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ABSTRACT 

ESSAYS ON THE IMPACTS OF THE SUPPLEMENTAL NUTRITION ASSISTANCE 

PROGRAM 

BY 

JORDAN WILLIAM JONES 

MAY 8, 2020 

Committee Chair: Dr. Charles Courtemanche 

Major Department: Economics 

This dissertation consists of three chapters, each of which provides causal evidence on 

the impacts of the Supplemental Nutrition Assistance Program (SNAP) in a distinct, policy-

relevant area. 

The first chapter provides evidence of SNAP’s effects on the food retail industry. I 

combine data on SNAP participation, industry-specific retailer outcomes, and state SNAP 

expansions from 1998 to 2016. To address the endogeneity of SNAP participation, I employ a 

novel simulated eligibility instrumental variables framework exploiting variation in state SNAP 

eligibility expansions. I find that higher SNAP participation leads firms to operate more stores in 

industries where benefits are typically accepted, especially smaller general stores – a category 

dominated by dollar and discount stores. 

The second chapter provides evidence of SNAP’s effects on Medicaid enrollment and 

spending. I combine state-level information on SNAP eligibility expansions, SNAP participation, 

and Medicaid enrollment and spending from 1999 to 2012. I summarize diverse SNAP eligibility 

expansions through a novel simulated eligibility measure. I find that SNAP expansions increase 

Medicaid enrollment and decrease Medicaid spending per enrollee, suggesting that SNAP 



 

participation lowers barriers to enrollment in Medicaid for groups who cost lower on average to 

cover. 

The third chapter provides evidence of SNAP’s effects on mortality during its 

introduction in the “War on Poverty” era. SNAP was introduced as the Food Stamp Program 

(FSP) on a county-by-county basis from 1961 to 1975. I combine county-level information on 

the timing of FSP introduction with death counts from 1969 to 1978. I estimate the impacts of 

the FSP’s introduction on various mortality rates over time, including the overall mortality rate, 

population subgroup-specific rates, and cause-specific rates. I find that, among a subsample of 

high-poverty counties where the program’s introduction is likely to have a larger impact, the FSP 

reduced mortality over time. This effect was largely driven by reductions in the black, male, and 

age 0-19 mortality rates. 
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1 

Introduction 

 

The Supplemental Nutrition Assistance Program (SNAP) is the nation’s largest nutrition 

assistance program, annually providing billions of dollars in benefits (or food stamps) to millions 

of low-income, low-resource households. Given its size and importance to its recipients, SNAP 

must have far-reaching consequences, both intended and unintended. A growing body of 

research aims to better understand the program’s impacts on recipient and other outcomes using 

various approaches to causal inference. In this dissertation, I seek to aim to this literature by 

providing causal evidence on the large-scale impacts of SNAP in three policy-relevant areas. 

Chapters I and II are linked by their use of a measure I develop termed the simulated 

eligibility variable or SEV, which captures variation in state-specific SNAP eligibility 

expansions since 1996 and represents the generosity of each state’s eligibility policy over time. 

In Chapter I, I provide evidence of SNAP’s effects on the food retail industry. SNAP provides 

monthly benefits redeemable for food at authorized stores to millions of low-income households. 

Benefits increase food demand, and retailers may respond accordingly. Specifically, I estimate 

the impacts of SNAP participation on the decisions of food and non-food retailers concerning the 

number of stores, employment, and average employee earnings. I combine data on SNAP 

participation and industry-specific retailer outcomes and employ the SEV as an instrument for 

the SNAP participation rate in an instrumental variables framework. I find that higher SNAP 

participation leads firms to operate more stores in industries where benefits are typically 

accepted. This response is primarily attributable to smaller general stores – a category dominated 

by dollar and discount stores. Additionally, higher SNAP participation increases the annual 

average earnings of employees of supercenters, warehouse clubs, and general stores. 
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In Chapter II, I provide evidence of SNAP’s effects on Medicaid enrollment and 

spending. SNAP and Medicaid target largely overlapping low-income populations and therefore 

may interact with each other. I combine state-level information on SNAP eligibility expansions, 

SNAP participation, and Medicaid enrollment and spending from 1999 to 2012. I model state 

Medicaid outcomes as a function of SNAP eligibility expansions as summarized by the SEV. I 

find that SNAP expansions increase Medicaid enrollment, especially for non-disabled adults and 

children. Further, I find that these expansions decrease Medicaid spending per enrollee. These 

findings suggest that SNAP participation lowers barriers to enrollment in Medicaid, but marginal 

Medicaid enrollees of these kind cost less on average to cover than other enrollees. 

In Chapter III, I provide evidence of the mortality impacts of the Food Stamp Program 

(FSP) – SNAP’s original name – during its introduction. The FSP was introduced county-by-

county from 1961 to 1975 with the purpose of providing nutrition to low-income households. 

Access to food stamps – and the income food stamps freed up for other purposes – likely had 

positive impacts on health, especially for the poorest recipients. I combine county-level 

information on the timing of FSP introduction and death counts from 1969 to 1978. I estimate 

the impacts of the FSP’s introduction on various mortality rates over time, including the overall 

mortality rate, population subgroup-specific rates, and cause-specific rates. I find no evidence of 

the program reducing mortality among the full county sample. However, among a subsample of 

high-poverty counties where the program’s introduction is likely to have a larger impact, I find 

that the FSP reduced the overall mortality rate over time. This overall effect was largely driven 

by reductions in the black, male, and age 0-19 mortality rates. I find limited evidence of 

reductions in deaths from major cardiovascular diseases, suicides, and accidents. 
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Chapter I: Food Retailer Responses to SNAP 

 

Government social programs annually inject hundreds of billions of dollars into the 

economy in the form of targeted, in-kind transfers. Relatively little attention in the literature is 

devoted to the potentially large impacts these transfers have on private industry. The 

Supplemental Nutrition Assistance Program (SNAP, formerly named the Food Stamp Program) 

is the largest nutrition assistance program in the United States and a major source of food 

spending. In 2018, SNAP issued almost $61 billion in benefits (or “food stamps”) to 42 million 

people, representing about eight percent of all spending on food for consumption at home 

(USDA FNS 2019c; USDA ERS 2020). Canning and Stacy (2019) estimate the program’s GDP 

multiplier to be about 1.5 during a slowing economy, indicating far-reaching economic impacts. 

The food retail industry in particular is likely to be impacted by SNAP. SNAP receipt has 

been shown to increase food spending (Fraker et al. 1995; Hoynes and Schanzenbach 2009; 

Beatty and Tuttle 2015; Hastings and Shapiro 2018; Bruich 2014). All else equal, food retailers 

will operate more stores in markets with higher demand in order to maximize profits. SNAP may 

therefore influence retailer decisions like store location, employment, and other factors. 

As SNAP is an automatic stabilizer during recessions, understanding how private 

industry responds to changes in SNAP participation is important for policymakers shaping 

stimulus or considering program changes. Taking SNAP’s business impacts into account makes 

for a more complete assessment of the program’s costs and benefits. Further, SNAP impacts 

recipients directly by increasing their purchasing power, but it may also indirectly affect 

recipients and nonrecipients alike by altering the food retail environment. Many studies have 

identified relationships between household access to food stores and outcomes such as food 
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insecurity, diet, and weight.1 Recognizing how food retailers respond to the program is therefore 

key to a more complete understanding of its impacts on households. 

Though an extensive literature examines SNAP’s impacts on recipient outcomes, few 

studies examine ways in which the program might affect retailers. Several studies estimate mixed 

effects of the program on food prices over different time horizons (Goldin, Homonoff, and 

Meckel 2019; Jaravel 2018; Leung and Seo 2019). One study finds that SNAP-eligible 

households in states with policies leading to greater take-up experienced higher increases in 

product variety and declines in retailer margins (Jaravel 2018). Another finds that small stores 

are more likely to become authorized to accept SNAP benefits when local SNAP participation 

increases in Georgia (Shannon et al. 2016). Another recent study finds that earlier introduction of 

the Food Stamp Program in a county during its rollout period in the 1960s and 1970s led to the 

presence of more food stores, more food retail workers, and higher sales at those stores (Beatty, 

Bitler, and Van der Werf 2020). 

The purpose of this study is to estimate the magnitude of the impacts of SNAP on the 

decisions of firms in the food retail industry concerning store operation, employment, and 

payroll and to quantify the aggregate magnitudes of these responses. I assemble an annual 

county-level panel on SNAP participation and retailer establishment counts, employment, and 

payroll divided by industrial classification. I construct a measure of simulated aggregate 

eligibility summarizing variation in state policies determining SNAP eligibility and representing 

the relative generosity of states’ SNAP rules. I use this measure to instrument for the actual 

participation rate to account for the endogeneity of SNAP. I focus on estimating the effects of 

 
1
 E.g., Caspi et al. (2012); Courtemanche and Carden (2011); Courtemanche et al. (2018); Gustafson et al. (2013). 
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SNAP expansions on the number of stores in different retail industries, and I also estimate their 

effects on employment and average employee earnings. 

This study makes three major contributions. First, this study contributes to the broader 

empirical literature on the effects of social policy on private industry.2 Second, this study 

contributes to the literature on SNAP’s effects on the food retail industry. I provide the first 

evidence in a causal framework of the impacts of modern SNAP expansions on the number of 

food retail establishments, employment, or average earnings in specific food retail industries, and 

I measure the size of these impacts. Third, I construct a simulated measure of SNAP eligibility 

incorporating detailed variation in several kinds of state-level eligibility rules over the twenty 

years from 1996 to 2015. I employ this measure as a representation of overall state SNAP policy 

generosity as well as an instrument for the SNAP participation rate. In an instrumental variables 

framework, this simulated measure individually outperforms other state policy instruments that 

have been commonly employed in similar studies. 

I find evidence that SNAP expansions and the resulting increases in SNAP participation 

increase the number of retail establishments in operation likely to accept SNAP benefits, which 

suggests the program acts as stimulus for food retailers. A one percentage point increase in the 

county SNAP participation rate increases the number of these stores by about 0.6%. This 

increase is primarily driven by an increase in the number of smaller general stores – primarily 

dollar stores – of about 1.9%. I also find evidence that SNAP increases average employee 

earnings in supercenters, warehouse clubs, and general stores despite decreasing average 

earnings in other retail industries. SNAP expansions appear to primarily improve business for 

 
2 E.g., Garthwaite (2012); Huang and Perloff (2014); Buchmueller, Miller, and Vujicic (2016); Wagner (2016) 
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retailers targeting lower-income customers. A full accounting of the welfare impacts of SNAP 

ought to take into consideration its effects on the retail industry. 

 

1. Background 

1.1. SNAP and the role of food retailers 

SNAP provides benefits, also known as food stamps, to eligible low-income households 

which can be redeemed for food for consumption at home.3 Benefits are federally funded 

through the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), 

but the program is jointly administered at the federal and state levels. The program has grown 

substantially over the last few decades: from 1996 to 2016, average participation grew by 73.3% 

from 25.5 to about 44.2 million, and total annual benefits issued grew by 93.9% from $31.2 to 

$60.5 billion in 2010 dollars. Several program changes occurred alongside this growth, including 

state-level expansions to eligibility, the shift to provision of benefits through electronic benefit 

transfer (EBT), the shift to joint administration with other social programs, a temporary benefit 

increase as part of the American Recovery and Reinvestment Act (ARRA) from 2009 to 2013, 

and other federal changes to eligibility and benefit determination. 

Benefits are redeemed at authorized food retailers like grocery stores, superstores, 

convenience stores, and general stores, among others. Redeemed benefits are generally 

equivalent to other revenue for retailers. To be authorized to accept benefits, a retail location 

 
3 SNAP benefits generally cannot be spent on foods intended for consumption in-store or hot foods, alcohol, 

tobacco, or nonfood items. Benefits can be redeemed on food-producing plants and seeds. States can waive the 

restriction on in-store foods for qualified recipients through the Restaurant Meals Program, but as of 2018, only 

Arizona and several California counties participate with small pilot programs in place in Rhode Island and Florida. 
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must meet certain stocking criteria.4 Authorization is generally not costly for retailers regardless 

of size.5 Accepting benefits requires commercially available or specialized point-of-sale 

equipment and payment of a small monthly or annual flat fee to an EBT processor, though some 

specialized retailers are eligible for no-cost EBT-only equipment. 

Nearly 252,000 stores were authorized to accept benefits at the end of fiscal year 2018 

(USDA FNS 2019a). Figure 1 shows a breakdown of authorized stores by type. From most stores 

authorized to least, these types are convenience stores (with or without gas stations), 

“combination grocery” and other stores (a category including dollar stores, variety stores, and 

drug stores), supermarkets and grocery stores, superstores, and other types. Figure 2 shows the 

portion of benefits redeemed at each of these types of stores. Just over half of benefits in 2018 

were spent at superstores, just over one third were spent at supermarkets and grocery stores, and 

about 5% each went to convenience stores and combination grocery stores. 

1.2. SNAP and food demand 

 SNAP provides a monthly in-kind transfer that recipients can only spend at authorized 

retailers on food for consumption at home. The seminal Southworth model predicts that 

households who would spend more on SNAP-eligible food than their benefit level in its absence 

– or “inframarginal” households – would treat their benefit like a cash transfer of equivalent size 

as it reduces the need for out-of-pocket food spending (Southworth 1945). Most recipients are 

inframarginal, meaning that SNAP’s aggregate effects on consumer demand would theoretically 

 
4 As of April 2020, locations must meet one of two criteria relating to four USDA-defined categories of staple foods: 

1) vegetables or fruits; 2) dairy products; 3) meat, poultry, or fish; 4) breads or cereals. A store must either 

continuously stock a defined variety and quantity of foods in each category, including some perishable foods, or 

make more than 50% of its total gross retail sales from the sale of staple foods. Some stores can be authorized 

without meeting these criteria if they operate in areas with significantly limited food access. Most stores are 

authorized through the first pathway, while many specialty food stores are authorized through the second (USDA 

FNS 2016). 
5 Firms with less than ten locations apply online for free, and firms with ten or more locations work directly with an 

FNS representative to be authorized and reauthorized. 
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Figure 1. SNAP-authorized stores by type 

 
Number of stores authorized to accept SNAP benefits in 2018. Source: USDA FNS (2019a). 

 

 

 

 

 

 

Figure 2. SNAP benefits redeemed by store type 

 
Total value of SNAP redemptions in 2018 by store type in billions of dollars. Source: USDA FNS (2019a).  
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be much like those of the effects of an income increase.6 SNAP is therefore likely to increase 

demand for both food and non-food goods. Alternatively, inframarginal households may not 

behave rationally but instead engage in “mental accounting” by distinguishing between SNAP 

benefits and cash as separate income sources and treating them differently (Thaler 1999; 

Hastings and Shapiro 2018). If this is the case, SNAP may increase demand for food more than 

for other goods. 

A large literature finds that food stamp receipt increases food-at-home spending but 

provides mixed evidence on the size of the effect relative to that of cash income receipt. Earlier 

studies typically estimate recipient households’ marginal propensity to consume food (MPCF) 

out of food stamps as significantly higher than their MPCF out of cash income, but these 

estimates are biased upwards as these studies typically do not account for the endogeneity of 

household SNAP participation.7 Experimental and quasi-experimental evidence is mixed. Some 

studies find that inframarginal households’ MPCF out of food stamps is near their MPCF out of 

cash income, while others estimate a significantly higher MPCF out of food stamps.8, 9 

1.3. SNAP’s effects on food retailers 

All else equal, an increase in SNAP participation is likely to increase demand for food for 

consumption at home as well as for other products, if by a lesser extent. Therefore, retailers may 

 
6 Hoynes, McGranahan, and Schanzenbach (2016) estimate that 84% of recipient households spend an amount equal 

to or above their SNAP benefit level on food for consumption at home. 
7 Fraker (1990) surveys the early literature and places the median estimate of the MPCF out of food stamps at 3.8 

times the MPCF out of cash income. 
8 In a series of “cash-out” experiments in which some households received cash instead of food stamps, cash 

recipients in some areas spent less on food-at-home than standard coupon recipients, while cash recipients in other 

areas did not alter spending (Fraker et al. 1995). Hoynes and Schanzenbach (2009) estimate a MPCF out of food 

stamps near the MPCF out of cash income of about 0.1 during the Food Stamp Program rollout in the 1960s and 

1970s. Using more recent data, Beatty and Tuttle (2015), Bruich (2014), and Hastings and Shapiro (2018) estimate 

the MPCF out of food stamp income as about 0.5 to 0.6, 0.3, and 0.5 to 0.6, respectively – significantly higher than 

their estimates of the MPCF out of cash income. 
9 In addition to overall food spending, several studies examine relationships between SNAP receipt and purchases of 

specific types of foods (e.g., Anderson and Butcher 2016; Burney 2017; Chang et al. 2015) or specific types of 

SNAP-ineligible goods (e.g., Burney 2018; Kim 2016). 
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adjust their operations to sell more food and maximize profits.10 Retailers may choose to open 

new stores in areas where more people receive benefits or refrain from closing stores that would 

otherwise be unprofitable. Accordingly, retailers may also demand more labor to staff additional 

or current stores, e.g. through extending store hours. Therefore, firms may employ more workers, 

increase worker hours, or even increase wages to attract more employees. Responses of these 

types are especially likely for stores targeting lower-income customers who are more likely to be 

eligible for SNAP. Non-food retailers may respond similarly, but if SNAP tends to increase food 

spending more than non-food spending, their responses would likely be smaller on average. 

Few studies examine SNAP’s impacts on retailers like those I describe here. Beatty, 

Bitler, and Van der Werf (2020) examine closely related questions in a different time period, 

finding that areas in which the Food Stamp Program was introduced earlier had more food stores 

relative to those where the program was introduced later. Shannon et al. (2016) find that local 

SNAP enrollment in Georgia was positively associated with the numbers of SNAP-authorized 

small stores throughout the state and with large stores outside of the Atlanta area. Similarly, 

Shannon et al. (2018) find that increasing SNAP enrollment in Atlanta predicted decreased 

distance to most small SNAP retailers but increased distance to many larger ones. These findings 

are consistent with work finding that most SNAP recipients – even those in areas of lower food 

access – tend to travel to redeem benefits at larger stores (Mabli and Worthington 2015; 

Schwartz et al. 2017; Shannon 2014). Additionally, SNAP benefit increases led to a greater 

percentage of redemptions at supercenters and supermarkets, suggesting that SNAP may not only 

affect food demand but also choice of food store (Andrews, Bhatta, and Ver Ploeg 2013). SNAP 

 
10 It is likely that changes in SNAP participation would similarly impact food producers, but SNAP-induced changes 

in demand are likely more salient for food retailers than producers due to retailers’ direct connection to SNAP. 

Additionally, food retail is local by nature relative to food production, so retailers are more likely to respond to 

localized demand changes than producers. 
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disbursement schedules also matter: low-income households in areas where SNAP benefits are 

issued near the beginning of the month tend to make purchases at larger stores early in the month 

and buy more at convenience stores and restaurants later in the month (Damon, King, and 

Leibtag 2013).11 

 

2. Data 

I assemble publicly available county-level information over the years 1998 to 2016 on 

SNAP participation levels, retailer outcomes, and various population characteristics. I exclude 

from the sample Alaska and Hawaii due to their different benefit formulas, California due to its 

Supplemental Security Income (SSI) “cash-out” policy, and counties with changing borders or 

incomplete data.12 

I use SNAP participation counts aggregated by the U.S. Census Bureau Small Area 

Estimates Branch (2018).13 In conjunction with intercensal population estimates, I construct the 

SNAP participation rate as the number participating in a county over the county population, 

expressed in percentage points.14 

 
11 A few studies examine short-term retailer responses to SNAP disbursement schedules. Moran et al. (2018) find 

significantly higher odds that stores in neighborhoods with high SNAP participation promoted sugar-sweetened 

beverages during the days benefits were issued. Goldin, Homonoff, and Meckel (2019) find that retailers generally 

do not vary prices within months to take advantage of fluctuating food expenditures tracking state SNAP issuance. 
12 The maximum allotments in Alaska and Hawaii are higher than the standard federal maximum. California was the 

only SSI “cash-out” state during the sample period, meaning SSI recipients receive a small payment in lieu of SNAP 

benefits. This is evident in the data: despite an above-average poverty rate of 14.2%, California’s mean SNAP 

participation rate was 7.3% (three percentage points below the national average), while its mean SSI participation 

rate was 3.3% (almost one percentage point above the national average). State-level robustness checks similarly 

exclude Alaska, Hawaii, and California. 
13 This data is primarily gathered from the USDA FNS and supplemented with counts received from state and 

county SNAP offices when not available from the FNS. County-level numbers reflect the number of program 

participants in July, except in a few cases in which data is only available for other nearby time periods. In state-level 

robustness checks, I use data on SNAP participation from the USDA FNS (2019c). State-level participation is the 

annual average. I also collect data on annual SNAP benefits from the FNS for use in some specifications, though this 

data is not available for all counties. 
14 Figure B1 in Appendix B displays variation in the SNAP participation rate between counties over time. 
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I use annual retail establishment counts from the Census County Business Patterns (CBP) 

series (U.S. Census Bureau Economy-Wide Statistics Divison 2018). The CBP provides 

establishment counts broken down by North American Industry Classification System (NAICS) 

code and/or number of employees, allowing examination of responses by specific types and sizes 

of retailers.15 I collect information on establishment counts for industries that primarily retail 

food, that do not retail food, and that retail a combination of food and non-food goods. 

Additionally, I use information on annual average retail employment and payroll from the 

Bureau of Labor Statistics’ Quarterly Census of Employment and Wages (BLS QCEW) 

(2019b).16, 17 The QCEW censors employment and payroll data for counties with relatively few 

establishments, so I use a subsample of 405 counties with this information available for each 

year of the sample period in the employment and payroll analyses. These counties are shown in 

Figure 3. Collectively, these counties contain about 64.0% of the population of all counties in the 

full sample. 

I use the above datasets to construct the outcomes of interest: establishments per 100,000 

population, employment as a percentage of population, and average annual earnings per 

employee – or total payroll over employment. In my primary analyses of impacts on 

establishment counts, I focus on five NAICS-classified types of food retailers that are likely to be 

authorized to accept SNAP benefits: supermarkets and grocery stores, convenience stores, 

gasoline stations with convenience stores, supercenters and warehouse clubs (henceforth referred 

 
15 The CBP uses the Standard Industrial Classification (SIC) system prior to 1998. I only use CBP data from 1998 

and later in order to avoid potential problems from merging different industrial classification systems. 
16 The CBP also contains information on employment and payroll by industry, but I use the QCEW data as it is more 

suitable to my analyses. Both datasets censor these outcomes in order to avoid disclosing information about 

individual businesses, but the QCEW censors employment and payroll information for fewer county-years. 

Additionally, the QCEW provides annual average employment counts, while the CBP provides employment counts 

only for the week of March 12th. The QCEW also provides information on establishment count, but it censors this 

information in some county-years, unlike the CBP. 
17 In other analyses, I use equivalent state-level data on businesses from the CBP and QCEW. 
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Figure 3. Counties included in subsample 

 
 

 

to collectively as “supercenters”), and non-supercenter general stores (henceforth referred to as 

“general stores”). Supercenters and general stores are the first and second fastest growing 

industries I consider from 1998 to 2016, with their numbers increasing by about 213% and 68%, 

respectively.18 I also construct two aggregations of NAICS-classified retail industries: those 

retail stores that may plausibly be authorized to accept SNAP benefits (“SNAP-plausible”) and 

those that are unlikely to be authorized (“SNAP-implausible”).19 Table 1 details these 

breakdowns. In subsequent analyses using the uncensored county subsample, I focus on four 

higher-level NAICS-classified retailer groups: all (food and non-food) retailers; grocery stores, 

supermarkets, and convenience stores; gas stations (with or without convenience stores); and 

supercenters, warehouse clubs, and other general stores.20 

  

 
18 General stores increased from 24,424 stores in 1998 to 41,008 in 2016, and supercenters from 1,788 to 5,601. 
19 Figures B2 and B3 in Appendix B display variation in the number of SNAP-plausible and SNAP-implausible 

establishments per 100,000 population over time, respectively. Figure B4 illustrates trends over time in the national 

average number of SNAP-plausible and SNAP-implausible establishments per 100,000 population. 
20 I focus on higher-level NAICS groups in these analyses to minimize the loss of sample size from censoring, which 

is more prevalent for finer NAICS codes. 
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Table 1. Primary NAICS codes and aggregations 

NAICS code 

or aggregation 

Description Larger 

category 

Share of larger category 

    

445110 Grocery stores & supermarkets: 

establishments primarily engaged 

in retailing a general line of food 

445 Food 

and 

Beverage 

Stores 

44.9% * 

    

445120 Convenience stores: 

establishments primarily engaged 

in retailing a limited line of goods 

that generally includes milk, bread, 

soda, and snacks 

445 Food 

and 

Beverage 

Stores 

19.2% * 

    

447110 Gasoline stations with 

convenience stores: 

establishments engaged in retailing 

automotive fuels in combination 

with convenience store items 

447 

Gasoline 

Stations 

77.8% 

    

452910 Supercenters (& warehouse 

clubs): establishments primarily 

engaged in retailing a general line 

of groceries in combination with 

general lines of new merchandise 

452 General 

Merchandise 

Stores 

8.2% 

    

452990 (Other) General stores: generally 

smaller establishments than 

supercenters or warehouse clubs 

primarily engaged in retailing a 

general line of new merchandise 

including groceries, with none of 

the lines predominating; examples 

include dollar stores, general 

stores, trading posts, and variety 

stores 

452 General 

Merchandise 

Stores 

70.4% 

    

“SNAP-

plausible” 

(SP) 

Sum of establishment counts listed 

above plus 4452 Specialty Food 

Stores 

44-45 Retail 

Trade 

22.4% 

    

“SNAP-

implausible” 

(SI) 

44-45 Retail Trade minus “SNAP-

plausible” establishments 

44-45 Retail 

Trade 

77.6% 

    

* The other contributors in the “Food and Beverage Stores” category are 4452 Specialty Food Stores and 445310 

Beer, Wine, and Liquor stores at 18.0% and 17.9%, respectively. 

** I focus on the codes and aggregations listed above but examine effects on other retailer types not listed here. 
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I assemble information on a variety of state-level policies expanding SNAP eligibility in 

various ways over the sample period. I use this information to construct a state-level measure I 

term the “simulated eligibility variable” or SEV, which represents the collective generosity of 

these policies in a state and year. I discuss these policies and the SEV in depth in Section 3. 

I use information on other county characteristics in various contexts. I use demographic 

information from the Integrated Public Use Microdata Series (IPUMS) National Historical 

Geographic Information System in conjunction with population data to construct estimates of the 

percentage of the population in each year that is living in a rural area, black, Hispanic, age 17 or 

younger, age 60 or older, married, foreign-born, or educated with a bachelor’s degree or higher 

(Manson et al. 2019).21 In some specifications, I use information about the percentage of the 

population in each county that had income between 125% and 199% of the federal poverty level 

(FPL) in 1990 (Manson et al. 2019). Other robustness checks use annual county-level and/or 

state-level information from a variety of sources.22 

The dataset consists of 3,030 counties and 57,570 county-year observations. Table 2 

reports the population-weighted summary statistics of the key variables I use in my primary 

analyses for the full county sample and the uncensored subsample used in analyses of 

employment and payroll.23 The average SNAP participation rate is about 11%, and the average 

SEV is about 17%. The average county has 86 establishments in SNAP-plausible industries per 

100,000 residents and 288 establishments in SNAP-implausible industries. Counties in the 

  

 
21 Where this information is only available decennially, estimates are constructed by linear interpolation. 
22 These data include unemployment rates from the BLS Local Area Unemployment Statistics (2019a); poverty rates 

from the U.S. Census Small Area Income and Poverty Estimates (SAIPE) program (2019); personal income and 

government transfers from the Bureau of Economic Analysis’ Regional Economic Accounts (2019); economic, state 

government, and other social program participation information from the University of Kentucky Center for Poverty 

Research (2019). 
23 Table B1 in Appendix B presents summary statistics of all variables I use in the primary analyses and robustness 

checks. 
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Table 2. Selected summary statistics 

 Full county sample  Uncensored county sample 

 Mean Std. dev.  Mean Std. dev. 
      

SNAP variables      

Participation rate (%) 11.12 (6.643)  10.89 (6.372) 

Simulated eligibility variable 

(SEV) (%) 

17.38 (4.227)  17.67 (4.344) 

      

Establishment counts per 100,000 population 

Grocery stores & supermarkets 22.09 (12.18)  22.35 (12.20) 

Convenience stores 9.923 (6.423)  10.67 (5.430) 

Gas stations w/ conv. stores 32.84 (17.77)  26.01 (12.31) 

Supercenters & warehouse 

clubs 

1.332 (1.160)  1.239 (0.832) 

General stores 11.81 (7.339)  9.580 (4.278) 

SNAP-plausible stores 86.38 (26.32)  79.37 (17.55) 

SNAP-implausible stores 288.0 (88.10)  291.4 (68.78) 
      

Population (unweighted) 85360.4 (234710.7)  408407.9 (524664.6) 
      

Demographic characteristics as % of population 

Rural 21.92 (25.74)  8.747 (11.61) 

Black 13.28 (13.28)  15.07 (12.02) 

Hispanic 12.31 (14.57)  15.01 (15.51) 

Age 0-17 24.22 (3.069)  24.21 (2.867) 

Age 60+ 18.52 (4.665)  17.77 (4.186) 

Married 53.16 (6.726)  51.65 (5.943) 

Have bachelor's degree 26.95 (10.43)  30.29 (9.183) 

Foreign-born 10.17 (9.735)  13.34 (10.43) 
      

% with income of 125-199% 

of FPL in 1990 

13.60 (4.083)  12.08 (3.293) 

      

Counties 3,030   405  

Years 19   19  

Observations 57,570   7,695  
Statistics are weighted by county population, excluding population itself. The full sample excludes AK, HI, CA, 

and counties that either change borders during the sample or for which data is not available for the entire period. 

The uncensored county subsample includes the 405 counties with uncensored information about retail employment 

and payroll available for selected NAICS codes over the entire sample period. The sample period is 1998-2016, 

although simulated eligibility and benefits instruments are not available for 2016. Full summary statistics are 

displayed in Table B1 in Appendix B. 
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subsample used for employment and payroll analyses do not differ greatly from those in the full 

sample in terms of average SNAP participation, establishment counts, or SEV, though they are 

proportionally more urban, black, Hispanic, highly educated, and foreign-born. 

 

3. Methodology 

3.1. Endogeneity of SNAP 

The goal of this study is to estimate the effects of SNAP on businesses’ decisions 

concerning the operation of retail establishments, employment, and employee compensation. 

One approach to estimating these effects would be to estimate the fixed effects model 

 𝐵𝑐𝑡 = 𝛽0 + 𝛽1𝑆𝑁𝐴𝑃𝑐𝑡 + 𝜷𝟐𝑿𝒄𝒕 + 𝜷𝟑𝑪𝑭𝑬𝒄 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜷𝟓𝑻𝑻𝒄𝒕 + 𝜖𝑐𝑡 (1) 

Here, 𝐵𝑐𝑡 represents a county-level business outcome in a given county 𝑐 and year 𝑡 such as the 

number of stores. 𝑆𝑁𝐴𝑃𝑐𝑡 represents the SNAP participation rate. 𝑿𝒄𝒕 represents a vector of 

covariates, while 𝑪𝑭𝑬𝒄, 𝒀𝑭𝑬𝒕, and 𝑻𝑻𝒄𝒕 represent county fixed effects, year fixed effects, and 

county-specific time trends. 

Any study of the causal effects of SNAP must address the potential endogeneity of SNAP 

participation.24 First, unobservable economic factors may influence retail businesses as well as 

households’ SNAP participation, income, and subsequent benefit size. Second, firm decisions 

concerning employment and pay could affect households’ decision to participate in SNAP. 

Third, food retailer expansion would likely increase households’ access to food and therefore 

increase the benefits to households of participating in SNAP. The first two possibilities would 

introduce downward bias to the estimate of 𝛽1 in model (1), while the third would introduce 

upward bias. The ideal study would make use of randomized variation in 𝑆𝑁𝐴𝑃𝑐𝑡 to study 

 
24 SNAP selection issues are well-documented in the literature, e.g., in the context of determining the effect of 

SNAP on food security (Gregory, Rabbitt, and Ribar 2016). 
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impacts on businesses, but variation of this kind is not available. To address these issues, I focus 

instead on variation in state-level policies governing SNAP eligibility. 

3.2. SNAP expansions 

Under the federal SNAP rules, households are eligible if they have gross income under 

130% of the FPL, net income under 100% of the FPL, and countable resources under the asset 

limit (USDA FNS 2019d).25 Alternately, households are categorically eligible for SNAP if all 

household members receive Temporary Assistance for Needy Families (TANF), SSI, and/or 

General Assistance in some states. The benefit formula is also determined at the federal level. 

Each household’s monthly benefit is equal to a maximum monthly allotment, which increases 

with household size, minus 30% of net income. 

Since the enactment of welfare reform in 1996 and subsequent federal guidance, states 

have been given the flexibility to expand SNAP eligibility beyond the federal limits (Aussenberg 

and Falk 2019).26 One option available is to alter the asset test by aligning SNAP vehicle policy 

with other social programs. States can increase the standard deduction applied to each vehicle’s 

fair market value, exclude extra vehicles from the test, or eliminate vehicles from consideration. 

Every state has altered vehicle treatment in some way as of 2007.27 Another option is to 

implement a standard medical expense deduction (SMED) that effectively reduces the net 

 
25 Households with elderly (age 60 or older) or disabled members are exempt from the gross income test. Monthly 

net income is equal to gross income minus 20% of earned income, a standard deduction varying over time, 

dependent care expenses (capped in earlier years of the time period), child support expenses, out-of-pocket medical 

costs over $35 for elderly and disabled members, and an excess shelter deduction equal to shelter costs over half of 

adjusted income but no more than the upper limit. The asset limit varies by year and is higher for households with 

elderly or disabled members. As of 2019, the asset limit is $2,250 for households without elderly or disabled 

members and $3,500 for households with such members. Included in countable resources is the fair market value of 

owned vehicles minus a $4650 deduction per driver in the household. 
26 States are not permitted to restrict eligibility to households that are eligible under the federal rules, only expand it 

to those households that are ineligible under the federal rules. 
27 Figure A1 shows how states altered the treatment of vehicles over time for households without elderly or disabled 

members. Many states adopted less restrictive vehicle policies in the early 2000s, and most eventually moved to 

exclude all vehicles from the asset test. 
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income of households with elderly or disabled members with out-of-pocket medical expenses 

below the deduction level.28 16 states have implemented SMEDs as of 2015.29 

States are also able to implement “broad-based categorical eligibility” (BBCE) 

expansions in which they extend SNAP eligibility to households receiving certain non-cash 

benefits provided using TANF or maintenance-of-effort funds. States typically extend BBCE 

through the provision of simple benefits like brochures or referrals to telephone hotlines, making 

these expansions relatively inexpensive (Aussenberg and Falk 2019). Aligning SNAP eligibility 

to eligibility for these benefits effectively loosens or eliminates one or more of the gross income, 

net income, or asset tests for all or some subset of households.30,
 
31 From 1996 until 2015, the 

most common outcome of BBCE expansions was the elimination or alteration of the asset test, 

and the second most common outcome was a higher gross income limit. In 2015, 28 jurisdictions 

had expanded the gross income limit for some households without elderly or disabled members 

through BBCE expansions, 36 had eliminated or altered the asset test for at least some 

households, and 40 jurisdictions in total had implemented expansions of some type.32 

 
28 Federal SNAP rules define a person aged 60 years or more as elderly and a person receiving specific federal or 

state disability benefits as disabled. 
29 Figure A2 shows the 16 states that have implemented SMEDs as of 2015. Most states that implemented SMEDs 

did so in the late 2000s or early 2010s. 
30 BBCE expansions sometimes alter the income or asset tests only for households of a certain type or alter these 

tests differently for households of different types, e.g. households with any elderly and/or disabled members or 

households with children. 
31 Despite the extension of eligibility in these ways, it is important to note that some households that are made 

technically eligible for SNAP cannot receive a positive benefit due to their calculated benefit, which depends on net 

income and household size, being at or below zero. Larger households with net incomes higher than about 100% of 

the federal poverty level are ineligible for a positive benefit even if they pass their state’s altered gross income, net 

income, and asset tests. In some years of the sample period, this threshold is as high as 115%. However, smaller 

households of one to two members passing these tests are always eligible for a small minimum monthly benefit 

ranging between $10 and $16 from 1996 to 2015. 
32 Figure A3 shows the least restrictive non-elderly gross income test that may be applied to households without 

elderly or disabled members that are made eligible through BBCE policies. Relative to changes in vehicle asset and 

SMED policies over the period from 2000 to 2015, changes to the gross income test are less concentrated in timing. 

Adoption of more flexible gross income tests are concentrated in states in the Northeast, Upper Midwest, Southwest, 

and Pacific regions, with many states in the Midwest and Southeast not expanding in this way. 
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States and their social services agencies may have several reasons to adopt the SNAP 

policies described here. These expansions are relatively inexpensive to states as the federal 

government funds SNAP benefits. They typically simplify administration, allow greater 

coordination between assistance programs, reduce the potential for errors in determining 

eligibility, and generally ease entry into SNAP for eligible households (Aussenberg and Falk 

2019). It is possible states would expand SNAP in response to increasing need during economic 

downturns or for political reasons, but I test for these possibilities in Section 5 and find little 

evidence that they are driving factors.33 

3.3 Simulated SNAP eligibility variable 

States expand SNAP in the ways described above in greatly differing ways. Vehicle 

alterations, SMEDs, and BBCE expansions can take on very different “strengths.” For instance, 

states could use BBCE to only increase the countable resource limit or to do away entirely with 

the asset test and net income test and raise the gross income test from 130% to 200% of the FPL. 

States frequently implement more than one type of expansion at once such that they interact with 

each other to determine household eligibility criteria. Some states’ expansions impose different 

criteria for different subpopulations, e.g., households with elderly or disabled members or 

households with children. Binary indicators for whether certain types of expansions exist fail to 

capture the full extent of the variation in these policies. 

One approach originally used to overcome issues of endogeneity between Medicaid 

participation and other outcomes is the construction of simulated measures of eligibility (Currie 

 
33 Most states do not expand SNAP to the maximum extent possible. SNAP expansions rely on alignment to other 

program eligibility criteria. Though the benefits these programs provide may be cheap as in the case of BBCE 

expansions, states must still bear the costs of providing them. Though administrative costs per case may decrease, 

overall administrative costs may increase if expansions greatly increase SNAP participation. Inertia or a hostile 

political environment may prevent some states from expanding SNAP. Further, states may expect expansions to 

SNAP to increase caseloads in other social programs, which would increase both financial and administrative costs. 
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and Gruber 1996; Cutler and Gruber 1996). A simulated eligibility variable (SEV) is typically 

constructed as the portion of a fixed sample of people or households eligible for a program under 

the changing rules in place in each of several areas at different times. The sample is fixed in that 

it always includes the same individuals or households with the same characteristics. The only 

variable factors are the changing eligibility criteria, often at the state-year-level. The use of a 

shared, fixed sample means that variation in the SEV derives only from changes in rules or 

policies, not endogenous changes in state-specific demographic or economic characteristics. 

Similarly, movement between states due to policy changes does not factor into the SEV’s 

construction. The SEV therefore represents a measure of relative policy generosity that can be 

used to compare states over time; if it is higher in one state-year than another, that state extends 

eligibility to a larger portion of the common sample in that year than the other state-year. 

The simulated eligibility approach is a convenient way to summarize the state rule 

changes I describe in a single measure. Other studies have employed simulated eligibility and 

benefit measures to study the effects of SNAP in various contexts (Han 2016, 2019; Leung and 

Seo 2019). I construct a simulated eligibility measure for use in the area-level context of this 

study that incorporates detailed variation in several types of state policies that affect SNAP 

eligibility and only counts households as eligible for SNAP if they qualify for a non-zero 

benefit.34 Further, I employ this measure in an instrumental variables (IV) framework in order to 

estimate the impacts of greater SNAP participation tied to variation in the SEV. 

 
34 Han’s (2016, 2019) simulated eligibility measure captures variation in BBCE policies. My measure also uses 

variation in SMED policies and non-BBCE vehicle policies relevant to determining the eligibility of households 

living in states without BBCE or who are not eligible for SNAP through their state’s BBCE policy. It also uses 

policy variation covering a longer time period. Han (2019) considers a simulated eligibility measure excluding zero-

benefit households but purposefully includes these households in the baseline measure as their “technical eligibility” 

is relevant to their eligibility for other programs. 
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I gather information from the USDA Economic Research Service’s SNAP Policy 

Database on how states alter their BBCE and vehicle asset policies over time (2018). I gather 

additional details of these and other policies I require using reports from additional sources.35 

These include information such as which types of households are affected by BBCE expansions, 

how many vehicles are exempted from the asset test, the size of SMEDs, and the size of 

allotments and standard deductions varying by household size and year. I verify these policy 

details and the timing of their implementation using specific state SNAP policy manuals and 

reports or contacting state program administrators. Specific information on these rules and their 

changes over time is included in Appendix Tables A1 and A2. 

To construct the SEV, I use a sample of households from the Survey of Income and 

Program Participation (SIPP) (2019) from every state and most years from 1996 to 2013.36 The 

SIPP contains detailed information on household assets, income, expenses, and other 

characteristics necessary to determine household SNAP eligibility and benefit size. The inclusion 

of households from every state and many years ensures that the sample is widely representative 

of the United States on a national level during the sample period. To construct the SEV for a 

given state-year, I first adjust each household’s finances for inflation to the relevant year. Then, I 

apply the federal and state rules in place in the given state and year to determine each 

households’ SNAP eligibility. Since some “technically eligible” households have net income 

high enough to disqualify them for a positive benefit, I also calculate each eligible household’s 

benefit according to the benefit formula in place in the relevant year. I consider only those that 

 
35 These sources are detailed in Table A3 in Appendix A. 
36 The SIPP includes information on about 343,000 household-year observations composed of about 877,000 

individual-year observations and covers every year from 1996 to 2013 except 2000, 2006-2008, and 2012. Specific 

information on the SIPP sample, sample exclusions, and more is included in Appendix A. 
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are also eligible for a positive benefit to be “practically eligible.” I then construct 𝑆𝐸𝑉𝑠𝑡 for the 

state 𝑠 and year 𝑡 as 

 𝑆𝐸𝑉𝑠𝑡 =  
# SIPP individuals in practically eligible householdsst

Total # SIPP individuals
 (2) 

I repeat this process for each state and Washington, D.C. from 1996 to 2015. I represent 𝑆𝐸𝑉𝑠𝑡 in 

percentage points, and it ranges from 12.3 to 27.0 percentage points. Appendix A contains an in-

depth discussion on the SEV, its construction, and the policies contributing to its variation.37 

 Most of the variation in the SEV derives from BBCE expansions, especially those doing 

away with asset tests and/or increasing the gross income limit. Table 6, which is discussed in full 

in Section 4, shows how several typical expansions affect the SEV. Figure 4 illustrates interstate 

variation in the SEV over time. The SEV tends to increase or stay constant over time as most 

states only expand SNAP eligibility during the sample period, although a few states reverse 

expansions or change their policies such that the SEV falls. There is also a slight decline in the 

SEV in many states between 2010 and 2015 because the ARRA temporary benefit increase – 

which made some higher-income SIPP households temporarily eligible – expired in 2013. Figure 

5 illustrates variation in the national average of the SEV, the average simulated federal eligibility 

rate – the portion of the SIPP sample that would be eligible for a positive benefit if no states 

expanded eligibility beyond the federal minimum – and the actual participation rate. Increases in 

the average value of the SEV above and beyond the simulated federal eligibility rate represent 

aggregate increases in SNAP policy generosity. Expansions occurred largely in two waves: 

vehicle test alterations and some BBCE expansions in the early 2000s and more BBCE

 
37 I also construct and consider a “simulated potential benefit variable” (SPBV) representing the average monthly 

SNAP benefit received by households in the same common SIPP sample used to construct the SEV if every eligible 

household participated and received their maximum benefit. Further details are included in Appendix A. 
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Figure 4. Simulated SNAP eligibility variable (SEV) by state 
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Figure 5. National simulated eligibility, simulated federal eligibility, and SNAP participation 
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expansions in and around the late 2000s during the Great Recession. Figure 5 also suggests a 

strong positive relationship between the SEV and the participation rate. 

3.4 Reduced form models 

 To examine the business impacts of SNAP eligibility expansions, I estimate fixed effects 

models of the form: 

 𝐵𝑐𝑡 = 𝛽0 + 𝛽1𝑆𝐸𝑉𝑠,𝑡−1 + 𝜷𝟐𝑿𝒄𝒕 + 𝜷𝟑𝑪𝑭𝑬𝒄 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜷𝟓𝑻𝑻𝒔𝒕 + 𝜖𝑐𝑡 (3) 

Baseline models include 𝐵𝑐𝑡 as one of several variables representing the number of 

establishments, employment, or average earnings for retail businesses in each industry. I lag 

𝑆𝐸𝑉𝑠𝑡 by one year in order to allow time for businesses to respond to or be affected by eligibility 

changes.38 𝑿𝒄𝒕 represents a vector of demographic covariates.39 I exclude variables representing 

economic conditions from 𝑿𝒄𝒕 in the baseline models since they depend in part on 𝐵𝑐𝑡. 𝑪𝑭𝑬𝒄 and 

𝒀𝑭𝑬𝒕 are county and year fixed effects, which account for time-invariant county characteristics 

and nationwide trends over time. 𝑻𝑻𝒔𝒕 represents state-specific time trends, which I include due 

to the length of the sample period. Robust standard errors are clustered by state as the SEV only 

varies at the state level 𝑠.40 

 In order to examine potential heterogeneity in the estimates of 𝛽1, I estimate models in 

which 𝑆𝐸𝑉𝑠𝑡 is interacted with estimates of the percentage of each county population with 

incomes between 125% and 199% of the FPL in the pre-sample period year 1990.41 Households 

 
38 Establishment count is particularly likely to require time to adjust in response to changes in SNAP eligibility and 

participation resulting from those eligibility changes, and employment and payroll would also require time as they 

vary with the number of stores in operation. I consider alternative timings in other regressions. 
39 Baseline models include in 𝑿𝒄𝒕 the percentages of the population living in rural areas, black, Hispanic, age 0-17, 

age 60+, married, educated with a bachelor’s degree or higher, or foreign-born. 
40 I also consider state-level models as well as models using county-specific in place of state-specific time trends. 
41 Rates from 1990 are chosen because they represent conditions occurring prior to the sample period and are 

therefore not potentially impacted by the eligibility expansions, which begin in 1996. The cutoff values of 125% and 

199% are chosen because they are available and approximate the range between 130% and 200%. 
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with income between 130% and 200% of the FPL range are particularly likely to gain eligibility 

from BBCE expansions, which account for most of the variation in the SEV. Therefore, 

eligibility expansions may have stronger impacts on businesses in counties where more of these 

households are concentrated. 

These models take the form: 

 𝐵𝑐𝑡 = 𝛽0 + 𝛽1𝑆𝐸𝑉𝑠,𝑡−1 + 𝛽2𝑆𝐸𝑉𝑠,𝑡−1 ∗ 𝐹𝑃𝐿𝑐 + 𝜷𝟑𝑿𝒄𝒕 + 𝜷𝟒𝑪𝑭𝑬𝒄 + 𝜷𝟓𝒀𝑭𝑬𝒕 + 𝜷𝟔𝑻𝑻𝒔𝒕 + 𝜖𝑐𝑡 (4) 

𝐹𝑃𝐿𝑐 represents the percentage of households with incomes between 125% and 199% of the FPL 

in 1990. These models have the same structure and controls as model (3) other than the addition 

of the interaction term on the right-hand side.42 If it is the case that eligibility expansions have a 

greater impact on businesses in counties with more of the households described above – 

presumably through households of that type – then the estimate of 𝛽2 should be positive. The 

predicted impact of changes in the SEV on businesses can be determined through the magnitudes 

of the estimates of 𝛽1 and 𝛽2 and the values of 𝑆𝐸𝑉𝑠𝑡 and 𝐹𝑃𝐿𝑐 for the county in question. 

Results from baseline regressions are presented in Section 4. I describe and test the 

identification assumptions I make in detail and perform various robustness checks in Section 5. 

3.5 Instrumental variables model 

Reduced form estimates of 𝛽1 from model (3) show whether eligibility expansions impact 

various business outcomes, but it is difficult to interpret the magnitudes of these estimates. The 

SEV is a measure I construct solely to compare the collective generosity of SNAP policy 

between states and is not directly analogous to an actual eligibility rate because the SIPP 

oversamples low-income and low-resource households. Therefore, I estimate IV models in which 

the SEV instruments for the actual SNAP participation rate. 

 
42 Model (4) cannot include 𝐹𝑃𝐿𝑐 on its own due to the inclusion of county fixed effects. 
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I estimate the first-stage model 

 𝑆𝑁𝐴𝑃𝑐,𝑡−1 = 𝛼0 + 𝛼1𝑆𝐸𝑉𝑠,𝑡−1 + 𝜶𝟐𝑿𝒄𝒕 + 𝜶𝟑𝑪𝑭𝑬𝒄 + 𝜶𝟒𝒀𝑭𝑬𝒕 + 𝜷𝟓𝑻𝑻𝒔𝒕 + 휀𝑐𝑡 (5) 

to obtain 𝑆𝑁𝐴�̂�𝑐𝑡, the predicted values of the participation rate 𝑆𝑁𝐴𝑃𝑐𝑡. 𝑆𝐸𝑉𝑠𝑡 and 𝑆𝑁𝐴𝑃𝑐𝑡 are 

lagged by one year. The baseline model is otherwise structured and includes the same controls as 

model (3). Using 𝑆𝑁𝐴�̂�𝑐𝑡, I then estimate second-stage models of the form: 

 𝐵𝑐𝑡 = 𝛽0 + 𝛽1𝑆𝑁𝐴�̂�𝑐,𝑡−1 + 𝜷𝟐𝑿𝒄𝒕 + 𝜷𝟑𝑪𝑭𝑬𝒄 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜷𝟓𝑻𝑻𝒔𝒕 + 𝜖𝑐𝑡 (6) 

These models are structured the same and include the same controls as model (3) but with 

𝑆𝑁𝐴�̂�𝑐𝑡 in place of 𝑆𝐸𝑉𝑠𝑡. 

Results from baseline regressions are presented in Section 4. I describe and test the 

identification assumptions I make in detail and consider alternative models as robustness checks 

in Section 5. 

 

4. Results 

4.1. Hypotheses 

I hypothesize that SNAP eligibility expansions – as represented by an increase in the 

SEV – would increase SNAP participation and subsequently increase demand for the goods of 

retail firms. Most evidence using modern data suggests that SNAP receipt increases demand for 

food more than equivalent cash transfers (Beatty and Tuttle 2015; Hastings and Shapiro 2018; 

Bruich 2014). I therefore expect that demand would increase more for the goods of “SNAP-

plausible” retailers selling primarily food or a combination of food and non-food goods than it 

would for the goods of “SNAP-implausible” retailers.  

I hypothesize that retail firms would generally respond to the increases in demand 

accompanying expansions of SNAP eligibility by operating more stores. This might happen 
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through firms being more likely to open new stores or refraining from closing existing stores in 

areas where SNAP is expanded, though I cannot test which mechanism predominates in the 

framework of this study. I also expect that firms would demand more labor in response to 

expansions. This may take the form of hiring more employees to staff new or existing stores, 

increasing employee hours, and/or increasing wages. I do not observe hours or wages in my 

dataset directly, but I do observe total employment and total payroll, which I use to construct 

retail industry employment as a percentage of the population and average earnings per employee. 

I expect SNAP expansions to increase both employment and average employee earnings, as an 

increase in hours or wages would increase this measure. I refrain from hypothesizing whether the 

IV estimates of SNAP participation’s impacts on businesses are larger or smaller than the naïve 

estimates due to the competing sources of downward and upward bias I identify in Section 3.43 

While many types of retailers may respond to changes in SNAP-induced demand, I 

hypothesize that certain types will respond more strongly. I divide all analyses by industry or 

industry group in order to examine differential responses. I hypothesize that retailers targeting 

low-income customers are more likely to respond to increases in SNAP participation as those 

increases disproportionately impact their customers’ demand for goods. The industry groups I 

consider are too broad to specifically estimate impacts on these types of stores, but two industry 

groups stand out as likely to respond for this reason: convenience stores and general stores, 

which are most frequently dollar and discount stores.44 Supercenters may also respond for this 

reason, though these stores are somewhat more diverse in terms of customer base. 

 
43 Unobservable economic factors may influence retail businesses as well as the SNAP participation rate. Retail 

businesses also have some influence on the participation rate through employment and compensation decisions. 
44 In 2016, the two largest firms Dollar General and Dollar Tree operated more than two-thirds of the stores in this 

group alone (Dollar Tree Stores Inc. 2017; Dollar General Corporation 2017). 
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I also hypothesize that small stores are more responsive to SNAP expansions than large 

stores. Firms tend to plan the opening of large food stores like supercenters years in advance, so 

it is less likely that SNAP-induced changes in demand strongly influence decisions concerning 

their operation. In contrast, smaller stores are less costly to build and operate as well as quicker 

to open, so marginal changes in demand are more likely to influence the number of these stores 

in operation. 

Finally, I hypothesize that retailers respond most strongly to SNAP expansions in areas 

with more households with income and/or resources just above the federal cutoffs. More people 

stand to gain eligibility when SNAP is expanded in these areas, so the size of the corresponding 

increase in demand for food and other goods in these areas is likely also larger. 

4.2. Primary results 

 Table 3 reports the main results from regressions of retail establishment counts per 

100,000 population on the SEV for each of the seven retail industries and industry aggregations I 

consider. The SEV is expressed in percentage points and can range from 0 to 100. I find 

evidence that SNAP eligibility expansions increase the number of general stores. This industry 

includes dollar stores, general stores, trading posts, and variety stores, among others. 

Specifically, a one percentage point increase in the SEV – roughly 5.8% of the mean value of 

17.4% – increases the number of general stores operated by 0.038 establishments per 100,000 

population, or about 0.33% of the mean. I also estimate positive average effects on the numbers 

of supercenters and convenience stores. A one percentage point increase in the SEV increases 

their numbers by 0.29% and 0.23% of their respective mean establishment counts. However, 

neither of these estimates are statistically significant, indicating that these effects are less
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Table 3. Establishment count reduced form regression results 
 Grocery 

stores & 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. stores 

Supercenters 

& warehouse 

clubs 

General 

stores 

SNAP- 

plausible 

stores 

SNAP- 

implausible 

stores 

        

SNAP SEV -0.00933 0.0224 0.0336 0.00384 0.0384* 0.0919* -0.0483 

 (0.0547) (0.0224) (0.0366) (0.00382) (0.0200) (0.0527) (0.125) 

        

Demographic controls  Yes Yes Yes Yes Yes Yes Yes 

County and year FE  Yes Yes Yes Yes Yes Yes Yes 

State-specific time trends  Yes Yes Yes Yes Yes Yes Yes 

        

Mean est. count per 100,000 

population 

22.09 9.923 32.84 1.332 11.81 86.38 288.0 

Mean SEV 17.38 17.38 17.38 17.38 17.38 17.38 17.38 

R2 0.350 0.190 0.104 0.369 0.242 0.186 0.700 

Observations 57,570 57,570 57,570 57,570 57,570 57,570 57,570 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The simulated SNAP eligibility variable (SEV) is expressed in percentage points and indicates the percentage of the SIPP sample belonging to an eligible 

household when each state-year's SNAP eligibility rules are applied. SEV is lagged one year. Establishment counts are expressed as the number per 100,000 

population. 
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consistent across county-years.45 Overall, I estimate that a one percentage point increase in the 

SEV increases the number of “SNAP-plausible” stores by 0.092 per 100,000 population, or about 

0.11% of the mean. This increase is primarily driven by effects on the number of general stores 

(41.8% of the effect), gas stations with convenience stores (36.6%), and convenience stores 

(24.4%). I find no evidence of a corresponding increase in the number of “SNAP-implausible” 

stores. Though these estimates seem small, the SEV varies from a minimum of 12.3% to a 

maximum of 27.0%, so SNAP eligibility expansions can and do increase the SEV by a much 

larger amount than one percentage point. 

 The higher responsiveness of SNAP-plausible stores to SNAP expansions is consistent 

with these expansions increasing SNAP participation, which subsequently increases aggregate 

demand for retail goods. The lack of evidence for SNAP-implausible stores being similarly 

responsive suggests that these expansions primarily increase demand for goods at stores where 

benefits are more frequently accepted. These estimates do not provide evidence that demand for 

food for consumption at home specifically drives the increase in the number of SNAP-plausible 

stores. The industries that primarily retail food-at-home goods – grocery stores, supermarkets, 

and conveniences stores – are not the largest responders to SNAP expansions. The most 

responsive retail industries are smaller general stores followed by supercenters. Both industries 

retail a mix of food-at-home and non-food goods and have experienced huge growth during the 

sample period. It could be that increasing SNAP participation increases demand for these 

retailer’s food and non-food goods because stores in these industries tend to target lower-income 

 
45 The point estimate of the coefficient on the count of supercenters is similar in relative size to that on general 

stores. Both industries retail several lines of merchandise including food and changes in SNAP-induced demand 

may affect both similarly. One reason the estimate on the count of supercenters may be less precise than that on 

general stores is their relative infrequency: on average, there are only 1.3 relative to the 11.8 general stores per 

100,000 population. 
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consumers. General stores tend to be small and may therefore be quicker to adjust to demand.46 

Most SNAP benefits are spent at supercenters, which could explain their relatively greater 

responsiveness to SNAP expansions (USDA FNS 2019a). 

Table 4 reports abbreviated results for the first-stage regressions using the full county 

sample and the county subsample used for employment and payroll analyses. The SEV is 

strongly positively correlated with the SNAP participation rate in all samples. Like the SEV, the 

SNAP participation rate is expressed in percentage points, hypothetically ranging from 0 to 100. 

A one percentage point increase in the SEV increases the SNAP participation rate in either 

sample by 0.17 percentage points on average, or by about 1.5% of the mean participation rate of 

11.1%. The first-stage F-statistics of 17.4 and 17.6 indicate that the SEV is adequately powered 

to instrument for SNAP participation in either sample.47 I compare the results of first-stage 

regressions using the SEV and other policy instruments in Appendix B and Table B2. The SEV I 

construct outperforms a variety of SNAP policy instruments used in other IV studies. 

 Table 5 reports the second-stage IV results of regressions of retail establishment counts 

per 100,000 population on the predicted SNAP participation rate for each of the seven retail 

industries and industry aggregations I consider. As the IV model is just-identified, these 

estimates are proportional in magnitude to those reported in Table 3. Taken with those results, 

the IV results in Table 5 provide context for how changes in the SEV affect retail establishment 

counts through SNAP eligibility expansions’ effects on the participation rate. Table 5 also shows 

 
46 Table B3 in Appendix B reports reduced form and IV estimates from regressions of the number of SNAP-

plausible or SNAP-implausible establishments divided by the number of employees at each establishment on the 

SEV or predicted SNAP participation rate to examine heterogeneity in retailer response by retailer size as opposed 

to specific NAICS classification. Though few estimates are statistically significant, smaller SNAP-plausible stores 

increase in number relatively more than larger stores, providing suggestive evidence for the hypothesis that smaller 

retailers are nimbler and therefore more responsive to SNAP expansions than larger ones. 
47 All subsample F-statistics exceed the critical value of 16.4 defined by Stock and Yogo (2005) to limit the 

maximum Wald test size distortion to 0.10 at the 5% significance level. 
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Table 4. First-stage regression results 

 SNAP participation rate 

Full county sample 

SNAP participation rate 

Uncensored county subsample 
   

SNAP SEV 0.167*** 0.171*** 

 (0.0400) (0.0407) 
   

Demographic controls  Yes Yes 

County and year FE  Yes Yes 

State-specific time trends  Yes Yes 
   

Mean SNAP part. rate 11.12 10.89 

Mean SEV 17.38 17.67 

First-stage F-statistic 17.44 17.60 

R2 0.881 0.911 

Observations 54,540 7,290 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All 

regressions are weighted by county population. The SNAP participation rate and the simulated SNAP eligibility 

variable (SEV) are expressed in percentage points. The participation rate indicates the actual percentage of the 

relevant county population belonging to a household that receives SNAP benefits, and the SEV indicates the 

percentage of the SIPP sample belonging to an eligible household when each state-year's SNAP eligibility rules are 

applied. Results shown are for current-period participation rates and simulated eligibility rates. Lagged values of 

these variables are used in baseline IV regressions, and first-stage regressions using these and other timings produce 

similar results. 
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Table 5. Establishment count second-stage and naïve regression results 
 Grocery 

stores & 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. 

stores 

Supercenters & 

warehouse 

clubs 

General 

stores 

SNAP- 

plausible 

stores 

SNAP- 

implausible 

stores 

 

Instrumental variables second stage 

        

Predicted SNAP part. rate -0.0547 0.131 0.197 0.0225 0.225** 0.538* -0.283 

 (0.316) (0.129) (0.196) (0.0238) (0.0966) (0.289) (0.722) 

        

R2 0.346 0.191 0.107 0.369 0.248 0.202 0.699 

        

Naive fixed effects 

        

SNAP part. rate 0.286 0.0954** 0.193*** 0.0101** 0.175*** 0.792*** 0.624* 

 (0.189) (0.0417) (0.0705) (0.00469) (0.0295) (0.197) (0.354) 

        

Mean est. count per 100,000 

population 

22.09 9.923 32.84 1.332 11.81 86.38 288.0 

Mean SNAP part. rate 11.12 11.12 11.12 11.12 11.12 11.12 11.12 

R2 0.357 0.192 0.107 0.370 0.249 0.204 0.701 

Observations 57,570 57,570 57,570 57,570 57,570 57,570 57,570 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The predicted SNAP participation rate from the first stage and the actual SNAP participation rate are expressed in percentage points. Establishment counts are 

expressed as the number per 100,000 population. Participation rate and SEV are lagged one year. 
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results from the naïve fixed effects regressions of establishment count per 100,000 on the SNAP 

participation rate. 

A one percentage point increase in the SNAP participation rate – roughly 9.0% of the 

mean rate of 11.1% – increases the number of general stores by 0.23 establishments per 100,000 

population, or about 1.9% of the mean. Similarly, a one percentage point increase in the 

participation rate increases the numbers of supercenters and convenience stores by 1.7% and 

1.3% of their respective mean establishment counts, though neither of these estimates are 

statistically significant. Overall, a one percentage point increase in the participation rate 

increases the number of “SNAP-plausible” stores by 0.54 per 100,000 population, or about 0.6% 

of the mean. The estimates from the naïve regressions are more precise, but they understate the 

effects of SNAP participation on the numbers of general stores, supercenters, and convenience 

stores. This is likely due to the IV strategy avoiding the sources of downward bias I describe in 

Section 3.48 

4.3. Other results 

Table 6 outlines how several common state SNAP expansions increase the value of the 

SEV, increase the estimated SNAP participation rate, and increase the number of SNAP-

plausible stores. I present one of the most generous state expansions possible as an example: 

eliminating the asset and net income tests and raising the gross income test to 200% FPL. The 

estimated impacts of an expansion like this are of reasonable size. The expansion increases the 

value of the SEV by about 10.8 percentage points, which I estimate would increase the SNAP

 
48The IV strategy produces estimates of the effects of changes in SNAP participation tied to eligibility expansions on 

business outcomes, while the naïve fixed effects strategy produces estimates of the relationship between the actual 

SNAP participation rate and business outcomes. Households participating due to gaining eligibility from expansions 

are a subgroup of all households participating in SNAP, and they likely differ in observable and unobservable 

characteristics alike. Therefore, differences between the IV and naïve results may also represent the consequences of 

aggregate differences in the responses of these types of households to participating in SNAP. I discuss observable 

differences between households by eligibility status in Section 5. 
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Table 6. Predicted impacts of common state SNAP eligibility expansions 
Policy Mean SEV (%) Increase over 

baseline (% points) 

Est. increase in SNAP 

part. rate (% points) 

Est. increase in SNAP-plausible 

stores (# per 100,000) 

Baseline: no state rule change 

(federal minimum eligibility) 

13.04 - - - 

BBCE: Eliminate asset and net income tests; 

gross income test of: 

    

130% FPL 17.08 4.04 0.67 0.37 

165% FPL 21.24 8.20 1.37 0.75 

185% FPL 22.77 9.73 1.62 0.89 

200% FPL 23.82 10.78 1.80 0.99 

BBCE: Eliminate asset test; net income test 

of 100% FPL; gross income test of:  

    

130% FPL 16.65 3.61 0.60 0.33 

165% FPL 18.31 5.27 0.88 0.48 

185% FPL 18.55 5.51 0.92 0.51 

200% FPL 18.63 5.59 0.93 0.51 

BBCE: Eliminate asset and net income tests; 

gross income test of: 

    

200% FPL for households with children 18.05 5.01 0.84 0.46 

200% FPL for households with elderly or 

disabled members; 130% FPL for others 

20.74 7.70 1.29 0.71 

200% FPL for households with elderly or 

disabled members 

18.56 5.52 0.92 0.51 

SMED of:     

$100 13.11 0.07 0.01 0.01 

$200 13.25 0.21 0.04 0.02 

Vehicles: Exclude:     

One per household 14.33 1.29 0.22 0.12 

One per adult 14.54 1.50 0.25 0.14 

All 14.59 1.55 0.26 0.14 

SEV is calculated separately as if denoted policy were applied in each year of the sample in a state in the contiguous United States. Mean SEV represents the 

cross-year average of the SEV for the sample period 1996-2015. Estimated increase in SNAP participation rate assumes that a one percentage point increase in 

the SEV increases the SNAP participation rate by 0.167 percentage points as estimated in Table 4. Estimated increase in number of SNAP-plausible 

establishments assumes that a one percentage point increase in the SEV increases the number of SNAP-plausible establishments by 0.092 per 100,000 

population as estimated in Table 3. 
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participation rate by about 1.8 percentage points, about 16.2% of the mean rate. This would 

increase the number of SNAP-plausible stores by about one per 100,000 population. Assume a 

county with population of 100,000 and that the new SNAP beneficiaries’ average benefit is $750 

per year.49 This expansion would then lead to $1.35 million more in benefits issued per year, 

which is plausibly enough to support the opening or stop the closing of one SNAP-plausible 

store – especially a smaller store like a general store. 

 Table 7 reports results from regressions of retail establishment count per 100,000 

population on the SEV and the interaction of the SEV and the percentage of the 1990 population 

in each county with income between 125 and 199% of the FPL as illustrated by model (4). 

Positive estimates of the coefficients on the interaction term indicate that the SEV increases the 

number of establishments relatively more in counties where more people fell in the income range 

to which BBCE policies frequently expand SNAP eligibility. I find that this is the case for 

general stores as well as supercenters, the two retail store types which respond most strongly to 

SNAP expansions as indicated by Table 3. The lower panel of Table 7 illustrates the coefficient 

estimates on the SEV and the interaction term from the upper panel by predicting the impact of a 

one percentage point increase in the SEV from its mean value on establishment counts per 

100,000 population in three hypothetical counties where different proportions of the population 

have incomes between 125 and 199% FPL. In a county where 13.6% of the population meet this 

criterion (the mean rate), a one percentage point increase in the SEV predicts an increase in the 

number of general stores per 100,000 population by 0.044, or 0.37% of the mean. The 

corresponding increase in the number of supercenters is about 0.005, or 0.38% of the mean. 

These estimates of the impacts of the SEV on store counts are larger than the corresponding

 
49 The average benefit per recipient in 2018 was almost $1,500 per year (USDA FNS 2019c). 
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Table 7. Establishment count reduced form regressions including interaction between SEV and percentage with income 

between 125% and 199% of FPL 
 Grocery 

stores & 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. 

stores 

Supercenters 

& warehouse 

clubs 

General 

stores 

SNAP- 

plausible 

stores 

SNAP- 

implausible 

stores 
        

Reduced form regressions        

SNAP SEV 0.130 0.0595 0.144* -0.0314*** -0.138** 0.0737 -0.230 

 (0.111) (0.0651) (0.0860) (0.0104) (0.0564) (0.130) (0.419) 
        

SEV* 

1990 125%-199% FPL rate 

-0.0106 -0.00282 -0.00838 0.00268*** 0.0134*** 0.00139 0.0138 

(0.00787) (0.00416) (0.00525) (0.000698) (0.00440) (0.00930) (0.0323) 
        

Mean est. count per 100,000 

population 

22.09 9.923 32.84 1.332 11.81 86.38 288.0 

Mean SEV 17.38 17.38 17.38 17.38 17.38 17.38 17.38 

Mean 1990 125%-199% FPL 

rate 

13.60 13.60 13.60 13.60 13.60 13.60 13.60 

R2 0.350 0.190 0.105 0.371 0.245 0.186 0.700 

Observations 57,570 57,570 57,570 57,570 57,570 57,570 57,570 
        

Derived estimates of effect of one percentage point increase in SEV from 17.4 (mean) to 18.4 

1990 125%-199% FPL rate: Grocery 

stores & 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. 

stores 

Supercenters 

& warehouse 

clubs 

General 

stores 

SNAP- 

plausible 

stores 

SNAP- 

implausible 

stores 
        

9.5% (-1 std. dev.) 0.029 0.033 0.064 -0.006 -0.011 0.087 -0.099 

13.6% (mean) -0.014 0.021 0.030 0.005 0.044 0.093 -0.042 

17.7% (+1 std. dev.) -0.058 0.010 -0.004 0.016 0.099 0.098 0.014 
        

Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The simulated SNAP eligibility variable (SEV) is expressed in percentage points and indicates the percentage of the SIPP sample belonging to an eligible 

household when each state-year's SNAP eligibility rules are applied. The estimated percentage of county residents in 1990 with income between 125% and 199% 

of the federal poverty level is expressed in percentage points; only its interaction with the SEV is included in regressions as the rate does not vary by year and is 

therefore collinear with county fixed effects. Establishment counts are expressed as the number per 100,000 population. The second panel applies the point 

estimates in the first panel to estimate the average impacts of a one percentage point increase in the SEV starting from its mean value on the numbers of stores 

per 100,000 population in counties where 9.5%, 13.6%, or 17.7% of the population had income in the 125%-199% FPL range in 1990. 
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estimates from Table 3, and they are even larger for counties with 17.7% of the population 

falling in the income range: 0.84% and 1.2% of the mean establishment counts, respectively. 

These results indicate that SNAP expansions increase the numbers of these stores more in areas 

with relatively large federally ineligible populations that can gain eligibility if gross income 

limits are relaxed. This is consistent with SNAP expansions increasing participation and 

subsequent demand for these store’s goods more in these areas.50 

Table 8 reports the results of reduced form and IV second-stage regressions alternately 

using the outcomes of establishment count per 100,000 population, average annual employment 

as a percentage of population, or average annual earnings per employee on the SEV or predicted 

SNAP participation rate, respectively. These regressions use a subsample of 405 counties that 

have uncensored employment and payroll information available for the entire sample period and 

divide retail industries into four higher-level aggregations: all retail (food or non-food); grocery 

stores, supermarkets, and convenience stores; gas stations (with or without convenience stores); 

and supercenters and general stores.51 The estimated effects of SNAP expansions or predicted 

SNAP participation on the numbers of establishments in Table 8 are consistent with those full-

sample estimates shown in Tables 3 and 5. I find little evidence that SNAP affects the 

employment rate in any of the four industry aggregations I consider. A one percentage point 

increase in the predicted participation rate reduces the percentage of the population employed at 

supercenters and other general stores by 4.0% of the mean on average, but this estimate is

 
50 Table B3 in Appendix B reports reduced form and IV estimates from other regressions intended to examine the 

heterogeneity of retailer responses by store size as measured by number of employees. In it, the outcome of SNAP-

plausible or SNAP-implausible establishments per 100,000 population are divided into three size categories by 

number of employees at the store: 0-9, 10-49, or 50+ employees. I find suggestive evidence that smaller SNAP-

plausible stores are more responsive than larger stores, consistent with the finding in Shannon et al. (2016) that 

greater SNAP participation predicted increased SNAP authorization among smaller stores. 
51 The counties included are shown in Figure 3. Table B1 in Appendix B shows these counties are more urban, more 

educated, and have higher income than the full county sample, but they are otherwise similar. Higher-level 

aggregations are used in order to avoid too thin of a county sample. 
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Table 8. Subsample establishment count, employment, and average employee earnings 

reduced form and second-stage regression results 

 All retail, food & 

non-food 

Grocery stores, 

supermarkets, & 

conv. stores 

Gas stations Supercenters & 

general stores 

 

Establishment counts per 100,000 population 

RF: SNAP SEV 0.00484 0.0312 0.0359 0.0513** 

 (0.159) (0.0629) (0.0335) (0.0240) 

R2 0.794 0.503 0.587 0.653 
     

IV: Pred. part. rate 0.0280 0.181 0.208 0.297*** 

 (0.918) (0.375) (0.184) (0.111) 

R2 0.794 0.513 0.590 0.665 
     

 

Employment rates as % of population 

RF: SNAP SEV -0.00423 0.000528 0.0000287 -0.00302 

 (0.00470) (0.00230) (0.000289) (0.00341) 

R2 0.662 0.414 0.386 0.466 
     

IV: Pred. part. rate -0.0245 0.00305 0.000166 -0.0175 

 (0.0304) (0.0131) (0.00166) (0.0201) 

R2 0.659 0.410 0.386 0.432 
     

 

Annual average employee earnings 

RF: SNAP SEV -44.76*** -40.32 -36.52 39.32*** 

 (13.04) (29.91) (25.36) (14.53) 

R2 0.473 0.408 0.265 0.229 
     

IV: Pred. part. rate -259.0*** -233.3* -211.4 227.6** 

 (38.22) (139.6) (147.5) (101.7) 

R2 0.449 0.382 0.256 0.190 
     

Mean est. count 370.7 33.02 33.35 10.82 

Mean emp. rate 5.432 0.888 0.242 0.435 

Mean emp. earnings 27,670.0 21,997.7 20,527.7 22,306.8 

Mean SEV 17.67 17.67 17.67 17.67 

Mean SNAP part. 

rate 

10.89 10.89 10.89 10.89 

Observations 7,695 7,695 7,695 7,695 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All 

regressions are weighted by county population. Results shown are for a subsample of 405 counties with uncensored 

information about retail employment and payroll available for selected NAICS codes over the entire sample period 

of 1998 to 2016. The simulated SNAP eligibility variable (SEV) and the predicted SNAP participation rate from the 

first stage are expressed in percentage points. Establishment counts are expressed as the number per 100,000 

population. Annual average employment rate is expressed in percentage points as percentage of population 

employed. Annual payroll is expressed in 2010-adjusted thousands of dollars per 100,000 population. Annual 

average earnings are expressed in 2010-adjusted dollars per employee. Participation rate and SEV are lagged one 

year. 
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statistically insignificant. Despite this decrease, I find that a one percentage point increase in the 

participation rate increases average employee earnings in these stores by $228, or about 1.0% of 

mean annual pay. Interestingly, I find evidence of decreases in the average employee earnings in 

other industries. A one percentage point increase in SNAP participation results in a reduction of 

the mean employee earnings in stores of all types by $259 – about 0.9% of the mean. Given 

SNAP’s effects on the number of supercenters and general stores relative to other retailers, these 

effects are suggestive of SNAP participation increasing labor demand in these industries relative 

to others through the margins of wages or hours but not total employment. An increase in hours 

may be the more likely mechanism, especially given the tendency of these retail industries to 

employ part-time workers. 

 

5. Robustness checks 

5.1. Internal validity 

Consistent identification of 𝛽1 in the reduced form model (3) and 𝛽1 and 𝛽2 in model (4) 

relies upon several assumptions. 𝑆𝐸𝑉𝑠𝑡 should be independent of the error term 𝜖𝑐𝑡. It must not 

be the case that some unobserved third factor impacts both state SNAP policy and retail 

businesses or that the retail business variables of interest directly impact state SNAP policy. I 

cannot formally test these assumptions, but I consider several possible ways they may not hold in 

turn. 

Economic downturn tends to affect businesses negatively, and states experiencing 

downturns may also be more likely to expand SNAP to address expanding need. This may drive 

a negative relationship between the business outcomes of interest and SNAP participation tied to 

state-level expansions. Additionally, states that expand SNAP to a greater degree may be more 
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likely to adopt other policies incentivizing or disincentivizing retail investment. This may 

include more generous administration of other safety net programs; for example, states with 

generous SNAP policies may also distribute more TANF funds to households, which would 

affect demand for food and other goods. To investigate these possibilities, I estimate IV 

regressions in Table 9 including additional sets of controls describing the county economic 

environment, the state policy environment, or participation rates in other social programs.52 The 

primary findings are robust to the inclusion of any of these three sets of controls. 

Additionally, I examine whether state economic conditions or policy environments 

predict the adoption of policies that determine the SEV in Tables 10 and 11, respectively. These 

tables report the results of linear probability models in which the outcomes are the presence of a 

BBCE or vehicle test alteration policy. I find little evidence pointing to a relationship between 

economic conditions and state SNAP expansions. States appear to be slightly more likely to 

implement BBCE expansions or vehicle test alterations in response to lagged poverty rates, but 

not significantly more likely. Inconsistently, higher levels of past income per capita predict 

BBCE expansions, and I find mixed evidence on income per capita’s impact on the probability of 

vehicle test alteration. Similarly, I find little evidence that the policy environment variables I 

consider consistently predict state SNAP expansions. I therefore do not consider the exclusion of 

either of these control sets from the baseline models problematic.

 
52 Economic controls include the unemployment rate, the poverty rate, the natural log of personal income per capita, 

and the natural log of non-SNAP government transfers per capita. State government controls include a dummy for 

the governor being a Democrat, the percentage of the state house that are Democrats, and the percentage of the state 

senate that are Democrats. Other social welfare program participation controls include state participation rates for 

TANF, SSI, and Medicaid. I include these three programs’ participation rates and exclude others’ participation rates 

as states have more discretion over the administration of these programs. Other social program participation rates are 

endogenous in similar ways to the SNAP participation rate, but I do not take up that issue as I include them only as 

controls here. Additionally, it is possible that SNAP participation increases participation in other programs through 

reductions of application or certification costs. If this is the case, additional buying power from other-program 

participation may be considered a mechanism through which SNAP impacts retailers. 
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Table 9. Establishment count second-stage regressions including additional control sets 

 Grocery 

stores & 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. 

stores 

Supercenters 

& warehouse 

clubs 

General 

stores 

SNAP- 

plausible 

stores 

SNAP- 

implausible 

stores 
        

Including economic controls 

Pred. part. rate -0.215 0.152 0.190 0.0372 0.234* 0.435 0.0178 

 (0.353) (0.150) (0.269) (0.0324) (0.121) (0.373) (0.918) 

First-stage F-statistic 12.26 12.26 12.26 12.26 12.26 12.26 12.26 

R2 0.346 0.197 0.111 0.380 0.255 0.209 0.721 

Observations 55,763 55,763 55,763 55,763 55,763 55,763 55,763 
 

Including state government controls 

Pred. part. rate -0.0608 0.150 0.209 0.0221 0.218** 0.530* -0.188 

 (0.315) (0.150) (0.209) (0.0219) (0.0950) (0.299) (0.748) 

First-stage F-statistic 19.41 19.41 19.41 19.41 19.41 19.41 19.41 

R2 0.351 0.192 0.109 0.371 0.255 0.206 0.701 

Observations 55,803 55,803 55,803 55,803 55,803 55,803 55,803 
 

Including other social welfare program participation controls 

Pred. part. rate -0.0322 0.0181 0.252 0.0245 0.220* 0.492 -0.299 

 (0.351) (0.156) (0.246) (0.0281) (0.119) (0.383) (0.969) 

Mean est. count per 100,000 

population 

22.09 9.923 32.84 1.332 11.81 86.38 288.0 

Mean SNAP part. rate 11.12 11.12 11.12 11.12 11.12 11.12 11.12 

First-stage F-statistic 17.05 17.05 17.05 17.05 17.05 17.05 17.05 

R2 0.348 0.189 0.105 0.362 0.228 0.199 0.691 

Observations 54,313 54,313 54,313 54,313 54,313 54,313 54,313 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The SNAP participation rate and the simulated SNAP eligibility variable (SEV) are expressed in percentage points. Establishment counts are expressed as the 

number per 100,000 population. Participation rate and SEV are lagged one year. Economic controls include the unemployment rate, the poverty rate, the natural 

log of personal income per capita, and the natural log of non-SNAP government transfers per capita. State government controls include a dummy for the 

governor being a Democrat, the percentage of the state house that are Democrats, and the percentage of the state senate that are Democrats. Other social welfare 

program participation controls include state participation rates for TANF, SSI, and Medicaid in percentage points; I include participation rates for these three 

social programs and not others as states have more discretion over these program’s administration.
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Table 10. Regressions of SEV-determining policies on economic characteristics 

 BBCE Vehicle test alteration 
   

Unemployment rate 0.0183 0.00132 

 (0.0212) (0.0112) 

   t-1 0.0192 0.00486 

 (0.0185) (0.0105) 

   t-2 0.00909 -0.0116 

 (0.0115) (0.00970) 

   t-3 0.0203 0.0108 

 (0.0227) (0.0176) 
   

Poverty rate 0.0124 0.00408 

 (0.00889) (0.00698) 

   t-1 0.00822 0.00436 

 (0.00781) (0.00581) 

   t-2 0.0114* 0.0114** 

 (0.00649) (0.00490) 

   t-3 0.00888 0.0107** 

 (0.00572) (0.00475) 
   

Ln personal income per capita -0.326 -0.184 

 (0.625) (0.265) 

   t-1 0.573 0.504** 

 (0.379) (0.236) 

   t-2 -0.179 0.170 

 (0.305) (0.196) 

   t-3 1.182** -0.721** 

 (0.578) (0.349) 
   

Demographic controls  Yes Yes 

State and year FE  Yes Yes 

State-specific time trends  Yes Yes 
   

Mean of SEV-determining policy 0.462 0.797 

Mean unemployment rate 5.923 5.923 

Mean poverty rate 13.10 13.10 

Mean ln(Personal income per capita) 10.42 10.42 

R2 0.758 0.885 

Observations 912 864 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and state fixed effects, and state-specific time trends. The 

simulated SNAP eligibility variable (SEV) is expressed in percentage points. “BBCE” and “Vehicle test alteration” 

are dummies indicating whether each state has adopted these policies in some form. Unemployment rate and poverty 

rate are expressed in percentage points. Log of real personal income per capita is included. Each regression includes 

lags from the previous three periods. 
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Table 11. Regressions of SEV-determining policies on policy environment characteristics 

 BBCE Vehicle test alteration 
   

Governor Democrat -0.0356 0.00786 

 (0.0371) (0.0202) 

   t-1 0.00308 0.0302* 

 (0.0117) (0.0168) 

   t-2 0.0273 -0.00538 

 (0.0195) (0.0125) 

   t-3 -0.00591 -0.0205 

 (0.0282) (0.0232) 
   

% state house Democrats 0.000599 -0.00304 

 (0.00287) (0.00197) 

   t-1 -0.000894 -0.00425** 

 (0.00178) (0.00196) 

   t-2 -0.000465 0.0000984 

 (0.00223) (0.00108) 

   t-3 -0.00100 0.00203 

 (0.00369) (0.00206) 
   

% state senate Democrats -0.00114 -0.0000112 

 (0.00290) (0.00160) 

   t-1 0.00161 0.00205 

 (0.00164) (0.00145) 

   t-2 -0.00128 0.000389 

 (0.00112) (0.000844) 

   t-3 -0.00252 -0.00159 

 (0.00221) (0.00222) 
   

Demographic controls  Yes Yes 

State and year FE  Yes Yes 

State-specific time trends  Yes Yes 
   

Mean of SEV-determining policy 0.462 0.797 

Mean Democratic governor 0.410 0.410 

Mean % Democrats in house 50.23 50.23 

Mean % Democrats in senate 46.82 46.82 

R2 0.745 0.888 

Observations 874 828 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and state fixed effects, and state-specific time trends. The 

simulated SNAP eligibility variable (SEV) is expressed in percentage points. “BBCE” and “Vehicle test alteration” 

are dummies indicating whether each state has adopted these policies in some form. “Governor Democrat” is a 

dummy variable equal to one if the governor is a Democrat. The percentage of each state house and senate that are 

Democrats are expressed in percentage points. Each regression includes lags from the previous three periods. 
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It is possible, though somewhat unlikely, that retail businesses may collectively influence 

state’s decisions to expand SNAP, for example through laying off employees or lowering wages 

such that the number of needy households significantly expands. I examine whether business 

responses follow or precede SNAP expansions by estimating regressions in which establishment 

count is modeled as a function of the SEV – lagged one year as in the baseline models – as well 

as several additional lags and leads of the SEV in Table 12. The inclusion of lags and leads 

restricts the sample period to 2000 to 2013. For comparison, the lower panel reports estimates of 

the baseline reduced form regressions using only the one-year lag of the SEV and the restricted 

sample period. If retail business responses precede SNAP expansions, I expect that estimates of 

the SEV lead coefficients would be large and positive, and reverse causality of this type would 

be an issue for my estimation.53 This does not appear to be the case, as I find no significant 

evidence of relationships between the current number of retail establishments and future values 

of the SEV.54 

Consistent identification of 𝛽1 in the IV model (6) additionally relies upon several other 

assumptions. First, the simulated eligibility instrument 𝑆𝐸𝑉𝑠𝑡 must have a clear, strong effect on 

the participation rate 𝑆𝑁𝐴𝑃𝑐𝑡 in the first-stage model (5). Variation in the SEV derives from 

state-level policies altering the portion of SIPP households eligible for SNAP. An increase in the 

SEV implies more generous policy and means that more real households in the state become 

eligible to receive benefits, all else equal. If additional households would participate when made

 
53 Autocorrelation is certainly a problem in models like these with several leads and lags of the SEV. Therefore, I do 

not expect this model to present precise estimates of the SEV’s impact, but rather to test generally for the potential 

for reverse causality. 
54 Examining models including lags and leads of the SEV is also interesting because it is not theoretically clear how 

long it would take firms to respond to changes in SNAP participation. It is possible that the full effects of SNAP 

participation on the operation of retail establishments would manifest in less than a year or that it might take several 

years, depending on retail industry. The results of Table 12 suggest that responses may be quicker than modeled in 

the baseline regressions due to the positive, significant coefficients on the current-period SEV for both general stores 

and gas stations with convenience stores. 
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Table 12. Reduced form regressions using lags and leads of simulated eligibility variable (SEV) 
 Grocery stores 

& 

supermarkets 

Convenience 

stores 

Gas stations 

w/ conv. 

stores 

Supercenters & 

warehouse 

clubs 

General stores SNAP- 

plausible stores 

SNAP- 

implausible stores 

        

SNAP SEV        

  t-4 0.0397 0.0331 -0.0779 0.00000431 -0.00862 -0.0161 -0.147 

 (0.0455) (0.0413) (0.0651) (0.00414) (0.0164) (0.0789) (0.107) 

  t-3 -0.00554 0.0107 -0.0103 0.00192 0.0150 0.0189 -0.0458 

 (0.0181) (0.0175) (0.0331) (0.00206) (0.0110) (0.0384) (0.0662) 

  t-2 -0.00136 -0.0210 0.0570* 0.00145 0.00618 0.0469 -0.0549 

 (0.0206) (0.0161) (0.0308) (0.00407) (0.00862) (0.0329) (0.0804) 

  t-1 -0.00414 0.0233 -0.00733 0.00261 0.00759 0.0298 -0.0626 

 (0.0236) (0.0145) (0.0174) (0.00231) (0.00756) (0.0384) (0.0672) 

  t -0.00943 -0.00859 0.0410*** 0.00112 0.0260** 0.0336 0.0418 

 (0.0200) (0.0129) (0.0123) (0.00318) (0.0117) (0.0303) (0.0576) 

  t+1 -0.0494* 0.0109 0.0269 -0.00202 0.0150 0.00526 -0.0404 

 (0.0289) (0.0169) (0.0212) (0.00357) (0.0122) (0.0416) (0.0894) 

  t+2 -0.00526 0.00306 -0.00658 0.000447 0.00966 0.0122 -0.0828 

 (0.0337) (0.0221) (0.0426) (0.00372) (0.0140) (0.0503) (0.0663) 
        

R2 0.304 0.192 0.102 0.322 0.127 0.179 0.654 
        

Baseline: SNAP 

SEV, t-1 

-0.0176 0.0114 0.0449 0.00396 0.0280 0.0739 -0.0768 

(0.0414) (0.0191) (0.0388) (0.00392) (0.0187) (0.0612) (0.121) 
        

Mean est. count 

per 100,000 

population 

22.03 9.959 33.05 1.297 11.69 86.60 290.2 

Mean SEV 17.33 17.33 17.33 17.33 17.33 17.33 17.33 

R2 0.304 0.191 0.101 0.322 0.126 0.178 0.654 

Observations 42,420 42,420 42,420 42,420 42,420 42,420 42,420 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The sample period is restricted to 2000-2013 due to the inclusion of leads and lags. The simulated SNAP eligibility variable (SEV) is expressed in percentage 

points. Establishment counts are expressed as the number per 100,000 population. In the first panel, regressions include lags and leads of the SEV centered 

around the one-year lag of the SEV used in the baseline models. In the second panel, regressions include only the one-year lag of the SEV as in the baseline 

model but use the same restricted sample period for comparison. 
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eligible or when income or asset tests are relaxed, the SEV would be positively correlated with 

the real SNAP participation rate. I find that this is the case, as the SEV is strongly predictive of 

the county SNAP participation rate in the full sample and subsample that I consider. I discuss the 

first-stage results in greater detail previously in Section 4. 

Second, I assume that 𝑆𝐸𝑉𝑠𝑡 does not affect the business outcomes 𝐵𝑐𝑡 except through 

effects on 𝑆𝑁𝐴𝑃𝑐𝑡. Any retail business decisions made in response to SNAP eligibility rule 

changes would likely be motivated by anticipated or observed changes in demand for their 

goods. The determining factor of consumer demand changes of these sort would not be eligibility 

expansions themselves, but changes in SNAP receipt due to the expansions. Therefore, I argue 

that this assumption is reasonable. 

5.2. External validity 

Variation in the SEV derives from changes in state eligibility rules beyond the federal 

minimum. The SIPP households these rules are applied to can be categorized in one of three 

mutually exclusive and exhaustive groups: always eligible for SNAP (by meeting the federal 

rules in every year), never eligible for SNAP (by never meeting the federal rules or any state’s 

rules in any year), or sometimes but not always eligible for SNAP (by meeting the federal rules 

or some state’s rules in some years). The last group represents those households whose 

participation in SNAP can be “turned on” by the state eligibility expansions summarized in the 

SEV. The IV estimates shown in Section 4 can therefore be interpreted as local average 

treatment effects in that they represent the responses of retailers to changes in SNAP 

participation among sometimes-eligible households.55 This interpretation requires a further 

 
55 Increases in the SEV may increase participation among households that are “always eligible” if it becomes less 

costly for these households to apply due to the expansions summarized in the SEV (e.g., they no longer must report 

detailed information on vehicles or other assets). However, I cannot identify these households in the SIPP like I can 

those who become eligible. 
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assumption of monotonicity: increases in the SEV should never cause households to not 

participate in SNAP who otherwise would. This is reasonable, as it would be unusual for 

households previously receiving SNAP benefits to stop because eligibility is expanded. 

This raises the issue of external validity of the results: would retailers respond similarly 

to changes in SNAP participation among always-eligible households (e.g., due to policies 

impacting application costs or changes in federal eligibility or work rules)? This question could 

be addressed by using policy instruments directly impacting participation among always-eligible 

households, but the available instruments of this type are too weak for use in the context of this 

study.56 I examine the characteristics of the SIPP households in each eligibility category in Table 

A5 in Appendix A. Relative to sometimes-eligible households, always-eligible households have 

on average roughly half of the total income, a third of the earned income, a hundredth of the 

countable non-vehicle assets, and a fourth of the vehicle equity.57 

Given these differences, SNAP participation would likely affect these subgroups’ food 

demand differently. Always-eligible households would receive larger average benefits, both in 

size and relative to their income, so changes in their participation would likely impact demand 

more than the changes in SNAP participation induced by the expansions considered in this study. 

The estimated coefficients on SNAP-plausible and SNAP-implausible retailer outcomes in 

Section 4 would therefore likely represent lower bounds of the effects of changes in participation 

among the entire eligible population. Further, while different types of households may have 

different demand elasticities for products from different types of stores, recent studies generally 

find only small differences in household choice of food retailer type by SNAP participation 

 
56 See Appendix B and Table B2 for further discussion. 
57 Figure A6 in Appendix A further illustrates the differences between always-eligible and sometimes-eligible 

households by presenting scatterplots of SIPP households’ total income and countable non-vehicle assets by 

eligibility status. 
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status and income, suggesting that the individual estimated effects on industry-specific retailer 

outcomes are likely also lower bounds (Dong and Stewart 2012; Taillie, Grummon, and Miles 

2018; Ver Ploeg et al. 2015). 

5.3. Other robustness checks 

 I consider and present several variants of my baseline models using establishment counts 

as outcomes in Table B4 of Appendix B. My findings concerning SNAP’s effects on the number 

of general stores and SNAP-plausible stores are robust to most changes I consider.58 I also find 

that a one-dollar increase in SNAP benefits per capita instrumented by the SEV similarly impacts 

the number of stores at the state or county levels.59 

The exclusion of state-specific time trends from the model changes the estimates 

significantly. Without trends, it appears that a one percentage point increase in SNAP 

participation increases the numbers of SNAP-plausible stores by 1.08 per 100,000 population – 

about twice the size of the baseline estimate. This effect is largely driven by increases in the 

numbers of grocery stores/supermarkets and convenience stores. As shown in Figure 5, the 

average SEV and SNAP participation rate trend upwards during the sample period. Accordingly, 

I test for multicollinearity between the SEV and state-specific time trends by calculating the 

variance inflation factor (VIF) for the SEV in the first stage with and without trends. Because 

their inclusion only increases the VIF from about 3.0 to about 4.6 and the sample covers a 

relatively long period, I opt to include state-specific trends in the baseline model. 

 
58 These changes include the use of state-level models, alternate timings of the SEV and participation rate, fewer 

controls, county-specific time trends in place of state-specific time trends, and a sample excluding the ten densest 

counties from the sample. 
59 I use a restricted county sample in analyses using benefits per capita, as this information is not available at the 

county level for all county-years. 



 

52 

 Regressions including California – which is excluded from the baseline models – produce 

smaller estimates of the effects of SNAP on the number of general stores or SNAP-plausible 

stores that are not statistically significant at the 10% level. California’s SSI cash-out policy 

during the sample period may have partially severed the relationship between SNAP expansions 

and retailer outcomes since those receiving SSI received only a small benefit in place of the 

SNAP benefit defined by the federal formula, and California’s large population noticeably 

impacts the estimates. Regressions without population weights produce similarly smaller 

estimates, indicating that the retailer responses I estimate in the baseline models are driven 

primarily by those in counties of higher population. 

  

6. Conclusion 

In this study, I develop a novel approach to summarize detailed variation in state-level 

SNAP expansions through a measure of simulated eligibility. I use this measure to examine the 

food retail industry’s responses to SNAP expansions since 1996 and resultant increases in SNAP 

participation. In response to an increase in SNAP participation, I find that retailers operate more 

stores in industries where SNAP benefits are often accepted. In particular, I find evidence that 

retailers operate more small general stores in response to higher SNAP participation and that 

average employee earnings at these stores increase. I find no evidence of a pattern of similar 

responses by non-food retailers. 

SNAP appears to primarily impact retailers targeting lower-income customers more 

likely to receive benefits. I do not directly observe SNAP expansions’ effects on retail sales and 

cannot distinguish between retailers choosing to open new stores or to keep stores open they 

would otherwise close. However, this study’s findings are suggestive of SNAP playing a role in 
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the location decisions of general stores and supercenters to a lesser extent, both of which have 

undergone tremendous growth in the last 20 years. Dollar stores targeting lower-income 

customers played a large part in this rapid, continuing growth.60, 61 I assume changes in demand 

among lower-income customers as the primary mechanism connecting SNAP participation and 

the numbers of these stores, but I do not purport to rule out all other possibilities here. Further 

investigation is required to determine whether firms simply respond to SNAP-induced changes in 

demand or specifically target areas with higher SNAP participation rates when choosing new 

locations. 

While SNAP appears to benefit some retailers, it is not clear whether its impacts on the 

retail environment – increases in the numbers of general stores and supercenters – benefit 

consumers. Higher SNAP participation does not appear to increase the number of grocery stores 

in operation, which are often characterized as more healthful food stores. Among other things, 

supercenters increase the obesity rate, housing prices, and food security, but they do not appear 

to strongly affect the market entry of other food retail firms (Courtemanche and Carden 2011; 

Pope and Pope 2015; Courtemanche et al. 2018; Ellickson and Grieco 2013). Fewer studies have 

examined analogous impacts of dollar stores. Dollar stores’ presence is associated with 

decreased produce purchases and higher childhood obesity prevalence, though one study found 

no causal evidence that dollar store exposure contributes to childhood obesity (Cai et al. 2018; 

Gorski Findling et al. 2018; Drichoutis et al. 2015). Several city policymakers and media outlets 

have expressed concern that dollar stores’ presence encourages unhealthy choices and limits 

 
60 In 2004, the three largest firms Dollar General, Dollar Tree, and Family Dollar operated just under half of the 

general stores in the United States, but in 2016 they operated more than two-thirds (Dollar Tree Stores Inc. 2005, 

2017; Family Dollar Stores Inc. 2005; Dollar General Corporation 2005, 2017) 
61 Dollar General alone planned to open 1,000 stores in 2020 (Nathaniel Meyersohn, “Dollar General is opening 

1,000 new stores next year,” CNN Business, December 5, 2019). 
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access to healthy foods.62 Others have argued that dollar stores improve food access in areas 

where other retailers will not go, especially low-income rural or urban areas.63 Allcott et al. 

(2019) estimate that 90% of nutritional inequality between the wealthy and the poor is driven by 

differences in demand, while only about 10% is driven by supply-side factors like product 

exposure and prices, suggesting that policies restricting dollar stores and similar retailers may 

dampen the relationship between SNAP and these stores’ prevalence but may not meaningfully 

improve the food retail environment or consumer nutrition. Further causal research is necessary 

to clarify these relationships. 

Expanding SNAP makes the operation of more food retail stores feasible. If it is a goal of 

economic stimulus to support businesses like these, then SNAP is an effective vehicle for 

stimulus. State policymakers seeking a relatively cheap means of stimulus may find that 

expanding SNAP eligibility through one of these expansions is an attractive option. In particular, 

BBCE expansions waiving net income and asset tests greatly increase eligibility while also 

reducing administrative burden. Increasing take-up is another option. Though expanding SNAP 

is inexpensive for states, the same is not true for the federal government, which must pay out 

benefits to all who qualify and cannot simply cap spending. Federal policymakers should 

carefully weigh the costs of SNAP expansions against their benefits in order to determine 

optimal policy, especially given recently proposed changes to SNAP. 

 
62 E.g., “How dollar stores prey on the poor” (Michael Sainato, The Progressive, October 1, 2019), “Dollar stores are 

everywhere. That’s a problem for poor Americans” (Nathaniel Meyersohn, CNN Business, July 19, 2019), “Dollar 

stores are feeding more Americans than Whole Foods, and it’s leading some communities into crisis” (Aria Bendix, 

Business Insider, December 10, 2018). 
63 E.g., “Unjust deserts” (Steven Malanga, City Journal, January 3, 2020), “Do dollar stores help the poor with 

cheap, vital staples? Or block out grocers and trigger food deserts?” (Rachel Siegel, Washington Post, February 18, 

2019), “How Dollar General Is Transforming Rural America” (Frank Morris, National Public Radio, December 11, 

2017). 
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The Trump administration proposed regulation in July 2019 that would greatly reduce 

BBCE by limiting the benefits conveying eligibility (Aussenberg and Falk 2019). One analysis 

estimates the rule would cause 3.1 million participants to lose eligibility in 2020 – though 

participation may fall more as BBCE lowers application and information barriers – and would 

lead to net federal savings of $9.4 billion over five years (USDA FNS 2019b). Assuming the 

effects of SNAP participation I estimate are bi-directional, the rule would reduce the number of 

food stores operating in the United States by almost 1,700.64 Similarly, the administration issued 

a final rule initially intended to come into effect in April 2020 restricting waivers of the benefit 

time limit for able-bodied adults without dependents; the FNS estimates that nearly 700,000 

beneficiaries will not meet work requirements and lose benefits, reducing the number of food 

stores similarly by about 400 (USDA FNS 2019f).65 When evaluating changes like these to 

SNAP eligibility, policymakers ought to take into consideration all of the consequences of 

cutting SNAP – including the harm done to businesses – and weigh them against the potential 

financial savings

 
64 A reduction of 3.1 million participating in SNAP relative to the 327.2 million U.S. population represents a 0.947 

percentage point decrease in the participation rate. I apply the point estimate of a reduction of 5.4 SNAP-plausible 

stores per 1,000,000 population accompanying a one percentage point decrease and estimate a total 1,673.24 SNAP-

plausible store decrease. 
65 A federal judge issued a preliminary injunction in March 2020 blocking the rule change from taking effect 

pending the outcome of a lawsuit by several states (Maria Godoy, “Judge blocks rule that would have kicked 

700,000 people off SNAP,” NPR, March 14, 2020). 
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Chapter II: Do SNAP Expansions Affect Medicaid Enrollment and Spending? 

 

The Supplemental Nutrition Assistance Program (SNAP, formerly named the Food 

Stamp Program) and Medicaid play important roles in the patchwork of U.S. safety net 

programs. In 2017, SNAP issued $63.7 billion in benefits (or “food stamps”) to 42 million 

people in low-income households to be spent on food, while Medicaid and the Children’s Health 

Insurance Program (CHIP) (hereafter referred to collectively as “Medicaid”) provided $592 

billion in health insurance coverage and other services to almost 74 million people (USDA FNS 

2019c; Wolfe, Rennie, and Truffer 2018). These programs target largely overlapping 

populations, and household decisions to participate in either program are likely interrelated. 

SNAP participants are more likely to enroll in Medicaid than non-participants and vice versa due 

to participation in one program lowering the costs of participation in the other. Further, nutrition 

and health care are both determinants of health, so if SNAP improves its recipients’ health, it 

might reduce their perceived need for Medicaid coverage. Therefore, the aggregate effects of 

expanding SNAP on Medicaid enrollment and spending are unclear a priori. Measuring these 

effects are important to enable policymakers to design effective social policy and estimate the 

budget impacts of SNAP expansions. 

 Despite the importance of considering interactions between safety net programs, most 

studies of these programs examine their effects in isolation. Among the studies that consider the 

relationship between SNAP and Medicaid, most examine the effects of Medicaid on SNAP. 

These studies generally find that Medicaid enrollment increases the probability of participation 

in SNAP and discuss labor disincentives, awareness of benefits, lowered stigma, and program 

outreach as possible mechanisms (Yelowitz 1996; Baicker et al. 2014; Schmidt, Shore-Sheppard, 
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and Watson 2019; Lanese, Fischbein, and Furda 2018; Burney, Boehm, and Lopez 2018). Only 

one study I identify considers the reverse causal pathway from SNAP to Medicaid, finding no 

evidence that state-level SNAP expansions affect the probability that households have Medicaid 

coverage (Han 2019). 

The purpose of this study is to estimate the aggregate impacts of SNAP eligibility 

expansions on Medicaid enrollment and spending. I assemble annual state-level information on 

SNAP policies, SNAP participation, and Medicaid enrollment and spending. I construct a 

measure of simulated aggregate eligibility summarizing variation over time in state policies 

determining SNAP eligibility and representing the relative generosity of states’ SNAP rules. 

Using this measure, I estimate the impacts of SNAP expansions on state Medicaid enrollment, 

enrollment of various eligibility subgroups, Medicaid spending per capita, and Medicaid 

spending per Medicaid enrollee. 

This study makes three major contributions. First, it contributes to the broader empirical 

literature on social program interactions. Second, while several studies have studied the effects 

of Medicaid on SNAP, this study is among the first to consider the effects of SNAP on Medicaid. 

Specifically, this study is the first to consider the statewide effects of SNAP expansions on 

Medicaid enrollment and spending. Third, I construct a simulated measure of SNAP eligibility 

incorporating detailed variation in several kinds of state eligibility rules over the twenty years 

from 1996 to 2015. 

I find evidence that expanding SNAP eligibility increases overall Medicaid enrollment. 

Enrollment increases are largest for non-disabled adults, followed by children. SNAP expansions 

reduce total Medicaid spending per enrollee, but not total spending per capita. Coupled with the 

increases in Medicaid enrollment, this suggests that SNAP expansions increase take-up of 
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Medicaid – especially among non-disabled adults – possibly through SNAP participation 

lowering barriers to Medicaid enrollment. On average these marginal Medicaid enrollees do not 

incur as many costs as pre-existing enrollees, at least in the short term. 

 

1. Background 

SNAP provides food-purchasing assistance to millions of eligible low-income households 

in the form of SNAP benefits, also known as food stamps, which can be redeemed for food for 

consumption at home. Benefits are federally funded through the Food and Nutrition Service 

(FNS) of the U.S. Department of Agriculture (USDA), but the program is jointly administered at 

the federal and state levels. The program has grown substantially over the last few decades: from 

1996 to 2016, average participation grew by 73.3%, and benefits issued grew by 93.9%. Several 

program changes occurred alongside this growth, including state-level expansions to eligibility, 

the shift to provision of benefits through electronic benefit transfer (EBT), the shift to joint 

administration with other social programs, a temporary benefit increase as part of the American 

Recovery and Reinvestment Act (ARRA) from 2009 to 2013, and other federal changes to 

eligibility and benefit determination. 

 Medicaid is the second largest public insurance program in the United States behind 

Medicare. Medicaid primarily provides health insurance to millions of people with limited 

income and resources. It is administered by the states in conjunction with the Centers for 

Medicare & Medicaid Services (CMS) and jointly funded by the federal and state governments. 

Eligibility for Medicaid varies for different groups of people defined by law. From 1996 to 2014, 

these included children, parents, pregnant women, seniors aged 65 and older, and disabled 

people receiving Supplemental Security Income (SSI) and/or Social Security disability 
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benefits.66 During this period, the federal government required coverage of members of these 

groups with income at or below a defined percentage of the federal poverty level (FPL), but 

states had leeway to expand eligibility to these groups beyond the minimum required. Many did 

so. In some cases, states expanded eligibility to low-income, childless, non-disabled adults. Like 

SNAP, Medicaid grew substantially during this period. From 1995 to 2016, enrollment grew by 

116.2%, and spending grew by 129.6% (Wolfe, Rennie, and Truffer 2018). 

Medicaid and SNAP target overlapping low-income populations. In a sample from the 

Survey of Income and Program Participation (SIPP) during the Great Recession, 79% of SNAP 

recipient households received Medicaid coverage in some form (Moffitt 2016). Because of this 

overlap, it is possible that changes to one program may affect the benefits and costs households 

face when deciding to apply for or participate in the other. This is especially true for households 

who would not see a large benefit from program participation, e.g., households that would not 

enroll in Medicaid because they do not anticipate using many medical services. One potential 

mechanism for program interplay is the reduction of application or recertification costs. 

Applying for the first program may be costly in that it could be time-consuming, complicated, or 

confusing, but it may reduce the burden involved with applying for the second program. For 

example, applicants may be able to file the second application on the same visit, saving time and 

travel and costs, or they might be more familiar with the application process and the kinds of 

required materials during the second application. Some states reduce application and 

recertification costs for the second program by administering SNAP and Medicaid (among other 

programs) through the same agency and offering joint applications and/or joint processing of 

 
66 Elderly and disabled people receiving Medicaid are frequently dually eligible for Medicare and Medicaid benefits. 

Medicare is the primary payer for most medical services, but Medicaid can cover some benefits Medicare does not, 

such as long-term nursing home and home health services, and/or Medicare premiums or cost-sharing. 
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applications.67 Participation in one program may lower the marginal stigma costs of applying for 

another as households adjust to receipt of public benefits and adjust their attitudes concerning 

them. Awareness of one program may also lead to awareness of the other – especially if they are 

administered together. Expansions of one program may therefore lead to increased participation 

in the other, even among those who are ineligible for the first program, all else equal. Finally, if 

either type of benefit reduces work incentives and subsequent earnings, then it may indirectly 

increase eligibility or take-up of the other. Through any combination of these mechanisms, 

expansions of SNAP eligibility may also increase enrollment in Medicaid and subsequent total 

spending on Medicaid as new enrollees utilize medical services. 

Among SNAP’s stated purposes are the improvement of nutrition and food security for 

needy households. Gregory, Rabbitt, and Ribar (2016) and Bitler (2016) provide overviews of 

the literatures examining the links between SNAP and food security and SNAP and health, 

respectively. When studies control for selection into SNAP, they generally find that the program 

is more likely to have positive impacts on food security, nutrition, and health outcomes. As 

nutrition, food security, and healthcare jointly determine health, it is possible that participation in 

SNAP may reduce the perceived need for insurance coverage through Medicaid such that 

participation in Medicaid falls, especially among lower-risk groups like non-disabled adults. 

Even if SNAP does not reduce Medicaid enrollment, it is likely that those who decide to 

enroll in Medicaid due to a SNAP expansion or due to their own SNAP participation would not 

cost as much to insure as other Medicaid enrollees. Members of the first group, whose Medicaid 

enrollment is “SNAP-induced,” likely have different characteristics than those who specifically 

 
67 FNS provides information about states engaging in joint SNAP and Medicaid application filing and/or processing 

in recent years in a series of “State Options Reports” (USDA FNS 2019e). This data source does not cover the years 

in this study’s sample period. By the end of fiscal year 2017, all states but 12 had implemented one or both forms of 

program integration. 
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and intentionally seek out health insurance through Medicaid. Presumably, if an individual is 

eligible for Medicaid and chooses to enroll independently of other social program participation, 

the benefits to that individual of enrollment – health insurance coverage – outweigh the costs. 

Conversely, if an individual enrolls in Medicaid only because their SNAP participation lowers 

the costs, it is likely that individual’s benefit from enrollment would on average be lower than 

that of the individual who enrolls independently of SNAP participation, as they would face the 

same costs in the absence of SNAP. Since the benefits from health insurance depend largely 

upon the expected utilization of healthcare, it is likely that SNAP-induced Medicaid enrollees 

expect to use fewer medical services – perhaps due to better overall health or barriers to access – 

than average enrollees. Therefore, while SNAP expansions increase Medicaid enrollment and 

total Medicaid spending, if they disproportionally bring in low-cost enrollees like non-disabled 

adults, they might lower average healthcare utilization and spending per enrollee. 

Existing evidence suggests that Medicaid enrollment increases the probability of SNAP 

participation. Yelowitz (1996) finds evidence that expansions in Medicaid eligibility explain 

some of the growth in food stamp participation in the 1980s and 1990s and that the effect does 

not appear to be linked to a change in labor supply. Baicker et al. (2014) exploit randomized 

variation in Medicaid enrollment from the Oregon Health Insurance Experiment and similarly 

find an increase in SNAP participation with little or no change in labor outcomes. Several studies 

find that the Affordable Care Act (ACA) Medicaid expansions increased SNAP take-up, with 

Medicaid outreach being a likely mechanism and increases in SNAP participation concentrated 

among adults without dependents who experienced the largest increases in Medicaid eligibility 

(Schmidt, Shore-Sheppard, and Watson 2019; Lanese, Fischbein, and Furda 2018; Burney, 

Boehm, and Lopez 2018). 
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I identify one study considering the reverse causal pathway from SNAP to Medicaid. Han 

(2019) finds evidence that state-level SNAP eligibility expansions reduce the likelihood that 

households have private health insurance coverage and no evidence of a corresponding increase 

in Medicaid enrollment. 

 

2. Data 

I assemble state-level information over the years 1999 to 2012 on SNAP participation, 

Medicaid enrollment and spending, SNAP and Medicaid policies, and various population 

characteristics.68 I exclude from the sample Alaska and Hawaii due to their different benefit 

formulas and Idaho due to Medicaid enrollment data quality issues.69, 70 

I use annual average SNAP participation counts from the USDA FNS (2019c) in 

conjunction with intercensal population estimates to construct the SNAP participation rate as the 

number participating over the state population, expressed in percentage points.71 

I use counts of Medicaid enrollees from CMS’s Medicaid Statistical Information System 

(MSIS) (2017) to construct Medicaid enrollment rates as the number of Medicaid enrollees over 

the total state population, expressed in percentage points.72, 73 MSIS also provides counts of 

enrollees broken down by basis of eligibility, which I use to construct enrollment rates for four 

 
68 Medicaid spending data is available from 1997, but the sample period is restricted as MSIS enrollment data is 

only available from 1999 to 2012. The restricted sample period avoids variation in Medicaid eligibility and 

participation resulting from ACA Medicaid expansions. 
69 The maximum allotments in Alaska and Hawaii are higher than the standard federal maximum. 
70 MSIS data showed implausible swings in Medicaid enrollment for several eligibility groups in Idaho. I perform 

supplementary analyses using an alternate measure of Medicaid enrollment due to the potential for other unobserved 

data quality issues in the MSIS enrollment data. 
71 Figure C1 in Appendix C displays variation in the SNAP participation rate between states over time. 
72 Data from the original MSIS is not available for public access as of April 2020 as CMS has decommissioned the 

database and is in the process of implementing the Transformed Medicaid Statistical Information System (T-MSIS) 

(Centers for Medicare & Medicaid Services 2019b). Historical state Medicaid enrollment counts are not currently 

available from T-MSIS. 
73 Figure C2 in Appendix C displays variation in the total Medicaid enrollment rate between states over time. 
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groups – children, non-disabled adults under age 65, seniors aged 65 or over, and blind or 

otherwise disabled adults – also expressed as a percentage of overall population.74, 75, 76 In some 

analyses, I consider each eligibility group’s share of total enrollment, which I construct as the 

count of enrollees in each group over total state Medicaid enrollment, expressed in percentage 

points. Due to potential data quality issues observed in the MSIS data, I use in some 

specifications an alternate measure of annual state Medicaid enrollment from the University of 

Kentucky Center for Poverty Research’s (UKCPR) National Welfare Data (2019). I construct an 

alternate Medicaid enrollment rate as described above using this alternate measure as well as an 

alternate measure of Medicaid spending per enrollee, the construction of which I describe below. 

I gather information on annual Medicaid spending by state from state expenditure reports 

from the Medicaid Budget and Expenditure System/State CHIP Budget and Expenditure System 

(CMS 2019a).77, 78 I use this information to construct measures of Medicaid spending per capita 

and per enrollee as total Medicaid spending in 2010-adjusted dollars over total state population 

or total state Medicaid enrollment, respectively.79 

I assemble information on a variety of state-level policies expanding SNAP eligibility in 

various ways over the sample period. I use this information to construct a measure I term the 

 
74 These eligibility groups are mutually exclusive, but not exhaustive. They make up almost 91% of total enrollment, 

on average. Excluded eligibility groups include children in foster care, women screened or treated under breast and 

cervical cancer programs (BCCP), and unknown basis of eligibility. 
75 Figure C3 in Appendix C illustrates trends over time in the national average Medicaid enrollment rates. 
76 The MSIS enrollment data is also broken out by category other than general basis of eligibility, but this data 

appears to be of lower quality, and I therefore do not perform analyses using these other breakdowns. 
77 States electronically submit Form CMS-64, which includes information about total expenditures and detailed 

breakdowns of spending by type, as a part of the federal reimbursement process. CMS makes these forms available 

for public access, though they require cleaning for use in regression analysis. 
78 Form CMS-64 provides detailed breakdowns of spending by type. Due to the increasing prevalence of managed 

care in administering Medicaid during the sample period and the lack of spending breakdowns within managed care 

in this data, it is difficult to examine effects on specific types of Medicaid expenditures. I focus on total spending 

instead. 
79 Figures C4 and C5 in Appendix C display variation in Medicaid spending per capita and Medicaid spending per 

enrollee, respectively, between states over time. Figure C6 illustrates trends over time in national average Medicaid 

spending per capita and per enrollee. 
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“simulated eligibility variable” or SEV, which represents the collective generosity of these 

policies in a state and year. I discuss these policies and the SEV in depth in Section 3. 

I use information on other state characteristics in various contexts. I compile information 

on state Medicaid income eligibility limits as a percentage of the federal poverty level for four 

groups: children, parents, pregnant women, and childless non-disabled. The primary source of 

this information is a dataset on state eligibility limits over time compiled by the Kaiser Family 

Foundation (2019).80 I use demographic information from the Integrated Public Use Microdata 

Series (IPUMS) National Historical Geographic Information System in conjunction with 

population data to construct estimates of the percentage of the population in each year that is 

living in a rural area, black, Hispanic, age 17 or younger, age 60 or older, married, foreign-born, 

or educated with a bachelor’s degree or higher (Manson et al. 2019).81 Other robustness checks 

use annual state-level information from a variety of sources.82 

The dataset consists of 48 jurisdictions (47 states and Washington, D.C.), 14 years from 

1999 to 2012, and 672 state-year observations. Information about total Medicaid enrollment, 

subgroup Medicaid enrollment, and Medicaid eligibility limits is unavailable for some state-

years, so the sample size practically varies from 613 to 668 state-years depending on regression 

 
80 The Kaiser Family Foundation (2019) provides information on state Medicaid eligibility limits for children from 

2000-2019, for parents from 2002-2019, for pregnant women from 2003-2019, and for other non-disabled adults 

from 2011-2019. I fill in eligibility information from 1999 and later missing years using numerous state Medicaid 

waivers, primarily sourced from a list provided by CMS (2020). As states sometimes operate multiple Medicaid-

related services for the same subgroup, I use the eligibility limits for substantial programs that would likely impact 

both Medicaid enrollment and spending. Because the application of these criteria can be unclear, I collect differing 

eligibility limits for different substantial services when they exist and consider specifications alternately using the 

higher of the conflicting limits, the lower of these limits, or the midpoints between these limits as controls. Baseline 

specifications include the midpoints between limits. 
81 Where this information is only available decennially, estimates are constructed by linear interpolation. 
82 These data include information on state unemployment rates, poverty rates, policy environments, and other social 

program participation information from the UKCPR’s National Welfare Data (2019) as well as information on 

personal income and government transfers from the Bureau of Economic Analysis’ Regional Economic Accounts 

(2019). 
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specification.83 Table 13 reports the population-weighted means and standard deviations of the 

key variables used in the primary analyses.84 The average SNAP participation rate is about 9.5% 

and the average SEV is about 16.6%. The average overall Medicaid enrollment rate is 18.8%. 

Figure 6 breaks down of average Medicaid enrollment over the sample period by eligibility 

group. On average, 47.2% of enrollees are children, 21.3% are non-disabled adults, 7.5% are 

seniors, and 15.0% are disabled adults. Total Medicaid spending averages $1,157 per capita or 

$6,330 per enrollee. 

 

 

Figure 6. Medicaid enrollment by eligibility group 

 
1999-2012 U.S. average, excluding AK, HI, and ID. Source: CMS MSIS (2017).  

 
83 Table C1 in Appendix C provides information about the extent of these missing variables and the limits they place 

on sample size for various regression specifications. 
84 Table C2 in Appendix C presents summary statistics of all variables I use in the primary analyses and robustness 

checks. 
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Table 13. Selected summary statistics 

 Mean Std. dev. Observations 

    

SNAP variables    

Participation rate (%) 9.519 (4.038) 672 

Simulated eligibility variable (SEV) (%) 16.58 (3.934) 672 

    

Medicaid/CHIP enrollment rate (% of total population) 

Total 18.84 (5.608) 661 

Children 8.782 (2.107) 613 

Adults 4.321 (2.584) 613 

Elderly (age 65+) 1.396 (0.421) 613 

Blind/disabled 2.812 (0.931) 613 

    

Medicaid/CHIP spending (2010 $) 

Per capita (overall population) 1157.0 (440.0) 672 

Per Medicaid enrollee 6329.9 (1947.0) 661 

    

Medicaid eligibility limits (% of federal poverty level) 

Infants 229.9 (47.73) 668 

Children aged 1-5 228.6 (49.06) 668 

Children aged 6-18 228.0 (50.13) 668 

Pregnant women, midpoint 198.3 (37.96) 668 

Parents, midpoint 87.97 (53.54) 668 

Childless non-disabled adults, midpoint 16.33 (35.78) 668 

    

Population (unweighted) 6115908.4 (6586079.4) 672 

 

Demographic characteristics (% of population) 

Rural 19.98 (12.16) 672 

Black 12.60 (8.040) 672 

Hispanic 14.76 (12.30) 672 

Age 0-17 24.69 (1.805) 672 

Age 60+ 17.62 (2.416) 672 

Married 53.42 (3.013) 672 

Have bachelor's degree 26.58 (4.500) 672 

Foreign-born 12.11 (7.932) 672 

    
Statistics are weighted by state population, excluding population itself. The sample excludes Alaska and Hawaii due 

to different federal SNAP benefit formulas and Idaho due to Medicaid enrollment data quality issues. The sample 

period is 1999-2012. Medicaid enrollment and eligibility data are unavailable for some state-years at the beginning 

and end of the sample period, which is further detailed in Table C1 in Appendix C. Full summary statistics are 

available in Table C2 in Appendix C. 
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3. Methodology 

3.1. Endogeneity of SNAP 

The goal of this study is to estimate the aggregate effects of SNAP on Medicaid 

enrollment and spending. One approach to estimating these effects would be to estimate the fixed 

effects model 

 𝑀𝑒𝑑𝑠𝑡 = 𝛽0 + 𝛽1𝑆𝑁𝐴𝑃𝑠𝑡 + 𝜷𝟐𝑿𝒔𝒕 + 𝜷𝟑𝑺𝑭𝑬𝒔 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜖𝑠𝑡 (7) 

Here, 𝑀𝑒𝑑𝑠𝑡 represents one of the Medicaid outcomes of interest in a given state 𝑠 and year 𝑡. 

𝑆𝑁𝐴𝑃𝑠𝑡 represents the SNAP participation rate. 𝑿𝒔𝒕 represents a vector of covariates, while 

𝑺𝑭𝑬𝒔 and 𝒀𝑭𝑬𝒕 represent state and year fixed effects. 

Any study of the causal effects of SNAP must address the potential endogeneity of SNAP 

participation.85 I have described several mechanisms through which SNAP participation may 

increase Medicaid enrollment and affect subsequent expenditures, but several studies find 

evidence that Medicaid impacts SNAP in similar ways. Estimates of 𝛽1 from model (7) are 

therefore likely biased upwards. Isolating the effects of SNAP on Medicaid requires accounting 

for this reverse causal pathway. The ideal study would make use of randomized variation in 

𝑆𝑁𝐴𝑃𝑠𝑡 to study effects on Medicaid outcomes, but variation of this kind is not available. To 

address these issues, I focus instead on variation in state-level policies governing SNAP 

eligibility. 

3.2. SNAP expansions 

Under the federal SNAP rules, households are eligible if they have gross income under 

130% of the FPL, net income under 100% of the FPL, and countable resources under the asset 

 
85 SNAP selection issues are well-documented in the literature, e.g., in the context of determining the effect of 

SNAP on food security (Gregory, Rabbitt, and Ribar 2016). 
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limit (USDA FNS 2019d).86 Alternately, households are categorically eligible for SNAP if all 

household members receive Temporary Assistance for Needy Families (TANF), SSI, and/or 

General Assistance in some states. The benefit formula is also determined at the federal level. 

Each household’s monthly benefit is equal to a maximum monthly allotment, which increases 

with household size, minus 30% of net income. 

Since the enactment of welfare reform in 1996 and subsequent federal guidance, states 

have been given the flexibility to expand SNAP eligibility beyond the federal limits (Aussenberg 

and Falk 2019).87 One option available is to alter the asset test by aligning SNAP vehicle policy 

with other social programs. States can increase the standard deduction applied to each vehicle’s 

fair market value, exclude extra vehicles from the test, or eliminate vehicles from consideration. 

Every state has altered vehicle treatment in some way as of 2007.88 Another option is to 

implement a standard medical expense deduction (SMED) that effectively reduces the net 

income of households with elderly or disabled members with out-of-pocket medical expenses 

below the deduction level.89 16 states have implemented SMEDs as of 2015.90 

 
86 Households with elderly (age 60 or older) or disabled members are exempt from the gross income test. Monthly 

net income is equal to gross income minus 20% of earned income, a standard deduction varying over time, 

dependent care expenses (capped in earlier years of the time period), child support expenses, out-of-pocket medical 

costs over $35 for elderly and disabled members, and an excess shelter deduction equal to shelter costs over half of 

adjusted income but no more than the upper limit. The asset limit varies by year and is higher for households with 

elderly or disabled members. As of 2019, the asset limit is $2,250 for households without elderly or disabled 

members and $3,500 for households with such members. Included in countable resources is the fair market value of 

owned vehicles minus a $4650 deduction per driver in the household. 
87 States are not permitted to restrict eligibility to households that are eligible under the federal rules, only expand it 

to those households that are ineligible under the federal rules. 
88 Figure A1 shows how states altered the treatment of vehicles over time for households without elderly or disabled 

members. Many states adopted less restrictive vehicle policies in the early 2000s, and most eventually moved to 

exclude all vehicles from the asset test. 
89 Federal SNAP rules define a person aged 60 years or more as elderly and a person receiving specific federal or 

state disability benefits as disabled. 
90 Figure A2 shows the 16 states that have implemented SMEDs as of 2015. Most states that implemented SMEDs 

did so in the late 2000s or early 2010s. 
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States are also able to implement “broad-based categorical eligibility” (BBCE) 

expansions in which they extend SNAP eligibility to households receiving certain non-cash 

benefits provided using TANF or maintenance-of-effort funds. States typically extend BBCE 

through the provision of simple benefits like brochures or referrals to telephone hotlines, making 

these expansions relatively inexpensive (Aussenberg and Falk 2019). Aligning SNAP eligibility 

to eligibility for these benefits effectively loosens or eliminates one or more of the gross income, 

net income, or asset tests for all or some subset of households.91,
 
92 From 1996 until 2015, the 

most common outcome of BBCE expansions was the elimination or alteration of the asset test, 

and the second most common outcome was a higher gross income limit. In 2015, 28 jurisdictions 

had expanded the gross income limit for some households without elderly or disabled members 

through BBCE expansions, 36 had eliminated or altered the asset test for at least some 

households, and 40 jurisdictions in total had implemented expansions of some type.93 

States and their social services agencies may have several reasons to adopt the SNAP 

policies described here. These expansions are relatively inexpensive to states as the federal 

government funds SNAP benefits. They typically simplify administration, allow greater 

coordination between assistance programs, reduce the potential for errors in determining 

 
91 BBCE expansions sometimes alter the income or asset tests only for households of a certain type or alter these 

tests differently for households of different types, e.g. households with any elderly and/or disabled members or 

households with children. 
92 Despite the extension of eligibility in these ways, it is important to note that some households that are made 

technically eligible for SNAP cannot receive a positive benefit due to their calculated benefit, which depends on net 

income and household size, being at or below zero. Larger households with net incomes higher than about 100% of 

the federal poverty level are ineligible for a positive benefit even if they pass their state’s altered gross income, net 

income, and asset tests. In some years of the sample period, this threshold is as high as 115%. However, smaller 

households of one to two members passing these tests are always eligible for a small minimum monthly benefit 

ranging between $10 and $16 from 1996 to 2015. 
93 Figure A3 shows the least restrictive non-elderly gross income test that may be applied to households without 

elderly or disabled members that are made eligible through BBCE policies. Relative to changes in vehicle asset and 

SMED policies over the period from 2000 to 2015, changes to the gross income test are less concentrated in timing. 

Adoption of more flexible gross income tests are concentrated in states in the Northeast, Upper Midwest, Southwest, 

and Pacific regions, with many states in the Midwest and Southeast not expanding in this way. 
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eligibility, and generally ease entry into SNAP for eligible households (Aussenberg and Falk 

2019). It is possible states would expand SNAP in response to increasing need during economic 

downturns or for political reasons, but I test for these possibilities in Section 5 and find little 

evidence that they are driving factors.94 

3.3 Simulated SNAP eligibility variable 

States expand SNAP in the ways described above in greatly differing ways. Vehicle 

alterations, SMEDs, and BBCE expansions can take on very different “strengths.” For instance, 

states could use BBCE to only increase the countable resource limit or to do away entirely with 

the asset test and net income test and raise the gross income test from 130% to 200% of the FPL. 

States frequently implement more than one type of expansion at once such that they interact with 

each other to determine household eligibility criteria. Some states’ expansions impose different 

criteria for different subpopulations, e.g., households with elderly or disabled members or 

households with children. Due to these differences, binary indicators for whether certain types of 

expansions exist fail to capture the full extent of the variation in these policies. 

One approach originally used to overcome issues of endogeneity between Medicaid 

participation and other outcomes is the construction of simulated measures of eligibility (Currie 

and Gruber 1996; Cutler and Gruber 1996). A simulated eligibility variable (SEV) is typically 

constructed as the portion of a fixed sample of people or households eligible for a program under 

the changing rules in place in each of several areas at different times. The sample is fixed in that 

it always includes the same individuals or households with the same characteristics. The only 

 
94 Most states do not expand SNAP to the maximum extent possible. SNAP expansions rely on alignment to other 

program eligibility criteria. Though the benefits these programs provide may be cheap as in the case of BBCE 

expansions, states must still bear the costs of providing them. Though administrative costs per case may decrease, 

overall administrative costs may increase if expansions greatly increase SNAP participation. Inertia or a hostile 

political environment may prevent some states from expanding SNAP. Further, states may expect expansions to 

SNAP to increase caseloads in other social programs, which would increase both financial and administrative costs. 
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variable factors are the changing eligibility criteria, often at the state-year-level. The use of a 

shared, fixed sample means that variation in the SEV derives only from changes in rules or 

policies, not endogenous changes in state-specific demographic or economic characteristics. 

Similarly, movement between states due to policy changes does not factor into the SEV’s 

construction. The SEV therefore represents a measure of relative policy generosity that can be 

used to compare states over time; if it is higher in one state-year than another, that state extends 

eligibility to a larger portion of the common sample in that year than the other state-year. 

The simulated eligibility approach is a convenient way to summarize the state rule 

changes I describe in a single measure. Other studies have employed simulated eligibility and 

benefit measures to study the effects of SNAP in various contexts (Han 2016, 2019; Leung and 

Seo 2019). I construct a simulated eligibility measure for use in the area-level context of this 

study that incorporates detailed variation in several types of state policies that affect SNAP 

eligibility and only counts households as eligible for SNAP if they qualify for a non-zero 

benefit.95 Further, I employ this measure to estimate the impacts of expanded SNAP eligibility as 

well as in an instrumental variables (IV) framework in order to contextualize the reduced form 

estimates in terms of changes in SNAP participation tied to variation in the SEV. 

I gather information from the USDA Economic Research Service’s SNAP Policy 

Database on how states alter their BBCE and vehicle asset policies over time (2018). I gather 

additional details of these and other policies I require using reports from additional sources.96 

These include information such as which types of households are affected by BBCE expansions, 

 
95 Han’s (2016, 2019) simulated eligibility measure captures variation in BBCE policies. My measure also uses 

variation in SMED policies and non-BBCE vehicle policies relevant to determining the eligibility of households 

living in states without BBCE or who are not eligible for SNAP through their state’s BBCE policy. It also uses 

policy variation covering a longer time period. Han (2019) considers a simulated eligibility measure excluding zero-

benefit households but purposefully includes these households in the baseline measure as their “technical eligibility” 

is relevant to their eligibility for other programs. 
96 These sources are detailed in Table A3 in Appendix A. 
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how many vehicles are exempted from the asset test, the size of SMEDs, and the size of 

allotments and standard deductions varying by household size and year. I verify these policy 

details and the timing of their implementation using specific state SNAP policy manuals and 

reports or contacting state program administrators. Specific information on these rules and their 

changes over time is included in Tables A1 and A2 in Appendix A. 

To construct the SEV, I use a sample of households from the Survey of Income and 

Program Participation (SIPP) (2019) from every state and most years from 1996 to 2013.97 The 

SIPP contains detailed information on household assets, income, expenses, and other 

characteristics necessary to determine household SNAP eligibility and benefit size. The inclusion 

of households from every state and many years ensures that the sample is widely representative 

of the United States on a national level during the sample period. To construct the SEV for a 

given state-year, I first adjust each household’s finances for inflation to the relevant year. Then, I 

apply the federal and state rules in place in the given state and year to determine each 

households’ SNAP eligibility. Since some “technically eligible” households have net income 

high enough to disqualify them for a positive benefit, I also calculate each eligible household’s 

benefit according to the benefit formula in place in the relevant year. I consider only those that 

are also eligible for a positive benefit to be “practically eligible.” I then construct 𝑆𝐸𝑉𝑠𝑡 for the 

state 𝑠 and year 𝑡 as 

 𝑆𝐸𝑉𝑠𝑡 =  
# SIPP individuals in practically eligible householdsst

Total # SIPP individuals
 (8) 

 
97 The SIPP includes information on about 343,000 household-year observations composed of about 877,000 

individual-year observations and covers every year from 1996 to 2013 except 2000, 2006-2008, and 2012. More 

information on the SIPP sample, sample exclusions, and more is included in Appendix A. 
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I repeat this process for each state and Washington, D.C. from 1996 to 2015. I represent 𝑆𝐸𝑉𝑠𝑡 in 

percentage points, meaning it can take on values between 0 and 100. Appendix A contains an in-

depth discussion on the SEV, its construction, and the policies contributing to its variation.98 

 Most of the variation in the SEV derives from BBCE expansions, especially those doing 

away with asset tests and/or increasing the gross income limit. Table 17, which is discussed in 

full in Section 4, shows how several typical expansions affect the SEV. Figure 7 illustrates 

interstate variation in the SEV over time. The SEV tends to increase or stay constant over time as 

most states only expand SNAP eligibility during the sample period, although a few states reverse 

expansions or change their policies such that the SEV falls. Figure 8 illustrates variation in the 

national average of the SEV, the average simulated federal eligibility rate – the portion of the 

SIPP sample that would be eligible for a positive benefit if no states expanded eligibility beyond 

the federal minimum – and the actual participation rate. Increases in the average value of the 

SEV above and beyond the simulated federal eligibility rate represent aggregate increases in 

SNAP policy generosity. Expansions occurred largely in two waves: vehicle test alterations and 

some BBCE expansions in the early 2000s and more BBCE expansions in and around the late 

2000s during the Great Recession. Figure 8 also suggests a strong positive relationship between 

the SEV and the participation rate. 

3.4 Reduced form model 

 To examine the impacts of SNAP eligibility expansions on Medicaid spending and 

enrollment, I estimate fixed effects models of the form: 

 𝑀𝑒𝑑𝑠𝑡 = 𝛽0 + 𝛽1𝑆𝐸𝑉𝑠𝑡 + 𝜷𝟐𝑿𝒔𝒕 + 𝜷𝟑𝑺𝑭𝑬𝒔 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜖𝑠𝑡 (9)

 
98 I also construct and consider a “simulated potential benefit variable” (SPBV) representing the average monthly 

SNAP benefit received by households in the same common SIPP sample used to construct the SEV if every eligible 

household participated and received their maximum benefit. Further details are included in Appendix A. 
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Figure 7. Simulated SNAP eligibility variable (SEV) by state 

 

 
  



 

75 

Figure 8. National simulated eligibility, simulated federal eligibility, and SNAP participation 
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𝑀𝑒𝑑𝑠𝑡 represents one of the seven primary Medicaid enrollment or spending measures: total 

enrollment rate, child enrollment rate, adult enrollment rate, elderly enrollment rate, 

blind/disabled enrollment rate, spending per capita, or spending per enrollee. I also consider 

models using the shares of total enrollment for each of the four subgroups listed as outcomes. 

Baseline models include information on state-level demographic characteristics and Medicaid 

income eligibility limits in 𝑿𝒔𝒕.
99 Baseline models also include state fixed effects 𝑺𝑭𝑬𝒔 and year 

fixed effects 𝒀𝑭𝑬𝒕 to account for time-invariant state characteristics and nationwide trends over 

time. Unlike in Chapter I, I opt to exclude state-specific time trends from the baseline model due 

to the shorter sample period.100 Robust standard errors are clustered by state 𝑠. Results from 

baseline regressions are presented in Section 4. I describe and test the identification assumptions 

I make in detail and consider alternative models as robustness checks in Section 5. 

3.5 Instrumental variables model 

Reduced form estimates of 𝛽1 from model (9) are valuable for determining if eligibility 

expansions impact Medicaid spending or enrollment, but it is difficult to interpret the magnitudes 

of these estimates. The SEV is a measure I construct solely to compare the collective generosity 

of SNAP policy between states and is not directly analogous to an actual eligibility rate because 

the SIPP oversamples low-income and low-resource households. Therefore, I estimate IV models 

in which the SEV instruments for the actual SNAP participation rate in order to contextualize the 

reduced form estimates. 

 I estimate the first-stage model 

 𝑆𝑁𝐴𝑃𝑠𝑡 = 𝛼0 + 𝛼1𝑆𝐸𝑉𝑠𝑡 + 𝜶𝟐𝑿𝒔𝒕 + 𝜶𝟑𝑺𝑭𝑬𝒔 + 𝜶𝟒𝒀𝑭𝑬𝒕 + 휀𝑠𝑡 (10) 

 
99 Baseline models include in 𝑿𝒔𝒕 the midpoints of the upper and lower Medicaid income eligibility limits I collect 

(when multiple limits exist) and the percentages of the population that are living in rural areas, black, Hispanic, age 

0-17, age 60+, married, educated with a bachelor’s degree or higher, and foreign-born. 
100 I consider alternate models including state-specific time trends in Section 5. 
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to obtain 𝑆𝑁𝐴�̂�𝑠𝑡, the predicted values of the participation rate 𝑆𝑁𝐴𝑃𝑠𝑡. Baseline models include 

the same controls and fixed effects as model (9). Using 𝑆𝑁𝐴�̂�𝑠𝑡, I then estimate second-stage 

models of the form: 

 𝑀𝑒𝑑𝑠𝑡 = 𝛽0 + 𝛽1𝑆𝑁𝐴�̂�𝑠𝑡 + 𝜷𝟐𝑿𝒔𝒕 + 𝜷𝟑𝑺𝑭𝑬𝒔 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜖𝑠𝑡 (11) 

These models are structured the same and include the same controls as model (9) but with 

𝑆𝑁𝐴�̂�𝑠𝑡 in place of 𝑆𝐸𝑉𝑠𝑡. 

I present first-stage and second-stage IV results in Section 4. I also describe the 

assumptions required for identification of 𝛽1 and challenges to IV identification in Section 5. 

 

4. Results 

4.1. Hypotheses 

I hypothesize that SNAP eligibility expansions – as represented by an increase in the 

SEV – would increase aggregate Medicaid enrollment, increase Medicaid spending per capita, 

and decrease Medicaid spending per enrollee. 

SNAP expansions are likely to increase SNAP participation, which would also likely 

increase Medicaid enrollment. As described in Section 1, SNAP participation likely decreases 

the marginal costs of applying for and participating in Medicaid such that it may encourage new 

SNAP recipient households to enroll eligible members, especially among children and adults 

who participate in SNAP at higher rates than the elderly (Haider, Jacknowitz, and Schoeni 

2003).101 Though SNAP may improve health, existing studies do not indicate health benefits 

large and immediate enough to reduce the benefits that SNAP recipients would receive from 

 
101 SNAP participation is likely to reduce the marginal time, travel, and stigma costs of application and 

recertification for Medicaid, especially when these programs are jointly administered. It may also raise awareness of 

Medicaid eligibility and make the application process less confusing. 
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health insurance through Medicaid (Bitler 2016). SNAP expansions may also increase Medicaid 

enrollment through channels other than SNAP receipt, e.g., through raising general awareness of 

social programs. Therefore, there is little reason that SNAP expansions and subsequent increases 

in SNAP participation would decrease Medicaid enrollment, all else equal. 

However, SNAP expansion-induced Medicaid enrollment increases are not likely to 

translate to large short-term increases in healthcare utilization or spending for two reasons. First, 

new Medicaid enrollees entering the program due to a SNAP expansion likely have lower need 

for healthcare than the average Medicaid enrollee. If someone eligible for Medicaid did have 

higher need and would therefore utilize more care once enrolled – e.g., due to poor health – it is 

more likely that they would have already enrolled in Medicaid as the benefits of enrolling, or the 

costs of not enrolling, would be higher. In other words, SNAP expansions may encourage lower-

risk individuals to enter a previously higher-risk Medicaid risk pool, alleviating adverse 

selection. This would lead to an increase in total healthcare utilization but a decrease in average 

utilization and subsequently increase Medicaid spending per capita but decrease Medicaid 

spending per enrollee. 

Second, new Medicaid enrollees entering the program due to a SNAP expansion may 

face information and access barriers to using their Medicaid benefits that those enrolled for 

several years have overcome. This would lead to lower healthcare utilization among these new 

Medicaid enrollees relative to pre-existing enrollees. As described above, this would also lead to 

an increase in total utilization but decrease average utilization and subsequently increase 

Medicaid spending per capita but decrease spending per enrollee, at least in the short term. 
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4.2. Primary results 

Table 14 reports the results from regressions of the primary Medicaid enrollment and 

spending outcomes on the SEV, including the overall Medicaid enrollment rate; the child, non-

disabled adult, senior, and blind/disabled enrollment rates; total Medicaid spending per capita; 

and total Medicaid spending per Medicaid enrollee. The SEV is expressed in percentage points 

and can range from 0 to 100. Sample size varies between these regressions due to missing 

observations for some variables in some state-years.102 

I find evidence that SNAP eligibility expansions increase the overall Medicaid 

enrollment rate. Specifically, a one percentage point increase in the SEV – roughly 6.0% of the 

mean value of 16.58% – increases the Medicaid enrollment rate by about 0.13 percentage points, 

or about 0.7% of the mean Medicaid enrollment rate. This effect appears to be driven primarily 

by increases in adult and child enrollment. A one percentage point increase in the SEV increases 

these subgroup’s enrollment as a percentage of total population by 0.060 percentage points 

(1.4% of the mean) and 0.033 percentage points (0.4% of the mean), respectively. I find no 

evidence of corresponding increases in elderly or blind/disabled Medicaid enrollment. I find 

evidence that SNAP expansions decrease Medicaid spending per Medicaid enrollee. A one 

percentage point increase in the SEV decreases spending per enrollee by about $58, or about 

0.9% of the mean spending per enrollee of $6,330. Contrary to expectations, I do not find 

evidence that these expansions affect Medicaid spending per capita. Together, these estimates 

suggest that “SNAP expansion-induced” Medicaid enrollees do not utilize many covered medical 

services – at least not shortly after enrollment. If they did incur similar expenses to those already 

enrolled in Medicaid, spending per capita should increase.

 
102 Table C1 in Appendix C provides information about how missing Medicaid outcomes and eligibility information 

affect the sample size. 
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Table 14. Medicaid enrollment and spending outcome regression results 

 Medicaid enrollment rate (% of total population)  Medicaid total spending 

(2010 $) 

 Overall Children Adults Elderly Blind/disabled  Per capita Per enrollee 

         

SNAP SEV 0.132*** 0.0329** 0.0601** 0.00764 0.00535  -1.429 -58.07*** 

 (0.0465) (0.0163) (0.0280) (0.00501) (0.00599)  (2.623) (17.40) 

         

Demographic controls  Yes Yes Yes Yes Yes  Yes Yes 

Medicaid eligibility 

limit controls  

Yes Yes Yes Yes Yes  Yes Yes 

State and year FE  Yes Yes Yes Yes Yes  Yes Yes 

         

Mean of dep. var. 18.84 8.782 4.321 1.396 2.812  1157.0 6329.9 

Mean SEV 16.58 16.58 16.58 16.58 16.58  16.58 16.58 

R2 0.765 0.808 0.634 0.291 0.688  0.826 0.299 

Observations 657 610 610 610 610  668 657 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All regressions are weighted by state population. The 

simulated SNAP eligibility variable (SEV) is expressed in percentage points. Medicaid enrollment rates represent the number of enrollees as a percentage of the 

overall population and are expressed in percentage points. Medicaid spending per capita or per Medicaid enrollee is expressed in 2010-adjusted dollars. 
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Table 15 reports abbreviated results from the first-stage regression of the SNAP 

participation rate on the SEV. The SEV is strongly positively correlated with the SNAP 

participation rate. Like the SEV, the SNAP participation rate is expressed in percentage points 

and can range from 0 to 100. A one percentage point increase in the SEV increases the state 

SNAP participation rate by 0.162 percentage points on average, or about 1.7% of the mean 

participation rate of 9.5%. The first-stage F-statistic of 25.4 indicates that the SEV is well-

powered to instrument for SNAP participation.103 I compare the results of first-stage regressions 

using the SEV and other policy instruments in Table C3 in Appendix C. The SEV I construct 

outperforms a variety of SNAP policy instruments used in other IV studies. 

 

Table 15. First-stage regression results 

 SNAP participation rate 

  

SNAP SEV 0.162*** 

 (0.0322) 

  

Demographic controls  Yes 

Medicaid eligibility limits  Yes 

State and year FE  Yes 

  

Mean SNAP part. rate 9.519 

Mean SEV 16.58 

First-stage F-statistic 25.40 

R2 0.942 

Observations 668 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All 

regressions are weighted by state population. The SNAP participation rate and the simulated SNAP eligibility 

variable (SEV) are expressed in percentage points. The participation rate indicates the actual percentage of the 

population belonging to a household that receives SNAP benefits, and the SEV indicates the percentage of the SIPP 

sample belonging to an eligible household when each state-year's SNAP eligibility rules are applied. 

  

 
103 The F-statistic exceeds the critical value of 16.4 to limit the maximum Wald test size distortion to 0.10 at the 5% 

significance level (Stock and Yogo 2005). 
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Table 16 reports the second-stage IV results of regressions of the primary Medicaid 

enrollment and spending outcomes on the predicted SNAP participation rate from the first stage.  

As the IV model is just-identified, these estimates are proportional in magnitude to those 

reported in Table 14. Taken with those results, the IV results in Table 16 provide context for how 

changes in the SEV affect Medicaid enrollment and spending through SNAP expansions’ effects 

on the participation rate. Table 16 also shows results from the naïve regressions of these same 

outcomes on the SNAP participation rate. 

A one percentage point increase in the predicted SNAP participation rate – roughly 

10.5% of the mean rate of 9.5% – is associated with a 0.89 percentage point increase in the 

overall Medicaid enrollment rate (4.7% of the mean), a 0.45 percentage point increase in the 

adult Medicaid enrollment rate (10.3% of the mean), and a 0.24 percentage point increase in the 

child Medicaid enrollment rate (2.8% of the mean). Similarly, a one percentage point increase in 

the predicted SNAP participation rate is associated with a decrease of $391 in Medicaid spending 

per enrollee. The estimated coefficients, particularly those on the various enrollment rates, are 

implausibly large. The estimated coefficient of 0.89 on the overall Medicaid enrollment rate 

implies that nearly 90% of individuals that begin participating in SNAP due to eligibility 

expansions would also newly enroll in Medicaid. This is unlikely for several reasons. Some new 

SNAP households would already have members enrolled in Medicaid and be unable to enroll 

them again. New SNAP participants would also frequently be ineligible for Medicaid as 

Medicaid income eligibility criteria were typically more restrictive than SNAP income eligibility 

criteria during the sample period for the adults driving the change in Medicaid enrollment. Even 

if all new SNAP participants were eligible for Medicaid, this implied take-up rate seems 

implausibly high, though not impossible.
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Table 16. Medicaid enrollment and spending outcome second-stage and naïve regression results 
 Medicaid enrollment rate (% of total population)  Medicaid total spending 

(2010 $) 

 Overall Children Adults Elderly Blind/disabled  Per capita Per enrollee 
         

Instrumental variables second stage 
         

Predicted SNAP part. 

rate 

0.891*** 0.244** 0.446* 0.0567 0.0397  -8.811 -391.3*** 

 (0.305) (0.102) (0.235) (0.0416) (0.0427)  (16.48) (139.7) 
         

R2 0.755 0.823 0.580 0.261 0.679  0.826 0.175 
         

Naive fixed effects 
         

SNAP part. rate 0.435*** 0.211*** 0.137** 0.0144 0.00309  -4.479 -132.1*** 

 (0.110) (0.0515) (0.0608) (0.0120) (0.0120)  (5.549) (31.21) 
         

Mean of dep. var. 18.84 8.782 4.321 1.396 2.812  1157.0 6329.9 

Mean SNAP part. rate 9.519 9.519 9.519 9.519 9.519  9.519 9.519 

R2 0.772 0.823 0.632 0.288 0.687  0.826 0.294 

Observations 657 610 610 610 610  668 657 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All regressions are weighted by state population. The 

predicted SNAP participation rate from the first stage and the actual SNAP participation rate are expressed in percentage points. Medicaid enrollment rates 

represent the number of enrollees as a percentage of the overall population and are expressed in percentage points. Medicaid spending per capita or per Medicaid 

enrollee is expressed in 2010-adjusted dollars. 
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I propose two potential explanations. First, SNAP expansions may not only make it less 

costly for participants to apply for Medicaid but may also raise awareness of social program 

eligibility or decrease the stigma of social program participation generally among participants’ 

social networks. While SNAP eligibility can rely on household resources and other factors, 

Medicaid eligibility generally relies on income, so part of these increases in Medicaid take-up 

could be attributable to SNAP-ineligible individuals. Social network effects such as these may 

amplify the impacts of SNAP participation on Medicaid enrollment. Second, SNAP expansions 

themselves may drive significant increases in Medicaid take-up through channels other than 

SNAP participation. For this reason, I rely primarily on the estimates from Table 14 as measures 

of the causal impacts of SNAP expansions on Medicaid enrollment and spending.104 

The estimates from the naïve regressions are similar in sign and statistical significance to 

the IV estimates but are uniformly smaller in magnitude. In Section 3, I describe reverse 

causality as an important and likely source of upward bias in these estimates, as Medicaid 

enrollment is likely to also increase SNAP participation. I do not rule out mechanisms other than 

changes in SNAP participation through which SNAP eligibility expansions may influence the 

Medicaid outcomes, so I therefore refrain from drawing conclusions from comparisons between 

the IV and naïve estimates. However, if the naïve estimates are biased upwards, they would 

likely represent upper bounds of the true impacts of SNAP participation on Medicaid enrollment 

or a lower bound of the impact on Medicaid spending per enrollee. 

4.3. Other results 

Table 17 outlines how several common state SNAP expansions increase the value of the 

SEV, increase the estimated SNAP participation rate, and affect the estimated overall Medicaid 

 
104 I discuss the assumptions required for identification in the reduced form and IV models further in Section 5. 
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Table 17. Impacts of common state policies altering SNAP eligibility 
Policy Mean 

SEV 

(%) 

Increase over 

baseline (% 

points) 

Est. increase in SNAP 

part. rate (% points) 

Est. increase in 

Medicaid enrollment 

rate (% points) 

Est. decrease in Medicaid 

spending per Medicaid 

enrollee (2010 $) 

Baseline: no state rule change 

(federal minimum eligibility) 

13.04 - - -  

BBCE: Eliminate asset and net income tests; 

gross income test of: 

     

130% FPL 17.08 4.04 0.65 0.53 -234.60 

165% FPL 21.24 8.20 1.33 1.08 -476.17 

185% FPL 22.77 9.73 1.58 1.28 -565.02 

200% FPL 23.82 10.78 1.75 1.42 -625.99 

BBCE: Eliminate asset test; net income test 

of 100% FPL; gross income test of:  

  

   

130% FPL 16.65 3.61 0.58 0.48 -209.63 

165% FPL 18.31 5.27 0.85 0.70 -306.03 

185% FPL 18.55 5.51 0.89 0.73 -319.97 

200% FPL 18.63 5.59 0.91 0.74 -324.61 

BBCE: Eliminate asset and net income tests; 

gross income test of: 

  

   

200% FPL for households with children 18.05 5.01 0.81 0.66 -290.93 

200% FPL for households with elderly or 

disabled members; 130% FPL for others 

20.74 7.70 

1.25 1.02 -447.14 

200% FPL for households with elderly or 

disabled members 

18.56 5.52 

0.89 0.73 -320.55 

SMED of:      

$100 13.11 0.07 0.01 0.01 -4.06 

$200 13.25 0.21 0.03 0.03 -12.19 

Vehicles: Exclude:      

One per household 14.33 1.29 0.21 0.17 -74.91 

One per adult 14.54 1.50 0.24 0.20 -87.11 

All 14.59 1.55 0.25 0.20 -90.01 

SEV is calculated separately as if denoted policy were applied in each year of the sample in a state in the contiguous United States. Mean SEV represents the 

cross-year average of the SEV for the sample period 1996-2015. Estimated increase in SNAP participation rate assumes that a one percentage point increase in 

the SEV increases the SNAP participation rate by 0.162 percentage points as estimated in Table 15. Estimated changes in overall Medicaid enrollment rate and 

Medicaid spending per enrollee assume that a one percentage point increase in the SEV increases the Medicaid enrollment rate by 0.132 percentage points or 

reduces Medicaid spending per enrollee by $58.07 as estimated in Table 14. 
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enrollment rate and spending per Medicaid enrollee. I present a common BBCE expansion as an 

example: eliminating the asset and net income tests and imposing a gross income test of 130% 

FPL. This expansion increases the value of the SEV by about 4.04 percentage points, about 

24.4% of its mean value or 31.0% of its baseline value when no state expansions are in place. 

Applying the estimates from Tables 15 and 14, I estimate that this expansion would increase the 

SNAP participation rate by about 0.65 percentage points and increase the Medicaid enrollment 

rate by about 0.53 percentage points. In a state of 5 million people, this expansion would predict 

26,500 new Medicaid enrollees, and Medicaid spending per enrollee would fall by about $235. 

 Table 18 presents the results of regressions using as outcomes the shares of total 

Medicaid enrollment belonging to each of four groups divided by basis of eligibility: children, 

non-disabled adults, seniors, and blind/disabled adults. As Figure 6 shows, most Medicaid 

enrollees according to the MSIS enrollment data are children (47.2%), followed by non-disabled 

adults (21.3%), disabled adults (15.0%), and seniors (7.5%). On average, a one percentage point 

increase in the SEV increases the proportion of Medicaid enrollment attributable to non-disabled 

adults by about 0.15 percentage points (0.7% of the average adult share of enrollment) and 

reduces the proportion of the other three groups in the sample. This reduction in enrollment share 

is especially large for disabled adults at about 0.08 percentage points (0.6% of the average 

disabled adult share of enrollment). Relative to non-disabled adults and children, seniors and 

disabled adults who are often dually eligible for Medicare and Medicaid use much more 

healthcare and cost much more to cover than the average Medicaid enrollee.105 The introduction 

of more non-disabled adults to Medicaid risk pools and the subsequent shifts in enrollment  

  

 
105 For example, in fiscal year 2013, dual-eligibles made up 15% of Medicaid enrollees and 61% of aged or disabled 

Medicaid enrollees while they accounted for 35% of Medicaid spending (Kaiser Family Foundation 2020). 



 

87 

Table 18. Medicaid enrollment share regression results 

 Group share of total Medicaid enrollment (%) 

 Children Adults Elderly Blind/disabled 

     

SNAP SEV -0.118 0.149* -0.00303 -0.0831** 

 (0.0911) (0.0892) (0.0254) (0.0375) 

Demographic controls  Yes Yes Yes Yes 

Medicaid eligibility limits  Yes Yes Yes Yes 

State and year FE  Yes Yes Yes Yes 

     

% of total enrollment 47.20 21.25 7.509 15.00 

Mean SEV 16.58 16.58 16.58 16.58 

R2 0.229 0.438 0.471 0.323 

Observations 610 610 610 610 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All 

regressions are weighted by state population. The SNAP SEV is expressed in percentage points. Group shares 

represent the percentage of total Medicaid enrollees belonging each eligibility group and are expressed in percentage 

points. 

 

 

composition are a likely mechanism through which SNAP expansions decrease average 

Medicaid spending per enrollee. 

 

5. Robustness checks 

5.1. Internal validity 

Consistent identification of 𝛽1 in model (9) relies upon several assumptions. 𝑆𝐸𝑉𝑠𝑡 

should be independent of the error term 𝜖𝑠𝑡. It must not be the case that some unobserved third 

factor impacts both state SNAP policy and the Medicaid outcomes of interest or that the 

Medicaid outcomes directly impact state SNAP policy. I cannot formally test these assumptions, 

but I consider several ways they may not hold in turn. 

Economic downturns tend to increase participation in both SNAP and Medicaid since 

both programs are means-tested and may make states more likely to expand both programs to 
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address expanding need. Economic factors may therefore drive a positive relationship between 

Medicaid enrollment, Medicaid spending, and SNAP generosity. Additionally, states that expand 

SNAP to a greater degree may be more likely to adopt other policies increasing Medicaid 

enrollment and spending.106 They may also administer other social programs more generously, 

which could impact Medicaid enrollment much like SNAP does. To investigate these 

possibilities, I estimate regressions of the primary Medicaid outcomes on the SEV including 

additional sets of controls describing the state economic environment, the policy environment, or 

participation rates in other social programs in Table 19.107 I find that the primary findings are 

robust to the inclusion of any of these three sets of controls. 

Additionally, I examine whether economic factors, the policy environment, or state-level 

Medicaid eligibility expansions predict the adoption of policies that determine the SEV in Tables 

20, 21, and 22, respectively. These tables report the results of linear probability models in which 

the outcomes are the presence of a BBCE or vehicle test alteration policy. I find little evidence 

pointing to a strong relationship between economic conditions and state SNAP expansions. 

States appear to be slightly more likely to implement BBCE expansions in response to higher 

unemployment or vehicle test alterations in response to higher poverty, but not significantly so. 

Similarly, I find little evidence that the policy environment variables I consider consistently 

predict state SNAP expansions. I therefore do not consider the exclusion of either of these 

control sets from the baseline models problematic. In Table 22, I find some evidence that

 
106 This concern is the primary motivation for including Medicaid eligibility limit controls in the baseline models. 

However, these controls may not fully account for other policies that could impact the Medicaid outcomes. 
107 Economic controls include the unemployment rate, the poverty rate, the natural log of personal income per capita, 

and the natural log of non-SNAP government transfers per capita. Policy environment controls include a dummy for 

the governor being a Democrat, the percentage of the state house that are Democrats, and the percentage of the state 

senate that are Democrats. Other social welfare program participation controls include participation rates for TANF 

and SSI. I include these participation rates and exclude other program participation rates as states have more 

discretion over the administration of these programs. Other social program participation rates are endogenous in 

similar ways to the SNAP participation rate, but I do not take up that issue here. 
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Table 19. Medicaid enrollment and spending outcome regressions including additional control sets 

 Medicaid enrollment rate (% of total population)  Medicaid total spending 

(2010 $) 

 Overall Children Adults Elderly Blind/disable

d 

 Per capita Per enrollee 

         

Including economic controls 

SNAP SEV 0.133*** 0.0317** 0.0582** 0.00667 0.00586  0.226 -48.40*** 

 (0.0431) (0.0154) (0.0290) (0.00507) (0.00559)  (2.508) (15.84) 

R2 0.777 0.823 0.638 0.299 0.695  0.836 0.351 

Observations 657 610 610 610 610  668 657 

         

Including state government controls 

SNAP SEV 0.128*** 0.0355** 0.0553* 0.00644 0.00380  -2.832 -60.04*** 

 (0.0486) (0.0180) (0.0284) (0.00525) (0.00583)  (2.565) (17.48) 

R2 0.766 0.815 0.639 0.295 0.688  0.832 0.312 

Observations 630 585 585 585 585  640 630 

         

Including other social welfare program participation controls 

SNAP SEV 0.130*** 0.0264* 0.0621** 0.00681 0.00286  -1.569 -57.96*** 

 (0.0459) (0.0147) (0.0275) (0.00499) (0.00533)  (2.580) (17.30) 

Mean of dep. var. 18.84 8.782 4.321 1.396 2.812  1157.0 6329.9 

Mean SEV 16.58 16.58 16.58 16.58 16.58  16.58 16.58 

R2 0.776 0.833 0.645 0.307 0.740  0.828 0.316 

Observations 657 610 610 610 610  668 657 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All regressions are weighted by state population. The 

SNAP SEV is expressed in percentage points. Medicaid enrollment rates represent the number of enrollees as a percentage of the overall population and are 

expressed in percentage points. Medicaid spending per capita or per Medicaid enrollee is expressed in 2010-adjusted dollars. Economic controls include the 

unemployment rate, the poverty rate, the natural log of personal income per capita, and the natural log of non-SNAP government transfers per capita. State 

government controls include a dummy for the governor being a Democrat, the percentage of the state house that are Democrats, and the percentage of the state 

senate that are Democrats. Other social welfare program participation controls include state participation rates for TANF and SSI in percentage points; I include 

participation rates for these social programs and not others as states have more discretion over these programs’ administration. 
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Table 20. Regressions of SEV-determining policies on economic characteristics 

 BBCE Vehicle test alteration 

   

Unemployment rate 0.0208 0.00764 

 (0.0218) (0.0145) 

   t-1 0.0235 -0.00388 

 (0.0216) (0.0105) 

   t-2 0.00962 -0.000382 

 (0.0186) (0.0126) 

   t-3 0.000968 0.00185 

 (0.0251) (0.0158) 

   

Poverty rate 0.000446 0.00223 

 (0.0116) (0.00618) 

   t-1 -0.00424 0.00640 

 (0.00947) (0.00537) 

   t-2 0.00671 0.0101** 

 (0.00865) (0.00495) 

   t-3 0.00143 0.0140** 

 (0.00851) (0.00595) 

   

Ln personal income per capita -0.809 -0.0131 

 (0.545) (0.420) 

   t-1 0.526 0.351 

 (0.519) (0.415) 

   t-2 0.0320 0.509* 

 (0.550) (0.287) 

   t-3 0.785 -0.747* 

 (0.756) (0.429) 

   

Demographic controls  Yes Yes 

State and year FE  Yes Yes 

   

Mean of SEV-determining policy 0.359 0.784 

Mean unemployment rate 6.244 6.244 

Mean poverty rate 13.08 13.08 

Mean ln(Personal income per capita) 10.43 10.43 

R2 0.552 0.793 

Observations 672 672 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls and year and state fixed effects. Regressions are not weighted by 

population. The simulated SNAP eligibility variable (SEV) is expressed in percentage points. “BBCE” and “Vehicle 

test alteration” are dummies indicating whether each state has adopted these policies in some form. Unemployment 

rate and poverty rate are expressed in percentage points. Log of real personal income per capita is included. Each 

regression includes lags from the previous three periods. 
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Table 21. Regressions of SEV-determining policies on policy environment characteristics 

 BBCE Vehicle test alteration 

   

Governor Democrat -0.00748 -0.0321* 

 (0.0379) (0.0177) 

   t-1 -0.00295 0.0271 

 (0.0120) (0.0178) 

   t-2 0.0149 -0.0277 

 (0.0266) (0.0197) 

   t-3 0.00532 -0.0307 

 (0.0382) (0.0248) 

   

% state house Democrats 0.0000808 -0.00302 

 (0.00420) (0.00258) 

   t-1 0.000511 -0.00428* 

 (0.00155) (0.00234) 

   t-2 0.00000634 -0.00141 

 (0.00311) (0.00160) 

   t-3 0.000815 0.00390 

 (0.00418) (0.00281) 

   

% state senate Democrats 0.00120 0.000210 

 (0.00335) (0.00245) 

   t-1 0.00180 0.00188 

 (0.00137) (0.00171) 

   t-2 -0.00113 0.00258 

 (0.00249) (0.00222) 

   t-3 -0.00227 -0.00222 

 (0.00286) (0.00248) 

   

Demographic controls  Yes Yes 

State and year FE  Yes Yes 

   

Mean of SEV-determining policy 0.359 0.784 

Mean Democratic governor 0.476 0.476 

Mean % Democrats in house 52.91 52.91 

Mean % Democrats in senate 49.80 49.80 

R2 0.542 0.798 

Observations 644 644 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls and year and state fixed effects. Regressions are not weighted by 

population. The simulated SNAP eligibility variable (SEV) is expressed in percentage points. “BBCE” and “Vehicle 

test alteration” are dummies indicating whether each state has adopted these policies in some form. “Governor 

Democrat” is a dummy variable equal to one if the governor is a Democrat. The percentage of each state house and 

senate that are Democrats are expressed in percentage points. Each regression includes lags from the previous three 

periods. 
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Table 22. Regressions of SEV-determining policies on Medicaid eligibility limits 
 BBCE Vehicle test alteration 

Infants 0.00796* 0.000553 

 (0.00446) (0.00180) 

  t-1 -0.000378 -0.00146 

 (0.00323) (0.00187) 

  t-2 0.00196 0.00224 

 (0.00222) (0.00186) 

  t-3 -0.000927 -0.000117 

 (0.00152) (0.00199) 

Children aged 1-5 -0.00715 -0.000260 

 (0.00465) (0.00190) 

  t-1 -0.00384 -0.000672 

 (0.00470) (0.00274) 

  t-2 0.000150 -0.00117 

 (0.00281) (0.00216) 

  t-3 0.000307 -0.000632 

 (0.00267) (0.00209) 

Children aged 6-18 0.000863 -0.000396 

 (0.000964) (0.000699) 

  t-1 0.00347 0.00149 

 (0.00254) (0.00142) 

  t-2 -0.00116 -0.000473 

 (0.00150) (0.00127) 

  t-3 -0.000491 0.00159 

 (0.00219) (0.00165) 

Pregnant women, midpoint -0.00200** 0.00122 

 (0.000922) (0.000829) 

  t-1 0.00285** 0.0000241 

 (0.00119) (0.000584) 

  t-2 -0.000749 -0.000973 

 (0.000679) (0.000888) 

  t-3 -0.000480 -0.000100 

 (0.00136) (0.000576) 

Parents, midpoint -0.00356*** 0.000515 

 (0.000920) (0.00130) 

  t-1 0.00450*** -0.00118 

 (0.00102) (0.00191) 

  t-2 -0.00304*** 0.0000380 

 (0.00105) (0.00101) 

  t-3 0.00321*** 0.000430 

 (0.00119) (0.000596) 

Childless non-disabled adults, midpoint 0.00383*** -0.00168* 

 (0.000988) (0.000930) 

  t-1 -0.00164* 0.00107 

 (0.000859) (0.000781) 

  t-2 -0.000712 0.00111* 

 (0.000756) (0.000616) 

  t-3 -0.00136 -0.000546 

 (0.00139) (0.000494) 
R2 0.571 0.745 

Observations 618 618 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. *** indicates statistical significance at the 1% level, ** at the 

5% level, and * at the 10% level. All regressions include demographic controls and year and state fixed effects. Regressions are not weighted by 

population. The simulated SNAP eligibility variable (SEV) is expressed in percentage points. “BBCE” and “Vehicle test alteration” are dummies 
indicating whether each state has adopted these policies in some form. Medicaid eligibility limits are shown for various eligibility groups and are 

expressed as the percentage of the federal poverty level. Each regression includes lags from the previous three periods. 
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Medicaid eligibility expansions for groups other than children affect the likelihood a state 

implements a BBCE expansion, but the mixed estimates do not point to a consistent positive or 

negative influence of these state expansions. 

Along the same lines, Medicaid generosity may influence state’s decisions to expand 

SNAP. States substitute between social programs (Marton and Wildasin 2007). Though SNAP 

benefits are financed at the federal level, states face administration costs and therefore may 

substitute to some degree between SNAP and Medicaid. In this way, Medicaid generosity – and 

subsequent increases in enrollment and spending – may impact the SEV. I examine whether 

changes in Medicaid outcomes follow or precede SNAP expansions by estimating regressions in 

which the outcome is modeled as a function of the SEV as well as several lags and leads of the 

SEV in Table 23. If changes in Medicaid outcomes precede SNAP expansions, reverse causality 

of this type may be an issue for estimation.108 This is not the case, as I find no evidence of 

relationships between these outcomes and future values of the SEV.109 

Consistent identification of 𝛽1 in the IV model (11) additionally relies upon several other 

assumptions. First, the simulated eligibility instrument 𝑆𝐸𝑉𝑠𝑡 must have a clear, strong effect on 

the participation rate 𝑆𝑁𝐴𝑃𝑐𝑡 in the first-stage model (10). Variation in the SEV derives from 

state-level policies altering the portion of SIPP households eligible for SNAP. An increase in the 

SEV implies more generous policy and means that more real households in the state become 

eligible to receive benefits, all else equal. If additional households would participate when made 

eligible or when income or asset tests are relaxed, the SEV would be positively correlated with

 
108 Autocorrelation is certainly a problem in models like these with several leads and lags of the SEV. Therefore, I 

do not expect this model to present precise estimates of the SEV’s impact, but rather to test generally for the 

potential for reverse causality. 
109 Examining models including lags and leads of the SEV is also interesting because it is not theoretically clear how 

long it would take SNAP expansions to impact Medicaid spending and enrollment. Table 23 suggests that the full 

impacts of SNAP expansions on Medicaid enrollment and spending are not instantaneous and may take several 

years to materialize.  
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Table 23. Medicaid enrollment and spending outcome regressions including lags and leads of SEV 
 Medicaid enrollment rate (% of total population)  Medicaid total spending 

(2010 $) 

 Overall Children Adults Elderly Blind/disabled  Per capita Per enrollee 
         

SNAP SEV         

  t-3 0.0932 -0.00198 0.0220 0.00606 0.00194  0.528 -32.55 

 (0.0749) (0.0267) (0.0306) (0.00386) (0.00659)  (3.600) (25.77) 

  t-2 0.128*** 0.0201 0.0216 0.00594 0.0109**  2.069 -27.58 

 (0.0484) (0.0148) (0.0174) (0.00367) (0.00525)  (2.417) (18.70) 

  t-1 0.0639* 0.0110 0.0354 0.00645** 0.00793*  -4.954* -48.52*** 

 (0.0340) (0.0106) (0.0225) (0.00298) (0.00431)  (2.902) (18.24) 

  t 0.0632* 0.0222** 0.0151 0.000594 -0.00131  3.019 -7.072 

 (0.0357) (0.0103) (0.0130) (0.00218) (0.00356)  (2.461) (10.40) 

  t+1 -0.0376 0.00610 0.0198 0.00180 0.00348  -4.409** -12.52 

 (0.0430) (0.0131) (0.0140) (0.00403) (0.00433)  (1.808) (15.60) 

  t+2 0.0394 -0.00701 0.0185 0.00494 -0.00711*  0.687 -17.62 

 (0.0390) (0.00933) (0.0121) (0.00354) (0.00424)  (1.746) (16.42) 

  t+3 -0.0200 -0.0175 0.0203 -0.00996 -0.00400  3.704* 14.04 

 (0.0419) (0.0181) (0.0159) (0.00706) (0.00566)  (2.086) (12.68) 
         

R2 0.781 0.811 0.646 0.312 0.700  0.831 0.347 
         

Baseline: SNAP SEV, t 0.132*** 0.0329** 0.0601** 0.00764 0.00535  -1.429 -58.07*** 

 (0.0465) (0.0163) (0.0280) (0.00501) (0.00599)  (2.623) (17.40) 
         

Mean of dep. var. 18.84 8.782 4.321 1.396 2.812  1157.0 6329.9 

Mean SEV 16.58 16.58 16.58 16.58 16.58  16.58 16.58 

R2 0.765 0.808 0.634 0.291 0.688  0.826 0.299 

Observations 657 610 610 610 610  668 657 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. All regressions are weighted by state population. The 

sample period is restricted due to the inclusion of leads and lags. The simulated SNAP eligibility variable (SEV) are expressed in percentage points. Medicaid 

enrollment rates represent the number of enrollees as a percentage of the overall population and are expressed in percentage points. Medicaid spending per capita 

or per Medicaid enrollee is expressed in 2010-adjusted dollars. In the first panel, regressions include lags and leads of the SEV centered around the current-

period SEV. In the second panel, regressions include only the current-period SEV as in the baseline model. 
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the real SNAP participation rate. I find that this is the case and show the first-stage results in 

Table 15. 

Second, 𝑆𝐸𝑉𝑠𝑡 should not affect the Medicaid outcomes 𝑀𝑒𝑑𝑠𝑡 except through effects on 

𝑆𝑁𝐴𝑃𝑠𝑡. I argue that increased SNAP participation is the primary mechanism through which 

SNAP eligibility expansions would increase Medicaid enrollment and subsequent Medicaid 

spending, but it is possible that the expansions themselves may increase Medicaid enrollment, 

even if new enrollees are not SNAP recipients. For example, SNAP expansions may raise 

general awareness of the availability of Medicaid, even among households not participating in 

SNAP. It is possible then that this assumption is not met, and I accordingly treat the IV estimates 

as illustrative instead of causal. 

5.2. External validity 

Variation in the SEV derives from changes in state eligibility rules beyond the federal 

minimum. The SIPP households these rules are applied to can be categorized in one of three 

mutually exclusive and exhaustive groups: always eligible for SNAP (by meeting the federal 

rules), never eligible for SNAP (by meeting the federal rules in every year), never eligible for 

SNAP (by never meeting the federal rules or any state’s rules in any year), or sometimes but not 

always eligible for SNAP (by meeting the federal rules or some state’s rules in some years). The 

last group represents those households whose SNAP eligibility and subsequent participation can 

be “turned on” by the state eligibility expansions summarized in the SEV. The effects shown in 

Section 4 can therefore be interpreted as local average treatment effects in that they represent 

changes in Medicaid enrollment and spending in response to changes in SNAP eligibility and 
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participation among sometimes-eligible households.110 This interpretation requires monotonicity: 

increases in the SEV should not cause households to lose eligibility for or not participate in 

SNAP who otherwise would. This is reasonable, as it would be unusual for households 

previously receiving SNAP benefits to stop because eligibility is expanded. 

This raises the issue of external validity of the results: would Medicaid enrollment and 

spending change in the same way if the SEV represented the expansion of SNAP eligibility to 

always-eligible households (e.g., if SNAP participation was prohibitively costly in terms of time 

or stigma costs then made less so)? This question could be addressed by using policy instruments 

directly impacting these costs among always-eligible households, but the available instruments 

of this type are too weak for use in the context of this study.111 I examine the characteristics of 

the SIPP households in each eligibility category in Table A5 in Appendix A. Relative to 

sometimes-eligible households, always-eligible households have on average roughly half of the 

total income, a third of the earned income, a hundredth of the countable non-vehicle assets, and a 

fourth of the vehicle equity.112 

Given these differences, expansions of SNAP among these populations would likely have 

different impacts on aggregate Medicaid enrollment and spending. Always-eligible individuals 

would tend to be more frequently eligible for Medicaid due to their lower income but are also 

more likely to have already enrolled in Medicaid. SNAP expansions affecting always-eligible 

populations might therefore increase Medicaid enrollment and associated increases in spending 

 
110 Increases in the SEV may increase participation among households that are “always eligible” if it becomes less 

costly for these households to apply due to the expansions summarized in the SEV (e.g., they no longer must report 

detailed information on vehicles or other assets). However, I cannot identify these households in the SIPP like I can 

those who become eligible. 
111 See Appendix C and Table C3 for further discussion. 
112 Figure A6 in Appendix A further illustrates the differences between always-eligible and sometimes-eligible 

households by presenting scatterplots of SIPP households’ total income and countable non-vehicle assets by 

eligibility status. 
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relatively more or less on average. I therefore refrain from commenting on whether the estimates 

in Section 4 would hold for any theoretical expansions of SNAP eligibility to households across 

the distributions of income and assets, and I urge caution in interpreting them as such. Rather, 

they should be interpreted as the aggregate impacts of expanding SNAP eligibility to populations 

who would not be eligible under the federal criteria. 

5.3. Other robustness checks 

 I consider and present several variants of the baseline models in Table C4 of Appendix C. 

The primary findings are robust to most changes I consider, including the exclusion of Medicaid 

income eligibility limit controls, demographic controls, or both; the use of alternate Medicaid 

eligibility controls; the exclusion of California from the sample due to its SSI cash-out policy 

during the sample period; the inclusion of Alaska and Hawaii in the sample; the use of a uniform 

sample in which any missing observations are excluded; and not weighting regressions by 

population. 

The inclusion of state-specific time trends from the model removes statistical significance 

from the estimates of the impacts of the SEV on the primary Medicaid outcomes, but these 

estimates generally maintain their sign. Given the upward trends in SNAP eligibility, Medicaid 

enrollment, and SNAP enrollment over the sample period, it is not surprising that the addition of 

trends absorbs some of the identifying variation in the SEV. The inclusion of trends also 

generally reduces the size of the estimates, especially for the model with adult Medicaid 

enrollment as the outcome. The point estimate of the coefficient on the SEV when trends are 

included is reduced almost to zero, which also accounts for the reduction in the estimated impact 

of the SEV on overall Medicaid enrollment. 
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Because of potential data quality issues in the MSIS enrollment data, I also estimate two 

regressions using outcomes constructed with an alternate measure of state-level Medicaid 

enrollment from the UKCPR. The coefficient estimates from these regressions are consistent 

with those using the original measures of the overall Medicaid enrollment rate and Medicaid 

spending per enrollee. 

 

6. Conclusion 

In this study, I develop an approach to summarize detailed variation in state-level SNAP 

expansions through a measure of simulated eligibility. I use this measure to estimate the 

aggregate impacts of SNAP expansions on Medicaid enrollment and spending. I find that 

expanding SNAP eligibility increases Medicaid enrollment – especially enrollment of adults – 

and reduces average Medicaid spending per enrollee. 

Interactions between SNAP and Medicaid have important policy implications. Recent 

ACA Medicaid eligibility expansions as well as the increasing prevalence of joint social program 

administration means that these programs may be even more likely to affect each other in 

obvious and nonobvious ways. Further, as the first- and second-largest means-tested programs in 

the United States by both spending and recipients, these interactions have implications for 

program design as well as for federal and state budgets. Policymakers aiming to increase 

Medicaid take-up may find that increasing SNAP take-up or expanding eligibility are effective 

ways to do so. State policymakers may find this an especially attractive option since states only 

finance SNAP administration, not benefits. Conversely, it may be difficult for policymakers to 

target expansion of eligibility or take-up in only one program without increasing take-up – and 

the subsequent cost of – the other. 
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Previous studies have found that Medicaid enrollment or expansions increase SNAP take-

up, but only one I identify examines whether SNAP eligibility expansions impact Medicaid 

enrollment. Han (2019) finds no evidence that SNAP BBCE expansions affect the probability 

that a household has Medicaid coverage for its members. I find conflicting evidence that SNAP 

expansions do increase aggregate Medicaid enrollment, potentially due to my incorporation of 

non-BBCE SNAP eligibility expansions in the SEV, use of state-level administrative SNAP and 

Medicaid participation data, and use of a slightly different sample period. Further evidence is 

needed to clarify this relationship between SNAP and Medicaid, particularly in the post-ACA 

period in which many states have significantly expanded Medicaid eligibility. 

Further investigation in this area should also clarify the mechanisms through which 

SNAP and Medicaid interact. One potentially major mechanism is integrated administration of 

these programs by the states. Increasingly, state social services agencies have adopted joint 

program applications, processing of applications, and/or recertification, all of which have the 

potential to significantly reduce the hassle costs of multiple social program participation. 

Another way to further explore SNAP’s impacts on Medicaid would be to examine the impacts 

of SNAP expansions on Medicaid-covered healthcare utilization as well as subcategories of 

Medicaid spending in the short term and long term. For example, SNAP may increase 

administrative spending while not greatly increasing spending on actual healthcare if it increases 

take-up of Medicaid among low-risk individuals. Disentangling the mechanisms through which 

SNAP impacts Medicaid would be especially valuable to state social services administrators and 

other relevant policymakers. 
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Chapter III: The Impacts of the Introduction of the Food Stamp Program on Mortality 

 

The U.S. mortality rate declined substantially over the twentieth century by about one to 

two percent per year, with earlier reductions largely attributable to fewer deaths from infectious 

disease and later reductions to improved medical care and the prevention of infant mortality 

(Cutler and Meara 2001). A growing body of literature documents the impacts of the 1960s “War 

on Poverty” era domestic programs on health and mortality, especially of infants and children.113 

The modern Food Stamp Program (FSP) – renamed the Supplemental Nutrition Assistance 

Program (SNAP) in 2008 – was introduced during this time period with the intention of 

improving nutrition among low-income households through food-purchasing assistance. In 

practice, the FSP increased the resources available to many of the United States’ poorest families 

by supplementing their food-purchasing dollars with food stamps. Given the relationship 

between income and health, it is likely that the FSP played some role in reducing mortality.114 

Several studies have estimated the effects of the FSP rollout from 1961 to 1975 on 

various health outcomes. Almond, Hoynes, and Schanzenbach (2011) find increases in mean 

birthweight and small reductions in neonatal mortality among pregnancies in areas where the 

FSP had been introduced during its rollout period. Currie and Moretti (2008) apply an analogous 

method to analyze the impacts of the FSP rollout in California and find a reduction in average 

birth weight that appears to be driven by increased fertility, especially among black teens. 

Hoynes, Schanzenbach, and Almond (2016) find that exposure to the FSP in utero or early 

 
113 E.g., Medicaid (Goodman-Bacon 2018; Wherry and Meyer 2016; Brown, Kowalski, and Lurie 2015), Medicare 

(Finkelstein and McKnight 2008), Head Start (Ludwig and Miller 2007), and the Special Supplemental Nutrition 

Program for Women, Infants, and Children (WIC) (Hoynes, Page, and Stevens 2011). 
114 Many studies have examined the relationships between health and income or mortality, both in causal and 

descriptive frameworks. Khullar and Chokshi (2018) provide a recent overview. 
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childhood reduces incidence of adult metabolic syndrome. Only one study I identify examines 

the mortality impacts of adult food stamp receipt in a causal framework, finding that it reduces 

the risk of death (Heflin, Ingram, and Ziliak 2019). 

The purpose of this study is to determine whether the FSP’s introduction contributed to a 

decrease in the aggregate mortality rate. I follow previous work exploiting variation in access to 

food stamps from the county-level rollout of the FSP (Hoynes and Schanzenbach 2009). I 

combine county-level information on the timing of the rollout in combination with death counts 

from the period. I construct mortality rates representing total deaths as well as deaths broken 

down by gender, age range, racial group, or cause of death. Because the FSP’s effects on 

mortality may take a long time period to be realized and may not be linear over time, I estimate 

regressions modeling each mortality rate as a function of the FSP being in place for several 

different periods of time. Because high-poverty areas likely would have benefitted from access to 

food stamps the most, I estimate separate regressions for a subsample of high-poverty counties. 

This study makes three major contributions. First, this study contributes to the broader 

literature on the health and mortality impacts of “War on Poverty” era social programs. Second, 

this study focuses on health outcomes other than those for infants and children. This study is 

only one of two to examine the effects of adult exposure to the FSP on mortality and the first to 

examine these effects in the context of the program’s rollout. Third, this study incorporates as 

outcomes both the overall mortality rate and various subgroup-specific and cause-specific 

mortality rates, which allows investigation of potential mechanisms through which the FSP’s 

introduction may have reduced overall mortality. 

I find no statistically significant evidence that the introduction of the FSP reduced 

mortality rates among the full county sample. However, I find evidence that the program’s 
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operation reduced mortality over time in counties with the highest pre-rollout poverty rates. 

Mortality reductions in these counties are driven by reductions in deaths of males, blacks, and 

those aged 0 to 19. I also find limited evidence that the FSP reduced deaths in these areas from 

major cardiovascular diseases, suicides, and non-motor vehicle accidents. 

 

1. Background 

1.1. The introduction of the Food Stamp Program 

The stated purposes of the FSP upon its introduction were to strengthen the agricultural 

economy and providing improved nutrition to low-income households. The program made 

physical food stamps available to income- and resource-eligible households, which could be 

spent like cash at authorized retailers on foods for consumption at home, excluding imported 

foods and alcoholic drinks. Until program changes implemented in 1979, households were 

required to purchase their food stamps by paying an amount proportionate to the expected food 

expenditures of a household of their size and income.115 In return, they would receive a greater 

amount in food stamps intended to allow them to purchase enough food for a nutritionally 

adequate diet. Food stamps were funded by the federal government and jointly administered by 

the federal and state governments (USDA FNS 2018a). 

Pilot versions of the FSP began in 1961.116 Through 1963, pilots were expanded from 

eight initial counties to 43 counties and cities (USDA FNS 2018a). The passage of the Food 

 
115 Exceptions were made for some households receiving Aid to Families with Dependent Children (AFDC) benefits 

or without cash income. 
116 Prior to the FSP’s introduction, the Commodity Distribution Program (CDP) provided food assistance to low-

income households in some counties. As a part of that program, the federal government purchased surplus food 

commodities to support agricultural prices and then distribute the food to the poor. Compared to the FSP, the CDP 

was fairly limited in scope and benefits provided. The implementation of the FSP in a county required the 

discontinuation of the CDP. Assuming the CDP improved health outcomes, this would tend to bias estimates in this 

study toward zero. 
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Stamp Act of 1964 secured funding for three years to give additional localities the option to 

initiate the FSP. From 1964 on, new counties implemented the program at a steady rate, and 

participation and benefits issued grew rapidly (Berry 1984). Funding for the program was 

renewed over the following years, and 1973 amendments to the act required all counties to 

implement the FSP by 1975.117 In the years of its rollout, the FSP was relatively popular among 

the American public. Congressmen generally sought to introduce it in their districts to build 

favor with their electorates and gain publicity (Berry 1984). The growth of the FSP was therefore 

governed less by demand and more by funding limits. Counties could not join the program until 

the USDA selected them to do so, and there were always waiting lists during the rollout period 

(Berry 1984). 

The fact that local and national political decision-making was involved in the FSP’s 

implementation raises concerns that the variation afforded by the rollout may be biased. For 

instance, there may have been more political pressure to join the FSP in areas where more 

constituents were poor, non-white, and elderly, as these groups benefited more from the 

program. These population characteristics are correlated with health outcomes, so estimates of 

the effects of early adoption of the program could be biased towards more negative health 

outcomes. Hoynes and Schanzenbach (2009) address this possibility by estimating a model in 

which the time to adoption is modeled as a function of various pre-rollout county characteristics. 

While they find that counties with a higher percentage of black, young, old, and/or poor residents 

are more likely to implement the program sooner, they also find that county characteristics 

explain only a small portion of the variation in time to adoption. 

  

 
117 Other “War on Poverty” programs introduced during this period include Medicare (1965), Medicaid (1966-1982), 

and Head Start (1965-1980). 
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1.2. The Food Stamp Program and mortality 

 The introduction of food stamps during the 1960s and 1970s would likely impact 

recipients’ health through two mechanisms. First, receipt of food stamps may improve the diet of 

household members. Especially for the poorest households who receive the largest benefits, 

access to food stamps would tend to enable the purchase of enough food for a healthy diet. 

Access to food stamps may also encourage a more nutritionally complete diet including more 

expensive perishable foods. Insofar as food stamps reduce food insecurity, they are also likely to 

improve health.118 Second, food stamp receipt may affect health by increasing a household’s 

disposable income. Economic theory suggests that households who receive an in-kind transfer 

like food stamps would spend less of their own income on food and direct it toward other 

purposes (Southworth 1945). “Inframarginal” households that normally spend more on food than 

they would receive in food stamps could entirely replace a  previous food spending with food 

stamps if they so choose.119 In effect, food stamp receipt frees up income for other consumption, 

which could be health-promoting (e.g., medical care), health-harming (e.g., cigarettes), or health-

neutral.120, 121 

 
118 More recent studies that address the selection of more food insecure households into food assistance programs 

generally find that food stamp receipt reduces food insecurity (Gregory, Rabbitt, and Ribar 2016). Previous studies 

have consistently found negative associations between food insecurity and health, so it is reasonable to expect that 

the Food Stamp Program might improve health through this channel (Gundersen and Ziliak 2015). 
119 Hoynes and Schanzenbach (2009) find evidence that most households during the rollout period are inframarginal 

and that unconstrained households alter their consumption in response to food stamp income much like they would 

cash income. 
120 I argue that income freed up by food stamp receipt is more likely to be health-promoting than health-harming for 

those poorer households that would receive food stamps. If it is partially health-harming, this may manifest as an 

increase in mortality from liver disease or malignant neoplasms over time, which I can observe in the framework of 

this study. 
121 It is theoretically possible that food stamp receipt could harm health. Food stamp receipt may worsen diet if 

recipients substitute away from nutritious food toward less nutritious, more convenient foods, leading to unhealthy 

weight and other health conditions. Evidence using post-rollout data generally does not find that food stamps 

increase obesity (Gundersen 2016). Food stamp availability may disincentivize labor force participation, causing 

recipients to forgo so-called “healthy worker benefits” like employer-sponsored health insurance, social activity, or 

physical activity. Food stamp recipients may experience stigma, which would lead to stress and potentially risky 

coping behaviors like smoking or drinking. Finally, food stamp receipt may lead to uneven food consumption over 

the monthly benefit cycle, which may adversely impact health (Wilde and Ranney 2000). Despite these possibilities, 
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Existing evidence suggests that the introduction of the FSP had generally positive or 

neutral effects on the health outcomes of those exposed in utero or early childhood nationwide, 

including increases in mean birthweight, reductions in neonatal mortality, and reduced incidence 

of metabolic syndrome in later adulthood (Almond, Hoynes, and Schanzenbach 2011; Hoynes, 

Schanzenbach, and Almond 2016). No studies I identify examine the effect of adult exposure to 

the FSP rollout. Using post-rollout variation in program participation, other studies draw mixed 

findings on the impacts of food stamp receipt on various adult health outcomes. Many such 

studies do not account for household selection into food stamp participation, which is a major 

hurdle to the identification of its causal effects on health (Bitler 2016).122 Studies that do account 

for selection in some way typically find that food stamp receipt is more likely to improve adult 

health. For example, Gregory and Deb (2015) estimate in an instrumental variables framework 

that food stamp receipt improves self-assessed health, increases the probability of reporting 

excellent or very good health, reduces sick days spent in bed, reduces emergency and diagnostic 

office-based doctor and outpatient visits, and increases checkups among nonelderly adults.123 

Mortality rates are useful to measure the aggregate health of populations. Relative to 

other health measures like self-assessed health status, mortality is an objective outcome but also 

severe – perhaps so severe that the FSP rollout may not significantly affect its likelihood. I 

identify three studies estimating the relationship between food stamp receipt and mortality. Two 

 
it is unlikely that the FSP rollout would harm health or increase the mortality rate in the context of this study, 

especially since the relevant margin of variation is access to the FSP as opposed to changes in participation. 
122 The presence of a negative relationship between food stamp receipt and health does not imply that food stamps 

worsens health. Those who experience extreme financial hardship are more likely to both participate in social 

programs like the FSP and to have poorer health for a variety of reasons. Reverse causality is also possible in that 

poor health may decrease income, necessitating food stamp participation. Even when compared to eligible non-

participants, food stamp recipients are more likely to be female, younger, parents to more children, nonwhite, 

noncitizens, poorer, and uninsured. Recipients presumably differ in unobservable ways as well. 
123 Yen, Bruce, and Jahns (2012) also employ an instrumental variables framework to estimate the health impacts of 

SNAP, finding decreases in self-assessed health. However, their sample only includes recipients in Tennessee. 
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studies estimate a positive relationship between food stamp receipt and the likelihood of death – 

especially from heart disease, stroke, and diabetes – but these studies do not account for selection 

into program participation (Krueger et al. 2004; Conrad et al. 2017). Heflin, Ingram, and Ziliak 

(2019) account for selection into food stamp participation using state-level SNAP policy 

instruments and find that food stamp receipt reduces the overall risk of death as well as the risk 

of “deaths of despair” from liver disease/cirrhosis, poisoning, or suicide among adults aged 40-

64. The reduction in deaths of despair among non-elderly adults is suggestive of SNAP’s role in 

the social safety net, mitigating economic or other hardships. Given these findings, it is possible 

that the FSP’s introduction may have reduced mortality rates through similar mechanisms. 

 

2. Data 

 I assemble county-level information on the timing of the introduction of the FSP, annual 

mortality rates, and various population characteristics and economic conditions. The panel 

dataset includes information on 1,716 counties and spans the years 1969 to 1978. 

I use information on the month and year that the FSP began in each county. This 

information is retrieved from an online dataset accompanying Hoynes and Schanzenbach 

(2009).124 The dates of program implementation range from May 1961 to March 1975 and are 

available for most counties.125 Table 24 shows the number of counties that implemented the FSP 

in each year during the rollout period, dividing these counties into three groups: all counties for 

which the timing of introduction is available, counties included in this study’s sample (described

 
124 The information on timing of FSP implementation is originally sourced from several USDA year-end reports 

from the rollout period on county food stamp caseloads. 
125 Exceptions include Alaska (due to inconsistencies between FSP service areas and local areas during the rollout 

period) and ten local areas spread between several states. This information is available for most kinds of non-county 

local areas, including Washington, D.C. and most independent cities in Virginia. 
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Table 24. County introductions of Food Stamp Program by year 

  All counties  Full county sample  High-poverty county sample 

Year  # introducing FSP Percent (%)  # introducing FSP Percent (%)  # introducing FSP Percent (%) 
          

1961  9 0.29  9 0.52  2 0.47 

1962  9 0.29  9 0.52  2 0.47 

1963  25 0.81  22 1.28  8 1.87 

1964  0 0.00  0 0.00  0 0.00 

1965  142 4.57  99 5.77  42 9.81 

1966  285 9.18  169 9.85  52 12.15 

1967  374 12.05  192 11.19  53 12.38 

1968  369 11.89  156 9.09  56 13.08 

1969  369 11.89  117 6.82  17 3.97 

1970  392 12.63  189 11.01  31 7.24 

1971  60 1.93  47 2.74  6 1.40 

1972  208 6.70  171 9.97  54 12.62 

1973  325 10.47  142 8.28  41 9.58 

1974  535 17.24  393 22.90  64 14.95 

1975  2 0.06  1 0.06  0 0.00 
          

Total  3,104 100.00  1,716 100.00  428 100.00 
“All counties” includes all counties for which FSP rollout timing information is available. “Full county sample” includes those counties used in this study’s 

sample. “High-poverty county sample” includes those counties in this study’s sample with 1960 poverty rates in the highest 25%. 
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below), and counties included in this study’s high-poverty subsample (described below). Other 

than the pilot program period from 1961 to 1964, county FSP adoption is spread throughout the 

rollout period with some clustering in the mid-1960s and in 1974 after the program was 

mandated. Figure 9 illustrates the timing of the county rollout for counties included in this 

study’s sample. In some states, counties tend to adopt the program in clusters, but there is still 

substantial within-state variation in year of adoption. 

 I use death and population counts by county and year gathered from the Centers for 

Disease Control and Prevention Wide-ranging Online Data for Epidemiologic Research (CDC 

WONDER) system (2019).126 Death and population counts are provided for various population 

subgroups. I construct mortality rates for each county and year as the number of deaths per 

100,000 members of the population or relevant population subgroup. These subgroups include 

genders (male and female), racial groups (white, black, and “other”), and five- to ten-year age  

 

Figure 9. Year of Food Stamp Program introduction by county 

 
The FSP was introduced in all counties during this period. Grayed out counties are not included in study sample. 

 
126 Specifically, I gather mortality information from the Compressed Mortality File. The earliest consistent years 

available are 1968 to 1978. 
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ranges. I aggregate age ranges up to three wider ranges: 19 or younger, 20 to 64, and 65 or older. 

Death counts are also provided for specific causes of death, which are designated by 

International Classification of Diseases-8 (ICD-8) code. I collapse death counts into ten broader 

causes of death, including malignant neoplasms, diabetes mellitus, major cardiovascular 

diseases, stroke, pneumonia and influenza, chronic liver disease and cirrhosis of the liver, motor 

vehicle accidents, other accidents, suicide, and homicide and legal intervention.127 I define and 

describe the mortality rates I consider as outcomes in Table 25.128 

I use information on other county characteristics in various contexts. I gather annual 

county-level information from the Bureau of Economic Analysis’ Regional Economic Accounts 

(2019). This data is available beginning in 1969 and includes information on total personal 

income and government transfers, which I use to construct measures of real personal income and 

non-food stamp transfers per capita. I collect information about county-level demographic 

characteristics in 1960 from the Integrated Public Use Microdata Series (IPUMS) National 

Historical Geographic Information System (Manson et al. 2019). This information includes the 

total population and the number of people that are under age 5, age 65 or older, nonwhite, or 

living in rural areas.129 I use this information to construct measures of the log of population and 

the percentages of each county with each of these characteristics. I also collect county poverty 

rates from the 1960 Decennial Census (2018), which I use as a control or to stratify the county 

sample in some analyses. Finally, I collect information on the timing of the state-level rollout of 

 
127 The inclusion of eight major causes of death – malignant neoplasms, cardiovascular diseases, pneumonia and 

influenza, liver disease and cirrhosis, motor vehicle accidents, other accidents, suicides, and homicides and legal 

intervention – follow groups defined by Ruhm (2000). The inclusion of two additional causes of death – diabetes 

and stroke – are motivated by the findings of Conrad et al. (2017). 
128 Figure D1 in Appendix D shows average trends in the overall mortality rate during the sample period for both the 

full county sample and high-poverty county subsample (described below). Figure D2 illustrates variation in the 

overall mortality rate between counties throughout the sample period. 
129 This measure represents those living in rural non-farm areas as I lack information about the total rural population 

at the county-level. 
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Table 25. Mortality rate details 

Mortality rate categorization Breakdowns 
  

Overall - 
  

Gender • Male 

• Female 
  

Race • Black 

• White 

• Other race 
  

Age • 0-19 years old 

• 20-64 years old 

• 65+ years old 
  

Internal causes • Malignant neoplasms (140-209) 

• Diabetes (250) 

• Major cardiovascular disease (390-448) 

• Stroke (432-434, 436) 

• Pneumonia and flu (470-486) 

• Liver disease and cirrhosis (571) 
  

External causes • Motor vehicle accidents (E810-E823) 

• Other accidents (E800-E807, E825-E949) 

• Suicide (E950-E959) 

• Homicide and legal intervention (E960-E978) 

  
Mortality rates are defined as the number of deaths per 100,000 members of the relevant population and are not 

adjusted for age makeup of the county population. For overall and cause-specific mortality rates, the population used 

to construct the mortality rate is the total county population. For mortality rates of specific gender, race/ethnicity, or 

age groups, the population used to construct the mortality rate is the number of people of the specified gender, race 

group, or age range. 

Cause-specific mortality rates aggregate deaths of similar underlying cause as classified by International 

Classification of Disease-8 (ICD-8) code, shown in parentheses. Deaths in the CDC WONDER system are assigned 

a singular code representing “underlying” cause, meaning the disease or injury which initiated the sequence of 

events leading directly to death or the circumstances of the accident or violence which produced the fatal injury. The 

same death is not classified under multiple ICD-8 codes. 
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Medicaid from 1966 to 1982 in order to control for the program’s potential impacts on mortality 

in some specifications (Kaiser Commission on Medicaid and the Uninsured 2012). 

I exclude from the county sample those counties with missing FSP timing, mortality, or 

other data over the 1969 to 1978 period.130 I also exclude counties whose borders change during 

that period. The total population of the county sample was 176.3 million in 1970, or almost 86% 

of the U.S. population of 205.1 million. Additionally, I define a subsample of “high-poverty” 

counties which includes those counties whose 1960 poverty rates fall in the highest 25%. The 

panel dataset consists of 1,716 counties over ten years for a total of 17,160 county-year-level 

observations. The high-poverty subsample includes 428 of these counties and a total of 4,280 

county-year-level observations. Figure 10 illustrates the location of counties in the full sample 

and the high-poverty subsample. High-poverty counties are concentrated in the Southeast with a 

minority located in the Southwest. 

 

Figure 10. Full county sample and high-poverty county subsample 

 
High-poverty counties are defined as those with 1960 poverty rates in the highest 25% of the study’s county sample. 

 
130 Most excluded counties are missing information on annual income or government transfers. 
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Table 26 reports the population-weighted summary statistics of the key variables I use in 

the analyses for both the full county sample and the high-poverty subsample.131 The mean year 

of FSP implementation was 1969 for both samples. The average overall mortality rate was 904 

deaths per 100,000 population in the full sample and 1,018 deaths in the high-poverty sample. 

Average subgroup- and cause-specific mortality rates are generally higher in the high-poverty 

sample. Exceptions include the mortality rate of those aged 65 and over as well as rates of death 

from malignant neoplasms, liver disease and cirrhosis, and suicides. Counties in the high-poverty 

subsample differ on average from those in the full sample on several observable characteristics. 

They tend to have fewer residents and lower income per capita, and their residents are more 

likely to be nonwhite, rural, and/or impoverished. 

 

3. Methodology 

3.1. Baseline model 

 The goal of this study is to estimate the impacts of the FSP rollout on overall, subgroup, 

and cause-specific mortality rates. Since mortality is an extreme health outcome and it may take 

an extended period of exposure to food stamps to alter individual risk of death, I aim to estimate 

both the short-term and long-term mortality impacts of the FSP rollout. My primary approach is 

to estimate fixed effects models of the form: 

 𝑀𝑅𝐴𝑇𝐸𝑐𝑡 = 𝛽0 + ∑ 𝛽1𝑖
5
𝑖=1 𝐹𝑆𝑃𝑐𝑡𝑖 + 𝜷𝟐𝑿𝒄𝒕 + 𝜷𝟑𝑪𝑭𝑬𝒄 + 𝜷𝟒𝒀𝑭𝑬𝒕 + 𝜖𝑐𝑡 (12) 

The outcome 𝑀𝑅𝐴𝑇𝐸𝑐𝑡 represents one of the mortality rates in a county 𝑐 and year 𝑡, 

expressed as the number of deaths per 100,000 population. 𝐹𝑆𝑃𝑐𝑡𝑖 represents one of several 

indicators of how many years have passed since the introduction of the FSP in county 𝑐. The 

 
131 Table D1 in Appendix D presents summary statistics of all variables I use in the analyses. 
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Table 26. Selected summary statistics 
 

Full county sample  

High-poverty county 

sample 

 Mean Std. dev.  Mean Std. dev. 

      

FSP rollout      

Year of introduction:      

Weighted by population 1968.7 (3.308)  1968.9 (3.278) 

Unweighted 1969.9 (3.270)  1969.3 (3.308) 

=1 if FSP was introduced:      

1 or 2 years ago 0.128 (0.334)  0.131 (0.338) 

3 or 4 years ago 0.177 (0.382)  0.180 (0.385) 

5 or 6 years ago 0.164 (0.370)  0.163 (0.369) 

7 or 8 years ago 0.149 (0.356)  0.136 (0.343) 

9 or more years ago 0.217 (0.412)  0.214 (0.410) 

Years since introduction 5.186 (3.883)  5.030 (3.837) 

      

Mortality rates: deaths per 100,000 population 

Overall 903.8 (205.2)  1017.9 (208.9) 

Female 783.7 (173.2)  833.9 (190.0) 

Male 1031.0 (255.2)  1212.2 (265.2) 

Black 929.2 (251.3)  1088.3 (236.9) 

White 909.0 (220.4)  996.6 (239.8) 

Other race 365.0 (296.4)  639.2 (480.9) 

0-19 137.6 (40.47)  183.7 (65.26) 

20-64 526.6 (126.3)  662.4 (163.4) 

65+ 5598.1 (624.6)  5558.0 (766.7) 

Malignant neoplasms 168.9 (41.19)  155.1 (42.94) 

Diabetes 17.28 (7.747)  21.60 (12.16) 

Major cardiovascular disease 466.6 (126.9)  520.4 (139.9) 

Stroke 55.67 (23.37)  84.20 (41.56) 

Pneumonia & influenza 27.63 (11.44)  33.31 (18.22) 

Liver disease & cirrhosis 15.94 (8.580)  11.11 (7.064) 

Motor vehicle accidents 23.50 (11.59)  39.82 (18.98) 

Other accidents 26.62 (10.43)  39.19 (17.74) 

Suicide 12.24 (5.043)  12.06 (7.412) 

Homicide & legal intervention 10.28 (7.910)  14.76 (9.185) 

      

1960 poverty rate (%) 21.13 (13.31)  60.92 (6.256) 

      

Population (unweighted) 106715.9 (302240.6)  20986.2 (19158.9) 

      

Counties 1,716   428  

Years 10   10  

Observations 17,160   4,280  
Mortality rates are weighted by the county population used as the denominator in their construction: either the total 

population for the overall or cause-specific mortality rates or the relevant subgroup population for subgroup-specific 

mortality rates. Other statistics are weighted by total county population unless otherwise noted. The sample excludes 

Alaska and counties for which data is not available for the entire period. The sample period is 1969-1978. Full 

summary statistics are displayed in Table D1 in Appendix D. 
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baseline models include five mutually exclusive dummy variables indicating the number of years 

since the FSP was introduced in a county, divided into two-year bins. Specifically, these 

variables are equal to one if the FSP was introduced one or two years ago (i.e., in year 𝑡 − 1 or 

𝑡 − 2), three or four years ago, five or six years ago, seven or eight years ago, or nine or more 

years ago. The estimates of the coefficients 𝛽1𝑖 on these dummies represent the effects of the 

FSP being in place for the given number of years on each mortality rate, relative to counties 

which have either not yet implemented the FSP or implement it in the current year 𝑡. Taken 

collectively, these estimates can be used to trace out the effects of the FSP rollout on each 

mortality rate over time, which need not be a linear function of the time the FSP has been in 

place. 

 Model (12) includes a vector of county-level economic and demographic covariates, 

represented by 𝑿𝒄𝒕. Baseline models include annual measures of of real personal income per 

capita, real government transfers to individuals per capita, as well as interactions between linear 

time trends and several pre-rollout 1960 county characteristics.132, 133 𝑪𝑭𝑬𝒄 and 𝒀𝑭𝑬𝒕 represent 

county fixed effects and year fixed effects, respectively. Baseline regressions are weighted by the 

 
132 Nominal dollar values are adjusted for inflation and represented in 1960-adjusted dollars. Government transfers 

per capita are broken out into income maintenance benefits excluding food stamps, medical benefits, retirement and 

disability insurance benefits, unemployment insurance compensation, veteran’s benefits, education and training 

assistance, and other transfers. 1960 county characteristics interacted with time trends include the log of population, 

the percentage of people under age 5, the percentage of people aged 65 or older, the percentage of people that are 

non-white, the percentage of people living in rural, non-farm areas, and the poverty rate. 
133 The inclusion of individual government transfer controls is intended to disentangle the effects of the FSP from 

any effects of the expansion of other social programs during the time period. Hoynes and Schanzenbach (2009) find 

that pre-rollout characteristics are correlated with time until FSP introduction, though they explain little overall 

variation in the time until introduction. This motivates the inclusion of time trend-interacted pre-rollout county 

characteristics as controls. 
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county population or subgroup population corresponding to the mortality rate used as an 

outcome.134 

 The FSP rollout may affect mortality rates in some areas differently than it would in 

others. Given that the FSP targets low-income, low-resource households, poorer counties would 

likely benefit more from access to the program. A larger share of the population in high-poverty 

areas would be eligible to receive food stamps relative to low-poverty areas, which likely means 

that a larger share would also participate in the program in these areas. The average benefit per 

participating household may also be larger in high-poverty areas since benefit size decreases 

with income. Therefore, the introduction of the FSP may subsequently improve health and/or 

reduce mortality rates more in high-poverty areas. In order to determine whether this is the case, 

I estimate model (12) separately for each mortality outcome for a subsample of high-poverty 

counties. I define counties as “high-poverty” if they have pre-rollout 1960 poverty rates in the 

highest quartile. 

 Results from baseline regressions using the full and high-poverty county samples are 

presented alongside each other in Section 4. I discuss challenges to identification at the end of 

Section 4. 

3.2. Alternative models 

I consider several alternatives to model (12) that differently model the impact of the FSP 

or alter other aspects of the model. I estimate alternative models of the form: 

 𝑀𝑅𝐴𝑇𝐸𝑐𝑡 = 𝛽0 + 𝛿0𝐹𝑆𝑃𝑐𝑡 + 𝛽1𝐹𝑆𝑃𝑦𝑟𝑠𝑐𝑡 + 𝛽2𝐹𝑆𝑃𝑦𝑟𝑠𝑐𝑡
2 + 𝜷𝟑𝑿𝒄𝒕 + 𝜷𝟒𝑪𝑭𝑬𝒄 + 𝜷𝟓𝒀𝑭𝑬𝒕 + 𝜖𝑐𝑡 (13) 

 
134 Models using the overall mortality rate or specific causes of death use the total county population. Models using 

subgroup mortality rates use the relevant subgroup population, which is also used to construct the mortality rate. For 

example, models using the male, white, or age 20-64 mortality rates are weighted by the male population, white 

population, or adult population aged 20-64, respectively. 
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 This model includes three outcomes of interest. The first is a dummy variable 𝐹𝑆𝑃𝑐𝑡, 

which is equal to one if the FSP is introduced in year 𝑡 in county 𝑐 or in any other previous year. 

𝛿0 represents the average effect of the FSP being in place at all during year 𝑡. The second is 

𝐹𝑆𝑃𝑦𝑟𝑠𝑐𝑡 which represents the number of years since the year in which the FSP began. For 

example, 𝐹𝑆𝑃𝑐𝑡 = 2 for a county in 1970 if the FSP was introduced there in 1968. If the FSP was 

instead introduced in 1970 or in any future year, 𝐹𝑆𝑃𝑐𝑡 = 0. The third is the square of 𝐹𝑆𝑃𝑦𝑟𝑠𝑐𝑡. 

𝛽1 and 𝛽2 together represent the effect of the FSP being in place for several years and model the 

mortality effects of the program as a linear or quadratic function of time since introduction. 

Model (13) is otherwise structured the same and contains the same controls as model (12). 

Additionally, I estimate alternate versions of model (12) to test the sensitivity of the main 

results to various specifications. Results from model (13) and these other alternative models are 

presented in Section 4 following the main results.  

 

4. Results 

4.1. Hypotheses 

I hypothesize that the introduction of the FSP reduces the overall mortality rate. As 

discussed in Section 1, access to the FSP is likely to improve health, which would reduce 

mortality over time. The program is intended to improve the nutrition of low-income recipients 

and is particularly likely to meet this goal among the poorest recipients. Therefore, I hypothesize 

that the FSP’s introduction reduces mortality among those aged 19 or younger – who are likely 

to see larger health improvements from increased nutrition – and that it reduces mortality from 

causes of death such as major cardiovascular diseases or diabetes. The first effect is likely to 

occur relatively quickly, and the second set of effects is more likely to manifest over time. 
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Since the FSP frees up recipients’ income, its introduction may reduce mortality through 

increased consumption of health-promoting goods like medical care. It is also possible that 

recipients may use freed-up income for health-harming consumption such as unhealthy food, 

tobacco, or alcohol. If this is the case, the FSP’s introduction may increase mortality rates from 

causes such as diabetes, malignant neoplasms, and liver disease, though competing reductions in 

these rates from other changes in consumption may lead to small or undetectable net changes. 

The FSP may also reduce deaths of despair by functioning as a safety net for households 

facing economic or other hardship. Access to food stamps may reduce adverse impacts on mental 

health and increases in risky coping behaviors accompanying short- or long-term financial 

hardship. Therefore, the FSP rollout may decrease mortality from suicides, other accidents (a 

category that includes poisoning and drug overdose), or liver disease. 

Last, I hypothesize that reductions in mortality rates as described above are likely larger 

in high-poverty counties than among the full sample. The FSP rollout is likely to have the largest 

effects in these counties because the health impacts of access to food stamps would likely be 

largest for the poorest households and because a greater share of the population in these counties 

are eligible to receive food stamps relative to the full sample. For similar reasons, the FSP rollout 

may have larger mortality impacts on more-vulnerable population subgroups like blacks and the 

elderly. 

4.2. Main results 

Tables 27 through 31 report the main results from regressions of the county-level 

mortality rates I consider on dummy variables indicating how many years have passed since the 

introduction of the FSP as shown by model (12). Mortality rates are expressed as the number of 

deaths per 100,000 members of the population in all regressions. Each of these tables reports 
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results from regressions using the full county sample and from those using only the high-poverty 

sample alongside each other. 

Table 27 reports the results of regressions using the overall mortality rate that includes 

deaths from the entire population from all causes, the female rate, and the male rate. I do not find 

evidence that the introduction of the FSP reduces any of these mortality rates among the full 

sample in the post-rollout period considered. However, I do find evidence that the FSP rollout 

significantly decreases the overall mortality rate over time in high-poverty counties. I estimate 

that the FSP reduces the mortality rate by 21.2 deaths five to six years after its introduction, or 

about 2.1% of the mean rate of 1,018 deaths per 100,000. I estimate that this mortality reduction 

grows over time. Seven to eight years after its introduction, I estimate that the FSP reduces the 

mortality rate by 29.4 deaths, or about 2.9% of the mean. Nine or more years after its 

introduction, I estimate a reduction of 33.9 deaths, or about 3.3% of the mean. The estimated 

reduction in the overall mortality rate in high-poverty counties appears to be driven entirely by 

reductions in the male mortality rate. I find no evidence of mortality reductions related to the 

FSP introduction among females in either sample, but I find that the FSP’s introduction 

significantly reduces the male mortality rate in high-poverty counties. Five to six years after its 

introduction, the FSP reduces the male mortality rate in these counties by 41.4 deaths, or 3.4% of 

the mean rate of 1,212 deaths per 100,000. After being in place for nine or more years, the FSP 

reduces this rate by about 74.3 deaths, or 6.1% of the mean. 

Table 28 reports the results of regressions using black, white, and “other” racial group-

specific mortality rates. I find no statistically significant evidence that the FSP’s introduction 

affects any of these rates in the full county sample. Among the high-poverty county sample, I 

find a pattern of estimated reductions in the black mortality rate much like the pattern of
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Table 27. Overall and gender-specific mortality rate regression results 

 Full sample  High-poverty sample 

 Overall Female Male  Overall Female Male 

        

Years since FSP introduction:        

1 or 2 2.115 1.156 2.901  -4.214 0.249 -8.782 

 (2.414) (2.598) (3.124)  (7.596) (8.844) (11.38) 

3 or 4 -0.450 -1.309 0.195  -8.527 4.654 -22.59 

 (3.100) (3.322) (4.039)  (9.798) (11.21) (14.63) 

5 or 6 -0.317 -0.893 -0.0617  -21.20* -2.402 -41.44** 

 (4.000) (4.259) (5.155)  (12.53) (14.63) (18.45) 

7 or 8 -2.001 -2.296 -2.101  -29.40* -10.04 -50.33** 

 (5.029) (5.488) (6.399)  (15.72) (18.36) (22.96) 

9 or more -3.068 -4.604 -1.961  -33.89* 3.440 -74.25*** 

 (6.004) (6.517) (7.762)  (19.82) (22.97) (28.79) 

        

Economic controls  Yes Yes Yes  Yes Yes Yes 

1960 controls * t  Yes Yes Yes  Yes Yes Yes 

County and year FE  Yes Yes Yes  Yes Yes Yes 

        

Mean mortality rate 903.8 783.7 1031.0  1017.9 833.9 1212.2 

R2 0.453 0.232 0.423  0.252 0.132 0.188 

Observations 17,160 17,160 17,160  4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample or a subsample of counties whose 1960 poverty rates fall in the highest quartile. Regressions and mean 

mortality rates are weighted by the total county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP dummies indicate how long ago the FSP was rolled out in each 

county. 
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Table 28. Race group-specific mortality rate regression results 

 Full sample  High-poverty sample 

 Black White Other race  Black White Other race 

        

Years since FSP introduction:        

1 or 2 8.435 1.154 2.614  2.419 -10.69 -11.02 

 (5.659) (2.687) (14.59)  (14.71) (8.648) (53.73) 

3 or 4 3.970 -0.393 -23.40  -18.16 -7.154 -10.08 

 (7.425) (3.445) (16.94)  (18.75) (11.08) (66.06) 

5 or 6 12.54 -0.789 -25.27  -43.90* -15.30 68.24 

 (9.572) (4.422) (20.58)  (24.24) (14.13) (85.22) 

7 or 8 8.434 -1.110 -13.17  -61.45** -18.09 68.73 

 (11.50) (5.585) (24.72)  (29.98) (17.86) (111.0) 

9 or more 20.89 -4.263 -29.60  -81.47** -17.08 59.43 

 (14.22) (6.704) (32.58)  (37.46) (22.44) (130.2) 

        

Economic controls  Yes Yes Yes  Yes Yes Yes 

1960 controls * t  Yes Yes Yes  Yes Yes Yes 

County and year FE  Yes Yes Yes  Yes Yes Yes 

        

Mean mortality rate 929.2 909.0 365.0  1088.3 996.6 639.2 

R2 0.164 0.374 0.0675  0.111 0.175 0.0212 

Observations 17,160 17,160 17,160  4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample or a subsample of counties whose 1960 poverty rates fall in the highest quartile. Regressions and mean 

mortality rates are weighted by the total county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP dummies indicate how long ago the FSP was rolled out in each 

county. 
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reductions in the male mortality rate. Five to six years after its introduction, the FSP reduces the 

black mortality rate in these counties by 43.9 deaths, or 4.0% of the mean rate of 1,088 deaths 

per 100,000. After nine or more years since its introduction, the FSP reduces this rate further by 

about 81.5 deaths, or 7.5% of the mean. I find no statistically significant evidence of 

corresponding reductions in the other groups’ mortality rates. 

Table 29 reports the results of regressions using age group-specific mortality rates. I find 

evidence that the FSP’s introduction reduces the mortality rate of those under age 20 in the full 

county sample. Unlike the estimates in Tables 27 and 28, I estimate a statistically significant 

reduction in this mortality rate starting just one to two years after the FSP begins in a county. 

Specifically, I estimate that the FSP being in place for that long reduces the rate by 3.6 deaths on 

average, or 2.6% of the mean of 138 deaths per 100,000 population. I estimate that the impacts 

of the FSP’s introduction increase over time. Nine or more years after its introduction, I estimate 

that the FSP reduces this rate by about 7.1 deaths, or 5.1% of the mean. I find evidence of a 

similar pattern of reductions in mortality of those aged 0 to 19 in the high-poverty county 

sample. After being in place for nine years or more, I estimate that the FSP reduces that mortality 

rate by 34.5 deaths, or 18.8% of the mean rate of 184 deaths per 100,000 population. I find no 

evidence of mortality reductions for those aged 20 to 64 or 65 or older in the full county sample. 

Among high-poverty counties, I estimate coefficients for these age groups suggestive of 

mortality reductions over time, but only two estimates for those aged 65 or older are weakly 

statistically significant. I estimate a reduction in the elderly mortality rate in high-poverty 

counties as high as 179.8 deaths seven or eight years after the introduction of the FSP. This 

effect is 3.2% of the mean rate of 5,558 deaths per 100,000 population. 
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Table 29. Age group-specific mortality rate regression results 

 Full sample  High-poverty sample 

 0-19 20-64 65+  0-19 20-64 65+ 

        

Years since FSP introduction:        

1 or 2 -3.644*** 3.267* 22.30  -7.713 0.273 -19.31 

 (1.071) (1.848) (15.78)  (5.029) (8.220) (52.48) 

3 or 4 -3.752*** 1.570 10.18  -13.22** -6.418 -37.22 

 (1.396) (2.403) (20.48)  (6.133) (10.61) (67.73) 

5 or 6 -4.494** 2.464 11.28  -16.54** -9.448 -143.6* 

 (1.773) (3.092) (27.15)  (7.903) (13.43) (86.54) 

7 or 8 -6.555*** 0.0208 5.321  -22.40** -17.40 -179.8* 

 (2.206) (3.850) (35.30)  (9.729) (17.09) (108.3) 

9 or more -7.052*** 0.570 -14.39  -34.53*** -26.58 -131.9 

 (2.699) (4.691) (43.37)  (11.96) (21.28) (136.3) 

        

Economic controls  Yes Yes Yes  Yes Yes Yes 

1960 controls * t  Yes Yes Yes  Yes Yes Yes 

County and year FE  Yes Yes Yes  Yes Yes Yes 

        

Mean mortality rate 137.6 526.6 5598.1  183.7 662.4 5558.0 

R2 0.386 0.607 0.526  0.211 0.401 0.258 

Observations 17,160 17,160 17,160  4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample or a subsample of counties whose 1960 poverty rates fall in the highest quartile. Regressions and mean 

mortality rates are weighted by the total county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP dummies indicate how long ago the FSP was rolled out in each 

county. 
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Table 30 reports the results of regressions using mortality rates from the six internal 

causes of death I consider: malignant neoplasms, diabetes mellitus, major cardiovascular 

diseases, stroke, pneumonia and influenza, and liver disease and cirrhosis. In the full sample, I 

find evidence of an increase in deaths from diabetes. I estimate that the FSP increases the 

diabetes mortality rate by 0.39 deaths (2.3% of the mean) one to two years after its introduction 

and 0.96 deaths (4.6% of the mean) seven or eight years after its introduction. I find no 

statistically significant evidence of a pattern of impacts over time on the other five mortality 

rates in either sample. However, in the high-poverty sample, I estimate coefficients of size and 

magnitude that are suggestive of reductions over time in deaths from diabetes, cardiovascular 

disease, and liver disease and cirrhosis. 

Table 31 reports the results of regressions using mortality rates from the four external 

causes of death I consider: motor vehicle accidents, other accidents, suicide, and homicide and 

legal intervention. In the full sample, I find evidence of an increase in deaths from homicide and 

legal intervention. One to two years following the introduction of the FSP, this mortality rate 

increases by about 0.56 deaths (5.5% of the mean), and by five to six years following the FSP’s 

introduction, this rate increases by 0.80 deaths (7.7% of the mean). In the high-poverty sample, I 

find evidence of a pattern of reductions in mortality from non-motor vehicle accidents. I estimate 

that this reduction increases with time since the FSP’s introduction. One to two years after the 

FSP’s introduction, the other accident mortality rate falls by about 2.6 deaths, or 6.7% of the 

mean rate of 39.2 deaths per 100,000 population. After nine or more years since the program’s 

introduction, this mortality rate falls by about 7.2 deaths, or 18.5% of the mean rate. I estimate 

coefficients of size and magnitude that are suggestive of reductions in the suicide rate following 
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Table 30. Regressions of mortality rates from internal causes on Food Stamp Program 

introduction indicators 

 Cancer Diabetes Cardio. 

disease 

Stroke Pneumonia 

& flu 

Liver 

       

Full sample 

Years since FSP intro:       

1 or 2 -0.174 0.394* 2.451 0.646 -0.252 -0.255 

 (0.716) (0.231) (1.660) (0.436) (0.351) (0.254) 

3 or 4 0.0684 0.585* -0.167 0.886 -0.934** 0.00506 

 (0.960) (0.311) (2.296) (0.573) (0.442) (0.325) 

5 or 6 -0.620 0.753* 0.571 1.246* -0.735 0.128 

 (1.229) (0.409) (3.017) (0.741) (0.565) (0.407) 

7 or 8 -0.712 0.964* -0.208 1.445 -0.983 -0.122 

 (1.549) (0.522) (3.864) (0.915) (0.708) (0.505) 

9 or more -1.305 0.788 -2.454 1.288 -0.742 0.192 

 (1.874) (0.681) (4.780) (1.167) (0.915) (0.642) 

       

Mean mortality rate 168.9 17.28 466.6 55.67 27.63 15.94 

R2 0.238 0.0958 0.471 0.142 0.187 0.111 

Observations 17,160 17,160 17,160 17,160 17,160 17,160 

       

High-poverty sample 

Years since FSP intro:       

1 or 2 -3.359 -0.506 -1.431 2.362 -0.273 -0.478 

 (2.643) (1.054) (5.307) (2.325) (1.399) (0.676) 

3 or 4 1.441 -0.510 -9.142 2.852 -0.928 -0.801 

 (3.439) (1.289) (6.882) (2.887) (1.711) (0.874) 

5 or 6 -1.206 -0.955 -14.12 1.445 -1.380 -0.847 

 (4.375) (1.632) (8.899) (3.688) (2.189) (1.100) 

7 or 8 -1.809 -0.503 -23.01** 0.464 -0.0871 -1.742 

 (5.600) (2.035) (10.99) (4.618) (2.726) (1.395) 

9 or more -1.887 -1.814 -18.19 2.451 -0.154 -1.398 

 (6.923) (2.486) (13.78) (5.843) (3.335) (1.733) 

       

Mean mortality rate 155.1 21.60 520.4 84.20 33.31 11.11 

R2 0.0670 0.0462 0.242 0.0800 0.109 0.0552 

Observations 4,280 4,280 4,280 4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, 

and county and year fixed effects. Regressions are estimated using the full county sample or a subsample of counties 

whose 1960 poverty rates fall in the highest quartile. Regressions and mean mortality rates are weighted by the total 

county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP dummies indicate how 

long ago the FSP was rolled out in each county. 
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Table 31. Regressions of mortality rates from external causes on Food Stamp Program 

introduction indicators 

 Motor veh. acc. Other acc. Suicide Homicide & LI 

     

Full sample     

Years since FSP intro:     

1 or 2 -0.282 0.0939 0.163 0.565** 

 (0.270) (0.317) (0.189) (0.261) 

3 or 4 0.0214 0.399 0.109 0.650* 

 (0.358) (0.442) (0.252) (0.351) 

5 or 6 -0.537 0.434 0.0699 0.795* 

 (0.447) (0.571) (0.322) (0.466) 

7 or 8 -0.876 -0.140 -0.365 0.846 

 (0.537) (0.728) (0.415) (0.598) 

9 or more -0.867 -0.185 -0.781 1.026 

 (0.674) (0.918) (0.491) (0.780) 

     

Mean mortality rate 23.50 26.62 12.24 10.28 

R2 0.158 0.0850 0.0418 0.135 

Observations 17,160 17,160 17,160 17,160 

     

High-poverty sample     

Years since FSP intro:     

1 or 2 0.211 -2.626* -0.791 0.469 

 (1.490) (1.456) (0.675) (0.827) 

3 or 4 1.392 -3.463* -0.546 0.184 

 (1.926) (1.857) (0.916) (1.022) 

5 or 6 -2.126 -3.991 -2.694** -0.119 

 (2.434) (2.471) (1.147) (1.270) 

7 or 8 -1.579 -6.052** -1.528 -0.259 

 (3.016) (3.058) (1.411) (1.616) 

9 or more -1.918 -7.245* -2.036 -1.406 

 (3.704) (3.781) (1.760) (1.985) 

     

Mean mortality rate 39.82 39.19 12.06 14.76 

R2 0.123 0.0424 0.0360 0.0434 

Observations 4,280 4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, 

and county and year fixed effects. Regressions are estimated using the full county sample or a subsample of counties 

whose 1960 poverty rates fall in the highest quartile. Regressions and mean mortality rates are weighted by the total 

county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP dummies indicate how 

long ago the FSP was rolled out in each county. 
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the FSP’s introduction in high-poverty counties, but all but one of these estimates are statistically 

insignificant. 

4.3. Results from alternative models 

Tables 32 and 33 report results from regressions of the county-level mortality rates on 

three variables of interest as shown in model (13): an indicator equal to one if the FSP was 

introduced in a county in the current year or earlier, a variable equal to the number of years since 

the FSP was introduced, and a variable equal to the square of the number of years since 

introduction. Both tables report results for the full county sample in the top panel and the high-

poverty county sample in the bottom panel. Table 32 reports results for the overall mortality rate 

and those rates broken down by gender, racial group, or age group, and Table 33 reports results 

for the mortality rates broken down by internal or external cause of death. 

Generally, the estimates reported in Table 32 support the main findings. For example, I 

find no evidence that the introduction of the FSP reduces the overall mortality rate in the full 

county sample, but I do estimate that among the high-poverty county sample, the FSP reduces 

the overall mortality rate over time. For comparison, Table 27 places the impact of the FSP being 

in place for 10 years as a reduction in the mortality rate of about 33.9 deaths per 100,000 

population (3.3% of the mean). Applying the point estimates in Table 32 would predict a much 

larger reduction of 82.5 deaths (8.1% of the mean).135 Similarly, Table 32 shows that most of the 

reductions in the overall mortality rate can be attributed to reductions in the male and black 

mortality rates. In the full sample, the FSP being in place reduces the mortality rate of those aged 

0 to 19 and reduces it further the longer it is in place. In the high-poverty sample, I estimate 

similar effects, though they are statistically insignificant. Interestingly, I find evidence that the

 
135 −5.477 ∗ 1 − 8.852 ∗ 10 + 0.115 ∗ 102 = −82.497 
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Table 32. Alternate overall and subgroup-specific mortality rate regression results 
 Overall Female Male Black White Other race 0-19 20-64 65+ 

          

Full county sample 

FSP in place 2.892 5.651 -0.337 13.85* 1.111 7.877 -3.316** 4.715* 46.20** 

 (3.562) (3.593) (4.692) (8.299) (4.158) (14.31) (1.679) (2.798) (21.72) 

Years since intro -0.518 0.637 -1.848 4.037 -0.496 -4.885 -1.120** 0.560 4.881 

 (1.124) (1.184) (1.489) (3.367) (1.248) (4.642) (0.545) (0.935) (7.421) 

Years since intro, 

squared 

0.00788 0.0380 -0.0226 -0.0145 -0.00912 0.280 0.0388* -0.00948 0.208 

(0.0478) (0.0522) (0.0594) (0.108) (0.0529) (0.209) (0.0202) (0.0353) (0.351) 

          

Mean mortality rate 903.8 783.7 1031.0 929.2 909.0 365.0 137.6 526.6 5598.1 

R2 0.453 0.232 0.423 0.163 0.374 0.0660 0.386 0.607 0.525 

Observations 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 

          

High-poverty county sample 

FSP in place -5.477 0.820 -12.25 -8.010 -8.941 -42.53 -2.163 5.159 -31.83 

 (10.96) (12.43) (16.69) (22.38) (12.70) (81.31) (7.323) (11.93) (76.99) 

Years since intro -8.852** -2.846 -15.43** -23.08*** -4.182 24.61 -4.104 -1.892 -71.91** 

 (4.213) (4.959) (6.132) (8.911) (4.849) (33.96) (2.543) (4.482) (30.39) 

Years since intro, 

squared 

0.115 0.0728 0.160 0.200 0.0823 -0.301 0.00397 0.0874 1.698** 

(0.131) (0.156) (0.191) (0.253) (0.150) (1.047) (0.0868) (0.139) (0.851) 

          

Mean mortality rate 1017.9 833.9 1212.2 1088.3 996.6 639.2 183.7 662.4 5558.0 

R2 0.251 0.129 0.187 0.111 0.174 0.0206 0.210 0.400 0.257 

Observations 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample or a subsample of counties whose 1960 poverty rates fall in the highest quartile. Regressions and mean 

mortality rates are weighted by the total county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP in place dummy indicates that the FSP was rolled out in the current 

year or earlier. Years since intro takes on non-negative values representing how many years ago the FSP was introduced. 
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Table 33. Alternate cause-specific mortality rate regression results 
 Cancer Diabetes Cardio. 

disease 

Stroke Pneumonia 

& flu 

Liver Motor 

veh. acc. 

Other 

acc. 

Suicide Homicide 

& LI 

           

Full county sample 

FSP in place -0.368 0.0915 3.356 -0.923 -0.475 -0.745 -0.0527 0.226 0.115 0.687* 

 (1.031) (0.292) (2.361) (0.614) (0.506) (0.486) (0.368) (0.409) (0.261) (0.377) 

Years since intro -0.339 0.163 -0.0933 -0.121 -0.158 -0.0972 -0.162 0.166 -0.166* 0.299** 

 (0.345) (0.104) (0.815) (0.219) (0.171) (0.130) (0.134) (0.152) (0.0887) (0.122) 

Years since intro, 

squared 

-0.00888 -0.0183*** 0.0140 -0.0312*** 0.0110* -0.00510 0.000200 -0.0104 -0.00403 -0.00629 

(0.0151) (0.00500) (0.0376) (0.00898) (0.00656) (0.00475) (0.00481) (0.00678) (0.00404) (0.00611) 

           

Mean mortality rate 168.9 17.28 466.6 55.67 27.63 15.94 23.50 26.62 12.24 10.28 

R2 0.238 0.0973 0.471 0.143 0.187 0.111 0.158 0.0845 0.0409 0.136 

Observations 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 

           

High-poverty county sample 

FSP in place -6.149* -1.344 -0.952 -0.525 -4.158** -2.013** 4.620** -0.322 -0.487 1.569 

 (3.407) (1.478) (7.479) (3.283) (1.929) (0.893) (2.194) (2.024) (1.029) (1.085) 

Years since intro 0.0250 -0.547 -5.861** -0.891 -1.683** -0.857*** 1.040 -0.487 -0.718* 0.289 

 (1.320) (0.560) (2.839) (1.168) (0.741) (0.330) (0.807) (0.796) (0.369) (0.382) 

Years since intro, 

squared 

-0.0588 -0.00779 0.215** -0.0117 0.00591 0.00842 0.0318 0.0203 0.0194 0.00412 

(0.0466) (0.0171) (0.0981) (0.0382) (0.0228) (0.0126) (0.0259) (0.0250) (0.0122) (0.0143) 

           

Mean mortality rate 155.1 21.60 520.4 84.20 33.31 11.11 39.82 39.19 12.06 14.76 

R2 0.0657 0.0458 0.241 0.0789 0.110 0.0569 0.121 0.0409 0.0281 0.0420 

Observations 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 

Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample or a subsample of counties whose 1960 poverty rates fall in the highest quartile. Regressions and mean 

mortality rates are weighted by the total county population or subgroup population used to construct each mortality rate. Mortality rates are expressed as the 

number of deaths per 100,000 members of the total population or subgroup population. FSP in place dummy indicates that the FSP was rolled out in the current 

year or earlier. Years since intro takes on non-negative values representing how many years ago the FSP was introduced. 
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FSP being in place increases the elderly mortality rate in the full sample while decreasing that 

rate over time in the high-poverty sample. 

The estimates reported in Table 33 are somewhat less consistent with the findings 

concerning cause-specific mortality rates presented in Tables 30 and 31. I estimate that the FSP 

being in place reduces the malignant neoplasm in high-poverty counties by 6.1 deaths per 

100,000 population, or 4.0% of the mean. Unlike in the main findings, I do not find statistically 

significant evidence of an increase in deaths from diabetes. I estimate that the FSP reduces 

deaths from major cardiovascular diseases over time in high-poverty counties, with the size of 

this reduction falling over time. I also find evidence that the FSP being in place reduces deaths 

from pneumonia and influenza as well as from liver disease and cirrhosis, with these reductions 

growing over time. As in the main findings, I find some evidence that the FSP reduces the 

suicide rate over time in the high-poverty county sample, but I also find similar evidence of a 

reduction over time in the full county sample. Also consistent with the main findings, I find 

evidence that the FSP being in place increases deaths from homicide and legal intervention in the 

full county sample with this increase growing over time. 

 I test the sensitivity of the main results by estimating regressions altering some aspect of 

model (12). Tables D2 and D3 in Appendix D report the results of these regressions using the 

overall mortality rate and the full or high-poverty county samples, respectively. I estimate 

regressions including state-year-level fixed effects in place of year fixed effects in order to 

control for state-year-level unobservable characteristics; including indicators representing 

whether Medicaid has been introduced in a state or whether it has been in place for several years; 

including county-specific time trends in place of interactions between time trends and pre-rollout 

characteristics; altering the baseline control set by excluding controls or including alternate 
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versions of the economic controls; or that are not weighted by population. None of these 

alterations meaningfully change the estimates for either the full or high-poverty county samples, 

though some cause the high-poverty county subsample estimates to lose their statistical 

significance. 

4.4. Caveats 

I identify several threats to the validity of this study’s findings. First, I assume that the 

operation of the FSP in a county is a measure of access to food stamps. This is an imprecise 

measure. People move into and out of counties during the rollout period, so some will have had 

access to food stamps for a longer or shorter time than the number of years the FSP has been in 

place in a county. The longer the period since the FSP’s introduction, the more movement that 

will have occurred and the more imprecise this measure. At best, movement into and out of 

counties is unrelated to the presence or absence of the FSP, meaning that the estimated mortality 

impacts of the FSP’s introduction would be unbiased but less precise. However, movement may 

be related to the FSP rollout. For instance, poorer households who would benefit from the 

program may move into areas where it is introduced earlier. If migrant households also have a 

higher average risk of death, this would bias the estimates in the direction of earlier FSP 

adoption increasing the mortality rate. Accordingly, I suggest a greater degree of caution in 

interpreting the estimates of the FSP being in place for longer periods of time. 

Second, this study’s identification strategy relies on the assumption that there are no 

trends in mortality rates associated with the timing of FSP adoption. Availability of county-level 

mortality and economic data restricts the sample period to 1969 through 1978. Table 24 shows 

that by 1969, the FSP had been introduced in 45% of counties in this study’s sample and 54% of 

counties in the high-poverty subsample. I therefore do not observe most counties’ pre-rollout 
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mortality rates or trends in these rates. Further, almost all counties that introduce the FSP after 

1969 do so by 1974 at the latest, meaning that I only observe mortality rates up to five years 

prior to the FSP’s introduction. Counties that adopt the FSP earlier tend to be more populous, 

urban, black, and poor (Hoynes and Schanzenbach 2009). They may therefore differ from late-

adopting counties in pre-rollout mortality rates or mortality trends, which could invalidate the 

above assumption. In order to address these concerns, I would ideally perform an event study-

like analysis including dummies indicating the number of years since the FSP’s introduction as 

in the baseline model (12) as well as dummies indicating the number of years until the FSP’s 

introduction. I should estimate no positive or negative effects of the FSP on mortality rates ahead 

of its introduction. Given the overall trends in mortality during the 1960s and 1970s, the length 

of time the FSP would need to be in place to affect mortality, and potential differences between 

early and late adopters, a convincing analysis would require detailed county-level mortality data 

covering more time prior to 1969. 

Last, I urge caution in applying this study’s findings to other contexts. Although SNAP is 

the modern-day equivalent of the FSP, it is not likely that the mortality impacts of introducing 

SNAP today would be equivalent. Modern-day SNAP differs significantly in several ways, 

including provision through electronic benefit transfer, the lack of a purchase requirement, 

higher benefit levels, and expanded eligibility, among others. Mortality rates are also lower today 

than in the “War on Poverty” era for several reasons (including less severe poverty and food 

insecurity, though SNAP’s operation partially determines these factors), so the rollout of the 

program would likely result in smaller mortality improvements. Additionally, the composition of 

the high-poverty county sample may affect interpretation of the estimated mortality impacts in 

these counties. As Figure 10 shows, this sample is concentrated in the Southeast. It may be the 
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case that the FSP’s mortality impacts are larger among this subsample due to unobservable 

regional characteristics instead of poverty itself. 

 

5. Conclusion 

In this study, I estimate the impact of the rollout of the FSP on various county-year level 

mortality rates over time. I consider mortality rates broken down by population subgroup and by 

cause of death in order to examine the different mechanisms through which the FSP might affect 

the overall mortality rate. I do not find evidence that the FSP’s introduction reduced mortality 

among the full county sample, but I do find that it reduced mortality over time in a subsample of 

high-poverty counties. Mortality reductions in these counties are primarily driven by reductions 

in the mortality of males, blacks, and those aged 0 to 19. I also find some evidence of a reduction 

in deaths from cardiovascular disease, suicides, and non-motor vehicle accidents. 

I estimate large mortality impacts of the FSP’s introduction, though the magnitudes of 

these impacts are generally in-line with other estimates of the mortality effects of “War on 

Poverty” era social programs.136 In various specifications, I estimate that the FSP being in place 

for 5 to 6 years reduces the mortality rate in high-poverty counties by 1.4% to 2.1% of the mean 

rate.137 The FSP being in place for 9 or more years reduces this rate even further by 1.7% to 

3.5%.138 In a typical year during the sample period, about 92,000 people died in these high-

poverty areas.139 After ten years in place, I estimate that the FSP may have saved as many as 

 
136 E.g., Goodman-Bacon (2018) estimates that Medicaid’s introduction led to an 11% reduction in the non-white 

child mortality rate. 
137 From Table D3, the weighted point estimates range from -14.3 to -21.4 in columns 1-7. 
138 From Table D3, the weighted point estimates range from -17.1 to -35.4 in columns 1-7. 
139 The total average population in the high-poverty counties was just under 9,000,000. An average rate of 1,017.9 

deaths per 100,000 population implies an average of 91,611 total annual deaths. 
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3,200 lives annually.140 Therefore, I conclude that the FSP – like other antipoverty programs of 

the era – contributed to reductions in the mortality rate. 

 

 

 
140 A 3.5% decrease in 91,611 deaths is 3,206.4 deaths avoided. 
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Appendix A: Construction of the Simulated Eligibility Variable (SEV) 

 

 

 

Table A1. Changes in federal SNAP rules, 1996-2015 

  Resource limits ($)   

Dependent care 

deduction caps ($)  

Year 

Vehicle FMV 

exclusion ($) 

No elderly or 

disabled Any elderly 

Any 

disabled  Infants Other 

Excess shelter deduction 

cap ($) 

1996 4600 2000 3000 2000  200 175 247 

1997 4650 2000 3000 2000  200 175 250 

1998 4650 2000 3000 2000  200 175 250 

1999 4650 2000 3000 2000  200 175 275 

2000 4650 2000 3000 2000  200 175 275 

2001 4650 2000 3000 2000  200 175 340 

2002 4650 2000 3000 3000  200 175 354 

2003 4650 2000 3000 3000  200 175 367 

2004 4650 2000 3000 3000  200 175 378 

2005 4650 2000 3000 3000  200 175 388 

2006 4650 2000 3000 3000  200 175 400 

2007 4650 2000 3000 3000  200 175 417 

2008 4650 2000 3000 3000  200 175 431 

2009 4650 2000 3000 3000  None None 446 

2010 4650 2000 3000 3000  None None 459 

2011 4650 2000 3000 3000  None None 458 

2012 4650 2000 3250 3250  None None 459 

2013 4650 2000 3250 3250  None None 469 

2014 4650 2000 3250 3250  None None 478 

2015 4650 2250 3250 3250  None None 490 
Rules shown are for fiscal years, not calendar years. Dollar values are nominal. Values of deductions and deduction caps shown are per month, not per year. 

Dependent care deduction caps were eliminated in fiscal year 2009. I only show rules above that change over the 1996-2015 period for the contiguous United 

States. FMV stands for fair market value. 
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Table A1. Changes in federal SNAP rules, 1996-2015 (continued) 

 

Standard deduction ($) for 

households of size:   Maximum allotment ($) for households of size: 

Year 1-3 4 5 6+  1 2 3 4 5 6 7 8 + 

1996 134 134 134 134  119 218 313 397 472 566 626 716 90 

1997 134 134 134 134  120 220 315 400 475 570 630 720 90 

1998 134 134 134 134  122 224 321 408 485 582 643 735 92 

1999 134 134 134 134  125 230 329 419 497 597 659 754 94 

2000 134 134 134 134  127 234 335 426 506 607 671 767 96 

2001 134 134 134 134  130 238 341 434 515 618 683 781 98 

2002 134 134 134 134  135 248 356 452 537 644 712 814 102 

2003 134 134 147 168  139 256 366 465 553 663 733 838 105 

2004 134 134 149 171  141 259 371 471 560 672 743 849 106 

2005 134 134 153 175  149 274 393 499 592 711 786 898 112 

2006 134 134 157 179  152 278 399 506 601 722 798 912 114 

2007 134 139 162 186  155 284 408 518 615 738 816 932 117 

2008 134 143 167 191  162 298 426 542 643 772 853 975 122 

2009* 144 147 172 197  188 345 494.5 628 745.5 895 989 1130 141 

2010 141 153 179 205  200 367 526 668 793 952 1052 1202 150 

2011 142 153 179 205  200 367 526 668 793 952 1052 1202 150 

2012 147 155 181 208  200 367 526 668 793 952 1052 1202 150 

2013 149 160 187 214  200 367 526 668 793 952 1052 1202 150 

2014* 152 163 191 219  189.92 348.67 499.42 635 753.58 904.33 999.75 1142.42 142.67 

2015 155 165 193 221  194 357 511 649 771 925 1022 1169 146 
Rules shown are for fiscal years, not calendar years. Dollar values are nominal. Values of deductions and allotments shown are per month, not per year. 

Maximum allotments change once each between the beginning and end of fiscal years 2009 and 2014. For these years, I construct averages of the maximum 

allotments weighted by the percentage of the year each allotment was in place. I present those averages here and use them in the construction of the simulated 

eligibility measure. For households with more than 8 members, maximum allotment is equal to the allotment for households of 8 members plus the number of 

members in excess of 8 multiplied by the last “+” column, e.g. the maximum allotment for a household of 10 in 2015 is $1,169 + $146 × 2 = $1,461. 
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Table A1. Changes in federal SNAP rules, 1996-2015 (continued) 

 Monthly federal poverty level (FPL) ($) for households of size: 

Year 1 2 3 4 5 6 7 8 + 

1996 623 836 1050 1263 1476 1690 1903 2116 214 

1997 645 864 1082 1300 1519 1737 1955 2174 219 

1998 658 885 1111 1338 1565 1791 2018 2245 227 

1999 671 905 1138 1371 1605 1838 2071 2305 234 

2000 687 922 1157 1392 1627 1862 2097 2332 235 

2001 696 938 1180 1421 1663 1905 2146 2388 242 

2002 716 968 1220 1471 1723 1975 2226 2478 252 

2003 739 995 1252 1509 1765 2022 2279 2535 257 

2004 749 1010 1272 1534 1795 2057 2319 2580 262 

2005 776 1041 1306 1571 1836 2101 2366 2631 265 

2006 798 1070 1341 1613 1885 2156 2428 2700 272 

2007 817 1100 1384 1667 1950 2234 2517 2800 284 

2008 851 1141 1431 1721 2011 2301 2591 2881 290 

2009 867 1167 1467 1767 2067 2367 2667 2967 300 

2010 903 1215 1526 1838 2150 2461 2773 3085 312 

2011 903 1215 1526 1838 2150 2461 2773 3085 312 

2012 908 1226 1545 1863 2181 2500 2818 3136 319 

2013 931 1261 1591 1921 2251 2581 2911 3241 330 

2014 958 1293 1628 1963 2298 2633 2968 3303 335 

2015 973 1311 1650 1988 2326 2665 3003 3341 339 
Rules shown are for fiscal years, not calendar years. Dollar values are nominal. Values of the FPL shown are per month, not per year. For households with 

more than 8 members, FPL is equal to the FPL for households of 8 members plus the number of members in excess of 8 multiplied by the last “+” column, e.g. 

the FPL for a household of 10 in 2015 is $3,341 + $339 × 2 = $4,019. 
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Table A2. State SNAP expansions, 1996-2015 
   BBCE expansions  Other expansions 

State 
Month/ 

year 
 BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

AL 09/2001        Exclude all vehicles  

 02/2010  X All elderly or disabled 200 100 None    

    No or some elderly or 

disabled 
130 None None    

 10/2014         165 

AK* 09/2001        Exclude one vehicle per 

driver* 
 

AZ 06/2003        Exclude all vehicles  

 06/2007  X All 185 None None    

AR 09/2001        Exclude one vehicle per 

household 
 

 11/2011         103 

CA 01/2004        Exclude all vehicles  

 07/2009  X Any children under 18 130 None None    

 04/2011  X All 130 None None    

 05/2013  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

 07/2014  X All 200 None None    

CO 09/2001        Exclude one vehicle per 

household 
 

 09/2002        Exclude all vehicles  

 03/2011  X Any elderly or disabled 200 100 None    

    No elderly or disabled 130 100 None    

CT 09/2002        Exclude equity value of 

one vehicle up to $9,500 
 

 05/2007        Exclude all vehicles  

 07/2009  X All 185 None None    

DE* 02/2000*  X All 200* None None    

DC 09/2001        Exclude all vehicles  

 04/2010  X All 200 None None    

BBCE stands for broad-based categorical eligibility. GI and NI stand for gross income and net income, respectively. SMED stands for standard medical 

expense deduction. 
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

FL* 09/2001        

Count equity value of 

vehicles after excluding 

combined equity value of 

as many vehicles as there 

are drivers up to $8500* 

 

 01/2009        Exclude all vehicles  

 07/2010  X All 200 None None    

GA 12/2005        Exclude all vehicles  

 03/2008  X All elderly or disabled 200 None None    

    No or some elderly or 

disabled 
130 None None    

HI 09/2002        Exclude all vehicles  

 10/2010  X All 200 None None    

ID 05/2007        Exclude one vehicle per 

adult 
 

 06/2009  X All 130 100 None    

 06/2011  X Any elderly or disabled None 100 Same as non-BBCE  Exclude one vehicle per 

adult; $5,000 asset limit 
 

    No elderly or disabled 130 100 Same as non-BBCE    

 11/2013         144 

IL 09/2001        

Exclude one vehicle per 

household plus one vehicle 

per driver 

 

 03/2010  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

 10/2010         210 

IN 01/2002        Exclude all vehicles  

IA 06/2004        Exclude one vehicle per 

household 
 

 10/2007         105 
 01/2011  X All 160 None None    

KS 09/2001        Exclude all vehicles  

 10/2010         140 

 04/2014        Exclude one vehicle per 

household 
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

KY 09/2001        Exclude all vehicles  

 06/2010  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

LA 09/2001        Exclude all vehicles  

 05/2010  X Any elderly or disabled None 100 None    

    No elderly or disabled 130 100 None    

 08/2014  X All BBCE ended; revert to federal rules    

ME* 09/2000*  X 
Any children 18 and in 

high school or under* 
200* None None    

 12/2006  X 
Any children 18 and in 

high school or under* 
185 None None  Exclude one vehicle per 

household 
 

 08/2010  X All 185 None None    

MD* 03/2001  X 

Any children under 18 or 

aged 18-19 and 

graduating in 19th year* 

200 None None    

 10/2001        Exclude all vehicles  

 10/2010  X All 200 None None    

MA 09/2001        Exclude all vehicles  

 11/2001  X Any children under 19 200 None None    

 04/2008          

 06/2008  X 
Any elderly or disabled 

or any children under 19 
200 None None   90 

    No elderly, disabled, or 

under 19 
130 100 None    

 03/2014        155 155 
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

MI* 01/1996*        Exclude one vehicle per 

household 
 

 10/1999        Revert to federal rules  

 10/2000*  X All 200* None None    

 10/2011  X All 200 None Same as non-BBCE  
Exclude $15,000 combined 

FMV of vehicles; $5,000 

asset limit 

 

 01/2012  X All 200 None Same as non-BBCE  

Exclude one vehicle plus 

$15,000 combined FMV of 

remaining vehicles; $5,000 

asset limit  

 

MN* 06/2003        
Exclude $7,500 FMV from 

each vehicle* 
 

 12/2006  X Any elderly or disabled 165 None 
$7,000 after excluding 

all vehicles 
   

    No elderly or disabled 130 None 
$7,000 after excluding 

all vehicles 
   

 11/2010  X All 165 None None    

 11/2011        Revert to federal rules  

MS 06/2003        Exclude all vehicles  

 06/2010  X Any elderly or disabled None 100 None    

    No elderly or disabled 130 100 None    

MO 09/2001        Exclude all vehicles  

 09/2011         165 

MT* 02/1996*        Exclude one vehicle per 

household 
 

 06/2004        Exclude all vehicles  

 03/2009  X Any elderly or disabled None 100 None    

    No elderly or disabled 185 100 None    

 09/2010  X All 200 100 None    

  



 

141 

Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

NE 01/2002        Exclude FMV of one 

vehicle up to $12,000 
 

 10/2011  X Any elderly or disabled None 100 
$25,000 after excluding 

non-liquid assets 
   

    No elderly or disabled 130 100 
$25,000 after excluding 

non-liquid assets 
   

NV 09/2001        Exclude one vehicle per 

household 
 

 04/2009  X All 200 None None    

NH* 09/2001        Exclude one vehicle per 

adult 
 

 12/2003         83 

 05/2009  X 
Any dependent children 

under age 22* 
185 None None    

 10/2015         115 

NJ 09/2001        Exclude FMV of one 

vehicle up to $9,500 
 

 05/2007        Exclude all vehicles  

 04/2010  X All 185 None None    

NM 01/2002        Exclude all vehicles  

 04/2010  X All 165 None None    

NY 01/2002        
Exclude one vehicle per 

driver; count equity value 

of other vehicles 

 

 01/2008  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

 03/2009  X 

Any elderly or disabled 

or any dependent care 

expenses 

200 None None    

    No elderly, disabled, or 

dependent care expenses 
130 None None    

NC 09/2001        Exclude one vehicle per 

adult 
 

 01/2009        Exclude all vehicles  

 07/2010  X All 200 None None    
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

ND* 10/2000*  X All None 100* None    

 10/2010  X All 200 100 None    

 04/2013         165 

OH 09/2001        Exclude all vehicles  

 10/2008  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

OK 09/2001        Exclude equity value of 

one vehicle up to $5,000 
 

 09/2002        

Exclude one vehicle per 

adult; count combined 

equity of other vehicles in 

excess of $5,000 

 

 01/2009        Exclude all vehicles  

 06/2009  X Any elderly or disabled None 100 None    

    No elderly or disabled 130 100 None    

OR 12/2000  X All 185 None None    

 10/2001        
Count equity value of 

vehicles in excess of 

$10,000 

 

PA 09/2001        Exclude one vehicle per 

household 
 

 10/2008  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

 08/2009  X Any elderly or disabled 200 None None    

    No elderly or disabled 160 None None    

 06/2012  X Any elderly or disabled 200 None 
$9,000 after excluding 

one vehicle 
   

    No elderly or disabled 160 None 
$5,500 after excluding 

one vehicle 
   

 05/2015  X Any elderly or disabled 200 None None    

    No elderly or disabled 160 None None    
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

RI 06/2003        
Exclude one vehicle per 

adult up to a maximum of 

two 

 

 04/2009  X Any elderly or disabled 200 None None    

    No elderly or disabled 185 None None    

 10/2012         141 

SC 04/2001  X All 200 None None    

 10/2001        Exclude one vehicle per 

driver 
 

 04/2009  X Any elderly or disabled 200 None None    

    No elderly or disabled 130 None None    

SD 09/2001        Exclude one vehicle per 

household 
 

 05/2008         165 

TN 12/2003        Exclude all vehicles  

TX 09/2001  X All 165 None Same as non-BBCE  

Exclude FMV of $15,000 

for first vehicle, $4,650 for 

all others, and all non-

vehicle non-liquid assets; 

$5,000 asset limit 

 

 10/2007         102 

UT 09/2001        Exclude FMV of $8,000 

for first vehicle 
 

 01/2007        

Count equity value of first 

vehicle in excess of $8,000 

and equity value of other 

vehicles 

 

 10/2007        Exclude all vehicles  

VT 09/2001        
Exclude one vehicle per 

adult up to a maximum of 

two 

 

 12/2008         138 
 01/2009  X All 185 None None    
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Table A2. State SNAP expansions, 1996-2015 (continued) 
   BBCE expansions  Other expansions 

State Mo./year  BBCE 

change 
Applicable households 

GI limit 

(%FPL) 

NI limit 

(%FPL) 
Asset limit  Non-BBCE vehicle 

rule/asset limit 

SMED 

($) 

VA 07/2003        

Exclude one vehicle per 

household and any vehicles 

with FMV of $7,500 or 

less 

 

 12/2003        Exclude all vehicles  

 10/2011         140 

WA 05/2004  X All 130 None None    

 10/2008  X All 200 None None    

WV 09/2001        Exclude all vehicles  

 10/2008  X All 130 None None    

 05/2013  X 
All elderly or disabled 

and no earned income 
200 None None    

    
No or some elderly or 

disabled or some earned 

income 

130 None None    

WI 09/2001        Exclude all vehicles  

 06/2004  X All 200 None None    

WY 09/2001        

Exclude combined FMV of 

$12,000 for first two 

vehicles if household 

includes married couple; 

otherwise exclude FMV of 

$12,000 for first vehicle 

only 

 

 01/2006         103 
 10/2011        Exclude all vehicles  
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Table A2. State SNAP expansions, 1996-2015: Notes 
General  Some states reference the number of household drivers in their rules, which generally means the number of adults plus the 

number of licensed teenagers using household vehicles for purposes of transportation to work, school, etc. I cannot determine 

which teenagers are drivers and therefore use the number of adults in place of the number of drivers in my baseline simulated 

eligibility measure. 

AK  Technically, AK excludes all vehicles necessary for transport to meet basic needs. I have no indicator for the necessity of 

household vehicles, so I therefore choose to exclude one vehicle per driver. 

DE  I am unable to resolve conflicting information concerning the start date of BBCE in DE; other sources place the start date at 

08/2001. Technically, DE would not have required a gross income test from 02/2000 to 08/2001, but I impose a 200% limit on 

gross income during this time period. 

FL  FL's vehicle rule technically only allows the exclusion of the combined equity value of as many vehicles as there are drivers that 

meet work requirements, or one vehicle if no drivers meet work requirements. I do not consider work requirements and instead 

use the number of adults in the construction of the simulated eligibility measure. 

ME  I am unable to resolve conflicting information concerning the start date of BBCE in ME; other sources place the start date at 

12/2001. Technically, ME would not have required a gross income test from 09/2000 to 12/2001, but I impose a 200% limit on 

gross income during this time period. ME's restriction to households with children also requires that they live with a parent or 

caretaker relative; I do not apply this restriction in the construction of the simulated eligibility measure. 

MD  MD's restriction to households with children requires those children to be "related" to applicant; I do not apply this restriction or 

the graduation restriction in the construction of the simulated eligibility measure. 

MI  I am unable to independently determine the start date of MI's 1996 vehicle rule and therefore follow the SNAP Policy Database. I 

am unable to resolve conflicting information concerning the start date of BBCE in MI; other sources place the start date at 

10/2001. Technically, MI would not have required a gross income test from 10/2000 to 10/2001, but I impose a 200% limit on 

gross income during this time period. 

MN  MN's vehicle rule technically counts the "loan value" of each vehicle in excess of $7,500 toward the asset limit; I lack 

information on the loan value and instead use the fair market value in the construction of the simulated eligibility measure. 

MT  I am unable to independently determine the start date of MT's 1996 vehicle rule and therefore follow the SNAP Policy Database. 

NH  NH's restriction to households with children requires those children be "dependent" and to contain a relative to the dependent 

child; I do not apply these restrictions in the construction of the simulated eligibility measure. 

ND  I am unable to resolve conflicting information concerning the start date of BBCE in ND; other sources place the start date at 

10/2001. Technically, ND would not have required a net income test from 10/2000 to 10/2001, but I impose a 100% limit on net 

income during this time period. 
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Table A3. Federal and state SNAP policy sources 

Sources Information 

SNAP Policy Database (USDA ERS 

2018) 

I use this database from the USDA Economic Research Service (ERS) as my primary source of 

information on state Supplemental Nutrition Assistance Program (SNAP) policies and gather 

information from other sources to supplement it. It provides monthly state-level information on the 

treatment of vehicles and broad-based categorical eligibility (BBCE) policies, as well as other state 

policies I do not use to construct the SEV. The variables provided generally summarize these policies 

and do not provide all details needed to use to determine household eligibility. 

Mathematica Policy Research 

Reports (Trippe and Gillooly 2010; 

Laird and Trippe 2014) 

I use these reports to fill in details about state-level treatment of vehicles and BBCE policies and 

information about the timing of policy changes. These reports aggregate information from the state 

agencies administering SNAP concerning current and past BBCE changes and non-BBCE vehicle 

exclusions as of 2010 and 2014. They provide detailed information about the groups various BBCE 

expansions apply to; the gross income, net income, and asset tests applied to these groups; and the 

specifics of non-BBCE vehicle policies among other policy details. 

Aussenberg and Falk (2019) I use this report to fill in details about state BBCE policies as of 2018. 

Horng and Dean (2002, 2008) I use these reports to fill in details about state treatment of vehicles as of 2002 and 2008. 

Technical Documentation for the 

Supplemental Nutrition Assistance 

Program Quality Control Database 

and the QC Minimodel (n.d.)  

I use this technical documentation for SNAP quality control data as my primary source of information 

on state standard medical expense deductions (SMEDs). It provides annual information from 1996 to 

2016 about which states have implemented SMEDs as well as their size and implementation date. 

Various state SNAP policy manuals, 

reports, and memos; state SNAP 

administrators 

I use a combination of state-issued SNAP policy manuals, reports, and memos to verify the timing 

and details of the state SNAP policy changes outlined above when the timing and/or details of those 

changes are unclear from the sources listed above or when those sources contradict each other. When 

those sources cannot clarify the timing or details of state policies, I contact state SNAP administrators 

directly by phone or e-mail. 

Food Stamp Act of 1977 and 

Amendments (2004); USDA FNS 

(2018a, 2018b, 2019d, n.d.) 

I gather information on federal eligibility and benefit determination using the Food Stamp Act and its 

amendments in conjunction with articles from the USDA FNS on the legislative history of SNAP, 

federal eligibility determination, the federal net income and benefit formulas, and how determinants 

of those formulas vary over time (e.g., the values of the standard deduction and maximum allotment 

by household size, various deduction caps, and the resource limit). 

HHS ASPE (2019) I gather information on the federal poverty level over time from in order to compare household gross 

and/or net income to the federal and state limits. 
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Figure A1. Least restrictive treatment of vehicles in asset test for non-elderly, non-disabled households 
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Figure A2. Standard medical expense deductions for elderly and/or disabled households 

 

 
SMEDs shown are those in place at the end of 2015 and are in nominal dollar values. 
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Figure A3. Least restrictive gross income limits for non-elderly, non-disabled households 
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1. SIPP household sample 

To construct the simulated eligibility variable (SEV), I apply the annual state and federal 

rules detailed above to a common sample of households. I use a sample of households from the 

Survey of Income and Program Participation (SIPP) (2019) containing households from all 50 

states and Washington, D.C. and spanning the years 1996-1999, 2001-2005, 2009-2011, and 

2013.141 I use the SIPP because it includes individual-level and household-level information I 

need to determine households’ SNAP eligibility and potential benefit size. I include households 

from different states and years to achieve representation of the United States on a national level 

over this study’s sample period. The households in the sample are diverse enough in terms of 

income, expenses, assets, and other characteristics to provide ample variation to the simulated 

eligibility measure as I apply different rules to the sample. 

 The SIPP consists of a series of household panels, each lasting 2.5 to 4 years with waves 

lasting four months (12 months for the most recent 2014 panel). For each household in the 

sample, I combine information over three waves (or use information from one wave for the 2014 

panel) to construct household-year-level observations and assign to each observation the year 

most closely corresponding with the period covered by those 12 months.142 For all years but 

2013, I merge these collapsed observations with annual information from periodic topical 

modules containing information on household assets, liabilities, and certain expenses.143 

 
141 I exclude years from my sample for which there is no corresponding topical module on assets, liabilities, and 

expenses available. 
142 Accordingly, households appear multiple times in the sample, although they appear with different income, assets, 

expenses, and other characteristics insofar as these changed over the panel. No household-year-level observations 

are repeated. Specifically, in my constructed sample: 1996, 1997, 1998, and 1999 are waves 1-3, 4-6, 7-9, and 10-12 

of the 1996 panel, respectively. 2001, 2002, and 2003 are waves 1-3, 4-6, and 7-9 of the 2001 panel, respectively. 

2004 and 2005 are waves 1-3 and 4-6 of the 2004 panel, respectively. 2009, 2010, and 2011 are waves 2-4, 5-7, and 

8-10 of the 2008 panel, respectively. 
143 These topical modules correspond to the last wave of each three-wave group used to construct reference years. 
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 I drop households that do not merge to a topical module or that do not have a reference 

person with complete information for 12 months. I do not separate households into sub-

households or sub-families due to a lack of necessary group-level information for these units. For 

individual and household characteristics that I cannot reasonably average across months, I use 

information from the last month of the reference year.144 I average monthly information on 

income over the 12 months in each year to construct average monthly gross income and earned 

income. I convert information provided for only the last month of the reference year, the four 

months in the linked topical module, or for the year to a monthly level when appropriate.145 I 

apply information on assets and liabilities recorded in the topical module to the corresponding 

reference year.146 Information on vehicles is available for up to three vehicles per household on 

vehicle fair market value, debt, equity, and whether each vehicle’s primary use is for business 

purposes and/or the transportation of disabled household members.147 

 Summary statistics for the SIPP household sample are presented in Table A4. 34% of 

households include children, 36% include elderly members (defined as those aged over 60 for 

the purposes of determining SNAP eligibility), 19% include members with a disability, and 47% 

include elderly or disabled members.148 The average monthly gross income (total income less 

certain exclusions, e.g. the income of household members aged under 18 and in high school) was  

 
144 This information includes age/elderly status, disability status, presence of a married couple, presence of children, 

household size, school attendance, and receipt of TANF or SSI benefits. 
145 This information includes dependent care costs, child support costs, shelter costs, and out-of-pocket medical 

costs. 
146 This information includes breakdowns of assets and liabilities at the household and individual levels, which I 

aggregate into countable and non-countable resources according to federal or state SNAP rules. 
147 Detailed vehicle information is only available for up to three “standard” vehicles, which includes cars, trucks, and 

vans. While some information is available for other types of vehicles, it is not consistently available throughout all 

years or at a detailed enough level to use. I therefore limit each household to the three standard vehicles for which 

information is available. 5.3% of the households in the sample have more than three vehicles. 
148 I count individuals as elderly if they are 60 years old or older in the last month of the reference year in line with 

federal SNAP rules. I count individuals as disabled if they report a disability in the last month of the reference year 

as I lack information on receipt of the specific benefits that confer disability status in line with federal SNAP rules. 
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Table A4. SIPP household sample summary statistics 

 Mean Std. dev. Min. Max. N 
      

# members 2.56 1.49 1 20 342,615 

Any < 18 0.34 0.48 0 1 342,615 

# < 18 0.66 1.09 0 12 342,615 

Any elderly 0.36 0.48 0 1 342,615 

# elderly 0.50 0.73 0 6 342,615 

Any disabled 0.19 0.39 0 1 342,615 

# disabled 0.22 0.50 0 7 342,615 

Any elderly or disabled 0.47 0.50 0 1 342,615 

# elderly or disabled 0.66 0.79 0 7 342,615 

# adults 1.90 0.84 0 11 342,615 

Out-of-pocket medical costs 

($) 

185.96 267.61 0 4,492.96 161,652 

Dependent care costs ($) 18.53 126.23 0 4,867.38 342,615 

Child support ($) 15.76 107.32 0 2,970.18 342,615 

Shelter costs ($) 908.06 856.60 0 41,185.48 342,615 

Total income ($) 5,206.34 4,969.95 0 100,220.97 342,615 

Gross income ($) 5,190.42 4,962.57 0 99,441.26 342,615 

Earned income ($) 4,126.77 5,058.59 0 97,468.84 342,615 

Countable non-vehicle assets 

($) 

84,190.49 1,090,296.28 0 272,134,144 342,615 

Countable non-vehicle liquid 

assets ($) 

56,044.61 1,068,687.51 0 271,916,768 342,615 

Any vehicles 0.85 0.36 0 1 342,615 

# vehicles 1.52 0.94 0 3 342,615 

Total fair market value of 

vehicles ($) 

11,278.72 11,114.51 0 126,645.36 342,615 

Total equity in vehicles ($) 7,526.65 8,655.48 0 126,645.36 342,615 

Average FMV per vehicle ($) 7,347.12 5,348.83 0 46,331.32 291,208 

Average equity per vehicle ($) 4,938.56 4,540.75 0 46,331.32 291,208 

      

# household-years 342,615     

# individual-years 876,544     
Unit of observation is the household-year. Dollar values adjusted to 2010 dollars. Out-of-pocket medical costs 

shown for households with elderly and/or disabled members only. Average FMV or equity per vehicle shown for 

households with vehicles only. 

  



 

153 

$5,190 in 2010-adjusted dollars. The average amount of non-vehicle assets counted toward the 

federal SNAP asset limit was $84,190, though 50% of households had $3,276 in these assets or 

less. 85% of households had at least one vehicle, and households had 1.52 vehicles on average. 

The average fair market value per vehicle was $7,347, and the average equity per vehicle was 

$4,939. 

 

2. Simulated eligibility variable construction 

I construct the SEV for each state 𝑠 and year 𝑡 as 

𝑆𝐸𝑉𝑠𝑡 =
# SIPP individuals in practically eligible households𝑠𝑡

Total # SIPP individuals = 876,544
 

I define “practically eligible” to mean that a household is both determined eligible for SNAP by 

the rules in place in a given state and year and would receive a positive monthly benefit if they 

applied for SNAP. The second part of this definition is necessary as some state-level expansions 

during the sample period can technically grant eligibility to households who would receive a zero 

SNAP benefit according to the federally defined benefit formula. Generally, this is the case for 

households with three or more members and net income of about 115% the federal poverty level 

(FPL). Households with one or two members are always eligible for a minimum benefit of $10 to 

$16 during the sample period. I construct the SEV as the percentage of the total number of 

individuals comprising the household-year observations. Therefore, households with more 

members are weighted more heavily than households with fewer members and the SEV more 

closely resembles the SNAP participation rate, which is the percentage of individuals in the 

population participating in the program. 

 SNAP eligibility is determined at the household level. I follow a basic process to 

determine each SIPP household’s practical eligibility in each state and year. 
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2.1 Adjust for inflation 

First, I adjust each household’s finances for inflation. I use the BLS Consumer Price 

Index for urban consumers to adjust dollar values of household income, assets, and expenses 

from the original year to the relevant year. This is important because while some rules reference 

measures like the FPL that are adjusted on a yearly basis, others reference static dollar values. 

2.2 Apply federal rules 

Second, I apply federal rules to determine household eligibility at the federal level. If 

households are eligible at the federal level, they are eligible at the state level as states cannot 

implement rules that restrict eligibility. Federal rules allow for eligibility through two pathways. 

The first pathway is through “categorical eligibility.” Households are categorically 

eligible for SNAP if all members receive Supplemental Security Income (SSI) or Temporary 

Assistance for Needy Families (TANF) cash assistance (or General Assistance in some states). 

The SIPP provides information on individual receipt of SSI and TANF, so I consider a household 

eligible if all members report receiving one or both types of assistance. 

The second pathway is through meeting each of three tests. The first of these tests is a 

gross income test. Households must have gross income of 130% of the FPL or below. Gross 

income is a household’s total income less income from excluded sources. Several types of 

income are excluded – most of which are typically small relative to overall income – but I define 

gross income for my purposes as total household income less the income of household members 

under age 18 and enrolled in school, as the SIPP provides the information necessary to exclude 

this kind of income. I calculate average monthly gross income for each SIPP household and 

compare it to 130% of the FPL. If it is equal or below, the household passes this test. If a 

household includes elderly or disabled members, it is not subject to the gross income test and 
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need only pass the net income and asset tests. The gross income test does not change during the 

sample period. 

The second of these tests is a net income test. Households must have net income of 100% 

of the FPL or below. Net income is a household’s gross income minus allowable deductions. 

These deductions include 20% of earned income, a standard deduction, a dependent care 

deduction (subject to a cap before 2009), child support payments, out-of-pocket medical 

expenses for elderly or disabled household members above $35 per month, and excess shelter 

costs (subject to a cap).149 I detail changes in the standard deduction, dependent care deduction 

cap, and excess shelter costs deduction cap in Table A1. I calculate average monthly net income 

for each SIPP household and compare it to 100% of the FPL. If it is equal or below, the 

household passes this test. 

The third and last of these tests is an asset test, also called a countable resource test. 

Households must have countable resources below the asset limit. The asset limit varies 

depending on whether a household includes elderly or disabled members. For most of the sample 

period, the limit was $2,000 for households without such members and $3,000 for households 

with any such members. I detail changes in the limit in Table A1. Countable resources generally 

include those resources available to the household to use to purchase food. These resources 

exclude assets like a first home and lot, personal property, and retirement savings. The excess 

value of vehicles is counted toward the asset limit, after excluding certain licensed vehicles, 

including those used to produce income, those used to transport disabled household members, or 

 
149 In some states, child support is excluded from gross income instead of deducted to determine net income, but the 

result is the same for determining net income. I do not distinguish between excluding and deducting states. Shelter 

costs include house mortgage, rent, taxes, and/or certain utilities. The excess shelter cost deduction is calculated as 

the value of shelter costs in excess of half of the sum of gross income less the earned income, standard, dependent 

care, child support, and out-of-pocket medical expenses. Households with elderly or disabled members are not 

subject to an excess shelter costs deduction cap. 
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those that would sell for less than $1,500, among other criteria. For as many vehicles as there are 

drivers in the household, the excess value is the fair market value (FMV) over $4,650.150 If the 

household has more vehicles than drivers, the excess value for those vehicles is the greater of the 

equity value or the FMV over $4,650. I calculate the excess value of vehicles in each year. As 

there is no way to discern the vehicles a household would choose to exclude or those vehicles to 

which it would apply the FMV test as opposed to the combined FMV/equity test, I choose to 

match vehicles to the combination of available tests given a household’s characteristics that 

minimizes the excess vehicle value and subsequently minimizes countable resources. I then add 

this excess value to the household’s countable non-vehicle resources and compare the sum to the 

relevant asset limit. If it is equal or below, the household passes this test. 

2.3 Apply state rules 

States implement various expansions which in practice loosen one or more of the tests 

mentioned above, which I detail in Table A2. These expansions include broad-based categorical 

eligibility (BBCE) expansions, alterations to the valuation of vehicles, and standard medical 

expense deductions (SMEDs). BBCE expansions eliminate or raise the gross income, net 

income, and/or asset limits for all households or for a subset of households. These kinds of 

expansions may make households eligible who would qualify for a benefit if not for being above 

one of the income or asset limits. If a BBCE expansion applies to a household and that household 

meets the altered gross income, net income, and/or asset tests, they are eligible for SNAP (but 

may not be practically eligible). 

Outside of BBCE expansions, states can align their vehicle rules to those used in other 

programs like TANF. In this way, states can eliminate vehicles from the asset test entirely, 

 
150 The limit was $4,600 in 1996 before being changed to $4,650 in 1997 and subsequent years. 
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exclude one or more vehicles, or increase the deduction applied to vehicles’ FMV or equity 

value. States can also implement SMEDs, which are a type of standard deduction optional for 

households with elderly or disabled members to take in place of the deduction for monthly out-

of-pocket medical expenses above $35 used to calculate net income. Households with such 

members and out-of-pocket medical expenses below the value of the SMED plus $35 would find 

it advantageous to take the standard deduction as it lowers their net income and may make their 

household eligible for SNAP or increase their benefit. Households may become eligible given 

the alterations to the asset or net income test that these tests imply. 

I apply the SNAP rules in place in each state and year in order to determine the eligibility 

of each SIPP household in each state and year.  

2.4 Determine potential benefit and practical eligibility 

If I determine a SIPP household as eligible in a state and year by the federal or state rules 

in place, I then determine the potential benefit the household would receive if they participated in 

SNAP in that state and year. The monthly benefit amount is equal to a maximum allotment 

minus 30% of net income.151 There is no minimum allotment except for households with one or 

two members. If a household is determined to be eligible at the federal and/or state level and has 

a positive potential benefit, I designate it “practically eligible.” 

 I then sum the number of SIPP individuals in each practically eligible SIPP household 

under the rules in place in the given state and year and divide that by the total number of SIPP 

individuals. The resulting number, which I express in percentage points, is the SEV for that state 

and year. I repeat this process for all state-year combinations in the sample. 

  

 
151 Changes in maximum allotments over time are detailed in Table A1. 
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2.5 Example  

I present Georgia as an example to illustrate this process. Figure A4 shows the value of 

the SEV in Georgia from 1996 to 2015 as well as the simulated federal-rule eligibility rate, or the 

percentage of the SIPP sample that would be eligible for a positive benefit if Georgia did not 

expand SNAP. Prior to 2006, Georgia did not alter the SNAP rules in any way, so SIPP 

households would only be eligible in Georgia if they were also eligible under the federal rules. 

Therefore, the SEV and the simulated federal-rule eligibility rate were equal. In 2006, Georgia 

began excluding all vehicles from the asset test. SIPP households would then be eligible if they 

were eligible at the federal level or if they met the federal gross income and net income tests as 

well as the altered asset test that excludes vehicles. The SEV increased in value beyond the 

simulated federal-rule eligibility rate during this time period by about 1.5 percentage points, 

representing the households that were made eligible by the loosened state vehicle rule. In 2008, 

Georgia implemented a BBCE expansion which made a household eligible if a) it had gross 

income under 130% of the FPL or b) all household members were elderly or disabled and the 

household had gross income under 200% of the FPL. Households meeting either of these 

conditions were not subject to the net income or asset test. If SIPP households met either of these 

conditions or met the gross income, net income, and altered vehicle tests, they would then be 

eligible, although they must be eligible for a positive potential benefit to be determined 

practically eligible. As more pathways to eligibility were opened during this period, the value of 

the SEV increased even further beyond the federal-rule baseline in 2008. 
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Figure A4. Georgia simulated eligibility and simulated federal eligibility rates 

 

 

3. Simulated potential benefit variable construction 

I also construct a measure I term the “simulated potential benefit variable” (SPBV) for 

each state 𝑠 and year 𝑡 as 

𝑆𝑃𝐵𝑉𝑠𝑡 =
Sum of potential SIPP household SNAP benefits𝑠𝑡

Total # SIPP individuals = 876,544
 

In step 4 detailed above in section 2, I describe the calculation of each eligible 

household’s potential monthly SNAP benefit. I sum these household benefits as determined 

under the rules in place in each state and year and divide this sum by the number of SIPP 

individuals. The resulting measure is the SPBV, which more accurately represents the average 

simulated potential benefits per capita for SIPP households in each state and year. This measure 
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varies on the extensive margin with the number of practically eligible households as well as the 

intensive margin with changes in the maximum allotment and net income determination. I 

consider this measure as an instrument in place of the SEV in some specifications. 

Figure A5 shows the value of the SPBV over time, adjusted to 2010 dollars. As its value 

varies directly with changes in the number of households eligible, it follows similar patterns 

between states and over time as the SEV, as shown in Figures 4 and 7. 
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Figure A5. Simulated SNAP potential benefit variable (SPBV) by state 

 

 
SPBV is represented in 2010-adjusted dollars per capita. 
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Table A5. Selected SIPP household sample summary statistics by eligibility status 

 All Always 

eligible 

Sometimes 

eligible 

Never eligible 

     

# members 2.558 2.391 2.313 2.648 

 (1.485) (1.743) (1.644) (1.381) 
     

Any < 18 0.345 0.391 0.297 0.348 

 (0.475) (0.488) (0.457) (0.476) 
     

Any elderly 0.364 0.388 0.509 0.325 

 (0.481) (0.487) (0.500) (0.468) 
     

Any disabled 0.235 0.451 0.249 0.193 

 (0.424) (0.498) (0.433) (0.394) 
     

Any elderly or disabled 0.499 0.688 0.632 0.432 

 (0.500) (0.463) (0.482) (0.495) 
     

Annual total income 

($1000s) 

62.48 13.17 21.67 81.31 

(59.64) (8.360) (10.35) (61.85) 
     

Annual earned income 

($1000s) 

49.52 5.812 11.43 66.68 

(60.70) (8.852) (13.82) (64.75) 
     

Countable non-vehicle 

assets ($1000s) 

84.19 0.315 39.80 110.2 

(1090.3) (9.029) (670.3) (1257.5) 
     

Any vehicles 0.850 0.507 0.813 0.921 

 (0.357) (0.500) (0.390) (0.269) 
     

# vehicles 1.523 0.650 1.222 1.755 

 (0.940) (0.748) (0.842) (0.877) 
     

Total equity in vehicles 

($) 

7526.9 1374.3 5699.2 9088.6 

(8655.5) (2368.1) (6832.5) (9177.0) 
     

Observations 342,605 43,831 58,101 240,673 
Unit of observation is the household-year. Means are shown with standard deviations in parentheses. Dollar values 

are adjusted to 2010 dollars. The leftmost column shows statistics for all households in the SIPP used to construct 

the SEV. The other columns show statistics for households that are determined eligible for SNAP in all state-years, 

in some but not all state-years, or in no state-years, excluding the rules in Alaska and Hawaii from consideration. 

Full SIPP household summary statistics are presented in Table A4. 
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Figure A6. Total income and non-vehicle countable resources of SIPP households by eligibility status 

 
 

Scatterplots show households’ non-vehicle assets that are countable in determining SNAP eligibility and annual total income. The plot labeled “All” displays this 

information for all household-years in the SIPP used to construct the SEV, while the other plots display this information for subcategories of these household-

years as defined in Table A5.



 

164 

Appendix B: Chapter I Supplementary Material 

 

 

 

Figure B1. SNAP participation rate by county 
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Figure B2. Number of SNAP-plausible establishments per 100,000 population by county 
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Figure B3. Number of SNAP-implausible establishments per 100,000 population by county 
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Figure B4. National SNAP-plausible and SNAP-implausible establishments per 100,000 population 
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Table B1. Full summary statistics 
 Full county sample  Uncensored county sample 

 Mean Std. dev.  Mean Std. dev. 
      

SNAP variables      

Participation rate (%) 11.12 (6.643)  10.89 (6.372) 

Benefits per capita (2010 $) 11.92 (8.347)  11.81 (8.028) 

Simulated eligibility variable 

(SEV) (%) 

17.38 (4.227)  17.67 (4.344) 

Simulated potential benefit 

variable (2010 $) 

13.51 (3.048)  13.61 (3.111) 

      

Establishment counts per 100,000 population 

Grocery stores & supermarkets 22.09 (12.18)  22.35 (12.20) 

Convenience stores 9.923 (6.423)  10.67 (5.430) 

Gas stations w/ conv. stores 32.84 (17.77)  26.01 (12.31) 

Supercenters & warehouse clubs 1.332 (1.160)  1.239 (0.832) 

General stores 11.81 (7.339)  9.580 (4.278) 

SNAP-plausible stores 86.38 (26.32)  79.37 (17.55) 

SNAP-implausible stores 288.0 (88.10)  291.4 (68.78) 
      

Establishment counts per 100,000 population by employment size group 

SNAP-plausible stores, 0-9 emp. 58.35 (22.25)  54.66 (17.60) 

SNAP-plausible stores, 10-49 

emp. 

20.54 (10.91)  17.03 (5.947) 

SNAP-plausible stores, 50+ emp. 7.484 (2.655)  7.680 (2.018) 

SNAP-implausible stores, 0-9 

emp. 

206.1 (69.43)  203.0 (53.59) 

SNAP-implausible stores, 10-49 

emp. 

70.00 (23.66)  74.25 (18.77) 

SNAP-implausible stores, 50+ 

emp. 

11.88 (5.914)  14.06 (4.161) 

      

Employment rates as % of population 

All retail (food & nonfood) - -  5.432 (1.223) 

Grocery stores, supermarkets, and 

convenience stores 

- -  0.888 (0.234) 

Combined gas stations - -  0.242 (0.120) 

Supercenters & general stores - -  0.435 (0.254) 
      

Annual payroll per 100,000 population in 2010-adjusted $1000s 

All retail (food & nonfood) - -  151452.6 (47294.4) 

Grocery stores, supermarkets, and 

convenience stores 

- -  19529.8 (5770.7) 

Combined gas stations - -  4876.4 (2504.4) 

Supercenters & general stores - -  9599.8 (5539.3) 
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Table B1. Full summary statistics (continued) 
 Full county sample  Uncensored county sample 

 Mean Std. dev.  Mean Std. dev. 
      

Annual average employee earnings in 2010-adjusted dollars 

All retail (food & nonfood) - -  27670.0 (4034.7) 

Grocery stores, supermarkets, and 

convenience stores 

- -  21997.7 (3291.9) 

Combined gas stations - -  20527.7 (3624.3) 

Supercenters & general stores - -  22306.8 (3741.6) 
      

Population (unweighted) 85360.4 (234710.7)  408407.9 (524664.6) 
      

Demographic characteristics as % of population 

Rural 21.92 (25.74)  8.747 (11.61) 

Black 13.28 (13.28)  15.07 (12.02) 

Hispanic 12.31 (14.57)  15.01 (15.51) 

Age 0-17 24.22 (3.069)  24.21 (2.867) 

Age 60+ 18.52 (4.665)  17.77 (4.186) 

Married 53.16 (6.726)  51.65 (5.943) 

Have bachelor's degree 26.95 (10.43)  30.29 (9.183) 

Foreign-born 10.17 (9.735)  13.34 (10.43) 
      

Economic characteristics      

Poverty rate (%) 13.75 (5.538)  13.38 (5.205) 

Unemployment rate (%) 6.012 (2.380)  5.918 (2.227) 

Personal income per capita 2010 

$) 

33711.3 (12455.2)  37081.2 (12766.7) 

Non-SNAP government transfers 

per capita (2010 $) 

6080.3 (1733.8)  6006.0 (1677.1) 

% with income of 125-199% of 

FPL in 1990 

13.60 (4.083)  12.08 (3.293) 

      

Policy environment characteristics 

Governor is Democrat 0.406 (0.491)  0.402 (0.490) 

State house Democrats (%) 50.10 (13.71)  50.91 (13.88) 

State senate Democrats (%) 46.62 (13.90)  46.73 (13.74) 
      

Other program state participation rates (%) 

TANF 1.286 (0.848)  1.318 (0.845) 

SSI 2.375 (0.712)  2.353 (0.627) 

Medicaid 16.16 (5.196)  16.17 (5.175) 
      

Counties 3,030   405  

Years 19   19  

Observations 57,570   7,695  
Statistics are weighted by county population, excluding population itself. The full sample excludes Alaska, Hawaii, 

California, and counties that either change borders during the sample or for which data is not available for the entire 

period. The uncensored county subsample includes the 405 counties with uncensored information about retail 

employment and payroll available for selected NAICS codes over the entire sample period. The sample period is 

1998-2016, although simulated eligibility and benefits instruments are not available for 2016. 
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1. SEV performance compared to other instruments 

I compare the performance of the simulated eligibility variable (SEV) as an instrument 

for the SNAP participation rate to the performance of the simulated potential benefit variable 

(SPBV) I describe in Appendix A and other state-level SNAP policy variables from the SNAP 

Policy Database (USDA ERS 2018).152 Relative to the SEV and SPBV which primarily derive 

their variation from rules affecting eligibility, most of these policies affect the information 

available to households or the costs to households of applying, certifying, or recertifying. Several 

studies have used sets of these policies in an IV framework to estimate SNAP’s impacts in 

various contexts, typically at the individual- or household-level as opposed to the area-level 

business impacts I consider.153 

I estimate first-stage regressions, each modeling the county SNAP participation rate as a 

function of one policy instrument and the covariates in my baseline models. I present the 

coefficient estimates and first-stage F-statistics from these regressions in Table B2. The SEV is 

individually the strongest instrument among those I consider, with an F-statistic of 17.09. The 

SPBV is the only other instrument with an F-statistic above 10. All other policy variables are 

underpowered for use as instruments in the context of this study.154 

 
152 In the order they are shown in Table B2, the policy instruments I consider are the SEV, the SPBV, a dummy for a 

BBCE expansion of any type, a dummy for the state operating call centers, a dummy for the state operating a 

Combined Application Project for SSI recipients, the average certification period in months for SNAP units with 

earnings/with elderly members/without earnings, the proportion of the dollar value of benefits accounted for by 

EBT, a dummy for the state having a waiver to use a telephone interview in lieu of an in-person interview at initial 

certification/recertification, a dummy for the state requiring fingerprinting of applicants, a dummy for the state 

allowing online application, outreach spending per capita in thousands of 2010-adjusted dollars, a dummy for the 

state using simplified reporting that reduces requirements for households with earnings to report changes in 

household circumstances, a dummy for the state excluding all vehicles from the asset test, and a dummy for the state 

excluding any number or exempting any value of vehicles beyond the federal minimum. 
153 E.g., Meyerhoefer and Pylypchuk (2008); Yen et al. (2008); Ratcliffe, McKernan, and Zhang (2011); Gregory 

and Coleman-Jensen (2013); Gregory and Deb (2015); Almada, McCarthy, and Tchernis (2016). 
154 These patterns of relative strength and weakness generally hold in equivalent state-level first-stage regressions. 
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Table B2. Comparative first-stage regression results with alternate instruments 

Instrument SNAP part. rate F-statistic  Instrument SNAP part. rate F-statistic    
 

   

SNAP SEV 0.171*** 17.09  Telephone: initial 

certification 

-0.409 0.577  
(0.0413) 

 
 (0.538) 

 

   
 

   

SNAP SPBV 0.348*** 13.02  Telephone: 

recertification 

-0.116 0.0931  
(0.0963) 

 
 (0.382) 

 

   
 

   

BBCE 0.936*** 8.100  Fingerprinting 0.741 1.403  
(0.329) 

 
 

 
(0.626) 

 

   
 

   

Call centers -0.241 0.329  Online application -0.593* 3.189  
(0.420) 

 
 

 
(0.332) 

 

   
 

   

CAP -0.0122 0.000592  Outreach spending 

per capita 

-0.00774 0.786  
(0.502) 

 
 (0.00873) 

 

   
 

   

Average cert. period: 

households w/ earnings 

0.0739 2.570  Simplified 

reporting 

-0.0311 0.0165 

(0.0461) 
 

 (0.242) 
 

   
 

   

Average cert. period: 

households w/ elderly 

0.0179 0.256  Excludes all 

vehicles 

0.885** 6.446 

(0.0353) 
 

 (0.349) 
 

   
 

   

Average cert. period: 

households w/o earnings 

-0.0343 0.120  Alters vehicle 

treatment 

0.0568 0.0490 

(0.0990) 
 

 (0.257) 
 

   
 

   

EBT -0.0575 0.0106  Observations 
 

54,540 or 57,570  
(0.558) 

 
 Mean SNAP part. rate 11.12 

Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

First-stage F-statistics shown beside coefficient estimates. 

Each coefficient is from a separate first-stage regression using just one instrument. All regressions include demographic controls, year and county fixed 

effects, and state-specific time trends. All regressions are weighted by county population. Regressions lag participation rate and instrument by one year as in 

baseline models. SNAP participation rate is expressed in percentage points. Each regression uses a sample of 54,540 county-year observations except for those 

using the SEV or SPBV. See Appendix B, Section 1 for a brief discussion of the policy instruments considered here. 
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Table B3. Establishment counts broken down by number of employees second-stage and 

reduced form regression results 

 SNAP-plausible stores with:  SNAP-implausible stores with 

 0-9 emp. 10-49 emp. 50+ emp.  0-9 emp. 10-49 emp. 50+ emp. 
        

Reduced form        
        

SNAP SEV 0.0696 0.0204 0.00196  0.0803 -0.103 -0.0258* 

 (0.0687) (0.0351) (0.0180)  (0.0959) (0.0676) (0.0144) 
        

Mean SEV 17.38 17.38 17.38  17.38 17.38 17.38 

R2 0.155 0.0720 0.0637  0.673 0.279 0.306 
        

Instrumental variables second stage        
        

Predicted SNAP part. rate 0.408 0.119 0.0115  0.470 -0.603 -0.151 

 (0.385) (0.202) (0.107)  (0.596) (0.418) (0.0968) 
        

Mean est. count per 100,000 population 58.35 20.54 7.484  206.1 70.00 11.88 

Mean SNAP part. rate 11.12 11.12 11.12  11.12 11.12 11.12 

R2 0.169 0.0720 0.0625  0.674 0.266 0.302 

Observations 57,570 57,570 57,570  57,570 57,570 57,570 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

All regressions include demographic controls, year and county fixed effects, and state-specific time trends. All regressions are weighted by county population. 

The SEV and predicted SNAP participation rate from the first stage are expressed in percentage points. Establishment counts are expressed as the number per 

100,000 population and only include those establishments with a number of employees falling within the designated ranges: 0-9 employees, 10-49, or 50 or more 

employees. Participation rate and SEV are lagged one year. 
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Table B4. Other robustness checks 
 Grocery stores 

& supermarkets 

Convenience 

stores 

Gas stations w/ 

conv. stores 

Supercenters & 

warehouse clubs 

General 

stores 

SNAP- 

plausible stores 

SNAP- 

implausible stores 

Baseline 

County-level -0.0547 0.131 0.197 0.0225 0.225** 0.538* -0.283 

 (0.316) (0.129) (0.196) (0.0238) (0.0966) (0.289) (0.722) 

State-level -0.0878 0.143 0.308 0.0316 0.295** 0.749* -0.353 

 (0.326) (0.165) (0.246) (0.0229) (0.123) (0.398) (0.936) 

Altered timing of SNAP participation rate and SEV 

Not lagged -0.132 0.0965 0.259 0.0198 0.246** 0.417 -0.173 

 (0.289) (0.157) (0.174) (0.0239) (0.108) (0.272) (0.770) 

Lagged three-period 

moving average 

-0.0168 0.0389 0.259 0.0133 0.246*** 0.683** -0.286 

(0.337) (0.137) (0.276) (0.0277) (0.0869) (0.341) (0.654) 

No demographic 

controls 

-0.134 0.112 0.209 0.0273 0.243*** 0.479* -0.378 

(0.299) (0.123) (0.198) (0.0217) (0.0930) (0.256) (0.769) 

Altered time trends 

No state-specific trends 0.668* 0.328** 0.185 -0.0415* 0.0497 1.079*** 0.480 

 (0.377) (0.129) (0.221) (0.0250) (0.129) (0.416) (1.277) 

County-specific trends -0.101 0.124 0.190 0.0289 0.247** 0.511 -0.471 

 (0.296) (0.121) (0.203) (0.0196) (0.0988) (0.316) (0.733) 

Benefits per capita as outcome 

Limited county sample -0.198 0.139 0.167 0.0313 0.313** 0.485 -0.665 

 (0.441) (0.192) (0.245) (0.0335) (0.157) (0.458) (1.057) 

State-level -0.0821 0.134 0.288 0.0296 0.276** 0.700* -0.330 

 (0.298) (0.150) (0.225) (0.0232) (0.111) (0.395) (0.875) 

Alternate samples 

Includes CA -0.159 0.0791 0.130 0.0386* 0.132 0.177 -0.495 

 (0.229) (0.0942) (0.138) (0.0202) (0.0899) (0.305) (0.505) 

Excludes densest 

counties 

-0.167 0.127 0.154 0.0249 0.241** 0.412 -0.343 

(0.343) (0.129) (0.225) (0.0254) (0.103) (0.300) (0.755) 

No population weights -0.159 0.0791 0.130 0.0386* 0.132 0.177 -0.495 

 (0.229) (0.0942) (0.138) (0.0202) (0.0899) (0.305) (0.505) 
Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. *** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

Baseline regressions include demographic controls, year fixed effects, county or state fixed effects, and state-specific time trends. Baseline regressions are weighted by county or 

state population and lag the SNAP participation rate and SEV by one period. Regressions are at the county level unless otherwise stated. The SNAP participation rate and SEV are 

expressed in percentage points. Benefits per capita are expressed in 2010-adjusted dollars. Establishment counts are expressed as the number per 100,000 population. Each 

coefficient and standard error pair are from a separate regression. Each row deviates from the baseline model in some way as described. These deviations include using the state 

sample with state-level variables, using current-period participation rate and SEV, using a moving average of participation rate and SEV from the previous three periods, excluding 

demographic controls, excluding state-specific time trends, using county-specific trends in place of state-specific, using benefits per capita in place of participation rate as the 

outcome (with a restricted county sample for which this information is available), including California counties in the sample, excluding the ten densest counties (as of 2010), and 

not weighting by population. 
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Appendix C: Chapter II Supplementary Material 

 

 

 

Figure C1. SNAP participation rate by state 
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Figure C2. Medicaid enrollment rate by state 
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Figure C3. Medicaid spending per capita by state 

 

 
 

Spending is represented in 2010-adjusted dollars per capita. 
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Figure C4. Medicaid spending per enrollee by state 

 

 
 

Spending is represented in 2010-adjusted dollars per Medicaid enrollee. 
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Figure C5. National Medicaid enrollment rate and eligibility group enrollment rates 
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Figure C6. National Medicaid spending per capita and per enrollee 
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Table C1. Missing Medicaid enrollment and eligibility information 

Category Restricts regressions 

using: 

Total non-missing 

observations 

Missing state-years 

    

Total observations Any outcome 672 - 

    

Total Medicaid 

enrollment count 

Overall Medicaid 

enrollment rate or 

Medicaid spending per 

enrollee 

661 2011: ME 

2012: AZ, CO, DC, FL, 

KS, LA, ME, MA, TX, UT 

    

Group Medicaid 

enrollment count 

Child, adult, elderly, or 

blind/disabled 

Medicaid enrollment 

rates 

613 1999: All states 

2011: ME 

2012: AZ, CO, DC, FL, 

KS, LA, ME, MA, TX, UT 

    

Medicaid 

eligibility limits 

Any outcome, in 

baseline models 

(included as controls) 

668 1999-2002: TN 

    
Full state sample includes Washington, DC and all states but Alaska, Idaho, and Hawaii. Sample period consists 

of the 14 years from 1999 to 2012, where available. There are therefore 672 observations in the full sample (48 

states multiplied by 14 years), though no baseline regression uses all observations due to the missing Medicaid 

eligibility limit controls in early years in Tennessee.  
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Table C2. Full summary statistics 

 Mean Std. dev. Observations 

    

SNAP variables    

Participation rate (%) 9.519 (4.038) 672 

Simulated eligibility variable (SEV) (%) 16.58 (3.934) 672 

    

Medicaid/CHIP enrollment rate (% of total population) 

Total 18.84 (5.608) 661 

Children 8.782 (2.107) 613 

Adults 4.321 (2.584) 613 

Elderly (age 65+) 1.396 (0.421) 613 

Blind/disabled 2.812 (0.931) 613 

    

Medicaid/CHIP spending (2010 $) 

Per capita (overall population) 1157.0 (440.0) 672 

Per Medicaid enrollee 6329.9 (1947.0) 661 

    

Medicaid/CHIP eligibility limits (% of federal poverty level) 

Infants 229.9 (47.73) 668 

Children aged 1-5 228.6 (49.06) 668 

Children aged 6-18 228.0 (50.13) 668 

Pregnant women, midpoint 198.3 (37.96) 668 

Parents, midpoint 87.97 (53.54) 668 

Childless non-disabled adults, midpoint 16.33 (35.78) 668 

    

Medicaid/CHIP enrollment composition (% of total enrollment) 

Children 47.20 (8.299) 613 

Adults 21.25 (7.200) 613 

Elderly (age 65+) 7.509 (1.917) 613 

Blind/disabled 15.00 (3.806) 613 

    

Alternative Medicaid measures using UKCPR state-year enrollment data 

Medicaid enrollment rate, UKCPR 15.95 (4.988) 668 

Medicaid spending per enrollee, UKCPR 7489.2 (2170.1) 668 

    

Population (unweighted) 6115908.4 (6586079.4) 672 
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Table C2. Full summary statistics (continued) 

 Mean Std. dev. Observations 

    

Demographic characteristics (% of population) 

Rural 19.98 (12.16) 672 

Black 12.60 (8.040) 672 

Hispanic 14.76 (12.30) 672 

Age 0-17 24.69 (1.805) 672 

Age 60+ 17.62 (2.416) 672 

Married 53.42 (3.013) 672 

Have bachelor's degree 26.58 (4.500) 672 

Foreign-born 12.11 (7.932) 672 

    

Economic characteristics    

Poverty rate (%) 13.08 (2.986) 672 

Unemployment rate (%) 6.244 (2.239) 672 

Personal income per capita (2010 $) 34203.0 (5531.6) 672 

Non-SNAP/Medicaid government transfers 

per capita (2010 $) 

4644.1 (915.7) 672 

    

Policy environment characteristics    

Governor is Democrat (1=Yes) 0.476 (0.500) 658 

Fraction of State House that is Democrat 52.91 (12.49) 644 

Fraction of State Senate that is Democrat 49.80 (13.29) 644 

    

Other program state participation rates (% of population) 

TANF 1.596 (1.024) 672 

SSI 2.459 (0.750) 672 

    
Statistics are weighted by state population, excluding population itself. The sample excludes Alaska and Hawaii due 

to different federal SNAP benefit formulas and Idaho due to Medicaid enrollment data quality issues. The sample 

period is 1999-2012. Medicaid enrollment and eligibility data are unavailable for some state-years at the beginning 

and end of the sample period, which is further detailed in Table C1. 
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1. SEV performance compared to other instruments 

I compare the performance of the simulated eligibility variable (SEV) as an instrument 

for the SNAP participation rate to the performance of the simulated potential benefit variable 

(SPBV) I describe in Appendix A and other state-level SNAP policy variables from the SNAP 

Policy Database (USDA ERS 2018).155 Relative to the SEV and SPBV which primarily derive 

their variation from rules affecting eligibility, most of these policies affect the information 

available to households or the costs to households of applying, certifying, or recertifying. Several 

studies have used sets of these policies in an IV framework to estimate SNAP’s impacts in 

various contexts, typically at the individual- or household-level as opposed to the state-level 

impacts on Medicaid spending and enrollment I consider.156 

I estimate first-stage regressions, each modeling the state SNAP participation rate as a 

function of one policy instrument and the covariates in my baseline models. I present the 

coefficient estimates and first-stage F-statistics from these regressions in Table C3. The SEV is 

individually the strongest instrument among those I consider, with an F-statistic of 25.40. The 

SPBV is the only other instrument with an F-statistic above 10. All other policy variables are 

underpowered for use as instruments in the context of this study. 

 
155 In the order they are shown in Table C3, the policy instruments I consider are the SEV, the SPBV, a dummy for a 

BBCE expansion of any type, a dummy for the state operating call centers, a dummy for the state operating a 

Combined Application Project for SSI recipients, the average certification period in months for SNAP units with 

earnings/with elderly members/without earnings, the proportion of the dollar value of benefits accounted for by 

EBT, a dummy for the state having a waiver to use a telephone interview in lieu of an in-person interview at initial 

certification/recertification, a dummy for the state requiring fingerprinting of applicants, a dummy for the state 

allowing online application, outreach spending per capita in thousands of 2010-adjusted dollars, a dummy for the 

state using simplified reporting that reduces requirements for households with earnings to report changes in 

household circumstances, a dummy for the state excluding all vehicles from the asset test, and a dummy for the state 

excluding any number or exempting any value of vehicles beyond the federal minimum. 
156 E.g., Meyerhoefer and Pylypchuk (2008); Yen et al. (2008); Ratcliffe, McKernan, and Zhang (2011); Gregory 

and Coleman-Jensen (2013); Gregory and Deb (2015); Almada, McCarthy, and Tchernis (2016). 
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Table C3. Comparative first-stage regression results with alternate instruments 

Instrument SNAP part. rate F-statistic  Instrument SNAP part. rate F-statistic    
 

   

SNAP SEV 0.162*** 25.40  Telephone: initial 

certification 

-0.192 0.213  
(0.0322)   (0.416)   

   
 

  

SNAP SPBV 0.270*** 12.65  Telephone: 

recertification 

0.225 0.642  
(0.0760)   (0.281)   

   
 

  

BBCE 0.415* 3.433  Fingerprinting -0.339 0.490  
(0.224)   

 
(0.485)   

   
 

  

Call centers 0.237 0.594  Online application -0.0269 0.00808  
(0.308)   

 
(0.299)   

   
 

  

CAP 0.449 1.900  Outreach spending 

per capita 

-0.0183* 3.368  
(0.325)   (0.00995)   

   
 

  

Average cert. period: 

households w/ earnings 

0.124*** 9.170  Simplified 

reporting 

0.896*** 7.434 

(0.0408)   (0.329)   

   
 

  

Average cert. period: 

households w/ elderly 

0.00804 0.0878  Excludes all 

vehicles 

0.206 0.462 

(0.0271)   (0.304)   
   

 
  

Average cert. period: 

households w/o earnings 

0.0462 0.697  Alters vehicle 

treatment 

0.224 0.801 

(0.0554)   (0.250) 
 

 

   
   

EBT -0.641 2.426  Observations 
 

668  
(0.412) 

 
 Mean SNAP part. rate 9.519 

      

Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

Each coefficient is from a separate first-stage regression using just one instrument. All regressions include demographic controls, Medicaid eligibility controls, 

and year and state fixed effects. All regressions are weighted by state population. SNAP participation rate is expressed in percentage points. See Appendix C, 

Section 1 for a brief discussion of the policy instruments considered here. 
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Table C4. Other robustness checks 
 Medicaid enrollment rate (% of total population)  Medicaid total spending 

(2010 $) 

 Overall Children Adults Elderly Blind/disabled  Per capita Per enrollee 

Baseline 0.132*** 0.0329** 0.0601** 0.00764 0.00535  -1.429 -58.07*** 

 (0.0465) (0.0163) (0.0280) (0.00501) (0.00599)  (2.623) (17.40) 

Altered controls         

  No Medicaid elig. controls 0.158*** 0.0372* 0.0816** 0.00943 0.0106  -1.238 -68.49*** 

 (0.0570) (0.0204) (0.0319) (0.00577) (0.00939)  (3.009) (18.73) 

  Upper-limit Medicaid elig. controls 0.137*** 0.0353** 0.0636** 0.00773 0.00489  -1.054 -58.82*** 

 (0.0468) (0.0163) (0.0283) (0.00503) (0.00600)  (2.741) (17.51) 

  Lower-limit Medicaid elig. controls 0.124*** 0.0294* 0.0553** 0.00713 0.00548  -1.871 -56.70*** 

 (0.0460) (0.0167) (0.0279) (0.00503) (0.00599)  (2.482) (17.45) 

  No demographic controls 0.0977** 0.00717 0.0626** 0.00916 -0.00174  -0.389 -44.94*** 

 (0.0484) (0.0186) (0.0299) (0.00573) (0.00565)  (2.914) (16.41) 

No controls other than state and year fixed 

effects 

0.125** 0.00989 0.0934*** 0.0120 0.00813  -0.618 -64.77*** 

(0.0608) (0.0215) (0.0351) (0.00800) (0.0108)  (3.310) (20.21) 

  Add state-specific time trends 0.0154 0.0210 -0.00330 0.00602 -0.00114  -3.880* -30.13** 

 (0.0476) (0.0206) (0.0214) (0.00529) (0.00532)  (2.279) (14.88) 

Altered sample         

  Uniform, non-missing sample 0.129*** 0.0329** 0.0601** 0.00764 0.00535  -1.251 -56.64*** 

 (0.0441) (0.0163) (0.0280) (0.00501) (0.00599)  (2.531) (17.00) 

  Exclude CA 0.112*** 0.0162 0.0622** 0.00882* 0.00402  -1.385 -53.14*** 

 (0.0400) (0.0150) (0.0269) (0.00527) (0.00631)  (2.677) (16.08) 

  Include AK and HI 0.132*** 0.0334** 0.0606** 0.00747 0.00491  -1.349 -57.01*** 

 (0.0448) (0.0156) (0.0269) (0.00485) (0.00580)  (2.484) (16.96) 

Alternate outcomes using UKCPR Medicaid 

enrollment counts 

0.0954** - - - -  - -70.55*** 

(0.0408)       (21.29) 

No population weights 0.158*** 0.0133 0.0917*** 0.0122* 0.00501  0.729 -58.90*** 

 (0.0485) (0.0139) (0.0332) (0.00670) (0.00662)  (2.924) (19.85) 

Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. *** indicates statistical significance at the 1% level, ** at the 5% level, and * 

at the 10% level. Baseline regressions include demographic controls, Medicaid eligibility controls, and year and state fixed effects. Baseline regressions are 

weighted by state population. The SNAP SEV is expressed in percentage points. Medicaid enrollment rates represent the number of enrollees as a percentage of 

the overall population and are expressed in percentage points. Medicaid spending per capita or per Medicaid enrollee is expressed in 2010-adjusted dollars. Each 

coefficient and standard error pair are from a separate regression. Each row deviates from the baseline model in some way as described. These deviations include 

excluding the Medicaid income eligibility limit controls, using the version of these controls that resolves conflicting information by using the higher or lower 

income eligibility limit, excluding demographic controls, excluding all controls except state and year fixed effects, including state-specific time trends, using a 

uniform sample excluding state-years with any missing values for any Medicaid outcome or control, excluding California from the sample, including Alaska and 

Hawaii in the sample, using estimates of Medicaid enrollment from UKCPR's National Welfare Data in place of the enrollment information sourced from MSIS, 

and not weighting regressions by population. 
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Appendix D: Chapter III Supplementary Material 

 

 

 

Figure D1. Full-county sample and high-poverty county subsample mortality rates 
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Figure D2. Overall mortality rate per 100,000 population by county 
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Table D1. Full summary statistics 

 

Full county sample  

High-poverty county 

sample 

 Mean Std. dev.  Mean Std. dev. 

      

FSP rollout      

Year of introduction:      

Weighted by population 1968.7 (3.308)  1968.9 (3.278) 

Unweighted 1969.9 (3.270)  1969.3 (3.308) 

=1 if FSP was introduced:      

1 or 2 years ago 0.128 (0.334)  0.131 (0.338) 

3 or 4 years ago 0.177 (0.382)  0.180 (0.385) 

5 or 6 years ago 0.164 (0.370)  0.163 (0.369) 

7 or 8 years ago 0.149 (0.356)  0.136 (0.343) 

9 or more years ago 0.217 (0.412)  0.214 (0.410) 

=1 if FSP is in place 0.885 (0.319)  0.869 (0.337) 

Years since introduction 5.186 (3.883)  5.030 (3.837) 

      

Mortality rates: deaths per 100,000 population 

Overall 903.8 (205.2)  1017.9 (208.9) 

Female 783.7 (173.2)  833.9 (190.0) 

Male 1031.0 (255.2)  1212.2 (265.2) 

Black 929.2 (251.3)  1088.3 (236.9) 

White 909.0 (220.4)  996.6 (239.8) 

Other race 365.0 (296.4)  639.2 (480.9) 

0-19 137.6 (40.47)  183.7 (65.26) 

20-64 526.6 (126.3)  662.4 (163.4) 

65+ 5598.1 (624.6)  5558.0 (766.7) 

Malignant neoplasms 168.9 (41.19)  155.1 (42.94) 

Diabetes 17.28 (7.747)  21.60 (12.16) 

Major cardiovascular disease 466.6 (126.9)  520.4 (139.9) 

Stroke 55.67 (23.37)  84.20 (41.56) 

Pneumonia & influenza 27.63 (11.44)  33.31 (18.22) 

Liver disease & cirrhosis 15.94 (8.580)  11.11 (7.064) 

Motor vehicle accidents 23.50 (11.59)  39.82 (18.98) 

Other accidents 26.62 (10.43)  39.19 (17.74) 

Suicide 12.24 (5.043)  12.06 (7.412) 

Homicide & legal intervention 10.28 (7.910)  14.76 (9.185) 
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Table D1. Full summary statistics (continued) 

 

Full county sample  

High-poverty county 

sample 

 Mean Std. dev.  Mean Std. dev. 

      

Annual economic controls in 2010-adjusted dollars per capita 

Personal income 3488.8 (760.6)  2134.0 (384.1) 

Government transfers to 

individuals: 

     

Income maintenance (excluding 

food stamps) 

0.0416 (0.0293)  0.0465 (0.0195) 

Medical benefits 0.0720 (0.0433)  0.0535 (0.0228) 

Retirement and disability 

insurance  

0.169 (0.0553)  0.145 (0.0525) 

Unemployment insurance 0.0250 (0.0189)  0.0150 (0.0108) 

Veteran’s 0.0308 (0.00853)  0.0345 (0.0112) 

Education and training assistance 0.00609 (0.00432)  0.00447 (0.00480) 

Other 0.000745 (0.00399)  0.000702 (0.00205) 

      

1960 county characteristics 

Younger than age 5 (%) 11.47 (1.510)  12.19 (1.869) 

Age 65 or older (%) 8.919 (2.554)  8.794 (2.458) 

Nonwhite (%) 11.31 (11.87)  32.29 (23.25) 

Rural, non-farm (%) 20.93 (20.15)  48.24 (19.60) 

Poverty rate (%) 21.13 (13.31)  60.92 (6.256) 

Population (unweighted) 87853.0 (263010.2)  20169.4 (16883.7) 

      

Population (annual, unweighted) 106715.9 (302240.6)  20986.2 (19158.9) 

      

Counties 1,716   428  

Years 10   10  

Observations 17,160   4,280  
Mortality rates are weighted by the county population used as the denominator in their construction: either the total 

population for the overall or cause-specific mortality rates or the relevant subgroup population for subgroup-specific 

mortality rates. Other statistics are weighted by total county population unless otherwise noted. The sample excludes 

Alaska and counties for which data is not available for the entire period. The sample period is 1969-1978. 
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Table D2. Robustness checks using full county sample 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 Overall Overall Overall Overall Overall Overall Overall Overall 

         

1 or 2 2.115 3.503 2.241 2.079 -0.656 -3.004 -0.580 3.271 

 (2.414) (2.336) (2.404) (2.404) (1.795) (3.524) (2.935) (2.954) 

3 or 4 -0.450 1.730 -0.324 -0.488 -2.908 -7.951* -4.963 1.786 

 (3.100) (3.029) (3.089) (3.090) (2.536) (4.534) (3.830) (3.942) 

5 or 6 -0.317 0.00126 -0.126 -0.363 -2.141 -6.238 -6.948 0.485 

 (4.000) (3.971) (3.988) (3.993) (3.326) (5.842) (4.944) (5.095) 

7 or 8 -2.001 -3.098 -1.750 -2.059 -2.410 -6.026 -9.002 -3.673 

 (5.029) (4.727) (5.016) (5.018) (4.274) (7.381) (6.186) (6.346) 

9 or more -3.068 -3.440 -2.752 -3.146 1.541 -2.430 -8.896 1.116 

 (6.004) (5.724) (5.988) (5.991) (5.097) (8.384) (7.114) (8.068) 

         

Personal income  Yes Yes Yes Yes Yes  Yes Yes 

Government transfers, breakdown  Yes Yes Yes Yes Yes   Yes 

Government transfers, combined        Yes  

1960 controls * t  Yes Yes Yes Yes   Yes Yes 

County and year FE  Yes Yes Yes Yes Yes Yes Yes Yes 

County-specific time trends      Yes    

State-year FE   Yes       

Medicaid in place for 1 year or more    Yes      

Medicaid in place for 5 years or more     Yes     

         

Mean mortality rate 903.8 903.8 903.8 903.8 903.8 903.8 903.8 903.8 

Adjusted R2 0.376 0.422 0.376 0.376 0.497 0.211 0.341 0.201 

Observations 17,160 17,160 17,160 17,160 17,160 17,160 17,160 17,160 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

Baseline regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the full county sample. Baseline regressions are weighted by county population. The outcome is the overall mortality rate, 

expressed as the number of deaths per 100,000 members of the population. FSP dummies indicate how long ago the FSP was rolled out in each county. 

Columns 2-8 alter the baseline model. (2) includes state-year fixed effects. (3) includes a dummy =1 if Medicaid was introduced in the state in the previous year 

or earlier. (4) includes a dummy =1 if Medicaid was introduced in the state 5 years ago or earlier. (5) includes county-specific time trends in place of interactions 

between pre-rollout characteristics and time trends. (6) excludes baseline controls except county or year fixed effects. (7) includes combined real non-food stamp 

government transfers per capita in place of individual transfer categories. (8) is not weighted by county population.  
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Table D3. Robustness checks using high-poverty county sample 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 Overall Overall Overall Overall Overall Overall Overall Overall 

         

1 or 2 -4.214 1.076 -3.533 -4.372 -10.62 -2.899 -2.139 7.134 

 (7.596) (9.121) (7.655) (7.609) (8.492) (7.590) (7.599) (8.914) 

3 or 4 -8.527 -5.679 -8.000 -8.426 -8.833 -5.442 -6.374 1.236 

 (9.798) (11.56) (9.852) (9.817) (11.11) (9.801) (9.799) (11.37) 

5 or 6 -21.20* -17.08 -20.68 -21.40* -14.28 -14.66 -19.60 -8.279 

 (12.53) (14.74) (12.58) (12.54) (13.87) (12.59) (12.58) (14.50) 

7 or 8 -29.40* -26.77 -29.00* -29.49* -15.94 -20.84 -29.45* -14.85 

 (15.72) (17.83) (15.76) (15.73) (17.15) (15.79) (15.84) (17.97) 

9 or more -33.89* -35.38 -33.70* -33.92* -17.08 -23.72 -34.47* -15.72 

 (19.82) (22.20) (19.86) (19.84) (20.81) (19.80) (19.90) (22.42) 

         

Personal income  Yes Yes Yes Yes Yes  Yes Yes 

Government transfers, breakdown  Yes Yes Yes Yes Yes   Yes 

Government transfers, combined        Yes  

1960 controls * t  Yes Yes Yes Yes   Yes Yes 

County and year FE  Yes Yes Yes Yes Yes Yes Yes Yes 

County-specific time trends      Yes    

State-year FE   Yes       

Medicaid in place for 1 year or more    Yes      

Medicaid in place for 5 years or more     Yes     

         

Mean mortality rate 1017.9 1017.9 1017.9 1017.9 1017.9 1017.9 1017.9 1017.9 

Adjusted R2 0.139 0.183 0.139 0.139 0.221 0.125 0.134 0.108 

Observations 4,280 4,280 4,280 4,280 4,280 4,280 4,280 4,280 
Standard errors, heteroskedasticity-robust and clustered by county, are in parentheses. 

*** indicates statistical significance at the 1% level, ** at the 5% level, and * at the 10% level. 

Baseline regressions include annual economic controls, 1960 pre-rollout characteristics interacted with linear time trends, and county and year fixed effects. 

Regressions are estimated using the high-poverty county sample. Baseline regressions are weighted by county population. The outcome is the overall mortality 

rate, expressed as the number of deaths per 100,000 members of the population. FSP dummies indicate how long ago the FSP was rolled out in each county. 

Columns 2-8 alter the baseline model. (2) includes state-year fixed effects. (3) includes a dummy =1 if Medicaid was introduced in the state in the previous year 

or earlier. (4) includes a dummy =1 if Medicaid was introduced in the state 5 years ago or earlier. (5) includes county-specific time trends in place of interactions 

between pre-rollout characteristics and time trends. (6) excludes baseline controls except county or year fixed effects. (7) includes combined real non-food stamp 

government transfers per capita in place of individual transfer categories. (8) is not weighted by county population. 
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