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ABSTRACT

Over the past decade, research about students’ proof capabilities has been a prevalent

topic in collegiate mathematics education. Also, while not as prevalent, there has been in-

terest in research about the teaching practices of the introduction to proof and other proof–

based collegiate mathematics courses. To investigate the link between these two topics,

this dissertation examined the assessment and teaching practices of Dr. Wyatt, a research

mathematician who participated in mathematics education research alongside mathemat-



ics educators from multiple universities, utilized as the instructor of a Transition–to–proof

course. An analysis of responses of his former students, observations of his instruction, the

examination of a variety of types of assessments used during the course, and an interview

at the end of the semester are used to determine the impact his participation in mathe-

matics education research had on his beliefs about teaching and the assessment of students’

mathematical understanding/knowledge. This dissertation utilizes an assessment framework

developed by Mejia-Ramos et al. (2012) (which focuses on students’ proof comprehension)

and a framework about teaching practices at the collegiate level developed by Speer et al.

(2010). The findings in this dissertation indicate that Dr. Wyatt uses several types of

assessment that focus on the foundational aspects of mathematical proof while providing

targeted feedback to students’ responses. Further, Dr. Wyatt’s teaching practices have been

enhanced through the use of a new assessment question type modeled on what he learned

from the mathematics education research project.

INDEX WORDS: Mathematical Proof, Teaching Practices, Assessment Practices,
Transition–to–proof.
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PART 1

INTRODUCTION

Mathematicians use proof for a variety of reasons. Reid & Knipping (2010) identify ver-

ification, explanation, exploration, and communication as some of the aspects of proof; fur-

ther, proof can be used for falsification and to illustrate new methods of deduction (Stylian-

ides et al., 2017). The 2015 Committee on the Undergraduate Program in Mathematics

(CUPM) Curriculum Guide to Majors in the Mathematical Sciences further solidifies the

importance of proof in mathematics education by suggesting students “should learn to read,

understand, analyze, and produce proofs” (Shumacher & Siegle, 2015) that increase in depth

throughout their studies. In this chapter we will discuss the importance of examining the

teaching practices used in a transition to proof course, state the research questions this study

hopes to answer, and discuss the theoretical perspectives used to analyze assessments and

teaching practices.

1.1 Statement of the problem

In recent decades proof has been a central topic in collegiate mathematics education

research. Indeed, empirical research in this area have focused on “how students at different

levels understand, typically misunderstand, proof” (Stylianides et al., 2017); further, Mejia-

Ramos, Lew, de la Torre, & Weber (2017) developed an assessment to measure a student’s

comprehension of proofs. However, there is “very little empirical research” (Speer, Smith III,

& Horvath, 2010) focusing on the general teaching practices used in collegiate mathematics.

For this study, teaching practices are defined, generally as “what teachers do and think

daily, in class and out, as they perform their teaching work” (Speer et al., 2010). I began

this study with the following in mind. First, instructional activities are the methods an

instructor uses to communicate information to students. Typically, these methods include
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lecture, cooperative group activities, class discussion, and review assignments (Speer et al.,

2010; Mason, 2002; Weber, 2004; Hanna & Barbeau, 2010). As noted by Weber (2004);

Mejia-Ramos et al. (2017), lecture in the style of definition-theorem-proof (DTP) is the most

common instructional activity used in upper level courses in collegiate mathematics courses.

Secondly, how instructors evaluate students’ work, both written and oral, is an essential

task both in and outside of the classroom; this can include answering questions during

the instructional activity, assisting students during their office hours, and examining formal

assessments from students (Mason, 2002; Weber, 2004; Mejia-Ramos, Fuller, Weber, Rhodes,

& Samkoff, 2012). Thirdly, and the final aspect considered in this study, self-reflections about

instructional activities and student interactions during lessons are explained because these

have a direct impact on future instructional activities (Speer et al., 2010; Le Fevre, 2014;

van Kan et al., 2013).

In addition to the research focus on students’ learning and teaching practices in collegiate

mathematics, there is a small number of research studies that focus on factors that inhibit

educational change. For example, Fullan (2007) notes that educational change always has

“a number of things at stake – changes in goals, skills, philosophy or beliefs, behavior, and

so forth;” in short, educational change is a multidimensional problem. One of the most

vital of these factors, teacher beliefs, can be very difficult to change. One reason for this,

in general, is that teachers have to “question the effectiveness of their previous and current

beliefs” (Le Fevre, 2014). This is particularly difficult with regards to mathematical proof

at the collegiate level because proof is “the heart of what most mathematicians do” (Cilli-

Turner, 2017) and is used for many purposes including those listed above. For example, Lew,

Fukawa-Connelly, Mejia-Ramos, & Weber (2016) suggest the DTP instructional paradigm

is so prevalent in advanced mathematics because it establishes the logical patterns used in

mathematics, or worse, the lecturer believes most students are incapable of learning the

material. For any mathematician to alter their teaching practices, their method either needs

to fit into their beliefs or their beliefs have to alter.

Further, instructional activities take time to develop. While preservice K–12 teachers
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have courses focusing specifically on pedagogy, this type of course is not an essential part, if

at all, of a mathematician’s training (Lew et al., 2016; Speer et al., 2010). Because it takes

time to develop pedagogical skills, the experiences over the course of a mathematician’s

career shape and develop their beliefs about certain pedagogical methods (Speer et al., 2010;

Weber, 2004). For example, the Moore Method was popularized and refined “during Moore’s

forty-nine year tenure” (Zitarelli, 2004) at the University of Texas.

Finally, the purpose of assessment within collegiate mathematics classes is examined.

Steen (2006) identified the state of assessment in collegiate mathematics.

Prodded by persistent questions, mathematicians have begun to think afresh

about content and pedagogy. In assessment however, mathematics still seems

firmly anchored in hoary traditions. More than most disciplines, mathematics is

defined by its problems and examinations, many with histories that are decades

or even centuries old. (p. 13)

He further noted that “most tests have a high proportion of template problems” (p. 14),

requiring students to be able to mimic responses. This mimicry allows for the possibility

that students can correctly generate the solution without understanding the concept. This

early analysis of assessment practices lead to several frameworks being developed to improve

assessment methods, specifically with regard to identifying how students comprehend proofs

(Mejia-Ramos et al., 2012; Pinto & Karsenty, 2018; Yang & Li, 2018; Herizal et al., 2019; F N

et al., 2019). Further, Miller et al. (2018) examined how professors assign points to proofs.

They identified that correctness is not the only criteria used when grading proofs and that

some generic proofs, though incomplete, are considered correct and appropriate as a lecture

format (Miller et al., 2018, p. 31–32). This study used the assessment framework developed

by Mejia-Ramos et al. (2012), which is discussed in Section 1.3.1. This framework expanded

upon the model developed by Lin & Yang (2007) which focused on reading comprehension

of proofs.
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1.1.1 Significance of the study

Keith Weber (2004) made the following conclusion in a case study, which will be dis-

cussed in detail in the next chapter, examining a mathematics professor’s lecture style.

Leading professors to improve their teaching of advanced mathematics courses

requires leading these professors to adjust their goals for the course and their

beliefs about mathematics education. In [the subject]’s case, his beliefs were

coherent and stable, and hence would likely not be changed easily. It follows

from basic constructivist principles that simply telling professors the beliefs that

mathematics educators would like them to have would most likely do little good.

Rather, perhaps the best way for mathematics educators to meaningfully change

the way that mathematics professors teach is for both groups to engage in a mu-

tual negotiation about goals for advanced mathematics courses and appropriate

beliefs about mathematics education.

This study was conducted following that belief, that is to say, the collaboration of math-

ematicians and mathematics educators is an important factor in improving mathematics

education at the collegiate level. The subject of this study, Dr. Wyatt, is a mathematics

professor at a research university in the southeastern United States. At the time of this

study, he was working with collegiate mathematics education specialists and other mathe-

maticians in a NSF supported project to develop and implement research based activities

and assessments designed to enhance undergraduate students’ understanding of mathemat-

ical proof, including the ability to comprehend, use, and write mathematical proof. One of

Dr. Wyatt’s roles as a participant in this project was to help design assessment items using

an assessment framework developed by Mejia-Ramos et al. (2012), which will be described

in Section 1.3.1. Further, Dr. Wyatt was expected to use various items from this assessment

throughout his transition to proof course. Therefore, this study focuses on examining the

teaching practices of a mathematics professor who is working with mathematics educators

and analyze how these practices have been affected by his involvement in this project.
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1.1.2 Purpose of the study

Schoenfeld (2000) notes “basic knowledge of how something works can, overtime, yield

tremendous practical dividends.” However, few studies have examined teaching practices at

the collegiate level; that is to say, there is little knowledge of how the act of teaching works

in university classrooms (Weber, 2004; Wagner et al., 2007; Speer & Wagner, 2009; Speer et

al., 2010; Johnson et al., 2017; Pinto & Karsenty, 2018). Dr. Wyatt expressed his desire to

incorporate new assessment methods into his transition to proof course that were developed

through the NSF supported project. The goal of the project is to improve the student proof

capabilities, that is improve students’ ability to comprehend, use and write mathematical

proofs. The project engages mathematicians in systematic reflection on the nature of student

proof capabilities. Specifically, mathematicians and mathematics educators collaborate to

devise and implement pedagogical changes in transitional undergraduate proof courses that

lead to measurable improvements in students’ proof capabilities. This opportunity allows an

examination of how Dr. Wyatt implements these changes and how they affect his teaching

practices as a whole, providing “basic knowledge” of how this process works.

1.2 Research questions

In this study, I examine the impact of Dr. Wyatt’s participation in the project focusing

on specific assessment method on individual instructional practices. In particular, this study

is designed to answer the following specific research questions:

1. In what ways does Dr. Wyatt use the ideas of a particular assessment method focusing

on students’ thinking with respect to mathematical proofs in his teaching of transition

to proof class?

2. How do Dr. Wyatt’s current instructional practices compare to his previous method(s)

used?

3. What impact does Dr. Wyatt’s participation in the project have on his core beliefs
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about teaching and the value of research in undergraduate mathematics education?

To answer these question, I used the assessment framework developed by Mejia-Ramos et al.

(2012) to examine the types of assessment methods used by the instructor in his transition to

proof class and the framework developed by Speer et al. (2010) to examine the instructional

practices used in this course.

1.3 Theoretical perspectives

One key factor about assessment is that it must be cyclical in nature (Shumacher &

Siegle, 2015). At the departmental level, this involves examining the learning strategies,

examining the assessment methods, and evaluating the assessment process itself; this ensures

that the program continually adapts to the needs at the time. While the CUPM discussed

this specifically with regard to assessing how the department runs as a whole, the principles

can be examined at the course level. In this section, I will discuss the assessment framework

and the teaching practices framework used in this study.

1.3.1 Assessment framework

National Council of Teachers of Mathematics (2000) notes that assessments “inform

and guide teachers” while they are developing instructional activities. Specifically, assess-

ments help teachers by providing insight into how well the student understands the content

of the assessment. Therefore, a well developed assessment will provide good information to

use while reflecting on instructional activities. The proof assessment framework developed

by Mejia-Ramos et al. (2012) is the framework used in the project in which Dr. Wyatt

participates. Therefore, this framework will be used in this study. This framework has iden-

tified seven types of cognitive difficulties students face while producing and understanding

mathematical proof. These seven types are broken into two groups: local and holistic.

The local group of proof comprehension. The local group of proof comprehension

examines the local properties of a proof; that is to say, the “understanding that can be
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discerned either by studying a specific statement in the proof or how that statement relates

to a small number of other statements within the proof” (Mejia-Ramos et al., 2012). The

local group of proof comprehension consists of three domains: the meaning of terms and

statements, the logical status of statements, and the justification of claims.

If the definition of the key terms in a proof, or any form of writing, are not understood,

then students will struggle with the other concepts within the proof. Similarly, while a

student may understand the key terms, they may not comprehend a statement within the

proof. Mejia-Ramos et al. (2012) describe five actions to assess students comprehension of

the key terms (first two actions) and the statements of a proof:

1. State the definition of the term

2. Identify examples that illustrate the term

3. State a statement in an equivalent way

4. Identify the implications of the statement

5. Identify examples that illustrate the statement (p. 8)

It is important to note that while understanding the key terms and statements of a proof is

needed to fully understand a proof, it is not (always) essential to understand the proof to

be able to perform these types of actions.

Understanding the logical status of statements within a proof refers to the aspects of

a proof. The first is the logical status of various assertions made within the proof; for

example, identifying an assertion as an axiom, postulate, or another theorem. The second is

recognizing the “logical relationship between the statement being proven and the assumptions

and conclusions of the proof” (Mejia-Ramos et al., 2012). Seldon & Seldon (1995) refer to

this as the proof framework or “a representation of the ‘top level’ logical structure of a proof,

which does not depend on the relevant mathematical concepts.” For example, a proof by

contradiction or a proof by induction have specific, recognizable structures. Two actions are
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given in Mejia-Ramos et al. (2012) to asses students’ understanding of the logical status of

statements:

1. Identify the purpose of a sentence in a proof framework

2. Identify the type of proof framework (p. 9)

The final local aspect of proof comprehension is the justification of claims. In a proof,

students need to make inferences about what statements and mathematical principles are

not explicitly stated in the body of a proof but are required for the given statement to be

deduced (Mejia-Ramos et al., 2012). Three actions are listed as assessments of a student’s

comprehension of justification in proof:

1. Make an implicit statement in a proof explicit

2. Identify the specific data supporting a claim

3. Identify the specific claims that are supported by a given statement. (p. 10)

What follows is a description of the second subgroup of cognitive difficulties students face

while producing and understanding mathematical proof.

The holistic group of proof comprehension. The holistic group of proof com-

prehension deals with proofs being “understood in terms of its main ideas, methods, and

application to other contexts” (Mejia-Ramos et al., 2012). In essence, this group can be

assessed by looking at four cognitive tasks: summarizing via high-level ideas, identifying

the modular structure within a proof, transferring the general ideas or methods to another

context, and using examples to illustrate the proof.

It is important to note that logical detail in a proof, while vital to mathematics, can

overwhelm students and hinder their ability to recognize the main ideas of the proof (Weber,

2004; Mejia-Ramos et al., 2012). These main ideas can refer to the proof as a whole, or to

an essential step that must be taken to complete the proof. However, understanding these
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ideas does not necessarily equate to understanding all of the logic steps within the proof.

Mejia-Ramos et al. (2012) identify two actions as appropriate means of assessing this domain:

1. Identify or provide a good summary of the proof

2. Identify a good summary of a key sub-proof within the proof (p. 11 – 12)

Proofs can often be broken down into individual components or modules. In an interview

one mathematician noted “a good proof often has a number of interesting lemmas and

corollaries and sub theorems... longer proofs can get pretty complicated” (as cited in Mejia-

Ramos et al., 2012). Therefore, when working with a longer proof, being able to break the

proof into separate modules is a good method for increasing comprehension. Three actions

are listed for assessing students’ comprehension of the separate modules within a proof:

1. Partition the proof into modules.

2. Identify the purpose of a module in a proof.

3. Identify the logical relation between separate modules in a proof. (p. 12 – 13)

Mathematicians examine proofs not only for the reasons mentioned above, but also to

understand key concepts or techniques that can be applied to other proofs Mejia-Ramos et

al. (2012). Weber (2004) uses proof on limits from analysis as an example, summarizing how

the instructor taught various techniques that could be applied to any proof about limits.

Three actions are listed to measure this domain:

1. Transferring the method.

2. Identifying the method.

3. Appreciate the scope of the method. (p. 13 – 14)

Finally, students’ understanding of a proof can be developed and assessed by examining

their use of examples. Mejia-Ramos et al. (2012) notes generating examples in this fashion

helps mathematicians check the logic within the proof; further, examples and diagrams often
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enhance students understanding of a proof. Two actions to assess how students use examples

to illustrate the proof are given by Mejia-Ramos et al. (2012):

1. Illustrate a sequence of inferences with a specific example.

2. Interpret a statement or its proof with a diagram. (p. 15)

Next, I will discuss the framework developed by Speer et al. (2010) to examine the teaching

practices of collegiate mathematics instructors based on examples used in K–12 teaching.

1.3.2 Framework for examining teaching practices.

In their discussion on the lack of empirical studies of teaching practices at the collegiate

level, Speer et al. (2010) describe teaching practices that have been “productive foci for

research on K–12 teaching.” While acknowledging the seven domains discussed below are

not sufficient to cover all aspects of collegiate level teaching, they identified these domains

to cover the core aspects of collegiate mathematics teaching.

Although there are seven domains identified by Speer et al. (2010), this section will

only discuss in detail five: allocating time within lessons; posing questions, using wait time,

and reacting to student responses; motivating specific content; representing mathematical

concepts and relationships; and evaluating and preparing for the next lesson (p. 107). We will

not examine the sequencing of content within the lessons or designing assessment problems

as the former is established by the syllabus and the latter was discussed previously.

Allocating time within lessons. The length of the course sessions are predeter-

mined, in this study each session will last one hour and fifteen minutes. The majority of

these decisions are made while planning the lesson, but are altered during the sessions to

meet the needs of students. Further,

time allocation decisions are crucial for teachers who use multiple instructional

activities because issues of sequence (e.g., which comes first?) and transition

(how do I move between them?) must be addressed. But even where lecture is
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the sole instructional activity, teachers must decide how long to spend on each

element of their presentation (e.g., on a definition, method, worked example,

and/or theorem) in order to know what is feasible in one class session (Speer et

al., 2010, p. 108)

Allocation of time within a lesson, while visible during classroom observations, cannot be

fully understood without examining the reasoning behind the allocation. In fact, Speer et

al. (2010) suggest interviewing the teacher to obtain data on this.

Motivating specific content. Speer et al. (2010) define motivating content as “pro-

viding a rationale for a sequence of topics to increase students’ engagement with that con-

tent.” Motivation can be established from examining the structure, both externally and

internally, or discussing the historical development of the content. Regardless, motivating

parts of content requires a time commitment and is directly related to how time is allocated

during a session.

Asking questions, using wait time, and reacting to students responses. Es-

sentially, questions are commonly used in most classrooms. Asking questions during sessions

requires the instructor to decide “what to ask, how long to wait for student responses, and

how to react to and evaluate those responses” (Speer et al., 2010). Through the exami-

nation of K–12 research on questioning, Speer et al. (2010) emphasized four components

(frequency, character and intent, wait time, and reaction/evaluation) of questioning that

should be considered by collegiate mathematics instructors.

First, the instructor needs to establish how often he or she ask questions; regardless of

the instructor, this decision is often spontaneous. Second, the character and goals of the

questions determine the value of the question. Speer et al. (2010) note that instructors ask

questions either to keep students engaged or to provide insight regarding overall understand-

ing and make decisions regarding time allocation. Third, wait time between asking a question

and reacting to or providing the answer to the question. Finally, how instructors react to
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the responses is a key factor in developing a classroom culture and ultimately determines

how students react to further questioning.

Representing mathematical concepts and relationships. The key aspects to

consider about representing mathematical content is that it “includes both what is displayed

and how it is displayed” (Speer et al., 2010). Both of these questions are deeply rooted in

the teachers beliefs. For example, the Activity, Classroom Discussion, and Exercise (ACE)

teaching cycle is a pedagogical approach used along with APOS theory (Arnon et al., 2014,

Chapter 5), a Constructivist theory developed from Piaget’s theory of learning. With this

approach, students first work on a cooperative assignment designed to help them develop

mental constructions without an emphasis on correct answers. Then, classroom discussions

“involves small group and instructor-led class discussion, as students work on paper and

pencil tasks that build on the lab activities completed in the Activities” portion of the

lesson, these discussions allow students to reflect on and solidify there mental constructions

from the previous part of the lesson. Finally, the homework exercises are designed to support

the construct developed during the session. This process would then repeat in later sessions.

The ACE teaching cycles’ answer to what mathematical content is displayed is based on the

genetic decomposition of the topic. A genetic decomposition is “hypothetical model that

describes the mental structures and mechanisms that a student might need to construct”

(Arnon et al., 2014) in order to truly understand a topic. The genetic decomposition is then

examined and the necessary mathematical content needed for a student to develop these

structures is displayed. The answer to how mathematical content is displayed in the ACE

teaching cycle can vary greatly, including computer or paper based activities.

While the ACE teaching cycle is more student driven, traditional DTP lectures are

teacher driven. However, the presentation of content can vary greatly. For example, the

subject of the study by Weber (2004) used three distinct strategies to present the content of

a real analysis course; this study will be discussed in more detail later. Further, Mason (2002)

discusses in various approaches to organizing a lecture and suggests methods to use various
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screens (overhead projectors, whiteboards, etc) to display content coherently. Regardless,

the method of presentation will be chosen by the instructor based on his/her beliefs.

Evaluating and preparing for the next lesson. Prior to a session, the instructor

makes decisions about various aspects of his/her lesson. It is equally important to reflect on

the previous lesson “evaluating their plans, particular actions and choices, and their students’

contributions” Speer et al. (2010) to make necessary adjustments to his/her next lesson and

course. This aspect of teaching practices is best examined through interviews.

1.3.3 Relating the assessment and teaching practices frameworks

As noted earlier, this study is focusing on the affect of Dr. Wyatt’s participation in

the NSF supported project has on his teaching practices. Therefore, a clear relationship

between the two frameworks must be identified. The assessment framework provides a

means to determine how students comprehend proofs; this information is then used to inform

instructional methods. However, how does the information obtained from the assessment

affect the teaching practices?

Figure 1.1 provides an overview of how these frameworks are related. First, the lo-

cal group of proof comprehension forms the basis for students’ proof capabilities, therefore

it determines the initial time allocation needed to learn various topics in, and methods of,

mathematical proofs. Second, the holistic group of proof comprehension identifies the central

goals for students’ proof capabilities. So, the holistic group of proof comprehension provides

techniques that can be used to motivate the content of an upper level mathematics course.

Thirdly, all aspects of the assessment framework provide a general guideline for question-

ing in the classroom; the assessment framework potentially helps the instructor determine

what to ask and how to ask specific questions to identify students’ comprehension. Finally,

when reflecting on past instructional methods and preparing for future course sessions, the

instructor must determine how they will represent the topics being covered. The assessment

framework provides a list of what students need to develop in order to have strong proof
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Figure (1.1) General overview of the connections between the teaching practices and assess-
ment frameworks.

capabilities. Thus, to determine the best ways to represent mathematical content to a class,

an instructor needs to focus on what methods will promote the various aspects of proof

comprehension discussed in the assessment framework.

1.4 Chapter summary

In this chapter we examined the knowledge base on teaching practices at the collegiate

level. Three key aspects of teacher practices, instructional activities, method of assessment,

and self-reflections, were identified and defined. Further, teacher beliefs and the time it takes

to generate instructional activities were noted as factors inhibiting change in collegiate math-

ematics education. The importance of mathematicians and mathematics educators working

together was identified as well as the opportunity currently present with Dr. Wyatt’s tran-

sition to proof course. Research questions relating assessment of proof comprehension and

teacher practices were established. Finally, the frameworks, created by Mejia-Ramos et al.

(2012) and Speer et al. (2010),used to generate questions and assess students’ comprehension



15

of proofs and evaluate teaching practices were briefly introduced.
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PART 2

LITERATURE REVIEW

In chapter 1, I discussed some of the key issues collegiate mathematics educators face

when teaching proofs and provided a framework for assessing students reading comprehension

of proofs and for analyzing teaching practices. In this chapter, I will discuss the literature

related to this study. First, the focus will be on the nature of proof, including how it is

used in mathematics education and how students comprehend proofs. Then literature about

assessment in mathematics education, including some factors limiting its adoption, will be

examined. Also, an example of how the assessment framework is used to create assessment

items will be described. Finally, literature discussing current teaching practices will be

examined.

2.1 Literature on the nature of proof

Smith et al. (2011) describe the main role of proof is to “demonstrate that our conclu-

sions [about a theory] are true” (p. 1), that is to say for verification purposes. While this is

not incorrect, it is not as in depth as is needed. In addition to the role of verification described

above, mathematical proofs can be used to explain a theory, provide the mathematical tools

needed to allow for the discovery of mathematical knowledge, promote the communication

of mathematical knowledge, and systemize or organize mathematical concepts (Lew et al.,

2016). In this section the role proof plays in mathematics education and what is meant by

“understanding a proof” will be examined.

2.1.1 Proof and mathematics education

There are several roles mathematical proof can have to mathematicians and mathemat-

ics students; however, according to Rocha (2019), there is a distinct difference between the
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two. She notes that the role of proof in school mathematics1 is not as diverse as their role in

mathematics in general, specifically that “in school mathematics the explanation function

[of mathematical proofs] is the most relevant” (Rocha, 2019, p. 10) aspect for students to

learn.

Rocha (2019) makes several points about factors on learning mathematical proofs. A

key factor on how students learn mathematical proof is based on the experience they have

with proofs, that is to say, how their teachers approach the instruction of the proofs. For

example, while the sum of of the first n odd numbers is n2 can be proved using the principle

of mathematical induction, it can also be shown using the diagram in Figure 2.12. Further,

she states the following:

[P]roofs do not have to be restricted to formal proofs, and this means that the

simplicity of the language used has to be present. Also, the modes of argumen-

tation need to be appropriate to the level of the students, and once again this

means some simplicity is required (Rocha, 2019, p. 9).

In other words, the language and methods used by teachers must meet the students at their

level of understanding.

A large portion of research on the role of proof in mathematics education has focused

“primarily with the logical aspects of proof and with the problems encountered in having

students follow deductive arguments” (Hanna & Barbeau, 2010) Further, Hanna & Barbeau

(2010) note that proof can be used to demonstrate new methods and introduce topics. They

examined two proofs found in secondary mathematics; the first is used in the development

of the quadratic formula and the second when discussing inscribed angles in a semi-circle.

Though not technically a theorem, the quadratic formula is a statement of a result.

Nevertheless, this formula does permit itself to being introduced not by statement of the

formula but through the question “how can we solve a quadratic equation?” (Hanna &

1This phrase is used to indicate mathematics at the primary and secondary levels of education.
2A larger image with this same format can be found in Rocha (2019), p. 3.
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Figure (2.1) A visual proof of the sum of the First n odd numbers is n2.

Barbeau, 2010, p. 91). Hanna & Barbeau (2010) describe a key benefit gained from this

method.

This may be the first time that secondary school students see this general tech-

nique of adding and then subtracting a term in an expression, a useful technique

that they will see frequently as they advance their study of mathematics. We note

here that completing the square does not stem logically from a previous state-

ment or axiom. Rather it is a topic specific move and an additional mathematical

tool for the students to use in other similar situations (p. 92).

Further, this method can generate a discussion about a specific aspect of algebra, finding

information from an expression, and how to perform the necessary algebraic manipulations
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to get an expression into a form where the information can be easily read.

The solutions of the quadratic equation ax2 + bx+ c = 0, where a 6= 0, are given by

x =
−b±

√
b2 − 4ac

2a
.

Method:

1. Examine cases where b = 0

2. Obtain ax2 + bx = a
(
x2 + b

a
x
)

3. Complete the square on x2 + b
a
x

Figure (2.2) A possible use of proof as an introduction of the quadratic formula (Hanna &
Barbeau, 2010).

Similarly, several proofs of the following proposition lead to interesting discussions about

geometry. A common approach makes use of concepts about isosceles triangles and properties

of a circle; however, this result can be extended from a semicircle to a circle more easily using

isosceles triangles (Hanna & Barbeau, 2010). This demonstrates how proofs can be used to

unify other arguments within mathematics.

Proposition. “Let A and B be opposite ends of the diameter of a circle and let C be a point

on its circumference. Then angle ACB is right” (Hanna & Barbeau, 2010, p. 93).

2.1.2 Proof comprehension

During the discussion on the local group of proof comprehension, the concept of a proof

framework (Seldon & Seldon, 1995) was defined as the relationship between statement and

the structure of a proof. Let’s examine that statement a little more, using the example (pro-

vided by Seldon & Seldon) of how to prove the lim
x→3

x2 = 9. After going through the entirety

of the proof, Seldon & Seldon provide the proof framework with blanks representing material

that changes depending on what limit you are proving. However, the list in Figure 2.3 is

comprised of the aspects of the proof that remain constant. They describe proof framework

as containing the exact same information as the formal statement; however, these two for-
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mats are linguistically different. Further, a single theorem can have many proof frameworks

associated with it depending on the specific proof technique being used, but regardless of

the proof framework, the logic can still be translated.

1. Let ε > 0.

2. Provide a positive δ in terms of ε.

3. Suppose the distance between some number x as it approaches the given value is less
than δ.

4. Perform the necessary algebraic manipulations.

5. Therefore, the conclusion is true

Figure (2.3) Constants that form the proof framework for limit proofs (Seldon & Seldon,
1995).

The ability to translate the logic between statements and the proof framework requires

that the information is read and comprehended. Lin & Yang (2007) described reading as

a process that requires students to identify and understand definitions and statements and

integrate them into the main theme of the section (p. 730). To be able to express this more

clearly, they developed the four levels of understanding that described reading comprehension

of geometric proof (RCGP). The first three levels compose a local understanding of the

proof, that is to say, comprehension of the surface, elements, and logic behind how elements

are connected. The fourth level, comprehension of encapsulization, is “characterized as

interiorizing a proposition and its proof as a whole, which implies that one can apply it,

as well as distinguish different premises related to other similar propositions” (Lin & Yang,

2007, p. 730) and is the foundation of a holistic understanding of the proof. Figure 2.4

relates the RCGP with the assessment framework used in this study.

The RCGP has two paths describing how understanding is developed at each level. Lin

& Yang (2007) describe one form as relational comprehension. This type of comprehension

arises as a lower level directly leads to the next level, that is to say, lower levels are related

to the next level directly, and students need to pass through each level accordingly (Lin
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Figure (2.4) The RCGP and assessment framework (Lin & Yang, 2007; Mejia-Ramos et al.,
2012).

& Yang, 2007). The second path describes instrumental comprehension which is signified

by students “skipping” the step of either recognizing or chaining of elements level(s) and

proceeding directly to the next level. In the case where students skip both the recognizing

or chaining of elements levels, Lin & Yang (2007) describe students following instrumental

comprehension as having an understanding of “the mathematical terms or concepts in these

proofs and what these proofs validated, and can apply these statements properly in other

similar situations” (p. 740) but can lack the ability to identify some key local aspects of the

proof.

How students’ understand mathematical proof is a topic of study at the secondary

level as well as the collegiate level. One such study, described in Herizal et al. (2019),

tested ten students’ mathematical proof comprehension ability from from a private secondary

school in Indonesia. To accomplish this task, they constructed four essay questions based

on trigonometric topics designed to assess how students justify claims and can transfer ideas

from one proof to another3.

Herizal et al. (2019) identified four key results, as shown in Figure 2.5. They concluded

3Aspects of the local domain and holistic domain of proof comprehension, respectively.
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“teachers have to teach about proving (mathematical proof comprehension and mathematics

proof construction)” (Herizal et al., 2019, p. 6) at the secondary level, especially when

discussing topics where proofs can be explored. This echos the recommendations of Hanna

& Barbeau (2010), and both provide examples (the quadratic formula and the sine/cosine

rules) of how mathematical proofs can be studied at the secondary level.

1. Students have no previous experience with questions of this level.

2. Students have difficulties identifying data that supported specific claims.

3. Students were able to apply the steps from one proof to a similar situation.

4. Students have difficulties beginning a proof.

Figure (2.5) A summary of students’ understanding of proof (Herizal et al., 2019)

Harel (1999) identifies three categories of students understanding of proof in relation to

geometry and linear algebra.

Category 1 Understanding parallels that of the Greek conception of math

Category 2 Understanding parallels 16-17th century conception of math

Category 3 Understanding the result of faulty instruction in primary and secondary schools

At the Category 1 level of understanding, students understand the roles axioms play in

mathematics. Category 1 can be further broken down into three subcategories: intuitive

axiomatic, structural, and axiomatizing. With an intuitive axiomatic understanding, axioms

must align with the student’s intuition for the student to accept the axiom as true; a struc-

tural understanding implies the student understands how various structures are consistent

across proofs. If the student has a structural understanding, then the student can progress

to axiomatizing, that is the student can “investigate the implications of varying a set of

axioms” (p. 603) or understand the axioms of a specific field of study.

Category 2 is identified by a focus on why the object being proved is true. Harel (1999)

provides the reasoning behind some students behaviors:
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We tend to associate misconception and missing conceptions only with mathe-

matically weak students. But in fact, all students, the weak and the able, in their

desire to understand and make sense of the mathematical concepts we intend to

teach them, encounter difficulty, and demonstrate as a result behaviors that in

many cases are difficult to explain (p. 606).

One of the behaviors encountered is the distrust associated with any form of proof by con-

tradiction and the reliance on proof being causal, that is a proof should adequately show

how the antecedent is the cause of the conclusion. Harel (1999) provides an explanation of

issues produced by the need for a proof to be causal by considering the case “A if and only

if B;” if a requirement of a proof is that must show some form of causality, then “A if and

only if B” inadvertently states that A is the cause of A, which is illogical.

Category 3 misconceptions are not the direct fault of the student’s conceptual limi-

tations, but the result of how they learned mathematics in their primary and secondary

education. Harel & Sowder (1998) describes Category 3 as being an “external conviction

proof scheme” and further subdivides this into three categories: ritual, authoritarian, and

symbolic. Harel & Sowder (1998) believe a key cause of Category 3 misconceptions is prema-

ture formalization of mathematics, that is, the emphasis on simply using “formulas to solve

problems” and the teacher and textbook being the only source of mathematical knowledge

breeds an environment where students learn that memorization and lack of creativity are

the keys to success in mathematics.

The ritual proof scheme is formed when there is an “over-emphasis in schools on proof

writing prior to and even in place of proof understanding, production, and appreciation”

(Harel & Sowder, 1998). This over-emphasis leads to students’ conception of proof being

focused around how proofs are presented; two indicators of this are false-proof verification

and uncertainty whether a justification can be considered a proof (Harel & Sowder, 1998).

False-proof verification means an incorrect proof is analyzed and determined to be correct;

in other words, the logic of a proof is not comprehended correctly because the form of the

proof is correct (Harel & Sowder, 1998). Similarly, if correct justification is presented in a
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way students do not consider to be a proof, Harel & Sowder (1998) note students may have

difficulties accepting the justification because it does not match their expectations of what

constitutes a proof.

According to Harel & Sowder (1998), an authoritarian proof scheme is the result of “the

fact that current mathematics curricula emphasize truth rather than the reason for truth”

(p. 247). An authoritarian proof scheme leads to students expecting proofs to be provided

because they “view mathematics [as] a collection of truths” (Harel & Sowder, 1998) and do

not recognize need for proof because an authority figure, a teacher or a textbook, explicitly

state conjectures as true. In short, students require affirmation from an external source when

working with mathematical topics.

Harel & Sowder (1998) describe symbolic reasoning as “thinking of symbols as though

they possess a life of their own without reference to their possible function or quantitative

reference” (p. 250). Symbolic reasoning is developed throughout primary and secondary

education; however, the symbolic proof scheme is identified by “approaching the solution

to a problem without first comprehending its meaning” (Harel & Sowder, 1998, p. 251).

However, Harel & Sowder (1998) note this definition of symbolic reasoning can be productive

and lead to mathematical discoveries.

2.1.3 What constitutes a proof?

Proof is essential to the practice of mathematics. Weber & Czocher (2019) noted some

disagreements about exactly what is acceptable as a proof. In this study, an internet survey

tasked mathematicians to evaluate five proofs for validity. The five proofs were arranged

into three categories: prototypical proofs, empirical proofs, and non-prototypical proofs. Pro-

totypical proofs are “arguments using standard mathematical notation” (p. 258); there were

two prototypical proofs. One empirical proof, that is a proof by observation, and two non–

prototypical (visual and computer generated proofs) were also provided in the survey. The

goal was to identify any disagreements (or consistencies) with the types of proofs mathe-

maticians deemed valid.
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One key disagreement occurred: there was not a consensus view on the validity of

the non–prototypical proofs4. Weber & Czocher (2019) note that this presents a problem

for people who conduct mathematics education research and believe that non–prototypical

proofs are “not controversial” (p. 262). They describe this disagreement as demonstrating

a pluralistic view of mathematical proofs. In short, there are many ways to define a correct

proof.

2.2 Literature on assessment in mathematics education

The CUMP Guidelines for Assessment of Student Learning (2006) defines assessment

as “the process of gathering and interpreting information about student learning” (p. 230).

Though this definition is simplistic in nature, Steen (2006) describes assessment in collegiate

mathematics education as “a minority culture beset by ignorance, prejudice, and the power

of a dominant discipline backed by centuries of tradition” (p. 18); Madison (2006) notes

that assessment was viewed skeptically, with “lack of enthusiasm and inevitably” (p. 3) as

key indicators. This section will begin by discussing some of the factors inhibiting growth in

assessment, then examining the purpose of assessment, and finally examining one assessment

created using the assessment framework discussed developed by Mejia-Ramos et al. (2012).

2.2.1 Tensions and tethers

According to Madison (2006), the arguments against assessment fall into two broad

categories: tensions and tethers. Tensions are actions or beliefs that favor easier models of

assessment at the cost of effectiveness. Tethers are practices that are bound in tradition that

prevents the creation of meaningful assessment (p. 3 – 4). Generally, to ease tensions, the

risk involved with developing assessment practices must be reduced or alleviated while the

values and beliefs of mathematicians have to be considered when addressing tethers.

The primary tension toward assessment involves practicality and effectiveness (Madison,

2006). Enrollment in Universities increased 14% between 2005 and 2015 to 20.0 million

4They agreed that the prototypical proofs were valid and the empirical proof was invalid.
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students (U.S. Department of Education, National Center for Educational Statistics, 2016);

since the majority of these students have to be assessed in at least one mathematics course,

it is much more practical to use multiple-choice style assessments that may not be the most

effective means of gathering understanding. I will discuss the effort to alleviate this tension

that Mejia-Ramos et al. (2017) have developed.

Another tension arises because of philosophical differences about validity. Madison

(2006) notes the following:

Mathematicians are confident of their disciplinary knowledge and generally agree

on the validity of research results. However, their research paradigm of reason-

ing logically from a set of axioms and prior research results is not the empirical

methodology of educational practice where assessment resides. This tension be-

tween ways of knowing in very different disciplines often generates disagreements

that prompt further evidence gathering and caution in drawing inferences from

assessment evidence (p. 6).

This tension is not one that can be easily overcome. Educational research often “fall far

short of mathematically rigorous standards” (Steen, 2006, p. 15) because it often is derived

from observational studies.

All tethers are founded in traditional practices in collegiate mathematics. One such

tradition is the DTP lecture style. Lectures often constrict the ability to perform meaningful

assessments, especially formative assessments Madison (2006). Lew et al. (2016) describe

one such constriction as pertaining to how students interpret the material being covered

in the lecture. When examining the main idea in a lecture proof, students will interpret

some of the arguments being used as support, for example algebraic arguments used when

proving the limit of a sequence, as the main idea behind the proof if this is the focus of the

“board proof” being constructed in class (p. 184). This disconnect between the instructor’s

intentions and the students’ interpretation of a lecture creates a situation where assessment

is naturally difficult because the goal of the lecture was not made explicit.
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2.2.2 The purpose of assessment

Good classroom assessment will simultaneously enhance instruction by monitoring its

effectiveness and audit learning by reliably identifying what students understand Ohlsen

(2007). Further, assessment can act as an extrinsic motivational tool for students, as a record

keeping device via grades (p. 8), and to troubleshoot and improve prerequisite developmental

mathematics courses Cavanaugh et al. (2006). Assessments are naturally subjective because

they measure a mental construct; however, a well designed and developed assessment is both

reliable and valid, that is, consistent in the results it provides and it measures what it is

designed to measure (Romagnano, 2001).

Assessment in proof–oriented courses are “comprised of proving task” (Miller et al.,

2018). In fact, Miller et al. (2018) reports that approximately 80% of assessments in real

analysis textbooks are proving tasks. This has an affect on what students deem important;

assessments “provide students with a clear indication” (p. 25) of what is essential to learn

in a mathematics courses. In other words, if assessment items are primarily focussed on

understanding and comprehending mathematical proof, then students will identify this as

the goal of the course. Section 2.2.3 describes how the framework developed by Mejia-Ramos

et al. (2012) is used to create an assessment that is focussed on students comprehension of

proofs.

In addition to recognizing how students identify the essential information for a course,

how instructors evaluate these assessments is important. Miller et al. (2018) note how some

mathematics professors will assign full credit to incomplete proofs, that is proofs without a

full justification. Due to this inconsistency in evaluating the correctness of a proof, students

may struggle with identifying what types of justifications constitute a proof. One method of

eliminating this confusion is to require students to complete revisions of proofs as discussed

in Pinto & Karsenty (2018). The subject of this study would grade students’ “term paper”

weekly; the students were required to revise their previous proofs while completing the next

submission.
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2.2.3 The development of a proof comprehension test

Table (2.1) Actions taken and purposes of each phase.

Phase Action Purpose

Generating open-
ended items

For each facet of our proof
comprehension assessment
model, we generated up to
four open-ended questions.

To generate the questions
for the items of our long
multiple-choice tests.

Conducting pre-test
interviews

We interviewed 12 students,
asking them to answer each
item generated in stage 1.

To generate the choices
(correct answers and foils)
for our long multiple-choice
tests.

Reviewing items We asked other math edu-
cators and mathematicians
to review the long multiple-
choice tests generated after
stage 2.

To improve items, especially
items that were mathemati-
cally inaccurate or ambigu-
ous.

Conducting pilot in-
terviews

We interviewed 12 students,
asking them to think aloud
as they answered the long
multiple- choice tests refined
in stage 3.

To identify and improve
items in which students’ re-
sponses were not indicative
of their understanding of the
proof.

Administering the
test to a large
population

We gave the long multiple-
choice tests to approxi-
mately 200 students.

To verify that these tests
had high internal reliabil-
ity, to identify problematic
items with poor discrimina-
tory power, and to identify
items that can be removed
to generate shorter multiple-
choice tests.

Conducting validat-
ing interviews

We interviewed 12 students,
asking them to think aloud
as they answered the shorter
multiple-choice tests gener-
ated after stage 5.

To verify that the final,
shorter multiple-choice tests
accurately measured stu-
dents’ understanding.

Mejia-Ramos et al. (2017) used the assessment framework discussed in Chapter 1 to

develop a Proof Comprehension Test (PCT) modeled on concept inventories such as the

Force Concept Inventory used in physics education and the Precalculus Concept Assessment
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(Mejia-Ramos et al., 2017, p. 9). Unlike the concept inventories mentioned above, the

PCT did not focus on concepts from a specific course; however, the PCT uses a multiple

choice format similar to both concept inventories. They describe the six phases used in the

development of the PCT, as reproduced in Table 2.15. These questions were illustrated for

three theorems; however, I will examine only one here. The first three phases of development

focused solely on generating and editing the initial multiple choice questions and responses.

Consider the following theorem and proof reproduced from Mejia-Ramos et al. (2017).

Theorem. There are infinitely many prime numbers.

Proof. “Suppose the set of primes is finite. Let p1, p2, p3, . . . , pk be all those primes with

p1 < p2 < ... < pk. Let n be one more than the product of all of them. That is, n =

(p1p2p3 · · · pk) + 1. Then n is a natural number greater than 1, so n has a prime divisor q.

Since q is prime, q > 1. Since q is prime and p1, p2, p3, . . . , pk are all the primes, q is one

of the pi in the list. Thus, q divides the product p1p2p3 · · · pk. Since q divides n,q divides

the difference n − (p1p2p3 · · · pk). But this difference is 1,so q = 1. From the contradiction

q > 1 and q = 1, we conclude that the assumption that the set of primes is finite is false.

Therefore, the set of primes is infinite.” (Mejia-Ramos et al., 2017, p. 11).

One open-ended question generated for this proof is “why is it valid to conclude n is a

natural number?” (Mejia-Ramos et al., 2017, p. 14). This question was posed during the

pretest interview and the answers provided were analyzed to develop the individual answer

choices shown in Figure 2.6. The best explanation is item (a); then, this question was

reviewed by both mathematicians and mathematics educators to insure accuracy, that is

to say that the question was valid (p. 16). During this review, it was acknowledged that

items (a) and (d) were very similar; therefore, option (d) was changed to “The set of integers

greater than 4.5 and less than 9999”(Mejia-Ramos et al., 2017, p. 17) at the suggestion of a

mathematician.

5Reproduced from Mejia-Ramos et al. (2017).
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Figure (2.6) Multiple choice question developed from an open ended question (Mejia-Ramos
et al., 2017, p. 15).

The last three phases examined the state of the PCT after the initial revisions and then

administer and examine how well the PCT performed. An interview was conducted with 12

undergraduate mathematics students; focusing on situations where

1. The correct answer was selected with incorrect reasoning

2. The wrong answer was selected with correct reasoning (Mejia-Ramos et al., 2017, p.

18)

These contradictory statements provided information to, once more, ensure the question

was measuring the correct item, that is to say the question was valid. The test was then

administered to 200 undergraduates in a transition to proof course (p. 19). They then

proceeded to interview several students who completed the assessment to validate their

responses.

In the end, Mejia-Ramos et al. (2017) identified several important reasons for the PCT

as a resource. First, these assessments can enhance the students learning by leading them to

the important aspects of a proof; second, they provide a simple resource for instructors and

they believe questions can be generated to examine a more general understanding of proof

(p. 22 – 24). While the question in Figure 2.6 is focused on identifying a local understanding

of the proof, the information provided can direct future assessment towards a more holistic
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understanding.

2.3 Literature on general teaching practices

This section will examine teaching practices in general, that is to say the studies are

not necessarily restricted to the university level. In total, three articles will be discussed

here including the connections between these studies and the framework discussed by Speer

et al. (2010) in chapter 1. The first study by Locke & Schattke (2018) examines various

types of motivation. Next, the study by Maulana et al. (2015) examining the affects of

time on lesson structure in Indonesian secondary mathematics classrooms. Third, a study

examining participation in mathematics classrooms, including instructional and questioning

methodology.

Speer et al. (2010) describe the main component of motivation being a rationale for a

topic. While this definition is succinct, it can be expanded upon in several ways. Locke &

Schattke (2018) study the concepts of both intrinsic and extrinsic motivation; however, they

specify different aspects of each that has an impact on teaching practices.

While intrinsic motivation has been traditionally linked specifically with personal enjoy-

ment (Locke & Schattke, 2018). However, enjoyment of a task does not necessarily equate

to improving at the task. So Locke & Schattke (2018) suggest “to get a high level of skill

at anything requires another form of motivation, achievement motivation” (p. 4); this type

of motivation is not focused on the enjoyment of the task. Instead, this type of motivation

prioritizes improvement toward a goal.

Locke & Schattke (2018) describe extrinsic motivation as being a “means–end” (p. 6)

relationship. This means that factors outside of the task being performed are key motivators;

however, these outside factors do not necessarily affect the individual directly. For example,

exercising is a means, but the goal is not to complete the exercise but instead attempting to

remain healthy. So extrinsic motivation requires a specific goal to be set.

Speer et al. (2010) do not directly discuss the structure of lessons, instead they discuss

the preparation and sequencing of lessons. Maulana et al. (2015) examine the specific struc-
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ture of the lesson, which they divide into six parts. Introduction only pertains to “activities

occurring during the start of a lesson that are not related to the content of the lesson” (p.

847); for example, greeting students and returning assignments. Maulana et al. (2015) define

review as discussing topics from the previous lesson6; that is to say assessing how students

responded to the previous lesson. Introduction of new content is defined traditionally, but

the lesson can be either teacher or student lead. Similarly, student work time focusses on

when students are actively working with the topic. Closing the lesson focuses on how the

instructor transitions from the main topic of the lesson to the end of the lesson. The final

category Maulana et al. (2015) define includes everything that has not already been covered

by the previous categories; this category is referred to as other.

The conclusions from their study are given here: time allocated to each part of the

lesson structure and how teaching experience affects this structure. The majority of time was

allocated to student work time and this part defines the format of the lesson; introduction

of new topics was allocated the next highest amount of time. Further, more experienced

teachers achieved better results7 especially with regard to how they format student work

time.

While developing an instrument focusing on questions and prompts in the mathemat-

ics classroom, Watson (2007) goes into detail about several taxonomies (e.g., Bloom’s and

Biggs and Collis’ SOLO8) as well as frameworks describing the structure of mathematical

knowledge. There are several key points she considered that are relevant to this study. She

notes

[The] disagreement between the teacher’s intentions and the learners’ perceptions

confounds any attempt to use ‘learning outcome’ taxonomies to categorize teach-

ing, and yet without complex articulation of learning, teachers cannot sensibly

create or select tasks (Watson, 2007, p. 115).

6This means that material from several weeks prior or review for test is not covered in this part.
7That is to say, the lesson structure was more consistent
8Structure of Observed Learning Outcomes.
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This indicates questioning needs to be carefully focused and worded to ensure the teacher’s

intentions are not perceived incorrectly by students. She suggests “the minimal assumption is

that if [specific goals and practices] are explicitly encouraged, named, and valued” (Watson,

2007, p. 118) then students will actively participate to accomplish these goals.

2.4 Literature on university teaching practices

This section will begin with a description of an article by Schoenfeld et al. (2016)

examining the current understanding of university mathematics education and thoughts on

how to improve these methods. Then, I will examine eight empirical studies pertain teaching

university mathematics. The first study focuses on the relationship between the amount of

material to cover in a calculus course and the instructional methods used (Johnson et al.,

2016). The next two studies, one on how students unpack logical aspects of mathematical

statements by Seldon & Seldon (1995) and another on students note-taking in proof based

mathematics courses by Fukawa-Connelly, Weber, & Mejia-Ramos (2017), are examined

because these studies provide insight into how students identify and understand informal

content with regard to proof. The fourth study by Syamsuri et al. (2018) discusses strategies

used to teach mathematical proof at the undergraduate level. The fifth study, by Johnson et

al. (2017), pertains to lecturing in an abstract algebra course. Then a study that examines

two approaches to an introduction to proof course, a comparative study between a traditional

DTP and an inquiry based approach by Cilli-Turner (2017) is described. The last two studies

both examine the instruction of a Real Analysis course at the undergraduate level; one

examining the uses of lecture presentation of proofs by Weber (2004) because of its focus on

one of the most common instructional activities in collegiate mathematics education and a

study examining the use of a ‘term paper’ to enhance students understanding of proof by

Pinto & Karsenty (2018).
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2.4.1 Understanding and improving the teaching of university mathematics

Schoenfeld et al. (2016) categorized collegiate mathematics instructors into three groups

based on their primary consideration when making instructional decisions: university math-

ematicians (UM), expert teachers (ET), and proficient teachers (PT). The UM’s primary

consideration is with the mathematical content itself, they state:

Part of what makes [the authors] mathematicians is the understanding that

claims must be justified and justifiable, if [UMs] make a claim in an instruc-

tional context, [UMs] must be able to back it up (Schoenfeld et al., 2016, p.

4).

ETs differ from UMs in two ways; the depth of ETs’ content knowledge will be less than that

of UMs and ETs’ pedagogical knowledge will be greater than UMs’ pedagogical understand-

ing. Lastly, PTs are described as a blending of the previous categories; that is to say, where

UMs’ primary consideration is the content and ETs primary consideration is the pedagogy,

PTs’ make teaching decisions based on both factors equally.

Schoenfeld et al. (2016) used the Resources–Orientations–Goals (ROGs) decision mak-

ing theory. An instructor’s resources include knowledge of the content as well as physical

resources (e.g., access to technology). Meanwhile, his/her orientations are based on their

beliefs on what is important for the students to understand. Finally, his/her goals are de-

scribed as “what he or she is trying to achieve” (p. 3). In practice, instructors will form

their goals based on their orientations while keeping in mind the resources available to them.

These goals are used to make instructional decisions.

In short, the classifications are based on mathematical content knowledge (UM) and

pedagogical content knowledge (ET) in decision making. A strong relationship between

these two sets of knowledge results in the PT classification. This information was used

to develop a professional development framework, which I will only briefly mention. They

found that forming a small group of colleagues to view and discuss small segments of a

lecture (chosen and given by one member of the group) allows for a focused discussion on



35

how to improve the pedagogical considerations being demonstrated.

2.4.2 Coverage and instructional practices in college calculus.

Johnson et al. (2016) is primarily concerned with the affect, if any, of the amount of

material being covered in a calculus course on the instructional methods used. That is to

say they examined if the “adage that high coverage demands encourage (or even necessitate)

more teacher–centric” (p. 501) instructional practices. While the short answer is no, I will

elaborate using their findings.

In regard to course pacing being the determining factor on instructional methods, John-

son et al. (2016) found this not to be a factor. In fact, the university with the slowest and

fastest course pacing both primarily used teacher–centric methods of instruction. Further,

pressure to cover material quickly did not differentiate instructional practices; regardless of

the pressure felt to cover material quickly, the majority of the respondents reported using

teacher–centric instructional methods. Therefore, while they acknowledge time constraints

are factors that affect instruction, it is not the primary factor to consider. That is to say

examining time constraints is not an indicator of instructional practices.

2.4.3 Unpacking the logic of mathematical statements

Seldon & Seldon (1995) focused on how university students interpret informal mathe-

matical statements9 and the role of informal mathematical statements in validating proofs.

They defined validation as “the process an individual carries out to determine whether a

proof is correct and actually proves the particular theorem it claims to prove” (p. 127).

Further, they claimed informal statements, statements of mathematical content excluding

formal mathematical vocabulary (127), to be an indicator of a student’s ability to validate

proof.

Unpacking an informal statement is accomplished by translating it into an equivalent

9For example, the Pigeonhole Principle, stated informally, is if there are more objects than places to put
them, then more than one object will share a spot. Formally, let n, r ∈ N and f : Nn → Nr, if n > r than f
is not injective.
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formal mathematical statement. This, along with proof frameworks (defined on page 7),

Seldon & Seldon consider to be key skills used by mathematicians while validating proofs.

To examine students’ abilities to unpack statements, they used simplified informal statements

on timed assessments and photocopied statements as an untimed (homework) assessment.

They found informal statements on timed assessments to be unpacked successfully only

8.5% (p. 138) of the time; these statements were unpacked successfully only 5% (p. 139) on

untimed assessments.

Seldon & Seldon used these results to recommend three instructional activities. First,

informal statements should be presented alongside their formal statement; second, receive

advice on methods for validating proofs; and third, distinguish between proofs and supple-

mentary comments. I point these out not because they will be specifically identified in this

study, but because they related to the local group of proof comprehension from the assess-

ment framework developed by Mejia-Ramos et al. (2012). For example, stating a statement

in equivalent ways is directly related to their first recommendation and identifying the proof

framework is an aspect of the second recommendation.

2.4.4 Note-taking in advanced mathematics classes

Fukawa-Connelly et al. (2017) examined how informal statements are used by instructors

in a transition to proof class and the importance given to these statements by students.

They observed, transcribed items written on the board, and audio recorded lectures, then

compared these to copies of students’ notes. Though informal statements are most often

(73%) presented orally, students only recorded 3% of the oral statements.

Two components examined in the assessment framework is to successfully justify claims

and transfer general ideas or methods to other situations. Generally, instructors present for-

mal mathematical content on the board but discuss informal content, including methodology,

verbally (Fukawa-Connelly et al., 2017, p. 15). Since these oral statements are not noted by

students often, they may not be practicing the skills necessary to understand written proofs;

essentially making two of the components more difficult.
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Weber et al. (2016) state that the main goal of advanced mathematics instruction is

twofold: demonstrate how to construct proofs and characterize what makes a good proof.

They proceed to identify steps mathematics instructors should take to ensure that lecture

notes are useful for students. Since “students focus on what is written on the blackboard; this

is a traditional way by which teachers emphasize importance” (p. 1190), instructors should

make sure the key ideas they want to communicate are written down. Mason (2002) reinforces

this idea by explicitly identifying that students have “to make sense” (p. 41) of these items,

identifying the key ideas is essential. Similarly, since students and mathematicians think of

understanding mathematics differently, expectations should be clearly communicated from

the beginning of both the course and the lecture itself (p. 1191). Further, instructors need

data on how students understand their lectures; Weber et al. (2016) note “[mathematics

professors] rely on indirect measures such as their students’ performance on exams and their

comments on student evaluations, where it is difficult to posit causal links between specific

actions of the instructor and the responses of students” (p. 1192).

2.4.5 Strategies for teaching mathematical proof.

Syamsuri et al. (2018) provides recommendations for instructional methods used to

teach mathematical proof. Their recommendations are based on students’ understanding of

mathematical proof; students’ understanding was assessed using the framework developed

by Mejia-Ramos et al. (2012) and then categorized into a quadrant system. What follows is

a description of the instrument used to assess students’ understanding, a description of the

quadrant system, and the recommendations for instruction they suggest.

The assessment used in this study was conducted primarily via interview; however, first

the students needed to construct a proof for the claim given in Figure 2.7. After the

Prove: For any positive integer m and n, if m2 and n2 are divisible by 3, then m + n is
divisible by 3.

Figure (2.7) Proving task used in Syamsuri et al. (2018)
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students completed their proofs, interview questions were constructed using the assessment

framework by Mejia-Ramos et al. (2012). Each interview instrument was comprised of seven

questions, one focusing on each of the seven aspects10 of the framework.

After they had the response, they categorized them appropriately. If the proof was

correct and the interview was consistent, then the student was considered to be in quadrant

I; Syamsuri et al. (2018) note that any instructional method will benefit students in this

quadrant because they possess a complete understanding of the proof structure and con-

cepts. If a student knows how to begin the proof, then he/she was placed in Quadrant II;

one recommendation for instructional method that will benefit students in Quadrant II is an

adapted two column method with emphasis placed on the justifications. Students in Quad-

rant III did not know how to begin the proof but did attempt to use inductive reasoning;

recommendations for instruction include having students constructed concrete examples of

a concept as well as analyzing a complete proof. All remaining students are categorized in

Quadrant IV, Syamsuri et al. (2018) recommend using structured proofs. Structured proofs

are organized by levels, that is to say the main ideas and concepts are in one level while the

justifications are in separate levels.

2.4.6 Lecturing in an abstract algebra course.

Both individual (primarily based on beliefs) and situational factors help determine how

an instructor makes decisions on the methodology they use. Johnson et al. (2017) identi-

fied three categories of instruction with regards to lectures in abstract algebra. Traditional

instruction is lecture–oriented, that is to say, very teacher centric. Alternative instruction

uses lecture, but “class time is split (fairly evenly)” between teacher–centric (lecture, demon-

strations) and student–centric (cooperative learning, student presentations) methods. Mixed

instruction blends the two previous methods, with a moderate amount of class being devoted

to lecture.

10Three questions pertained to the local domain of proof comprehension and four questions pertained to
the holistic domain of proof comprehension
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Further, Johnson et al. (2017) found key factors in determining which type of instruc-

tion used by a specific mathematics educator is based on “teaching experience, beliefs about

teaching and learning, and interest in various types of scholarly activity.” Traditional in-

struction was primarily used by the most experienced group who typically had a “stronger

interest in mathematics research that educational research;” additionally, this group had a

strong belief in the benefits of lecture, including the necessity of it with learning mathematics.

Alternative instruction was primarily used by the least experienced teachers; coincidently,

these teachers place a higher value on educational research. Instructors who used the a mixed

instruction method valued the mathematical and educational research almost equally.

2.4.7 Inquiry pedagogy and students’ conceptions of the function of proof

Cilli-Turner (2017) conducted a teaching experiment with a control group to examine

the affect of inquiry pedagogy on a transition-to-proof course. The instructional methods

for the inquiry course were extremely student focused with students constructing proofs

individually and then collaborating with their peers to gather information and suggestions

before completing a revision (p. 17). To build this type of classroom, the instructor first

had to create the appropriate culture for the classroom and provide guidance on how to

collaborate. Then, starting in the third week, students began to use the methods described

above (p. 17 – 18). In essence, the students’ proofs were constantly being assessed. The

traditional group used the DTP format; with students being encouraged to ask questions

and the vast majority of the time was spent completely on lecture (p. 18).

The main goal of this study was to determine which instructional method lead to a

better understanding of the purpose of proof. By the very format of the course, students

in the inquiry course showed a better appreciation for the communicative aspects of proof

(Cilli-Turner, 2017). This relates directly to holistic aspects of the comprehension of proof;

the students were constantly providing good summaries of the proofs.



40

2.4.8 Lecture presentation in real analysis

Keith Weber (2004) conducted a case study on one teacher’s approach to teaching real

analysis using a traditional DTP approach. The goals of his study were to describe this

instructor’s lecture style in detail as well as examining the reason why this instructional

method was used and the effectiveness of this style (p. 116). This study was conducted at

a university in the southern United States.

Data was collected through classroom observations and interviews. For the classroom

observations, Weber primarily transcribed and described notes from the course; however, in

order to obtain a detailed analysis on the instructional methods, some sessions were video

recorded (p. 118). The interviews occurred on a weekly basis and focused on what goals

were being set for the following week and explaining why certain instructional methods were

used during the previous week (p. 117). Aspects of these methods will be adopted by and

expanded on in this study.

Weber identified three primary categories of lecture styles used in this course: logico-

structural, procedural, and semantic. Logico-structural proofs focused on the importance

of definitions and organization in writing proofs; characteristics of this style included par-

titioning the board into proof and scratch work areas, seldom had diagrams accompanying

the proofs, and were often constructed by unpacking and applying the definitions to both

the given assumptions and desired conclusions with the goal of the two ends meeting in the

middle (p. 121). Procedural proofs focused on the proof framework and various “techniques

and heuristics” students could use to construct and identify key elements of the proof (p.

124). Primarily used when discussing proofs about limits, procedural proofs used in this

course were characterized by first examining the proof structure, then finding the appropri-

ate values to complete the proof (p. 125). Semantic proofs focus less on definitions and

techniques and more on an overall conceptual understanding, often by employing diagrams

(p. 127).

Weber notes that the instructional methods, though all derived from the DTP format,

varied depending on the topic (p. 131). Further, four core beliefs were identified as reasons
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for the use of these instructional methods.

1. If students become frustrated, they will give up.

2. Students must have a good foundation in logic prior to being able to learn advanced

mathematics.

3. Students must master basic symbolic techniques before progressing to harder concepts.

4. Students must gain experience working at the symbolic level in order to gain an intuitive

understanding of advanced mathematics. (p. 128)

As discussed when considering the significance of this study, these beliefs are well established

by this professor and will not easily change, so the instructional methods would not be easy

to change if needed.

During the final interview with the subject of his study, Weber (2004) learned the

reasoning behind the structure of the course, that is, why logico-structural proofs were

presented early in the course, then proceedural proofs were introduced, and semantic proofs

were introduced at the end. Logico-structural proofs were used early on to ensure students

had a strong foundation to construct proofs and “sets and functions were topics that were

particularly amenable to [the subject’s] logico-structural lectures” (Weber, 2004). The focus

on procedural proofs was two fold: it provided “step-by-step descriptions and hints” (Weber,

2004) and the ability to use the techniques acquired from working with the inequalities

present in procedural proofs “becomes second nature” (p. 128), greatly improving the chance

for success in analysis. Semantic proofs we built off of the foundation of logico-structural

and procedural proofs, and signify the point in analysis when “rote strategies” (Weber, 2004)

are no longer sufficient to proceed in the analysis.

Essentially, even if using DTP instructional format, Weber (2004) documents that this

method does not prohibit a wide variety of methods. The logico-structural, proceedural,

and semantic methods are very different in structure, methodology, and purpose (Weber,

2004). Also, Weber (2004) highlights a key factor as it pertains to the significance of this
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study, “mathematics professors must choose to employ [pedagogical] methods” (131) and new

pedagogical methods are successful if they correspond with the professors’ belief structure.

2.4.9 Attending to student independent proof reading

Pinto & Karsenty (2018) describe one professor’s methods in an introduction to analysis

course. Specifically, this professor altered what the authors refer to as course image; a course

image is “an instructor’s full set of intensions and expectations concerning what will take

place in a course” (p. 133). This includes the types of instructional activities and assessment

methods used during the course. Specifically, this instructor was altering his course from

a traditional weekly homework assignment to using a course long term paper ; that is to

say, students created detailed course notes (including full formal proofs) that they turned in

weekly and were revised as needed throughout the course.

The goal of this term paper was for students to create their ”own personal version of

the course book” (p. 137). This is meant to be more detailed than a simple summary; the

instructors feedback on one students’ first draft is given below:

[The summary] is correct, but the goal is not to summarize the lectures, but

[create an] exposition of mathematical theory. So I would remove (or change)

this introduction accordingly (Syamsuri et al., 2018, p. 138)

Further, the instructor emphasized the need for students to produce rigorous proofs in their

paper. During the course, he presented incomplete proofs during his lecture; it was the

students responsibility to provide a rigorous proof. He believed having students write and

revise proofs weekly via the term paper would provide a structure that will improve their

ability to construct mathematical proofs.
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PART 3

METHODOLOGY

The purpose of this qualitative study is to understand how Dr. Wyatt’s participation

in a mathematics education research project with mathematics educators has affected his

teaching practices. More specifically, this study specifically seeks to answer three questions

1. In what ways does Dr. Wyatt use the ideas of a particular assessment method focus-

ing on students’ thinking with respect to mathematical proofs with his teaching of a

transition to proof course?

2. How do these instructional practices compare to his previous method(s) used?

3. What impact does the instructor’s participation in the project have on his core beliefs

about and the value of research in undergraduate mathematics education?

In this chapter, I will describe in detail the research setting, the overall design of the study,

the methods of data collection, and the method of data analysis. Through this analysis,

I hope to gain insight into Dr. Wyatt’s beliefs about and methodology of teaching and

assessment in a transition to proof course.

3.1 Research setting

3.1.1 Subject of the study

Dr. Wyatt is an Associate Professor in the Mathematics and Statistics Department at

an urban research university in the southeastern United States with sixteen years of col-

legiate teaching experience. He has been an active faculty member in the NSF supported

project from the beginning and has participated in the development of assessment instru-

ments that align to the assessment framework developed by Mejia-Ramos et al. (2012), the
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implementation of some of the assessment items, and the evaluation of students’ responses

to those instruments. At the time of this study, he had participated in the research project

for three years.

Dr. Wyatt’s primary research interest lie outside of mathematics education. This is a

key factor in his recruitment for this study. Since his specialization is not in mathematics

education, his participation in a collegiate mathematics research project potentially exposed

Dr. Wyatt to completely different methods of research and thinking about mathematics.

Further, he was listed as the primary instructor for a section of the transition–to–proof

course at his university. For all of these reasons, Dr. Wyatt was selected for this study.

The proof capabilities of students are affected by the pedagogical practices professors

use in upper level mathematics courses. The subject of this study, Dr. Wyatt, is a partici-

pant in a project that emphasizes the importance of assessment and instructional practices

when teaching proofs; to that end, the goal of this study is to examine the impact of his par-

ticipation in this project. Dr. Wyatt is teaching a transition-to-proof course that focuses on

several proof techniques common in advanced mathematics courses during the fall semester

of 2018. In this section, I will provide a brief description of the transition–to–proof course

and the learning outcomes of this course.

3.1.2 Description of the course

The transition–to–proof course at the university, from a topical standpoint, includes

concepts from set theory, real numbers, analysis, and algebra. This subset of mathematics

was chosen because it “illustrates a formal approach to the presentation and development”

(Course Description, 2018) of advanced mathematics. This course has two prerequisites,

Linear Algebra I and Discrete Mathematics, and is the required Critical Thinking Through

Writing (CTW) course in the mathematics major. The following are the departmental

learning outcomes for the transition–to–proof course:

1. Develop a truth table for a logical expression

2. Express the negation of a logic statement
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3. Correctly decide if two statements are logically equivalent

4. Express the converse, inverse and contrapositive of a logic statement

5. Express universally and existentially quantified statements, and their negations

6. Understand the definition of a set

7. Correctly express the union, intersection and complement of sets

8. Do a direct proof

9. Correctly decide if a given proof is valid

10. Do a proof by contrapositive, contradiction or exhaustion

11. Understand indexed families of sets, their unions, intersections and complements

12. Do a proof using mathematical induction: the statement to be proved may be an

equality or an inequality

13. Correctly decide if a given relation is an equivalence relation

14. Correctly determine the equivalence classes of an equivalence relation

15. Understand the division algorithm and its implications in divisibility problems

16. Correctly express the power set of a given set, and its cardinality

17. Correctly decide if a function is one-to-one, onto, or has an inverse

18. Correctly formulate the composition of two functions

19. Correctly decide if a set is finite, countable or uncountable

20. Correctly use the epsilon definition of greatest lower bound and least upper bound in

proofs

21. Correctly apply the concepts of open and closed sets to proofs



46

22. Correctly apply the concepts of limit points, deleted neighborhoods and closure to

proofs

23. Correctly decide if a sequence is monotone and/or bounded

24. Prove that a sequence converges to a limit, using the definition of convergence

25. Correctly decide if a function is bounded or monotone (Learning Outcomes , 2014)

It is clear from these learning outcomes that a key focus of this course is for students to

develop the ability not only to construct proofs but to be able to carefully read, analyze,

and comprehend proofs.

3.2 Data collection

This study focuses on Dr. Wyatt’s teaching practices, with special interest on his use

of assessment throughout the course. His teaching practices, specifically his motivational

techniques, preparation and self reflection, representation of concepts and relations, and

questioning techniques will be analyzed using the framework developed by Speer et al. (2010).

His assessment techniques, including assessment construction and feedback methods, will

be analyzed using the framework developed by Mejia-Ramos et al. (2012). Further, since

the primary goal of this study is to compare the affect Dr. Wyatt’s participation in the

NSF mathematics education research study had on his teaching method, data pertaining

to previous teaching and assessment practices will need to be collected. What follows is a

description of the methods used to collect the data on Dr. Wyatt’s teaching and assessment

practices, including both his previous and current practices.

3.2.1 Dr. Wyatt’s previous teaching and assessment practices

In order to collect data on Dr. Wyatt’s previous teaching and assessment practices, an

electronic questionnaire was created and distributed to students enrolled in at least one of

Dr. Wyatt’s classes during the previous three semesters (Fall and Spring 2017, Spring 2018)1.

1Dr. Wyatt was participating in the NSF project during these semesters.
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The full questionnaire is given in Appendix A and was distributed using two steps. First,

the questionnaire was created using technological resources available through the university;

second, a link to the questionnaire was distributed by Dr. Wyatt via email to his former

students.

The questionnaire was eleven questions split into two parts: four fixed–response ques-

tions and seven narrative–responses questions. The fixed–response questions provided either

four or five options for the respondents to choose from based on the question; this method

was selected because it would provide a clear overview of students’ recollections about Dr.

Wyatt’s teaching. The narrative–response questions were designed to allow respondents an

opportunity to elaborate on their selections to the fixed–response questions and describe

their personal experiences with Dr. Wyatt’s teaching and assessment practices. McGuirk

& O’Neil (2016) notes narrative–questions invite “respondents to recount understandings,

experiences, and opinions in their own style;” thus, providing good details about their setting.

3.2.2 Classroom observations

I observed the final eight2 class sessions of Dr. Wyatt’s transition–to–proof course in

the fall semester of 2018. During these observations, I maintained field notes that included

the notes he used during his course, how he communicated with students during the lesson,

and general observations.

To supplement these notes, audio recordings were created during each observation. Por-

tions of these audio files were transcribed3 as needed based on the data analysis. As noted in

Speer et al. (2010), classroom observations provide insight into several teaching practices; for

example, time allocation, methods of representation of content, and questioning practices.

2There were nine class sessions during the time I was observing Dr. Wyatt’s class; however, a test was
administered during one of these sessions and was not observed.

3The portions transcribed are provided in the data analysis.
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3.2.3 An interview with Dr. Wyatt

I conducted an interview with Dr. Wyatt during the spring semester following my

observations of his transition–to–proof course. The interview was semi–structured; Cohen &

Crabtree (2006) gives the following characteristics of a semi-structured interview.

1. The interviewer and respondents engage in a formal interview.

2. The interviewer develops and uses an ‘interview guide.’ This is a list of questions and

topics that need to be covered during the conversation, usually in a particular order.

3. The interviewer follows the guide, but is able to follow topical trajectories in the

conversation that may stray from the guide when he or she feels this is appropriate.

The goals of the interview were to gain insight into Dr. Wyatt’s beliefs about being an

educator, the reasoning behind his pedagogical decisions4, and the goals of various assessment

items. The semi–structured interview format was used because it allows for open ended

questions that are essential to examining Dr. Wyatt’s beliefs. Further, this format allowed

for topics to be included that were not considered during the development of the interview

guide.

The interview was audio recorded. A transcript of the interview was created from the

audio file after the interview; then the audio file was used to proofread the transcript. After

the transcript was created and proofread, the audio file was deleted. The instrument used

during the interview is included in the appendices.

3.2.4 Formal assessments

Dr. Wyatt used three types of formal assessments in this course: homework, test, and

a final exam. As mentioned previously, the transition–to–proof course is considered a CTW

course by the university. A CTW course places emphasis on how written content is presented

4This includes both anticipatory and immediate decisions.
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in addition to the correctness of the content. Dr. Wyatt identified this as a vital part of

what he expects from student’s solutions and proofs throughout the course.

One of the goals of this study was to identify items from the assessments used in the

course that resemble the type of questions developed for the project, I collected a copy of

all assessments after they have been graded. This provided not only insight into the style

of questions used, but also how he provides feedback on those assessment items. I identified

how each question aligns with the principles of proof capabilities project, and then closely

examine his comments about students work. Please note, in order to maintain anonymity,

all identifying information was removed from from the assessments.

3.3 Data analysis

To attempt an answer for the first research question, provided below, the data collected

from the formal assessments as well as part of the data collected from the interview were

used.

1. In what ways does the instructor use the ideas of a particular assessment method

focusing on students’ thinking with respect to mathematical proofs in his teaching of

transition to proof class?

Data collected from the questionnaire, the observations, and the interview were used to

answer the second research question, provided below.

2. How do these instructional practices compare to his previous method(s) used?

The interview data and formal assessments were used to answer the third research question,

given below.

3. What impact does the instructor’s participation in the project have on his core beliefs

about teaching and the value of research in undergraduate mathematics education?

The data presented in this report include observational field notes, sections of an interview

with Dr. Wyatt, graded assessments with feedback, and comments from former students
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via the questionnaire. All of this data was analyzed, with regards to the research questions,

with several passes through the data. This was to ensure both consistency and accuracy of

the interpretation of the data.

After transcription was completed and proof read for accuracy, the data was initially

categorized according to the framework of Speer et al. (2010) or labels as ‘assessment prac-

tices’; that is to say the information was distributed into six categories. On the second pass

of the interview, the data was examined and sub–codes were created based on the language

used by Dr. Wyatt. The second pass gave me an opportunity to translate the teaching

practices framework from Dr. Wyatt’s perspective. Also, during the second pass the assess-

ment practices category was further organized by question type and individual aspects of

proofs. On the third pass of the data, a final organization method was established linking

Dr. Wyatt’s language to the frameworks used in this study.

On the first pass of analyzing the formal assessments, short phrases describing the

assigned tasks were formulated without regard to the students’ solutions. On the second

pass through the data, mathematical concepts were assigned to each question and the tasks

were redefined by a single phrase. This allowed for the questions to be categorized by the

type of tasks being asked of the students. With the questions now categorized, my analysis

turned to the students’ solutions. On the first pass of the solutions I categorized them

according to points earned on each question. The second time examining the solutions I

focused my attention on Dr. Wyatt’s feedback; specifically how he provided feedback on

certain types of errors. Next, I analyzed the questions and the solutions simultaneously,

identifying Dr. Wyatt’s feedback as it related to the assigned tasks. Finally, I categorized

the goal of each question using the assessment framework.

The field notes and audio files of the observation were analyzed simultaneously. First,

I synced the two types of data by comparing time stamps in the audio files with the notes

he provided to the class. On the second pass, I categorized the parts of the observations

as they correlated to each part of the teaching practices framework. During the third pass,

I identified moments that were exemplary of Dr. Wyatt’s teaching practices for each part
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of the framework by Speer et al. (2010). Lastly, I reexamined all of the examples from the

third pass to verify they were properly categorized.

I first analyzed the questionnaire’s fixed–response questions and collected data into

a tabular format; then I organized this data by how they correlated with Dr. Wyatt’s

teaching practices. The narrative–response questions where analyzed in a similar fashion.

The reasoning for this method of analysis is because the questionnaire’s results are only

truly related to the second research question. Further, this research question requires a

strict comparison; thus, categorizing this data directly against what is it being compared to

is essential.

3.4 Chapter summary

In this chapter, a description of Dr. Wyatt and the research setting was provided. This

included a description and the goals of the course as defined by the university. Further, I

detailed how the data was collected for this study; in particular, some of the benefits of using

each method of data collection was provided.

I detailed the method by which the data was analyzed. Specifically, I explained what

types of data pertained to each of the research questions; then, the process of analyzing each

data type was described. I chose to describe the data analysis process in terms of item type

(instead of by research question) because most of the data types are used to answer multiple

research questions. In chapter 4, the results are provided.
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PART 4

RESULTS

Chapter 3 discussed the methods that will be used for the data analysis. This chapter

will perform the data analysis in two parts. First, the results from the questionnaire exam-

ining Dr. Wyatt’s previous teaching practices will be analyzed. Then, the teaching practices

used by Dr. Wyatt in this transition–to–proof course will be analyzed using the framework

proposed by Speer et al. (2010). Third, the assessments used in this course will be ana-

lyzed using the framework developed by Mejia-Ramos et al. (2012). As needed, additional

literature will be used to emphasize specific parts of this analysis.

4.1 Dr. Wyatt’s Previous Teaching and Assessment Practices.

The questionnaire consisted of a total of eleven questions, the first four of which were

fixed–response (students selected from a list of four to five categories depending on the ques-

tion) while the remainder where narrative–response. Figure 4.1 states the fixed–response

questions; the narrative–response questions are given in Figure 4.2. The complete question-

naire is included in Appendix A.

1. How would you rate the instructor’s excitement in teaching the course?

2. How often did the instructor make you explain your responses to questions posed in
class?

3. How often did the instructor make you explain your responses to questions posed on
assessments (Homework/Test)?

4. Overall, how high were the instructors expectations of you?

Figure (4.1) Fixed–response questions from the questionnaire.

In this section I will analyze the data from the questionnaire sent to Dr. Wyatt’s former
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5. Describe how the instructor paced the course. Did his pacing change during the course?

6. Describe how the instructor covered essential material in the course, that is, the ma-
terial that counted as the foundation for the rest of the course.

7. Describe the types of questions used by the instructor during the course, that is, the
types of questions he would ask not appearing on an assessment.

8. Describe how your instructors assessments (homework/test) impacted your learning in
the course.

9. Describe how your instructors assessments (homework/test) provided insight into
mathematical proofs.

10. What is the one thing the instructor did that you wish all teachers did? Please explain.

11. What is the one thing the instructor could have done to improve your learning? Please
explain.

Figure (4.2) Narrative–response questions from the questionnaire.

students. Of his former students, a total of eleven responded to the fixed–response questions.

Of these eleven respondents, six completed the narrative–response questions as well.

4.1.1 Fixed–response questions

The first question was designed to provide insight into Dr. Wyatt’s personality with

regards to the content of the course. The second and third questions were designed to

examine his questioning and assessment techniques, respectively. The final question gives

insight into how students perceive Dr. Wyatt’s goals for the course. Of his former students,

eleven responded to the questionnaire. Tables 4.1, 4.3, and 4.2 provide a distribution of

students responses to question 1, questions 2 and 3, and question 4 from the questionnaire,

respectively.

Locke & Schattke (2018) state “motivation orients, energizes, and selects behaviors”

(p. 2) that ensure the individual pursues specific goals regardless of if they are internal or

external. One role of instructors is to motivate their students to study and learn the content

of the course. Speer et al. (2010) refers to this as “providing [a] rationale” for the study of
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Table (4.1) Distribution of Prior Students Response to Question 1

Category Count
Excellent 9

Very Good 1
Good 1
Poor 0

Table (4.2) Distribution of Prior Students Response to Question 4

Category Count
Extremely High 0

Very High 4
High 5

Average 2
Low 0

a topic. Further, Khalilzadeh & Khodi (2018) note that an instructors personality has an

affect on how students perceive the goals being presented by teachers. They state

[T]eachers who were dutiful, disciplined, considered, competent, and achievement

striving would strongly influence those students who desired to carry out an

activity (Khalilzadeh & Khodi, 2018).

Therefore, Dr. Wyatt’s personality (excitement about the material and his expectations

of students) play a role in their motivation. From the responses to questions 1 and 4,

students view Dr. Wyatt as being very passionate about his teaching and feel he places high

expectations on his students.

Questions 2 and 3 focus on Dr. Wyatt’s questioning and assessment methods. Specif-

ically, students disagree on how much Dr. Wyatt expected them to justify their responses.

This is an important aspect of his teaching and assessment practices as noted by both the

Table (4.3) Distribution of Prior Students Response to Questions 2 and 3

Question Always Often Sometimes Rarely Never
2 3 2 3 2 1
3 2 5 2 1 1
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teaching practices and assessment practices framework. Based on the collected data, Dr.

Wyatt required justifications regularly, but not excessively. Speer et al. (2010) note teachers

could ask the student to clarify responses or even ask for a second opinion, both options

are eliciting a justification. Therefore, it is possible that instead of requiring justification

initially, Dr. Wyatt may have opted to seek justification only when the answer was not fully

correct.

4.1.2 Narrative–response questions

The narrative-response questions can be broken into four broad categories: assessment

design and purpose (questions 8 and 9), questioning practices (question 7), time allocation

methods (question 5), and methods of representing content (questions 6, 10, and 11). In the

following paragraphs I will analyze each of these four categories. These questions were given

in Figure 4.2; while focussing on each category, students responses will be provided.

Figures 4.3 and 4.4 provide students’ comments to the assessment based questions from

the survey. There are a few things that emerge from these responses. First, Dr. Wyatt’s

• The format of the assignments was extremely helpful in order to tackle the questions
part by part, although it made it difficult [for] me to keep the big picture.

• Homework and test were basically landmarks on how to think about the subject. It
forced [the student] to mull over complex but apparently very deep and simple ideas
for a long time. I LOVED IT!1

• The assessments helped me to better understand the materials and were mainly exam-
ples of the concepts with some proofs.

• Assessments made the material easy to grasp.

• Homeworks and tests were straight–forward and easy to understand if a student had
a strong understanding of what was covered in class.

• He was a great professor, I prefer his teaching style over any other professor I’ve had
so far. He teaches what we need to know and tests what he taught. His assessments
are not too bad if you pay attention in class and understand what he has done.

Figure (4.3) Responses to question 8.
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• it made it very easy to tackle proofs systematically part by part.

• It forced me to memorize the basic definitions and foundational propositions and the-
orems so that it was like my name.

• the insight was provided by giving concrete examples of abstract materials. Also, some
of the examples helped differentiate ideas.

• I am not sure there’s much to say. Most homework problems were proofs. Usually the
extra credit problems were proof questions.

• His assessments do provide mathematical proofs. Questions like “if statement is true,
provide a proof; otherwise, give a counter example.” [The questions make] you think
because it is one or the other, cannot be both.

Figure (4.4) Responses to question 9.

assessments were organized in a way that allowed students to approach questions part by

part; that is to say, they provided scaffolding for the students responses. Second, the students

recognized the need to have a strong grasp of the fundamentals, which were heavily focused

on during class. Third, the types of examples given on the assessments helped students

learn the material. Finally, students hold Dr. Wyatt’s assessments in high regard, noting

they are essential to understanding the mathematical content. The local domain of proof

comprehension from the framework in Mejia-Ramos et al. (2012) focuses on the fundamental

aspects of proofs; Dr. Wyatt’s question design from previous classes appears to follow this

mindset.

Students’ responses concerning Dr. Wyatt’s questioning practices are provided in Figure

4.5. While the intent of this question was to examine Dr. Wyatt’s previous questioning

practices, the responses provide better insight into how Dr. Wyatt presents information.

Specifically, the examples used his in class are very similar to those that appear on his

homework. However, it is also clear that the questions he does ask during class help students

learn how to think actively.

Figure 4.6 provides students’ responses to how Dr. Wyatt allocated time during lessons.

Students found the pacing of the course beneficial to their learning. However, there appears
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• I don’t remember clearly

• He basically taught us how to teach ourselves.

• He would ask similar questions to [those on the] assessment that would serve as exam-
ples.

• homework questions

• There were no real surprises. The main graded part is covered during the lectures.
The occasional extra credits were over taught and learned concepts but required much
more thinking.

Figure (4.5) Responses to question 7.

to be a disagreement on if his pacing changed during the course. Most of the responses

comment that his pace was relatively consistent, if not a little slower than needed. One

student commented that Dr. Wyatt’s pacing was “inversely proportional” with the difficulty

level of the content; that is to say, his pace was faster while covering “basic” material than it

was covering “complex” material. While this alteration of pace makes sense, it is difficult to

identify if this is what was happening in Dr. Wyatt’s class because it contradicts the other

responses.

Responses pertaining to how Dr. Wyatt represents content during the course is given

in Figures 4.7, 4.8, and 4.9 Students responses here paint an interesting picture about Dr.

Wyatt’s teaching. First, they acknowledge that he is not just instructing the materials, but

also helped them develop the skills needed to study mathematics in general. He provides

clear examples, ensures students have a strong foundation with which to study the content,

and provide guidance necessary for thinking mathematically. Dr. Wyatt teaches the students

how to teach themselves; that is to say, his focus is on providing students a foundation that

allows them to pursue mathematics on their own within the context of the course. Further,

students acknowledge that Dr. Wyatt’s style of instruction is, while not necessarily how

every student learns best, is the best method he can apply because of his personality.
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• His pace was fairly regular throughout the semester.

• Yes, rate of pacing was inversely proportional to the complexity of the material.

• The professor kept with a consistent pace that allowed us to finish the material that
we were being tested on and learn even more just for our information.

• Steady and moderate.

• The pace of the course was a little slower than usual, but all content was covered which
meant that rather than quickly covering all necessary content plus other content, the
instructor thoroughly covered solely the required content.

• Very well paced. Always something new every day. [He] didn’t linger on too much
unless students were not grasping the concept well enough.

Figure (4.6) Responses to question 5.

• He explained the essential material very clearly, and I feel he spent the right amount
of time on it.

• Very heavy emphasis was laid on the foundational material.

• The professor dedicated around two classes to cover essential materials prior to starting
the course material.

• Clearly and always with examples.

• Thoroughly. The instructor frequently repeated the essentials.

• He does a great job on the background building up to the harder material.

Figure (4.7) Responses to question 6.
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• Know the material in depth.

• Teach us how to teach ourselves so that we are on the way to becoming an expert
ourselves.

• He works really hard. He hand–writes the notes as he discusses ideas in his lectures. I
know this can seem a bit old–fashion. However, I believe it really helped to pace the
lectures and helped me to keep up with the materials. Also, he communicated very
well and ensured that we understood by reinforcing a communication often.

• Providing examples of each theorem taught.

• His homework followed a consistent format. All assignments were linked online, so it
was easy to study from the homework when preparing for test. The test were in the
same format as homework, but with different problems.

• Weekly assignments where material was covered thoroughly in class.

Figure (4.8) Responses to question 10.

• I like in–class discussions, but I have no way of knowing if it would have improved my
learning given the personality of the teacher, the subject, and the curriculum.

• More homework and test. High frequency retrieval in multiple domains with a mixture
of cues help foster deeper learning.

• After formally introducing material, I really learn when ideas are communicated in
layman terms. Perhaps, clarifying ideas without the formal confusing jargon.

• Offering extra credit for correcting errors or mistakes from homework.

• I think sometimes class went too slowly.

• He gets sidetracked a bit, but he knows it, and tries to get back on topic.

Figure (4.9) Responses to question 11.
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4.2 Teaching Practices

Speer et al. (2010) define teaching practices as “what teachers do and think daily, in

class and out, as they perform their teaching work.” While many factors affect what teaching

practices an instructor uses, one key factor are his/her personal beliefs about education. In

this section, I will analyze Dr. Wyatt’s teaching practices using information from classroom

observations, Dr. Wyatt’s statements from a personal interview, and comments from former

students collected via an electronic questionnaire. Before I begin with the analysis of Dr.

Wyatt’s teaching practices, I will define each of the domains of teaching practices I will

examine.

The seven domains of teaching practices identified by Speer et al. (2010) are (a) the

motivation of content, (b) preparation and self reflection, (c) time allocation within lessons,

(d) representation of content, (e) questioning methods, (f) sequencing of content within

lessons, and (g) designing assessments. Of these seven domains, the sequencing of content

within lessons and designing assessments are not covered in this analysis because the sequence

of the content is determined by the syllabus and assessment design will be covered in a

separate section using the assessment framework developed by Mejia-Ramos et al. (2012).

The motivation of content includes all methods used to “provide rationale” (Speer et al.,

2010) for information studied during the course. Preparation and self reflection pertain to the

work Dr. Wyatt does outside of the classroom to construct lessons and examine his previous

teaching experiences. The time allocation domain focuses on the structure of individual

lessons, including transitioning between topics and teaching methods. Representation of

content includes “both what [content] is displayed and how [content] is displayed” (Speer

et al., 2010), that is to say, methods used for the presentation of content. Questioning

methods include an examination of the types of questions being asked, the amount of wait

time provided after the question, and how Dr. Wyatt reacts to student responses. All

of these domains of teaching practices have significant impact on how students learn and

understand mathematical content; therefore, understanding Dr. Wyatt’s teaching practices
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with regards to each of the domains will provide an outline of his beliefs on teaching. I will

begin by analyzing how Dr. Wyatt motivates the content within his lessons.

4.2.1 Motivation of content

Speer et al. (2010) define motivation of content as “providing a rationale for a sequence

of topics to increase students’ engagement with that topic.” Specifically, motivation of con-

tent is focused on how the instructor chooses to introduce the material to students. This

is due to the fact that mathematicians have a deep understanding of the “logical structure,

internal connections, and historical development” (Speer et al., 2010) of the course content

that students will not possess. Weber et al. (2016) describe a goal of collegiate mathemat-

ics instructors, especially in upper level courses, as “[engaging] students with high-level or

intuitive ways to understand the course content;” in other words, collegiate mathematics

instructors want to motivate students to understand the content deeply.

Motivating content can be difficult in collegiate mathematics classrooms. Speer et al.

(2010) note the amount of content that must be covered can limit the amount of time an

instructor devotes to motivation. Weber et al. (2016) comment that, despite instructors’

desire for students to have a deep understanding of mathematical content, often the assess-

ments used in the course focuses on students’ “ability to produce formal mathematics” which

leads students to be motivated to learn the formal aspects, not the rationale, of collegiate

mathematics.

In the following pages, I will analyze Dr. Wyatt’s beliefs and methods of motivation in

two ways. First, I will describe Dr. Wyatt’s view of the importance of motivation followed

by illustrative excerpts. Second, a description of the topics, both the logical structure and

content, covered over multiple days will be discussed.

Dr. Wyatt’s beliefs about motivation. When describing what prerequisite knowl-

edge students need to succeed in a Transition-to-Proof course, Dr. Wyatt stated the follow-

ing.
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[I]f you ask me what is truly helpful, I think just, you know, a mathematical way

of thinking. So all of the officially listed prerequisites, sure they will help, but

I always have the belief [that] some people can just learn [the course content]

without those prerequisite... I always have the feeling that some high school

students can just learn [the content of a Transition-to-Proof course] pretty well

(Personal Interview, February 12, 2019)

In short, Dr. Wyatt believes that some people have a natural drive and desire to learn

mathematical content, that is, are motivated intrinsically to learn mathematics. Further

this drive can act as a substitute for a strong mathematical background. From a historical

point of view, several mathematicians (as well as others from various academic fields) have

had little to no formal mathematics training yet were motivated to learn mathematical

content to an extent allowing them to formulate remarkable findings. In essence, Dr. Wyatt

is acknowledging the same type of drive that allowed these self-taught mathematicians to

succeed.

However, Dr. Wyatt is not sure how to foster this type of motivation, acknowledging

how cultural differences often play an important role in student motivation, citing his beliefs

about Chinese mathematics students.

[Many] Chinese students [have this drive], some of the drive might come from

their parents or their peers because everyone is trying to be good at mathematics,

so they feel pressure. So there is some kind of pressure, or whatever, that pushes

them to learn... I don’t know how to generate, how to create that pressure.

(Personal Interview, February 12, 2019)

This is a form of extrinsic motivation; Locke & Schattke (2018) define extrinsic motivation

as “means–ends relationship; it is doing something to get a future value (avoid a future

disvalue).” In the situation posed by Dr. Wyatt, the value is praise from parents or respect

from peers; that is the culture, an external factor to the learning of mathematics, places a

high value on learning mathematics. Thus, students want to learn mathematics to gain this
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value. Dr. Wyatt’s belief on the cultural impact of motivation is again mentioned at the

end of the interview.

[Students who do well in academics] are the most popular person. Just imagine

if sometimes the math guy or the physics guy or whatever, if [academics] got

that type of attention; then the students [will] all try to study mathematics and

physics... all the students, as a whole, will be better at mathematics. (Personal

Interview, February 12, 2019)

This demonstrates Dr. Wyatt’s strong belief that culture is a key aspect of determining

students’ motivation to learn mathematical concepts.

Even though Dr. Wyatt admits he is uncertain as to how to develop the drive to learn

mathematics in students, he does provide several examples about what can be done in the

classroom to possibly develop this drive. The primary method he mentioned was “practice

and [completing] problems.” This coincides with Dr. Wyatt’s method of preparation, that

is, his focus on using examples, both purely mathematical and in real world examples, which

will be discussed in more detail in Section 4.2.2 (Personal Interview, February 12, 2019).

Since he views the use of examples as the “best way” (for him) to instruct mathematics,

he naturally feels that practicing and completing problems, i.e. completing examples, will

motivate students to learn mathematical content. However, he notes that every instructor

teaches in their own way and comments the methods used by other instructors are valid, so

it can be said that he believes there are many ways of fostering the drive for students to

learn mathematics.

Evidence of motivation of content from the lectures. As stated previously,

Speer et al. (2010) define motivation of content specifically with regards to topics or methods

that take place over several class meetings. During the eight lectures two topics, relation-

s/functions and cardinality, took multiple class sessions to complete. Of these two topics,

I only observed the introduction to cardinality, as my first observation occurred during the

discussion of relations and functions. Therefore, from a topical standpoint, I only observed
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the rationale for the study of cardinality.

Table 4.4 provides a topical outline2 by date of the eight lectures I observed in Dr.

Wyatt’s Transition-to-proof course. Primary topic identifies the overarching category the

lesson belongs, that is to say, a topic that may span multiple class sessions. Sub-topic

identifies the specific information covered in the lesson. Prerequisite notes information from

previous lessons required to study the subtopic based on Dr. Wyatt’s emphasis during the

lecture. This table shows that the subtopic injective and surjective functions is a prerequisite

for the majority of the observed lessons. Therefore, the rationale provided for this subtopic

will be examined.

Table (4.4) Topical Breakdown of Dr. Wyatts Lectures

Date Primary Topic Subtopic Prerequisite
Oct. 29 Functions and relations Injections and surjections Definition of functions
Nov. 5 Functions and relations Injections and surjections Function compositions
Nov. 7 Cardinality Equivalent sets Bijective functions
Nov. 12 Cardinality Countability Bijective functions
Nov. 14 Cardinality Comparing sets Bijective functions
Nov. 26 Division algorithm Greatest common divisor None specified
Nov. 28 Pigeonhole Theorem Importance of assumptions Bijective functions
Dec. 3 Exam review various various

Therefore, what follows are three examples of how Dr. Wyatt uses motivation. First,

the rationale for cardinality of a set3 will be identified. Then, the rationale for studying

injective and surjective4 functions will be presented. Thirdly, the rationale behind the use

of the division algorithm will be examined because it is a self contained lesson, that is none

of the material covered in the observed lessons were noted as prerequisites for this topic.

One example used frequently in Dr. Wyatt’s lectures on cardinality is the example of

the two infinite armies, the natural numbers and the integers. Specifically, he used this

topic to introduce how to compare the cardinality of two infinite sets while emphasizing the

2This list only pertains to the observed lessons. The topical breakdown of previous lessons were not
collected.

3The “size” of a set
4Will be defined when discussed



65

role students’ intuition can play in creating misunderstandings. Figure 4.10 reproduces the

diagram Dr. Wyatt used when posing the original question and the modifications he made

to the original diagram while explaining the solution to the problem.
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Figure (4.10) Diagrams for the “Infinite Armies” example.

Dr. Wyatt continuously returned to the example of the infinite armies as he covered

cardinality, therefore I conclude that he used this example as motivation for the topic of

cardinality. He introduced the above example by first discussing what he believed students’

prior experiences had taught them, specifically

I think we all know how to compare finite sets. You know which one has more.

One set has a finite number of people, say 10, and the other set, another collection

has 100 horses, you all know 100 is more, and I believe you all know how to

compare finite sets, you know, which one has more elements.

Further, he states “we will define what is the definition of being bigger.” These statements

imply the rationale Dr. Wyatt provides for learning cardinality is to compare the size

of sets and identify which one is larger. In other words, Dr. Wyatt provides a specific

goal for learning the material, Locke & Schattke (2018) would describe this as achievement

motivation. Achievement motivation is reliant on a goal being set, in this case comparing

the sizes of sets, and then the tools needed to achieve the goal and the expected standards

completing the task are known.
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Thus, Dr. Wyatt’s lectures on cardinality should revolve around this goal. This is

evident through the examples he used during the three lectures on cardinality. Figure 4.11

provides a list of the examples he used during these lectures, in order of presentation. Notice

1. Let A = {a}, B = {a, b}, and C = {a, x, λ}. Show these are equivalent to
N1, N2, and N3

5 respectively.

2. Show N ≈ Z (the natural numbers and integers are the same size)

3. Show the interval (0, 1) is equivalent to the real numbers R.

4. Show N is not equivalent to the interval (0, 1).

5. Show Z is equivalent to the Rational number Q.

6. Is Z× Z countable6 or uncountable?

7. Show the cardinality of any set is less than the cardinality of the associated power set.

Figure (4.11) List of examples used when studying cardinality.

that every example Dr. Wyatt used while covering cardinality pertained to comparing the

sizes of sets. Hence, he motivated the topic by examining the infinite armies. Next, I will

identify the motivation behind injective and surjective functions, a topic required to study

cardinalities of sets.

Unlike the discussion of cardinality, Dr. Wyatt does not provide an example as moti-

vation, and instead comments that from the homework he can tell “some [students] already

know about injective functions” and then provides the definition of both injective and sur-

jective functions, given below.

Definition. Let f : A→ B be a function from A to B. We say

a) A function is surjective, or onto, if the range of f is B, that is Rng(f) = B.

b) A function is injective, or 1–1, if, for all elements in A, f(a1) = f(a2) if and only if

a1 = a2.
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Initially, it appears that no rationale is provided for this topic, and if one only examines

the beginning of the topic, they would be correct. However, the goal of discussing these types

of functions is to emphasize the necessity of focusing on the required criteria for a function

to be injective or surjective, that is to say, he focused on the logical structure of the topic

instead of the topic itself.

Again, the examples used identify the goal is to focus on the logical structure of the

definitions; however, the emphasis is demonstrated by how Dr. Wyatt explains the solutions

to the examples. The following is illustrative of the majority of examples he used in discussing

injective and surjective functions, that is most of the examples involved finite sets.

Let A = {1, 2, 3}, B = {a, b, c}, and C = {a, b, c, d}. Define f = {(1, b), (2, a), (3, c)} and

g = {(1, a), (2, b), (3, a)}.

1. Is f onto B? Is f onto C?

2. Is f injective?

3. Is g onto A? Is g onto C?

4. Is g 1–1?

5. Is f−1 a function?

6. Is g−1 a function?

As Dr. Wyatt answered these questions, he continually was asking the students why the given

answer was correct. His emphasis was on analyzing the definition of injective and surjective

functions to provide the reasoning. For example, the justification for the question required

the students to include information about the range of f in their explanation. Further, the

following exchange occurred while justifying f−1 was a function.

Dr. Wyatt(W) Therefore, from this example... what do you think? What is the so called

criteria for an inverse to be a function?

Student(s) It has to be onto and 1–1
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W Ok, so onto and 1–1. So uh, so if I want you to drop a condition which one would you

drop? Between 1–1 and onto, which one would you drop?

S Onto?

W Yes, onto. So we only need 1–1. If f is a function from A to B, then it is bijective and

we have both conditions. But if f is a function from A to C, f is not onto C. It does

not matter if it is onto.

In other words, Dr. Wyatt’s rationale for teaching injective and surjective functions is to

focus on the logical requirements for the situation to occur. Further, he expands this logical

reasoning of injective and surjective functions to how they are used, that is to say, what are

the minimum requirements for this to occur. Bijective7 functions form the foundation for

justifying that two sets are equivalent, so it is used throughout his lectures on cardinality;

however, he still reiterates the minimum criteria for bijective functions often.

The final example of rationale for a topic is demonstrated in the lecture about the

division algorithm. Before I continue, this does not directly correlate with the definition

provided by Speer et al. (2010) because this lecture is self contained, that is occurs entirely

in one class session. However, this is also the only observed topic that Dr. Wyatt did not

explicitly state a prerequisite among other topics from the Transition-to-Proof course itself.

Dr. Wyatt begins this lecture by giving the basic definition of a common divisor and

the greatest common divisor (gcd)8. Then, he finds the gcd of 24 and 42 using the definition.

First, he emphasizes that they must list “all, again I will state all, we have to get all the

divisors.” Then, he proceeds to list all of the divisors for both 24 and 42. Third, he asks the

students to identify the common divisors between the two numbers. Finally, he identifies

the largest of the common divisors.

During this example, Dr. Wyatt continually referred to the need to list everything.

After the completion of the example, he commented

7Both injective and surjective
8The gcd of two numbers is the maximum of their common divisors
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So this is one way, this is by definition, but there are other ways. Other ways are

actually more efficient, there is nothing wrong with [completing the solution] by

definition, but it is good to be efficient.

Therefore, the rationale for the division algorithm is that it is a more efficient tool for finding

the gcd. He then goes on to define the division algorithm and supply examples. The first

example he completes using the division algorithm is the same question he used to open the

lecture, ensuring students see the algorithm generates the same solution in a more efficient

way.

Summary of motivation of content. Dr. Wyatt has various methods of motivating

topics. The rationale for the topics he uses vary depending on the topic; specifically, there is

evidence that he motivates topics by focussing on the goal of the content, the structure of the

content, and the efficiency of the content. This focus allows him to structure examples and

lectures around reiterating the desired goal; this builds a structure for the students to follow

in the lecture. Further, Dr. Wyatt notes the impact culture has on students motivation to

learn mathematics specifically.

The motivation behind Dr. Wyatt’s approach to these topics is based in his beliefs

about common misconceptions students possess. To identify potential misconceptions, he

relies on his prior experiences as an instructor as well as other tools, such as textbooks and

internet resources, to inform his decisions on specific examples to use in class. Next, I will

analyze the methods Dr. Wyatt uses to prepare for his courses and discuss how he reflects

on his prior teaching methods as well as examine hypothetical methods of instruction.

4.2.2 Preparation and self reflection

Speer et al. (2010) state that collegiate mathematics instructors must “evaluate their

plans, particular actions and choices, and their students’ contributions and questions before

they teach their next lesson” to ensure that other aspects of teaching practices are formulated

to best benefit the students. For this section, preparation includes choosing what information
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to present, how to display that information to the class, how to pose questions, and how to

allocate time; preparation with regards to the construction of assessments will be discussed

in a later section. While the exact information to be covered in a course is prescribed prior

to an instructor’s individual involvement, how the instructor chooses to cover the material

is formed by that individual’s beliefs about teaching and learning.

Below I will examine Dr. Wyatt’s methods of preparation and his opinions about his

instructional methods. First, I will look at what Dr. Wyatt views to be the best way for

him to act as an instructor, including how he chooses what types of examples to use and

when he uses both real world and purely mathematical examples. Second, I will look at how

Dr. Wyatt reflects on his experiences as an instructor, including his ability to examine how

he would use a reading centric method to teach proof techniques, how students’ responses

to assessment questions help guide his instruction, and how he views his methods of helping

students identify appropriate proof frameworks to use for certain proofs.

The use of examples. Dr. Wyatt described his role as an instructor in terms of

finding his “best way” to structure the material so that the students have the tools to fully

understand the topics being presented. Dr. Wyatt states

I just teach the material and find my best way to teach that. So in terms of how

to explain material and new idea and also how to, yeah, explain a new idea so that

the students can understand it better. To assign my homework problem, how to

make my homework assignment problems in a way so that it, uh, it helps the

students digest the material, the lesson... all of the components of my teaching

are just, ah, they are geared up to make sure the student can learn the materials

(Dr. Wyatt, Personal Interview, February 12, 2019)

Two questions arise from his statement. First, what processes does Dr. Wyatt use while

preparing for his courses? Second, why are these the methods Dr. Wyatt trusts will help the

students understand the material fully? To answer these questions, I will examine evidence

from an interview held with Dr. Wyatt on February 12, 2019, observations of several lessons
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taught by Dr. Wyatt, and feedback from his former students about his teaching methods.

When asked how he starts his preparation, Dr. Wyatt responded the “examples I use in

class to explain the idea... both the truly mathematical problem and the so called real world

problem” (Personal Interview, February 12, 2019). Essentially, his examples were used as a

guide, but he did not restrict himself to a specific type of example. The extent to which Dr.

Wyatt focuses on the examples was noted by a former student, who states that Dr. Wyatt

covered the essential material of the course “clearly and always using examples.” First, I will

examine how he determines which type of example to use for a given topic; then, specific

instances of “real world examples” from the interview and his lectures will be identified.

Thirdly, some strictly mathematical examples from his lecture will be examined.

Dr. Wyatt understands that time constraints prohibit him from “attach[ing] a real

world example” to every topic that arises in his classes (Personal Interview, February 12,

2019). He uses the internet to decide about the appropriate example by identifying the topics

that are not only confusing to students but also to the “general public.”

They don’t understand very well, just like if you say ‘only if,’ at least some

people, they are asking ‘what does only if mean?’ They are asking online which

means, yeah, not just the students in my class but also many people in the general

public still struggle with that thing. So therefore, yeah, I will try because of that;

I try to fully explain more using, uh, real world examples. (Personal Interview,

February 12, 2019)

So topics that he feels are not well understood generally are the topics he will use a real world

example to discuss. He further stresses that he will always discuss the purely mathematical

information, but he feels that real world examples are essential for students understanding.

Topics that are “very fundamental in mathematics and also in [the students’] real life” will

include more real world examples to support the formal mathematics (Personal Interview,

February 12, 2019).
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Real world examples. During the interview, Dr. Wyatt provided several examples

of the types of real world questions he uses in class. When dealing with subsets, he explained

“I write A ⊂ B you know, mathematically, but I also use a real world example; I like to

use the toy collection to explain the idea.” A toy collection is something that most students

will be familiar with; for example, linking all of the dinosaur toys as belonging to the entire

collection while still being their own set is a foundation for students to begin to understand

subsets. Also, Dr. Wyatt mentioned comparing the process of induction to that of dominos,

where you “make one falling and knock down the next and the next,” stressing the importance

of having a true base case in order to construct an inductive proof.

The following are two instances from Dr. Wyatt’s lectures using real world examples in

a similar manner to what he discussed in the interview above. The first instance discusses

the cardinality of sets, specifically how Dr. Wyatt links the students intuition about the

cardinality of finite sets to that of infinite sets. The second discusses the Pigeonhole Principle

and how he uses diagrams and students’ access to technology to emphasis the basics of the

Pigeonhole Principle.

Prior to formally discussing cardinality, Dr. Wyatt discussed comparing cardinalities of

sets in a less formal way. He provides the students with three separate comparisons, the first

two with focus on how students’ intuition is a useful tool but can sometimes be misleading.

In the first, he examines how to compare finite sets to other finite sets; then, he compares

finite sets to infinite sets. Third, he compares the infinite sets of the natural numbers and

the integers.

He began by discussing the intuition that naturally lends itself to finite sets.

I think we all know how to compare finite sets. You know which one has more.

One set has a finite number of people, say 10, and the other set, another collection

has 100 horses, you all know 100 is more, and I believe you all know how to

compare finite sets, you know, which one has more elements.

Also, he describes how he is confident that the students all know an infinite set is larger than

a finite set. He is acknowledging and emphasizing that the students already have the tools
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needed to understand how to compare anything having to deal with a finite set because it

is “one of the basic things for human beings to see the world.” In short, all humans have an

understanding of the size of finite collections, so students’ intuition can be used as a guide

for these types of situations.

Dr. Wyatt then presents the situation where a comparison between two infinite sets is

required. Specifically, he presents a situation where the natural numbers and the integers

are compared to each other.

Of course, we will define what is the definition of being bigger, right now we

will just call it a tricky question. But, uh, so let us say it this way. Say I am a

general, all that means is I control an army. And I have [the natural numbers as

my] soldiers, so 1,2,3,4,... And you are a general controlling [the integer] army.

They are all true soldiers, they all have the equal fighting power, fighting ability,

its just that their name is -1,-2 or 1, 2 and so on.

So the question becomes, if these two armies were to do battle, who would win? He describes

how their intuition might cause them to believe the integer army would win because “from

a certain point of view it makes sense;” the integer army “extends in both directions,” are

both infinitely positive and infinitely negative, so the integers appear to be twice as large

as the natural numbers. However, using the diagram in Figure 4.10, Dr. Wyatt presents a

pattern that will allow him to position his army to create “one on one combat,” touching

on the need for an injective relationship between the infinite sets. Figure 4.10 is duplicated

below.

In short, he used the above example to demonstrate two aspects about cardinality of

infinite sets. First, students’ intuition may be misleading when dealing with infinite sets,

that is to say, it “looks like” the integers are larger than the natural numbers. Second, for

two infinite sets to have equal cardinalities requires a “one on one” situation to be identified.

Dr. Wyatt continues to reference the above example as he continues his discussion about

cardinality with infinite sets. He continues to use diagrams when discussing the cardinality

of the rational numbers, real number, and several cross products, often reverting back to
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Figure (4.12) Diagrams for the “Infinite Armies” example.

this example to remind students they need to use their intuition wisely.

The next instance of Dr Wyatt’s use of real life examples occurs during the discussion

on the Pigeonhole Principle9 in his November 28th lecture, Dr. Wyatt used three examples

based off of real world situations. The first example pertained to a small group of people,

specifically any group with at least eight people. In such a group, he claimed that “there

exist at least two people with the same birth weekday,” that is at least two people born on

the same day of the week. To direct this example toward the mathematical definition, that

is there is no injective function that exist between a set of at least eight people and the set

of days of the week, which has exactly seven members, Dr. Wyatt presented the diagram in

Figure 4.13, noting the cardinalities of both sets. That is to say, the cardinality of set A is

8 and the cardinality of set B is 7. Since ¯̄A > ¯̄B, two of the points in A would have to be

sent to the same day of the week in B.

For the second example focussing on the Pigeonhole Principle, Dr. Wyatt gave the

assumption that “humans can live to be at most 150 years old” and asked the students if

the statement “every group of more that 151 people contains two people with the same age”

was true. A student responded that this statement is true; then Dr. Wyatt emphasized that

this would not necessarily be true without the assumption about the maximum human age.

9Let A and B be non-empty sets such that ¯̄A > ¯̄B. Then there exist no injective function from A to B.
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Figure (4.13) Diagram showing that in a set of eight people, two people must share a birthday.

Thirdly, Dr. Wyatt proposed a situation where the students had to look up information

prior to answering.

There exist at least two people in the greater-Atlanta area, of course, so far this

is correct as I haven’t finished the example, who have the same number of hair,

the word the same [number of] strands of hair... so how to do this, again, using

the Pigeonhole Principle. How many people we have in greater-Atlanta?... How

many strands of hair does a human have?

After searching the internet, one student provided the population of greater-Atlanta

(486,290) and another student provided the number of hair follicles on the human head

(100,000). The last three examples highlight various aspects of the Pigeonhole Principle, the

need to identify the cardinality of the sets in question, the importance of specific assumptions

before proceeding with a solution, and how questions that seem relatively complex (the third

example) can be reduced down to simply an examination of the cardinality of sets.

Purely mathematical examples. As mentioned previously, Dr. Wyatt knows “I

don’t have all the time to teach... therefore I don’t have all the time to just do the real world
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examples” (Personal Interview, February 12, 2019) for everything he teaches. Therefore, the

topics that tend to cause less confusion, he presents using purely mathematical examples.

Here I will focus on two instances that show Dr. Wyatt is very conscious of the students

needs when it comes to looking at purely mathematical examples. The first instance occurred

during a discussion about the restrictions of domain of functions; the second occurred when

examining the division algorithm.

The first instance demonstrates how Dr. Wyatt will alter his initial example to benefit

the students needs. His initial example, given in Figure 4.14, pertains to functions with

restrictions to their domains.

Let f : R→ R and g : R→ R defined by f(x) = x2 and g(x) = x+ 2.

Under h1 = f|(−∞,2] ∪ g|(2,∞), find h1(1).

Figure (4.14) An example of infinite functions with restricted domains.

Dr. Wyatt did restate that a restriction of a function is still a function and pointed out

that the two intervals used in h1 did not overlap; thus, h1 itself is a union of two functions

with disjoint domains, that is to say, a function. However, a student mentioned that h1(1)

did not exist because both of the original functions produced an answer, so the question was

ambiguous. This prompted Dr. Wyatt to alter his initial plan because he recognized that not

all of the students completely understood how restrictions on infinite domains (discussed in

a previous class) operated. Therefore, he began by looking at the same concept using finite

instead of infinite domains, as shown in Figure 4.15.

Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Define f = {(1, b), (2, d), (3, a), (4, a)}

and g = {(1, d), (2, a), (3, c), (4, d)}.
Then h = f|{1,2} ∪ g|{3,4} = {(1, b), (2, d), (3, c), (4, d)} (Provided by students)

Figure (4.15) Finite example of functions with restricted domains.
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Then he proceeded to ask for the values of h(1), h(3), and h(4). This example still

accomplished the original goal Dr. Wyatt had planned while returning to a prior topic and

reinforcing students knowledge. After this example was discussed in detail, he returned

to the original example; Figure 4.16 provides both numeric and graphical solutions to the

questions posed in Figure 4.14.

h1(1) = f(1) = (1)2 = 1
h1(2) = f(2) = (2)2 = 4
h1(3) = g(3) = (3) + 2 = 5

−4 −2 2 4

5

10

15

20

25

x

y

Figure (4.16) Solutions to the example in Figure 4.14.

The next instance of purely mathematical examples used by Dr. Wyatt, he focuses on

the division algorithm 10 and how it can be used to find the greatest common divisor of

two numbers. Dr. Wyatt used the definition of the greatest common divisor, a topic the

students are familiar with, to build up to how the division algorithm can be used. Using the

definition, he examined

gcd(24, 42)

that is all of the divisors of 24 and 42 were listed, then the maximum of the values was

selected. So

The divisors of 24 are {±1,±2,±3,±4,±6,±8,±12,±24}

The divisors of 42 are {±1,±2,±3,±6,±7,±14,±21,±42}

10For all a, b ∈ Z with b 6= 0, there exist q, r ∈ Z (0 ≤ r < b) such that a = bq + r
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Thus gcd(24, 42) = 6. While working through this example, he discusses how this method

is not the most concise method and that it provides you with little additional information.

He then presents the division algorithm and demonstrates how it can be used to calculate

the gcd(24, 42). Specifically,

42 24 42 = 24(1) + 18

24 18 24 = 18(1) + 6

18 6 18 = 6(3) + 0

Since 6 is the last non-zero remainder, it is the greatest common factor. Then he proceeds

to discuss how, using substitution, this can be used to write 6 as a linear combination of 42

and 24, that is

6 = 24(2) + 42(−1)

While Dr. Wyatt discusses this, he does not provide the reasons why being able to write the

GCD as a linear combination of the first two terms is important. I believe this is due to the

fact that this was a stand alone lesson so time constraints required Dr. Wyatt to focus on

the primary topic, the division algorithm.

Self reflection. When responding to a question regarding what Dr. Wyatt could have

done differently to improve their learning, two things former students mentioned were the

use of more in class discussion and that Dr. Wyatt has a tendency to become sidetracked.

With regards to the first comment, the student is not positive “if [more in class discussion]

would have improved my learning given the personality” of Dr. Wyatt. The second student

noted that Dr. Wyatt is aware that he gets sidetracked, and works to get back on topic

quickly. Both of these comments note that teaching is a very personal activity, and that Dr.

Wyatt ultimately has to make the final decision as to whether or not certain practices are

used in his classroom.

Dr. Wyatt is very reflective about his teaching. He admits that he uses his methods

because they are his best way of teaching, but he is able to examine other methods and
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look at how he may implement such methods in his class. Also, he freely admits when

he is “lacking” a particular aspect of his teaching. Dr. Wyatt’s reflection practices will be

analyzed by seeing how Dr. Wyatt views the use of reading as an instructional method; then,

I will examine the importance Dr. Wyatt places on the details of proof writing. Finally, Dr.

Wyatt discusses how he demonstrates when to use various proof techniques.

Reading as an instructional method. When discussing the students’ role in learn-

ing proof techniques, Dr. Wyatt states

I almost don’t assign any like reading, you know like “for the next class you

should read,” you know I almost never do that. But since you are asking this

question, say if I want to do that, say if I plan to do this kind of assignment,

yeah, I don’t have any novel idea you know you can just read the thing, read,

uh, yeah more than once that would definitely help. Read the material, the

next material, once and, uh, yeah. make sure you understand the critical steps.

(Personal Interview, February 12, 2019)

When asked why he does not assign reading generally, he responded simply that he does not

“know if it would help” (Personal Interview, February 12, 2019). Further he notes that the

students have “lots of classes, [so] they don’t have the time” to read the material (Personal

Interview, February 12, 2019). In his mind, time constraints could prevent students from

gaining further understanding of proof techniques from reading assignments; therefore, he

prefers to work on the assumption that he will be teaching the material from scratch.

Dr. Wyatt proceeds to discuss how his teaching methods may change if he were to

assign reading assignments. He comments that if he assigned reading, then he would not

“do as much lecturing”, providing fewer examples than he currently uses. Instead, he would

assign more exercises because the students should have obtained the basics from the reading.

He acknowledges that the students would still need guidance with regards to the exercises,

but believes this could be “a way of teaching the material.”
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That being said, Dr. Wyatt then expressed the fact this may be a cycle of his own

creation.

The way I teach does not require reading, so therefore they do not read [the

material]. So it might be, you know, you can call it a cycle, um, yeah. I think

that is the thing, I don’t know, the other instructors, they might [require reading]

but I can’t. I thought on it but I do not have the nerve to do it. (Personal

Interview, February 12, 2019)

This connects to the comment made by his former student concerning Dr. Wyatt’s person-

ality, specifically, it does not tend itself toward assigning reading because he prefers to teach

the material from scratch, where he knows all of the students are on equal ground. The risk

associated with fundamentally changing educational methods described by Le Fevre (2014).

She states “altering the way [schools] have always done carries cost of not only risk and

failure but sadness and loss” (p. 57). That is to say, Dr. Wyatt cannot find the “nerve”

to alter his teaching methods because it increases the chance of failing to properly instruct

students. Dr. Wyatt’s methods are very detail oriented and designed to work with his beliefs

and personality, which I will analyze next.

Teaching the details. While discussing students’ responses to questions on assess-

ments, Dr. Wyatt commented on the fact that grading these questions “helps with my

teaching” (Personal Interview, February 12, 2019). One reason is he makes a note on what

he needs to emphasize either the next time he teaches the topic or in the next class depend-

ing on the severity of the error. However, he notes that looking at the students’ responses

provides a guideline for how much detail is needed when looking at proofs.

Dr. Wyatt comments

I can be honest, some textbooks give, uh, some textbooks give very sketchy

proofs, you know. If I don’t [examine students responses to identify how they

can connect material] then I might think, oh this kind of sketchy proofs are
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perfect, I don’t need to do anything. In class I just also do sketchy proofs, you

know this is the proof, just learn it (Personal Interview, February 12, 2019).

By examining students solutions to various assignments, he notes the level of detail the

students require to learn a proof. Thus, he can ensure that the examples he uses provide

enough detail to both guarantee students understand the material and to help the student

develop reasoning skills so they can fill in the gaps of “sketchy proofs” they encounter in

future courses. This includes the examination of proof techniques and logical thinking in

general.

Demonstrating when to use various proof techniques. Dr. Wyatt describes

how he scaffolds instructing students to use specific proof techniques on assignments as

stages. In the first stage, a specific proof technique is prescribed, that is a question will

state specifically to use, for example, the principle of mathematical induction or a proof by

contradiction. The second stage of these assignments still provides details on methods to

be used; however, it is now requested more generally, such as “use [an] indirect method...

[the students] at least know it could be by contradiction or by contraposition” (Personal

Interview, February 12, 2019). The third stage, which Dr. Wyatt admits does not appear

much on his homework assignment for this course, involves no actual guidance on technique

and instead just asks the student to prove the statement.

When asked how he provides information to the students later in the course on why he

chose to use a specific proof method in class, Dr. Wyatt states

I think that the truth is maybe I, if I recall, maybe I don’t do that, so called

I don’t explain as much as [is ideal]. So later on I might just say it this way,

yeah this is a theorem and ask how to prove it. I might just say, we prove it by

contradiction, so uh no, I know you are here you are asking how do I explain.

Why do it this way, the truth is maybe [I do not explain my why]. (Personal

Interview, February 12, 2019).
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He goes on to state that this part is “hard to explain,” but he notes that sometimes he will

follow up a proof with the statement that this method was chosen because “it works,” it is

elegant. Further he states that maybe a method would be to ask the students to try and

prove the statement using a different framework, but acknowledges this would be a difficult

thing to do in many cases. Dr. Wyatt concludes the discussion on this topic with a request

to be informed about a good method for doing this if one existed or is discovered.

Dr. Wyatt’s preparation focuses on which examples will best help students understand

the material presented in the course. These choices occur because Dr. Wyatt takes the

time to identify common misconceptions about specific mathematical topics. Further, he

has strong beliefs how he should present the material while acknowledging his methods are

not the only way of instruction. He is able to reflect on other teaching styles and even

formulate a possible structure of the way he would implement such a style. The next topic

I will analyze is how Dr. Wyatt allocates time during a lesson.

4.2.3 Time allocation

Content coverage requirements do affect the methods used by mathematics instructors,

specifically when considering how an instructor allocates time to various aspects of their

teaching. Speer et al. (2010) note, while the content of a course is determined by the

institute, the amount of time devoted to a specific topic and instructional practices used is

ultimately left to the instructor. Further, they note that the amount of content in a course

“forces teachers to make hard choices about what to include and exclude” with regards to

the amount of time spent on any given task. Further, Johnson et al. (2016) found that not

only instructors, but also students, in Calculus I courses feel “there was not enough time to

understand difficult ideas.” Also, Johnson et al. (2017) identify time constraints as having

an affect on instructional practices. In short, the amount of time an instructor can devote

to a given task has a strong effect on how an instructor allocates their time. Dr. Wyatt

describes his teaching method through the use of examples. In fact, Dr. Wyatt’s methods

of preparation have been adapted around this purpose; he states:
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When I first got into teaching, when I first teach in the [United States], I write

my notes in very detail, almost sentence by sentence, but now I don’t do that.

Now I just think about what examples I use in class to explain the idea, what

example includes both the truly mathematical problem and the so called real

world examples. (Personal Interview, February 12, 2019)

Further, he acknowledges “I have [a] time limit,” because he has to teach the required

content for the course, so the constraint on time forces Dr. Wyatt to choose when to

use specific examples (Personal Interview, February 12, 2019). The following subsections

discuss how Dr. Wyatt distributes his time throughout the Transition-to-Proof course and

Dr. Wyatt’s description of an ideal situation and how it would restructure his teaching

practices.

Dr. Wyatt’s time allocation. Through classroom observations, I noticed several

patterns in Dr. Wyatt’s instructional methods, specifically how he presented material and

the emphasis on different categories of the presentation of material. The majority of this

discussion will focus on the latter, while the former will be analyzed in detail in Section

4.2.4: Representations of Concepts and Relations. Table 4.5 provides a breakdown of Dr.

Wyatt’s instructional methods by time, in minutes. I identified four categories Dr. Wyatt

prioritized, specifically Review, Mathematical Content, Examples, and Other, each of which

will be discussed below. The following paragraphs define each of the categories individually,

including reasoning for the categorical structure.

Table (4.5) Dr. Wyatt’s Allocation of Time (in minutes) by Category.

Date Oct 29 Nov 5 Nov 7 Nov 12 Nov 14 Nov 26 Nov 28 Dec 3
Time per
Category

Precent

Review 5 3 7 10 10 0 10 45 90 15.0
Content 15 21 11 30 7 17 4 0 105 17.5

Examples 39 45 50 34 43 45 31 20 307 51.2
Other 16 6 7 1 15 13 30 10 98 16.3

Course Time 75 75 75 75 75 75 75 75 600 100

One of Dr. Wyatt’s former students stated “[Dr. Wyatt] frequently repeated essentials,”
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that is material that builds the foundation of a course. A second student reiterated this

stance, describing Dr. Wyatt as placing “very heavy emphasis on the foundational material.”

Essentially, Dr. Wyatt reviews material throughout the courses he teaches, especially if he

believes that material as essential to the topic being discussed currently. Maulana et al.

(2015) define review as involving “all activities during which the class discuss material/topic

of the previous lesson.” In Dr. Wyatt’s classroom, this definition works well when considering

a multi–day lesson, such as the discussion on cardinality of sets, which took place over

three days. However, the lesson pertaining to the division algorithm was covered entirely

in one day, and as a result, did not have a review portion opening the lesson. Methods of

presentation of review materials will be discussed when analyzing representation of materials.

New content was discussed every class session, as observed over the course of all lectures

accept the exam review; further, this was reiterated by one former student who commented

the course was “very well paced... [Dr. Wyatt] didn’t linger on [one topic] too much unless

students were not grasping the concept well.” Time allocated to covering new material, that

is the “lesson components where new material is introduced” (Maulana et al., 2015) is shown

in the table above as content. Here Dr. Wyatt would either introduce a new primary topic,

such as cardinality of sets or the division algorithm or would introduce a subtopic, such

as equivalent sets or injective and surjective functions. Types of content covered in this

category include formal definitions and theorems. The actual methods used to represent and

discuss this content will be described Section 4.2.4.

Maulana et al. (2015) group the use of examples as being part of the introduction of new

content. I have chosen to consider the examples, including those relating to proof techniques,

used by Dr. Wyatt as being separate from the content of the course. There are two reasons

for this decision: (a) Dr. Wyatt, and several of his former students, describe his instructional

method as relying heavily on the use of examples, both real world and purely mathematical

and (b) the primary goal of this course is to introduce students to and provide examples of

proper proof techniques.

The category other describes “all components that are outside of the lesson content but
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occur during lesson” (Maulana et al., 2015). In Dr. Wyatt’s case, this refers to transitioning

between review of previous topics, presenting new content, and demonstrating the content

through the use of examples and proofs. One exception to this rule occurred on November

28; on this day, an assessment was administered to Dr. Wyatt’s class as part of the NSF

funded research study in which Dr. Wyatt participated.

Table 4.5 shows that Dr. Wyatt allocates over 50% of the course time to providing

examples. Given that Dr. Wyatt has described examples as his “best way” of covering

material, this distribution makes sense (Personal Interview, February 12, 2019). Further Dr.

Wyatt spends 17.5% of the course time to covering new content; again this aligns well with

comments about Dr. Wyatt’s teaching from former students and the constraints that arise

from the amount of content to be covered in the course. Time allocated for other activities

(16.3%) and reviewing previous content (15.0%) are possibly skewed by three factors. First,

on November 28, an assessment administered as part of the NSF research study occurred

during the last thirty minutes of class time. Second, the fact that one of the class sessions

observed featured the review for the final exam does not exemplify the amount of time Dr.

Wyatt would spend reviewing previous material. Finally, there was one class session that

featured no review of previous content, which by analyzing the other observed lessons does

not appear to be the norm for Dr. Wyatt’s class. However, with those three instances aside,

it does appear that Dr. Wyatt tends to allocate less time to the review of previous material

than other activities that may occur during the class. Next, we will analyze how Dr. Wyatt’s

ideal amount of time would alter the structure of his class.

Time constraints shaping Dr. Wyatt’s instruction. Dr. Wyatt described him-

self as being “old fashioned” in his approach to teaching mathematics, specifically he states

I think I am still doing, you can call me old fashioned, I still think the so called

just doing the problems. [The students] just do the problem, think and digest,

then do more problems. I am still this kind, one of those kinds of people (Personal

Interview, February 12, 2019).
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From this statement, it seems Dr. Wyatt feels that students learn best when they are

working through and struggling with problems. One of his former students also referred to

Dr. Wyatt’s instructional methods as “old fashioned,” commenting

[Dr. Wyatt] works really hard. He handwrites the notes as he discusses the ideas

in lecture. I know this can seem a bit old-fashioned; however, I believe it really

helped to pace the lecture and helped me to keep up with the material.

These two statements, along with evidence from the observations, identify the primary

method of instruction Dr. Wyatt used in class was through lecture; specifically, Dr. Wyatt

allocates time to present content using a traditional lecture method incorporating problems

and examples to work through with the students as they work with the content.

Johnson et al. (2017) categorized the structure of lessons in an Abstract Algebra course

as either traditional, mixed, or alternative based on the amount of time devoted to lecture.

Their description of traditional instruction is given below

Traditional instruction is characterized by heavy use of lecture. During lectures...

[instructors] are are showing students how to write specific proofs and pausing

to ask students questions.

Traditional instruction accurately describes Dr. Wyatt’s instruction as almost all of the time

in each of his lessons is devoted to some form of lecture, where he asks questions of students

while presenting and completing examples and providing proofs of theorems to the class.

The primary reason Dr. Wyatt chose to use a traditional instructional method is due to the

time constraints of the course.

Dr. Wyatt commented that he has “to teach the materials that are required in the

course, so therefore I don’t have all of the time” to attach a real world example to each topic

in the course. He also notes, when explaining why he does not assign reading outside of

class, that students have time constraints of their own, commenting

[Students] have lots of classes, they don’t have time [to complete reading assign-

ments]. My feeling is it just, [the students] are counting on the fact that I will be
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teaching the material in the class; therefore, they don’t need to just prepare [by

previewing the content for the lectures] (Personal Interview, February 12, 2019).

It is evident that Dr. Wyatt feels he and the students have certain time constraints that

determine, in part, how Dr. Wyatt structures his instructional time. However, Dr. Wy-

att described two situations that would possibly alter his instructional methods. Both of

these situations, specifically a master-apprentice and the students having the Transition-to-

Proof course as their sole responsibility, are dependent on the elimination of students’ time

constraints.

The hypothetical method of a master-apprentice relationship was discussed by Dr. Wy-

att while responding about how to foster a desire to learn in students. He began by describ-

ing a “blacksmith, say they just follow their master like their whole life... the early part of

the study they just watch what the master does” before practicing the material under the

“blacksmith’s” supervision (Personal Interview, February 12, 2019). Then, he stated

If this is the way, I know this is not practical, you know I fully understand that,

but then I wouldn’t teach all the time. I would let them struggle with a problem.

Understand, sure I would teach occasionally, once in a while. You know the key

steps I would give some hint or whatever, but most of the time I would just let

them, uh, do the thing (Personal Interview, February 12, 2019).

Though having a true master-apprentice situation is not practical, Johnson et al. (2017)

describe the alternative category of instruction being evident by “having students work in

small groups... have students work individually... having students explain their thinking.”

Further, Johnson et al. (2017) note some lecture and teacher-oriented are included; however,

they are limited when compared to student-oriented activities. This could be used as a

substitute for what Dr. Wyatt describes as the master-apprentice relationship. The students

still struggle with the material, but within the confines of the time restraints.

As mentioned previously, one reason Dr. Wyatt does not assign reading because he

does not believe the students have the time to truly focus on the reading. However, if he
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felt the students had the time outside of class to read the material fully, he described how

his teaching methods would alter.

Say I gave a reading assignment, at the end of the class I give a reading assignment

for the next class. You know, ‘oh read this,’ so in the next class I don’t do as

much lecturing. I let [the students], you know, just say you have read those, then

let’s do some exercises (Personal Interview, February 12, 2019).

This method coincides well with the mixed instructional method described by Johnson et al.

(2017). As the name suggests, this method is a combination of the traditional and alternative

instructional methods, specifically

Mixed instruction is characterized by moderate use of lecture... Additionally,

there is some class time devoted to students working alone and in small groups,

giving presentations, and explaining their thinking.

Assuming that students read that material, the class could begin with groups of students

working together to ensure they understand the key points of the reading; then the instructor

could have a short lecture on some of the applications of the material. Finally, students can

work in groups or individually on exercises. This method could approximate the hypothetical

method presented by Dr. Wyatt.

These two hypothetical situations demonstrate that Dr. Wyatt is open to considering

different methods of instruction, given the time, and that he believes a good way for stu-

dents to learn material is by struggling with problems. When we discuss the format of the

assessments (homework and exams) Dr. Wyatt uses, I will analyze this concept of struggling

with problems but having hints to guide the students’ thought process. Next, I will describe

Dr. Wyatt’s methods of representing and presenting content.

4.2.4 Representations of concepts and relations

Speer et al. (2010) discuss representing mathematical content as consisting of “both what

is displayed and how it is displayed.” They note several factors that affect the representations
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used in mathematics classrooms, including the textbook used for the course, representation

methods that have worked well in the past for the students, and the prevalence of technology

in the classroom. Dr. Wyatt makes the selection of his representations based partly on his

personal beliefs about teaching and learning, the textbook used in the course, the needs of

the students in the course, and information he obtains from other resources, including the

internet.

I will begin analysis of how Dr. Wyatt represents mathematical content with discussing

the primary instructional method used in the course, that is to say, how Dr. Wyatt uses

lecture. Then, I will describe the way notation, algebraic expressions, diagrams, and verbal

discussions are used in his course. Next, the role the textbook plays in informing how Dr.

Wyatt represents mathematical content will be examined. Finally, how the students needs

and technology inform Dr. Wyatt’s choice of representations will be analyzed.

The structure of Dr. Wyatt’s lecture. The primary method by which Dr. Wyatt

presents information in this course is through traditional means, that is to say in a teacher–

centric way. As noted when discussing how Dr. Wyatt prepares for his class and how he

allocates time within his lesson, he considers his “best way” of communicating mathematical

content is through the use of examples and explanations of those examples. Several times

throughout the interview, Dr. Wyatt describes how he just teaches the material, “in my

class I, most of the time, I teach [the material]” (Personal Interview, February 12, 2019).

In short, Dr. Wyatt is using the word teach to mean using lecture, or teacher centric

explanations. Johnson et al. (2016) discuss in their examination of content coverage and

instructional methods in Calculus I that “lecture is still overwhelmingly predominant method

of instruction.” Further, Weber (2004) and Lew et al. (2016) both identify lecture as the

predominant method of instruction in collegiate mathematics.

Weber (2004) notes, while lecture is the primary method of instruction used by Dr. T in

his analysis course, the methods he uses vary based on the goal he is trying to accomplish and

the topic being discussed. For example, Dr. T uses a logico–structural method early in the
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analysis course, which is characterized by the “[careful use of] the definitions to understand

how to begin and conclude proofs” (Weber, 2004) and seldom uses diagrams; one of Dr. T’s

goals was to improve the logical thinking skills of his students and allow students to become

comfortable with proofs. In contrast, Dr. T used a semantic teaching style, characterized

by an emphasis on conceptual understanding and the use of diagrams; Dr. T’s primary

goal for the students when using the semantic teaching style was “for students to have rich

imagery they could associate with the concepts being taught” (Weber, 2004). In short,

well structured lecture based on specific goals using task to enhance those goals is a strong

instructional method.

Dr. Wyatt has well formed beliefs that drive his lectures, and the methods he uses

to represent the material varies based on his beliefs and the students’ needs. As evident

from the way Dr. Wyatt allocates time during lessons, 51.2% of his instructional time is

devoted to the use of examples and proof techniques. In five of the eight observed lectures,

Dr. Wyatt used “real world” examples. In all eight lectures, He used formal mathematical

examples. The methods Dr. Wyatt used to present the examples varied based on topic,

and the methods included the construction of sets using set notation, the use of graphs on

the Cartesian plane, diagrams, and verbal discussion. In the following paragraphs, we will

discuss each of these methods with examples from the lectures themselves.

The role of set notation. The first topic I observed Dr. Wyatt teach was injective

and surjective functions. For this topic, which were covered over the course of two class

sessions, finite sets were the primary objects used as examples. One example used is provided

below

Let A = {1, 2}, B1 = {a, b, c}, and B2 = {a, b}. Consider the functions f1 : A → B1 =
{(1, a), (2, b)}, f2 : A→ B2 = {(1, a), (2, b)}, and f3 : A→ B2 = {(1, a), (2, a)}.

Figure (4.17) An example from a lecture on injective and surjective functions.

Dr. Wyatt then described each of the three functions in Figure 4.17 in regards to their

status as injective and surjective functions. Specifically, he identified f1 as injective but
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not surjective on B1, f2 is bijective11, and f3 possess neither of these qualities. While he

wrote the status of each function on the board, he verbally provided the reasoning for each

status. Weber et al. (2016) discuss various methods for improving lectures in upper level

undergraduate mathematics courses; one of their suggestions is to “write down the key points

[mathematics instructors] want the students to learn.” Their reasoning for this suggestion is

given below:

It is natural for students to focus on what is written on the blackboard; this is a

traditional way by which teachers emphasize importance, and written comments

have a permanence that oral comments lack (Weber et al., 2016).

If one assumes Dr. Wyatt is using this knowledge as he is teaching this topic, then it appears

that Dr. Wyatt’s goals for this example are to provide guidance on how to list out functions

of finite sets and that these specific functions fit their status in regards to injective and

surjective functions. However, it is clear that Dr. Wyatt is emphasizing the reason why

these functions have their specific statuses. Therefore, Dr. Wyatt is not maximizing the use

of this example, that is he is not representing the importance of the reasons why functions

are injective or surjective because he is not writing down the reasoning explicitly.

Graphs of algebraic functions. When discussing the definitions of image and preim-

age, Dr. Wyatt asked the students to study the function f(x) = x2 − 2 and consider the

following

1. f ((−2, 1)) = [−2, 2)

2. f−1 ([2, 7)) = (−3,−2] ∪ [2, 3)

To explain the former, he used the diagram given in Figure 4.18 Notice that on the graph he

notes the interval that is being examined and highlights image of the function by thickening

the y–axis. He takes a similar approach for the preimage by using the diagram in Figure 4.19

Notice that Dr. Wyatt again highlights the interval being considered, and then thickens the

11Both injective and Surjective on B2
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Figure (4.18) Graph used to describe f ((−2, 1)).

line on the x–axis to highlight the preimage.

In both of the graphs above, Dr. Wyatt highlights two aspects: the interval being

examined by the image or preimage and the interval that is the given image or preimage.

The goal of this example is to get the students to think about infinite sets (the intervals)

and a method for identifying these sets. Again, he verbally provides the reasoning behind

each interval, that is where the endpoints come from, but what he wants the students to

understand (how to visualize the image and preimage) is displayed clearly on the board.

How Dr. Wyatt uses diagrams. In our discussion about Dr. Wyatt’s teaching

practices to this point, we have analyzed several diagrams including the diagram of “infinite

armies” used to motivate the discussion on how the natural numbers and integers are equiv-

alent and the diagram used while discussing the Pigeonhole principle. In these two cases,

the diagrams are not needed to find the solution to the given example. The former could be

described using the bijective function, which was used in a proof of the equivalence later in

the lecture.
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Figure (4.19) Graph used to describe f−1 ([2, 7]).

f : N→ Z =





−n−1
2

if n is odd

n
2

if n is even

However, this algebraic function, while accurate, does not promote understanding the con-

cept of why the two sets are equivalent. Weber et al. (2016) made the following statement

about how students think about proofs

When hearing a proof in lecture, students often focus on the calculation and

logical detail, [mathematics instructors] should shift what students attend to by

assessing their understanding of other aspects of proof.

In short, students view proofs as procedural; since Dr. Wyatt wants the students to un-

derstand why this is true conceptually, he avoided using a function that the students would

focus on calculating more than understanding. The latter could have been studied using set

notation and list. Again, Dr. Wyatt used a diagram because it can represent multiple sets

at once, not limiting the understanding to a specific case.

In short, Dr. Wyatt uses diagrams to emphasize the underlying concepts of mathe-
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matics. This method helps students develop a deep conceptual understanding of the topics

because students are shown how to visualize certain topics. This is very similar to Dr. T’s

semantic teaching style as described in Weber (2004). Dr. T wants the students to visualize

the material because he wants “students to have a sense that something occurs” (Weber,

2004) when they hear certain topics.

The use of the textbook and technology. Dr. Wyatt, as discussed previously,

does not assign the students any reading during the course. Further, Dr. Wyatt does not

reference the textbook often in class, and when he does he generally provides only a chapter

number from the textbook or references the notation used in the textbook. For example, the

textbook for this course denotes the cardinality of set A using A. As a result, Dr. Wyatt

uses this notation throughout the course. Therefore, the primary affect the textbook has on

Dr. Wyatt’s representations is by setting the notation that he uses.

Technology provides a format for mathematics instructors to “explore more dynamic”

(Speer et al., 2010) representation methods than the traditional static representations. An-

other use of technology is to allow students to quickly look up information for real world

examples. This is how Dr. Wyatt uses technology during the observed lectures.

For example, while discussing the Pigeonhole principle, Dr. Wyatt presented examples

that required more information than he had, specifically the number of hair follicles on the

human head and the population of a metropolitan city in the United States. While this

does engage students in the content, it is not using technology to represent mathematical

content. There are many computer programs that Dr. Wyatt could use to enhance the

diagrams used in this course; however, I observed no evidence of any technology used for

representing content.

Summary of representations of content. Mathematics instructors have to decide

what they display and how they display mathematical content. Dr. Wyatt chooses to use

a more traditional lecture format for his lessons. He relies heavily on the use of examples,

but those examples take many different forms, including formal mathematical notation,
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Cartesian graphs, and various diagrams. The notation he uses remains consistent and follows

the standards set by the required text of the course. He does not use technology to display

information; however, technology is used during some classroom discussions. Dr. Wyatt will

highlight important information verbally and written; however, according to the literature

he does not always use written information effectively.

Dr. Wyatt uses several modes of representation to enhance students understanding of

the topics being discussed. However, he must identify what students need in order to succeed

so he can structure his examples efficiently. The next section discusses the questioning

techniques Dr. Wyatt uses in his course.

4.2.5 Questioning

Questions are an integral part to mathematics instruction. Questions can be used to

motivate topics, identify misconceptions, and guide instruction. Speer et al. (2010) notes

that identify four components of questioning that have shown impact in K–12 mathematics

education research: Frequency, character and intent, wait time, and reactions. Dr. Wyatt

used questioning often during his instruction; however, not all questions are created equal.

Watson (2007) notes that several frameworks exist for developing questions. Likely the most

well known, Bloom’s Taxonomy, focuses on “learning as a whole-school issue” (Watson,

2007); while still useful for developing questions in the mathematics classroom, it does

have key weaknesses, primarily in what constitutes a successful outcome. I will begin by

categorizing Dr. Wyatt’s questions based on on the framework posed by Speer et al. (2010),

then specific examples of Dr. Wyatt’s questioning will be examined.

A question can “differ widely in character and in the teachers’ goals or intentions”

(Speer et al., 2010), that is to say that questions posed in a class reflect the instructors’

beliefs about teaching. However, they did provide two broad categories of questions that

will be used here. The first is what Speer et al. (2010) refer to as Teacher Questions (TQ)

which are designed to promote the structure of a lecture and engage students more than

to inform about students’ understanding of a concept. An essential trait of TQ is that the
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teacher knows the answer to the question; for example, when an instructor ask students if a

quadratic function is concave up or concave down.12

The second type of question Speer et al. (2010) describe is concerned with identifying

the students current level of understanding. They do not provide a label for this category of

question, so I will refer to them as Learner Questions (LQ) because how the learner responds

will guide the actions of the instructor. Speer et al. (2010) describe a key aspect of LQ is that

the teacher does not know how the student will respond, so the teacher uses this information

to assess understanding and adjust the prepared lesson accordingly.

I will examine Dr. Wyatt’s questioning using these two categories. To begin, I will

examine the frequency and wait time Dr. Wyatt used during the observed lessons. Table

4.6 shows the frequency for both question time broken into three categories of wait time

in seconds. It is clear Dr. Wyatt asks primarily TQs, with approximately 91.3% of his

Table (4.6) Frequency of Question by Type and Wait–time.

Category Wait Time Oct. 29 Nov. 5 Nov. 7 Nov. 12 Nov. 14 Nov. 26 Nov. 28

TQ
t < 3 s 13 9 8 12 15 10 3

3 < t < 10 s 2 0 0 3 2 4 1
t > 10 s 0 0 1 1 0 0 0

LQ
t < 3 s 0 0 0 2 0 0 0

3 < t < 10 s 1 3 0 0 0 1 0
t > 10 s 0 0 0 0 1 0 0

questions being of this variety. Further, most of these questions are accompanied by a wait

time of less that three seconds. This suggests the primary goal of Dr. Wyatt’s questioning is

to keep the lecture moving at a good pace as opposed to assessing students’ understanding

with these questions.

What follows are examples of Dr. Wyatt’s questioning practices. This includes exam-

ining the types of questions (TQ and LQ) being asked as well as examples demonstrating

Dr. Wyatt’s beliefs about questions. I will analyze two major aspects of his method: using

questioning as a tool to build a students’ confidence and how he uses questioning to build

12The concavity of a quadratic function determines the range of the function.



97

students’ understanding of mathematical proofs.

Questions as confidence building tools. Dr. Wyatt describes the questions he

asks as “immediately relevant to the material [being covered currently] but not very hard”

(Personal Interview, February 12, 2019). This statement indicates that he is assessing the

students to determine their immediate understanding of the connections between previous

and current content while attempting to build their confidence. Watson (2007) comments

that questions that enhanced the “belief, persistence and courage” of students in mathe-

matics was essential when counteracting underachievement. Also, Dr. Wyatt’s beliefs about

questioning appear to coincide with that of the subject of Weber’s (2004) case study, who

used questioning as transitioning points in proofs (immediately relevant) but were processes

that students should understand from previous instruction. I will begin by categorizing ques-

tions aimed at improving students’ confidence, including his expectation of students. Then,

I will analyze how Dr. Wyatt adjusts his expectations based on students’ responses.

When asked about his expectations of students with regards to questioning, Dr. Wyatt

discussed both the reason he asks questions and what he expects from the students. He

states

The students feel, you know, mathematics is too hard. I know [students are] not

likely to answer any of the questions, so they don’t even try. But by [asking

immediately relevant questions], if some student can answer it, then [the other

students] can see “oh yeah, he or she just answered it so it is not that hard.”

So next time [one of the other students will] answer similar type of question, or

at least I hope they will actively thinking for themselves (Personal Interview,

February 12, 2019).

In the above statement, Dr. Wyatt is describing TQs. They are designed to progress the

lecture forward as they are immediately relevant to the material being discussed. In short,

they are questions he knows the answer already and is expecting someone to be able to

answer the question quickly and accurately.
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Figure 4.20 provides the definitions for the image of a relation and the preimage of a

relation Dr. Wyatt presented in lecture. To facilitate students understanding of these

Let f : A→ B be a function. Let C ⊂ A and D ⊂ B.

Then, the image of C under f , written f(C), is defined as

f(C) = {f(x)|x ∈ C}.

Similarly, the pre-image of D under f , denoted f−1(D) is defined as

f−1(D) = {a ∈ A|f(a) ∈ D}.

Figure (4.20) Definitions for the image and preimage of a relation

definitions, Dr. Wyatt uses two examples. The first example is “a small one,” that is to

say, pertains to finite sets; the second example is a “calculus example,” that is, pertains to

an infinite set. These are good choices of examples to use for the purpose of explaining the

above definitions for several reasons. The first example is discrete, so the items can be listed

out; this ensures the students can see exactly why each item is included. Further, the first

example reinforces some of the basic concepts of set theory, a topic not typically discussed in

more computationally driven courses. The second example revisits, indirectly, a topic that

gave the student problems in the previous class meeting about restrictions on the domain of

a function discussed in Section 4.2.4.

The first example is shown in Figure 4.21 tasks students to find the image and preimage

of a function f over specific sets. Dr. Wyatt asked the class as a whole for the answers 13

to each of the six questions posed in the above example. These questions are immediately

relevant, as they are discussing the definitions just presented. Also, these questions are “not

very hard” in the sense they require the student to use skills they have developed throughout

the course (Personal Interview, February 12, 2019). Therefore, they help build the confidence

of the students in the class. Additionally, the students answered the questions quickly, with

13f(C1) = {c}, f(C2) = {d, a}, f(C3) = {c, d}, f−1(D1) = {1, 2, 3}, f−1(D2) = {1, 2, 4}, & f−1(D3) = ∅.
All answer provided by students.
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Let A = {1, 2, 3, 4}, B = {a, b, c, d, e} and define f : A→ B = {(1, c), (2, d), (3, a), (4, c)}

and let

C1 = {1, 4}, C2 = {2, 3}, C3 = {2, 4}, D1 = {a, b, c}, D2 = {b, c, d}, and D3 = {b}

Find
f(C1), f(C2), f(C3), f

−1(D1), f
−1(D2), and f−1(D3)

Figure (4.21) Finite example discussing the image and preimage of a function.

a wait time between 3 and 10 seconds. However, it is clear that these questions help to

keep the flow of the lecture consistent; that is to say, these questions fall squarely into the

category of teacher questions as described by Speer et al. (2010).

The second example, given in Figure 4.22, has the same task as the previous example,

though is taken over infinite sets. Like the previous example, Dr. Wyatt asked the class as

Let f(x) = x2 − 2. Find f((−2, 1)), f−1([2, 7)), and f−1((−10, 14)).

Figure (4.22) Infinite example discussing the image and preimage of a function.

a whole for the answers, 14 but this example he had to do a little extra scaffolding to obtain

answers from the students. Initially, the students were not sure how to begin with any of

these statements; the questions in this example, though intended to be TQs, became LQs

because the answer was not what Dr. Wyatt had anticipated.

[Asking questions] is like knowledge you know. First, someone can answer it; if

no one can answer it I will answer it. In that case it is just learning, but I think

most of the time I just want to get them involved, to let them think actively

(Personal Interview, February 12, 2019).

This example informed Dr. Wyatt about the students understanding, or misunderstandings

in this case. The difficulty for the students came from the fact they were evaluating the

14f((−2, 1)) = [−2, 2), f−1([2, 7)) = (−3,−2] ∪ [2, 3), & f−1((−10, 14)) = f−1([−2, 14)) = (−4, 4)



100

function over an interval, not at a specific value, that is to say, they did not initially think

of the question graphically. Dr. Wyatt used the graphs in Figure 4.23 to help the students

understand how to approach this example; the graph on the left illustrates f((−2, 1)) while

the graph on the right illustrates f−1([2, 7)). The students, once seeing the graph, began to

show a deeper understanding; however, a similar question posed the following class session

once again gave students difficulties. Fukawa-Connelly et al. (2017) describe the process of

using the diagrams in Figure 4.23 as an informal representation, or a “presentation that

gave meaning to the content beyond what was stated in the formal definition” (p. 573).

Dr. Wyatt altered his goal for the question (keeping the students engaged) to give deeper

meaning to the formal definitions.

(a) The image of (−2, 1). (b) The preimage of [2, 7)

Figure (4.23) The graphs of f(x) = x2 − 2 used to answer the example.

Both of these examples demonstrate three aspects of Dr. Wyatt’s questioning methods.

First, these questions both were designed to help build students’ confidence because they

have worked, at this time in the course, extensively with finite sets and with relations both

finite and infinite. Second, he expected these questions to keep the pace of the lecture

going, that is these are teacher questions. Finally, he adapted quickly when he discerned

his students’ had a misconception about evaluating functions over intervals, changing his

approach to this example. Essentially, the second example acted as a LQ, as it evaluated

students’ understanding of a topic.
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The concept of proof. Weber et al. (2016) describe two key benefits of using ques-

tioning with regards to proof writing. Questions can “give [students] a better sense of how

the material can be understood” (Weber et al., 2016) as well as inform the teacher of mis-

conceptions. In other words, questioning can help students construct the ideas behind the

proof. Dr. Wyatt states

[My questions] almost always present some kind of twist. Either it is like some

small trap, yeah or if there is some special techniques involved. You know in the

middle of a proof I might say ‘here, what to do next.’ In other words, when I ask

questions I almost always [have] some twist there, or there involves some trap or

there is some new technique (Personal Interview, February 12, 2019)

Dr. Wyatt uses the words “twist” and “trap” when describing the types of questions he poses.

These words are likely referencing how, while many of his examples are straight forward, he

does ask students questions where their intuition may hinder their comprehension. For

example, two questions posed in his November 12 and November 14 lectures on cardinality

exemplify this type of twist or trap: when identifying the cardinality of the rational numbers

and determining whether or not Z× Z 15 is countable.

On November 12, Dr. Wyatt posed the question

What is the cardinality of Q?

and instantly noted

Q ≈ N

so the cardinality of the rational numbers is the same as the cardinality of the natural

numbers. He then asked the class what needed to be true in order for the rationals and

natural numbers to be equivalent. The students noted an injective relationship had to exist.

The next question was how can this correspondence be found? Dr. Wyatt used the diagram

in Figure 4.24 to demonstrate the way a correspondence can be created. In this diagram,

15The set of ordered pairs with entries belonging to the integers.
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the x–axis consist of the Integers while the y—axis is the Natural numbers. Each point

represents the value x
y
; for example, the point (−1, 2) represents −1

2
and the point (2, 3)

represents 2
3
.

Dr Wyatt described the process as starting at the point (0, 1) to obtain zero. Then, move

right one to the point (1, 1); here he created a square around the starting point, circling all

points that produced a new rational number. This process would continue on, but he notes

one can count the number of circled points as they go, omitting those that are unnecessary.

For example, (0, 2) is not circled because it is equivalent to zero and the point (−3, 3) is not

circled because it is equivalent to −1.

Figure (4.24) Diagram illustrating the cardinality of the rational numbers.

The next class began with the following question: Is Z× Z countable or uncountable?

He gave the students a lot of wait time with this question16, letting them analyze the question

for almost a minute prior to asking them for their response. Dr. Wyatt used the diagram

in Figure 4.25 to demonstrate that Z × Z ≈ N, that is to say Z × Z behaves in the same

way as N, so it is countable. However, this did lead to the necessity of having to clarify

the meaning of denumerable. One student stated that though the natural numbers were

denumerable, not countable. This student had a misconception about the definitions of

countable and denumerable, that is, they did not connect that a set must be countable to

16In fact, it is the only LQ to have a wait time longer than 10 seconds
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Figure (4.25) Diagram illustrating the cardinality of Z × Z.

be denumerable. This question was designed to provide Dr. Wyatt with insight on how the

students thought about the logic behind the concept, but the primary benefit came from

identifying a misconception about what denumerable meant. This was clarified reiterating

the definition and stressing the requirement that the set be infinite.

Dr. Wyatt uses questioning to achieve two primary goals: increase students’ confidence

and promote active thinking. Though a limited number of examples are provided here, he

uses questioning several times in every class; however, the questions are often questions that

the answer is known, such as investigating a key step in the process of writing a proof. His

wait time fluctuates from non-existent to possibly too much; that being said, often times this

aspect of his questioning reaches these extremes for a specific reason, such as demonstrated

in the first two examples about cardinality above. Dr. Wyatt understands that questioning

is a vital practice that promotes students’ learning.

4.3 Assessment Practices

Currently, assessment design is a key topic being explored at the collegiate level, espe-

cially with regard to assessing students’ understanding of proofs. Mejia-Ramos et al. (2017)

have taken their framework, as developed in Mejia-Ramos et al. (2012), to generate and

validate sample proof comprehension test. Further, research groups have formed over the
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past decade to study the construction of assessments and students’ comprehension of proof.

Dr. Wyatt works with one of those groups, and this experience has had an impact on his

assessment practices.

In this section I will analyze Dr. Wyatt’s assessment practices, including how he con-

structs assessments and provides feedback to students. I will begin by examining his home-

work assignments; including identifying length of the assignment, the tasks being assigned

to students, and his feedback on their solutions. Then, I will discuss two specific types of

questions that appear on his homework assignments, specifically questions asking students

to grade a proof and those asking them to analyze a proof. Finally, I will analyze the second

test from his course including the overall format and students’ solutions with feedback.

4.3.1 General format of assessments

During the time I conducted my observations of Dr. Wyatt’s Transition-to-Proof course,

a total of four homework assignments(Homework 8, 9, 10, and 11), one test (Test II), and the

final exam were administered and graded. Of these assignments, I collected data, specifically

the students’ work after Dr. Wyatt graded and provided feedback on the assignments, for

the homework assignments and test. In this section, I will describe the overall format of the

homework assignments and the test, relating each question to the framework developed by

Mejia-Ramos et al. (2012) and analyzing how Dr. Wyatt’s beliefs about assessment affected

the format of these assessments.

Dr. Wyatt assigned a total of eleven homework assignments throughout the course of

the semester. Homework was always assigned on the last day of class for the week, and then

collected one week later. After the assignments are collected; Dr. Wyatt makes the solutions

available to his students. The only exceptions to this rule were the weeks before Test 1 and

Test 2, where no new homework was assigned; further, homework was assigned the day of a

test, given to the students as they turned in their test.

Every homework assignment was constructed in a similar way. There were a total of

four questions per homework; the first three questions focused on calculations, definitions,
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and justifications of various claims, that is to say, they focused on the Local Domain of

Proof Comprehension described by Mejia-Ramos et al. (2012). The fourth questions was

always formulated in one of two ways, either as a “Grade a Proof” or an “Analyze a Proof”

question, both of which will be discussed in detail in later sections. The remainder of this

section will be devoted to the examination of the first part of the homework assignments. To

accomplish this, I will analyze the various types of questions used, look at example responses

by students, and examine some comments in response to students’ solutions by Dr. Wyatt.

Categorization of questions from the homework. Excluding the “Grade a Proof”

and “Analyze a Proof” questions, there were a total of twelve questions from homework

assignments that were collected by me after Dr. Wyatt graded them. Though these twelve

questions all focused on the Local Domain of Proof Comprehension, the questions fell into

one of three broad types of task being assigned to the students: construction of an example,

evaluation of a statements validity, and calculation of a result. What follows is a description

of the category, followed by an example question; after all categories are defined, I will

analyze the student assessments themselves.

Construction of an example questions all took some variation of the following form: the

students were given a list of properties that needed to be satisfied and asked to produce a

an item the exemplified properties. For example, question 8.1, shown in Figure 4.26, asked

students to construct non–empty relations17 that satisfy specific properties. It is clear

that the objective of this question is to test students understanding about the definitions of

symmetric and antisymmetric relations18. In order to create an accurate example, a student

needs to be very comfortable with these definitions. While Mejia-Ramos et al. (2012) believe

that students should be able to identify examples that illustrate a specific statement, they

excluded creating an example with regards to definitions.

There were two questions that asked students to evaluate a statements validity and both

17Let A and B be sets. A relation from set A to B is a subset of A × B, the cross–product of A and B.
That is to say, the relation is the collection of relevant ordered pairs (a, b).

18A relation R is symmetric if, for all x and y in set A, xRy = yRx. A relation R is antisymmetric if, for
all x and y in set A, xRy = yRx implies x = y.
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Construct concrete non–empty relations R, S, and T on X = {1, 2}, as well as a non–empty
relation U on Y = {1, 2, 3}, such that the following properties are satisfied.

1. A relation R on X such that R is symmetric and is antisymmetric.

2. A relation S on X such that S is symmetric and is not antisymmetric.

3. A relation T on X such that T is not symmetric and is antisymmetric.

4. A relation U on Y such that U is not symmetric and is not antisymmetric.

Figure (4.26) Homework 8 question 1.

questions appeared on homework 10. Further, both of these questions pertained to finite

and infinite sets. In these questions, Dr. Wyatt tasked students with categorizing various

sets as either finite, infinite, countable, denumerable, and uncountable or a combination of

these concepts. For example, homework 10 question 3 asked students to evaluate statements

as either true or false, as shown in Figure 4.27. The purpose of this question is to evaluate

Determine whether each of the statements are true or false. No Justification is necessary.

1. If a set A is countable, then A is infinite.

2. If a set B is denumerable, then B is infinite.

3. If a set C is uncountable, then C is infinite.

4. If a set D is denumerable, then D is countable.

5. If a set E is not denumerable, then E is uncountable.

Figure (4.27) Homework 10 question 3.

students comprehension of the various types of sets. Specifically, this question asks students

to interpret the “trivial implications of a given statement” (Mejia-Ramos et al., 2012), that

is to say, what is required, by definition, to be a specific kind of set.

Most of the questions on Dr. Wyatt’s homework assignments require students to perform

some sort of calculation. Here calculation means students are given specific information and

asked to find a specific value or range of values. However, all of these questions still focused
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on students’ understanding of various definitions. Figure 4.28 is a calculation question from

Homework 9. In order to perform these calculations, students must understand the concept

Consider the function f : R→ R defined by f(x) = x2 + 1 for all x ∈ R.

1. Find f ([−1, 0) ∪ (2, 4]).

2. Find f−1 ([−2, 3)).

3. Find f−1 ((−1, 5] ∪ (17, 26]).

Figure (4.28) Homework 9 question 3

of evaluating a function over an interval and the definitions of the pre–image of a function.

Prior to entering this course, students should have an understanding of how to evaluate

functions; however, the notation f−1 is commonly used when discussing the inverse of a

function. Since invertable functions are injective and f(x) = x2 + 1 is not injective over all

real numbers, students may have difficulty evaluating f−1 across the various intervals.

In short, most of the questions Dr. Wyatt asks on homework assignments fall into one of

three categories. However, all of these questions focus on the basic definitions of terms, that

is to say, they assess the terms introduced in the course. It is my belief this demonstrates

Dr. Wyatt’s desire to make sure students have a good foundation of the basic concepts of

course content. To ensure this, he focuses on the meaning of terms and statements, one of

the categories in the Local domain of proof comprehension described by Mejia-Ramos et al.

(2012).

Next I will analyze Dr. Wyatt’s feedback on students’ homework assignments based on

category. First, I will examine students’ responses to five construction problems, two from

each of homework 8 and homework 9 as well as one from homework 10. Then I will do the

same with the two evaluation questions from homework 10. Third, students’ responses to

the calculation based question from homework 8 and homework 9 will be considered.

Samples of students’ responses to construction problems. There were a total

of five construction questions on the homework assignments; Table 4.7 shows how the points
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were distributed by question. With the exception of homework 10 question 2, the majority

Table (4.7) Score Distribution of Construction Problems

Range Question 8.1 Question 8.2 Question 9.1 Question 9.2 Question 10.2
(4, 5] 7 8 6 6 3
(3, 4] 4 3 2 4 3
(2, 3] 0 0 2 0 4
(1, 2] 0 0 0 0 0
(0, 1] 0 0 0 0 0

of students scored in the highest range possible; while some of the solutions in this category

earned full credit, others earned a 4.5 with one case were a person scored a 4.9. This

demonstrates that Dr. Wyatt is very precise with his grading, noting when students are

extremely close to perfect in their reasoning. Further, the majority of scores in the range

(3, 4] were actually scores of 4, with the only other score in this range being being a 3.5. This

suggest, once students solutions leave the highest range, Dr. Wyatt does not differentiate in

as much detail between the quality of solutions. Students seldom scored in the (2,3] range;

further, of those that did, the lowest score was a 2.5.

Figure 4.29 states both construction questions from homework 819. The definitions

being assessed in Figure 4.29a are symmetric and antisymmetric20. Specifically, students

must understand the relationship between these two types of relations. The definitions being

assessed in Figure 4.29b are a relation and a function21. Again, students must understand

how these two concepts are related and how they are different.

Figure 4.30 states both of the construction questions from homework 9. Both of these

questions have two tasks, that is to construct a set and a function. Further, both questions

are focused on the definitions of a function, an injective function, and a surjective function.

19Homework 8 Question 1 is also given in Figure 4.26.
20Let A be a set and R a relation on A. A function is symmetric if and only if for all x ∈ A and y ∈ A, if

xRy, then yRx. A function is antisymmetric if and only if for all x ∈ A and y ∈ A, if xRy and yRx, then
x = y.

21Let A and B be sets. R is a relation from A to B if and only if R is a subset of A × B. A function f
from A to B is a relation from A to B such that the domain of f is A and if (x, y) ∈ f and (x, z) ∈ f , then
y = z.
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Construct concrete non–empty relations R, S, and T on X = {1, 2}, as well as a non–empty
relation U on Y = {1, 2, 3}, such that the following properties are satisfied.

1. A relation R on X such that R is symmetric and is antisymmetric.

2. A relation S on X such that S is symmetric and is not antisymmetric.

3. A relation T on X such that T is not symmetric and is antisymmetric.

4. A relation U on Y such that U is not symmetric and is not antisymmetric.

(a) Question 1

Construct concrete relations r, s, t, and u from A = {3, 4} to B = {a, b} with the following
properties.

1. Relation r is not a function.

2. Relation s is a function, but not a function from A to B.

3. Relation t is a function from A to B with Rng(t) = B.

4. Relation u is a function from A to B with Rng(u) 6= B.

(b) Question 2

Figure (4.29) Construction questions from homework 8.

The second question (Figure 4.30b) has the added condition of understanding compositions

of functions22. Students with a below average understanding of these concepts will struggle to

answer these questions, but their responses will supply Dr. Wyatt with valuable information.

Figure 4.31 states question 2 from homework 10, the only construction problem on this

assignment. This question assesses students’ understanding of finite and infinite sets, the

union of two sets, the intersection of two sets, and cardinality. Again, if the students have

an understanding of the definitions, they will be able to answer the question. However, like

the questions in Figure 4.30, there are several tasks the students need to complete. First,

they must consider the validity of the statement. Second, the must create an example that

supports the statement. Third, they will need to verify their examples.

22Let R be a relation from A to B and S be a relation from B to C. Then S◦R = {(a, c) : there exist a b ∈
B such that (a, b) ∈ R and (b, c) ∈ S}.
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Let A = {1, 2}. Construct sets Bi and functions fi : A → Bi, for i ∈ {1, 2, 3, 4}, with the
following properties.

1. f1 is both one–to–one and onto B1.

2. f2 is one–to–one but not onto B2.

3. f3 is onto B3 but not one–to–one.

4. f4 is neither one–to–one nor onto B4.

(a) Question 1

Let A = {1, 2} and C = {x, y}. For each i = 1, 2, construct sets Bi as well as functions
fi : A→ B and gi : B → C satisfying the following properties.

1. g1 ◦ f1 is onto C but f1 is not onto B1.

2. g2 ◦ f2 is one–to–one but g2 is not one–to–one.

(b) Question 2

Figure (4.30) Construction questions from homework 9.

Provide a concrete example of each of the following cases, if ever possible. If a case is never
possible, then state so:

1. An infinite subset X of a finite set Y .

2. A collection {Ai :, i ∈ N}, with each Ai non–empty, such that
⋃
i∈N

Ai is finite.

3. Finite non–empty sets A and B such that A ∪B 6= A+B

4. Finite non–empty sets C and D such that C ∪D = C ∩D.

Figure (4.31) Homework 10 question 2.
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In all of these questions, Dr. Wyatt is assessing students’ understanding of definitions.

Mejia-Ramos et al. (2012) identified students understanding of the meanings of terms in

a statement as part of the local domain of proof comprehension. The way they suggest

assessing students’ understanding of definitions is to have students identify examples or

restate a statement in a different but equivalent way (Mejia-Ramos et al., 2012, pg. 9).

Dr. Wyatt tasked the students to create an example of a given statement. As part of the

holistic domain of proof comprehension, Mejia-Ramos et al. (2012) discussed the importance

of being able to generate examples. Thus, Dr. Wyatt’s construction questions are assessing

two aspects of students’ knowledge: their understanding of definitions and their ability to

provide examples. Both of these aspects are skills vital to being able to interpret a proof.

Therefore, while not asking students to construct a proof, Dr. Wyatt is assessing skills

students will use when constructing proofs.

Students’ solutions to construction questions with feedback. Dr. Wyatt re-

turned graded assignments the first class session after they were submitted. He provided

feedback on most of the assessments, that is he would comment or otherwise point out stu-

dents’ mistakes on their work. Further, the types of feedback he left was concise. What

follows are examples of students’ solutions for the construction questions from the home-

work. This will be discussed by grade range, with examples of perfect solutions, solutions

in the highest range that did not receive full credit, solutions scoring in the range (3, 4], and

solutions scoring in the range of (2, 3].

A sample of solutions that earned a perfect score are given in Figure 4.32. There are a

few things to note about these solutions. First, with the exception of Kimberly’s solution to

homework 8 question 1, all of these solutions are very concise and without justification. In

fact, almost all perfect solutions follow this format. This shows, that at least on homework

questions, Dr. Wyatt does not require his students to justify their solution. This seems to

contradict what former student’s said about Dr. Wyatt’s assessments. Out of the eleven

respondents to the questionnaire, seven responded that he either always or often required
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(a) Payton: Homework 8 question 1. (b) Kimberly: Homework 8 question 1.

(c) Damian: Homework 8 question 2. (d) Vaughn: Homework 9 question 1.

Figure (4.32) Solutions to construction questions earning a perfect score

justifications for responses on assessment. In contrast, only one student responded that he

never required justifications for responses on assessments. This contrast could be due to the

fact his former students surveyed may have had Dr. Wyatt for a different course, where he

may require additional justifications.

A large number of students scored in the range (4, 5]. Most of these solutions where

perfect scores, but there were some exceptions, as shown in Figure 4.33. On Payton’s

solution to homework 10 question 2 received nearly full marks; Dr. Wyatt’s only feedback

was he crossed out the incorrect portion. It is important to notice that Payton’s error

was that she identified a situation that can exist as not existing. Therefore, he did not

need to provide any further feedback. On Michaela’s solution to homework 10 question 2,

her only error was that she did not write the final solution. That is to say, she created
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(a) Damian: Homework 9 question 2. (b) Michaela: Homework 10 question 2.

(c) Payton: Homework 10 question 2.

Figure (4.33) Solutions to construction questions scoring in the range (4, 5]

sets and provided reasoning for her solution, but forgot to write “then
⋃
i∈N

Ai”. Here, Dr.

Wyatt provided the final statement, highlighted in Figure 4.33b, as the only feedback to her

solution. On Damian’s solution to homework 9 question 2, Dr. Wyatt provided feedback in

the form of a question, specifically “g1(5) =?”, which is highlighted in Figure 4.33a. So Dr.

Wyatt’s feedback for students who almost received perfect scores is to ask for the specific

missing item. However, the feedback is generally a small statement or question regarding

the situation.

Some students scored in the (3, 4] range; a few of these examples are given in Figure

4.34. With the exception of Jordyn’s solution in Figure 4.34d, all of these solutions received

a score of 4. The feedback provided by Dr. Wyatt is targeted and concise. On three of the

solutions (Figure 4.34a, 4.34b, and 4.34c) Dr. Wyatt simply states the error in their logic,

most of which are due to misconceptions about the definitions. The feedback to solution
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(a) Jordyn: Homework 8 question 1. (b) Michaela: Homework 8 question 2.

(c) Damian: Homework 9 question 1. (d) Jordyn: Homework 9 question 2.

(e) Vaughn: Homework 10 question 2.

Figure (4.34) Solutions to construction questions scoring in the range (3, 4].

in Figure 4.34d is a question, specifically “f2(2) =?”. Vaughn’s solution to homework 10

question 2 is only marked incorrect; this is due to Vaughn having a binary error, specifically

he produced an infinite set instead of a finite one. At this point, Dr. Wyatt appears to

have a consistent method of feedback. His feedback is generally a statement or a question.

He provides statements when students have used a definition incorrectly or made a false

statement. He provides a question when the solution is missing a key fact.

On homework 9 questions 1 and 2 and homework 10 question 2, there are examples of

solutions in the range (2, 3]. Two of those examples are given in Figure 4.35. Again it

is clear that Dr. Wyatt emphasizes short questions or statements pertaining to definitions.

Nadia’s solution (Figure 4.35a) has two questions (“f1(2)” and “f2(2)”) and a statement

(“not a function”) from Dr. Wyatt. Again, the questions are when something is missing and

the statement is when a definition was not followed. For Kimberly’s solution (Figure 4.35b)
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(a) Nadia: Homework 9 question 1. (b) Kimberly: Homework 9 question 1.

Figure (4.35) Solutions to construction questions scoring in the range (2, 3].
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Dr. Wyatt provided no feedback, just marked the solutions as incorrect. This is consistent

for the first part of the solution because the answer was binary; however, Dr. Wyatt does

not provide an example for the other. This is because Dr. Wyatt provides the students

solutions to the homework assignments after they are collected.

Dr. Wyatt uses construction questions to assess students’ knowledge of the definitions

being presented in lecture. Any time there is a fundamental problem with the definition, that

is the student did not meet all of the requirements, Dr. Wyatt wrote a statement focused

on the misconception. Speer et al. (2010) pointed out that teachers have some basic choices

when reacting to questions in class, two of which are asking for more detail and evaluate

students’ responses in class. While they make these statements based on in class questioning,

it appears Dr. Wyatt is following these guidelines when assessing homework. Next, I will

analyze the students’ performance on the evaluation questions.

Students’ responses to evaluation questions. There were a total of two evalua-

tion questions on the homework assignments. Table 4.8 provides a breakdown of students

scores by range. The first thing of note is all students scored in the highest range on

Table (4.8) Score Distribution for Evaluation Questions

Range Question 10.1 Question 10.3
(4, 5] 10 4
(3, 4] 0 1
(2, 3] 0 5
(1, 2] 0 0
(0, 1] 0 0

question 1; in fact, all of the students received a perfect score. This indicates that students

have a strong understanding of those concepts. On the other hand, question 3 had a ma-

jority of the students scoring in the (2, 3] range. Further, those that scored in the highest

range on question 3 all received perfect scores. Clearly, there is a significant gap in student

understanding of the concepts in question 3.

Figure 4.36 shows question 1. To answer this question successfully, you needed to
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Determine whether the sets are finite or infinite. No justification is needed.

1. Q, the set of all rational numbers.

2. {x ∈ R : x2 + 1 = 0}

3. The set of all turkeys eaten in the year 1620.

4. {x ∈ N : x is composite}

5. {x ∈ R : 4x8 − 5x6 + 12x4 − 18x3 + 26x2 − 13x+ 100 = 0}

Figure (4.36) Homework 10 question 1.

understand the concept of finite and infinite sets as well as the ability to identify the number

of solutions to an equation. Mejia-Ramos et al. (2012) stated that another aspect of the

local domain of proof comprehension is the ability to provide justification for claims. More

specifically, students need the ability to “identify the specific claims that are supported by a

given statement” (p. 10). Even though students are not required to justify their reasoning,

they are identifying a claim (the set is finite, the set is infinite) that identifies the status of

the statement (the various sets given). Hence, this is why I am referring to these questions

as evaluation questions.

Question 3 is given in figure 4.37. Students had significant difficulty with this ques-

Determine whether the following statements are true or false. No justification is necessary.

1. If a set A is countable, then A is infinite.

2. If a set B is denumerable, then B is infinite.

3. If a set C is uncountable, then C is infinite.

4. If a set D is denumerable, the D is countable.

5. If a set E is not denumerable, then E is uncountable.

Figure (4.37) Homework 10 question 3.

tion. The question itself is assessing students knowledge of the terms infinite, denumerable,

countable, and uncountable; further, judging from the scores on question 10.1, students have



118

a good understanding of infinite sets. So the misconception the students have should be

about the other terms, or at least, how they relate to each other.

Students’ solutions to evaluation questions with feedback. Student’s solutions

to evaluation questions are very dichotomous. In fact, looking at the scores, it is clear that

these two questions were viewed as completely different by the students, even though they

do share some common features. In the following paragraphs, I will provide examples of

students’ responses to these questions. The examples of perfect solutions will be examined

first to identify what Dr. Wyatt was expecting. Then I will examine the one solution from

question 10.3 that received a score in the (3, 4] range. Then, some of the solutions from the

(2, 3] range will be given and analyzed.

Figure 4.38 shows two responses that earned perfect scores. As expected, the solutions

(a) Nadia: Homework 10 question 1. (b) Jeremy: Homework 10 question 3.

Figure (4.38) Solutions to evaluation questions with perfect scores

are essentially one word responses. Still, to determine which response to use, students must

reason through the statement and make a determination.

The one response on question 3 that was in the (3, 4] range is shown in Figure 4.39. Like

with the Construction questions, Dr. Wyatt’s feedback is minimal, specifically the incorrect

response is just crossed out. Vaughn’s misconception has to do with the relationship of

countable and denumerable sets. Specifically, not all countable sets are denumerable. Dr.

Wyatt can identify this misconception strictly based off of the wording of the question.
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Figure (4.39) Vaughn’s solution to homework 10 question 3.

Figure 4.40 shows two solutions from the range (2, 3]. Again, Dr. Wyatt provides

(a) Nadia: Homework 10 question 3. (b) Olivia: Homework 10 question 3.

Figure (4.40) Solutions to evaluation questions scoring in the range (2, 3].

minimal feedback for this question. This is consistent with his grading style in general,

that is to simply mark questions incorrect if the answers are binary. Further, given that

he provides solutions to the students, Dr. Wyatt does not need to provide explanation

with binary responses. Further, in his solutions he provides students with justifications and

examples, which will help students identify their misconceptions23.

Evaluation questions, judging from these samples, provide students with a statement

and a binary response. The tasks students must complete is to categorize the statements,

generally based off of definitions. Therefore, Dr. Wyatt continues to focus his assessments

on the pertinent definitions for the course.

Students responses to calculation based questions. There were a total of two

calculation questions on the observed homework assignments24. Table 4.9 provides a break-

23Dr. Wyatt does not revisit these misconceptions or verify if students have identified their error using
his solutions.

24This is not counting homework 11, which had three calculation questions, because I do not have student
samples from that assignment.
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down of the grade distribution of these questions. The scores on question 8.3 are mostly

Table (4.9) Score Distribution for Calculation Questions

Range Question 8.3 Question 9.3
(4, 5] 10 6
(3, 4] 1 4
(2, 3] 0 0
(1, 2] 0 0
(0, 1] 0 0

in the (4, 5] range; actually, they all received full credit. The one student who scored in the

(3, 4] range earned a 4. For question 9.3, some of the scores in the (4, 5] range were not

perfect. However, all scores in the range (3, 4] for question 9.3 were 4. This distribution

suggest that most students are comfortable with performing calculations.

Figure 4.41 states question 8.3, which is concerned with images and pre-images. Even

Consider the real function f(x) = x2 − 1. Calculate each of the following.

1. The image/value of 5 under f

2. All the pre-images of 15 under f , if they exist.

3. All the arguments associated with the value of 20, if they exist.

4. All the pre-images of −10 under f , if they exist.

Figure (4.41) Homework 8 question 3.

though this is a question involving calculations, it is still a test of a students’ knowledge of

definitions, specifically image and pre–image. As far as the actual calculations are concerned,

they are actually simplistic in nature.

Figure 4.42 states question 9.3; like question 8.3, question 9.3 is testing students’ knowl-

edge of the definitions for image and pre–image. The difference between these two questions

is the values students are calculating, that is to say, an interval as opposed to a value. There-

fore, the way the calculations are made are vastly different, and while students should be

comfortable with these kinds of calculations, it is not guaranteed they are.
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Consider the function f : R→ R defined by f(x) = x2 + 1 for all x ∈ R

1. Find f ([−1, 0) ∪ (2, 4]).

2. Find f−1 ([−2, 3)).

3. Find f−1 ((−1, 5] ∪ (17, 26]).

Figure (4.42) Homework 9 question 3.

Students’ solutions to calculation questions with feedback. The solutions to

the calculation questions provide insight into how the students performed on certain tasks.

Specifically, it demonstrates how students viewed the calculations they were familiar with

(question 8.3) to the calculations they may not be (question 9.3). Ten students on question

8.3 and six students on question 9.3 scored in the highest range. All of the students in the

range (4, 5] had perfect scores on 8.3, but there were several who were in this range and did

not earn a perfect score.

Figure 4.43 provides two solutions that did not receive full credit for question 9.3. Both

students made the same error, just in different places. Specifically, they did not label one

of their intervals correctly. Damian (Figure 4.43a had an incorrect boundary on an interval;

he label the interval inclusive when it should have been exclusive. Olivia (Figure 4.43b)

also had an incorrect boundary; however, her mistake was an incorrect sign on a number.

Dr. Wyatt’s feedback on these questions was to simply cross out the incorrect part of their

solutions because their errors were binary.

Figure 4.44 provides examples of two students with scores in the range (3, 4]. Dr.

Wyatt’s feedback again comes in the form of just marking an answer incorrect. While this

makes sense in Payton’s case (Figure 4.44a) as her error is essentially binary, it does not make

sense in Jordyn’s case (Figure 4.44b). Jordyn’s errors are non–binary, as in the calculation

is incorrect. The error in the calculation could be at any point, and in these instances, up

to this point, Dr. Wyatt has asked questions or provided statements. That being said, since

she did not justify her answers with the necessary work, Dr. Wyatt may have simply not

known where the error occurred.
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(a) Damian’s solution. (b) Olivia’s solution.

Figure (4.43) Solutions to homework 9 question 3 with scores in the range (4, 5].

Summary of basic homework questions. Dr. Wyatt’s primary goal with his stan-

dard homework questions is to ensure students have a solid understanding of the fundamen-

tals of the course. This is especially true with his emphasis on definitions. Further, he wants

students to be able to categorize information as well as generate examples that support given

statements, both of which are emphasized by Mejia-Ramos et al. (2012) in their discussion

on the local domain of proof comprehension.

Also, Dr. Wyatt has very specific methods of providing feedback to students. If the

question has a binary response, then Dr. Wyatt does not provide a comment, but instead just

marks the binary part incorrect. For non binary questions, Dr. Wyatt exhibits two types of

responses. The first method is to ask a simple question about an item that is missing from the

student’s solution; generally these questions take the form of asking about a specific function

value that is missing. I believe Dr. Wyatt prefers this method because it contributes to one

of his teaching goals, that improve students ability to think actively, as discussed along side
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(a) Payton: Homework 8 question 3. (b) Jordyn: Homework 9 question 3.

Figure (4.44) Solutions to calculation questions in the range (3, 4].

his teaching methodologies. The second method is just to state what specifically is wrong

with the solution; this statement generally referenced a specific definition, such as identifying

that a students’ example is antisymmetric when it was suppose to not be antisymmetric.

While his feedback on these questions are simple, they direct students toward a better

understanding of the fundamentals. In the next part, I will analyze the “Grading a Proof”

question, one of the two types of questions that appeared as the fourth homework problem

on an assignment.

4.3.2 “Grading a Proof” question type

Dr. Wyatt stated “it seems that some, at least sometimes, some students don’t know

what’s right and what’s wrong” with regards to how they provide proof for various claims.

Further, he commented

I as a teacher grade [the students’] solutions, you know I point out that it is wrong,

sure sure, but I don’t know if that is the best... maybe there are other ways for

them to realize they are, they the students, making mistakes. So therefore I just

do it this way, I make them, make the students [the] grader (Personal Interview,

February 12, 2019)

Essentially, Dr. Wyatt believes that while it is important for teachers to carefully grade
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students’ work and point out the mistakes that are evident, it is equally (if not more)

important for students to realize when they are making these mistakes. In order to foster

the thought processes needed for students to identify when they are making mistakes, Dr.

Wyatt uses the Grading a Proof (GaP) question type. In the following pages I will identify

Dr. Wyatt’s reasoning for choosing GaP questions, the way these questions are structured,

provide examples of students’ solutions to these questions, and analyze the effectiveness of

this type of question.

The purpose of GaP questions. GaP questions are designed specifically to “make

the student the grader, or teacher”. Dr. Wyatt elaborates on the previous statement

After you teach something, you will be a better student. So I am hoping after

the students have graded other proofs, then when the next time they are doing

their own homework and trying to write their own proofs they will be more

careful, especially when a similar situation comes up. They will know “oh, the

last time we tried that grading the proof problem, [the GaP proof] did that and

it was wrong, so I better not repeat that kind of mistake.” (Personal Interview,

February 12, 2019)

There are multiple goals Dr. Wyatt wants to achieve with the GaP question type. For

example, he wants students to carefully go step by step through a given proof and grade it.

Even if the student would grade it incorrectly, Dr. Wyatt hopes he/she would remember it

and use it in writing a proof on his/her own.

When examining the given proof in a GaP question, the student must identify several

components within the proof to determine the proof’s accuracy. The first of these is to

understand the meaning of specific statements and terms in both the statement being proven

and the proof itself. Mejia-Ramos et al. (2012) describe this as the first component of the local

domain of proof comprehension. That is to say that before students can begin to examine

the proof as a whole, the students need to comprehend the individual aspects of the proof.

For example, in the GaP question from Homework 8, students were asked to determine the
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validity of a given proof of the claim “for non-empty sets A and B, if f : A→ B is a function

then f ◦ f−1 ⊆ IB.”. The proof is given in Figure 4.45. In order to determine if this proof

Let (b, b) ∈ f ◦ f−1. Then there exists a ∈ A such that (b, a) ∈ f−1 and (a, b) ∈ f . Thus
(b, b) ∈ f ◦ f−1 and (b, b) ∈ IB. Therefore, f ◦ f−1 ⊆ IB.

Figure (4.45) The proof used in homework 8’s GaP.

is rigorous, students need to know the definitions and notations for functions, compositions,

preimage, and identity functions. If a student is lacking any of these, then they will not be

able to examine the proof as a whole.

If students understand all of the necessary terms, then they can begin to study the

logical relationships and logical structure of the given proof. This structure is what Seldon

& Seldon (1995) describe as a proof framework, that is “the ‘top level’ logical structure of

a proof, which does not depend on detailed knowledge of the relevant concepts” (p. 129).

Being able to identify the proof framework used in a proof is important because “different

proofs are, of course, different, but in this difference, one of the proofs might have some

special quality” (Rocha, 2019). These special qualities help determine the flow of a proof.

In both proof by contradiction and proof by contraposition, the consequence is negated;

however, a proof by contradiction will create an impossible statement where as a proof by

contraposition uses the negated consequence to show the negation of the antecedent25. The

proof given in Figure 4.45 attempts to prove the claim directly; however, it violates the proof

framework for a direct proof because it, in essence, assumes the consequence is true.

Therefore, Dr. Wyatt uses GaP questions because they require the students to think

carefully about the basic aspects of a proof. Students need to take the time to read the

proof; in order for the students to read the proof successfully, they need to understand the

meaning behind the terms used in both the claim and proof as well as the proof framework

being used in the given proof. Next, the task Dr. Wyatt assigns the students for a GaP

question is analyzed.

25A statement with one truth value that logically precedes the consequence.
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The format of GaP questions. Of the four homework assignments collected from

Dr. Wyatt’s course, three of them contain a GaP question. The given information is pre-

sented in the same format every time: a claim followed by a proof of the claim. Then, Dr.

Wyatt assigns three tasks presented as shown in Figure 4.46. In the following paragraphs

1. Determine whether the “proof” is rigorous. Identify the issues in the “proof”, if
any.

2. Determine whether the statement is true or false.

3. If the claim is true and the “proof” is not rigorous, then provide a correct and
rigorous proof. If the claim is false, give a concrete counterexample.

Figure (4.46) The tasks assigned to GaP questions in Dr. Wyatt’s assessments.

I analyze each task individually and analyze Dr. Wyatt’ s reasoning for the order presented

in Figure 4.46.

The first task for the students requires them to examine the proof for correctness.

During the interview, Dr. Wyatt stated “for grading a proof, at least for last semester, the

[“proof”] is always wrong, there is something wrong with it. ” Figure 4.47 provides the

given information for all three GaP questions I collected as part of this study. While it is

known that all of the “proofs” are incorrect, it is important to identify what makes each of

them incorrect. The “proof” shown in Figure 4.47a has an error within the proof framework

itself, specifically, in order to construct this type of proof one chooses an arbitrary element

from f ◦ f−1 and shows the element exists in IB. The “proof” provided has chosen a very

specific element (one that is, by definition, in IB), that is to say, their argument is circular.

So, the issue with the proof is that they did not choose an arbitrary element.

While similar to the error described in the previous paragraph, the information provided

in Figure 4.47c, the “proof” is not rigorous due to the fact it does not consider arbitrary

elements. However, unlike the previous example, the error occurs not because the argument

is circular, but because the argument is not general. The “proof” illustrates the claim with

an example, which Mejia-Ramos et al. (2012) describe as a form of holistic understanding
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Claim: For non–empty sets A and B, if f : A→ B is a function, then f ◦f−1 ⊂ IB.

“Proof”: Let (b, b) ∈ f ◦ f−1. Then there exists a ∈ A such that (b, a) ∈ f−1 and
(a, b) ∈ f . Thus, (b, b) ∈ f ◦ f−1 and (b, b) ∈ IB. Therefore, f ◦ f−1 ⊂ IB.

(a) GaP from homework 8.

Claim: If A and B are infinite sets, then A ≈ B..

“Proof”: Let A and B be infinite sets. Then we can describe

A = {a1, a2, . . . , an, an+1, . . .} and B = {b1, 22, . . . , bn, bn+1, . . .}

Define a function f : A → B by f(an) = bn for all an ∈ A. Clearly, f is
one-to-one and onto B. Therefore, A ≈ B, finishing the proof.

(b) GaP from homework 10.

Claim: For all sets A and B, if A ⊂ B and A 6= B, then A 6≈ B.

“Proof”: Let A = {1, 2} and B = {1, 2, 3} The A $ B; and in this case it is clear
that A 6≈ B.

In general, if A ⊂ B and A 6= B, then B clearly has more elements than A
has, hence A 6≈ B. Therefore, for all sets A and B, if A $ B then A 6≈ B.

(c) GaP from homework 11.

Figure (4.47) GaP questions used in Dr. Wyatt’s transition–to–proof course.

of a general proof. They note the importance of working with specific examples stating

“comprehending a proof often involves understanding how the proof could be illustrated

by a specific example” (p. 14), but a specific example does not formulate a proof of a

general claim. Therefore, while it is important to be able to use examples to demonstrate

understanding of a proof, it cannot act as a proof itself.

For the final “proof” being used as an example, the error is a result of not completely

understanding the difference between infinite and denumerable sets26. As shown in Figure

4.47c, the proof labels the infinite sets as

A = {a1, a2, . . . , an, an+1, . . .} and B = {b1, b2, . . . , bn, bn+1, . . .}

26Denumerable sets are equivalent to the Natural Numbers, that is they are infinite and countable
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which associates each element of A and B with a Natural number. Therefore, A and B

are both denumerable. Mejia-Ramos et al. (2012) note the failure to understand key terms

hinder students’“ability to comprehend other aspects of a proof” (p. 8); in this case, the

proof demonstrates the claim for denumerable sets, but not all infinite sets. So for students to

correctly identify this error, they must have a good understanding of the necessary definitions.

The second task asked students to identify if the claim is correct or not. Dr. Wyatt

stated:

For GaP, [the purpose of] the question is to determine if the statement is true

or false, one of the explicit questions is asking [the students] to provide a proof

or a counterexample. So they should know that for GaP, they should literally

know that the claim could be false, could be true or could be false. (Personal

Interview, February 12, 2019)

That is to say, even without the directed task of identifying if the claim is correct, the third

task from Figure 4.46 tells the students to complete this task. Dr. Wyatt’s reasoning for

having this task emphasized is because “having the idea part” is important before writing a

proof or a counterexample; therefore, explicitly assigning this task to students ensures they

think carefully before they begin writing their proof or counterexample.

Of the three claims provided in Figure 4.47, the two claims from 4.47b and 4.47c are

incorrect. The claim in 4.47b is incorrect because it supposes A and B are infinite sets. This

claim does not apply to all infinite sets, but it does apply to denumerable sets. Therefore,

the error in the claim is similar to the error in the “proof”, that is to say the error deals

specifically with the definitions of terms, part of the local domain of proof comprehension

provided by Mejia-Ramos et al. (2012). So the claim “If A and B are denumerable, then

A ≈ B” is true and could be proven using similar methods provided in the “proof.”

The claim in Figure 4.47c is incorrect because it applies to all sets. There exists sets

that make the conclusion in this claim true (in fact, the sets A = {1, 2} and B = {1, 2, 3}
used in the “proof” from 4.47c are an example); however, it does not exist for all sets. Again,

this error can be described by Mejia-Ramos et al. (2012) as “identifying trivial implications
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of a given statement” (p. 8) which illustrates understanding the meanings of terms and

statements. Again, this is part of the local domain of proof comprehension.

The last task assigned in GaP questions is to write a rigorous proof or provide a coun-

terexample. Since the claim in Figure 4.47a is correct, a proof can be constructed. Dr.

Wyatt provided the proof in Figure 4.48. The key to constructing this proof requires stu-

dents to understand three aspects: the proof framework requirement of choosing an arbitrary

element in f ◦f−1, the relationship between f and f−1, and the definition of a function. The

proof framework for a direct proof showing f ◦ f−1 ⊂ IB, or generally any proof showing

one set is a subset of another, requires the choice of an arbitrary element. This stems from

the definition of a subset, A is a subset of B if and only if every element in A is in B. So

any element from f ◦ f−1 will be in IB; therefore, one should complete the proof using an

element representative of all other elements.

Let A and B be non-empty sets and assume that f : A→ B is a function. In order to prove
f ◦ f−1 ⊂ IB, let (x, y) ∈ f ◦ f−1. Then there exist an a ∈ A such that (x, a) ∈ f−1 and

(a, y) ∈ f . Consequently

(a, x) ∈ f and (a, y) ∈ f

which implies x = y ∈ B because f is a function from A to B. Therefore
(x, y) = (x, x) ∈ IB.

Figure (4.48) Dr. Wyatt’s solution for the GaP question on homework 8.

The relationship between f and f−1 is related to the definition of a function and preim-

age. The definition of a function from A to B requires each element in A to have exactly

one element it maps to in B. Further, the preimage of f , f−1, examines an element in B

and maps it to the appropriate element in A. Without these definitions, students cannot

construct a logical proof. In short, the key information for writing the proof comes from the

local domain of proof comprehension.

The claims in Figures 4.47b and 4.47c are, as discussed previously, incorrect. Therefore,

a concrete counterexample is required. It is important to note that both counterexamples

provided by Dr. Wyatt’s solutions were examples used in class before the assignment was
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collected. Therefore, students had the solution for the third task on both of these questions

available to them. In other words, the counterexamples needed could have been transferred

from one context to another. Mejia-Ramos et al. (2012) identify the ability to transfer

concepts from one proof to another situation as being part of the holistic domain of proof

comprehension. The holistic domain deals with the understanding of a proof as a whole; this

includes understanding how applications relate to other contexts.

That being said, to find a counterexample, students need to know what is required in

the structure of the counterexample. First, students need to understand what information is

given to them, including definitions of terms. Then, they choose a specific example that meets

the criteria of the given information. Thirdly, they demonstrate how the chosen example

does not produce the desired consequence. While much of the information students need to

form counterexamples can be identified in terms of the local domain of proof comprehension,

illustrating a proof or, in this case, the falseness of a claim is part of the holistic domain

of proof comprehension. Therefore, students need to think actively about the information

given in the statement. Dr. Wyatt stated “[students] sometimes provide a counterexample

that they think is a counterexample, but it is not” (Personal Interview, February 12, 2019).

He said it is often a case of students choosing an example that does not meet the necessary

criteria. This can occur due to a misunderstanding of a component in either the local domain

or holistic domain. Next, I will discuss students responses to GaP questions discussed above.

Students responses to GaP questions. Dr. Wyatt graded each GaP question out

of a total of five points. Table 4.10 shows the grading distribution for the GaP question

from two assignments. It is evident that the students performed much better on homework

10 than they did on homework 8. I will analyze why this is the case, providing examples of

students work with feedback from Dr Wyatt for each question and how Dr. Wyatt used class

time with regards to this type of question. For the GaP from Homework 8, I collected eleven

responses from Dr. Wyatt after his grading was complete; ten responses were collected from

Homework 10. I will begin by providing examples from each grade range in Table 4.10 for
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both assessments.

Table (4.10) Point Distribution of Students Grade for GaP Questions

Point Range Homework 8 Homework 10
(4,5] 2 9
(3,4] 2 0
(2,3] 7 1
(1,2] 0 0
(0,1] 0 0

For grades in the (4, 5] range, I first want to note that zero students on homework 8 and

seven students on homework 10 received full credit, as such, there is no feedback provided

by Dr. Wyatt; however, it is still important to analyze these solutions because it provides a

guideline for what constitutes a correct proof. Figure 4.49 shows the solutions of Michaela,

Jeremy, and Damian; the remainder of the perfect scores fall into one of these three solutions.

. Notice that Michaela’s and Damian’s solutions both provide the justification for their

counter examples, whereas Jeremy’s does not. This appears to be true of Dr. Wyatt’s past

classes as well. When asked if Dr. Wyatt required students to justify their response to ques-

tions on assessments, while the majority of students responded with often having to explain

their responses, some students did respond with rarely or never. These solutions suggest that

Dr. Wyatt does not require full explanations as long as a correct counterexample is provided.

In a study focusing on how mathematicians assign points when grading proofs, Miller et al.

(2018) found that half the participants “would not deduct points for omissions from a proof

if it was clear to them that the student understood the proof” (p. 30). Therefore, it can be

interpreted that because Jeremy provided two sets that are indeed a counterexample, Dr.

Wyatt believed the proof was completely understood.

Further, each example states the error in the “proof” in a different way. Michaela

described the error as assuming the claim, that is, not choosing an arbitrary element. Jeremy

describes the error as the proof only referring to countably infinite sets. Damian states

“f : A → B is not one-to-one and onto B, which means A 6≈ B.”; however, the function
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(a) Michaela’s solution. (b) Jeremy’s solution.

(c) Damian’s solution.

Figure (4.49) GaP perfect scores from homework 10.

provided in the “proof” is bijective27. Therefore, it is difficult to claim why Dr. Wyatt

marked this with full credit.

For solutions that almost earned 5 points, Dr. Wyatt does provide some feedback and

general guidance. Figure 4.50 shows Vaughn’s and Nadia’s solutions from homework 8 and

10 respectively. For both of these instances, Dr. Wyatt provides very short and specific

feedback addressing the issues with the solutions. For Vaughn’s solution, Dr. Wyatt states

“need to show ‘(b1, b2) ∈ f ◦ f−1 =⇒ b1 = b2’”. This tells Vaughn that his work is correct,

but he did not finish the proof. Dr. Wyatt commented “N 6≈ R” after Nadia’s counter

27f : A→ B is bijective if f is one-to-one and onto B, which means A 6≈ B.
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(a) Vaughn’s solution form homework 8. (b) Nadia’s solution form homework 10.

Figure (4.50) Strong solutions to GaP questions.

example. This tells her to be aware of her notation. Further, he crossed out part of her

reasoning as to why the proof is incorrect, that is, he let her know the additional statement

was incorrect. Therefore, Dr. Wyatt’s feedback clearly addresses the needs of the students.

The responses from Dalton and Payton received more than half credit on the GaP

from homework 8. That being said, their errors were very different, as shown in Figure

4.51. Dalton incorrectly identified the claim as false; Dr. Wyatt’s feedback was to identify

Dalton’s error in his counterexample, specifically that Dalton did not provide a function

in his counter example. On the other hand, Payton did not justify why the “proof” was

incorrect and did not produce an accurate proof after identifying the claim as correct; in

fact, she repeated the mistake from the “proof.” Both instances, however, stem from not

having a complete understanding of the local domain of proof comprehension. Specifically,

Dalton did not correctly apply the definition of a function and Payton did not show evidence

of understanding the appropriate proof framework.

Seven people on homework 8 and one on homework 10 provided weak responses to the

the GaP question. The common aspect to all of these solutions is that no one received full

credit on any part. For the first task, most students provided an incorrect reason for why

the “proof” was invalid; however, there were two that provided no reasoning. The third

task, while an attempt was made to provide a solution, there were small errors in the work.
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(a) Dalton’s solution form homework 8.

(b) Payton’s solution form homework 10.

Figure (4.51) Average solutions to GaP questions.

Olivia’s and Kimberly’s responses, shown in Figure 4.52, exemplify these types of responses.

It is important to note that Dr. Wyatt provided little feedback on these solutions, often

doing no more that crossing out irrelevant information.

(a) Olivia’s solution form homework 8. (b) Kimberly’s solution form homework 10.

Figure (4.52) Weak solutions to GaP questions.

Overall, Dr. Wyatt seems to be very clear with his feedback, offering just enough

information to highlight the students’ error. For the students’ solutions themselves, he

requires just enough information to be able to infer the students understand the topic. As

noted by Miller et al. (2018), this appears to be a common mindset for mathematicians as
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they grade proofs. In the next part, I will analyze a different style of question that still relies

heavily on students being able to read and comprehend proofs and statements.

4.3.3 “Analyzing a Proof” question type

Dr. Wyatt was intentionally selected as a subject for this study because of his involve-

ment in the NSF research project alongside mathematics education specialists from multiple

universities. As mentioned previously, the projects’ purpose is, in part, to develop assess-

ments that accurately measure students ability to comprehend various proofs. Dr. Wyatt

modeled the questions he refers to as Analyze a Proof (AaP) after the types of questions

used the NSF project.

In fact, Dr Wyatt noted “I included this example because in the so called [NSF project]

they have that type of question, type of problem. So therefore, I think “yeah, I will include

it.” But nevertheless, this is a very good type of problem to be included in my homework

assignments.” Therefore, his involvement in [NSF project] is the sole reason he thought to

include this type of question. However, it is also evident that Dr. Wyatt would not use AaP

questions if he did not feel they had a purpose that other questions he already used did not

cover. In the following pages I will analyze the purpose of AaP questions, the format of AaP

questions, and students solutions to the AaP question from homework 9.

The purpose of AaP questions. Dr. Wyatt stated the purpose of AaP questions

is “ to help students, uh learn the proof structure of different kind[s of proofs,] to help them

recognize different proof structures and also be able to help them, uh fill in the so called

gaps within a proof. ” Further, Dr. Wyatt acknowledges AaP questions inform him about

the amount of detail he needs to use when presenting proofs. He feels this is vital because

“ some textbooks give very sketchy proofs. If I don’t do [AaP] questions I might just think

‘oh, these sketchy proofs are perfect, I don’t need to do anything in class I can just do the

sketchy proof’ you know, this is the proof, just learn it ” (Personal Interview, February 12,

2019). That is to say, Dr. Wyatt believes AaP questions help students learn how to read and
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comprehend “sketchy” proofs given in textbooks and, as noted Lew et al. (2016) and Weber

et al. (2016), sometimes in lecture. Therefore, Dr. Wyatt acknowledged the existence of

these “sketchy” proofs and, due to his participation with the NSF project group, recognized

that posing the AaP questions is a useful way to counteract “sketchy” proofs.

The format of AaP questions. Of the collected assessments, only homework 9 had

an AaP question included. This question appeared as the last of four questions, that is, in

the same location as the GaP questions. According to Mejia-Ramos et al. (2017), questions

similar to Dr. Wyatt’s AaP questions can be generated by using both the local and holistic

domains of proof comprehension; in fact, the framework that provides the outline of AaP

questions was developed by Mejia-Ramos et al. (2012) and used in the NSF study. Therefore,

Dr. Wyatt needed to decide on the claim to prove, the proof to provide students, and what

tasks to assign to measure students comprehension.

Mejia-Ramos et al. (2017) acknowledge AaP questions can be “time consuming to gen-

erate and grade,” so they opted to formulate questions around claims that are well known28.

Dr. Wyatt takes a similar approach with his questions. He states “ the claims in the AaP,

they are all so called well known claims... in other words it is very likely [students] have seen

these claims ”. Figure 4.53 provides the claim and proof that Dr Wyatt used on homework

9.

Further, the proof is a “popular” proof for the given claim. The reason for this is similar

to that of the claim, the type of proof the students analyze is likely something they have

seen. Dr. Wyatt prefers the well known claims and proofs because “if [the students] have

the right exposure, they know, they should know that [AaP questions use] correct proofs

and correct claims”. The simple fact that students can look up these claims and proofs, if

they desire, separates AaP and GaP questions.

The tasks assigned in AaP questions are based on the local and holistic domains of proof

comprehension. For this question, Dr. Wyatt formulated the tasks, shown in Figure 4.54

28For example, there exist an infinite amount of prime numbers.
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Claim:
√

2 is not a rational number.

Proof: We prove the statement using the following steps

(a) Suppose that
√

2 is a rational number.

(b) So there exist a ∈ Z and b ∈ Z\{0} such that
√

2 = a
b

(c) We can further assume that a and b do not have a common divisor with absolute
value greater that 1.

(d) Note that a2 is even.

(e) Consequently, we conclude that a is even. So write a = 2k, with k ∈ Z.

(f) Then b2 = 2k2, which shows that b2 is even.

(g) Thus b is even.

(h) But this is impossible.

(i) So
√

2 is not a rational number.

Figure (4.53) The claim and proof provided in the AaP question.

1. Explain why (d) holds. Provide your justification.

2. Explain why (d) implies (e). Provide your justification

3. Explain what is impossible, as claimed in (h). Provide your justification.

Figure (4.54) The tasks assigned in the AaP question.

to focus on the justification of claims, part of the local domain of proof comprehension. I

believe justification of claims was the focus of this question because of his view on “sketchy”

proofs; by evaluating students in this regard ensures Dr. Wyatt that the students can read

textbooks with these kinds of proofs.

Student solutions to the AaP question. Dr. Wyatt graded the AaP question out

of a total of five points. Table 4.11 shows the grading distribution for the AaP question

from homework 9. It is important to note that two students received perfect scores while

one student did not attempt the question. The remainder of the students score either a 4 or

a 3.5. The following paragraphs will analyze examples of a perfect score, a score of a 4, and
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a score of a 3.5.

Table (4.11) Point Distribution of Students Grade for GaP Questions

Point Range Homework 8
(4,5] 2
(3,4] 7
(2,3] 0
(1,2] 0
(0,1] 1

Both of the perfect scores provided very thorough solutions, one of which is provided

in Figure 4.55. For the first task, both showed the complete calculation to proceed from (b)

to (d), that is they began with the definition of a rational number and solved for a2 to show

that a2 = 2b2. For the second task, both students examined what happens to a2 when a

is odd and a is even; that is, they produced a mini proof examining the parity of a. With

the third task, both used the fact that if both a and b are even, then a
b

is reducible, which

contradicts the assumption in (c). In other words, both took the provided “sketchy” proof

and added all of the detail required to create a full proof. Thus, they created the necessary

modules (an aspect of the holistic domain) by providing justifications for the claims (an

aspect of the local domain) to complete the proof.

All of the students who scored a 4 out of 5 did not correctly complete the second task,

that is explaining why a2 being even implies that a is even. Further, all of the errors occurred

because the students could not determine how to correctly justify this claim. As exemplified

in Figure 4.56, most students recognized the connection as true, but could not formulate

an argument demonstrating this fact. Further, Dr. Wyatt provided minimal feedback to

this difficulty, in essence stating the information provided by Vaughn with the phrase “prove

this.”

Similarly, students that scored 3.5 out of 5 tended to have parallel difficulties. All three

students with this score did not provide a full justification for the second task; with the

exception of Nadia’s solution, Dr. Wyatt did not provide any feedback to guide the students

toward the correct justification. Further, the students did not correctly justify the first task,
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Figure (4.55) Olivia’s solution to the AaP question.

as shown in Figure 4.57. In the case of Payton, Dr. Wyatt supplied an example to help fix

the misconception, but did not provide further feedback.

I believe the primary reason Dr. Wyatt did not provide much feedback on the assessment

itself is because he provided a complete solution guide to the students. That being said, the

students have to look up that document, which some may not do. Therefore, some students

may be relying solely on the feedback from Dr. Wyatt.

Overall, the AaP provided Dr. Wyatt with a glimpse into the students misunderstanding

of this proof. Most of the students had difficulty filling in the missing parts of the proof,

meaning that they are not as prepared for dealing with “sketchy” proofs. However, with this

knowledge, he can evaluate how he discusses proofs in class to assist the students. Next,

I will analyze the questions from Test II, looking at their format, score distribution, and

compare them to the homework questions.
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Figure (4.56) Vaughn’s solution to the AaP question.

4.3.4 Test II

Test II was administered in late October, one week after my observations began. When

he assigned Homework 8, Dr. Wyatt also gave his class a review sheet for the exam. The

way this review sheet was formatted was to inform the students not only what topics were

on the test, but also which questions from their homework assignments corresponded to each

topic. For example, one of the topics listed was “Reflexive, (anti)symmetric, and transitive

relations” followed by the list of problems associated with the topic, specifically Questions

6.1, 6.2, 6.3, 7.1, 7.4, 8.1, 8.4.

The test itself was similar to the homework assignments, though it consisted of five

questions (each worth five points) and an extra credit question (worth one bonus point). The

primary focus of this test was to assess students ability to use the Principle of Mathematical

Induction (PMI) and the Principle of Complete Induction (PCI). Further, there was also a

question focusing on calculations of composite relations, similar to the calculation questions

from the homework. The fifth question was an evaluation question, where five statements

were given and the students needed to determine if they were true or false, without the need

to justify. The extra credit question asked students to either prove or disprove a claim. In

the following sections, I will analyze the questions on the test and student responses, with

feedback. To start, I will look at the format of each question (or type of question). Then

I will provide a point distribution for the students responses as well as sample solutions for
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(a) Nadia’s solution. (b) Payton’s solution.

Figure (4.57) Solutions to the AaP question earning 3.5 out of 5 points.

each type of question.

Format of the questions from Test II. Each question, worth a total a five points,

can be described as either a proof writing question, a calculation question, or an evaluation

question. Proof writing questions require students to write a complete proof of a statement

from scratch; on this test the first three questions all required students to write an inductive

proof, either using the PMI or the PCI. The fourth question was a calculation question where

the students were given several sets and asked to calculate composite relations. The evalu-

ation question tasked the students with examining the statements pertaining to transitivity

and (anti)symmetric relations. The extra credit problem was a combination problem in the

sense that students needed to first evaluate the validity of a statement and then either write

a proof or provide a concrete counter example.

Figure 4.58 states each of the first three questions from Test II. It is important to note

that each of these questions provide the proof framework for the students to use, that is to

say the various types of inductive proofs. Further, the ordering of the questions is the same

order in which the students would have learned the different types of inductive proofs. In
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Use the Principle of Mathematical Induction (PMI) to prove 3|(n3 − 19n) for all n ∈ N.

(a) Question 1.

Use the Principle of generalized Mathematical Induction (PMI) to prove
n∏

i=2

i2−1
i2+2i

= 3
n2+2n

for all n ≥ 2.

(b) Question 2.

Define a1 = 5, a2 = 25, and an+1 = 9an−20an−1 for all n ≥ 2. Use the Principle of Complete
Induction (PCI) to prove an = 5n for all n ∈ N.

(c) Question 3.

Figure (4.58) Proof writing questions from Test II.

order to complete these questions, students need to completely understand how to construct

an inductive proof as well as the any pertinent definitions.

The homework assignments I have access to did not discuss PMI and PCI specifically;

those topics were covered prior to the start of my observations. However, judging from the

review Dr. Wyatt provided his students, the entirety of homework 5 was designed around

inductive reasoning and proofs. This suggests, that unlike the homework assignments I

collected, it focused less on the definitions as the basis of the content and had a more proof

focused approach. Also, there would have been one GaP or AaP question constructed around

inductive reasoning.

Figure 4.59 states the calculation question from Test II. The purpose of this question is

Let X = {1, 2, 3, 6, 7, 8}, R = {(1, 3), (2, 1), (6, 8), (8, 2)}, and S =
{(1, 1), (3, 7), (6, 2), (7, 8)}. Determine each of the following explicitly.

1. S ◦ S

2. R ◦ S

3. S ◦R

4. R−1 ◦ S−1

5. S−1 ◦R−1

Figure (4.59) The calculation question from Test II.
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to assess students’ understanding of composite functions and inverse functions. As with the

homework questions discussed earlier, in order to be successful in answering these questions

students need a complete understanding of the definitions involved. Also, the calculations

are similar to those of the homework questions in the sense that students should be familiar

with the processes involved from previous courses.

The final required question and the evaluation question from Test II is given in Figure

4.60. This question is designed to assess students’ knowledge of the definitions of transitive,

Determine if the following statements are true or false, in which X and Y are non–empty
sets.

1. D = {(a, b) ∈ N× N : a|b} is an antisymmetric relation on N.

2. R = {(1, 2), (2, 3), (3, 1)} is a transitive relation on R.

3. S = {(1, 4), (2, 5), (3, 6)} is an antisymmetric relation on Q.

4. If a relation T on X is not antisymmetric, then T is symmetric.

5. A relation U on Y is transitive if and only if U ◦ U ⊆ U .

Figure (4.60) The evaluation question from Test II.

symmetric, and antisymmetric relations and how they are related. Similar to the homework

questions, Dr. Wyatt left a hint for the students on this question instructing them they do

not need to justify their responses.

The extra credit question is given in Figure 4.61. There are a few things to note

Prove or Disprove: For all sets A, B, and C, if A×B = A× C then B = C.

Figure (4.61) Extra credit question from Test II.

about the expectations Dr. Wyatt has of students for this question. First, he clearly states

that this question is worth one point and that no partial credit will be given. Second, he

does provide a hint instructing students to “provide either a rigorous proof or a concrete

counterexample;” this was the same tasks as assigned to the students on part three of GaP



144

questions. The main difference between this question and the GaP questions is that the

students do not have a sample proof to evaluate first.

As far as the overall format of the test, the order of the questions is an important fac-

tor to consider. Kuhn & Kiefer (2013) comment that one consideration of the Australian

Educational Standards with regards to mathematical assessments is the placement of ques-

tions on assessments. Specifically, “easier items [appear first] in an attempt to raise test

motivation in students” (p. 196); this concept is also mentioned by Speer et al. (2010) who

state “harder problems placed early in [the assessment] may well lower overall performance”

(p. 111) because students either mismanage their time or lose confidence because of the

perceived difficulty of the questions. Therefore, it could be argued that beginning the assess-

ment with three proofs covering PMI and PCI may cause students to become unmotivated.

This is due to the fact students will have had limited experience constructing proofs, where

as performing the calculations in question 4 (Figure 4.60) may be easier, and thus increase

confidence, because students have extensive experiences performing calculations, even if the

basic format of the calculation is new.

The questions themselves are consistent with a transition to proof course, or proof

heavy courses in general. Miller et al. (2018) note that, through a personal conversation

with Annie Seldon, approximately 80% of questions in an average real analysis book are

proof oriented, that is require students to construct proofs. Therefore, transitioning to more

questions involving proof construction on assessments is beneficial. Further, the questions

are similar to those found on Dr. Wyatt’s homework assignments. Overall, the students

should have expected the assessment to be structured in this manner. Next, I will analyze

students solutions to these questions, with an emphasis on the feedback provided by Dr.

Wyatt.

Samples of students’ responses to the questions from Test II. Table 4.12 shows

the scoring distribution for each of the questions on Test II. Students performed well on

questions 1, 2, and 4, with perfect scores being earned by 4 students total between questions
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Table (4.12) Score Distributions for Test II

Range Question 1 Question 2 Question 3 Question 4 Question 5
(4, 5] 9 7 3 7 2
(3, 4] 1 3 2 3 7
(2, 3] 1 1 4 1 2
(1, 2] 0 0 2 0 0
(0, 1] 0 0 0 0 0

1 and 2 and by 3 students on question 4. Students struggled on questions 3 and 5; one

student earned a perfect score on question 3. Both students who scored in the highest range

on question 5 had perfect scores. The other scores in the range (4, 5] on question 3 were a

4.5 and a 4.9. Further, question 3 had the only scores in the range (1, 2]29.

In the following paragraphs I will examine students solutions from Test II. I am ordering

the discussion based off of performance instead of topic. Therefore, I will begin by examining

solutions to questions 1 and 2. Next, I will analyze question 4. Questions 3 and 5 will be

discussed last because they will have the most opportunities to discuss Dr. Wyatt’s feedback.

Test II questions 1 and 2. The skill being assessed in the first two questions is

how to construct a proof using PMI. That being said, question 1 is examining just students’

ability to construct a proof using PMI while question 2 is assessing the same skill using the

generalize version of PMI. Figures 4.62 and 4.63 provide students responses to questions

1 and 2 in the (4, 5] range. The errors that occurred in these two examples both derive

from the local domain of proof comprehension. Figure 4.62a shows the only error made by

Damian was he work the algebraic part of his proof backwards; in other words, the error was

in the structure of the proof itself, not with the content of the proof. So Damian’s error is

with the proof framework itself. On the other hand, Nadia’s error in Figure 4.62b is with

the definition of the of divisibility itself; to correct this, Dr. Wyatt simply eliminates the

equality statement made by Nadia. Otherwise, her proof is correct.

Figure 4.63 shows Jordyn’s solution to the second test question. Her error is a nota-

29Both earned a score of two.
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(a) Damian’s solution. (b) Nadia’s solution.

Figure (4.62) Solutions in the range (4, 5] for question 1.

tional one. Specifically, she states that she is writing P (k+1) in general terms using product

notation, but then writes out a correct, but misplaced statement. Dr. Wyatt corrects this by

identifying the problem and crossing it out. However, this error does not affect the structure

of the proof, just how the structure was being demonstrated. Thus, Dr. Wyatt scored this

as a good solution.

Figure 4.64 shows Dalton’s solution to question 2; this response scored in the interval

(3, 4] and is typical of a solution within this range. Dalton has some key errors in his solution.

First, he does not verify that the result is true in the base case, that is when n = 2. Instead,

he shows the case when n = 3. Further, Dalton does not provide an induction hypothesis.

Both of these instances shows a misunderstanding of the structure of a generalized PMI

proof. That is to say, he does not fully understand the proof framework, an essential part of

the local domain of proof comprehension. Mejia-Ramos et al. (2012) state “a reader needs

to not only identify the logical status of statements in proofs but also recognize the logical

relationship between the statement being proven and the assumptions and the conclusions

of a proof” (p. 9). It appears Dalton does not understand this relationship. Dr. Wyatt



147

Figure (4.63) Jordyn’s solution to question 2.

provides feedback to guide Dalton with how to complete the proof correctly; specifically,

that Dalton needs to “verify P (2)” (the base case) and to provide an induction hypothesis.

Dr. Wyatt does not go into detail on how to accomplish these tasks.

Figure 4.65 provide Jordyn’s solution to question 1 and Allyssa’s solution to question 2

from Test II. The primary error in both solutions is concerned with the induction hypoth-

esis, but they are very different errors. Jordyn’s solution in 4.65a stated in her induction

hypothesis that “3|(n3 − 19n), when n = k [for] some N;” this statement is incorrect for

an induction proof because it implies that the result is true for specific values of k. The

structure of the PMI proofs is that the result holds for all natural numbers; Dr. Wyatt

corrects this by writing “k ∈ N”. All other errors in this problem are computational. In

contrast, Dr. Wyatt comments on Allyssa’s solution to question 2 (Figure 4.65b) that she

provided the “wrong induction hypothesis,” but he does not provide a correct response. All

other errors on these two questions appear to be computational.

Overall, the primary issue students had with PMI and the generalized PMI is the in-

duction hypothesis. Therefore, it appears students are struggling with the overall proof
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Figure (4.64) Dalton’s solution to question 2.

framework associated with induction questions. I will now move to the analysis of Question

4.

Test II question 4. For students to be successful in answering this question, they

must have an understanding of inverse relations and compositions of functions. Specifically,

they must know how to find the inverse relation and how to calculate composition of two

relations. Most of the errors committed by students was either because of an omission or

an incomplete understanding of key definitions. In the following paragraphs I will provide

examples of students’ solutions that scored in the (4, 5] and (3, 4] range.

Figure 4.66 shows the solutions provided by Kimberly and Michaela. Kimberly only

provided a partial solution to S−1 ◦ R−1. The full solution is {(3, 1), (1, 6), (2, 7)} and she

only listed (3, 1) and (2, 7). Similarly, Kimberly omitted the ordered pair (1, 1) from her

solution to S ◦S. Dr. Wyatt does not provide feedback to these answers other than to mark

them partially incorrect.

Jordyn’s and Jeremy’s solution to question 4 both earned four points and are provided
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(a) Jordyn’s solution to question 1. (b) Allyssa’s solution to question 2.

Figure (4.65) Solutions to questions 1& 2 scoring in the range (2, 3].

(a) Kimberly’s solution. (b) Michaela’s solution.

Figure (4.66) Solutions to question 4 scoring in the (4, 5] range.

in Figure 4.67. Jordyn’s error stems from a misunderstanding of a definition, which is

consistent with most errors on this question. She lists “S ◦S = {IS},” that is she claims the

solution is the identity of set S. While I believe she was referring to the ordered pair (1, 1);

however, this is a misunderstanding of the definition of an identity. In fact, S does not have

an identity element.

Jeremy’s error was included because it is unique in terms of every solution on every

assignment. He made no mathematical errors; however, he omitted a part of the question.

While omissions have been examined, this one occurred because he numbered the parts
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(a) Jeremy’s solution. (b) Jordyn’s solution.

Figure (4.67) Solutions to question 4 scoring in the range (3, 4].

incorrectly; specifically, he numbered part 4 and 5 as parts 3 and 4 respectfully. Since his

“part 4” was the last calculation being asked, he believed he had provided all the necessary

solutions. Dr. Wyatt provided feedback by changing Jeremy’s numbering and then asking

where is part 3. This demonstrates how Dr. Wyatt reacts to a student not reading the

question correctly.

With the exception of Jeremy, all of the errors on question 4 arose from a misunder-

standing of the definitions being assessed. With both Kimberly’s and Michaela’s solution,

the definition in question is that of a composition of functions itself. Clearly, they know how

to calculate compositions, but each omitted an element from one of their sets. Jordyn does

not properly understand the definition of an identity. Like his homework assignments, Dr.

Wyatt placed an emphasis on the definitions being used. Next, questions 3 and 5 will be

analyzed.

Test II questions 3 and 5. Questions 3 and 5 had the fewest scores in the highest

range of any questions. Also, question 3 is the only question with scores in the range (1, 2].

The following paragraphs discuss some of the solutions from each range of scores. The range

(4, 5] will be analyzed first. Next, the middle ranges of (3, 4] and (2, 3] will be analyzed

together because the errors are similar. Lastly, the range of (1, 2] will be examined.

The solutions provided by Damian and Vaughn, shown in Figure 4.68, both contain

minor notational errors. Damian stated two induction hypotheses that he believed said

the same thing, but where in fact different. He first list an induction hypothesis that would

be used in PMI questions; Dr. Wyatt points out that this is not the induction hypothesis
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(a) Damian’s solution. (b) Vaughn’s solution.

Figure (4.68) Solutions to question 3 with minor errors.

needed for PCI. Damian then list the proper induction hypothesis and Dr. Wyatt points out

that this is what is needed for PCI.

Similarly, Vaughn’s errors are purely notational. He lists the set from the induction

hypothesis incorrectly and denotes the third step as P (k − 1) instead of P (k + 1). In fact,

he performs all of the calculations correctly for P (k), which he assumed to be true. Dr.

Wyatt simply marked most of the incorrect notation wrong except for the definition of the

set, which he wrote the correct version.

Olivia’s solution, provided in Figure 4.69, has errors that are minor but significant.

Dr. Wyatt comments on the significance of these errors in a complete and concise way. He

comments that her choice of k eliminates the possibility of P (4), that is to say, the way she

defined the set that PCI is being completed on makes it impossible to calculate the fourth

case. Further, she showed the solution for “P ((k + 1) + 1)” which omits the case P (k + 1)

based on her definition of the set. These errors suggest Olivia was struggling with the basic
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Figure (4.69) Olivia’s solution to question 3.

structure of the PCI proof method.

Figure 4.70 shows solutions from Nadia and Jordyn30. Both students scored in the

(2, 3] range and had similar errors. Specifically, neither used the correct induction hypothesis

for PCI. Also, in both cases Dr. Wyatt remarked that their solutions were “not PCI.” Again,

this shows a misconception about the structure of PCI in general.

Both Dalton and Allyssa earned a score of 2, as shown in Figure 4.71. Dalton had

three major errors. First, he did not verify both P (1) and P (2), the base case of this proof.

Second, he did not provide a visible induction hypothesis. Finally, he proved a statement

that he was not meant to prove. For the first two of these errors, it again appears Dalton did

not understand the basic structure of a PCI question; Dr. Wyatt comments on the former by

writing “verify P (1) and P (2)” and the latter by asking where is the induction hypothesis.

Both of these comments are consistent with Dr. Wyatt’s methods of feedback overall, that

is they are short statements.

Allyssa’s solution has errors in two parts. First, she does not state an induction hypoth-

esis consistent with PCI. Second, she does not provide a proof. Dr. Wyatt comments that

30Jordyn’s solution to this question spanned more than one page. I included the page that had feedback.
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(a) Nadia’s solution. (b) Jordyn’s solution.

Figure (4.70) Solutions to question 3 in the range (3, 5].

the induction hypothesis was incorrect, but only asks where is the proof. She did provide a

correct base case, demonstrating she has an idea about the proper structure of PCI; however,

with an incorrect induction hypothesis, this shows that there are still misconceptions about

this structure.

Question 5 tasks students with identifying statements as either true or false. Due to

the binary nature of these responses, Dr. Wyatt did not provide feedback on these solutions

past marking them incorrect. For this reason, none of the solutions are provided; however, I

wanted to note that Dr. Wyatt’s methods of providing feedback on these types of questions

was consistent with those from his homework.

In short, the errors students had with their solutions to questions 3 and 5 are a result of a

misconception in the local domain of proof comprehension. For question 3, the misconception

manifested itself in the form of an incorrect proof structure, that is to say, students did not

understand the difference between PMI and PCI. On question 5, the errors were the result

of not fully understanding the definitions of antisymmetric, symmetric, and transitive. In

both instances, Dr. Wyatt was consistent with his feedback to students, providing very short
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(a) Dalton’s solution. (b) Allyssa’s solution.

Figure (4.71) Solutions to question 3 scoring in the range of (1, 2].

statements when needed or marking a question as incorrect in the case of binary responses.

Summary of Assessment Practices It is clear that Dr. Wyatt has clear goals

for every question he uses on assessments. Most often, these goals are focused on the local

domain of proof comprehension, that is they are designed to provide him insight into students

understanding of definitions, the structure of proofs, and how students understand claims as

a whole. For GaP and AaP questions, these goals are present in addition to examining how

students understand proofs from a more holistic perspective.

Dr. Wyatt is very consistent in both his construction of assessments and the way he

provides feedback to students. All of his homework assignments have the same structure,

that is to say they all have four questions with either a GaP or an AaP as the last question.

Further, his test is formatted almost exactly like his homework assignments except with
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regard to the total number of questions. In terms of feedback, Dr. Wyatt uses very short

and focused statements and questions to help the students learn from any errors. However,

if a statement is binary, then he simply marks the answer as incorrect.
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PART 5

DISCUSSIONS AND CONCLUSION

The data analysis presented in the previous chapter provides enough information to

answer most of the questions posed by this dissertation. What follows is a discussion of the

three research questions that guided this study. Then some implications for instruction as

well as limitations of this study are presented. Finally, some recommendations for future

studies builds on this study will be discussed.

5.1 Discussions of Results

5.1.1 Research Question 1

The first research question is:

1. In what ways does Dr. Wyatt use the ideas of a particular assessment focusing on

students’ thinking with respect to mathematical proofs in his teaching of a transition–

to–proof course?

To answer this question, the data analysis on how Dr. Wyatt constructs assessments, re-

sponds to students work, and the personal interview will be referenced.

Dr. Wyatt’s assessments follow a clear format, all homework assignments consist of four

questions each, with the last questions being either a GaP or an AaP question. It is clear in

the types of questions he uses, Dr. Wyatt’s primary focus for the majority of his assessments

is on local domain of proof comprehension, often through the use of definitions. As stated

during the analysis, this is a key aspect of the framework created by Mejia-Ramos et al.

(2012). His focus on the local domain of proof comprehension is to build a solid foundation

of the material being covered. The reasoning for this focus is based in Dr. Wyatt’s beliefs

about teaching. As it pertains to proof by contradiction, for example, Dr. Wyatt stated
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[Students must know] not just the formally negated, you have to know what it

means. So it’s the negation of A or B [∼ (A ∪ B)] you have to know it is, how

you call it, the negation of A and the negation of B [∼ A∩ ∼ B].

In other words, Dr. Wyatt understands that students need a strong understanding of the

definition of a negation and how it relates to sets. This demonstrates that he believes

that definitions are the foundation of constructing proofs. This coincides with the results

from Syamsuri et al. (2018)1; in their study, they found indicators and recommendations for

three of the four quadrants describing students’ understanding being based in definitions and

logical connections. Additionally, F N et al. (2019) found that “almost 90% of the difficulties

experience indicate a lack of knowledge about concepts, definitions, and relevant notation”

(p. 6). Therefore, this emphasis on definitions and logical connections on Dr. Wyatt’s

assessments is targeting a major issue students have with mathematical proofs.

That being said, Dr. Wyatt does not limit himself on the style of question being asked.

His assessments include three common types of questions: construction, evaluation, and cal-

culation. The tasks assigned to each of these questions, while still assessing the local domain

of proof comprehension, have students think about different aspects of proofs. Construc-

tion questions focus on students constructing an object that exemplifies the statement being

made. Evaluation questions have students identify the truth value of a statement; this means

they are analyzing the statements and forming a conclusion based on the definitions being

studied. Calculation questions require students to use the definitions or procedures discussed

in class to make some form of calculation. These three question types require students to

use different techniques that are helpful in proving statements.

As noted in the analysis, Dr. Wyatt accomplishes having students practice working with

proofs without having them actually write proofs. This can be difficult for some instructors,

for example the instructor discussed in Pinto & Karsenty (2018). This instructor altered

his assessment methods to improve students ability to write proofs in analysis; however,

1The questions used in this study were constructed using the framework developed by Mejia-Ramos et
al. (2012)
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the method he used, a term paper where students create a detailed collection of notes in a

DTP format, revolved around students writing (and revising) their proofs throughout the

course. Rocha (2019) notes that “proofs do not need to be restricted to formal proofs” (p.

9) and recommends focusing on simplicity; therefore, having students write formal proofs

is only one way to improve their proof writing. Further, Dr. Wyatt’s uses of questions

that do not require students to construct proofs while focusing on the local domain of proof

comprehension eliminates students needing to decide how to begin a proof, something that

is difficult for students to complete (F N et al., 2019).

GaP and AaP questions. The two special types of questions, GaP and AaP, further

emphasize these basic qualities, though in different ways. GaP questions ask the student

to first identify an error in a proof, then determine the validity of claim, and third write a

correct proof or provide a counter example. The AaP question, designed using the framework

developed by Mejia-Ramos et al. (2012), primarily asked students to justify why steps were

correct. While different in format, it is most likely that Dr. Wyatt uses these types of

questions because it examines how the students differentiate between “what is right and what

is wrong” (Personal Interview, February 12, 2019). This is beneficial because there is evidence

that students find it difficult to differentiate correct reasoning and incorrect statements. For

example, Herizal et al. (2019)2 notes “Students still [have] difficulties in giving the reason for

the right step and made errors when determining the right from of [the] sine rules3” (p. 4) to

use when completing proofs. Similarly, F N et al. (2019) noted undergraduate students must

“be able to show contradictions and to provide counterexamples” (p. 6), but were unable to

do so in many cases. Again, Dr. Wyatt is assessing an aspect of mathematical proof that

students struggle in understanding.

In particular, GaP questions were constructed to have the students examine a proof to

find errors. Dr. Wyatt stated

2A study conducted focusing on geometric proofs in a secondary school in Indonesia
3the Law of Sines
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I as a teacher grade [the students’] solutions, you know I point out that it is

wrong, sure sure, but I don’t know if that is the best... maybe there are other

ways for them to realize they are, they the students, making mistakes. So there

I just do it this way, I make them, make the students [the] grader (Personal

Interview, February 12, 2019)4

As mentioned during the analysis, his goal is to help students recognize the difference be-

tween correct and incorrect statements. The construction of GaP questions reinforcers this

stance, that is to say, since the given proof is always incorrect, students must identify where

the logical error occurs. This assesses students knowledge of the local domain of proof com-

prehension. GaP questions forces students to think about the logical connections and their

ability to create proofs or counter examples.

AaP questions were designed using the framework developed by Mejia-Ramos et al.

(2012). Specifically, these questions assess students’ reading comprehension of proofs. Dr.

Wyatt adopted this AaP question, in part, because of his involvement in the mathematics

education research project. Again, AaP questions, like all of his questions, require students

to have a very strong understanding of the foundational definitions and theorems. That is,

AaP questions focus on the local group of proof comprehension. The analysis showed that

the primary reason Dr. Wyatt adopted these questions is to help students be able to read

“sketchy” proofs, which are prevalent in mathematics text books as well as some lectures

(Lew et al., 2016; Weber et al., 2016). The data analysis only focused on one AaP question;

therefore, it is difficult to make further conclusions about this question type in general.

Feedback on students’ responses. The feedback Dr. Wyatt provides students is

both simple and direct. As stated previously, he generally informs students he needs more

detail using a simple question or to explicitly state what in the solution was incorrect.

This method of providing feedback is suggested by Speer et al. (2010). However, there are

examples of Dr. Wyatt responding to a students solution with a counterexample. The subject

4Quote appears in Section 4.3.2.
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of a study by Pinto & Karsenty (2018) identifies one of the goals for providing feedback in

the course is to use counterexamples; the reasoning being “counterexamples may illustrate

for students that if they make a mistake in their proof, then their proof is rejected not due

to a norm or to some personal opinion, but because it failed to function as a proof” (p.

139). Dr. Wyatt feedback has much the same purpose. He believes that a simple question is

an affective way of showing students their mistake objectively. Further, when he does state

directly what is wrong, it is when students have omitted an essential part of their solution,

for example, the inductive hypothesis when using PMI.

Further, the type of feedback Dr. Wyatt uses is dependent on the question type. For

construction questions, the analysis found that Dr. Wyatt uses either a short question

requesting the missing information or states why the students’ solution is wrong. For evalu-

ations questions, Dr. Wyatt just marks responses incorrect statements because the responses

are binary (true/false); thus, simply marking the response wrong is not ambiguous feedback.

Calculation questions include either of the above methods based on the type of response

required. For both GaP and AaP questions, Dr. Wyatt uses methods similar to those used

in his construction questions.

Test II. Dr. Wyatt’s test questions fall into three categories: proof writing, calcu-

lation, and evaluation. The analysis showed students should have expected these types of

questions, especially the calculation and evaluation questions as they are very similar to

those on the homework assignments. The proof writing question, while not specifically ob-

served on the homework assignments, uses the same type of reasoning as the constructions,

GaP, and AaP questions. Therefore the analysis of the homework and test questions have

similar goals, that is examine the local domain of proof comprehension.

In terms of feedback, Dr. Wyatt’s methods do not deviate from those found on his

homework. The evaluation question, being a situation with a binary response, has incorrect

solutions simply marked incorrect. Further, his feedback on calculation questions is almost

identical to the feedback he gave on similar questions in the homework. For the proof writing
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questions, he commented when students did not use the correct proof structure in addition

to comments similar to the construction, GaP, and AaP questions.

Concluding thoughts on the first research question. In short, Dr. Wyatt’s as-

sessments provide students examples focusing on the local domain of proof comprehension.

The emphasis on the foundational aspects about mathematical proofs (definitions and jus-

tifications) is evident, as is how each question construction ensures students must have a

strong understanding of the definitions to be successful. This same emphasis is also found

in the construction of GaP, AaP, and test questions.

All of Dr. Wyatt’s feedback is stated simplistically. This simplistic feedback does require

students to think about why their solutions are incorrect. Specifically, Dr. Wyatt does not

answer the question if students get a solution incorrect; instead, he asks students questions

or provides statements that clearly identify what is incorrect. Students must think actively

to correct their errors.

Dr. Wyatt focuses almost exclusively on the local domain of proof comprehension.

Mejia-Ramos et al. (2012) and Mejia-Ramos et al. (2017) identify the local domain of proof

comprehension as the foundational aspects of a proof, including definitions, the proof frame-

work, and how statements are connected. Dr. Wyatt believes a focus on the local domain of

proof comprehension will improve students proof writing. Further, by eliminating the need

for students to have to start a proof, he is simplifying the content to enhance the focus on

the fundamentals.

5.1.2 Research Question 2

The second research question is:

2. How do Dr. Wyatt’s current instructional practices compare to his previous method(s)

used?

The data collected to answer this question were a questionnaire, observations, and the per-

sonal interview with Dr. Wyatt. The questionnaire was sent to students who had a course
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with Dr. Wyatt in the previous three (Fall and Spring 2017, Spring 2018) semesters prior

to my observations. Then, I compared the results from the questionnaire to Dr. Wyatt’s

observed teaching practices.

What follows is a comparison of Dr. Wyatt’s past instructional practices with the

methods used in the observed transition–to–proof course. This comparison of this data

indicates there were minor differences in Dr. Wyatt’s teaching practices for this course.

This discussion will be organized by specific teaching practices (e.g., motivation of content,

time allocation) and assessment practices before my final conclusion is presented.

Motivation of content. Dr. Wyatt believes that cultural influences on students’

motivation is a major factor to their personal desire to learn. The analysis notes this phe-

nomena as a form of extrinsic motivation; specifically students are “doing something to get

a future value (avoid a future disvalue)” (Locke & Schattke, 2018). In his words, Dr. Wy-

att believes “if [academics] got that type of attention; then students [will] all try to study

mathematics and physics;” that is to say if academics were valued as highly as other aspects

of society (e.g., athletics) more students would be attracted to academics because there is a

value placed by society. He admits that he does not know how to foster this kind of drive in

students, but acknowledges cultural motivation is most easily seen as “pressure” from peers.

Motivation can be viewed in terms of the “rationale for a sequence of topics” (Speer et

al., 2010); Locke & Schattke (2018) describe this form of motivation as achievement moti-

vation. Dr. Wyatt uses achievement motivation during his courses, providing students with

rationale (a goal) for studying the material. The data analysis notes that Dr. Wyatt does

not always state the rationale outright; instead, he uses examples or even just emphasizes

requirements to suggest what the goal of the lesson is. Therefore, since he does not know

how to foster cultural motivation, he instead sets clearly defined goals for the students to

follow.

While it was impossible to analyze specific instances of how Dr. Wyatt motivates

content in his previous courses, his personality was shown to play a factor. Khalilzadeh &
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Khodi (2018) identified teachers personality as playing a role in motivation; it was found that

his former students were very aware of Dr. Wyatt’s personality in the form of excitement

about teaching the course. Nine of the eleven respondents rated Dr. Wyatt’s excitement

about teaching the course as “excellent;” this was further noted because students recognized

that Dr. Wyatt “knows the material [he teaches] in depth” and identified his personality

as forming the basis of his instructional methods. Further, his former students recognized

Dr. Wyatt has high expectations for them. All of these instances show, while the specific

methods could not be analyzed, Dr. Wyatt’s previous methods of motivation left an impact

on his former students, leading me to conclude that the material was motivated with clear

cut goals (suggesting achievement motivation) that his former students easily recognized and

recalled.

Preparation and Self Reflection. Dr. Wyatt prepares his lessons keeping in mind

what he considers to be his “best way” for instructing mathematics: his use of examples. The

analysis determined Dr. Wyatt uses two broad categories of examples. He uses real world

examples (examples not focusing on purely mathematical situations) when covering concepts

that “not just the students in my class by the general public” have difficulty comprehending.

Conversely, he will omit real world examples when covering topics that are less confusing

to students or due to time constraints. Regardless of the type, it is very clear Dr. Wyatt

believes he teaches best when working with examples.

Further, he acknowledged how he begins preparing his courses. Most of his time is

focused on which example he is going to use to explain a concept. This includes examining

time constraints and topics that cause general confusion to students. Whichever type of

example he settles on presenting, he is mindful of his students needs; he recognizes when

a specific example is not working and has prepared well enough to be able to switch to a

different example (or type of example).

It is clear that Dr. Wyatt has taught primarily using examples in his past teaching as

well. His former students acknowledged Dr. Wyatt’s methods, commenting he “always uses
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examples” and uses a variety of examples to ensure students understand the foundational

material well enough to work with the more complex problems. Further, a former student

stated a desire for more teachers to use examples as Dr. Wyatt does to clarify the theorems

discussed in the course. For example, Pinto & Karsenty (2018) described an analysis course

where formal proofs were not presented in the lecture; instead, proofs by example were used

in class and students constructed the general proofs outside of class. This professor, like Dr.

Wyatt, believes that examples are essential to the instruction of mathematics, even if the

courses are structured differently.

Time Allocation. The analysis showed that the majority of Dr. Wyatt’s instruc-

tional time was spent working with examples. During the eight lectures, a total of 51.2% of

the instructional time was spent working with examples. As noted in the analysis, this is

consistent with what Dr. Wyatt believes is his best way of teaching mathematics. All other

components of the analysis of Dr. Wyatt’s time allocation (review, content, and other)5

were approximately the same (15%, 17.5%, and 16.3% respectively). Therefore, the analysis

showed Dr. Wyatt prioritizes examples heavily.

Dr. Wyatt’s teaching methodology was described in the analysis as traditional, which

Johnson et al. (2017) defined by “heavy use of lecture” where the instructor may pause and

ask questions but primarily works through examples. He is partially reliant on this method

of instruction because of time constraints. During the analysis of the interview Dr. Wyatt

provided several examples of different ways he would teach if he (and the students) had

the necessary time. He described a master–apprentice method of teaching which correlated

heavily with alternative instruction as defined by Johnson et al. (2017). He also described

a potential use of a mixed6 instructional method that revolved around students reading

material before it is presented in class. One of the reasons Dr. Wyatt does not use a form

of either of those methods is because of time constraints.

That being said, his former students acknowledged the work Dr. Wyatt puts into his

5Described in Maulana et al. (2015).
6Categorized by Johnson et al. (2017).
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teaching, especially with regard to pacing. His pace was described as “steady and mod-

erate” and that this pace allowed him to “thoroughly [cover] solely the required content.”

As mentioned previously, the former students recognized Dr. Wyatt’s use of examples as

being extensive, and while they admit his pace could be too slow at times, the benefits were

evident.

Representations of concepts and relations. While it is very evident at this point,

Dr. Wyatt used a large number of examples; however, those examples took several differ-

ent forms. In this course, he used set theoretical notation, graphs of algebraic functions,

and diagrams depending on the goal he was emphasizing. While the use of these various

representation methods were evident in Dr. Wyatt’s teaching, they were analyzed as being

weak in some areas in accordance with Weber et al. (2016). Specifically, Dr. Wyatt did

not list out key points on the board, which is an indicator to students that the content

is important. In other areas, his representation methods ensured students focused on the

relationship between content.

As for how he represented content in previous classes, it is very difficult to identify. The

analysis shows that students remember the use of many examples throughout Dr. Wyatt’s

course. However, they do not describe how these examples were presented, only that it was

present. Therefore, no determination can be made on how Dr. Wyatt presented content in

his previous courses.

Questioning. Analysis of Dr. Wyatt’s questioning methods show that he used a

higher percentage of TQs than LQs in his course. Recall that TQs are questions that will

keep a lecture moving at a steady pace where as LQs assess students current understanding.

That being said, Dr. Wyatt described his questioning as focusing primarily on building

students confidence.

I determined that Dr. Wyatt’s confidence building questions are characteristic of TQs,

that is they help progress the lesson efficiently. Dr. Wyatt has a clear expectation of how

his questions should be answered and believes this will allow students to see mathematics
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is “not that hard” because their peers can quickly respond. That being said, sometimes his

questions reveal that none of the students fully understand a topic. He described this simply

as learning because he will answer the question.

Former students view Dr. Wyatt’s questioning as being mostly straight forward. They

noted Dr. Wyatt only sometimes requires students to justify their responses to questions

in class. The specific structure cannot be determined, as noted in the analysis, because

students described the types of examples he used instead the types of questions he asked in

class. That being said, given that justification was not required on all of Dr. Wyatt’s in

class questions, it is likely that they are TQs.

Assessment practices. Dr. Wyatt’s assessments were constructed in a consistent

manner and had five types of questions: construction, justification, calculation, GaP, and

AaP. Of these questions, Dr. Wyatt noted that AaPs were added because it is the same

type of assessment used in the project in which he participated. An analysis of how these

questions were developed identified one key element. Specifically, these assessments focused

primarily on the local domain of proof comprehension; that is to say, they were designed to

assess primarily definitions and the relationship between statements. This correlates with

Dr. Wyatt’s beliefs about instruction; he works to help students think actively.

His former students identified several key factors about his assessment. First, they

followed a consistent format; students knew what the assignments would look like prior

to receiving it. Second, they demonstrated a step by step method for approaching the

tasks. Third, they helped the students learn the material as they focussed on the essential

material covered in class. Finally, the assessments helped differentiate concepts by providing

examples. Most of his students remember the assessments positively, that is to say they

identified the positive impact the questions had on their learning.

While specific questions were impossible to obtain, one student commented that the

assessments forced them to “memorize the basic definitions and foundational” theorems.

So, a large portion of the assessment in these past courses focused on the local domain of
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proof comprehension. In essence, the assessments helped students master the foundational

material of the course.

Concluding thoughts on the second research question. Recall the purpose of

the second research question was to compare Dr. Wyatt’s past and present teaching practices.

This is important because it will show if there was a visible impact from Dr. Wyatt’s

participation in the mathematics education research project. Comparing the observations

from the transition–to–proof class with the former students’ responses to the questionnaire,

the answer becomes clear: As a result of participation in the mathematics education project,

Dr. Wyatt’s teaching and assessment practices have been enhanced with inclusion of the

AaP questions on assessment.

His teaching practices have been formed over the entirety of his career and Dr. Wyatt

refers to his use of examples as his best way of teaching the material. His allocation of time

within lessons supports this belief, and his questioning methods keep the course progressing

at a constant pace. The data from his former students supports the observed behaviors, with

most of them commenting about his use of examples.

His assessments, both past and present, focus on the local domain of proof comprehen-

sion. Students recognize they must understand the fundamentals to be successful. In fact,

the only evidence showing that there was a change to Dr. Wyatt’s assessment practices is

by his own admission that he added the AaP questions because of his involvement.

5.1.3 Research Question 3

The third research question is:

3. What impact does Dr. Wyatt’s participation in the research project have on his core

beliefs about teaching and the value of research in mathematics education?

Examining an instructors’ personal beliefs is difficult because it can be hard for instructors to

accurately verbalize their beliefs (Le Fevre, 2014; Barney & Maughan, 2015, e.g.,). However,
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we can make some conclusions about Dr. Wyatt’s beliefs by examining the data gathered

during the interview with him.

He made several statements pertaining to his beliefs about teaching. Dr. Wyatt believes

that “his best way” of teaching is through the use of examples. He emphasizes real life

examples to communicate to the students that “[they] have been using [mathematical logic]

in [their] daily life” (Personal Interview, February 12, 2019). Further, he believes that

mathematical prerequisites for this course are not as important as the students’ desire to

learn mathematics, even stating that he believes some secondary students could handle the

content. He commented that the best way for students to learn content is by struggling with

the material and actively thinking about the implications. However, with the data at hand,

it is difficult to see a significant change in his beliefs about teaching.

The data indicates that Dr. Wyatt’s value of research in undergraduate mathematics

education is high. In his reflections about his teaching strategies (Section 4.2.2), Dr. Wyatt

was able to formulate various teaching methods outside of his “best way;” specifically, he

describe what Johnson et al. (2017) refer to as an alternative method that resembled a

master–apprentice relationship. He also describe a teaching strategy that emphasized reading

as the primary form of instruction, or learning by reading as described in Yang & Li (2018).

This suggests that Dr. Wyatt is very cognizant of possible instructional strategies, that is to

say, he is interested in various methodologies on teaching. In addition, the adoption of the

AaP question type into his assessment practices shows Dr. Wyatt values the information

gathered from the educational research project. These details suggest Dr. Wyatt valuing

undergraduate mathematics education research; however, more data is required to truly

answer this question.

5.2 Implications for Instruction

In this study, two major aspects of teaching mathematics at the collegiate level were

examined in detail, the practices used by Dr. Wyatt for the instruction of material and

his assessment practices. Five aspects of the former were analyzed, specifically motivation
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of topics, preparation and self reflection, time allocation within lessons, representations of

concepts and relations, and questioning techniques. Meanwhile, the latter was analyzed with

regards to assessment construction and methods of feedback. There are several implications

for instruction that can be identified.

First, Dr. Wyatt’s methods of questioning can act as a model questioning in general.

The goals of the questions he asks are less to identify misconceptions, and more to build

students’ confidence and probe them to “think actively.” This mindset helps students’ mo-

tivation, promoting a deeper desire to work toward truly comprehending the material.

Second, the format of his assessments provides an example of how to assess students’

understanding of the local domain of proof comprehension. Each question examines a specific

set of definitions or if statements are valid to be successful at writing mathematical proofs

without requiring the students to construct a proof for each question. This coincides with

research (Mejia-Ramos et al., 2012; Yang & Li, 2018; Syamsuri et al., 2018; Herizal et al.,

2019) that suggest examining how students understand a proof (or parts of a proof) can lead

to students constructing better proofs. The GaP and AaP questions demonstrate how to

apply the assessment framework developed by Mejia-Ramos et al. (2012).

Lastly, Dr. Wyatt’s feedback principle could be applied on a wider basis. Providing

feedback through short comments and questions creates an environment where students must

think carefully about their errors. Therefore, one is not directly stating the error in logic,

but instead is directing the student (or providing an example) that illustrates the logical

mistake. That is to say, students are learning by example how to identify their errors thus

promoting a deeper understanding of the content.

5.3 Limitations of the Study

Several limitations of this study can be identified. First, the limited amount of time I

spent observing the course will, by its nature, create an incomplete image of Dr. Wyatt’s

beliefs and methodology for teaching and assessing mathematical proofs. For example, I can

only infer how Dr. Wyatt emphasized the instruction of PMI based off of the review sheet
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for the second exam. Further, this time constraint limited the number of assessments I was

able to analyze. I believe having examples of the GaP and AaP questions focusing on more

topics, especially those acting as the foundation of this transition–to–proof course, would

allow for a better analysis of those later in the course.

Second, this study followed only Dr. Wyatt and his experience teaching this course

after working with mathematics educators. While he was selected for this very reason, his

beliefs on mathematics and teaching are unique to his background. Therefore, this does not

provide a clear examination of mathematicians in general.

Lastly, the analysis of the data using the frameworks developed by Speer et al. (2010) and

Mejia-Ramos et al. (2012) create their own limitations. There are several other frameworks

for identifying students understanding of mathematical proof such as those suggested by

Syamsuri et al. (2018) and Herizal et al. (2019). Further, the R/O/G theory developed by

Schoenfeld et al. (2016) provides an alternative method for analyzing Dr. Wyatt’s teaching

practices. That is to say, using these models to analyze the data could lead to different

conclusions.

5.4 Future Research

Speer et al. (2010) state that there is little research on examining the teaching practices

of instructors at the collegiate level. Since then several studies have examined these practices

(Lew et al., 2016; Weber et al., 2016; Johnson et al., 2017, e.g.,); however, the library of

research is still small. Similarly, studies concerning how students understand mathematical

proof specifically are also increasing (Yang & Li, 2018; Herizal et al., 2019, e.g.,), but this

number is also small. Further research could expand on this study by comparing multiple

professors, those that have and have not participated in mathematics education research,

methods of instruction and assessment of mathematical proof. This would allow researchers

to formulate a clearer picture on how participation in mathematics education research alters

mathematicians teaching methods.

This report provides examples of assessment types in a transition–to–proof course. This
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can be expanded on in several ways. For instance, how do questions constructed using

a framework other than that described by Mejia-Ramos et al. (2012) compare to those

from this study, especially the GaP and AaP questions? Further, a more student based

study on their perception of the type of feedback demonstrated by Dr. Wyatt; this could

answer the question how instructor feedback on students work affect their understanding of

mathematical proof. I recommend further research into these issues.
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Appendix A

QUESTIONNAIRE OF FORMER TEACHING PRACTICES

Instructions: Answer the questions honestly, to the best of your ability. If provided

options, please circle the best choice.

1. How would you rate the instructor’s excitement in teaching the course?

Excellent Very Good Good Poor

2. How often did the instructor make you explain your responses to questions posed in

class?

Always Often Sometimes Rarely Never

3. How often did the instructor make you explain your responses to questions posed on

assessments (Homework/Test)?

Always Often Sometimes Rarely Never

4. Overall, how high were the instructor’s expectations of you?

Extremely High Very High High Average Low

5. Describe how the instructor paced the course. Did his pacing change during the course.

6. Describe how the instructor covered the essential material in the course, that is, the

material that acted as a foundation for the rest of the course.

7. Describe the types of questions the instructor’s used while teaching the course, that is,

the types of questions he would ask not appearing on an assessment.
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8. Describe how the instructor’s assessments (homework/test) impacted your learning in

the course.

9. Describe how the instructor’s’s assessments (homework/test) provided insight into

mathematical proofs.

10. What is the one thing that the instructor did that you wish all teachers did? Please

explain.

11. What is the one thing that the instructor could have done differently to improve your

learning? Please explain.
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Appendix B

INTERVIEW PROTOCOL

Good morning/afternoon/evening,

Thank you for agreeing to take part in this interview. Before we begin, I would like to

verify that you consent to having this interview audio recorded (Yes: Thank you. Start audio

recording. No: Put audio recorder away. Ok, thank you. This interview will be recorded

through notes only).

Please note, when answering these questions, be mindful to not share names or any

information that will identify another person during this interview.

1. Describe your role as an instructor (for example, in terms of preparation; how you

determine the content that would be taught each class period; delivery mode – lecture

without or with students’ participation, etc.).

2. What prerequisite mathematical knowledge do students need to have when learning

proof techniques?

3. What do you believe is the students’ role in learning proof techniques (for example,

listen the instructor’s lecture and study at home; prepare and participate in class in

some way, etc.)?

4. What are your expectations from questioning students during class? What do you feel

are the best types of questions to ask during class?

5. You use diagrams, logic tables, and both formal and informal examples. How do you

determine which representation is the best to use for a specific proof?

6. What information do students’ responses to “grade the proof” questions provide? How

do you use this information in your instruction?
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7. What information do students’ responses to “analyze a proof” questions provide? How

do you use this information in your instruction?

8. What is the primary difference between “grade a proof” and “analyze a proof” ques-

tions? Do you think students differentiate between these two kinds of tasks?

9. What is the importance of having students read and analyze various proofs for cor-

rectness? How is this used when evaluating students understanding of various proof

techniques?

10. What is the importance of having students determine the truth of a statement before

either proving the statement or providing a counter example? What type of information

does this provide?

11. Choosing an appropriate proof technique is an essential aspect of mathematical proof.

What methods are used to help students identify the proof technique that would be

best for a given proof?

12. Is there anything else that you would like to share with me regarding your teaching

experience and/or your belief about teaching the introduction to proof class and/or

students’ difficulties in learning the proof techniques and with mathematical proof in

general?
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Appendix C

HOMEWORK ASSIGNMENTS



Math 3000 (Fall 2018) Homework Set #8 (Due 10/24) Problems

Problem 8.1. Construct concrete non-empty relations R, S and T on X = {1, 2}, as well
as a non-empty relation U on Y = {1, 2, 3}, such that the following properties are satisfied.

(1) A relation R on X such that R is symmetric and is antisymmetric.
(2) A relation S on X such that S is symmetric and is not antisymmetric.
(3) A relation T on X such that T is not symmetric and is antisymmetric.
(4) A relation U on Y such that U is not symmetric and is not antisymmetric.

Problem 8.2. Construct concrete relations r, s, t and u from A = {3, 4} to B = {a, b}
with the following properties.

(1) relation r is not a function.
(2) relation s is a function, but not a function from A to B.
(3) relation t is a function from A to B with Rng(t) = B.
(4) relation u is a function from A to B with Rng(u) 6= B.

Problem 8.3. Consider the real function f(x) = x2 � 1. Calculate each of the following.

(1) The image/value of 5 under f .
(2) All the pre-images of 15 under f , if they exist.
(3) All the arguments associated with the value 20, if they exist.
(4) All the pre-images of �10 under f , if they exist.

Problem 8.4 (Grade a “Proof”). Study the following claim as well as the “proof”:

Claim. For non-empty sets A and B, if f : A ! B is a function then f � f�1 ✓ IB.

“Proof”. Let (b, b) 2 f � f�1. Then there exists a 2 A such that (b, a) 2 f�1 and
(a, b) 2 f . Thus (b, b) 2 f � f�1 and (b, b) 2 IB. Therefore f � f�1 ✓ IB. 2

Complete the following questions concerning the above claim and “proof” :

(1) Determine whether the “proof” is rigorous. Identify the issues in the “proof” ,
if any.

(2) Determine whether the claim is true or false. Justify the answer in part (3).
(3) If the the claim is true and the “proof” is not rigorous, then provide a correct and

rigorous proof. If the claim is false, give a concrete counterexample.

PROBLEMS HINTS SOLUTIONS
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Math 3000 (Fall 2018) Homework Set #9 (Due 11/07) Problems

Problem 9.1. Let A = {1, 2}. Construct sets Bi and functions fi : A ! Bi, 1 6 i 6 4,
with the following properties:

(1) f1 is both one-to-one and onto B1.
(2) f2 is one-to-one but not onto B2.
(3) f3 is onto B3 but not one-to-one.
(4) f4 is neither one-to-one nor onto B4.

Problem 9.2. Let A = {1, 2} and C = {x, y}. For each i = 1, 2, construct sets Bi as well
as functions fi : A ! Bi and gi : Bi ! C satisfying the following properties:

(1) g1 � f1 is onto C but f1 is not onto B1.
(2) g2 � f2 is one-to-one but g2 is not one-to-one.

Problem 9.3. Consider the function f : R ! R defined by f(x) = x2 + 1 for all x 2 R.

(1) Find f([�1, 0) [ (2, 4]).
(2) Find f�1([�2, 3)).
(3) Find f�1((�1, 5] [ (17, 26]).

Problem 9.4 (Analyze a Proof). Study the following statement as well as the proof:

Statement.
p

2 is not a rational number.

Proof. We prove the statement in following steps.
(a) Suppose that

p
2 is a rational number.

(b) So there exist a 2 Z and b 2 Z \ {0} such that
p

2 = a
b .

(c) We can further assume that a and b do not have a common divisor with
absolute value bigger than 1.

(d) Note that a2 is even.
(e) Consequently, we conclude that a is even. So write a = 2k, with k 2 Z.
(f) Then b2 = 2k2, which shows that b2 is even.
(g) Thus b is even.
(h) But this is impossible.
(i) So

p
2 is not a rational number. 2

Complete the following questions concerning the above proof :

(1) Explain why (d) holds (i.e., why a2 is even). Provide your justification.
(2) Explain why (d) implies (e). Provide your justification.
(3) Explain what is impossible, as claimed in (h)? Provide your justification.

PROBLEMS HINTS SOLUTIONS
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Math 3000 (Fall 2018) Homework Set #10 (Due 11/14) Problems

Problem 10.1. Determine whether the sets are finite or infinite. No justification is needed.

(1) Q, the set of (all) rational numbers.
(2) {x 2 R : x2 + 1 = 0}.
(3) The set of all turkeys eaten in the year 1620.
(4) {x 2 N : x is composite}.
(5) {x 2 R : 4x8 � 5x6 + 12x4 � 18x3 + 26x2 � 13x + 100 = 0}

Problem 10.2. Provide a concrete example of each of the following cases, if ever possible.
If a case is never possible, then state so.

(1) An infinite subset X of a finite set Y .
(2) A collection {Ai : i 2 N}, with each Ai non-empty, such that

S
i2N

Ai is finite.

(3) Finite non-empty sets A and B such that A [ B 6= A + B.

(4) Finite non-empty sets C and D such that C [ D = C \ D.

Problem 10.3. Determine whether each of the statements is true or false. No justification
is necessary.

(1) If a set A is countable, then A is infinite
(2) If a set B is denumerable, then B is infinite
(3) If a set C is uncountable, then C is infinite
(4) If a set D is denumerable, then D is countable
(5) If a set E is not denumerable, then E is uncountable

Problem 10.4 (Grade a “Proof”). Study the following claim as well as the “proof”:

Claim. If A and B are infinite sets, then A ⇡ B.

“Proof”. Let A and B be infinite sets. Then we can describe A and B as follows

A = {a1, a2, . . . , an, an+1, . . . } and B = {b1, b2, . . . , bn, bn+1, . . . }.

Define a function f : A ! B by f(an) = bn for all an 2 A. Clearly, f is one-to-one
and onto B. Therefore A ⇡ B, finishing the proof. 2

Complete the following questions concerning the above claim and “proof” :

(1) Determine whether the “proof” is rigorous. Identify the issues in the “proof” ,
if any.

(2) Determine whether the claim is true or false. Justify the answer in part (3).
(3) If the the claim is true and the “proof” is not rigorous, then provide a correct and

rigorous proof. If the claim is false, give a concrete counterexample.

PROBLEMS HINTS SOLUTIONS
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Appendix D

TEST II



Math 3000 (Fall 2018) Midterm Exam II (10/31) Problems

Problem II.1 (5 points). Use the Principle of Mathematical Induction (PMI) to prove
3 | (n3 � 19n) for all n 2 N.

Problem II.2 (5 points). Use the Principle of generalized Mathematical Induction (PMI)

to prove
nQ

i=2

i2�1
i2+2i

= 3
n2+2n

for all integers n > 2.

Problem II.3 (5 points). Define a1 = 5, a2 = 25, and an+1 = 9an � 20an�1 for all n > 2.
Use the Principle of Complete Induction (PCI) to prove an = 5n for all n 2 N.

Problem II.4 (5 points). Let X = {1, 2, 3, 6, 7, 8}, R = {(1, 3), (2, 1), (6, 8), (8, 2)} and
S = {(1, 1), (3, 7), (6, 2), (7, 8)}. Determine each of the following explicitly:

(1) S � S; (2) R � S; (3) S � R; (4) R�1 � S�1; (5) S�1 � R�1.

Problem II.5 (5 points). Determine true or false, in which X and Y are non-empty sets.

(1) D = {(a, b) 2 N ⇥ N : a | b} is an antisymmetric relation on N
(2) R = {(1, 2), (2, 3), (3, 1)} is an transitive relation on R
(3) S = {(1, 4), (2, 5), (3, 6)} is an antisymmetric relation on Q
(4) If a relation T on X is not antisymmetric then T is symmetric
(5) A relation U on Y is transitive if and only if U � U ✓ U

Extra Credit Problem II.6 (1 point, no partial credit). Prove or disprove: For all sets
A, B and C, if A ⇥ B = A ⇥ C then B = C.

PROBLEMS HINTS SOLUTIONS
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