperature, 

and not drought was the main driver of mortality. This raises the question of whether 

warming may directly increase tree mortality risk through carbon starvation, an idea 

which has received little attention.  

Photosynthesis is stimulated by short-term exposure to high CO2 concentrations, as 

Rubisco is substrate-limited under current CO2 concentrations (Ainsworth & Rogers, 

2007). However, plants will often down-regulate net CO2 assimilation rates (Anet) after 

long-term exposure to elevated CO2 to cope with sink limitations, such as low nitrogen 

(N) availability (Ainsworth & Rogers, 2007; Tjoelker et al., 1998). Photosynthetic 

responses to elevated temperatures are more variable. The temperature response of net 

photosynthesis is curvilinear, with Anet peaking near the growth temperature experienced 

by the plant (Sage & Kubien, 2007). Above this thermal optimum, Anet declines. Plants 

acclimate to warming by shifting the photosynthetic temperature optimum towards higher 

temperatures (Way & Yamori, 2014). However, thermal acclimation can result in 

increased, similar or even lower rates of Anet at the new growth temperature compared to 

a control plant (Way & Yamori, 2014).  

The other main determinant of plant C balance is respiration. Over minutes to hours, 

respiration increases exponentially with increasing temperatures, but respiration is 

relatively insensitive to short-term changes in CO2 concentrations (Amthor et al., 2001). 

Under longer-term exposure to elevated temperatures, thermal acclimation of respiration 

often results in a decrease in respiration at a common measurement temperature, which 

mitigates plant C losses (Atkin & Tjoelker, 2003). Long-term exposure to elevated CO2 

can also actually increase respiration in both herbaceous and woody species (Way, Oren, 

& Kroner, 2015). If plants are unable to reach a sufficiently high ratio of photosynthesis 

to respiration under elevated growth temperatures and CO2 concentrations, they will be at 

risk for growth reductions and mortality from C starvation in future climate conditions.  
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In this study, I grew tamarack at either ambient or elevated CO2 concentrations combined 

with ambient temperatures or a +4 C or +8 ˚C warming treatment to simulate future 

climate scenarios. Tamarack is a common deciduous conifer across the North American 

boreal forest (Islam & Macdonald, 2004). In a recent experiment, tamarack seedlings had 

38% mortality under 8 ˚C warming when coupled with ambient CO2 (Dusenge et al., 

2020). I hypothesized that C starvation caused this high mortality in tamarack, since 

seedlings were well-watered, and seedlings grown under the same temperature regime, 

but with elevated CO2, had minimal mortality. The main objectives of my study were 

therefore to evaluate: (i) C fluxes, growth and performance of healthy tamarack seedlings 

across all six treatments; and (ii) C fluxes, growth and performance of dying tamarack 

seedlings. The overarching goal was to determine if differences in whole plant C balance 

between dying and healthy seedlings grown under elevated temperatures and ample water 

imply that warming can directly induce C starvation.  

2.2 Methods 

2.2.1 Experimental Design 

Tamarack seeds were sown on May 12, 2017 in 11.3 L pots filled with Promix HP 

mycorrhizal growing medium (Premier Tech Horticulture, Rivieire-du-Loup, QC, 

Canada) with slow-release fertilizer (Slow Release Plant Food, 12-4-8, Miracle Grow, 

The Scotts Company, Mississauga, ON, Canada). Seeds were ordered from the Canadian 

National Seed Tree Center (provenance from Finch Township, ON, 45.133 °N, 75.083 

°W) to match the seed collection site with ambient growing season temperatures and 

photoperiods of London, ON where the experiment was performed.  

Forty pots with five seeds per pot were assigned to one of six climate-controlled 

glasshouses at the University of Western Ontario’s Biotron Experimental Climate Change 

Research Centre (N = 240 pots). Once seedlings were established, seedlings were thinned 

to one per pot. Each glasshouse had a different temperature × CO2 treatment. Seedlings 

were grown under either ambient CO2 (AC, 400 ppm) or elevated CO2 (EC, 750 ppm) 

concentrations with either ambient (0T, ambient control temperatures), ambient +4 ˚C 

(4T) or ambient +8˚C (8T) temperatures. The 0T temperature regime was determined 
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from hourly temperature averages for each day of the growing season (using data from 

2012-2016) from the London, ON airport meteorological station (Environment Canada; 

Figure 2.1). Carbon dioxide concentrations were measured in each glasshouse every 10 

minutes with an infrared gas analyzer in the Argus control system (Argus Control 

Systems, Surrey, Canada) and were controlled by injecting pure CO2 as needed to 

maintain the EC treatment. The growth irradiance matched outdoor light conditions, 

varying with naturally fluctuating sunlight. Humidity was controlled at 60% and 

seedlings were watered as needed to maintain a moist growth medium, as assessed by 

measurements of volumetric soil water content made in each pot every 14 days (HH2 

Moisture Meter, Delta-T Devices, Cambridge, UK) (Figure 2.2). 

Once the seedlings were established and thinned, stem height and health ratings were 

recorded on all seedlings every 14 days. Health was rated on a scale of 1-5 based on the 

percent of brown needles (Figure 2.3).  

2.2.2 Physiological Measurements 

Shoot gas exchange measurements were taken in August and September 2017 on fully-

expanded needles using a portable photosynthesis system (Li-cor 6400XT, Li-cor 

Biosciences, Lincoln, NE). First, six healthy seedlings from each treatment were 

measured for gas exchange to establish treatment effects (N=36). Plants were sampled 

across the treatments to avoid potential phenological effects. Then, to compare gas 

exchange across trees of varying health, six healthy and six dying (health rating = 2-4) 

seedlings were measured in the 8TAC treatment.  

For all seedlings, Anet was assessed at light saturation (1200 μmol photons m-2 s-1) and a 

relative humidity (RH) of 30-65%. RH was held constant at ~65% at the 25 ˚C 

measurement temperature. However, it decreased with increasing growth temperature 

measurements despite use of a bubbler. The Anet was quantified at a range of intracellular  

After the last A/Ci measurement was recorded at 2000 ppm, the cuvette CO2 was set to 

400 ppm and the sample was dark-acclimated for 20 minutes. Shoot dark respiration 

(Rshoot) was then measured at 400 ppm for all seedlings, as there is no short-term effect of 
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Figure 2.1. Daily temperature and CO2 levels across all six biomes over the duration 

of the experiment. Day 0 indicates when seeds were potted (May 12th) and day 140 

indicates when seedlings were harvested (Sept 28th). Temperature and CO2 readings were 

taken daily. Circles, ambient temperature (0T); triangles, +4 ˚C warming (4T); squares, 

+8 ˚C warming (8T). White symbols, ambient growth CO2 (AC); black symbols, elevated 

growth CO2 (EC). 
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Figure 2.2. Volumetric soil water content (%) of tamarack seedlings grown under 

six climate treatments. Data are means ± SD, n = 40. Circles, ambient temperature 

(0T); triangles, +4 ˚C warming (4T); squares, +8 ˚C warming (8T). White symbols, 

ambient growth CO2 (AC); black symbols, elevated growth CO2 (EC). 

 

 

Figure 2.3. Representative seedlings showing the seedling health scale. (1) needles are 

100% green; (2) seedling has <50% brown needle tissue; (3) seedling has approximately 

1:1 brown to green leaf tissue; (4) seedling has >50% brown needle tissue; (5) seedling is 

100% brown.  
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CO2 on Rshoot (Amthor et al., 2001). The Rshoot was measured at 25 ˚C (Rshoot-25) and 35 ˚C 

(Rshoot-35) and these data were used to calculate Q10 values, defined as the temperature 

sensitivity of respiration rates over a 10 ˚C temperature increase (Atkin & Tjoelker, 

2003):  

 𝑄10 =  (
 R𝑠ℎ𝑜𝑜𝑡−35

 R𝑠ℎ𝑜𝑜𝑡−25
) . Eq. 2.1 

Using the Q10 and Rshoot-25 values, shoot respiration at the growth temperature (Rshoot-

growth) was calculated for each seedling. Shoot growth temperatures were based on the 

average daytime air temperature in the treatments at the beginning of the measurements. 

Once gas exchange measurements were complete, needles in the cuvette were removed 

and photographed to determine projected leaf area (LA) using ImageJ (US National 

Institutes of Health, Bestheda, MD, USA). The needles were then dried at 65 C for 48 h 

and weighed for biomass to determine leaf mass area (LMA) (i.e. needle biomass divided 

by LA). 

2.2.3 Biomass 

After gas exchange measurements were completed, the remaining seedlings in the 

experiment were harvested and dried to a constant mass at 65 ˚C. Seedlings were divided 

into roots, shoots, and leaves, and each tissue was weighed individually.   

2.2.4 Carbon and Nitrogen Analysis 

A subset of the dried leaf tissue was ground using a Wiley mill (Thomas Scientific, 

Swedesboro, NJ, USA) and analyzed for C and N concentrations using an elemental 

analyzer (NCS 2500, Carlo Ebra, Peypin, France).  

2.2.5 Modelling  

Whole plant C fluxes of the seedlings were modelled at their respective growth 

temperatures. The calculated LMA was first used to extrapolate total LA for each 

seedling based on total leaf biomass. Seedling-level Anet under growth temperature and 

CO2 concentrations (Aseedling) was then calculated for each seedling using: 
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 Aseedling = Agrowth × LAseedling , Eq. 2.2 

where Agrowth is Anet measured at the growth CO2 and temperature. 

Seedling-level shoot respiration rates (Rshoot-seedling) were calculated for each 

seedling as: 

 Rshoot-seedling = Rshoot-growth × LAseedling. Eq. 2.3 

Seedling-level root respiration rates (Rroot-seedling) were calculated as: 

 Rroot-seedling = Rroot-growth × biomassroot, Eq. 2.4 

where biomassroot is dry root biomass and Rroot-growth is the root respiration rate at the 

growth temperature. Values of Rroot-growth were taken from Tjoelker, Oleksyn, & Reich 

(1999), who measured root respiration rates of tamarack seedlings grown at three night-

time growth temperatures (12, 18 and 24 ˚C) and two CO2 treatments (370 and 580 ppm). 

I plotted measured respiration rates from each temperature treatment against soil growth 

temperature to extrapolate Rroot-growth using the line of best fit (R2=0.988). There was no 

effect of growth CO2 on root respiration in Tjoelker et al. (1999), so root respiration rates 

from Tjoelker et al. (1999) were averaged across their two CO2 treatments and a single 

value was used for a given growth temperature for both my AC and EC modelling. In 

another experiment in my thesis, I found that soil temperature was 6.8 ˚C cooler than air 

temperature (refer to Chapter Three). The temperatures used to calculate root respiration 

were therefore set at 18.2˚C for 0T, 22.2 ˚C for 4T, and 26.2˚C for 8T.  

At the time of C flux measurements in August 2017, the photoperiod was 15 hours. 

Assuming saturating light, whole plant C uptake (Cseedling) was estimated by scaling 

Aseedling up to 15 h (Aseedling-day) and Rshoot and Rroot to 24 h (Rshoot-seedling-day and Rroot-seedling-

day, respectively). Once all of these parameters were obtained, daily Cseedling was 

calculated using: 
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 Cseedling = Aseedling-day −  Rshoot-seedling-day −  Rroot-seedling-day. Eq. 2.5 

 

2.2.6 Statistics 

R software (R Foundation for Statistical Computing, Vienna, Austria, EU) was used for 

modelling and statistical analyses. The R package ‘plantecophys’ was used to estimate 

Jmax and Vcmax (Duursma, 2018). The R package ‘tidyverse’ was used for all statistical 

analyses (Wickham, 2017). Response variables of healthy seedlings from all six 

treatments were analyzed using two-way ANOVAs, considering growth temperature, 

growth CO2 and their interaction. A post-hoc Tukey test was used when significant 

treatment effects were found. The comparison of variables between healthy and dying 

8TAC seedlings was analyzed using a two-sample t-test.   

2.3 Results 

2.3.1 Carbon Fluxes and Photosynthetic Capacity in Healthy Seedlings 

When comparing Anet under common conditions of 400 ppm CO2 and 25 C (A25), there 

was no difference in A25 across the treatments (Table 2.1, Figure 2.4A). Under these 

common measurement conditions, there was also no treatment effect on stomatal 

conductance (gs25), the ratio of intracellular CO2 to ambient CO2 (Ci/Ca25), or transpiration 

(E25; Tables 2.1 and 2.2). The Rshoot-25 decreased by ~32% with increasing growth 

temperature, but the Q10 of shoot respiration was not altered by the treatments (Tables 2.1 

and 2.2, Figure 2.4B). The ratio of A25 to Rshoot-25 (A/R25), an index of shoot-level C 

balance, therefore increased by ~36% with increasing growth temperature, but there was 

no CO2 effect (Table 2.1, Figure 2.4C).  

In contrast, Anet measured at the growth CO2 and temperature (Agrowth) was 49-69% 

higher in EC seedlings compared to AC plants, but Agrowth showed no response to growth 

temperature (Table 2.1, Figure 2.4D). Stomatal conductance at growth conditions (gs- 

growth) was unaffected by the treatments, while transpiration measured at growth 
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Table 2.1. Summary of ANOVA statistics for response of gas exchange parameters 

as well as leaf biochemistry and growth, to the experimental treatments. Gas 

exchange parameters were measured at 25 ˚C and 400 ppm CO2 (denoted by “25”) and at 

growth conditions (denoted by “growth”). Parameters include: net CO2 assimilation rate 

(A25, Agrowth); shoot dark respiration rate (Rshoot-25, Rshoot-growth); the ratio of net CO2 

assimilation rate to shoot dark respiration rate (A/R25, A/Rgrowth); the Q10 of shoot 

respiration (Q10-Rshoot); stomatal conductance (gs25, gs-growth); the ratio of intracellular to 

ambient CO2 (Ci/Ca25, Ci/Ca-growth); transpiration rate (E25, Egrowth); the maximum rate of 

Rubisco carboxylation (Vcmax-25, Vcmax-growth); the maximum rate of electron transport 

(Jmax-25, Jmax-growth); and the ratio of Jmax to Vcmax (Jmax-25/Vcmax-25, Jmax-growth/Vcmax-growth); 

needle percent carbon (%C); needle percent nitrogen (%N); the ratio of C/N; total 

biomass (Biomasstotal); the root/shoot ratio (Biomassroot/shoot); tree height; and whole plant 

carbon (C) flux. T = growth temperature, CO2 = growth CO2 concentration, and DF = 

within-group degrees of freedom. P-values that are statistically significant (p ≤ 0.05) are 

bolded. 

 T CO2 CO2 x T 

DF F-stat P-value DF F-stat P-value DF F-stat P-value 

(A) Gas Exchange 

Parameters  

A25 

Rshoot-25 

A/R25 

Agrowth 

Rshoot-growth 

A/Rgrowth 

Q10-Rshoot 

gs25 

gs-growth 

Ci/Ca25 

Ci/Ca-growth 

E25 

Egrowth 

 

(B) Photosynthetic  

Capacity 

Vcmax-25 

Jmax-25 

Jmax-25 /Vcmax-25 

Vcmax-growth 

Jmax-growth 

 

 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

 

 

 

30 

30 

30 

30 

30 

 

 

0.05 

7.09 

3.81 

2.86 

0.04 

1.17 

1.38 

0.03 

0.37 

0.07 

0.50 

0.05 

6.01 

 

 

 

0.10 

0.52 

4.65 

14.67 

0.90 

 

 

0.95 

<0.05 

<0.05 

0.07 

0.96 

0.32 

0.27 

0.97 

0.70 

0.93 

0.61 

0.95 

<0.01 

 

 

 

0.90 

0.60 

<0.05 

<0.0001 

0.42 

 

 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

 

 

 

30 

30 

30 

30 

30 

 

 

0.05 

1.27 

1.47 

52.41 

1.22 

11.22 

0.001 

0.89 

0.09 

1.57 

6.33 

0.07 

0.04 

 

 

 

0.12 

0.86 

29.85 

3.51 

0.97 

 

 

0.83 

0.27 

0.24 

<0.0001 

0.28 

<0.01 

0.98 

0.35 

0.77 

0.22 

<0.05 

0.95 

0.84 

 

 

 

0.73 

0.36 

<0.0001 

0.07 

0.33 

 

 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

 

 

 

30 

30 

30 

30 

30 

 

 

0.21 

0.11 

0.05 

1.29 

0.15 

0.61 

3.18 

0.85 

1.78 

0.35 

0.03 

0.25 

1.16 

 

 

 

0.09 

0.07 

0.07 

1.74 

3.30 

 

 

0.81 

0.89 

0.95 

0.29 

0.86 

0.55 

0.06 

0.44 

0.19 

0.71 

0.97 

0.78 

0.33 

 

 

 

0.92 

0.93 

0.93 

0.19 

0.05 



37 

 

Jmax-growth/Vcmax-growth 

 

(C) Leaf biochemistry 

%N 

%C 

C/N  

 

(D) Growth 

Biomasstotal 

Biomassroot/shoot 

Tree Height 

 

(E) Modelling 

Whole Plant C 

30 

 

 

30 

30 

30 

 

 

234 

234 

234 

 

 

30 

322.76 

 

 

2.44 

3.91 

8.87 

 

 

12.97 

0.27 

41.24 

 

 

3.20 

<0.0001 

 

 

0.10 

<0.05 

0.29 

 

 

<0.0001 

0.76 

<0.0001 

 

 

0.05 

30 

 

 

30 

30 

30 

 

 

234 

234 

234 

 

 

30 

14.91 

 

 

7.56 

2.88 

1.42 

 

 

19.15 

8.31 

14.32 

 

 

12.89 

<0.001 

 

 

<0.05 

0.10 

<0.01 

 

 

<0.0001 

<0.01 

<0.001 

 

 

<0.01 

30 

 

 

30 

30 

30 

 

 

234 

234 

234 

 

 

30 

16.82 

 

 

2.00 

0.61 

2.06 

 

 

1.67 

8.53 

5.88 

 

 

0.76 

<0.0001 

 

 

0.15 

0.55 

0.15 

 

 

0.19 

<0.001 

<0.05 

 

 

0.47 

 

Table 2.2. Response of gas exchange parameters to the growth treatments. Gas 

exchange parameters were measured at 25 ˚C and 400 ppm CO2 (denoted by “25”) and at 

growth conditions (denoted by “growth). Parameters include: stomatal conductance (gs25, 

gs-growth; mmol H2O m-2 s-1); the ratio of intracellular to atmospheric CO2 (Ci/Ca25, Ci/Ca-

growth); transpiration rate (E25, Egrowth; mmol H2O m-2 s-1); and Q10 values of shoot 

respiration (Rshoot) of seedlings from different growth treatments. Means ± SE, n = 6. 

There were no differences between groups across all six growth treatments, so letters 

were not used to denote significance.  

 

 0TAC 4TAC 8TAC 0TEC 4TEC 8TEC 

gs25 

gs-growth 

Ci/Ca25 

Ci/Ca-growth 

E25 

Egrowth 

Q10 

0.16±0.02 

0.16±0.02 

0.76±0.01 

0.76±0.01 

1.97±0.24 

1.97±0.24 

1.70±0.06 

0.15±0.01 

0.15±0.01 

0.76±0.01 

0.74±0.01 

1.81±0.17 

2.34±0.15 

1.71±0.02 

0.15±0.02 

0.14±0.02 

0.75±0.02 

0.74±0.02 

1.86±0.26 

2.76±0.25 

1.70±0.02 

0.15±0.01 

0.14±0.01 

0.76±0.02 

0.78±0.02 

1.89±0.07 

2.02±0.12 

1.63±0.02 

0.16±0.01 

0.15±0.01 

0.77±0.01 

0.78±0.01 

2.00±0.13 

2.65±0.17 

1.71±0.05 

0.17±0.01 

0.17±0.01 

0.77±0.02 

0.77±0.02 

1.88±0.19 

2.47±0.16 

1.81±0.04 
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Figure 2.4. Photosynthetic and respiratory responses to elevated CO2 and 

temperature treatments. Carbon fluxes were measured at 25 ˚C and 400 ppm (A,B,C) 

and growth conditions (25 ˚C for 0T, 29 ˚C for 4T, 33 ˚C for 8T; 400 ppm CO2 for AC, 

750 ppm CO2 for EC) (D,E,F). A, D) net CO2 assimilation rate (A25˚C, Agrowth); B, E) 

shoot dark respiration rate (Rshoot-25˚C, Rshoot-growth); C, F) the ratio of net CO2 assimilation 

rate to respiration rate (A/R25˚C, A/Rgrowth). Light grey, 0T; medium grey, 4T; dark grey, 

8T. Horizontal lines in boxplots indicate means; whiskers display minimum and 

maximum values; dots indicate outliers; n = 6. Different letters above boxplots denote a 

significant difference across all six treatments (p ≤ 0.05). T = growth temperature, CO2 = 

growth CO2 concentration, n/s = non-significant, * = p≤0.05, ** = p<0.01, and *** = 

p<0.001.  
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 conditions (Egrowth) increased by ~34% with warming and therefore higher measurement 

vapour pressure deficit (VPD; Tables 2.1 and 2.2). The ratio of intracellular CO2 to 

ambient CO2 at growth conditions (Ci/Ca-growth) was higher in EC than AC seedlings 

(Tables 2.1 and 2.2). Shoot dark respiration rates at growth temperature (Rshoot-growth) were 

unaffected by either growth temperature or CO2 (Table 2.1, Figure 2.4E). The ratio of 

Agrowth to Rgrowth (A/Rgrowth) was stimulated by EC (Table 2.1, Figure 2.4F).  

When measured at 25 C, the maximum rate of Rubisco carboxylation (Vcmax-25) and the 

maximum rate of electron transport (Jmax-25) were unaffected by the treatments (Table 2.1, 

Figures 2.5A and B). The ratio of Jmax-25/Vcmax-25 decreased from 0T to 8T, and increased 

with EC (Table 2.1, Figure 2.5C). When measured at the growth conditions, the 

maximum rate of Rubisco carboxylation (Vcmax-growth) was increased by warming (Table 

2.1, Figure 2.5D), but the maximum rate of electron transport (Jmax-growth) was unaffected 

by the treatments (Table 2.1, Figure 2.5E). The ratio of Jmax-growth/Vcmax-growth therefore 

decreased with warming and also increased with EC (Table 2.1, Figure 2.5F).  

2.3.2 Growth Responses of Healthy Seedlings  

Seedling growth was affected by both growth temperature and CO2 (Table 2.1, Figure 

2.6). As growth temperature increased from 0T to 4T, total seedling biomass was 

constant, but biomass decreased by ~73% at 8T (Table 2.1, Figure 2.6A). There was also 

greater biomass in EC compared to AC seedlings. The ratio of root/shoot biomass was 

similar across the warming treatments in AC seedlings, but higher in 8T than 0T in EC 

seedlings (Table 2.1, Figure 2.6B). Tree height was increased by EC only in the 0T 

seedlings, and 8T seedlings were shorter than 0T and 4T plants in both CO2 treatments 

(Table 2.1, Figure 2.6C).  

2.3.3 Needle Biochemical Responses of Healthy Seedlings  

Leaf %N was lower in EC than AC trees, but there was no effect of growth temperature 

(Table 2.1, Figure 2.7A,). In contrast, as growth temperature increased, needle %C 

declined by ~4%, with no effect of growth CO2 (Table 2.1, Figure 2.7B). The ratio of 

C/N was increased by EC but did not respond to growth temperature (Table 2.1, Figure 

2.7C). 
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Figure 2.5. Responses of photosynthetic capacity to elevated CO2 and temperature 

treatments. Photosynthetic capacity was measured at 25 ˚C and 400 ppm (A,B,C) and 

growth conditions (25 ˚C for 0T, 29 ˚C for 4T, 33 ˚C for 8T; 400 ppm CO2 for AC, 750 

ppm CO2 for EC) (D,E,F). A, D) maximum rate of Rubisco carboxylation (Vcmax-25, 

Vcmax-growth); B, E) maximum rate of electron transport (Jmax-25, Jmax-growth); C, F) the ratio 

of Jmax to Vcmax (Jmax-25/Vcmax-25, Jmax-growth/Vcmax-growth). Light grey, 0T; medium grey, 4T; 

dark grey, 8T. Horizontal lines in boxplots indicate means; whiskers display minimum 

and maximum values; dots indicate outliers; n = 6. Different letters above boxplots 

denote significant differences across all six treatments (p ≤ 0.05). T = growth 

temperature, CO2 = growth CO2 concentration, n/s = non-significant, * = p≤0.05, ** = 

p<0.01, and *** = p<0.001.  
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Figure 2.6. Growth responses to CO2 and temperature treatments. A) Total biomass; 

B) the root/shoot ratio; and C) tree height. Light grey, 0T; medium grey, 4T; dark grey, 

8T. Horizontal lines in boxplots indicate means; whiskers display minimum and 

maximum values; dots indicate outliers; n = 40. Different letters above boxplot denote 

significant differences across all six treatments (p ≤ 0.05). T = growth temperature, CO2 

= growth CO2 concentration, n/s = non-significant, * = p≤0.05, ** = p<0.01, and *** = 

p<0.001.  
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Figure 2.7. Needle biochemical responses to growth treatments. A) Needle nitrogen 

(N) concentrations; and B) carbon (C) concentrations; and C) the C/N ratio of needles. 

Light grey, 0T; medium grey, 4T; dark grey, 8T. Horizontal lines in boxplots indicate 

means; whiskers display minimum and maximum values; dots indicate outliers; n = 6. 

Different letters above boxplots denote significant differences across six treatments (p ≤ 

0.05). T = growth temperature, CO2 = growth CO2 concentration, n/s = non-significant, * 

= p≤0.05, ** = p<0.01, and *** = p<0.001. 
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2.3.4 Whole Carbon Modelling of Healthy Seedlings  

When comparing whole plant daily C uptake, EC seedlings had ~2× higher daily plant C 

uptake than AC plants (Table 2.1, Figure 2.8). There was a weak overall temperature 

effect, with a trend of decreasing daily C uptake from 4T to 8T warming (p=0.078), but 

no interactive effects of growth CO2 by temperature.  

2.3.5 Comparison of Dying vs. Healthy Seedlings in the 8TAC 

Treatment 

Overall, 8TAC seedlings had 40% mortality, characterized by complete needle browning, 

compared to 0% mortality in all other treatments. Similar to the quantification of C fluxes 

of healthy seedlings across all treatments, the same traits were examined in 8TAC dying 

and healthy seedlings at their growth temperature of 33 ˚C. There was no significant 

difference in Agrowth, Rshoot-growth, Jmax-growth, Vcmax-growth or Jmax/Vcmax-growth between healthy 

and dying seedlings, nor was there any significant difference in the ratio of Agrowth to 

Rshoot-growth (A/Rgrowth) (Table 2.3, Figures 2.9A-F). Needle %C was 3% lower in the 

dying seedlings, although the needle %N and the ratio of C/N were similar between all 

8TAC seedlings (Table 2.3, Figures 2.10A-C). There were also negative correlations 

between seedling health and their needle %C and A/Rgrowth (Figures 2.11A and B). 

2.4 Discussion 

2.4.1 Carbon Balance and Photosynthetic Capacity 

There was surprisingly little evidence for photosynthetic acclimation (i.e., no change in 

photosynthetic capacity) across 8 C of warming and a 350 ppm increase in growth CO2, 

indicating that tamarack has considerable capacity for maintaining C uptake under future 

climates. Many studies have shown that plants grown at elevated CO2 tend to have 

reduced photosynthetic capacity (Ainsworth & Long, 2005; Albert et al., 2011; Moore et 

al., 1999), but my work supports the idea that conifers may be less sensitive to rising CO2 

than are other plant functional types (Ainsworth & Rogers, 2007; Medlyn et al., 2001). 

While less is known about how deciduous conifers will respond to elevated CO2, a study 

by Dusenge et al. (2020) found that photosynthetic capacity was unresponsive to  
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Figure 2.8. Whole plant daily C uptake of seedlings across the growth treatments.  

Light grey, 0T; medium grey, 4T; dark grey, 8T. Horizontal lines in boxplots indicate 

means; whiskers display minimum and maximum values; dots indicate outliers; n = 6. 

Different letters above boxplots denote significant differences across six treatments (p ≤ 

0.05). T = growth temperature, CO2 = growth CO2 concentration, n/s = non-significant, * 

= p≤0.05, ** = p<0.01, and *** = p<0.001. 
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Table 2.3. Summary of two-sample t-test statistics for parameters comparing dying 

and healthy 8TAC seedlings. Parameters include: net photosynthesis at growth 

conditions (Agrowth); shoot dark respiration at growth conditions (Rshoot-growth); ratio 

between Agrowth and Rshoot-growth (A/Rgrowth); maximum rate of electron transport (Jmax); 

maximum rate of Rubisco carboxylation (Vcmax); ratio between Jmax-growth and Vcmax -growth 

(Jmax/Vcmax-growth); percent needle carbon (%C); percent needle nitrogen (%N); and the 

ratio of needle C/N. DF = within-group degrees of freedom. P-values that are statistically 

significant (p ≤ 0.05) are bolded.  

 Healthy vs. Dying 
DF T-stat P-value 

Agrowth 

Rshoot-growth 

A/Rgrowth 

Vcmax 

Jmax 

Jmax/Vcmax 

% Nitrogen 

% Carbon 

C/N 

10 

10 

10 

10 

10 

10 

10 

10 

10 

0.35 

0.64 

1.87 

0.60 

1.11 

0.62 

1.30 

2.45 

0.91 

0.73 

0.54 

0.09 

0.56 

0.30 

0.55 

0.22 

<0.05 

0.38 
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Figure 2.9. Comparison of carbon fluxes and photosynthetic capacity parameters 

between dying and healthy seedlings grown in the 8TAC treatment. A) Net CO2 

assimilation rate (Agrowth), B) shoot dark respiration rate (Rshoot-growth), C) the ratio of 

Agrowth to Rshoot-growth (A/Rgrowth), D) maximum rate of electron transport (Jmax-growth), E) 

maximum rate of Rubisco carboxylation (Vcmax-growth), and F) the ratio of Jmax-growth to 

Vcmax-growth (Jmax/Vcmax-growth). Grey, dying seedlings; white, healthy seedlings. Horizontal 

lines of boxplots indicate means; whiskers display minimum and maximum values; dots 

indicate outliers; n = 6. Different letters above boxplots denote significant differences 

between groups (p ≤ 0.05). 
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Figure 2.10. Comparison of leaf biochemical responses between dying and healthy 

seedlings grown in the 8TAC treatment. A) Percent carbon, B) percent nitrogen, and 

C) the ratio of needle percent carbon to nitrogen (C/N). Grey, dying seedlings; white, 

healthy seedlings. Horizontal lines of boxplots indicate means; whiskers display 

minimum and maximum values; dots indicate outliers; n = 6. Different letters above 

boxplots denote significant differences between groups (p ≤ 0.05). 
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Figure 2.11. Relationship between seedling health rating and leaf C balance and 

foliar C. A) The ratio of net CO2 assimilation rate to shoot dark respiration rate at growth 

conditions (A/Rgrowth) and B) the percent needle carbon (%C). Points represent individual 

seedlings, n = 12. Solid line, linear regression.  

 

 

 

 

 

 

 

 

 

 

 

 

R2 = 0.41
P<0.05

R2 = 0.31
P<0.05
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changing CO2 in tamarack seedlings. Photosynthetic acclimation to temperature has been 

well documented in the literature (Kroner & Way, 2016; Tjoelker et al., 1998; Way & 

Oren, 2010; Yamori, Hikosaka, & Way, 2014; Yamori, Noguchi, & Terashima, 2005). 

However, the response of boreal tree species to warming (as indicated by Anet) is 

variable. For example, Pinus sylvestrius seedlings increase Agrowth with warming, whereas 

Picea abies seedlings decrease Agrowth with warming (Kurepin et al., 2018). Abies 

faxoniana and Picea asperata seedlings also increase Agrowth with warming (Yin, Lui, & 

Lai, 2008), while Picea mariana seedlings decrease Agrowth (Tjoelker et al. 1998). While 

it is unusual to find such photosynthetic stability across such a broad range of growth 

temperatures, thermal acclimation can result in a similar Agrowth (Way & Yamori, 2014). 

Instead, the thermal optimum of photosynthetic rates (Topt) is considered the most 

sensitive indicator of thermal acclimation (Berry & Bjorkman, 1980; Yamori et al., 

2014), but it was not measured in this study. The lack of photosynthetic acclimation was 

correlated with the maintenance of relatively similar concentrations of needle N, 

indicating that warming had little effect on photosynthetic enzymes and protein 

concentrations across the treatments.   

Since gs was also relatively insensitive to warming and CO2, there was higher Ci/Ca-growth 

under EC, and therefore ~60% higher Agrowth in the EC seedlings. At current CO2 

concentrations, Rubisco is substrate-limited; by increasing intracellular CO2 

concentrations, photosynthetic rates increase and photorespiration is suppressed (Sage & 

Kubien, 2007). Stimulation of photosynthesis by EC in mature conifers is common in the 

absence of sink limitations (Ainsworth & Rogers, 2007; DeLucia et al., 1999; Ryan, 

2013; Dusenge, 2019) as these limitations can feed back to instigate a down-regulation of 

photosynthesis (Ainsworth & Long, 2005; Leakey et al., 2009). Dusenge et al. (2020) and 

Tjoelker et al. (1999) also found that warming led to a constant Agrowth, but that EC 

stimulated Agrowth, indicating that these results are robust. My findings add to the 

literature indicating that photosynthetic rates of tamarack are highly responsive to 

changes in elevated CO2, even when stomatal conductance is not.  

While photosynthetic capacity at 25 C was unaffected by the treatments, the ratio of 

Jmax-25/Vcmax-25 was reduced with warming. Meta-analyses have revealed that the effect of 
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warming on photosynthetic capacity measured at 25 C is variable (Way and Oren, 2010; 

Way & Yamori, 2014), and we still lack a general understanding of how Vcmax-25 and Jmax-

25 will be affected by a warming world. Tamarack seedlings in the studies by Dusenge et 

al. (2020) had decreased photosynthetic capacity with warming and associated decreases 

in foliar N concentrations (%N), indicative of a lower investment into photosynthetic 

enzymes (Reich et al., 1998). In my study, photosynthetic capacity did not acclimate to 

warming, supported by similar %N across temperature treatments indicating there was no 

change in the relative amounts of Rubisco. But a decline in Jmax-25/Vcmax-25 in warm-grown 

plants is common (Kattge & Knorr, 2007; Yamori et al., 2005; Dusenge, 2019), and is 

thought to indicate a shift in N partitioning within the photosynthetic apparatus from 

RuBP carboxylation to RuBP regeneration (Hikosaka, Ishikawa, Borjigidai, Muller, & 

Onoda, 2006). Under low temperatures, plants invest more N into RuBP regeneration, 

which is less efficient under cool temperatures, resulting in a higher ratio of cytochrome f 

to Rubisco and subsequently a higher ratio of Jmax-25/Vcmax-25. 

When measured at growth conditions, Jmax-growth was constant across the treatments, while 

Vcmax-growth increased across 0T to 8T treatments. Rising leaf temperatures generally 

stimulate both Vcmax and Jmax, (Kattge & Knorr, 2007; Way & Oren, 2010), which makes 

the Jmax data somewhat surprising. However, the “coordination hypothesis” predicts that 

Vcmax and Jmax should be co-limiting (Hikosaka et al., 2006; Maire et al., 2012; Togashi et 

al., 2018). Given this, the stimulation of Vcmax-growth with warming may allow plants to 

match higher Rubisco activity with higher photosynthetic rates (Togashi et al., 2018). 

Higher rates of RuBP carboxylation by Rubisco would maintain Agrowth across the 

warming treatments despite the greater photorespiratory losses expected with increased 

temperatures. Both Jmax-25/Vcmax-25 and Jmax-growth/Vcmax-growth decreased in EC seedlings, a 

result linked to increased efficiency of Rubisco carboxylation under high CO2 and a 

resultant rebalancing of allocation towards Jmax. 

Thermal acclimation of respiration mitigated C losses across the warming treatments. 

Reductions in respiration rates in response to long-term warming is common (Atkin & 

Tjoelker, 2003; Loveys et al., 2003; Reich et al., 1998; Slot & Kitajima, 2015; Tjoelker et 

al., 1999; Dusenge et al., 2020). Overall, thermal acclimation of respiration led to similar 
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rates of Rgrowth and similar A/Rgrowth across 0T to 8T treatments. In comparison, 

photosynthetic stimulation by EC increased A/Rgrowth. By acclimating respiration, 

tamarack was able to effectively minimize C losses under +8 ˚C and maintain similar 

modelled C balances across all warming treatments.  

2.4.2 Growth, Biomass Allocation, and C/N Dynamics 

While the C flux data are not indicative of warming stress, seedling biomass and height 

were 51-73% smaller at 8T compared to 0T and 4T treatments. These growth reductions 

were largely offset by EC, implying that the decline is growth is related to plant C 

dynamics. In support of this hypothesis, 8TAC seedlings had 50% lower root/shoot ratios 

than 8TEC seedlings, indicating increased allocation to aboveground tissues (i.e. 

photosynthetic tissue) to compensate for limited C availability (Poorter et al., 2012). The 

biomass allocation patterns of different conifer species to warming and EC are variable 

(Yin et al., 2008). But other work has confirmed that tamarack increases allocation to leaf 

tissues under warming conditions (Dusenge et al., 2020). Plants with low belowground 

biomass allocation prioritize C gain over water uptake and could be at a greater risk 

under drier climates in the future (Way & Oren, 2010). As tamarack seedlings in this 

study were well watered, 8TAC seedlings were able to invest in aboveground tissues to 

maximize C gains without experiencing water stress, but this may not be true in tamarack 

that experience warming in the forest over coming decades.  

Warming also reduced foliar C concentrations (%C). Foliar %C has been estimated at 

~50% in conifers (Ma et al., 2018), so a reduction by 5% in 8T seedlings is considerable 

and may indicate C limitation. Surprisingly, decreases in %C were not offset by EC, 

despite the increase in modelled whole plant C availability. Similarly, Tjoelker et al. 

(1999) found foliar %C decreased in warming treatments but was unaffected by EC. 

Higher C availability from stimulated Agrowth under EC was apparently allocated to 

growth over storage, given the strong effect of EC on plant growth. Prioritization of 

growth over storage is common in conifer seedlings (Dietze et al., 2014), but the smaller 

C stores often found in seedlings may make them more vulnerable to C stress under this 

C allocation strategy. 
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Rising CO2 concentrations can affect foliar nitrogen content (%N). As mentioned above, 

%N was unaffected by warming, but decreased in EC seedlings, possibly due to a growth 

dilution effect. The “dilution hypothesis” describes how N assimilation is not enhanced at 

the same rate as C assimilation under elevated CO2 (Taub & Wang, 2008). In a meta-

analysis of 62 plant species, Yin (2002) found that the proportional decline in %N with 

EC is highest in deciduous woody species, such as tamarack. Plants with higher Anet 

under EC are able to invest less in photosynthetic enzymes and still perform better than 

AC plants. Elevated CO2 in future climates will likely be beneficial for tamarack C gain 

and growth, even when combined with moderate warming, as seen in 0TEC and 4TEC 

seedlings.  

2.4.3 Mortality in 8TAC Seedlings 

One of the objectives of this study was to investigate whether C starvation was the cause 

of mortality in 8TAC seedlings. The few studies that have measured tree mortality have 

found higher respiration in seedlings experiencing C starvation (Sevanto et al., 2014; 

Wiley et al., 2017). These studies also found depletions in plant C after long durations of 

C stress. When comparing C fluxes of dying vs. healthy seedlings, the ratio of A/Rgrowth 

was lowest in the 8T seedlings, but this was not significant, and there was no difference 

between the two groups in Rgrowth. However, across all treatments, healthy 8TAC 

seedlings had lower foliar %C. The comparative measurements between healthy and 

dying 8TAC seedlings were completed later than the measurements across all healthy 

treatments, and this led to overall higher %C in healthy 8TAC seedlings than initially 

measured. Conifers store larger amounts of C later in the season in preparation for winter, 

which could account for this difference in %C measured in 8TAC healthy seedlings at the 

two time points (Kozlowski, 1992). Regardless, the %C was lower in dying 8TAC 

seedlings compared to healthy seedlings, which supports the C starvation hypothesis. 

Additionally, both A/Rgrowth and %C were negatively correlated with the health ratings, 

providing evidence that C balance was slowly depleted as seedling health deteriorated. 

Carbon limitations were evident through decreased C availability but were not as strongly 

supported by leaf C balances, which may be indicative of unquantified C sinks elsewhere 

in the dying seedlings. While differences between the means of the healthy and dying 
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trees may have also been obscured by large variation in individual trees, especially 

because dying seedlings were measured at different health ratings, my data imply that 

warming, even without water stress, can lead to C stress and tree death. While my results 

were assessed on seedlings, old-growth trees in the forest may be better equipped than 

seedlings against C stress as they have larger C stores, which is one of the greatest 

determinants of survival against C starvation (Hartmann & Trumbore, 2016). 

Despite maintaining constant air humidity and volumetric soil water content, VPD 

increases with air temperature, so atmospheric water stress may have occurred under +8 

˚C warming. However, the VPD would have been only ~0.7 kPa higher in the 8T 

glasshouses than the 0T glasshouses. Given that gs was constant across treatments, a 

higher VPD in the 8T treatments would lead to higher rates of transpiration in 8T 

seedlings than those from 0T. This is unlikely to have led to significant water stress in the 

8T plants though, since they were watered daily and had large soil volumes to hold water 

compared to their very small root masses. But in more realistic ecological conditions, an 

inability to acclimate stomatal conductance to warming may be detrimental to tamarack 

as droughts are predicted to become more frequent with climate change. 

2.4.4 Conclusions 

Whether 8TAC seedlings were experiencing C stress alone or in combination with water 

stress, 8T warming coupled with ambient CO2 led to decreased growth and high 

mortality. Thermal acclimation of respiration minimized C losses under warming and 

resulted in similar C balances across temperature treatments. While moderate warming 

combined with EC may be beneficial to C balance, +8 ˚C warming was detrimental to 

growth even when supplemented with EC. To reach warming of +8 ˚C, atmospheric 

levels of CO2 will likely have to rise, which would prevent the 40% mortality observed in 

8TAC seedlings. However, trees may experience +8 ˚C warming without strong increases 

in CO2 if other greenhouse gases, such as methane (CH4), accumulate in the atmosphere. 

The melting of permafrost continues to release large amounts of CH4, which is 84% more 

potent than CO2 in terms of warming potential (Schuur et al., 2015). Therefore, CO2 may 

not be able to offset C stress caused by warming in the future. Regardless, my results 

indicate that high temperature-induced C stress can reduce growth and increase mortality 
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in the absence of water stress, which may be detrimental to the future functioning of 

tamarack and, potentially, other boreal tree species as warming continues. 
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Chapter 3 

3 Do High Growth Temperatures Induce Carbon Stress in 

Seedlings? A Test Using Tamarack 

3.1 Introduction 

Since the Industrial Revolution, there has been a 45% increase in atmospheric CO2 

concentrations, and CO2 levels will continue to increase for the foreseeable future (IPCC, 

2014; Zeng et al., 2014). Rising atmospheric greenhouse gases are the main contributor to 

increasing global surface temperatures. Global mean surface temperatures could increase 

by as much as 5 C by the year 2100 in a “business as usual” scenario (Oppenheimer et 

al., 2014). However, warming will be most severe in northern latitudes, with warming of 

up to 8 C predicted for the end of the century in the North American boreal forest. 

(Serreze et al., 2000). The boreal forest is one of the largest land-based biomes in the 

world, accounting for ~30% of the earth’s terrestrial carbon (C) pools (Gauthier et al., 

2015; Pan et al., 2011). With increasing temperatures causing a decline in forest health, 

the ability of the boreal forest to continue to sequester C and, more importantly, to 

survive, will depend on the resilience of boreal tree species to warming and rising CO2.  

The resilience of boreal trees to climate change will be linked to their ability to maintain 

physiological processes, such as photosynthesis, in a future climate. Net CO2 assimilation 

rates (Anet) are temperature-dependent, and the temperature at which Anet is highest is the 

photosynthetic thermal optimum (Topt; Sage & Kubien 2007). With long-term increases 

in growth temperatures, Topt shifts to higher temperatures (Berry & Bjorkman, 1980; 

Yamori et al., 2014). However, thermal acclimation of photosynthesis can increase, 

decrease, or maintain similar rates of Anet at the new growth temperatures, such that the 

impact of warming on the actual C gain of a plant is hard to predict (Way & Yamori, 

2014). Under high temperatures (>30 C for cold-tolerant species), plants may be unable 

to maintain a similar Anet to what they achieve in current climates, leading to reduced C 

availability for growth. 
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While extreme warming may lead to reductions in CO2 assimilation, elevated CO2 is 

expected to increase photosynthesis and growth. On average, elevated CO2 causes a 30% 

increase in photosynthetic rates, with an associated ~10% increase in growth (Ainsworth 

& Long, 2005; Kirschbaum, 2011). Rubisco is substrate-limited under current CO2 

concentrations, so rates of carboxylation are higher under elevated CO2. Higher 

intracellular CO2 concentrations also reduce C losses by suppressing photorespiration in 

C3 plants (Ainsworth & Rogers, 2007). However, due to sink limitations, often caused by 

low water and nitrogen (N) availability, field experiments often observe a down-

regulation in net photosynthetic rates after long-term exposure to elevated CO2 (Leakey et 

al., 2009). A large component of this photosynthetic down-regulation is a reduction in 

stomatal conductance, which reduces intracellular CO2 concentrations and improves plant 

water balance, which may prove beneficial under drier future climates. Additionally, 

plants grown at high CO2 often produce less Rubisco to compensate for the enzyme’s 

increased carboxylation rates (Ainsworth & Long, 2005; Albert et al., 2011; Moore et al., 

1999) 

To thrive in a warmer world, it will be critical to not only acclimate photosynthesis, but 

also to mitigate C losses through thermal acclimation of respiration. Under short-term 

increases in shoot temperature (minutes to hours), respiration increases exponentially 

(Atkin & Tjoelker, 2003; Loveys et al., 2003; Slot & Kitajima, 2015). Most plants 

thermally acclimate respiration after longer-term exposure to warmer temperatures (Atkin 

& Tjoelker, 2003), resulting in a reduction in respiration rates. These lower respiration 

rates are often linked to reductions in leaf N (Atkin & Tjoelker, 2003; Loveys et al., 

2003; Reich, Oleksyn, & Wright, 2009; Tjoelker et al., 1999). Conifers generally have a 

positive linear relationship between leaf N and respiration (Reich et al., 1998), the result 

of higher metabolic costs associated with greater concentrations of N-rich enzymes. 

When grown from seed at warmer temperatures, boreal conifers have less decreased leaf 

N, indicative of an overall decrease in enzyme and protein content, and also to show a 

subsequent decrease in respiration rates (Atkin & Tjoelker, 2003; Dusenge et al., 2020; 

Kroner & Way, 2016; Loveys et al., 2003; Reich et al., 1998; Way & Sage, 2008; Way, 

Sage, & Kubien, 2008) 
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Quantifying the acclimation of C fluxes in boreal conifers will be useful in understanding 

the response and future health of the boreal trees to climate change. In Chapter Two, I 

reported the C fluxes and mortality of tamarack seedlings under increasing warming 

treatments with and without CO2 enrichment when grown in glasshouses. Only seedlings 

grown under +8 ˚C warming with ambient CO2 displayed needle browning and eventual 

mortality. Carbon flux measurements across healthy seedlings were not indicative of C 

stress, but in comparing dying and healthy seedlings in the +8 ˚C warming with ambient 

CO2 treatment, there was a trend of decreasing Anet/Rdark (P = 0.09). The experiment in 

this Chapter was designed as a follow-up to the experiment in Chapter Two to increase 

the number of seedlings measured and standardize a specific health rating for when dying 

seedlings would be measured. Beyond measurements related to mortality, the purpose of 

this study was also to understand C fluxes in tamarack responding to an 8 ˚C increase in 

temperature with and without elevated CO2. Growth chambers were used to minimize 

confounding variables (such as variation in irradiance) and focus on the effects of 

temperature and CO2 to compare to previous work in glasshouses (i.e. Chapter Two).  

I combined a +8 ˚C warming treatment with ambient (400 ppm) or elevated CO2 

concentrations (750 ppm). I predicted that seedlings grown with elevated CO2 compared 

to ambient CO2 would have higher photosynthetic rates at their growth CO2 and greater 

overall productivity (as seen in Ainsworth & Rogers, 2007; Aranda, Cadahía, & 

Fernández de Simón, 2020; Chavan et al., 2019). I also predicted that warming would 

result in an increase in the photosynthetic thermal optima of the seedlings. Lastly, I 

predicted that shoot and root dark respiration would thermally acclimate to reduce C 

losses at elevated growth temperatures. Overall, I also predicted that seedlings exposed to 

a combination of +8˚C warming and ambient CO2 would display C stress through needle 

browning, mortality and the slowest growth of the three treatments.  

3.2 Methods 

3.2.1 Experimental Design 

Tamarack seeds were sown in 11.3 L grow bags filled with Promix HP mycorrhizal 

growing medium (Premier Tech Horticulture, Rivieire-du-Loup, QC, Canada) with slow-
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release fertilizer (Slow Release Plant Food, 12-4-8, Miracle Grow, The Scotts Company, 

Mississauga, ON, Canada). Seeds were ordered from the Canadian National Seed Tree 

Center and the provenance (Robertson Lake, Ontario [45 °N, 76.6 °W]) was selected to 

be geographically similar to the seed collection site used in Chapter Two (Finch 

Township, ON [45.133 °N, 75.083 °W]).  

Twenty-four pots with five seeds per pot were assigned to one of three CO2-controlled 

reach-in plant growth chambers (Conviron, Controlled Environments Ltd., Winnipeg, 

MN) for a total of 72 pots. After establishment, seedlings were thinned to one per pot. 

Seedlings were grown under diurnal environmental conditions based on a five-year 

historical average from May to September in Drummond, ON, the closest Environmental 

Canada climate data available for the seed lot. The chamber irradiance was 300 μmol 

photons m-2 s-1 (the highest irradiance the chambers could achieve) and the photoperiod 

was set to 14 h. Each growth chamber had a different temperature by CO2 treatment: 1) 

ambient temperature (0T, 24/11 ˚C day/night temperatures) with ambient CO2 (400 ppm; 

AC); 2) ambient temperature +8 ˚C (8T, 32/19 ˚C) with AC; and 3) 8T with elevated CO2 

(EC, 750 ppm). Carbon dioxide concentrations were measured every second in each 

growth chamber using a CO2 analyzer (WMA-4, PP Systems, Amesbury, MA, USA) and 

controlled by injecting pure CO2 as needed to maintain the EC treatment. Humidity was 

controlled at 60% in all chambers and seedlings were watered as needed to maintain a 

moist growth medium (Figure 3.1). Volumetric soil moisture measurements were 

measured in all pots biweekly (HH2 Moisture Meter, Delta-T Devices, Cambridge, UK). 

Average soil temperatures under the different treatments were measured continuously 

using dataloggers (LogTag TRIX-8, Microdaq Ltd., Contoocook, NH, USA). The 

experiment was replicated once, with the first replicate running from January to June 

2018 and the second replicate running from June to October 2018. Treatments were 

rotated between chambers between the replicates.   

3.2.2 Gas Exchange Measurements 

Gas exchange measurements were made in the last month of each replicate. 

Measurements were made on fully-expanded needles using a portable photosynthesis  
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Figure 3.1. Volumetric soil water content (%) of tamarack seedlings grown under 

three climate treatments. Data are means ± SD, n = 24. White circles, 0TAC; light grey 

circles, 8TAC; dark grey circles, 8TEC. 

system (Li-cor 6400 XT, Li-cor Biosciences, Lincoln, NE). Six healthy seedlings from 

each treatment were measured to establish treatment effects (N=36). Seedlings were 

sampled across the treatments to avoid phenological effects as measurements took 

approximately three weeks to complete. Despite the low irradiance growth conditions, 

light saturation for tamarack was 1200 μmol photons m-2 s-1 (Figure 3.2). Measurements 

were made in a reach-in growth chamber to allow seedlings and the photosynthetic 

system to reach a full range of temperatures. Net CO2 assimilation rates (Anet) at both 400 

ppm and 750 ppm were taken at a range of temperatures (20 ˚C, 24 ˚C, 28 ˚C, 32 ˚C and 

36 ˚C), at an irradiance of 1200 μmol photons m-2 s-1. Relative humidity was held at 50-

65% from 20 ˚C to 32˚C, but dropped to ~35% at 36 ˚C. The thermal optimum of Anet 

(Topt) was calculated by fitting a second-order polynomial to each temperature response 

curve at each CO2 concentration. After the last point was measured at 36 C, the sample 

was dark-acclimated for 20 minutes at 0 μmol photons m-2 s-1. Shoot dark respiration 

(Rshoot) was then measured at the same temperatures as Anet, but in descending order back 



65 

 

down to 20 ˚C. The Rshoot was measured at 400 ppm, as there is no short-term effect of 

CO2 on Rdark measurements (Amthor et al., 2001). 

 

 

Figure 3.2. Photosynthetic light response curve for 0TAC tamarack seedlings. Net 

CO2 assimilation (Anet) was measured at 0TAC growth conditions (400 ppm CO2 and 25 

˚C). Points represent mean ± SE, N = 5.  

Once gas exchange measurements were complete, the needles measured in the cuvette 

were removed and photographed to determine projected leaf area (LA) using ImageJ 

software (US National Institutes of Health, Bestheda, MD, USA). The needles were then 

dried at 65 C and weighed to determine leaf mass area (LMA) (i.e. needle biomass 

divided by LA).  

3.2.3 Root Respiration 

Root dark respiration (Rroot) measurements were also made in June and October 2018 

using the same photosynthesis system. The seedlings used to assess Anet and Rshoot were 

also used to measure Rroot (N=36). Entire seedlings were carefully removed from pots, 

then the roots were rinsed of the growth medium and placed in water to maintain 

hydration for five minutes before measurements. Roots were gently blotted dry before 

being put into the cuvettes. Rroot was measured at the respective soil growth temperatures 
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as indicated by the dataloggers (18.5 ˚C for 0T and 24.8 ˚C for 8T). Once Rroot was 

measured, the roots within the cuvette were severed from the seedling, dried at 65 ˚C, 

weighed and used to standardize respiration rates on a root mass basis.   

3.2.4 Biomass 

After gas exchange measurements were completed, the remaining seedlings in the 

experiment were harvested and dried to a constant mass at 65 ˚C. Seedlings were divided 

into roots, shoots and leaves, and each tissue was weighed individually.   

3.2.5 Carbon and Nitrogen Analysis 

A subset of the dried leaf tissue was ground using a Wiley mill (Thomas Scientific, 

Swedesboro, NJ, USA) and analyzed for C and N concentrations using an elemental 

analyzer (NCS 2500, Carlo Ebra, Peypin, France). 

3.2.6 Statistics 

R software (R Foundation for Statistical Computing, Vienna, Austria, EU) was used for 

statistical analyses. The R package ‘tidyverse’ was used for statistical analyses, 

specifically three-way ANOVAs (Wickham, 2017), and the R package ‘nlme’ was used 

for repeated measures ANOVAs (Pinheiro et al., 2019). Response variables of seedlings 

from all three treatments were analyzed using three-way ANOVAs, considering growth 

temperature, growth CO2 and replication effects. Additionally, repeated measure multi-

way ANOVAs were used to analyze the temperature response curves for Anet and Rdark, 

considering growth CO2, growth temperature, measurement temperature, and replicate. 

Data from parameters with a significant replicate effect have been relativized or, where 

no replicate effect existed, pooled. The maximum value of a parameter (e.g., the rate of 

photosynthesis) from all treatments was used to relativize the other data within the 

replicate and then the relativized data across both replicates were pooled. Relativized 

values were used in some figures to better visualize the results, but all statistical analyses 

and results description were based on raw data values. Type III tests were conducted to 

account for the unbalanced design of the experiment (i.e., no 0TEC treatment). 
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3.3 Results 

3.3.1 Temperature Curves Measured at 400 ppm and Growth CO2  

Comparing temperature response curves measured at 400 ppm (A400), there was an 

increase in A400 in the 8T treatments compared to the 0T treatment (Table 3.1, Figure 

3.3A). However, there was no effect of growth CO2 on the temperature response of A400. 

Under growth CO2, Agrowth was enhanced by both the 8T treatment and EC (Table 3.1, 

Figure 3.3B). There was also a significant replicate effect for A400. For Agrowth there was a 

replicate effect, and also significant interaction effects between measurement temperature 

and replicate, and measurement temperature and growth temperature.  

The thermal optimum for both A400 (Topt-400) and Agrowth (Topt-growth) increased in the 8T 

seedlings compared to the 0T seedlings (Table 3.2, Figures 3.4A and B). For Topt-400, 

there was no effect of growth CO2, but there was a significant replicate effect, whereby 

Topt-400 increased by ~2.5 ˚C (for replicate one) and ~3.9 ˚C (for replicate two) from AT to 

8T seedlings (Figure 3.4A). In contrast, there was an effect of growth CO2 on Topt-growth, 

but no replicate effect (Figure 3.4B). Overall, the Topt-growth was highest for the 8TEC 

seedlings, indicating an additive effect of elevated CO2 and temperature.  

3.3.2 Response of Stomatal Conductance to Growth CO2 and 

Temperature 

There was a growth temperature effect on stomatal conductance (gs) when measured at 

both 400 ppm CO2 (gs-400) and growth CO2 (gs-growth; Table 3.1, Figures 3.5A and B). 

Stomatal conductance was lower in the 0T seedlings than the 8T plants, a difference that 

was more pronounced at higher measurement temperatures (Table 3.1). In contrast, there 

was no effect of growth CO2 or measurement temperature (Tm) on gs. From replicate one 

to replicate two, there was a decrease in both gs-400 and gs-growth (Table 3.1). 

3.3.3 Shoot and Root Respiration 

There was no effect of growth temperature or CO2 on Rshoot, although there was a 

decrease in Rshoot from replicate one to replicate two (Table 3.1, Figure 3.6). The Rshoot 

increased with increasing measurement temperature (Figure 3.6). Similar to Rshoot, there 



68 

 

Table 3.1. Summary of repeated ANOVA statistics for the temperature responses of 

gas exchange parameters. Gas exchange parameters were measured at 25 ˚C and 400 

ppm CO2 (denoted by “25”) and at growth conditions (denoted by “growth). Parameters 

include temperature response curves of: net CO2 assimilation rate (A400, Agrowth); stomatal 

conductance measured at 400 ppm (gs-400, gs-growth); and shoot respiration measured at 400 

ppm CO2 (Rshoot). Bolded p-values are statistically significant (P<0.05). T = growth 

temperature treatment, CO2 = growth CO2 treatment, Tm = measurement temperature, R = 

Replicate, and DF = within-group degrees of freedom. 

 

 DF F-ratio P-value 

A400 

    T 

    CO2 

    TM 

    R 

    T x R 

    CO2 x R 

    TM x R 

    T x TM 

    CO2 x TM 

    T x TM x R 

    CO2 x TM x R 

 

Agrowth 

    T 

    CO2 

    TM 

    R 

    T x R 

    CO2 x R 

    TM x R 

    T x TM 

    CO2 x TM 

    T x TM x R 

    CO2 x TM x R 

 

gs-400 

    T 

    CO2 

    TM 

    R 

    T x R 

 

165 

165 

3 

165 

165 

165 

165 

165 

165 

165 

165 

 

 

165 

165 

3 

165 

165 

165 

165 

165 

165 

165 

165 

 

 

165 

165 

3 

165 

165 

 

14.55 

0.94 

1.90 

29.11 

2.20 

2.69 

1.90 

3.04 

0.14 

0.01 

0.03 

 

 

52.12 

45.34 

0.03 

26.35 

4.91 

0.76 

3.92 

5.22 

3.58 

0.49 

1.16 

 

 

19.82 

0.001 

0.42 

9.91 

1.68 

 

<0.001 

0.33 

0.26 

<0.0001 

0.14 

0.10 

0.17 

0.08 

0.71 

0.92 

0.86 

 

 

<0.0001 

<0.0001 

0.89 

<0.0001 

<0.05 

0.38 

<0.05 

<0.05 

0.06 

0.49 

0.28 

 

 

<0.0001 

0.98 

0.56 

<0.01 

0.20 
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    CO2 x R 

    TM x R 

    T x TM 

    CO2 x TM 

    T x TM x R 

    CO2 x TM x R 

 

gs-growth 

    T 

    CO2 

    TM 

    R 

    T x R 

    CO2 x R 

    TM x R 

    T x TM 

    CO2 x TM 

    T x TM x R 

    CO2 x TM x R 

 

Rshoot 

    T 

    CO2 

    TM 

    R 

    T x R 

    CO2 x R 

    TM x R 

    T x TM 

    CO2 x TM 

    T x TM x R 

    CO2 x TM x R 

165 

165 

165 

165 

165 

165 

 

 

165 

165 

3 

165 

165 

165 

165 

165 

165 

165 

165 

 

 

165 

165 

3 

165 

165 

165 

165 

165 

165 

165 

165 

2.50 

0.06 

1.18 

0.01 

1.45 

0.17 

 

 

16.363 

0.04 

0.54 

8.52 

1.55 

3.01 

0.42 

1.38 

0.12 

2.16 

0.04 

 

 

1.02 

2.64 

42.45 

49.52 

1.97 

0.72 

1.98 

0.04 

0.002 

0.34 

1.17 

0.17 

0.80 

0.28 

0.91 

0.23 

0.68 

 

 

<0.0001 

0.85 

0.51 

<0.01 

0.22 

0.08 

0.52 

0.24 

0.73 

0.14 

0.85 

 

 

0.31 

0.11 

<0.01 

<0.0001 

0.16 

0.40 

0.16 

0.84 

0.96 

0.56 

0.28 
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Figure 3.3. Relativized temperature response curves of net CO2 assimilation rates. 

Net photosynthetic rates were measured at: A) a common CO2 of 400 ppm (A400) and B) 

growth CO2 (Agrowth). Points represent means ± SE; n = 6. Curves were relativized by the 

maximum rate of net CO2 assimilation per replicate. Light grey, 0TAC; medium grey, 

8TAC; dark grey, 8TEC. 
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Table 3.2. Summary of ANOVA statistics for the responses of gas exchange 

parameters, growth and leaf biochemistry to the treatments. Parameters include: 

thermal optima of net photosynthesis at 400 ppm (Topt-400) and growth CO2 (Topt-growth); 

total biomass (BiomassTotal); the root/shoot ratio; tree height; root dark respiration at 

growth temperature (Rroot); needle percent nitrogen (%N); needle percent carbon (%C); 

the ratio of C/N. Bolded p-values are significant (P<0.05). T = growth temperature 

treatment, CO2 = growth CO2 treatment, R = Replicate, and DF = within-group degrees 

of freedom.  

 DF F-ratio P-value 

Topt-400 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

Topt-growth 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

BiomassTotal 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

Root/Shoot 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

Tree Height 

    T 

    CO2 

    R 

    T x R 

 

30 

30 

30 

30 

30 

 

 

30 

30 

30 

30 

30 

 

 

138 

138 

138 

138 

138 

 

 

138 

138 

138 

138 

138 

 

 

138 

138 

138 

138 

 

41.39 

1.68 

5.00 

2.08 

0.40 

 

 

29.47 

10.54 

2.63 

1.20 

0.54 

 

 

0.02 

0.61 

43.04 

0.15 

0.01 

 

 

0.09 

2.45 

12.44 

0.92 

1.92 

 

 

1.08 

4.97 

114.22 

0.48 

 

<0.0001 

0.21 

<0.05 

0.16 

0.53 

 

 

<0.0001 

<0.01 

0.17 

0.28 

0.47 

 

 

0.90 

0.44 

<0.0001 

0.70 

0.93 

 

 

0.76 

0.12 

<0.001 

0.34 

0.17 

 

 

0.30 

<0.05 

<0.0001 

0.49 
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    CO2 x R 

 

Rroot 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

%N 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

 

%C 

    T 

    CO2 

    R 

    T x R 

    CO2 x R 

138 

 

 

30 

30 

30 

30 

30 

 

 

30 

30 

30 

30 

30 

 

 

30 

30 

30 

30 

30 

 

2.50 

 

 

3.13 

0.36 

48.61 

0.59 

0.20 

 

 

3.89 

0.14 

3.33 

0.24 

1.24 

 

 

0.05 

1.82 

2.69 

0.31 

0.02 

0.12 

 

 

0.09 

0.55 

<0.0001 

0.45 

0.65 

 

 

0.06 

0.71 

0.08 

0.62 

0.27 

 

 

0.83 

0.19 

0.11 

0.58 

0.88 
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Figure 3.4. Changes in thermal optima of net CO2 assimilation rate in response to 

temperature and CO2 treatments. Temperature optima were measured at: A) a 

common CO2 of 400 ppm (Topt-400) and B) growth CO2 (Topt-growth). The horizontal line of 

the boxplot represents the mean; the box edges indicate the 25th and 75th percentiles; the 

whiskers display the minimum and maximum values; dots indicate outliers; n = 6. Light 

grey, ambient temperature with ambient CO2 (0TAC); medium grey, +8 ˚C warming with 

AC (8TAC); dark grey, 8T with elevated CO2 (8TEC). Different letters above boxplots 

denote a significant difference across all growth treatments and/or replicates (p < 0.05). T 

= growth temperature, CO2 = growth CO2 concentration, R = replicate, n/s = non-

significant, * = p<0.05, ** = p<0.01, and *** = p<0.001. 
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Figure 3.5. Relativized stomatal conductance of temperature curves. Stomatal 

conductance was measured at: A) a common CO2 of 400 ppm (gs-400) and B) growth CO2 

(gs-growth). Curves were relativized by the maximum rate of stomatal conductance per 

replicate. Points represent means ± SE; n = 6. Light grey, ambient temperature with 

ambient CO2 (0TAC); medium grey, +8 ˚C warming with AC (8TAC); dark grey, 8T 

with elevated CO2 (8TEC). 
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Figure 3.6. Relativized temperature response curves of shoot dark respiration 

measured at 400 ppm CO2. Curves were relativized by the maximum rate of shoot dark 

respiration (Rshoot) per replicate. Points represent means ± SE; n = 12. Light grey, 

ambient temperature with ambient CO2 (0TAC); medium grey, +8 ˚C warming with AC 

(8TAC); dark grey, 8T with elevated CO2 (8TEC). 
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Figure 3.7. Root dark respiration (Rroot) measured at 400 ppm CO2 and growth soil 

temperature. 0T soil was 18.5 ˚C and the 8T soil was 24.5 ˚C. Data are displayed for 

both replicates, separately. The horizontal line of the boxplot represents the mean; the 

box edges indicate the 25th and 75th percentiles; the whiskers display the minimum and 

maximum values; dots indicate outliers; n = 6. Light grey, ambient temperature with 

ambient CO2 (0TAC); medium grey, +8 ˚C warming with AC (8TAC); dark grey, 8T 

with elevated CO2 (8TEC). Different letters above boxplots denote a significant 

difference across growth treatments and replicates (p < 0.05). T = growth temperature, 

CO2 = growth CO2 concentration, R = replicate, n/s = non-significant, * = p<0.05, ** = 

p<0.01, and *** = p<0.001. 
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was no effect of growth temperature or CO2 on Rroot but there was an ~2× increase in 

Rroot from replicate one to replicate two. 

3.3.4 Growth Response 

Total seedling biomass and the ratio of root to shoot biomass (root/shoot) were similar 

across all growth treatments (Table 3.2; Figures 3.8A and B). There was a sharp decline 

in biomass and tree height from replicate one to replicate two. Comparatively, root/shoot 

allocation of biomass increased from replicate one to replicate two. Tree height was 

unaffected by growth temperature but increased with EC (Table 3.2; Figure 3.8C).  

3.3.5 Leaf Biochemistry 

Needle C and N concentrations were not affected by growth temperature or CO2 (Table 

3.2; Figures 3.9A and B). There was also no replicate effect on leaf %C or %N.  

3.4 Discussion 

3.4.1 Acclimation of Carbon Fluxes to Warming and High CO2  

With +8 ˚C warming, tamarack seedlings had significant thermal acclimation of 

photosynthesis, as indicated by an increase in Topt, along with an increase in A400 and gs-

400. Yamori et al. (2014) found that for every 1 ˚C shift in the growth temperature of C3 

plants, Topt would subsequently shift by 0.55 ˚C, similar to the shift in Topt seen in the 8T 

tamarack. However, unlike my findings on a deciduous conifer, a meta-analysis by 

Dusenge et al. (2018) found that warming resulted in similar Agrowth compared to control 

plants in deciduous broad-leaved woody species. In previous studies on tamarack 

seedlings, Dusenge et al. (2020) and Tjoelker et al. (1998) supported this result, as these 

two studies also reported similar Agrowth across warming treatments. In my study, higher 

gs-growth in the 8T seedlings may have reduced stomatal limitations for CO2 diffusion, 

increasing the rate of carboxylation by Rubisco and therefore increasing Agrowth. While 

warming treatments did stimulate gs in tamarack seedlings in Tjoelker et al. (1998), the 

effect was less pronounced (P=0.03) than my observations (P<0.001). Dusenge et al. 

(2020) also argued for a trend in higher gs-growth in their paper, though they found no 
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Figure 3.8. Growth responses to temperature and CO2 treatments. A) total biomass; 

B) root/shoot ratio; and C) tree height. Data are displayed for both replicates, separately. 

The horizontal line of the boxplot represents the mean; the box edges indicate the 25th 

and 75th percentiles; the whiskers display the minimum and maximum values; dots 

indicate outliers; n = 6. Light grey, ambient temperature with ambient CO2 (0TAC); 

medium grey, +8 ˚C warming with AC (8TAC); dark grey, 8T with elevated CO2 

(8TEC). Different letters above boxplots denote a significant difference across growth 

treatments and replicates (p < 0.05). T = growth temperature, CO2 = growth CO2 

concentration, R = replicate, ns = non-significant, * = p<0.05, ** = p<0.01, and *** = 

p<0.001. 
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Figure 3.9. Needle biochemical responses to temperature and CO2 treatments. A) 

Needle carbon (C) concentrations and B) needle nitrogen (N) concentrations. Data are 

pooled for both parameters as there were no replicate effects. The horizontal line of the 

boxplot represents the mean; the box edges indicate the 25th and 75th percentiles; the 

whiskers display the minimum and maximum values; dots indicate outliers; n = 6. Light 

grey, ambient temperature with ambient CO2 (0TAC); medium grey, +8 ˚C warming with 

AC (8TAC); dark grey, 8T with elevated CO2 (8TEC). Different letters above boxplots 

denote a significant difference between growth treatments (p < 0.05). T = growth 

temperature, CO2 = growth CO2 concentration, R = replicate, n/s = non-significant, * = 

p<0.05, ** = p<0.01, and *** = p<0.001. 
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significant difference in gs (P=0.09) with warming treatments. Given these similarities, it 

appears that warming may enhance gs-growth in tamarack, which can lead to greater Agrowth, 

a result which would have positive effects on the C balance, growth and survival of the 

species in a warmer world, provided water supplies are non-limiting. 

In contrast to the effects of warming, there was no acclimation of photosynthesis to EC. 

Given this, Agrowth was increased by the EC treatment. However, none of the other gas 

exchange parameters showed a CO2 effect, indicating a general insensitivity of both 

photosynthetic processes and stomatal conductance to elevated CO2 conditions. Similar 

to my findings, Dusenge et al. (2020) also found Agrowth increased with EC despite 

stomatal conductance being unresponsive to growth CO2. With similar gs but higher CO2 

across the EC treatments, seedlings have a higher ratio of intracellular CO2 to 

atmospheric CO2 (Ci/Ca) and subsequently higher rates of photosynthesis. In the 

literature, it is hypothesized that plants will acclimate to elevated CO2 by down-regulating 

gs to decrease transpiration (Ainsworth & Rogers, 2007). While this may be true for some 

plant functional types, in a meta-analysis, Medlyn et al. (2001) found that overall there 

was no evidence of acclimation of gs to EC in forest tree species, and conifers had the 

lowest responsiveness of gs to changing CO2 compared other plant functional types. In 

addition, under experimental designs where plants were well-watered, stomatal 

conductance was higher in plants grown at EC, indicating a priority for CO2 assimilation 

over water conservation in non-stressed plants (Medlyn et al., 2001). Overall, my results 

add to the growing set of data emphasizing that stomatal conductance is insensitive to EC 

in some species or plant functional types, and that broad generalities about how stomata 

will respond to rising CO2 derived from crop species and temperate trees may not be 

appropriate for all vegetation types.   

Similar to the response of Topt to warming, Topt increased in response to EC treatments. 

With increasing CO2 concentrations, photorespiration is suppressed at high temperatures, 

leading to a higher Topt with EC (Sage & Kubien, 2007). Increased Topt with elevated CO2 

has been found in different C3 plant studies, including experiments with tamarack, but 

this does not mean that there is always an additive response on the shift in Topt with EC 

and warming (Dusenge, 2019; Ghannoum et al., 2010). The stimulation of photosynthesis 
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by EC combined with warming also lead to higher Agrowth in 8TEC seedlings. I predicted 

that the 8TAC trees would have the worst photosynthetic performance, as they would 

experience heat stress and high photorespiration rates without the offsetting benefits of 

elevated CO2. While 8TAC seedlings did have lower Agrowth compared to 8TEC, they did 

not appear to experience C stress, but instead benefitted from thermal acclimation of 

photosynthesis. 

When comparing the temperature responses of Rshoot, there was no acclimation to 

temperature or CO2. This is an unusual finding, as most plants show strong respiratory 

acclimation to warming (Atkin & Tjoelker, 2003; Tjoelker et al., 1999; Reich et al., 1998; 

Loveys et al., 2003; Slot & Kitajima, 2015). The lack of shoot respiratory acclimation 

seen here may be correlated with the similar foliar %N values found across the 

temperature and CO2 growth treatments, which implies that the treatments had little effect 

on enzyme and protein concentrations in seedlings. Similarly, in a study on Eucalyptus 

globulus, Crous et al. (2017) found no thermal acclimation of shoot respiration which 

was correlated with higher %N in the warm-grown plants. There is a relationship that 

exists between %N and respiratory capacity, as well as the photosynthetic capacity of the 

plant, as Rubisco is a N-rich enzyme (Tjoelker et al., 1999). Under warming, plants may 

invest more in photosynthetic enzymes to maintain C gain, but this increase in 

photosynthetic capacity can lead to greater respiratory losses (Reich et al., 1998), partly 

linked to increased protein turnover rates and high metabolic rates. In my study, tamarack 

appear to prioritize maximizing C gains over minimizing C losses, and this allowed 8T 

seedlings to maintain similar growth to 0T trees.    

Without thermal acclimation of respiration, shoots experienced greater respiratory losses 

under warming treatments. In contrast, the lack of a temperature effect on Rroot measured 

under growth temperatures indicates that thermal acclimation led to homeostasis. 

Tjoelker et al. (1999) found thermal acclimation of root respiration resulted in lower root 

respiration rates than those predicted with instantaneous temperature response models in 

tamarack and other boreal conifer seedlings. Even with acclimation of both shoot and 

root respiration in their study, total daily respiratory losses for tamarack were still 14% 

higher in warming conditions than in cooler temperatures. Even in the best-case scenario 
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of homeostatic plant respiratory acclimation, plants still contend with respiratory losses 

and need thermal acclimation of photosynthesis to ensure a positive C balance in the 

future. 

3.4.2 Performance and Biomass in Growth Treatments 

While photosynthetic rates increased with the EC treatment, EC seedlings had similar 

biomass as AC trees, though EC did stimulate tree height. Similarly, while warming 

resulted in increased photosynthesis, it had little effect on growth. While enhanced C gain 

can stimulate growth, photosynthesis and growth are not always positively correlated. 

Increased photosynthesis may result in greater C availability, but there are limiting 

factors that determine how much of this C can be utilized for growth. Two of the main 

limiting factors on sink strength in growth chamber studies are nutrient availability and 

pot size (Kirschbaum, 2011). For plants with high photosynthetic rates, any limitation on 

nutrient availability, most often N, can dampen growth and the ability to build new 

tissues with available C due to stoichiometric imbalances. However, low nutrient 

availability is unlikely in my experiment as all plants were well fertilized. Small pots 

(defined as <10 L) can also be limiting for growth, specifically by reducing rooting 

potential (Drake, Gonzàlez-Meler, & Long, 1997; Kirschbaum, 2011). The pot size used 

in this experiment was ~11 L, thus higher biomass accumulation associated with higher 

Agrowth in 8TEC seedlings may have been limited by root growth. In terms of C balance, 

growth is not the only sink for photosynthates: C is predominantly used for plant 

maintenance. Despite the fact that conifers are slow-growing, they have greater 

respiratory losses compared to broad-leaved trees (Wang & Curtis, 2002), and tamarack 

has been found to have higher total respiratory losses compared to other boreal conifers, 

e.g. Picea mariana and Pinus banksiana (Tjoelker et al., 1999). Given that I saw no 

thermal acclimation of respiration, higher C losses in the 8TEC seedlings most likely 

offset the higher photosynthetic rates observed with warming and EC, leading to similar 

total growth.   
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3.4.3 Differences Across Replicates  

There were significant differences between replicates for almost all parameters that were 

measured. Arguably, the largest difference between the replicates was the drastic 

reduction in growth from replicate one to replicate two. While I cannot definitively 

determine what caused the replicate effect, a few non-mutually exclusive explanations are 

possible. 

First, the difference may be related to soil moisture. The second replicate had 10-15% 

lower volumetric soil water content compared to the first replicate, which likely 

contributed to the lower gs-growth in the second replicate. While this may seem like a small 

difference in water availability, tamarack favours wetter sites and generally has low water 

use efficiency compared to other boreal conifers (Gower & Richards, 1990). 

Additionally, plants may have experienced some water stress due to higher VPD with 

warming despite the 40-45% volumetric soil water content in Chapter Two, therefore a 

10-15% drop below that could be detrimental to growth. Plants can decrease gs to 

conserve water, but lower gs negatively impacts CO2 assimilation and growth (Jones, 

1998). The seedlings in replicate two did indeed have lower gs-400 and gs-growth than the 

seedlings in replicate one, which supports this interpretation. Additionally, seedlings 

from replicate two also had a higher root/shoot ratio than those from replicate one. 

Allocation to larger root systems could be another response to low water availability 

(Van Den Boogaard, Alewijnse, Veneklaas, & Lambers, 1997). Larger roots also require 

greater construction costs and respiratory demands, such that the bigger root systems, 

combined with higher measured root respiration rates, in replicate two would have 

resulted in greater C losses and could have negatively impacted seedling growth.  

Secondly, while growth chambers have many benefits for controlling abiotic factors, they 

do not produce truly uniform conditions and can introduce variability in experimental 

results (Porter, Evans-Fitz.Gerald, McElwain, Yiotis, & Elliott-Kingston, 2015; 

Weintraub, 2019). Porter et al. (2015) found that when using eight “identical” growth 

chambers, chamber effects resulted in significantly different rates of photosynthesis in 

2/8 chambers, stomatal conductance in 1/8 chambers, and wet fresh weight in 3/8 

chambers for Vicia faba (broad bean) plants, despite using identical CO2, temperature, 
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humidity, and light settings. While the treatments in my experiment were rotated between 

the replicates to minimize chamber effects, the lights were variable between the chambers 

and were set at different heights to achieve a similar irradiance. Though I did not track 

irradiance in the chambers over the experiment, the light conditions may have 

deteriorated over time, reducing the irradiance available for growth in replicate two. The 

use of growth chambers therefore requires meticulous measurements of parameter 

settings, such as irradiance, throughout the experiment to account for any changes over 

time.  

3.4.4 Conclusions 

Thermal acclimation of photosynthesis, but no acclimation of respiration, resulted in 

similar foliar %C and growth across treatments. Photosynthetic acclimation was evident, 

as measured by changes in Topt and Agrowth. However, higher Rshoot under elevated 

temperatures may have limited growth in warm-grown tamarack seedlings, while 

homeostasis of Rroot likely reduced overall total respiratory losses in warm-grown 

tamarack. Overall, tamarack was highly responsive to both warming and CO2 in terms of 

photosynthetic performance and this may be an asset if water and nutrients are non-

limiting under future climate change. The positive effects of increased growth 

temperature and CO2 on photosynthetic rates and the thermal optima of tamarack 

seedlings may prove to be beneficial to the boreal forest’s role in C sequestration if 

mature trees are able to maximize C uptake under global warming. 
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Chapter 4 

4 General Discussion 

4.1 Glasshouse vs. Growth Chamber 

The goal of my thesis was to investigate the cause of mortality of tamarack seedlings 

under +8 ˚C warming paired with ambient CO2 (8TAC), as originally found by Dusenge 

et al. (2020). Similar to the original experiment, tamarack grown from seed in 

glasshouses displayed high mortality in the 8TAC treatment. High mortality in 8TAC 

seedlings correlated with lower needle C concentrations and decreased ratios of Anet/Rdark. 

I designed a growth chamber experiment as a follow-up to measure a greater number of 

dying seedlings at a standardized health rating, but no seedlings died. Overall, the 

contrasting acclimation responses of photosynthesis and respiration of tamarack seedlings 

led to different leaf C dynamics, growth and mortality across the two experimental 

designs.  

Despite similar potting, fertilization, and water regimes, the glasshouse seedlings 

(Chapter Two) and growth chamber seedlings (Chapter Three) had vastly different 

acclimation responses to +8 ˚C warming with and without CO2 enrichment. Glasshouse 

seedlings had thermal acclimation of respiration, but no response to temperature or CO2 

measured via photosynthetic parameters, whereas growth chamber seedlings displayed 

thermal acclimation of photosynthesis, but no response of respiration to temperature. 

While the growth chamber experiment did have large differences between replicates, the 

directions of the treatment effects were consistent between replicate one and two. 

Arguably the largest difference was that 8TAC seedlings had 40% mortality in 

glasshouses compared to 0% mortality in growth chambers. While there was no mortality 

in the growth chambers, there were symptoms of stress in +8 ˚C warming seedlings, 

similar to the stress observed in the glasshouses (Figure 4.1). Some growth chamber 

8TAC and 8TEC seedlings displayed needle browning; however, this browning never 

reached 100% of the leaf tissue as it did in the glasshouse experiment. Unique to the 

growth chamber seedlings was the visible needle curling that occurred in the larger 

plants. Needle or leaf curling is a phenomenon that has been observed in plants 
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experiencing environmental stress, such as low water and high salinity (Bussotti, 

Bottacci, Bartolesi, Grossoni, & Tani, 1995; Pääkkönen, Vahala, Pohjolal, Holopainen, & 

Kärenlampi, 1998; Stone, 1993). Studies by Stone (1993) found that needle curling in 

Pinus taeda (loblolly pine) seedlings experiencing low soil moisture from minimal 

watering, but similar stress occurs under high VPD from extreme warming treatments. 

Interestingly, Stone (1993) found the needle curling was not detrimental to growth nor 

did it lead to mortality. As the seedlings in growth chambers were well-watered, needle 

curling was most likely caused by some combination of high VPD and heat stress, as 

relative humidity was maintained at 60% despite the higher temperatures in +8 ˚C.  

The seedlings in the glasshouses experienced natural light variation and changing 

photoperiods over the summer. Comparatively, the seedlings in the growth chambers 

experienced a lower light intensity of 300 μmol photons m-2 s-1 for 14 h photoperiods. 

High light can impose additional stress on plants and may help to explain the differences 

in C stress and mortality observed between the two experiments. Seedlings in the 

glasshouse would have experienced irradiance of up to 2000 μmol photons m-2 s-1 on 

sunny days, which would have put them at greater risk of photoinhibition. 

Photoinhibition occurs when there is a reduction of photosynthetic activity due to light-

induced decreases in CO2 assimilation caused by rapid saturation, and eventual closure, 

of photosynthetic reaction centers (Muller, Li, & Niyogi, 2001). To avoid 

photoinhibition, plants will employ photoprotective measures such as the use of non-

photochemical quenching, which dissipates excess absorbed light as heat (Gilmore, 

2006). Unfortunately, non-photochemical quenching increases leaf temperatures and thus 

can further heat stress plants (Kulasek et al., 2016). Glasshouse seedlings also likely 

experienced higher leaf temperatures and thus heat stress compared to the growth 

chamber seedlings due to the higher light intensity and the greater radiative heat load this 

imposes on leaves, despite experiencing similar air temperatures. Overall, seedlings 

clearly experienced greater climatic stress under more ecologically relevant light 

conditions. 
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Figure 4.1. Comparative symptoms of stress in tamarack seedlings under +8 ˚C 

warming. A) Glasshouse experiment and B) growth chamber experiment. Browning of 

the tissue is indicative of necrotic tissue, whereas needle curling is often related to water 

and salinity stress. 

4.2 Ecological Relevance of Experimental Designs 

The experimental designs used in this thesis exposed seedlings to different temperature 

and light environments. The environmental conditions in the glasshouse experiment were 

much more similar to what boreal conifers experience in the field. Ironically, the main 

limitation of the glasshouse experimental design is that seedlings did not experience other 

environmental conditions that can induce sink limitations in nature—i.e., low nitrogen or 

water availability.  

Free air CO2 enrichment (FACE) and free air temperature enhancement (FATE) studies 

are considered the highest calibre of experimental design for climate change as they study 

plants in their natural environment but supplemented with CO2 and warming. The 

second-best approach is to use open top chambers in the field, so that plants experience 

natural soils, climate and biotic interactions while the treatment is applied. The best 

evidence that my glasshouse experiments are more ecologically relevant than my growth 

A B
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chamber experiments is that many of the results from the glasshouse-grown tamarack 

seedlings have also been found in mature tamarack grown at the SPRUCE (Spruce and 

Peatland Responses Under Changing Environments) experiment (Figure 4.2; Dusenge, 

2019). The SPRUCE experiment is a whole-ecosystem warming experiment in a boreal 

forest peatland in Minnesota that is comprised of 10 octagonal open-top enclosures with 

warming of up to 9 ˚C and CO2 enrichment up to 750 ppm. The enclosures were built 

around the existing plant community, which included mature tamarack and black spruce 

trees and four shrub species. Dusenge et al. (2019) measured the C fluxes of large, mature 

tamarack under warming and CO2 enrichment treatments in these open-top enclosures. 

Similar to my glasshouse work, Dusenge et al. (2019) found a lack of photosynthetic 

acclimation, measured as no change in A25 and gs-25 resulted in similar Agrowth across the 

different growth temperatures, and also found that EC stimulated Agrowth. Despite finding 

no acclimation of respiration to warming (in contrast to my results here), the tamarack at 

the SPRUCE site still had similar Rgrowth across the treatments, as did my glasshouse 

seedlings. The most notable difference between my findings and Dusenge et al. (2019) 

was that growth of mature trees was unaffected by warming. Mature trees have greater C 

stores than seedlings (Dietze et al., 2014) and would not experience the same C stress 

after one year of warming as the seedlings in the glasshouses did after being grown their 

entire life at high temperatures, which could explain the difference in growth patterns 

under +8 ˚C warming. Comparatively, growth chamber seedlings displayed 

photosynthetic acclimation to both warming and CO2, but no acclimation of shoot 

respiration. The contrasting acclimation responses of photosynthesis and respiration to 

growth chamber conditions resulted in both higher carbon gains and losses with warming, 

and similar growth across all treatments. Overall, leaf C balances between seedlings 

grown in glasshouses were more similar than those from the growth chambers to the 

mature tamarack studied at SPRUCE, providing strong evidence that the glasshouse work 

produced ecologically relevant data.  
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Figure 4.2. The ecological relevance of different experimental designs: growth 

chambers, glasshouses, and open top chambers. The responses of C fluxes and growth 

to warming and CO2 in tamarack in Chapter 2 (using glasshouses) were more similar than 

those from Chapter 3 (using growth chambers) to the work by Dusenge (2019) (using 

open top chambers at the SPRUCE site). Acclimation, acc; net photosynthetic rates 

measured at growth conditions, Ag; respiration rates measured at growth conditions, Rg; 

+8˚C warming, 8T; elevated CO2, EC; Spruce and Peatland Responses Under Changing 

Environments, SPRUCE. 

4.3 Future Directions 

My glasshouse work was novel in examining C starvation under natural light conditions 

and in the absence of water stress; however, there is still much to learn about how 

tamarack, along with other boreal conifers, will respond to climate change in terms of 

mortality. One important consideration is that while growth temperatures will increase 

gradually over time, extreme heat events will also become more frequent and trees could 

experience acute heat stress on top of moderate warming (Della-Marta et al., 2007). 

Studying the response of seedlings to both acute heat stress and more gradual warming in 

a laboratory setting could be beneficial in understanding plant C balance and 

thermotolerance without the confounding factors of water stress and competition. On the 

ECOLOGICAL RELEVANCE OF EXPERIMENTAL DESIGNS
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other hand, studying seedlings in the field allows for a more realistic interpretation of 

results as these seedlings are experiencing conditions associated with natural boreal soils 

and variable precipitation, on top of heat stress. Whether in a lab or in a field, a molecular 

approach to studying heat stress (such as quantification of heat stress proteins and 

protective phytohormones), in addition to physiological measurements, may help us 

understand species-specific thermotolerance and ultimately why some conifer species 

survive, and some species die, under similar climatic stress. 

While I studied seedlings from a single population, there is also genetic variation across 

populations within a species. Genetic variation can determine the vulnerability of 

populations from different geographic origins to similar abiotic stress (Badyaev, 2005). 

This will be important in the future as differential warming will occur, with high latitudes 

projected to see the most severe warming (IPCC, 2014; Serreze et al., 2000). While 

population variation in tamarack in response to drought or heat stress has not been well 

studied, mature white spruce (Picea glauca) has increased resilience to drought in 

populations from drier geographical locations compared to those from more humid 

locations (Depardieu et al., 2020). In my thesis, a population of tamarack from southern 

latitudes in Canada were subjected to ambient +8 ˚C warming. In reality, it is much more 

likely that northern populations will experience such extreme warming. As northern 

populations generally experience cooler annual temperatures compared to southern 

populations, they may lack the necessary adaptations associated with thermotolerance 

and drought stress resilience and may be at a greater risk of mortality. Alternatively, this 

extreme warming may be well within their ability to acclimate to, given that their thermal 

regime is much cooler than that of London, ON. Adaptive genetic variation could be a 

strong determinant for survival and therefore it would be useful to compare the responses 

of different tamarack genotypes to warming and CO2 in the future.  

Abiotic stress increases plant susceptibility to insect outbreaks and forest fires, which is 

most often the final cause of death in mature trees (Adams et al., 2017). Hydraulic failure 

and C starvation prevent the production and translocation of carbohydrates necessary for 

plant defence against biotic attacks (Allen et al., 2010). Hydraulic failure also results in 

tissue desiccation, providing more flammable fuel for forest fires, which have become 
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more frequent with climate change (Westerling, Hidalgo, Cayan, & Swetnam, 2006). It is 

also important to consider the vulnerability of different boreal conifers to biotic stress and 

how community composition may be affected in the future. Tamarack is easily killed by 

fire but is not considered to be at high risk from forest fires because it preferentially 

inhabits wetter areas of the boreal region, such as bogs and peatlands, where hydraulic 

failure is less common (Gower & Richards, 1990). However, tamarack is already 

experiencing defoliation by the larch casebearer (Coleophora laricella) and this could 

worsen with climate change if mature trees undergo similar C stress as the seedlings in 

the glasshouse experiment and are unable to synthesize and transport defence compounds 

such as those found in resin (Habermann, 2000).  

4.4 Conclusions 

Outside of the work by Dusenge (2019), there is little known about the acclimation 

responses of C fluxes in mature tamarack to climate change drivers. Based on 

dendrochronological analyses, tamarack has experienced enhanced radial and vertical 

growth since the 1990s, associated with warming (Dufour-Tremblay, Lévesque, & 

Boudreau, 2012). Tamarack appears to be phenotypically plastic to environmental 

changes, such that moderate warming may be advantageous for the growth of mature 

trees. Based on the assumption that the glasshouse experimental work is of greater 

ecological relevance than the growth chamber work, tamarack will likely have stronger 

acclimation of respiration than photosynthesis and will minimize C losses associated with 

warming in the future. Photosynthetic rates in conifers are highly responsive to elevated 

CO2 (Ainsworth & Long, 2005) and work thus far, including my own, on tamarack 

supports this finding (Dusenge, 2019; Dusenge et al., 2020). With that in mind, C gain 

associated with future elevated CO2 will likely offset any C stress caused solely by 

moderate warming, unless increased temperatures are driven by other, more potent 

greenhouse gases like methane. The greater likelihood is that mortality in mature conifers 

will be caused by water stress and associated C limitations imposed by decreased 

stomatal conductance or the extreme temperature increases predicted for the end of this 

century.  
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