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Computational assessment of epidemiological models for analyzing and forecasting infectious 

disease outbreaks 

 

By 

Kimberlyn Roosa 

 

 

Mathematical modeling offers a quantitative framework for analyzing mechanisms underlying 

infectious disease transmission and explaining patterns in epidemiological data. Models are also 

commonly applied in outbreak investigations for assessing intervention and control strategies 

and generating epidemic forecasts in real time. However, successful application of mathematical 

models depends on the ability to reliably estimate key transmission and severity parameters, 

which are critical for guiding public health interventions.  

 

Overall, the three studies presented provide a thorough guide for assessing and utilizing 

mathematical models for describing infectious disease outbreak trends. In the first study, we 

describe the process for analyzing identifiability of parameters of interest in mechanistic disease 

transmission models. In the second study, we expand this idea to simple phenomenological 

models and explore the idea of overdispersion in the data and how to determine an appropriate 

error structure within the analyses. In the third study, we use previously validated 

phenomenological models to generate short-term forecasts of the ongoing COVID-19 pandemic. 

 

During infectious disease epidemics, public health authorities rely on modeling results to inform 

intervention decisions and resource allocation. Therefore, we highlight the importance of 

interpreting modeling results with caution, particularly regarding theoretical aspects of 

mathematical models and parameter estimation methods. Further, results from modeling studies 

should be presented with quantified uncertainty and interpreted in terms of the assumptions and 

limitations of the model, methods, and data used. The methodology presented in this dissertation 

provides a thorough guide for conducting model-based inferences and presenting the uncertainty 

associated with parameter estimation results. 
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Chapter 1: Introduction 

 

Mathematical modeling offers a quantitative framework for analyzing mechanisms underlying 

infectious disease transmission and explaining patterns in epidemiological data (1, 2). Models are 

also commonly used by public health researchers during outbreak investigations for assessing 

intervention and control strategies and generating epidemic forecasts in real time. However, the 

successful application of mathematical models to epidemiologic studies depends upon our ability 

to reliably estimate key transmission and severity parameters that are critical for guiding public 

health interventions.  

 

Parameter estimates for a given system are subject to uncertainty from noise in the data and 

assumptions built in the model, and ignoring this uncertainty can result in misleading inferences 

and potentially incorrect public health policy decisions (3). A crucial aspect of epidemiological 

models is the identifiability of the parameters, or whether a set of parameters can be uniquely 

estimated from a given model and data set (4). Lack of identifiability, or non-identifiability, 

results in a wide range of parameter values that yield nearly equivalent fits to the data. Non-

identifiability can stem from the model structure (structural identifiability) or the lack of 

information in the available data (practical identifiability). Practical identifiability is related to 

characteristics in the data, including the number of observations, the temporal resolution, or 

observation error. 

 

The mathematical modeling toolkit includes phenomenological models that assess features in 

epidemic trajectories as well as mechanistic models that evaluate the effects of interventions or 

other factors on transmission dynamics. Dynamic models based on differential equations are 

often calibrated to infectious disease outbreak data, which typically represent a time series of 

new cases, where a case corresponds to an observable event. Further, the reported dataset 

corresponds to only one realization of a stochastic process, and generating more data realizations 

in a carefully controlled environment is not feasible in the context of real outbreaks occurring in 

natural environments.   
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For the first study, we present and illustrate a simple computational method for assessing 

parameter identifiability in compartmental (mechanistic) epidemic models (5). We describe a 

parametric bootstrap approach to generate simulated data from dynamical systems to quantify 

parameter uncertainty and identifiability. To demonstrate this approach, we begin with a low-

complexity SEIR model and work through examples of increasingly more complex 

compartmental models that correspond with applications to pandemic influenza, Ebola, and Zika. 

 

When calibrating models to data via some fitting process, the model solution for a given set of 

parameter values and initial conditions is typically considered to be the “mean” solution, which 

is then embedded into a counting process characterized by a statistical model. For example, in 

the first study we assume the Poisson distribution as the error structure for the parametric 

bootstrapping analyses, as the Poisson distribution is commonly assumed for count data. In this 

inference framework, the equidispersion property of the Poisson distribution (where the mean is 

equal to the variance) simplifies the inference process, limits the number of degrees of freedom, 

and indirectly reduces potential issues of parameter non-identifiability (6). However, empirical 

data may exhibit greater variability than expected based on a given statistical model.  

 

Greater variability could point to model misspecification, such as missing crucial information 

about the epidemiology of the disease or changes in population behavior. Hence, researchers 

could fix this lack of model fit by identifying and incorporating key process components in the 

model, thus resolving the apparent overdispersion issue. Therefore, identifying the relevant 

sources of apparent overdispersion is critical in the modeling process as it could lead to poor 

descriptions of the data and predictive power and underestimated standard errors and confidence 

intervals (7). When the mechanism producing the apparent overdispersion is unknown, however, 

it is typically assumed that the variance in the data exceeds the mean by some factor. In this case, 

the researcher may reconsider the error structure to allow for the variance to be larger than the 

mean and better represent the data (e.g., negative binomial) (6). 

 

Simulation studies can be useful for evaluating the impact of various forms of misspecification 

when calibrating a model to data. In the second study, we evaluate the effects of misspecifying 

the error structure on the bias and uncertainty of parameter estimates for simple dynamic 



10 
 

transmission models (8).  Specifically, we focus on modeling varying levels of data 

overdispersion stemming from randomness in the counting process that shapes the time series 

data, rather than systematic misspecifications in the mean process linked to the model. For this 

study, we analyze two phenomenological models – the generalized growth model and 

generalized logistic growth model – to assess how results of parameter estimation are affected by 

the level of overdispersion in the data. We utilize the parametric bootstrap approach described in 

the first study to assess parameter estimates and their uncertainty as a function of the level of 

random noise in the data, and we compare results using two common parameter estimation 

methods: nonlinear least squares (LSQ) and maximum likelihood estimation with a Poisson error 

structure (Poisson-MLE).  

 

Phenomenological growth models, like those presented in the second study, that are able to 

capture the empirical patterns of past epidemics can be used to investigate the trajectory of 

epidemics in real time and are especially useful when the amount of epidemiological data are 

limited (3, 9-11). Real-time short-term forecasts generated from such models can be useful to 

allocate the resources needed to bring an epidemic under control. The ongoing COVID-19 

pandemic, for example, originated in December 2019 in Wuhan, China, where cases quickly 

outnumbered the available number of beds in hospitals, putting a substantial burden on the 

healthcare system. To anticipate additional resources needed to combat the epidemic, 

mathematical and statistical modeling tools were used to generate timely short-term forecasts of 

reported cases and estimates of expected morbidity burden that can help guide public health 

preparation. Short-term forecasts can also guide the intensity and type of interventions needed to 

mitigate an epidemic. 

 

For the third study, we employ previously validated phenomenological models, including the 

generalized logistic growth model presented in the second study, and apply to the ongoing 

COVID-19 pandemic to generate short-term forecasts for two provinces in China (12). These 

forecasts were generated in February 2020, when the epidemiological features of COVID-19 

were still unclear, and the disease continued to spread within and outside of China, despite 

several social distancing measures implemented by the Chinese government. Limited 

epidemiological data were available, and recent changes in case definition and reporting further 
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complicated our understanding of the impact of the epidemic. All of these factors obscured the 

true underlying epidemic trajectory and complicated inference of epidemiological parameters 

and the calibration of mechanistic transmission models. Therefore, we employ these 

phenomenological models to generate short-term forecasts of the cumulative reported cases of 

COVID-19 in Guangdong and Zhejiang, China.  

 

Overall, the three studies in Chapters 2 – 4 provide a thorough guide for assessing and utilizing 

mathematical models for describing infectious disease outbreak trends. Chapter 2 describes the 

process for analyzing identifiability of parameters of interest in a given disease transmission 

model, specifically focusing on mechanistic models ranging from simple to complex. Chapter 3 

expands this idea to simple phenomenological models and explores the idea of overdispersion 

and how to determine an appropriate error structure within the analyses. Chapter 4 utilizes 

previously validated phenomenological models, including one presented in Chapter 3, to 

generate short-term forecasts of the ongoing COVID-19 pandemic, where public health 

authorities have relied on modeling results to inform intervention decisions and resource 

allocation.   
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Chapter 2. Assessing parameter identifiability in compartmental dynamic models using a 

computational approach: application to infectious disease transmission models 

 

Roosa, K. & Chowell, G. (2019). Assessing parameter identifiability in compartmental dynamic 

models using a computational approach: application to infectious disease transmission models. 

Theoretical Biology and Medical Modeling. doi:10.1186/s12976-018-0097-6 

 

1. Introduction 

Mathematical modeling is commonly applied in outbreak investigations for analyzing 

mechanisms behind infectious disease transmission and explaining patterns in epidemiological 

data (1, 2). Models also provide a quantitative framework for assessing intervention and control 

strategies and generating epidemic forecasts in real time. However, the successful application of 

mathematical modeling to investigate epidemics depends upon our ability to reliably estimate 

key transmission and severity parameters, which are critical for guiding public health 

interventions. In particular, parameter estimates for a given system are subject to two major 

sources of uncertainty: noise in the data and assumptions built in the model (3). Ignoring this 

uncertainty can result in misleading inferences and potentially incorrect public health policy 

decisions.   

 

Appropriate and flexible approaches for estimating parameters from data, evaluating parameter 

and model uncertainty, and assessing goodness of fit are gaining increasing attention (4-8). For 

instance, model parameters can be estimated by connecting models with observed data through 

various methods, including least-squares fitting (9), maximum likelihood estimation (10, 11), 

and approximate Bayesian computation (12, 13). An important, yet often overlooked step in 

estimating parameters is examining parameter identifiability – whether a set of parameters can be 

uniquely estimated from a given model and data set (14). Lack of identifiability, or non-

identifiability, occurs when multiple sets of parameter values yield a very similar model fit to the 

data. Non-identifiability may be attributed to the model structure (structural identifiability) or 

due to the lack of information in a given data set (practical identifiability), which could be 

associated with the number of observations, spatial-temporal resolution (e.g., daily versus 

weekly data), and observation error. A parameter set is considered structurally identifiable if any 
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set of parameter values can be uniquely mapped to a model output (15). As such, structural 

identifiability is the first step in understanding which model parameters can be estimated from 

data of certain state(s) of the system at a specific spatial-temporal resolution. Structurally 

identifiable parameters may still be non-identifiable in practice due to a lack of information in 

available data. The so-called “practical identifiability” considers real-world data issues: amount 

of noise in the data and sampling frequency (e.g., data collection process) (14).  

 

Several methods have been proposed to examine structural identifiability of a model without the 

need of experimental data; these include Taylor series methods (15, 16), differential algebra-

based methods (17, 18), and other mathematical approaches (15, 19). These methods tend to 

work better in the context of simple rather than complex models. Model complexity, in general, 

is a function of the number of parameters necessary to characterize the states of the system and 

the spectrum of dynamics that can be recovered from the model. Model complexity affects the 

ability to reliably parameterize the model given the available data (3), so there is a need for 

flexible, mathematically-sound approaches to address parameter identifiability in models of 

varying complexity. Here, we present a general computational method for quantifying parameter 

uncertainty and assessing parameter identifiability through a parametric bootstrap approach. We 

demonstrate this approach through examples of compartmental epidemic models with variable 

complexity, which have been previously employed to study the transmission dynamics and 

control of various infectious diseases including pandemic influenza, Ebola, and Zika.  

 

2. Methods 

2.1. Compartmental Models 

Compartmental models are widely used in epidemiological literature as a population-level 

modeling approach that subdivides the population into classes according to their epidemiological 

status (1, 20). Compartmental dynamic models are specified by a set of ordinary differential 

equations and parameters that track the temporal progression of the number of individuals in 

each of the states of the system (3, 21). Dynamic models follow the general form:  

 

𝑥̇1(𝑡) = 𝑓1(𝑥1, 𝑥2, … , 𝑥ℎ, Θ)  

𝑥̇2(𝑡) = 𝑓2(𝑥1, 𝑥2, … , 𝑥ℎ , Θ)  
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⁞ 

𝑥̇ℎ(𝑡) = 𝑓ℎ(𝑥1, 𝑥2, … , 𝑥ℎ, Θ)  

 

Where 𝑥̇𝑖 is the rate of change of the system states (where i= 1, 2, …, h) and Θ = (θ1, θ2, …, θm) 

is the set of model parameters.  

 

The basic reproductive number (denoted R0) is often a parameter of interest in epidemiological 

studies, as it is a measure of potential for a given infectious disease to spread within a 

population. Mathematically, it is defined as the average number of secondary infections 

produced by a single index case in a completely susceptible population (22). R0 represents an 

epidemic threshold for which values of R0 < 1 indicate a lack of disease spread, and values of R0 

> 1 are consistent with epidemic spread. In the midst of an epidemic, R0 estimates provide insight 

to the intensity of interventions required to achieve control (23). R0 is a composite parameter 

value, as it depends on multiple model parameters (e.g., transmission rate, infectious period), and 

while R0 is not directly estimated from the model, it can be calculated by relying on the 

uncertainty of individual parameters.  

 

A simple and commonly utilized compartmental model is the SEIR (susceptible-exposed-

infectious-removed) model (1). We apply our methodology to this low-complexity model and 

work through increasingly more complex models as we demonstrate the approach for assessing 

parameter identifiability.  

 

2.1.1. Model 1: Simple SEIR (Pandemic Influenza) 

We analyze a simple compartmental transmission model that consists of 4 parameters and 4 

states (Figure 1). We apply this model to the context of the 1918 influenza pandemic in San 

Francisco, California (23). Individuals in the model are classified as susceptible (S), exposed (E), 

infectious (I), or recovered (R) (1). We assume constant population size, so S + E + I + R = N, 

where N is the total population size. Susceptible individuals progress to the exposed class at rate 

𝛽𝐼(𝑡)/𝑁, where 𝛽 is the transmission rate, and 𝐼(𝑡)/𝑁 is the probability of random contact with 

an infectious individual. Exposed, or latent, individuals move to the infectious class at rate 𝑘, 
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where 1/𝑘 is the average latent period. Infectious individuals recover (move to recovered class) 

at rate 𝛾, where 1/𝛾 corresponds to the average infectious period.  

 

 

Figure 1. Model 1: Simple SEIR – Population is divided into 4 classes: susceptible (S), exposed 

(E), infectious (I), and recovered/removed (R). Class C represents the auxiliary variable C(t) and 

tracks the cumulative number of infectious individuals from the start of the outbreak. This is 

presented as a dashed line, as it is not a state of the system of equations, but simply a class to 

track the cumulative incidence cases; meaning, individuals from the population are not moving 

to class C. Parameter(s) above arrows denote the rate individuals move between classes. 

Parameter descriptions and values are found in Table 1.  

 

The transmission process can be modeled using the following system of ordinary differential 

equations (where the dot denotes time derivative): 

 

{
 
 

 
 

𝑆̇(𝑡) =  −𝛽𝑆(𝑡)𝐼(𝑡)/𝑁   

𝐸̇(𝑡) =  𝛽𝑆(𝑡)𝐼(𝑡)/𝑁 − 𝑘𝐸(𝑡)   

𝐼(̇𝑡) =  𝑘𝐸(𝑡) − 𝛾𝐼(𝑡)   

𝑅̇(𝑡) =  𝛾𝐼(𝑡) 

𝐶̇(𝑡) =  𝑘𝐸(𝑡)     

 

 

The auxiliary variable C(t) tracks the cumulative number of infectious individuals from the start 

of the outbreak. It is not a state of the system of equations, but simply a class to track the 

cumulative incidence cases; meaning, individuals from the population are not moving to class C. 

The number of new infections, or the incidence curve, is given by 𝐶̇(𝑡).  
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For this model, there is only one class contributing to new infections (I),  so R0, or the basic 

reproductive number, is simply the product of the transmission rate and the average infectious 

period:  R0 = 
𝛽

𝛾
 . 

 

2.1.2. Model 2: SEIR with asymptomatic and hospitalized/diagnosed and reported  

We use a simplified version of a complex SEIR model that consists of 8 parameters and 6 system 

states (Figure 2). This model was originally developed for studying the transmission dynamics of 

the 1918 influenza pandemic in Geneva, Switzerland (24).  In the model, individuals are 

classified as susceptible (S), exposed (E), clinically ill and infectious (I), asymptomatic and 

partially infectious (A), hospitalized/diagnosed and reported (J), or recovered (R). Hospitalized 

individuals are assumed to be as infectious as individuals in the I class. Again, constant 

population size is assumed, so S + E + I + A + J + R = N. Susceptible individuals progress to the 

exposed class at rate 𝛽[𝐼(𝑡) + 𝐽(𝑡) + 𝑞𝐴(𝑡)]/𝑁, where 𝛽 is the transmission rate, and q is a 

reduction factor of transmissibility in the asymptomatic class (0 < q < 1). A proportion, ρ, of 

exposed/latent individuals (0 < ρ < 1) become clinically infectious at rate 𝑘, while the rest (1- ρ) 

become partially infectious and asymptomatic at the same rate 𝑘. Asymptomatic cases progress 

to the recovered class at rate 𝛾1. Clinically ill and infectious individuals are diagnosed at a rate α 

or recover without being diagnosed at rate 𝛾1. Diagnosed individuals recover at rate 𝛾2.  
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Figure 2. Model 2: SEIR with asymptomatic and hospitalized/diagnosed and reported – 

Population is divided into 6 classes: susceptible (S), exposed (E), clinically ill and infectious (I), 

asymptomatic and partially infectious (A), hospitalized/diagnosed and reported (J), and 

recovered (R). Class C represents the auxiliary variable C(t) and tracks the cumulative number of 

newly infectious individuals. Parameter(s) above (or to the left of) arrows denote the rate 

individuals move between classes. Parameter descriptions and values are found in Table 2. 

The transmission process can be modeled using the following system of ordinary differential 

equations: 

 

{
 
 
 
 

 
 
 
 

𝑆̇(𝑡) =  −𝛽𝑆(𝑡)[𝐼(𝑡) + 𝐽(𝑡) + 𝑞𝐴(𝑡)]/𝑁   

𝐸̇(𝑡) = 𝛽𝑆(𝑡)[𝐼(𝑡) + 𝐽(𝑡) + 𝑞𝐴(𝑡)]/𝑁 −  𝑘𝐸(𝑡)

𝐴̇(𝑡) =  𝑘(1 − 𝜌)𝐸(𝑡)  − 𝛾1𝐴(𝑡)

𝐼̇(𝑡) =  𝑘𝜌𝐸(𝑡) − (𝛼 + 𝛾1)𝐼(𝑡)

𝐽(̇𝑡) = 𝛼𝐼(𝑡) − 𝛾2𝐽(𝑡)

𝑅̇(𝑡) =   𝛾1(𝐴(𝑡) + 𝐼(𝑡)) + 𝛾2𝐽(𝑡)

𝐶̇(𝑡) = 𝛼𝐼(𝑡)
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In the above system, C(t) represents the cumulative number of diagnosed/reported cases from the 

start of the outbreak, and 𝐶̇(𝑡) is the incidence curve of diagnosed cases. 

For this model, there are three classes contributing to new infections (A, I, J), so the reproductive 

number is the sum of the contributions from each of these classes: R0 = R0
A + R0

I + R0
J, where:  

R0
A = (fraction of asymptomatic cases) x (transmission rate)      

 x (relative transmissibility from asymptomatic cases)     

 x (mean time in asymptomatic class) 

R0
I = (fraction of symptomatic cases) x (transmission rate)      

 x (mean time in clinically infectious class) 

R0
J = (fraction of symptomatic cases that are hospitalized) x (transmission rate)    

 x (mean time in hospital)        (24) 

Here, 𝑅0 = 𝛽[(1 − 𝜌)(
𝑞

𝛾1
) + 𝜌(

1

𝛾1+𝛼
+

𝛼

(𝛾1+𝛼)𝛾2
)]. 

 

2.1.3. Model 3: The Legrand et al. Model (Ebola) 

We analyze an Ebola transmission model (25) comprised of 15 parameters and 6 states (Figure 

3). This model subdivides the infectious population into three stages to account for transmission 

in three settings: community, hospital, and unsafe burial ceremonies. Individuals are classified as 

susceptible (S), exposed (E), infectious in the community (I), infectious in the hospital (H), 

infectious after death at funeral (F), or recovered/removed (R). Constant population size is 

assumed, so S + E + I + H + F + R = N. Susceptible individuals progress to the exposed class at 

rate (𝛽𝐼𝐼(𝑡) + 𝛽𝐻𝐻(𝑡) + 𝛽𝐹𝐹(𝑡))/𝑁 where βI, βH, and βF represent the transmission rates in the 

community, hospital, and at funerals, respectively. Exposed individuals become infectious at rate 

α. A proportion, 0 < θ < 1, of infectious individuals are hospitalized at rate γh. Of the proportion  

of infectious individuals that are not hospitalized (1-θ), a proportion, 0 < δ1 < 1, move to the 

funeral class at rate γd, and the rest (1- δ1) move to the recovered/removed class at rate γi. A 

proportion, 0 < δ2 < 1, of hospitalized individuals progress to funeral class at rate γ𝑑ℎ =
1

1

γ𝑑
−
1

γℎ

. 
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The remaining proportion (1- δ2) are recovered/removed at rate γ𝑖ℎ =
1

1

γ𝑖
−
1

γℎ

. δ1 and δ2 are 

calculated such that δ represents the case fatality ratio (Table 3). Individuals in the funeral class 

are removed at rate γf.  

 

 

Figure 3. Model 3: The Legrand et al. Model – Population is divided into 6 classes: susceptible 

(S), exposed (E), infectious in the community (I), infectious in the hospital (H), infectious after 

death at funeral (F), or recovered/removed (R). Class C represents the auxiliary variable C(t) and 

tracks the cumulative number of newly infectious individuals. Parameter(s) above arrows denote 

the rate that individuals move between classes. Parameter descriptions and values are found in 

Table 3. 

 

The transmission process is modeled by the following set of ordinary differential equations: 

 

{
 
 
 
 

 
 
 
 

𝑆̇(𝑡) =  −𝑆(𝑡)[𝛽𝐼𝐼(𝑡) + 𝛽𝐻𝐻(𝑡) + 𝛽𝐹𝐹(𝑡)]/𝑁   

𝐸̇(𝑡) = 𝑆(𝑡)[𝛽𝐼𝐼(𝑡) + 𝛽𝐻𝐻(𝑡) + 𝛽𝐹𝐹(𝑡)]/𝑁 −  𝛼𝐸(𝑡)

𝐼(̇𝑡) =  𝛼𝐸(𝑡) − [θ𝛾ℎ + 𝛿1(1 − θ)𝛾𝑑 + (1 − 𝛿1)(1 − θ)𝛾𝑖]𝐼(𝑡)

𝐻̇(𝑡) =  θ𝛾ℎ𝐼(𝑡) − [(1 − 𝛿2)𝛾𝑖ℎ + 𝛿2𝛾𝑑ℎ]𝐻(𝑡)

𝐹̇(𝑡) = 𝛿1(1 − θ)𝛾𝑑𝐼(𝑡) + 𝛿2𝛾𝑑ℎ𝐻(𝑡) − 𝛾𝑓𝐹(𝑡)

𝑅̇(𝑡) = (1 − 𝛿1)(1 − θ)𝛾𝑖𝐼(𝑡) + (1 − 𝛿2)𝛾𝑖ℎ𝐻(𝑡) + 𝛾𝑓𝐹(𝑡)

𝐶̇(𝑡) = 𝛼𝐸(𝑡)

 

 

Here, C(t) represents the cumulative number of all infectious individuals, and 𝐶̇(𝑡) is the 

incidence curve for infectious cases. 
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The basic reproductive number is the sum of the contributions from each of the infectious classes 

(I, H, F): R0 = R0
I + R0

H + R0
F, where:  

R0
I = (transmission rate in the community) x (mean time in infectious class) 

R0
H = (fraction of hospitalized cases) x (transmission rate in the hospital)    

 x (mean time in hospital class) 

R0
F = (fraction of cases that have traditional burial ceremonies) x (transmission rate at funerals)  

 x (mean time in funeral class) 

 

Here, 𝑅0 =
𝛽𝐼

∆
+

𝛾ℎ𝜃

𝛾𝑑ℎ𝛿2+𝛾𝑖ℎ(1−𝛿2)
𝛽𝐻

∆
+
𝛾𝑑𝛿1(1−𝜃)𝛽𝐹

𝛾𝑓∆
+

𝛾𝑑ℎ𝛾ℎ𝛿2𝜃𝛽𝐹

𝛾𝑓(𝛾𝑖ℎ(1−𝛿2)+𝛾𝑑ℎ𝛿2)∆
 ,  

where ∆= 𝛾ℎ𝜃 + 𝛾𝑑(1 − 𝜃)𝛿1 + 𝛾𝑖(1 − 𝜃)(1 − 𝛿1)     (25). 

 

2.1.4. Model 4: Zika Model with human and mosquito populations 

The last example is a compartmental model of Zika transmission dynamics that includes 16 

parameters and 9 states and incorporates transmission between two populations – humans and 

vectors (Figure 4). This model was designed to investigate the impact of both mosquito-borne 

and sexually transmitted (human-to-human) routes of infection for cases of Zika virus (26). In 

the human population, individuals are classified as susceptible (Sh), asymptomatically infected 

(Ah), exposed (Eh), symptomatically infectious (Ih1), convalescent (Ih2), or recovered (Rh). The 

mosquito, or vector, population is broken into susceptible (Sv), exposed (Ev), and infectious (Iv) 

classes. Note that the subscript ‘h’ is used for humans and ‘v’ is used for vectors. Constant 

population size is assumed in both populations, so Sh + Ah + Eh + Ih1 + Ih2 + Rh = Nh and Sv + Ev+ 

Iv =Nv. 
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Figure 4. Model 4: Zika Model with human and mosquito populations – The human population 

(subscript h) is divided into 5 classes: susceptible (Sh), asymptomatically infected (Ah), exposed 

(Eh), symptomatically infectious (Ih1), convalescent (Ih2), or recovered (Rh). Class C represents 

the auxiliary variable C(t) and tracks the cumulative number of newly infectious individuals. The 

mosquito, or vector, population (subscript v; outlined in dark blue) is divided into 3 classes: 

susceptible (Sv), exposed (Ev), and infectious (Iv) classes. Parameter(s) above arrows denote the 

rate individuals/vectors move between classes. Parameter descriptions and values are found in 

Table 4. 

 

A proportion 0 < θ < 1 of susceptible humans move to the exposed class at rate 𝑎𝑏(I𝑣(𝑡)/Nℎ) +

𝛽[(𝛼𝐸ℎ(𝑡) + Iℎ1(𝑡) + 𝜏Iℎ2(𝑡))/Nℎ)] where a is the mosquito biting rate, b is the transmission 

probability from an infectious mosquito to a susceptible human, β is the transmission rate 

between humans, α is the relative (human-to-human) transmissibility from exposed humans to 

susceptible, and τ is the relative transmissibility from convalescent humans compared to 

susceptible. Exposed individuals progress to symptomatically infectious at rate κh and then 

progress to the convalescent stage at rate γh1. Convalescent individuals recover at rate γh2. The 

remaining proportion of susceptible individuals (1 - θ) become asymptomatically infected at the 
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same rate, 𝑎𝑏(I𝑣(𝑡)/Nℎ) + 𝛽[(𝛼𝐸ℎ(𝑡) + Iℎ1(𝑡) + 𝜏Iℎ2(𝑡))/Nℎ]. Asymptomatic humans recover 

at rate γh and do not contribute to new infections in this model.  

 

Susceptible mosquitos move to the exposed class at rate 𝑎𝑐[(𝜌𝐸ℎ(𝑡) + Iℎ1(𝑡))/Nℎ], where c is 

the transmission probability from a symptomatically infectious human to a susceptible mosquito, 

and ρ is the relative human-to-mosquito transmission probability from exposed humans to 

symptomatically infected. Exposed mosquitos become infectious at rate κv. Mosquitos also leave 

the population at rate μv, where 1/μv is the mosquito lifespan.  

 

The transmission process, including both populations, is represented by the set of differential 

equations below: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑆̇ℎ(𝑡) = −𝑎𝑏(I𝑣(𝑡)/Nℎ)Sℎ(𝑡) − 𝛽[(𝛼𝐸ℎ(𝑡) + Iℎ1(𝑡) + 𝜏Iℎ2(𝑡))/Nℎ]Sℎ(𝑡)

𝐸̇ℎ(𝑡) = 𝜃[𝑎𝑏(I𝑣(𝑡)/Nℎ)Sℎ(𝑡) + 𝛽[(𝛼𝐸ℎ(𝑡) + Iℎ1(𝑡) + 𝜏Iℎ2(𝑡))/Nℎ]Sℎ(𝑡)] − 𝜅ℎ𝐸ℎ(𝑡)

𝐼ℎ̇1(𝑡) = 𝜅ℎ𝐸ℎ(𝑡) − 𝛾ℎ1Iℎ1(𝑡)

𝐼ℎ̇2(𝑡) = 𝛾ℎ1Iℎ1(𝑡) − 𝛾ℎ2Iℎ2(𝑡)

𝐴̇ℎ(𝑡) = (1 − 𝜃)[𝑎𝑏(I𝑣(𝑡)/Nℎ)Sℎ(𝑡) + 𝛽[(𝛼𝐸ℎ(𝑡) + Iℎ1(𝑡) + 𝜏Iℎ2(𝑡))/Nℎ]Sℎ(𝑡)] − 𝛾ℎ𝐴ℎ(𝑡)

𝑅̇ℎ(𝑡) = 𝛾ℎ2Iℎ2(𝑡) + 𝛾ℎ𝐴ℎ(𝑡)

𝑆̇𝑣(𝑡) = 𝜇𝑣𝑁𝑣 − 𝑎𝑐[(𝜌𝐸ℎ(𝑡) + Iℎ1(𝑡))/Nℎ] ∗ S𝑣(𝑡) − 𝜇𝑣S𝑣(𝑡)

𝐸̇𝑣(𝑡) = 𝑎𝑐[(𝜌𝐸ℎ(𝑡) + Iℎ1(𝑡))/Nℎ] ∗ S𝑣(𝑡) − (𝜅𝑣 + 𝜇𝑣)E𝑣(𝑡)

𝐼𝑣̇(𝑡) = 𝜅𝑣E𝑣(𝑡) − 𝜇𝑣I𝑣(𝑡)

𝐶̇(𝑡) = 𝜅ℎ𝐸ℎ(𝑡)

 

 

C(t) represents the cumulative number of symptomatically infectious human cases, and 𝐶̇(𝑡) 

contains the incidence curve for symptomatic human cases.  

 

For this example, we have two transmission processes to consider when calculating R0: sexual 

transmission (Rhh) and mosquito-borne (Rhv). The human population has three classes 

contributing to new infections: exposed, symptomatically infectious, and convalescent, so: 

𝑅ℎℎ =
𝛼𝜃𝛽

𝜅ℎ
+

𝜃𝛽

𝛾ℎ1
+
𝜏𝜃𝛽

𝛾ℎ2
  

 

The mosquito population only has one infectious class (Iv); the reproductive number is given by:  
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𝑅ℎ𝑣 = √[
𝑎2𝑏𝜌𝑐𝑚𝜃

𝜅ℎ𝜇𝑣
+
𝑎2𝑏𝑐𝑚𝜃

𝛾ℎ1𝜇𝑣
] ∗

𝜅𝑣

𝜅𝑣+𝜇𝑣
 . 

 

The overall basic reproductive number, considering both transmission routes, is given by the 

following equation (26): 

𝑅0 =
𝑅ℎℎ+√𝑅ℎℎ

2 +4𝑅ℎ𝑣
2

2
            

 

2.2 Simulated data 

For each model we simulate 200 epidemic datasets (directly from the corresponding set of 

ordinary differential equations) with Poisson error structure using the daily time series data of 

case incidence, or total number of new cases daily. Parameters for each model are set at values 

based on their corresponding application: the 1918 influenza pandemic in San Francisco (Model 

1) (23), 1918 pandemic influenza in Geneva (Model 2) (24), 1995 Ebola in Congo (Model 3) 

(25), and 2016 Zika in the Americas (Model 4) (26).  As explained below, the simulated data are 

generated using a bootstrap approach, and we then use these data to study parameter 

identifiability within a realistic parameter space for each model. Parameter descriptions and their 

corresponding values for each model are given in Tables 1-4. 

 

Table 1. Parameter descriptions and values for Model 1 

 

 

 

 

 

 

 

 

Parameter values are consistent with pandemic influenza in San Francisco, 1918 (23). 

 

Parameters Description Value 

N Population size 500000 

β Transmission rate (per day) 0.56 

1/κ Mean latent period (days) 1.9 

1/γ Mean infectious period (days) 4.1 

R0 Basic reproductive number 2.3 
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Table 2. Parameter descriptions and values for Model 2 

Parameter values are consistent with pandemic influenza in Geneva, 1918 (24). 

 

Table 3. Parameter descriptions and values for Model 3 

Parameters Description Value 

N Population size 200000 

βI Transmission rate in the community (per day) 0.084 

βH Transmission rate in the hospital (per day) 0.1134 

βF Transmission rate at traditional funerals (per day) 1.093 

1/α Incubation period (days) 7  

θ Proportion of cases hospitalized 0.80 

1/γh Time from symptom onset to hospitalization (days) 5  

1/γd Time from symptom onset to death (days) 9.6 

1/γi Time from symptom onset to the end of infectiousness for 

survivors (days) 

10 

δ Case fatality ratio 0.81 

Parameters Description Value 

N Population size 500000 

β Transmission rate (per day) 0.8 

1/κ Latent period (days) 1.9 

γ1 Recovery rate for asymptomatic individuals (1/days) 1/4.1 

γ2 Recovery rate for infectious individuals recovering without 

hospitalization (1/days) 

1/2.3 

α Rate of diagnosis for hospitalized individuals (days) 0.555 

ρ Proportion of latent individuals progressing to infectious 

class (vs. asymptomatic class) 

0.6 

q Reduction factor in transmissibility for asymptomatic cases 0.4 

R0 Basic reproductive number 1.89 
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δ1 
δ1 =

δ𝛾𝑖
δ𝛾𝑖 + (1 − δ)𝛾𝑑

 
0.80 

δ2 
δ2 =

δ𝛾𝑖ℎ
δ𝛾𝑖ℎ + (1 − δ)𝛾𝑑ℎ

 
0.80 

1/γih Infectious period for survivors (days) 5 

1/γdh Time from hospitalization to death (days) 4.6 

1/γf Time from death to funeral  (days) 2 

R0 Basic reproductive number 2.685 

Parameter values are consistent with the 1995 Ebola outbreak in the Democratic Republic of 

Congo (25). 

 

Table 4. Parameter descriptions and values for Model 4 

Parameters Description Value 

Nh Population size (humans) 200000 

Nv Population size (mosquitos) 1000000 

a Mosquito biting rate (number of bites per mosquito per day) 0.5 

b Probability of infection from an infectious mosquito to a 

susceptible human (per bite) 

0.4 

β Transmission rate from symptomatically infected humans to 

susceptible humans (per day) 

0.05 

α Relative human-to-human transmissibility of exposed 

humans to symptomatic humans 

0.6 

τ Relative human-to-human transmissibility of convalescent 

to symptomatic humans 

0.3 

ϴ Proportion of symptomatic infections 0.18 

1/κh Intrinsic incubation period in humans (days) 5 

1/γh1 Duration of acute phase (days) 5 

1/γh2 Duration of convalescent phase (days) 20 

1/γh Duration of asymptomatic infection (days)  

1/μv Mosquito lifespan (days) 14 
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c Transmission probability from a symptomatically infected 

human to a susceptible mosquito per bite 

0.5 

ρ Relative human-to-mosquito transmission probability of 

exposed humans to symptomatically infected humans 

0.1 

1/κv Extrinsic incubation period in mosquitos (days) 10 

R0 Basic reproductive number  1.486 

Parameter values are consistent with the 2016 Zika outbreak in Brazil, Colombia, and El 

Salvador (26). 

 

2.3. Parameter Estimation 

 To estimate parameter values, we fit the model to each simulated dataset using nonlinear least 

squares estimation. The lsqcurvefit function in Matlab (Mathworks, Inc.) is used to find the least 

squares best fit to the data. This process searches for the set of parameters 𝛩̂= (𝜃1, 𝜃2,…, 𝜃m) that 

minimizes the sum of squared differences between the simulated data and the model solution (3). 

The model solution 𝑓(𝑡𝑖, 𝛩̂) represents the best fit to the time series data.  

 

For this method, the initial parameter predictions affect the solution for the model as local 

minima occur. While we know the true parameter values (used to generate the data), this is 

unrealistic for a real-world modeling scenario. We vary the initial guesses of the parameter 

values to vary according to a uniform distribution in the range of +/- 0.1 around the true value. 

Another approach would consist of repeating the least squares fitting procedure several times 

with different initial parameter guesses and selecting the best model fit. 

 

For each model, the sets of parameters are denoted by Θi , where i represents the number of 

parameters being jointly estimated. We begin with estimating one model parameter, while fixing 

the rest, and then increase the number of parameters jointly estimated by one until all parameters 

of interest are included. Population size, N, is always fixed to the true value. Also, while R0 is not 

being directly estimated from the model, it is a composite parameter that can be calculated using 

individual parameter estimates. 
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For each model described above, we explore parameter identifiability for the following sets of 

parameters. Here, the symbol ^ is used to indicate an estimated parameter, while the absence of 

this symbol indicates that the parameter is set to its true value from the simulated data. 

 

 (i) Model 1: Simple SEIR 

Θi:  Θ1 = { 𝛽̂, 𝜅, 𝛾 } 

Θ2 = { 𝛽̂, 𝜅, 𝛾 } 

Θ3 = { 𝛽̂, 𝜅̂, 𝛾 } 

 

(ii) Model 2: SEIR with asymptomatic and hospitalized/diagnosed and reported 

Θi:  Θ1 = { 𝛽̂, 𝜅, 𝛾1, 𝛾2, 𝛼, 𝜌, 𝑞 } 

Θ2 = { 𝛽̂, 𝜅, 𝛾1̂, 𝛾2, 𝛼, 𝜌, 𝑞 }  

Θ3 = { 𝛽̂, 𝜅, 𝛾1̂, 𝛾2, 𝛼̂, 𝜌, 𝑞 }  

Θ4 = { 𝛽̂, 𝜅, 𝛾1̂, 𝛾2, 𝛼̂, 𝜌̂, 𝑞 }  

Θ5 = { 𝛽̂, 𝜅, 𝛾1̂, 𝛾2, 𝛼̂, 𝜌̂, 𝑞̂ } 

 

(iii) Model 3: The Legrand Model (Ebola) 

Θi: Θ1 = { 𝛽̂𝐼 , 𝛽𝐻, 𝛽𝐹 , 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ2 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ3 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽̂𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ4 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽̂𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ5 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽̂𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ6 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽̂𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

Θ7 = { 𝛽̂𝐼, 𝛽̂𝐻, 𝛽̂𝐹, 𝛼, 𝜃, 𝛾ℎ, 𝛾𝑑, 𝛾𝑖, 𝛿, 𝛾𝑖ℎ, 𝛾𝑑ℎ, 𝛾𝑓 } 

 

(iv) Model 4: Zika model with human and mosquito populations 

Θi: Θ1 = { 𝑎, 𝑏, 𝛽̂, 𝛼, 𝜏, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣 } 

Θ2 = { 𝑎, 𝑏, 𝛽̂, 𝛼, 𝜏, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣  } 

Θ3 = { 𝑎, 𝑏, 𝛽̂, 𝛼, 𝜏, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣  } 
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Θ4 = { 𝑎, 𝑏, 𝛽̂, 𝛼, 𝜏, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣  } 

Θ5 = { 𝑎, 𝑏, 𝛽̂, 𝛼̂, 𝜏, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣  } 

Θ6 = { 𝑎, 𝑏, 𝛽̂, 𝛼̂, 𝜏̂, 𝜃, 𝜅ℎ, 𝛾ℎ1, 𝛾ℎ2, 𝛾ℎ, 𝜇𝑣, 𝑐, 𝜌, 𝜅𝑣  }  

 

2.4. Bootstrapping Method 

We use the parametric bootstrap approach (3, 27, 28) for simulating the error structure around 

the deterministic model solution in order to evaluate parameter identifiability. This 

computational approach involves repeatedly sampling observations from the best-fit model 

solution. Here we use a Poisson error structure, which is the most popular distribution for 

modeling count data [3]. The step-by-step approach to quantify parameter uncertainty is as 

follows: 

1. Obtain the deterministic model solution (total daily incidence series) using nonlinear 

least-squares estimation (Section 2.3). 

2. Generate S replicate datasets, assuming Poisson error structure:  

Using the deterministic model solution 𝑓(𝑡𝑖, 𝛩̂), generate S (for our examples, S=200) 

replicate simulated datasets 𝑓𝑆
∗(𝑡𝑖, 𝛩̂). To incorporate Poisson error structure, we use the 

incidence curve, 𝐶̇(𝑡), as follows. For each time point t, we generate a new incidence 

value using a Poisson random variable with mean=𝐶̇(𝑡). This new set of data represents 

an incidence curve for the system, assuming the time series follows a Poisson distribution 

centered on the mean at time points ti. 

3. Re-estimate model parameters: For each simulated dataset, derive the best-fit estimates 

for the parameter set using least-squares fitting (Section 2.3). This results in S estimated 

parameter sets: 𝛩̂i where i=1, 2, …, S. 

4. Characterize empirical distributions and construct confidence intervals: Using the set of S 

parameter estimates, we can characterize the empirical distribution and construct 

confidence intervals for each estimated parameter. Also, for each set of estimated 

parameters, R0 is calculated to obtain a distribution of R0 values as well. 
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2.5. Parameter Identifiability 

When a model parameter is identifiable from available data, its confidence interval lies in a finite 

range of values (29, 30). Using the bootstrapping method outlined in Section 2.4, we obtain 95% 

confidence intervals from the distributions of each estimated parameter. A small confidence 

interval with a finite range of values indicates that the parameter can be precisely identified, 

while a wider range could be indicative of lack of identifiability. To assess the level of bias of 

the estimates, we calculate the mean squared error (MSE) for each parameter. MSE is calculated 

as: 𝑀𝑆𝐸 =
1

𝑆
∑ (θ − θ𝑖̂)

2𝑆
𝑖=1  where θ represents the true parameter value (in the simulated data), 

and 𝜃𝑖̂ represents the estimated value of the parameter for the ith bootstrap realization.  

 

When a parameter can be estimated with low MSE and narrow confidence, this suggests that the 

parameter is identifiable from the model. On the other hand, larger confidence intervals or larger 

MSE values may be suggestive of non-identifiability. 

 

3. Results 

3.1. Model 1: Simple SEIR 

Supplemental Figures S1-S3 illustrate the empirical distributions of the estimated parameters, 

where Figure S1 represents the results for 𝛩̂1 (β only), Figure S2 for 𝛩̂2 (β and γ), and Figure S3 

for 𝛩̂3 (β, γ, and κ). The figures also show the original simulated data and the 200 simulated 

datasets for each estimated parameter set.  

 

Estimating only β (Θ1), results in precise (small confidence interval range) and unbiased (small 

MSE) estimates of β. Similarly, estimating β and γ (Θ2) provides precise and unbiased estimates 

for both parameters. The precision of the estimates can be seen in Figure 5: the confidence 

intervals for the estimates (represented by red vertical lines) remain close to the true parameter 

value (blue horizontal dotted line). The MSE plot (Figure 6) shows an MSE value of < 10-7 for β 

in Θ1 and values of < 10-4 for both β and γ in Θ2. 
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Figure 5. Model 1 – 95% confidence intervals (vertical red lines) for the distributions of each 

estimated parameter obtained from the 200 realizations of the simulated datasets. Mean 

estimated parameter value is denoted by a red x, and the true parameter value is represented by 

the blue dashed horizontal line. Θi denotes the estimated parameter set, where i indicates the 

number of parameters being jointly estimated. 
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Figure 6. Model 1 – Mean squared error (MSE) of the distribution of parameter estimates (200 

realizations) for each estimated parameter set Θi, where i indicates the number of parameters 

being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale. 

 

Simultaneously estimating all 3 parameters, β, κ, and γ (Θ3), results in wider confidence intervals 

and larger MSE than the two previous subsets. The confidence intervals for β (0.516, 0.636) and 

γ (0.223, 0.277) have a narrow range and enclose the true values of the parameters. The MSE for 

these two are larger compared to the previous subsets, though all MSE values are < 10-2. The 

confidence interval for κ has a slightly larger range (0.440, 0.613), though this correlates with a 

small latent period difference of less than a day. Also, the MSE for κ is comparable to the other 

parameters. This indicates that all three parameters can be identified from daily incidence data of 

the epidemic curve with Poisson error structure. 

 

Moreover, R0 can be estimated precisely with unbiased results. Despite the larger confidence 

intervals for the other parameters estimated in Θ3 (compared to Θ1, Θ2), the range around R0 is 

still very precise: (2.286, 2.317). Similarly, MSE for R0 is < 10-4 for all runs. This indicates that 

the estimates of R0 are robust to variation or bias in the other parameter estimates – we will 

continue to explore this theme in the proceeding models. 
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3.2. Model 2: SEIR with asymptomatic and hospitalized/diagnosed and reported  

Estimating β only (Θ1) or β and γ1 (Θ2) provides precise estimates with small MSE (Figures 7 & 

8). For each Θi (where i > 2), each additional parameter being estimated corresponds with, on 

average, a larger confidence interval range and higher MSE for each estimated parameter. 

Essentially, for each parameter, the uncertainty grows with the number of other parameters being 

jointly estimated. Θ3, estimating β, γ1, and α, provides estimates of β and γ1 with relatively small 

confidence ranges (95% CI: (0.717, 0.851), (0.192, 0.286), respectively) and MSE values (MSE= 

0.0016, 7.15*10-4, respectively); however, estimates for α produce a wider range of values 

(0.386, 0.748), as well as an MSE value over 5 times higher than the other parameters 

(MSE=0.0089), though still < 10-2.  

 

 

Figure 7. Model 2 – 95% confidence intervals (vertical red lines) for the parameter estimate 

distributions obtained from the 200 realizations of the simulated datasets. Mean estimated 

parameter value is denoted by red x, and the true parameter value is represented by the blue 

dashed horizontal line. Θi denotes the estimated parameter set, where i indicates the number of 

parameters being jointly estimated. 
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Figure 8. Model 2 – Mean squared error (MSE) of the distribution of parameter estimates (200 

realizations) for each estimated parameter set Θi, where i indicates the number of parameters 

being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale. 

 

Results for Θ4 and Θ5 indicate that none of the parameters can be well-identified from case 

incidence data while simultaneously estimating > 3 parameters. For each, multiple parameters 

have MSE values > 10-2 (Figure 8), and the confidence intervals are comparatively wide. 

Additionally, the confidence intervals for ρ (Θ4: (0.602, 0.858); Θ5: (0.608, 0.763)) do not 

include the true value of 0.60. 

 

Looking at confidence intervals and MSE (Figures 7 & 8) for R0, we find again that R0 is 

identifiable across each Θi. The confidence intervals for R0 all have a range < 0.2, and the MSE 

values for each Θi are < 10-2. These R0 results are consistent with those in Model 1, despite the 

identifiability issues of other parameters seen here in Model 2. This is an important result, 

indicating that even when identifiability issues exist in other model parameters, we can still 

provide reliable estimates of R0 without having to know the true values of the other parameters. It 

also shows that while noise in the data may affect parameter estimation for some parameters, 

composite parameters, like R0, can still be accurately calculated from the same data. 

 



34 
 

3.3. Model 3: The Legrand Model (Ebola) 

Estimated parameter sets Θ1 and Θ2 (βI only, βI and βH respectively) result in unbiased (MSE < 

10-3), precise estimates of the parameters (Figures 9 & 10). However, when jointly estimating all 

three β values (Θ3), only βI is identifiable – the confidence interval is a finite range: (0.038, 

0.102) and the estimates are unbiased (MSE= 2.71*10-4). Parameters βH  (0, 0.614) and βF (0.097, 

1.341) both have wide confidence intervals indicating uncertainty suggestive of non-

identifiability. Estimating four parameters (Θ4), only βH is identifiable with a small range and 

bias; whereas, the remaining three parameter estimates have larger confidence intervals (Figure 

9).  

 

 

Figure 9. Model 3 – 95% confidence intervals (vertical red lines) for the parameter estimate 

distributions obtained from the 200 realizations of the simulated datasets. Mean estimated 

parameter value is denoted by red x, and the true parameter value is represented by the blue 

horizontal line. Θi denotes the estimated parameter set, where i indicates the number of 

parameters being jointly estimated. 
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Figure 10. Model 3 – Mean squared error (MSE) of the distribution of parameter estimates (200 

realizations) for each estimated parameter set Θi, where i indicates the number of parameters 

being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale. 

 

For Θi where i > 4, none of the parameters can be identified from the model/data. Each parameter 

(for runs Θ5 – Θ7) has either a large confidence range and/or comparatively large MSE. Some 

parameters have MSE values < 10-2 (Figure 10), but the wide range of uncertainty around these 

parameters is still indicative of non-identifiability (Figure 9). 

 

Remarkably, R0 can be precisely estimated with unbiased results for parameter sets Θ1 – Θ4 

(Figures 9 & 10). When simultaneously estimating five or more parameters, however, the 

associated uncertainty of all the parameters results in non-identifiability of R0. For Θ5, for 

example, R0 estimates vary widely in the range (0.683, 2.821) with an MSE of 0.467. As 

previously mentioned, R0 is a threshold parameter (epidemic threshold at R0=1), so given the 

confidence interval including the critical value 1, we would not have the ability to distinguish 

between the potential for epidemic spread versus no outbreak.  
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3.4. Model 4: Zika Model with human and mosquito populations 

For this complex model, we find again that when estimating only 1 or 2 parameters (Θ1, Θ2), the 

parameters can be recovered precisely with unbiased results (Figures 11 & 12). When jointly 

estimating more than two parameters (Θi: i > 2), non-identifiability issues arise. It can be seen 

that the confidence intervals and MSE for β and γh1 are very small, and thus they are identifiable. 

However, all of the confidence intervals and MSE values for each of the other parameters (Θi: i > 

2) are representative of non-identifiability. The parameter estimates have a large amount of 

uncertainty, represented by the large confidence intervals, and are also biased estimates of the 

true value: MSE > 10-2 for all.  

 

 

Figure 11. Model 4 – 95% confidence intervals (vertical red lines) for the parameter estimate 

distributions obtained from the 200 realizations of the simulated datasets. Mean estimated 

parameter value is denoted by red x, and the true parameter value is represented by the blue 

horizontal line. Θi denotes the estimated parameter set, where i indicates the number of 

parameters being jointly estimated. 
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Figure 12. Model 4 – Mean squared error (MSE) of the distribution of parameter estimates (200 

realizations) for each estimated parameter set Θi, where i indicates the number of parameters 

being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale. 

 

In terms of R0, we can see that this composite parameter of interest is identifiable for all Θi 

(Figures 11 & 12). Despite the large confidence intervals associated with some parameters (ex: 

Θ6 – γh2: (0.047, 0.573)), when estimating more than two parameters, R0 can still be estimated 

with low uncertainty: (Θ6 – R0: (1.480, 1.486)). The R0 estimates have little error, as MSE < 10-4 

for all Θi. This is consistent with the previous models in that R0 estimates are robust to the 

uncertainty and bias of the other estimated parameters.  

 

4. Discussion 

In this paper we have introduced a simple computational approach for assessing parameter 

identifiability in compartmental models comprised of systems of ordinary differential equations. 

We have demonstrated this approach through various examples of compartmental models of 

infectious disease transmission and control. Using simulated time series of the number of new 

infectious individuals, we analyzed the identifiability of model characterizing transmission and 

the natural history of the disease. This type of analysis based on simulated data provides a crucial 

step in infectious disease modeling, as inferences based on estimates of non-identifiable 
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parameters can lead to incorrect or ineffective public health decisions. Parameter identifiability 

and uncertainty analyses are essential for assessing the stability of the parameter estimates. 

Hence, it is important for researchers to be mindful that a good fit to the data does not imply that 

parameter estimates can be reliably used to evaluate hypotheses regarding transmission 

mechanisms. Moreover, quantifying the uncertainty surrounding parameter estimates is key 

when making inferences that guide public health policies or interventions. 

 

Our bootstrap-based approach is sufficiently general to assess identifiability for compartmental 

modeling applications. We have shown that this method works well for models of varying levels 

of complexity, ranging from a simple SEIR model with only a few parameters (Model 1) to a 

complex, dual-population compartmental model with a total of 16 parameters (Model 4). Other 

methods exist to conduct parameter identifiability analyses. Some methods, such as Taylor series 

methods (15, 16) and differential algebra-based methods (17, 18), require more mathematical 

analyses, which becomes increasingly complicated as model complexity increases. Other 

methods rely on constructing the profile likelihood for each of the estimated parameters to assess 

local structural identifiability (11, 14, 31, 32). In this method, one of the parameters (θi) is fixed 

across a range of realistic values, and the other parameters are refit to the data using the 

likelihood function of θi. Thus, identifiability of the parameters is determined by the shape of the 

resulting likelihood profile. Depending on the assumptions of the error structure in the data and 

as models become increasingly more complex, derivation of the likelihood profile and 

confidence intervals becomes increasingly more difficult.  

 

Overall, our analyses indicate that parameter identifiability issues are more likely to arise with 

more complex models (based on number of equations/states and parameters). For example, a set 

of 3 parameters (Θ3) can be estimated with low uncertainty and bias from a simple model, like 

Model 1; however, for more complex models (Model 3, Model 4), estimating only 3 parameters 

from a single curve of case incidence resulted in lack of identifiability for at least one of the 

parameters in the set (Θ3). Also, for Θi (recall: i represents number of parameters being jointly 

estimated), as i increases, the uncertainty surrounding estimated parameters tended to increase, 

on average, as well (Figure 7).  One strategy to resolve parameter identifiability issues consists 
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of restricting the number of parameters being jointly estimated while fixing other parameter 

values and conducting sensitivity analyses. 

 

Importantly, we found that R0 is a robust composite parameter, even in the presence of 

identifiability issues affecting individual parameters in the model. In Model 4, despite large 

confidence intervals and larger MSE for the estimated parameters, R0 estimates were contained 

in a finite confidence interval with little bias (Figures 11 & 12). For example, for parameter set 

Θ6, only two of the estimated parameters could be reliably identified from the data, yet R0 could 

be identified with little uncertainty or bias. These findings are in line with the identifiability 

results of R0 for a vector-borne disease model (similar to Model 4), even when other model 

parameters could not be properly estimated (14). R0 is often a parameter of interest, as R0 values 

have been related to the size or impact of an epidemic (1). Moreover, R0 estimates can be used to 

characterize initial transmission potential, assess the risk of an outbreak, and evaluate the impact 

of potential interventions, so it is beneficial to know we can reliably obtain R0 estimates, despite 

lack of identifiability in other parameters.  

 

It is important to emphasize that our methodology is helpful to uncover identifiability issues 

which could arise from 1) the lack of information in the data or 2) the structure of the model. We 

also note that our examples assess identifiability of parameters by relying on the entire curve of 

incidence data of a single epidemic. Future work could include identifiability analyses in the 

context of limited data using different sections of the trajectory of the outbreak. We also assume 

that only one model variable (state) is observed, so future analyses could incorporate more than 

one observed variable to potentially improve the identifiability of parameters without changing 

the model. For example, for Model 3 (Ebola), the incidence curves of new hospitalized cases and 

new deaths could provide additional information that better constrain parameter estimates, 

thereby improving parameter identifiability results.  

 

5. Conclusions 

For modeling studies, we recommend conducting comprehensive parameter identifiability 

analyses based on simulated data prior to attempting to fit the model to data. It is important to 

emphasize that lack of identifiability could be due to lack of information in the data or the 
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structure of the model. The analyses also help guide the set of parameters in the model that can 

be jointly estimated – identifiability issues may not arise until any given number of parameters 

are being simultaneously estimated. If the analysis indicates non-identifiability of certain 

parameters, may have to be assessed in sensitivity analyses (rather than estimated) to address the 

identifiability issue. 

In summary, the ability to make sound public health decisions regarding an infectious disease 

outbreak is crucial for the general health and safety of a population. Knowledge of whether a 

parameter is identifiable from a given model and data is invaluable, as estimates of non-

identifiable parameters should not be used to inform public health decisions. Further, parameter 

estimates should be presented with quantified uncertainty. The methodology presented in this 

paper adds to the essential toolkit for conducting model-based inferences. 
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Chapter 3. Comparative assessment of parameter estimation methods in the presence of 

overdispersion: a simulation study 

 

Roosa, K., Luo, R., & Chowell, G. (2019) Comparative assessment of parameter estimation 

methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and 

Engineering. doi: 10.3934/mbe.2019214 

 

1. Background 

Mathematical modeling offers a quantitative framework to investigate dynamics of infectious 

disease epidemics and guide public health decisions regarding the type and intensity of control 

interventions. The mathematical modeling toolkit includes phenomenological models that assess 

features in epidemic trajectories and mechanistic models with which researchers strive to 

evaluate the effects of interventions or the roles of different factors on transmission dynamics 

(e.g., mixing patterns or environmental factors). Dynamic models based on differential equations 

are often calibrated using infectious disease outbreak data that typically correspond to time series 

of new cases, where a “case” corresponds to an observable (reportable) event. Further, the 

dataset corresponds to only one realization of a stochastic process and, unfortunately, in the 

context of real outbreaks occurring in natural environments, generating more data realizations in 

a carefully controlled environment is not feasible.   

 

When calibrating models to data via some fitting process (also known as data assimilation), the 

solution of the dynamic model for a given set of parameter values and initial conditions is 

typically considered to be the “mean” solution, which is embedded into a counting process 

characterized by a statistical model (e.g. Poisson, Negative Binomial). For instance, a researcher 

fits an SEIR-type model (“mean” signal) to weekly series of newly reported cases of Ebola in 

West Africa assuming a Poisson error structure around the case series data. In this inference 

framework, the equidispersion property of the Poisson distribution (where the mean is equal to 

the variance) simplifies the inference process, limits the number of degrees of freedom, and 

indirectly reduces potential issues of parameter non-identifiability [1]. Moreover, in real-time 

analyses of evolving outbreaks, one has to link the observable with the unobservable by 

adjusting, for instance, for delays associated with incubation periods, time to diagnosis, or 
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reporting delays. 

 

Importantly, visual inspection of time series data could suggest an apparently larger variability 

than the mean signal linked to the model. One potential source of this apparent overdispersion 

effect could arise from systematic deviations of the model (“mean”) to the data due to model 

misspecification (e.g., the model incorrectly specifies the length of the incubation period or 

neglects another important mechanism involved in the dynamic process) [2]. Hence, researchers 

could fix this lack of model fit by identifying and incorporating other key process components in 

the model, thus resolving the apparent overdispersion issue. Alternatively, there is actual 

overdispersion, where the variability in the data is larger than expected. In this case, the 

researcher may reconsider the statistical model employed to model the error structure in the data 

by considering error structures that allow for the variance to be larger the mean (e.g., Negative 

Binomial) [1]. Hence, identifying the relevant sources of apparent overdispersion is critical in the 

modeling process as it could lead to poor descriptions of the data and predictive power and 

underestimated standard errors and confidence intervals [3].  

 

Fortunately, simulation studies can be utilized to evaluate the impact of various forms of 

misspecification when calibrating a model to data.  As explained above, such modeling 

challenges could be related to the model design or to the variability in the data. In a previous 

paper, we outline a simple computational bootstrap-based method for assessing parameter 

identifiability [4]. This method involves repeated sampling from the deterministic model solution 

to simulate multiple data sets from which the parameters are re-estimated, which allows us to 

detect parameter non-identifiability that could arise from model structure or the amount of 

information that can be extracted from the available data. This method was originally devised to 

quantify parameter uncertainty [4-6]. In this paper, we evaluate the effects of misspecification of 

the error structure (in the data) on bias and uncertainty associated with parameter estimates using 

simple dynamic transmission models.  Specifically, we focus on modeling varying levels of data 

overdispersion stemming from randomness in the counting process that shapes the time series 

data, rather than systematic misspecifications in the mean process linked to the dynamic model. 

We utilize the parametric bootstrap approach to assess parameter estimates and their uncertainty 

as a function of the level of random noise in the data, and we compare results using two common 
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parameter estimation methods: nonlinear least squares (LSQ) and maximum likelihood 

estimation with a Poisson error structure (Poisson-MLE). 

 

2. Methods 

2.1. Phenomenological models 

For each of the following model examples, daily time series incidence (total number of new 

cases) curves were simulated directly from the model equation. All simulations and analyses 

were performed in Matlab 2017 (Mathworks, Inc).  

 

Example 1: Generalized growth model (GGM) 

Models used to study the growth patterns of infectious disease outbreaks often assume 

exponential growth in the absence of control interventions (compartmental models, for example) 

[7, 8]; however, growth patterns are likely slower than exponential for some diseases depending 

on the mode of transmission and the population structure. For example, Ebola spreads only via 

close contact, so in a constrained population contact structure, sub-exponential growth patterns 

would be expected [9]. The generalized growth model (GGM) includes a “deceleration of 

growth” parameter, also referred to as a “scaling of growth” parameter, p (range: [0, 1]) that 

relaxes the assumption of exponential growth [10]. A value of p = 0 represents constant (linear) 

growth, while a value of p = 1 indicates exponential growth. If 0 < p < 1, the growth pattern is 

characterized as sub-exponential or polynomial. 

The GGM is as follows:  

𝑑𝐶(𝑡)

𝑑𝑡
= 𝐶̇(𝑡) = 𝑟𝐶(𝑡)𝑝, 

 

where C(t) describes the cumulative number of cases at time t, 𝐶̇(𝑡) is the incidence curve, r is 

the growth rate parameter (r > 0), and p is the deceleration of growth parameter [10].  

 

Allowing for a range of growth scaling in the model allows for applications to outbreak data for 

various different diseases. For example, the GGM has been applied to forecast outbreaks of a 

range of diseases, including foot and mouth disease [11], Zika [12], pandemic influenza [13], 

HIV/AIDS [14], and Ebola [15, 16]. For the example presented here, we assume a growth rate r 

= 0.4 and a deceleration of growth rate p = 0.9 (Table 1) for the simulated data. Similar values 
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have been used to characterize pandemic influenza. Additional examples analyzing other 

parameter set values are provided in the supplemental material. 

 

 

Table 1. Generalized growth model 

 

 

 

 

 

 

Example 2: Generalized logistic growth model (GLM) 

While the GGM can model early epidemic growth, the function is strictly increasing, and thus 

cannot be used to fit entire epidemic curves (as it is assumed epidemic growth will slow at some 

point in time). The generalized logistic growth model (GLM) is an extension of the GGM that 

includes a parameter K that classifies the carrying capacity or final size of the epidemic. The 

GLM is as follows:  

𝐶̇(𝑡) = 𝑟𝐶(𝑡)𝑝(1 −
𝐶(𝑡)

𝐾
), 

 

where C(t) describes the cumulative number of incident cases at time t, and 𝐶̇(𝑡) is the incidence 

curve [10]. Again, r is the intrinsic growth rate, p is the deceleration of growth parameter, and K 

is the final epidemic size. For the GLM, we use the same r and p values from Example 1 and set 

the final epidemic size K = 10,000 (Table 2).  

 

Table 2. Generalized logistic growth model 

 

 

 

 

 

 

Parameters Description Value Bounds 

r Rate of change (growth rate) 0.4 [0, 10] 

p Deceleration constant (0≤p≤1) 0.9 [0, 1] 

Parameters Description Value Bounds 

r Rate of change (growth rate) 0.4 [0, 10] 

p Deceleration constant (0≤p≤1) 0.9 [0, 1] 

K Final epidemic size/ carrying capacity 10000 [0, 1000000] 
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2.2. Data error structure 

The Poisson distribution is a commonly assumed error structure for count data, as it has equality 

of the mean and variance [1, 3]. Empirically, data often represent overdispersion, where the 

observed variance is higher than the assumed model variance, which may be explained by model 

misspecification or missing crucial information about the disease [17]. If the mechanism 

producing the overdispersion is known, it could be remedied by revising the model; however, 

when it is unknown, it is typically assumed that the variance in the data exceeds the mean (by 

some scaling factor) [1, 6]. Relative to the Poisson distribution, the negative binomial 

distribution requires an additional parameter to model count data with varying levels of 

overdispersion. In the case of equidispersion (variance equal to the mean) the Poisson 

distribution is a special case of the negative binomial distribution. 

 

For the simple phenomenological models employed here, the data are realizations of random 

counts 𝑦𝑡𝑖 = 𝑦𝑡1 , 𝑦𝑡2 , … , 𝑦𝑡𝑛 (i = 1, 2, …, n) following the defined distribution, where 𝑡𝑖 are time 

points and n is the number of observations [6]. We model the error using the negative binomial 

distribution with E(Y) = μ and 𝑣𝑎𝑟(𝑌) = 𝜎2. Let d =  𝜎2/μ represent the variance-to-mean ratio. 

Thus d = 1 yields the Poisson distribution, and d > 1 represents cases of overdispersion, for which 

the negative binomial distribution is a common choice [1]. It should be noted that d < 1 

represents underdispersion, though this is rarely seen in empirical data [2]. Here, we consider 

data simulated under the following values: d = [1, 2, 20, 40, 60, 80, 100], which represent 

different levels of overdispersion.  

 

2.3. Simulated data 

We utilize a Monte Carlo simulation to quantify the uncertainty of parameter estimates. This 

approach is an iterative process that involves simulating random error around the data in each 

iteration to generate a sample of data sets from which to estimate parameters [18]. The estimated 

parameters from all iterations simulate the sampling distributions from which we construct the 

confidence intervals of parameters. This method is similar to the parametric bootstrapping 

approach (derived from the general bootstrap method [6]), which first fits the model of interest to 

the available time-series data to obtain the best-fit estimate of the parameters; however, here we 

are simulating the data directly from the model, so the ’best-fit estimate’ to the simulated data is 
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essentially the model with the given parameter values (Θtrue). This way we know the true 

parameter values of the data and can assess the performance of different parameter estimation 

approaches considering different error structures. 

 

We generate time series data directly from the model equation, setting parameters to values of 

interest (Tables 1 and 2); this yields the data yt with solution 𝑓(t, Θ𝑡𝑟𝑢𝑒) which is used to 

generate M = 500 simulated data sets for each variance-to-mean ratio. Assuming Poisson error 

structure, each new observation is sampled from a Poisson distribution with mean = 

𝑓(t, Θ𝑡𝑟𝑢𝑒). which is the incidence curve, at each time point t. This results in 500 estimated 

parameter sets 𝛩̂𝑖, where i = 1, 2, …, M. 

 

To analyze scenarios of data overdispersion, or of variance greater than Poisson mean, we utilize 

the negative binomial distribution with variance-to-mean ratios (d) of 2, 20, 40, 60, 80, and 100. 

To simulate negative binomial noise, the variance at each time point t is given by multiplying 

𝑓(t, Θ𝑡𝑟𝑢𝑒), the mean, by the specified variance-to-mean ratio. The above steps (1-4) are repeated 

for each value of d, assuming a negative binomial error structure, in place of Poisson. Thus, we 

obtain empirical distributions for each estimated parameter at each of the seven variance-to-mean 

ratios, where d = 1 indicates Poisson noise. 

 

2.3. Parameter Estimation 

For each example, we run the bootstrapping analyses using the two general estimation methods. 

For both estimation methods, one can use numerical optimization methods available in Matlab or 

R (R Core Team). The methods are as follows: 

 

Method 1: Nonlinear least squares (LSQ) 

Least squares estimation yields the best fit solution to the time series data by searching for the 

parameter set 𝛩̂= (𝜃1, 𝜃2,…, 𝜃m) that minimizes the sum of squared deviations between the data 

𝑦𝑡 and the corresponding model solution 𝑓(𝑡, 𝛩) [6]. That is,  

 

𝛩̂ = 𝑎𝑟𝑔𝑚𝑖𝑛∑ (𝑓(𝑡; 𝛩) − 𝑦𝑡)
2𝑛

𝑡=1 . 
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For the presented examples, 𝑓(𝑡, 𝛩) = 𝐶′(𝑡|𝛩) is the function of the incidence rate at time t that 

depends on the set of parameters Θ. For the GGM (Example 1), Θ = (r, p). For the GLM 

(Example 2), Θ = (r, p, K). Then, 𝛩̂ is the parameter set that yields the smallest differences 

between the data and model. To run nonlinear least squares estimation (LSQ), we utilize the 

fmincon function in Matlab 2017, which finds the minimum of a constrained nonlinear 

multivariable function, with the ‘interior-point’ algorithm (default). Further, we restrict the 

bounds for the parameters (Tables 1 & 2).  

 

This parameter estimation method gives the same weight to all of the data points. LSQ also does 

not require a specific distributional assumption for yt, except for the first moment 𝐸[𝑦𝑡] =

𝑓(𝑡𝑖; 𝛩); meaning, the mean at time t is equivalent to the count (e.g., number of cases) at time t 

[19]. LSQ fitting yields asymptotically unbiased point estimates regardless of any 

misspecification of the variance-covariance error structure. It is of interest to study the impact of 

data overdispersion on LSQ parameter estimates. 

 

Method 2: Poisson-MLE 

The goal of maximum likelihood estimation (MLE) is to derive parameter estimates given a 

model that dictates the dynamical process and data with variability assumed to follow a specific 

probability distribution. Consider the probability density function (PDF) that specifies the 

probability of observing data 𝑦𝑡 given the parameter set Θ, or 𝑓(𝑦𝑡|𝛩); given a set of parameter 

values, the PDF can show which data are more probable, or more likely [19]. MLE aims to 

determine the values of the parameter set that maximizes the likelihood function, where the 

likelihood function is defined as 𝐿(𝛩|𝑦𝑡) =  𝑓(𝑦𝑡|𝛩) [19, 20]. The resulting parameter set is 

called the MLE estimate, the most likely to have generated the observed data. Specifically, the 

MLE estimate is obtained by maximizing the corresponding log-likelihood function. For count 

data with variability characterized by the Poisson distribution, we utilize Poisson-MLE, where 

the log-likelihood function is given by: 

 

𝐿(𝛩|𝑦𝑡𝑖) =∑[𝑦𝑡𝑖  𝑙𝑜𝑔(𝑓(𝑡𝑖; 𝛩)) − 𝑓(𝑡𝑖; 𝛩)]

𝑛

𝑖=1
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and the Poisson-MLE estimate is expressed as 

𝛩̂ = 𝑎𝑟𝑔𝑚𝑎𝑥∑ [𝑦𝑡𝑖  𝑙𝑜𝑔(𝑓(𝑡𝑖; 𝛩)) − 𝑓(𝑡𝑖; 𝛩)]
𝑛
𝑖=1 . 

 

We again utilize the fmincon function with the same parameter bounds as defined for LSQ 

(Tables 1 & 2). It is of interest to compare the performance of Poisson-MLE and LSQ with 

simulation in the context of increasing levels of variability in the data. 

 

We utilize Poisson-MLE and LSQ to estimate the parameters for each simulated data set, 

resulting in 500 estimated parameter sets 𝛩̂I where i = 1, 2, …, M (per level of overdispersion). 

We repeat the steps for each specified level of overdispersion, with variance-to-mean ratios 

given by d = 1 (Poisson), 2, 20, 40, 60 , 80, and 100. 

 

2.5. Performance 

To compare the parameter estimation methods within each model example, we assess the 

empirical distributions of the estimates obtained from Monte Carlo simulation. For each method, 

we calculate the 95% confidence intervals (CIs) for each parameter using the 2.5 and 97.5 

percentiles. The width of the confidence intervals is used to compare the uncertainty of 

parameter estimates at each level of overdispersion. As LSQ has wider confidence intervals in 

the majority of the simulations (with only one exception), the relative width differences between 

two confidence intervals is calculated as: % 𝑑𝑖𝑓𝑓 =
𝑤𝑖𝑑𝑡ℎ𝐿𝑆𝑄−𝑤𝑖𝑑𝑡ℎ𝑀𝐿𝐸

𝑤𝑖𝑑𝑡ℎ𝐿𝑆𝑄
× 100%. 

 

Further, we use the mean squared error (MSE) to quantify accuracy, or how close the estimated 

values are from the true parameter value across the entire distribution of parameter estimates. 

MSE is calculated as: 𝑀𝑆𝐸 =
1

𝑀
∑ (θ𝑡𝑟𝑢𝑒 − θ𝑖̂)

2𝑀
𝑖=1 , where θ𝑡𝑟𝑢𝑒 represents the true parameter 

value (in the simulated data) and 𝜃𝑖̂ represents the estimated parameter value for the ith bootstrap 

sample. 
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3. Results 

Example 1: Generalized growth model (GGM) 

For the GGM, we simultaneously estimate both model parameters, r and p, and compare results 

for the two estimation methods: nonlinear least squares (LSQ) and maximum likelihood 

estimation (MLE). We use an ascending phase length (amount of data fit to) of 45 days, and we 

will later assess how the amount of data used impacts the results. Based on both LSQ and 

Poisson-MLE, the level of overdispersion in the data had little effect on the mean estimated 

parameter values. This can be seen in Figure 1, as the mean estimates at each level are 

distributed randomly around and very closely to the true value line. For both methods (LSQ and 

Poisson-MLE), the amount of uncertainty surrounding the parameter estimates increases as the 

level of overdispersion increases – 95% confidence intervals become increasingly wider for 

higher variance-to-mean ratios (Figure 1).  

 

Figure 1. GGM parameter estimation results for increasing levels of variance assumed in the 

data. Mean estimates (circles) and 95% confidence intervals (dashed lines) are shown for the 

two estimation methods: nonlinear least squares (LSQ) and maximum likelihood estimation 

(MLE). 
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The percent differences of CI widths (for each d) are nearly equivalent for both r and p, so to 

avoid repetition, we will discuss percent difference in terms of r. Results indicate that even small 

levels of overdispersion can impact the uncertainty; for MLE, there is a 43% increase in CI width 

from d = 1 (r = 0.4 (0.392, 0.408)) to d = 2 (r = 0.4 (0.388, 0.411)), and for LSQ a 38% increase 

from d = 1 (r = 0.4 (0.389, 0.412)) to d = 2 (r = 0.4 (0.383, 0.415)) is observed. The largest 

increase in CI width is seen between d = 2 (see CIs in previous sentence) to d = 20 (MLE: r = 

0.399 (0.368, 0.436); LSQ: r = 0.402 (0.348, 0.458)), with a 201.33% increase for MLE and a 

246.54% increase for LSQ. After d = 20, the variance-to-mean ratio increases by 20. For each of 

these increases in variance-to-mean ratio, the % increase in CI width ranges from 13% - 47% for 

MLE and 11% - 37% for LSQ. 

 

Comparing the methods to each other, we can see that MLE consistently yields narrower 

confidence intervals, or less uncertainty, compared to LSQ. Across the levels of overdispersion, 

the relative difference between LSQ and MLE confidence interval widths ranges from 28-38.5% 

for r and 29.5-38.5% for p, showing that while both methods’ CIs are increasing, the relative 

difference between them is remaining stable. While these relative differences may seem high, 

actual CI width differences between the methods are small. With Poisson data, a difference in CI 

width of 0.0073 is observed for r and 0.0031 for p, comparing LSQ to MLE. For a large amount 

of overdispersion (d = 100), the CI difference is 0.0708 (29.27%) for r and 0.032 (31.19%) for p. 

In regards to application of the GGM specifically, these differences in widths do not yield 

practically meaningful differences in parameters estimated. 

 

In Figure 2, we see that the MSE increases for higher levels of noise in the data. At each level of 

overdispersion, MLE and LSQ have very small differences in MSE, but MLE consistently has 

lower MSE. The MSE for LSQ ranges from 2.05-2.38 times the MSE for MLE for r and 2.01-

2.30 times for p. Again, while MLE is relatively more accurate than LSQ, the practical 

differences are small. For example, the largest difference in MSE seen between the two methods 

was less than 0.002. 
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Figure 2. Mean squared error of the distribution of GGM parameter estimates (M=500) 

for increasing levels of error assumed (variance-to-mean ratio) is shown for both estimation 

methods: nonlinear least squares (LSQ) and maximum likelihood estimation (MLE). Results 

for r are shown in (a), and results for p are in (b). Note that MSE is in log-scale. 

 

3.2. Example 2: Generalized logistic growth model 

For the generalized logistic model (LGM), we jointly estimate all three parameters: r, p, and K. 

Again, we see that the uncertainty surrounding the parameters (width of the confidence intervals) 
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increases with the increasing variance-to-mean ratio (Figure 5). Again, the largest % difference 

observed was from σ2 = 2 to σ2 = 20, with increases in CI width of 232%, 226%, and 264% (r, p, 

and K, respectively) for MLE, and 235%, 235%, and 272% for LSQ. % increases were 

comparable for the two methods, with LSQ consistently yielding slightly wider CIs for r and p, 

and nearly equivalent CIs for K (Figure 5). 

 

For both LSQ and MLE, the mean parameter estimates remain around the true value line for r 

and K. The estimates for p begin to deviate from the true line in an upward trajectory, with the 

mean estimates from LSQ rising faster (so further from the true value) than MLE. These 

differences in bias, however, are again very small, with the largest difference in MSE for r and p 

being less than 0.0025. Further, for K estimates, MLE and LSQ yielded minimal differences in 

MSE, or bias (Figure 6).  

 

It is known that parameter estimation results depend on the amount of information in the data 

available to fit the model to. For this purpose, we also performed the analyses for four different 

variance-to-mean ratios (d = 1, 10, 50, 100) at increasing lengths of the ascending phase, ranging 

from 15 to 40 days (increments of 5 days). Across each level of overdispersion, the overall 

pattern was consistent: fitting to more data (longer ascending phase length) resulted in smaller 

confidence intervals, and thus, lower uncertainty of parameter estimates. While the widths of the 

confidence intervals vary significantly across the levels of overdispersion, this general pattern is 

clearly seen for both estimation methods (Figure 3).  
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Figure 3. GGM parameter estimates as amount of data available (length of ascending phase) 

increases. Variance-to-mean ratios of: 1, 10, 50, 100. Mean estimates are represented by the 

circles and 95% confidence intervals are represented with dashed lines. 

 

For the Poisson error structure (d = 1), Poisson-MLE should yield the ‘true’ uncertainty 

(confidence intervals) of estimates, as the method is based on the correct error structure; 

whereas, LSQ assumes constant variance. It is shown that, for the Poisson case, LSQ yields 

wider confidence intervals compared to MLE (CI width differences - LSQ - MLE - for r: 0.040, 

0.060, 0.038, 0.018, 0.014, 0.007 for ascending phase length, t = 15, 20, 25, 30, 35, and 40 days 

respectively), and the difference between the two methods decreases as the ascending phase 

increases, excluding from 15 to 20 days (Figure 3). The % difference in width between the two 

methods ranges from 12.43 - 31.07% (for all t), but as previously stated, the practical 

significance of these differences is small. 

 

Figure 3 also shows that higher levels of overdispersion require longer ascending phase lengths 

to reduce parameter uncertainty. For example, under Poisson assumptions, MLE yields a 

confidence interval length of about 0.15 for estimates of r using an ascending length of 20 days. 

When overdispersion is present, longer ascending phases are needed for MLE to yield 
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comparable confidence intervals. Comparing to the CI width of 0.15 for r for MLE with 20 days 

of data, a variance-to-mean ratio of 10 yields similar uncertainty (MLE CI width: 0.17) with 30 

days of data; and further, a variance-to-mean ratio of 50 yields similar uncertainty (MLE CI 

width: 0.17) with 40 days of data. This indicates that uncertainty of parameter estimates in the 

presence of overdispersion can be mitigated with the inclusion of more data points. This idea is 

seen in Figure 3, in that the confidence bounds quickly converge to the true value line as more 

data points are used, even for extreme cases of overdispersion (e.g., variance-to-mean ratio = 

100). 

 

Similarly, at each level of overdispersion, the MSE decreases for longer ascending phase lengths 

(Figure 4), indicating that more data yields higher accuracy of parameter estimates. For example, 

for data with Poisson error structure, each 5 day increase in ascending phase yielded between 

55% - 72% decrease, in descending order, for r estimated with MLE. Poisson-MLE results for p 

and LSQ results (r and p) are nearly equivalent and follow the same patterns. It can be seen that, 

for increasing variance-to-mean ratios, more data points are required before the mean estimate 

falls on the true value line (Figure 3). For example, looking at the plots of r estimates, the mean 

value falls on the line around 20 days, 25 days, 30 days, and 35 days for the increasing levels of 

overdispersion (σ2 = 1, 10, 50, 100), indicating that these would be the minimum amount of data 

from which the signal can be accurately detected. 
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Figure 4. MSE of GGM parameter estimates for each estimation method (LSQ, MLE) as 

amount of data available (length of ascending phase) increases. Variance-to-mean ratios of: 

1, 10, 50, 100. 

 

Example 2: GLM 

 

For the generalized logistic growth model (GLM), we jointly estimate all three parameters: r, p, 

and K. Again, we see that the uncertainty surrounding the parameters (width of the confidence 

intervals) increases with the increasing variance-to-mean ratio (Figure 5). Again, the largest % 

difference observed was from d = 2 to d = 20, with increases in CI width of 232%; 226%, and 

264% (r, p, and K, respectively) for MLE, and 235%, 235%, and 272% for LSQ. Percent 

increases were comparable for the two methods, with LSQ consistently yielding slightly wider 

CIs for r and p, and nearly equivalent CIs for K (Figure 5). 
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Figure 5. GLM parameter estimation results for increasing levels of variance assumed in the 

data. Mean estimates (circles) and 95% confidence intervals (dashed lines) are shown for the 

two estimation methods: nonlinear least squares (LSQ) and maximum likelihood estimation 

(MLE). 

 

Comparing the methods, we find similar results for the uncertainty of r and p as with the GGM. 

LSQ consistently yields CIs that are 17.1-33.8% wider for r and 18-33.9% wider for p. Again, 

these CI width differences are small for the parameters (<0.08 for all), but yield high relative 

differences due to the small values. For parameters of larger magnitude, like K, the relative 

difference between the methods is much smaller. The relative CI width difference comparing 

LSQ to MLE ranges from -3.7 - 6.8% across the levels of overdispersion. At d = 60, LSQ has a 

smaller CI width, hence the negative 3.7%. 

 

For both LSQ and MLE, the mean parameter estimates remain around the true value line for r 

and K. The estimates for p begin to deviate from the true line in an upward trajectory, with the 

mean estimates from LSQ rising faster (so further from the true value) than MLE. The MSE for 

LSQ ranges from 1.4-2.05 times and 1.46-2.25 times the MSE for MLE (r and p, respectively). 

These differences are again very small, with the largest difference in MSE for r and p being less 

than 0.0025. Further, for K estimates, MLE and LSQ yielded minimal differences in MSE, or 



60 
 

accuracy (Figure 6). For K, the MSE for LSQ ranged from 0.84-1.08 times the MSE for MLE. 

This indicates that the MSE is at times larger for LSQ and at times larger for MLE; for d = 1; 2; 

40; and 60, the MSE is smaller for LSQ, and for d = 20; 80; 100, the MSE is lower for MLE. 

This may indicate that LSQ can provide more accurate estimates than MLE for data with lower 

levels of overdispersion, but MLE provides more accurate estimates for highly overdispersed 

data. 

 

 

 

Figure 6. Mean squared error of the distribution of GLM parameter estimates (M=500) 

for increasing levels of error assumed (variance-to-mean ratio) is shown for both estimation 

methods: nonlinear least squares (LSQ) and maximum likelihood estimation (MLE). Results 

for r, p, and K are presented from left to right. 

 

4. Discussion and Conclusions 

The results of the uncertainty analyses show a clear pattern of increasing uncertainty (assessed 

by CI width) as the variance-to-mean ratio (d), or overdispersion, increases. The examples 

(Figures 1 & 5) show near linear growth for the upper and lower bounds of the estimates, 

increasing as overdispersion increases. Results for r and p for both GGM and GLM reveal that 

MLE consistently yields more accurate (lower MSE) and precise (smaller CI width) estimates 

compared to LSQ, though it should be noted that practical differences in estimates are small. For 
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the large parameter, K, differences between methods are even smaller. Across all levels of 

overdispersion, the relative difference in CI width is less than 6.9%. Further, neither of the 

methods consistently yields lower MSE for K, indicating comparable MSE, or accuracy, of the 

methods for large-scale parameters. 

 

For the generalized logistic model (Example 2), we used the entire incidence curve to fit the 

model, but as explained above, the GGM (Example 1) is strictly increasing and is not flexible 

enough to detect a peak or decline phase. To illustrate how the amount of data affects the results 

of parameter estimation for the GGM, we used an increasing number of days (ranging from 15-

40 days) for the ascending phase and conducted the analysis across the range for four difference 

levels of overdispersion. It is clearly seen (Figure 3) that using more data for the ascending phase 

decreases the uncertainty of parameter estimates, for all levels of overdispersion in the data. 

  

Not only do the confidence interval widths significantly decrease as the ascending phase 

increases, but the mean estimates trend toward the true value, resulting in smaller MSE values as 

well (Figure 3, 4). In terms of bias, our simulation study indicates that using too few data points 

in the presence of overdispersion may result in biased parameter estimates. Each 5 day increase 

in ascending phase length yielded an improvement in MSE. Further, both estimation methods are 

based on unbiased estimating equations, and thus there is essentially no difference in terms of 

bias between the two methods. Figure 4 shows minimal differences in MSE between the two 

methods for each ascending phase length within each variance-to-mean ratio.  

 

The general descending pattern of the percent improvement in MSE (for 5 day increases in 

ascending phase) is mostly consistent for each level of overdispersion, though at variance-to-

mean ratios of 50 and 100, this pattern is not seen until t = 25. This suggests that the signal still 

cannot be distinguished from the noise for ascending phases lower than 25 days, and thus an 

increase of 5 days does not provide much improvement in model fit. While significantly more 

data is required in the presence of overdispersion, the results suggest that even when 

overdispersion is suspected, uncertainty and bias of estimation results can be mitigated as more 

data become available. 
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These analyses were conducted using data simulated directly from the model corresponding to 

each example. This is a limitation in that we cannot generalize these results to scenarios with 

real-world data issues. Further, the results are specific to the parameter values specified, and thus 

cannot be generalized to all configurations of the models. Because of the difference in results 

between small parameters (r; p) and large parameters (K) in this study, future studies should look 

into this pattern (MLE slightly outperforms LSQ for small parameters but performs equivalently 

for large parameters). It would be of interest to investigate whether this holds true when 

including other parameters or models. Similar to the time-varying analysis illustrated here for the 

GGM, future studies could also conduct analyses on only the ascending phase of other models, 

for example the GLM, as we looked at the entire incidence curve. Further, infectious disease 

outbreak data, as time series, are naturally correlated, but the fitting performed in our analyses 

were based on marginal distributions in each time period, assuming independence. Future studies 

could include a covariance structure while fitting to outbreak data, which would require 

specification of the correlation structure specific to the disease application. 

 

Overall, the results demonstrate two simple estimation methods that work well and nearly 

equivalently in the presence of little to no overdispersion, but may have significant uncertainty as 

the level of overdispersion increases, depending on the amount of available data. It is also shown 

that more data is needed to provide precise confidence intervals in the presence of increasing 

levels of overdispersion, which implies that the utilization of more data can resolve potential 

identifiability issues when high levels of overdispersion is suspected. For both models shown, 

LSQ with Poisson-MLE provide little to no difference in results with regards to both parameter 

accuracy and precision.  
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Chapter 4. Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, 

China: February 13 – 23, 2020 

 

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J.M., Yan, P., & Chowell, G. 

(2020) Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: 

February 13 – 23, 2020. Journal of Clinical Medicine. https://doi.org/10.3390/jcm9020596 

 

1. Introduction 

The ongoing epidemic of a novel coronavirus (SARS-CoV-2) began in Hubei Province, China in 

December 2019 and continues to cause infections in multiple countries, threatening to become a 

pandemic. However, the bulk of the associated morbidity and mortality is still concentrated 

within the province of Hubei, China. As of February 13, 2020, a total of 59,907 cumulative cases 

including 1,368 deaths have been reported globally, with 48,206 cases reported in Hubei alone 

[1]. To control the epidemic, the Chinese government has enacted a range of social distancing 

strategies, such as city-wide lockdowns, screening measures at train stations and airports, active 

case finding, and isolation of suspected cases. However, the numbers of cases and deaths 

continue to accumulate every day, although transmission appears to be slowing down as a result 

of strict lockdowns as well as isolation and quarantine measures [1-3]. 

The epidemiological features of the respiratory illness COVID-19 are still unclear, and changes 

in reporting of cases and deaths have further complicated analysis of the epidemic, particularly in 

the epicenter. For instance, the definition of “confirmed” cases has fluctuated over time, and, as 

of February 12, 2020, has expanded to include clinically suspected cases that have not been 

laboratory tested. Therefore, the sudden increase in cases observed on February 13th, specifically 

in Hubei, is attributed to the inclusion of many historical cases that appear to have a sizable gap 

between onset and reporting. This has obscured the true underlying epidemic trajectory and 

complicates the inference of epidemiological parameters, such as R0, and the calibration of 

mechanistic transmission models.  

Phenomenological growth models that capture the empirical patterns of past epidemics can be 

used to investigate the trajectory of epidemics in real time and are especially useful when the 

https://doi.org/10.3390/jcm9020596
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amount of epidemiological data is limited [4-7]. Real-time short-term forecasts generated from 

such models can be useful to allocate the resources needed to bring the epidemic under control. 

In this paper, we employ dynamic models to generate 5-day and 10-day ahead forecasts of the 

cumulative reported cases in the provinces of Guangdong and Zhejiang, China. 

 

2. Methods 

2.1. Data 

Cumulative case counts by reporting date are reported by the National Health Commission of 

China and include 34 provinces, including, municipalities, autonomous regions, and special 

administrative regions [1]. Data were collected daily at 12 pm (GMT-5) from the initial date of 

reporting, January 22, 2020, to February 13, 2020. Here, we focus on forecasting the trajectory 

of the epidemic in the provinces of Guangdong and Zhejiang, which have exhibited high burden 

of COVID-19. We do not forecast the epidemic in Hubei, as the epidemic curve for this province 

has been distorted as a result of a jump in cases stemming from a change in case reporting on 

February 13th, 2020. 

2.2. Models 

We use three phenomenological models that have been previously applied to various infectious 

disease outbreaks, including other respiratory illnesses such as SARS and pandemic influenza [8, 

9], as well as to this current outbreak [10]. The generalized logistic growth model (GLM) and the 

Richards model extend the simple logistic growth model with an additional scaling parameter [7, 

9, 11]. We also apply a sub-epidemic model, which accommodates complex epidemic 

trajectories, such as multiple peaks and sustained or damped oscillations by assembling the 

contribution of inferred sub-epidemics [8]. A detailed description of each model and its 

corresponding parameters is included in Appendix 2.  

2.3. Short-term forecasts 

We calibrate each of the models to the daily case counts reported for Guangdong and Zhejiang 

provinces. While we fit to the “incidence” curve, we present results as cumulative case counts. 
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Reported data are available beginning January 22, 2020, so the calibration period includes daily 

data from January 22 – February 13, 2020. We estimate the best-fit solution for each model using 

nonlinear least squares fitting, a process that yields the set of model parameters that minimizes 

the sum of squared errors between the model and the data. The initial condition is set to the first 

data point. 

We use a parametric bootstrap approach to generate uncertainty bounds around the best-fit 

solution assuming a Poisson error structure; detailed descriptions of this method are provided in 

previous works [7, 12]. We refit the models to each of the M = 200 datasets generated by the 

bootstrap approach, resulting in M best-fit parameter sets that are used to construct the 95% 

confidence intervals for each parameter. Further, each model solution is used to generate m = 30 

additional simulations extended through a 10-day forecasting period. We construct the 95% 

prediction intervals for forecasts with these 6,000 (M × m) curves. 

 

3. Results 

We present results for 5- and 10-day forecasts generated on February 13, 2020 for the provinces 

of Guangdong and Zhejiang, China. Figures 1 and 2 contain the estimated ranges of cumulative 

case counts from 5- and 10-day forecasts for Guangdong and Zhejiang, respectively. 10-day 

ahead forecasts from each model with the calibration data are shown in Figures 3 – 5.  

3.1. Guangdong 

Our 5-day average forecasts for Guangdong are nearly equivalent across the three models, 

ranging from 1,290 – 1,304 cumulative reported cases (Figure 1). As of February 13, 2020, 

Guangdong has a total of 1,241 reported cases [1], so forecasts predict an additional 49 – 63 

cases in the next 5 days. Upper bounds (UB) of 95% prediction intervals for both the GLM and 

Richards model suggest that up to 1,392 cases could accumulate, while the sub-epidemic 

prediction intervals are substantially wider and include up to 1,699 cases; this translates to an 

additional 151 – 458 additional cases by February 18, 2020. 



68 
 

10-day forecasts suggest very little increase from the 5-day forecasts, especially for those 

predicted by the GLM and Richards model (Figure 1). Average 10-day forecasts predict between 

1,306 – 1,322 cumulative cases with upper bounds ranging from 1,410 – 1,748 cases. This 

suggests an additional 65 – 81 cases (UB: 169 – 507) by February 23, 2020.  

 

 

 

Figure 1. Forecasting results of 5- and 10-days ahead estimates of cumulative reported 

case counts for Guangdong, China generated on February 13, 2020. The mean estimate 

for each model is represented by the dots, while the 95% prediction interval is represented 

by the lines. 

 

3.2. Zhejiang 

Average 5-day forecasts from the GLM and Richards model are nearly equivalent for Zhejiang 

(1,181 and 1,186, respectively), while the sub-epidemic model predicts an average of 1,405 

cumulative cases (Figure 2). The sub-epidemic model also has significantly higher upper bounds, 

suggesting the possibility of up to 1,853 cases, while the GLM and Richards only predict up to 

1,276 and 1,279 respectively. As of February 13, 2020, Zhejiang has a total cumulative reported 
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case count of 1,145 [1]; therefore, the models are predicting an additional 36 – 260 cases in the 

next five days (UB: 131 – 708).  

Our 10-day forecasts from the GLM and Richards model show little increase in cases from 5 to 

10 days ahead; however, the sub-epidemic model forecasts increase significantly in this time 

period (Figure 2). 10-day forecasts across the models predict 1,189 – 1,499 cumulative cases, on 

average, with upper bounds ranging from 1,286 – 2,020 cases. This corresponds to an additional 

44 – 354 (UB: 141 – 875) cases in Zhejiang by February 23, 2020.  

 

 

Figure 2. Forecasting results of 5- and 10-days ahead estimates of cumulative reported 

case counts for Zhejiang, China generated on February 13, 2020. The mean estimate for 

each model is represented by the dots, while the 95% prediction interval is represented 

by the lines. 
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Figure 3. 10-day ahead GLM forecasts of cumulative reported COVID-19 cases in 

Guangdong and Zhejiang, China – generated on February 13, 2020. 

 

Figure 4. 10-day ahead Richards model forecasts of cumulative reported COVID-19 

cases in Guangdong and Zhejiang, China – generated on February 13, 2020. 
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Figure 5. 10-day ahead sub-epidemic model forecasts of cumulative reported COVID-19 

cases in Guangdong and Zhejiang, China – generated on February 13, 2020. 

 

4. Discussion 

In this report, we present timely short-term forecasts for reported cases of COVID-19 in 

Guangdong and Zhejiang, China. Based on data reported up to February 13, 2020, the models 

predict an additional 65 – 81 cases (UB: 169 – 507) in Guangdong and an additional 44 – 354 

(UB: 141 – 875) cases in Zhejiang by February 23, 2020. Overall, our forecasts suggest that the 

epidemic in these two provinces continue to slow down. 

Across all forecasts, the GLM and Richards model provide comparable mean estimates and 

prediction intervals, while the sub-epidemic model forecasts exhibit significantly greater 

uncertainty (Figures 1 & 2). While the mean estimates for Guangdong are nearly equivalent 

across all three models, the mean estimates generated by the sub-epidemic model are 

significantly higher for Zhejiang. Both the GLM and Richards models are predicting that the 

provinces are nearing the end of the epidemic (Figures 3 & 4). However, forecasts from the sub-

epidemic model, which accommodates more complex trajectories, suggest a longer epidemic 

wave, particularly in Zhejiang (Figure 5).   
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While we do not know the true underlying epidemic trajectory, it is reasonable to assume the 

sub-epidemic forecasts better capture the uncertainty for the next 10 days. The fluctuating case 

definition, particularly, may partially explain the slowing down observed in the data that result in 

the GLM and Richards model predicting extinction. The kink in the Zhejiang data suggests a 

case definition change around February 6, 2020, which would partially explain a decrease in the 

new daily cases reported.  The slowing in cases after February 6th is apparent in both 

Guangdong and Zhejiang; however, this pattern needs to be interpreted with caution. It is not 

entirely clear whether this is a true decline in transmission or an artificial decline due to the 

changing case definition. Therefore, the sub-epidemic model forecasts likely better capture both 

possibilities. Additionally, on February 14, 2020, China officially reported 1,716 cases among 

healthcare workers that had not been previously identified. The greater potential for transmission 

by healthcare workers has not been taken into account in this analysis. 

In conclusion, while our models predict the outbreaks in Guangdong and Zhejiang have nearly 

reached extinction, our forecasts need to be interpreted with caution given the unstable case 

definition and reporting patterns. Thus, we point readers to the sub-epidemic model predictions 

specifically, which suggest that another wave of cases may occur in the coming days. If the 

observed decline in case incidence is true, the predictions likely reflect the impact of the social 

distancing measures implemented by the Chinese government; however, in the best-case 

scenario, current data suggest that transmission in both provinces is slowing down.  
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Chapter 5. Dissertation summary 

 

Overall, the three studies presented in Chapters 2 – 4 provide a thorough guide for assessing and 

utilizing mathematical models for describing infectious disease outbreak trends. In the first 

study, we describe the process for analyzing identifiability of parameters of interest in disease 

transmission models. We specifically focus on mechanistic models that have been previously 

applied to infectious disease outbreak scenarios. We use a simple computational approach to 

assess which parameters can be jointly estimated from the model. We fit the models to data 

simulated directly from the model, meaning, if the model is structurally identifiable, the 

estimation process should be able to recover the parameters.  

 

For modeling studies, we recommend conducting comprehensive parameter identifiability 

analyses based on simulated data prior to attempting to fit the model to real outbreak data. These 

analyses help guide the set of parameters in the model that can be jointly estimated, as 

identifiability issues may not arise until any given number of parameters are being 

simultaneously estimated. If the analysis indicates non-identifiability of certain parameters, it 

may be necessary to include sensitivity analyses of these estimated parameters. The examples in 

Chapter 2 provide a guide for conducting these analyses and highlight the importance of 

assessing identifiability before calibrating a model to real outbreak data. 

 

In the second study, we expand this idea to simple phenomenological models, which are purely 

empirical and do not rely on disease-specific assumptions of epidemiological parameters. While 

we utilize a Poisson distribution for the error structure in the first study, we explore the idea of 

overdispersion and how to determine an appropriate error structure in the second study. We 

evaluate the effects of misspecification of the data’s error structure on bias and uncertainty 

associated with parameter estimates using simple dynamic models.  Specifically, we focus on 

modeling varying levels of data overdispersion stemming from randomness in the counting 

process that shapes the time series data, rather than systematic misspecifications in the mean 

process linked to the dynamic model. 
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We show that more data is needed to provide precise confidence intervals in the presence of 

increasing levels of overdispersion, which implies that the utilization of more data can resolve 

potential identifiability issues when high levels of overdispersion is suspected. For both models 

shown, nonlinear least squares and Poisson-MLE provide little to no difference in parameter 

estimation results with regards to both parameter accuracy and precision.  

 

In the third study, we utilize previously validated phenomenological models, including one 

analyzed in the second study, to generate short-term forecasts of the ongoing COVID-19 

pandemic. We show that simple phenomenological models are successful for fitting and 

forecasting real disease outbreak trends. During infectious disease epidemics, public health 

authorities rely on modeling results to inform intervention decisions and resource allocation. 

Therefore, we highlight the importance of interpreting modeling results with caution, particularly 

given the quality of data during the outbreak. We also highlight the sub-epidemic modeling 

framework, as it allows for dynamics that suggest another wave of cases may occur; whereas, 

single peak models cannot predict resurgences. 

In summary, the ability to make sound public health decisions regarding an infectious disease 

outbreak is crucial for the general health and safety of a population. Knowledge of whether a 

parameter is identifiable from a given model and data is invaluable, as estimates of non-

identifiable parameters should not be used to inform public health decisions. Theoretical aspects 

of mathematical models and parameter estimation methods must be considered before applying 

to real outbreaks, and the underlying assumptions of the model should be presented clearly. 

Further, results from modeling studies should be presented with quantified uncertainty and 

interpreted in terms of the assumptions and limitations of the model, methods, and data used. The 

methodology presented in this dissertation provides a thorough guide for conducting model-

based inferences. 
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Appendix 1. Supplemental figures for Chapter 2: Assessing parameter identifiability in 

compartmental dynamic models using a computational approach: application to infectious 

disease transmission models  

 

 

Supplemental Figure S1. Model 1 – Θ1 (estimating β only): The histograms display the 

empirical distributions of the parameter estimates using 200 bootstrap realizations, where the 

solid red horizontal line represents the 95% confidence interval for parameter estimates, and the 

dashed red vertical line indicates the true parameter value. Note, κ and γ are set to their true 

values in the data. The bottom left graph shows the data from the model (blue circles), and 200 

realizations of the epidemic curve assuming a Poisson error structure (light blue lines). The solid 

red line corresponds to the best-fit of the model to the data, and the dashed red lines correspond 

to the 95% confidence bands around the best fit. 
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Supplemental Figure S2. Model 1 – Θ2 (estimating β and γ): The histograms display the 

empirical distributions of the parameter estimates using 200 bootstrap realizations, where the 

solid red horizontal line represents the 95% confidence interval for parameter estimates, and the 

dashed red vertical line indicates the true parameter value. Note, κ is set to the true value from 

the data. The bottom left graph shows the data from the model (blue circles), and 200 realizations 

of the epidemic curve assuming a Poisson error structure (light blue lines). The solid red line 

corresponds to the best-fit of the model to the data, and the dashed red lines correspond to the 

95% confidence bands around the best fit. 
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Supplemental Figure S3. Model 1 – Θ3 (estimating β, κ, and γ): The histograms display the 

empirical distributions of the parameter estimates using 200 bootstrap realizations, where the 

solid red horizontal line represents the 95% confidence interval for parameter estimates, and the 

dashed red vertical line indicates the true parameter value. The bottom left graph shows the data 

from the model (blue circles), and 200 realizations of the epidemic curve assuming a Poisson 

error structure (light blue lines). The solid red line corresponds to the best-fit of the model to the 

data, and the dashed red lines correspond to the 95% confidence bands around the 
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Appendix 2. Supplemental material for Chapter 4: Short-term forecasts of the COVID-19 

epidemic in Guangdong and Zhejiang, China: February 13 – 23, 2020  

Generalized logistic growth model 

The generalized logistic growth model (GLM) extends the simple logistic growth model with a 

scaling of growth parameter p that accommodates sub-exponential growth patterns [1-4]. The 

GLM is defined by the differential equation:  

𝐶′(𝑡) = 𝑟𝐶(𝑡)𝑝(1 −
𝐶(𝑡)

𝐾
) 

where C(t) is the cumulative cases at time t, r is the early growth rate, p is the scaling of growth 

parameter, and K is the carrying capacity or final epidemic size. Values of p = 1 correspond with 

exponential growth, p = 0 represents constant growth, and 0 < p < 1 defines sub-exponential 

growth. 

Richards model 

The Richards model also extends the simple logistic growth model through a scaling parameter, 

a that measures the deviation from the symmetric simple logistic curve [5, 6, 7]. The Richards 

model is defined by the differential equation:  

𝑪′(𝒕) = 𝒓𝑪(𝒕) (𝟏 − (
𝑪(𝒕)

𝑲
)𝒂) 

where C(t) represents the cumulative case count at time t, r is the growth rate, K is the final 

epidemic size, and a is a scaling parameter. 

Sub-epidemic model 

While the GLM and Richards model only accommodate s-shaped dynamics, the sub-epidemic 

wave model supports complex epidemic trajectories. For this approach, we assume that the 

observed curve is the aggregate of multiple overlapping sub-epidemics, where each sub-epidemic 

is modeled using the GLM [8]. An epidemic wave composed of n overlapping sub-epidemics is 

modeled as follows:  
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𝑪𝒊′(𝒕) = 𝒓𝑨𝒊−𝟏(𝒕)𝑪𝒊(𝒕)
𝒑 (𝟏 −

𝑪𝒊(𝒕)

𝑲𝒊
) 

where Ci(t) is the cumulative number of infections in sub-epidemic i (i = 1, …, n), Ki is the size 

of the ith sub-epidemic, and the growth rate r and scaling parameter p are the same across sub-

epidemics [8]. Further, when n = 1, the model returns to the single-equation GLM as presented 

above. 

The timing of onset for each consecutive sub-epidemic is modeled with a regular structure, such 

that the (i+1)th sub-epidemic is triggered when the cumulative case count of sub-epidemic i, Ci(t), 

exceeds the threshold Cthr. The (i+1)th sub-epidemic begins before the ith sub-epidemic reaches 

extinction. The size of consecutive sub-epidemics (Ki) is modeled such that the size declines 

exponentially for each subsequent sub-epidemic, where  

𝑲𝒊 = 𝑲𝟎𝒆
−𝒒(𝒊−𝟏) 

and K0 is the size of the first sub-epidemic (K1 = K0), and q is the rate of decline, where q = 0 

corresponds to no decline. The total final epidemic size is given by:  

𝑲𝒕𝒐𝒕 =∑𝑲𝟎𝒆
−𝒒(𝒊−𝟏)

𝒏𝒕𝒐𝒕

𝒊=𝟏

=
𝑲𝟎(𝟏 − 𝒆

−𝒒𝒏𝒕𝒐𝒕)

𝟏 − 𝒆−𝒒
 

where ntot is the finite number of overlapping sub-epidemics, calculated as 

𝒏𝒕𝒐𝒕 = ⌊−
𝟏

𝒒
𝐥𝐧 (

𝑪𝒕𝒉𝒓
𝑲𝟎

) + 𝟏⌋ 
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