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Abstract

Creep is a critical consideration for designing anchors in ice-rich silt. In this study, 

creep was evaluated for grouted anchors in ice-rich silt by laboratory tests. A total of 

nineteen staged-load pullout tests were conducted on smooth grouted anchors. The 

anchors were loaded until either a tertiary creep stage or the capacity of the load 

system was reached. Soil temperatures evaluated in this study ranged from 32 °F to

26.6 oF. It was found that the onset of tertiary creep for smooth anchors was around

0.03 inches, which was much smaller than that suggested in the literature for rough 

anchors (1.0 inch). Given the same shear stress and soil temperature, the observed 

creep displacement rates for smooth anchors were greater than those given by the 

existing design guidelines for rough anchors.

A new creep model was proposed in which soil temperature was included as an 

additional variable. Model parameters were developed as a function of soil 

temperature and moisture contents by using the test data. The model predictions were 

compared with the laboratory tests. It was found that the creep displacement rates 

decreased with the decreasing of soil moisture contents and temperature. Based on the 

analysis of laboratory test data, design charts were provided to give the allowable 

pullout capacity for smooth anchors in ice-rich silt.
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Chapter 1 Introduction

Grouted anchors and anchored systems offer many advantages over conventional 

systems and have been used in unfrozen soils successfully for highway application for 

decades. They may be an alternative means to mitigate the problems associated with 

ice-rich permafrost that was exposed and thawed during road construction operation. 

It is well known that ice-rich soils have creep behavior under constant loading. This is 

also one of the major concerns for practitioners when design anchors in ice-rich soils. 

In order to investigate the applicability of anchored systems in Alaska's harsh climate, 

creep of grouted anchors in ice-rich permafrost needs to be evaluated. Prior to this 

research, the existing design guidelines do not provide the engineer with a 

relationship between minimum displacement rates and applied shear stresses as a 

function of soil temperatures and soil moisture contents for grouted anchors in 

ice-rich silt.

1.1 Objectives of the Research

The primary focus of this study was to evaluate the creep of straight-shafted grouted 

anchors in ice-rich silt. The major objectives of this research were listed as follows:

1. Exploration of the existing creep theory and design guidelines for grouted 

anchors in permafrost;

2. Development of an experimental method to monitor creep displacement of 

grouted anchors in ice-rich silt at different temperatures;

3. Development of the relation between minimum displacement rates and applied 

shear stresses at different soil temperatures.
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4. Investigation of the effects of soil temperatures and moisture contents on creep of 

grouted anchors in ice-rich silt;

5. Development of design charts for grouted anchors in ice-rich silt.

1.2 Research Methodology

To achieve the objectives of this study, the following tasks were conducted:

1. Literature review. — Chapter 2 provided background information on grouted 

anchors in permafrost. It also presented the creep theory, design guidelines and 

basic load tests for grouted anchors.

2. Anchor load tests. — Chapter 3 described the test equipment and procedures used 

to conduct laboratory based anchor load tests. A summary of these test results was 

also presented.

3. Data analysis. — In Chapter 4, test results were first compared with the existing 

design guidelines. Regression analysis was then conducted to establish the 

minimum displacement rate relationship for smooth anchors in ice-rich silt. Based 

on the regression equations, the effects of soil temperatures and moisture content 

on anchor creep were discussed. Design examples and design charts were also 

given.

4. Conclusions and recommendations. —Upon completing the anchor load tests and 

the data analysis, results were synthesized to draw conclusions and 

recommendations. These were presented in Chapter 5.

2



Chapter 2 Literature Review

2.1 Background on Grouted Anchors

The use of grouted anchors in permafrost dates back to the 1970s (Johnston and 

Ladanyi, 1972). Grouted anchors were primarily used as anchorages for guyed 

towers, or buried pipelines in cold regions. In unfrozen soil, grouted anchors were 

usually used for retaining walls. They are used widely for various engineer 

structures and have been proved more cost-effective than other retaining systems 

(Power and Briaud, 1993).

As shown in Figure 2.1, a grouted anchor is essentially a steel tendon (e.g., threaded

3
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Figure 2.1 Typical configuration of a grouted anchor in permafrost.



bar) secured in the ground by cement grout (Power and Briaud, 1993). It is installed 

first by placing steel tendon into a pilot hole and then by filling the hole with grout 

materials. In frozen ground, rapid setting cement was suggested for use to mitigate 

degradation of frozen soils (Biggar and Sego 1990). Usually, a tensile load is applied 

to anchor head and then transferred from the steel tendon to the grout through the 

tendon-bonded length (Figure 2.1). For tendon-unbonded length, a greased PVC 

sheath is usually installed to prevent the bonding between cement grout and steel 

tendon. The applied load on the anchor head is transferred to the ground by adfreeze 

bond along the grout shaft. This behavior is similar to frictional piles subjected to 

tensile loads, as indicated in the literature (e.g., Jonston and Ladanyi, 1972; 

Andersland and Ladanyi, 2004).

2.2 Creep Behavior of Grouted Anchors

In cold regions, grouted anchors under constant loads are usually subjected to time 

dependent displacement, or creep. Creep of anchors or piles has been observed in 

both the field and in laboratory tests and may be a critical consideration for the 

practical design (Johnston and Ladanyi, 1972; Biggar and Kong, 2001).

Figure 2.2a illustrates schematically a typical creep curve (displacement versus time) 

of grouted anchors under constant load. Figure 2.2b shows the displacement rate 

versus time curve for the creep curve in Figure 2.2a. In general, three distinguished 

stages may occur in a creep curve: primary, secondary, and tertiary creep. Primary

4
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Figure 2.2 Basic creep behavior of grouted anchors or piles. (After Vialov, 1959; 

Biggar and Kong, 2001)



creep is characterized by decreasing displacement rate, secondary by constant 

displacement rate, and tertiary by accelerating displacement rate. Occurrence of 

creep stages and magnitudes of creep displacement rate are dependent on the factors 

such as load levels, soil types and temperatures. These factors are to be discussed in 

Section 2.3.

2.3 Factors Influencing Creep of Anchors in Permafrost

At present studies on the creep of grouted anchors in permafrost are still scarce. In 

addition, majority of available literatures (e.g., Johnston and Ladanyi, 1972; Biggar, 

1991) mainly focus on ice-poor soil (the soil with water content below 50% by 

weight). By contrast, literatures on creep for piles are numerous for both ice-poor 

and ice-rich soil (the soil with water content above 50%). As discussed previously, 

piles and grouted anchors share similar creep mechanism. Consequently, the 

findings for piles can provide useful information for the research on grouted anchors. 

From the existing literatures on pile foundations in permafrost, it was found that 

factors that influence the creep behavior for anchors or piles in frozen soils generally 

included:

1. Applied shear stress. —Increasing applied shear stress along the anchor shaft 

may cause greater creep displacement or displacement rate (Vialov, 1959). At 

low stress (e.g., 20% of ultimate shear strength), anchor displacement may 

undergo just primary creep or secondary creep. At high shear stresses (e.g., 80% 

of ultimate shear strength), anchor displacement may go quickly into the tertiary

6



creep stage followed by the failure of the anchor.

2. Soil temperature. — Soil temperature has been shown to have great impact on 

creep behavior of anchors. Generally, the creep displacement rate decreases as 

soil temperature drops. For example, Morgenstern, et al. (1980) found that given 

the same shear stress and pile diameter, displacement rates at 14 oF (-10.0 oC) 

may be 10 to 100 times less than those at 30.2 oF (-1.0 oC). Similar results were 

also found by Nixon and Neukirchner (1984), who studied the creep of piles in 

ice-rich, saline permafrost for temperature between 23 oF and 14 oF.

3. Salinity of soils. — The effects of salinity on the creep of grouted piles have 

been widely investigated (e.g., Nixon and Neukirchner, 1984; Biggar and Sego, 

1993b, 1994; Biggar and Kong, 2001). According to the literature, displacement 

rates of grouted piles in a high-salinity soil can be thousands of times greater 

than those in a low-salinity soil.

4. Pile surface roughness. — Corrugated anchors may reach the tertiary creep at a 

displacement limit up to 25 mm (Johnston and Ladanyi, 1972). For smooth 

anchors or piles, however, the displacement limit may be just several 

millimeters (Andersland and Ladanyi, 2004). The displacement limit may 

increase up to 15mm by installing lugs on smooth steel piles (Stelzer and 

Andersland, 1989).

5. Backfill material. — Backfill material is used when an anchor or pile is installed 

in an over-sized hole. The actual surface area of the pile may increase if the 

failure surface occurs at the interface of the backfilled material and native soils.

7



Different backfill materials may have various effects on the creep of anchors or 

piles. Compared with backfills made of sand, backfills made of cement grout 

may reduce the displacement rate of piles (Biggar, 1991).

6. Pile installation methods. —Vialov (1959) examined the performance of wood 

piles in frozen soils and found that frozen-in wood rods showed greater creep 

than driven-in ones. The frozen-in rods were installed in oversized holes and 

backfilled with soil slurry. While the driven-in piles were installed by driving 

the pile into a small pilot hole.

7. Ice content. — Generally, piles in ice-rich soil demonstrate greater creep those in 

ice-poor soil. Biggar (1991) reported that piles in ice-poor soils exhibited 

mainly primary creep while piles in ice-rich soils demonstrated mainly 

secondary creep.

Table 2.1 summarizes the influencing factors discussed above. Generally, creep of 

anchors in frozen soil may be affected by properties of surrounding soils, soil 

temperature and conditions of the anchor-soil interface.

8
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Table 2.1 Summary of influencing factor on anchor or pile creep.

Influencing
Factor Conditions Creep Rate Sources

applied stress

80% of ultimate 
strength 

20% of ultimate

high

low
Vialov, 1959

strength

temperature warm
cold

high
low

Morgenstern et al., 1980

salinity of soils
high
low

high
low Biggar and Sego, 1993b

surface roughness smooth
rough

high
low

Stelzer and Andersland 
(1989)

backfilled material sand
grout

high
low

Biggar and Sego, 1994

installation method
frozen in 
driven in

high
low Vialov, 1959

ice content ice-poor
ice-rich

primary
secondary

Biggar, 1991

2.4 Existing Theories for Creep in Frozen Soil

Some researchers investigated the creep behavior of grouted anchors or piles, such 

as Vialov (1959), Johnston and Ladanyi (1972, Ladanyi and Johnston (1974), Nixon 

and McRoberts (1976), Weaver and Morgenstern (1981), and Biggar (1991). Some 

common assumptions used in the studies of creep behavior of grouted anchors are as 

follows:

1. Weight of the anchor and soil is neglected;

2. The shear stress is uniformly distributed along the anchor;

3. The soil temperature is constant;

4. The anchor is much more rigid than the surrounding soil;

5. There is no slip between anchor and frozen soil, and



6. The frozen soil is considered incompressible.

10

Figure 2.3 shows an anchor subjected to a constant tensile load in frozen soil, where 

P  represents constant tensile load, r  represents the shear stresses of frozen soil, r the 

distance from the anchor axis, L  anchor embedment, and a anchor radius. Vertical 

displacement and shear distortion of frozen soil are denoted by u and y, respectively. 

Displacement of the anchor is denoted by ua.

By considering the force equilibrium in the vertical direction as shown in Figure 2.3, 

the shear stress, r  , of a soil element at a distance of r from the center of the 

grouted anchor, can be expressed as follows (Ladanyi and Johnston, 1972):

T = (2 .1)
r

where r a is the shear stress on the soil-anchor interface(at r =a). According to 

assumption 2, the shear stress is uniformly distributed along the anchor. 

Consequently, r a can also be calculated as follows (Nixon and McRoberts, 1976): 

P
Ta = 2 0 L  ( 2 2 )

For frozen soil subjected to the creep behavior due to the simple shear, the 

relationship between the shear strain, y, shear stress, r, and time, t, can be expressed 

by the following equation (Ladanyi, 1972; Biggar, 1991):

Y = 4¥+>D t ctb (2.3)
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Figure 2.3 Schematic plot of a grouted anchor subject to pullout loading. (Modified 

from Johnston and Ladanyi, 1972; Nixon and McRoberts, 1976 )

where c is the creep exponent for stress, b is the time exponent, and D  is the 

parameter dependent on material properties and temperature. Substituting Equation

2.1 into the Equation 2.3 yields (Biggar, 1991):

y - J ¥ « > D  ̂  r P , b (2.4)



On the other hand, the shear strain of the soil element can be expressed as follows 

(Nixon and McRoberts, 1976):

du .
y -  - ~ r  (2.5)dr

12

By combining Equations 2.4 and 2.5, one has (Biggar, 1991):

d u — - J3+>D •( Ta -  Y t b (2 .6)
dr \ r j

The boundary conditions are: at r — m,u — ua and at r -  <x>,u- 0 . Solving

Equation 2.6 yields using the above two boundary conditions, the following 

equation is obtained (Nixon and McRoberts, 1976; Biggar, 1991):

V ^ D  • < - a - tb

(c - 1 )

Equation 2.7 is usually expressed as follows (Nixon and McRoberts, 1976):

73 + rd  • t c • tb

(2.7)

a (c - 1)
(2 .8)

u
where —  is defined as the normalized displacement. When b<1, and c>1, Equation 

a

2.8 represents the primary creep with an attenuating displacement rate, which is 

usually observed for piles in ice-poor soils. When b=1, and c>1, Equation 2.8 

represents the secondary creep with constant displacement rate, which is usually

U a



observed for piles in ice-rich soils (Biggar, 1991).
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By assuming b=1, Morgenstern et al., (1980) and Weaver (1979) proposed a 

formulation similar to Equation 2.8 as follows:

‘± = ^ B . t n . ,  (2 .9)
a n - 1

where n and B  are creep parameters of frozen soils or ice, which are c and D in 

Equation 2.8 respectively. By taking the first derivative of ua with respect to time t, 

Equation 2.9 becomes (Biggar, 1991):

u,. V t ^ B . t n
(2 .10)

a n -1

where the unit for the left term (normalized displacement rate) is the inverse of time 

(e.g., inch/year/inch= year-1). Morgenstern et al.(1980) proposed that Equation

2.10 be used to predicate displacement rate of rough piles in ice-rich soil. They also 

suggested values of n and B  for different temperatures as shown in Table 2.2. 

However, some researchers reported that using creep parameters in Table 2.2 may 

result in conservative designs for piles in ice-rich soil (Weaver and Morgenstern, 

1981; Phukan, 1985).
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Table 2.2 Creep parameters in the design guidelines. (Morgenstern et al., 1980).

Temperature, oF n B  (kPa-n year-1)
30.2 3.0 4.50x10"08
28.4 3.0 2 .00x 10-°8
23 3.0 1.00x 10-08
14 3.0 5.60x10-09

2.5 Design for Anchor Capacity

As discussed previously, the working mechanisms of a grouted anchor are similar to 

those of axially loaded piles. As a result, it is suggested in this research that design 

of grouted anchors in frozen soil should follow the methods for axially loaded piles 

in the same soil, as suggested by Andersland and Ladanyi (2004). A basic equation 

for computing allowable pullout capacity for anchor or pile in frozen soil is:

P a l l =  2 n a L T a a l + W a (211)

where Pall is the allowable pullout capacity for anchor, a anchor radius, L effective 

anchor embedment, ra,a// allowable adfreeze stress (shear stress), Wa the anchor 

weight. The weight of anchor is usually neglected.

There are two methods for determination of ra,a//. One method is to first select 

ultimate adfreeze stress based on the published ultimate adfreeze strength and then an 

appropriate safety factor, usually 2.0 or 3.0, is applied to calculate the ra,a// 

(Andersland and Ladanyi, 2004). Safety factors are used to ensure an allowable 

displacement. In this case, the displacement rate should be evaluated by Equation 

2 .10.



The other method is to select an allowable displacement rate, uaall, and use the 

following equation to determine the allowable shear stress:

15

(n - 1)1
2,a//

u y
a,a / I

v  a  j

(2 .12)
n

T

Equation 2.12 is obtained by rearranging Equation 2.10 to express shear stress as a 

function of displacement rate. The values of allowable displacement rates are 

dependent on various design conditions. According to Biggar (1991), normal 

allowable displacement rate is from 0.1 per year to approximately 0.01 per year. It 

was suggested parameters, n and B, can be obtained from Table 2.2, which may offer 

some safety margin by using ice creep data for ice-rich soil.

2.6 Anchor Load Tests in Permafrost

Equations 2.10 can be validated by two basic load tests: constant-load pullout tests 

and staged-load pullout tests. Typical load-displacement curves for each type of load 

tests are schematically shown in Figure 2.4 and 2.5, respectively. In constant-load 

pullout tests, a series of anchors are subjected to different constant loads and may 

undergo different creep stages. Those anchors which reach a secondary creep stage 

are analyzed to determine the creep parameters (e.g., n and B) in Equation 2.10. In 

the second type of load tests, known as staged-load pullout tests, only one anchor is 

tested but subjected to successive loads which increase in stages of different or equal 

duration. Those load stages in which the anchor reaches secondary creep will be
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T i m e,  h o u r s

Figure 2.4 Schematic displacement curve of constant-load tests. (P1>P2>P3>P4).

T i m e ,  h o u r s

Figure 2.5 Schematic displacement curve of staged-load tests.

analyzed. According to Andersland and Johnston (2004), staged-load pullout tests 

are more economical than constant-load pullout tests.
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Table 2.3 summarizes the creep parameters based on the studies by Johnston and 

Ladanyi (1972), and Biggar and Sego (1994). Compared with Table 2.2, Table 2.3 

shows greater stress exponents, n , and smaller creep parameter, B . In addition, the 

projects presented in Table 2.3 produced different creep parameters because of 

different soil types and temperatures. Thus, Creep parameters should be determined 

by performing anchor load tests in the field if anchor creep is a major concern.

Table 2.3 Creep parameters based on the load tests in the literature.

Anchor
Types

Soil
Description

Temp.
oF n B

kPa-n /year Sources

Grouted
Anchors

Clay and Silt 
M.C. 20%~50% 

Clay and Silt 
M.C. 20%~60%

31

31.5

8.1

7.5

3.96x10-13

5.18x10-12

Field Tests by 
Johnston and 
Ladanyi,1972

Grouted
Piles

Saline (30 ppt), 
Ice poor soils 23 9.3 1.69x10-25

Laboratory tests 
by Biggar and 

Sego, 1994



Chapter 3 Anchor Load Tests and Test Results

In Chapter 2, a literature review on creep of grouted anchors in permafrost was 

presented. In this Chapter, the laboratory load test procedures were presented and the 

test results were summarized. Section 3.1 described the processes used to prepare 

ice-rich silt for a laboratory test. The test equipment was described in Section 3.2. 

Section 3.3 described the method used to install the anchor for a laboratory test. 

Section 3.4 provided general descriptions on testing arrangement and procedures. Test 

results were summarized in Section 3.5.

3.1 Soil Preparation

In this study, test anchors were installed in remolded ice-rich silt that was fabricated 

in the laboratory. Slurry was made by mixing dry silt, water and 20% to 40% fine ice 

particles or snow of the total moisture by weight in a 5-gallon bucket. Then the slurry 

was poured into a 50-gallon barrel and frozen in a cold room at a temperature around 

14 oF (-10 oC). The major reason for adding fine ice particles or snow was to prevent 

possible non-homogeneity of soil caused by particle settling during the freezing 

process. Adding ice or snow into the mixture also helped cool down the slurry and 

reduce the time for slurry freezing. Three moisture contents for the test silt (e.g., 50%, 

80%, and 120% by weight) were prepared. These samples were used to investigate the 

effects of the moisture content on anchor behavior.

Figure 3.1 shows the materials used to form the slurry. The dry silt was a sublimated 

silt that had fallen on the permafrost tunnel floor in the Cold Regions Research and

18
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Figure 3.1 Materials for remolding ice-rich silt.

Engineering Laboratory. The silt contained about 5~10% of organic materials by 

weight and less than 5% of sand with size between sieve NO.100 and NO.40. The 

plastic limit and liquid limit for the silt was about 34% and 38%, respectively (Zhu 

and Carbee, 1987; Bray, 2008). The specific gravity of the silt was about 2.68.

3.2 Laboratory Creep Test Setup

The laboratory test equipment was built to perform anchor load tests. Figure 3.2 

showed a typical equipment setup. The system included a test anchor, a load frame 

and the data acquisition system. In this study, three such test setups as shown in 

Figure 3.2 were built. Detailed building and installing information was given in 

Appendix A. The test anchor was about 4 inches in diameter and 24 inches in length. 

The length-to-diameter ratio of test anchors was around 6, which was a little greater 

than that used in the literature (e.g., Vialov, 1959; Parmeswaan, 1981). The test anchor
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Figure 3.2 Anchor load test setup.

was embedded in remolded, ice-rich silt in a 50-gallon barrel and was loaded by a 

load frame. Constant loads were applied through a lever system and steel weights as 

shown in Figure 3.2. The load capacity of the frame was about 6.5 kips (29 kN). A 

Linear Variable Differential Transducer (LVDT) with an accuracy of 0.001 inch was 

installed to monitor anchor displacement. Several thermistors were installed along the 

anchor at different depths to monitor soil temperatures.



3.3 Anchor Installation Methods

Two methods were tried to install test anchors in ice-rich silt. In the first method as 

shown in Figure 3.3, an anchor was first placed at the center of a barrel and then the 

annular space was filled with remolded ice-rich silt layer by layer. Each layer of silt 

was up to 4 inches and compacted by a hand trowel. Sufficient time was allowed for 

the previous soil layer to freeze before placing the next layer of silt. After the anchor 

was fully embedded in the barrel, a constant-load creep test was performed, using the 

test setup described in Section 3.2. The test result indicated the pullout capacity of the 

anchor was about 700 lbs (shear stress = 2.3 psi) at a soil temperature of 30.2 oF (-1 

oC). This method was not used in the rest of the laboratory tests since the installation 

method could not simulate the field installation process.

21

Figure 3.3 Install an anchor by layer silt placement and compaction.
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%*

Figure 3.4 Install an anchor in a small annular space.

Figure 3.4 shows the second method used to install a test anchor in ice-rich silt. It 

involved first drilling an 8-inch-diamter hole in the ice-rich silt (see Appendix A for 

the procedure of hole making), and then placing the anchor inside the hole, and filling 

quickly the annular space with ice-rich silt slurry. After the slurry was frozen, a 

constant-load creep test was conducted. The trial test was performed at a constant 

temperature of 30.2 oF (-1 oC) in which three-staged loads were applied: 900 lb, 1500 

lb, and 3000 lb. The anchor survived through the first two load stages (900 lb and 

1500 lb) but failed at the third load stage (3000 lb). The failure stress obtained form 

the anchors installed by the two methods were 2.3 and 10 psi, respectively. This might 

be attributed to an increase in the confining stress caused by volume expansion of 

backfill soil slurry during freezing. It was considered that the second installation 

method can better simulate the field installation process and was adopted in this study.
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3.4 Testing Procedures

Figure 3.5 Layout of test equipment in the cold room.

All the creep tests were performed in the cold room at the Department of Civil and 

Environmental Engineering at University of Alaska Fairbanks. Figure 3.5 shows that 

layout of the equipment for the creep tests in the cold room in which the environment 

temperature was carefully controlled. Three anchor load tests (stage-loaded) were 

conducted concurrently by three test setups with three moisture content conditions. 

The testing procedures were as follows (detailed procedures were given in Appendix 

A):



1. Install the test anchor in a drilled hole;

2. Freeze the backfill soil slurry at a temperature of 14 °F (-10 oC) for about 2 days;

3. Condition the frozen silt at a designated constant temperature (e.g., 30.2 oF, 28.4 

oF) for at least 4 days; and

4. Apply constant loads in stages by adding steel weights. The anchors were loaded 

in stages until a tertiary creep occurred or the capacity of load frame was reached. 

The anchor displacement was measured every 10 seconds during the loading 

period with a Campbell Scientific CR9000x data logger. Soil temperatures were 

recorded at each loading stage by reading thermistors with a multi-meter.

3.5 Test Results

A total of nineteen anchor load tests were conducted using the test method described 

above. Creep curves were obtained for different load stages, soil temperatures and soil 

moisture conditions. Examples of these results are given below. Detailed results are 

given in Appendix B.

Figure 3.6 shows five displacement vs. time curves obtained from Test # 3-120, in 

which the ice-rich silt with a water content of 120% was used. Each curve was 

obtained from a constant load stage under a constant temperature or temperature range. 

The temperature range represented the temperature distribution along the test anchor. 

Generally, all three creep stages as described in the literature review were observed. 

At low shear stresses (e.g., curve a, b, and c in Figure.3.6 with r  = 5.3~9.3 psi), the 

creep curve was characterized by rapidly decreasing displacement rate, which

24
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Ti^ae, Minutes

Figure 3.6 Example of the creep curves. (Test # 3-120).

corresponded to the primary creep. The creep curve at a higher shear stress of 11.3 psi 

(curve d in Figure 3.6) showed an approximate secondary creep stage in which the 

displacement rate was constant. At the highest shear stress of 13.3 psi (curve e in 

Figure 3.6), a well-defined secondary creep took place and followed by a tertiary 

creep with accelerated displacement rate.

To find the minimum creep displacement rate relationship, load stages that reached 

the secondary creep were identified and the corresponding displacement rates were 

determined approximately by the slope of creep curves. Figure 3.7 shows an example 

for estimating the displacement rate during the secondary creep stage. The linear 

portion of displacement curve was interpreted as the range of secondary creep. The
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Figure 3.7 Determination of the displacement rate. (Test # 3-120, 13.3 psi)

end of the linear portion was interpreted as onset of the tertiary creep. Displacement 

limit for onset of the tertiary creep was about 0.01 inch in the example and usually 

less than 0.05 inch in the other tests. The values were much smaller than 1 inch which 

was suggested by Johnston and Ladanyi (1972) for rough anchors.

Figure 3.8 shows pictures of a test anchor subject to staged loads before and after 

failure. The displacement of surrounding silt at anchor failure was too small (less than

0.05 inches) to be observed. The shear strength of frozen soil, because of the limited 

deformation of the surrounding soil, might not have been fully developed. This agreed 

with the literature involving creep for smooth steel or concrete piles in frozen soil.
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(a) (b)

Figure 3.8 Pullout failure pattern. (a) anchor before loading; (b) anchor after failure.

Usually the displacement rated was normalized to eliminate the influence of anchor 

diameter. The normalized displacement rate ( ua /a), which was defined as the

displacement rate divided by the anchor radius (a=2 inch here), had a unit of 

inch/inch/year, or year-1. Table 3.1 summarized the normalized displacement rates and 

the corresponding shear stresses and average soil temperatures obtained from this 

research. The results indicated that the occurrence of tertiary creep was usually 

associated with a high normalized displacement rate (e.g, from 0.7 to 215 year-1). For 

those loads with normalized displacement rates below 0.7 year-1, tertiary creep was 

not observed. Thus normal displacement rate at order of 0.7 year-1 may be considered 

as criteria for use in the design.



Table 3.1 Summary of displacement rates.
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T, u„ /a Tertiary creep

O ►n /-"
o o psi year-1 occurred?

50% 31.3 (-0.4) 5.0 2.996 Yes
50% 30.7 (-0.7 ) 9.5 2.497 Yes
50% 29.8 (-1.2) 16.4 2.628 Yes
50% 29.5 (-1.4) 13.2 0.946 Yes
50% 27.9 (-2.3) 18.4 0.263 No
80% 31.3 (-0.4) 7.0 68.328 Yes
80% 30.9 (-0.6) 4.8 6.570 Yes
80% 30.7 (-0.7) 9.2 3.154 Yes
80% 30.6 (-0.8) 3.0 0.158 No
80% 29.8 (-1.2) 5.5 0.289 No
80% 29.8 (-1.2) 10.3 1.761 Yes
80% 29.7 (-1.3) 11.8 0.762 Yes
80% 29.7 (-1.3) 8.0 0.263 No
120% 31.8 (-0.1) 3.0 215.496 Yes
120% 31.3 (-0.4) 5.0 5.782 Yes
120% 30.6 (-0.8) 10.0 19.710 Yes
120% 30.6 (-0.8) 5.0 0.263 No
120% 30.2 (-1.0) 6.8 1.314 No
120% 30.2 (-1.0) 10.1 39.420 Yes
120% 29.5 (-1.4) 5.0 0.263 No
120% 29.5 (-1.4) 7.0 0.263 No
120% 29.5 (-1.4) 9.2 1.577 No
120% 29.5 (-1.4) 11.2 3.942 Yes
120% 29.1 (-1.6) 11.3 0.420 No
120% 29.1 (-1.6) 13.3 2.547 Yes
120% 29.8 (-1.2) 3.0 0.184 No

Note: M.C. is gravimetric moisture content of ice-rich silt; T  is temperature; z  is 
applied shear stress; ua /a is normalized displacement rate.



Chapter 4 Data Analysis and Discussion 

4.1 Comparison with Rough Anchors Based on the Design Guidelines

The existing design guideline suggests using Equation 2.10 to design creep 

displacement of rough piles or anchors in permafrost (Morgenstern et al., 1980). Table

4.1 compared the normalized displacement rates for smooth anchors in this study with 

those for rough piles or anchors. At the same shear stresses, the measured 

displacement rate is much greater than those given by Equation 2.10. Thus, Equation

2.10 should not be used for smooth anchors because of safety consideration, even 

though it was considered conservative for rough piles or anchors in ice-rich soils.
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Table 4.1 Test results versus prediction by the existing design guidelines. (Symbols

were defined before in Table 3.1).

T,
oF (oC) M.C. z,

psi

Measured 
ua /a 

year-1

Predicted
Ua /a

year-1
Comments

(-1 2 ) 50% 16.4 2.628 0.130~0.292
(-14) 50% 15.8 94.608 0.116~0.261
(-1 2 ) 80% 5.5 0.289 0.004~0.011
(-1 2 ) 80% 10.3 1.761 0.032~0.072
(-13) 80% 11.8 0.762 0.048~0.109
(-13) 80% 8.0 0.263 0.015~0.033 The upper limit of predicted
(-1 0 ) 120% 6.8 1.314 0.009~0.020 displacement rate is based on
(-1 0 ) 120% 10.1 39.420 0.030~0.068 temperature of 30.2 oF and lower
(-14) 120% 5.0 0.263 0.003~0.008 limit 28.4 oF.

(-14) 120% 7.0 0.263 0.010~0.022
(-14) 120% 9.2 1.577 0.022~0.051
(-14) 120% 11.2 3.942 0.041~0.093
(-16) 120% 11.3 0.420 0.042~0.095
(-16) 120% 13.3 2.547 0.069~0.156
(-1 2 ) 120% 3.0 0.184 0.000~0.001
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4.2 Development of a Time-Dependent Creep Equations

Because the existing design guidelines were not applicable to our cases, a new creep 

equation then needed to be developed to describe the creep of smooth anchors in 

ice-rich silt. In this study, the equation used for determining the regression of the test 

data was:

where n is the stress exponent, Zf the measured failure shear stress, or ultimate shear 

stress, zm the general creep modulus, b the temperature exponent, and 6 the degrees

Equation 2.12. Similarly, the stress exponent, n, was considered independent of the 

temperatures. The Equation 4.1 assumed that the ultimate shear stress is dependent on 

the displacement rate.

Equation 4.1 was used to model the test data with different soil moisture contents (see 

Table 3.1). A Least-Square regression approach was employed and the results are 

shown in Table 4.2. The stress component, n, was greater than those suggested in the 

design guidelines (n=3) and varied with soil moisture content. The creep modulus, rm ,

increased as soil moisture content was reduced. For different soil moisture contents, 

there was a slight difference between the temperature exponent, b .

(4.1)

of temperature below freezing point (32 oF). Equation 4.1 was essentially analogues to
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Table 4.2 Summary of the regression analysis. (Soil temperatures from 0~-2.5 oC).

Moisture Content Zm(psi) b n R 2 Se (psi)
120% 4.0 0.86 6.07 0.78 1.7
80% 3.7 1.27 3.90 0.67 2.0
50% 5.5 1.07 3.91 0.98 1.2

Note: SE is Standard Error of Estimate.

The Standard Error of Estimate (SE) is provided in Table 4.2. Then a lower 97.5% 

limit of the shear stress can be computed as:

s  . \  1/ n

lb |zf  =ZmOb I -  2Se (4.2)

For practical design, a safety factor (FS) may be applied to Equation 4.2 and the 

allowable shear stress can be determined as:

'  . \  1/ n
lb | UaZmd b I-*- I -  2Se

zaM = ------ ^ ----------  (4.3)
FS

In the literature, a safety factor of 2.0~3.0 was suggested for piles in permafrost. An 

appropriate safety factor in Equation 4.3 should be based on filed consideration. Thus, 

additional test data might be required by conducting anchor load tests in the field.

4.3 Effect of Soil Moisture Content and Temperature

The relationship between shear stresses and displacement rates is shown in Figure 4.1 

for different soil moisture contents. The plot was based on Equation 4.1 and the
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Figure 4.1 Effects of soil moisture contents on anchor creep.

parameters in Table 4.2 and considered only one soil temperature of 30.2 °F. It was 

found that creep displacement rates increased with the increasing of soil moisture 

content. As indicated in the literature, piles or anchors in ice exhibits greater creep 

displacement or displacement rate than in ice-rich soil. Thus, the finding in this study 

was consistent with the existing literature. Especially, the regression equations in this 

study provided a way to evaluate quantitatively the effects of moisture content. The 

finding was also applicable to the testing range of normalized displacement rate 

between 0.2 and 300 year-1, and to other soil temperatures (e.g., 28.4 or 27.5 oF).

Figure 4.2 shows the effects of soil temperature on the creep behavior of grouted 

anchors in ice-rich silt with the same moisture contents. Creep displacement rates 

decreased as the soil temperature reduced, which was consistent with findings



reported by other researchers for other soil moisture. Thus, great care should be taken 

to design grouted anchors in warm ice-rich soil.
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Normalized Displacement Rate, u/a, year

Figure 4.2 Effects of soil temperatures on anchor creep. (M.C. =120%).

4.4 Design Example

A new creep equation was proposed in this study for creep design of smooth anchors 

in ice-rich silt. An example of using the equation in anchor design was given below.

Example 4-1: A 2-inch-radius anchor is embedded in ice-rich silt. The anchor 

embedment of anchor is assumed to be 10 ft. The ice-rich silt has a temperature of

28.4 oF (-2 oC) and a moisture content of 80%. Consider the following problems:

1. Evaluate the anchor creep displacement rate by Equation 4.3, if  an allowable shear 

stress of 14.5 psi is chosen. The allowable shear stress is based on the ultimate 

adfreeze strength for concrete piles in silt slurry and a safety factor of 2.5
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(TM-5-852-4/AFM 88-19, Chap. 4, 1983).

2. Determine the allowable pullout capacity so that the creep displacement rate does 

not exceed 0.2 inch per year and the shear stress does not exceed the allowable 

shear stress of 14.5 psi.

Solution:

1. Creep equation for the silt with moisture content of 80% at a shear stress of 14.5 

psi is ( from Equation 4.3 and Table 4.2):

, 1/3.90

3.7# -  2 x 2.0

T  a,all
a

FS

u „
or

(2.5 x14.5 + 2 x 2.0) 
4.0

1
(32 -  28.4) 1.27

3.90

= 14.3 year -1

or U a =  2  X
(40.25) 1

=28.6 inch/year
4.0 (3.6)127

The normalized displacement rate, 14.3 year-1, is within the testing range (0.2 

300 year-1).

x
2

3.90

2. The shear stress which limits the creep displacement rate to 0.2 per year can be 

calculated as:

( u Y/3-90
3.7# 1'27 —  I -  2 x 2.0

t  „ = ----------------a,all
a

FS

/ ’ * * , +  \  1/3.90

3.7 x 3.6127 x ( - ^ - j  - 2 x 2.0
or Taall = ----------------- - ^.^ ------------------= 2.6 psi, which is smaller than



the allowable shear stress of 14.5 psi given in the literature. The allowable pullout 

capacity, P all, is computed as:

Pall = 2naLr = 2 x n x  2 x (10 x 12) x 2.8 = 4222 lbf or 4.2 kips

4.5 Design Charts

Based on the regression results, tentative design charts were developed for three 

moisture conditions for ice-rich silt. The curves are given in Figure 4.3 to Figure 4.5. 

The allowable shear stresses were calculated based on Equation 4.3 and Table 4.2. 

The displacement rates were selected to represent the testing range which was from

0.2 to 300 year-1. As shown in the Example 4-1, the allowable shear stress for a low 

displacement rate was smaller than those given in the literature (TM-5-852-4/AFM 

88-19, Chap. 4, 1983).
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Temperature, F

Figure 4.3 Tentative design chart for ice-rich silt with M. C. = 120%.
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Figure 4.4 Tentative design chart for ice-rich silt with M. C. = 80%.

Tempeature, F

Figure 4.5 Tentative design chart for ice-rich silt with M. C. = 50%.



Chapter 5 Conclusions and Recommendations

5.1 Conclusions

The major findings of this study were summarized as followings:

1. The existing design guidelines were not applicable to the test data obtained in our 

study. This is because of different anchor surface conditions. Higher creep 

displacement rate were observed for relatively smooth anchors in this study, 

compared to rough anchors given by the existing design guidelines.

2. It was recommended that the creep equation based on regression analysis of test 

data be used for smooth grouted anchors in ice-rich silt with temperatures from 0 

to -2.5 oC. The normalized displacement rate in the equations typically ranged 

from 0.2 to 300 year-1.

3. The regression equation indicated that the displacement rate increased with an 

increase of soil moisture contents and soil temperature. This conclusion was 

consistent with the existing literature.

4. The displacement limit for onset of tertiary creep for smooth grouted anchors in 

ice-rich silt is close to 1 mm. Limited displacement for slip indicated that shear 

strength of the frozen silt may not have been fully developed. This finding agrees 

with the literature associated with smooth steel piles.

5. Great care must be taken when working with smooth anchors in ice rich silt for 

temperature range of 32 oF to 28.4 oF, as the allowable shear stresses were much 

lower than those for rough piles.
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5.2 Recommendations

1. Creep behavior of grouted anchors with smooth surface configurations was 

investigated in this study. Since the anchors grouted in the field usually have 

rough surface, it is suggested that field anchor load tests be performed to examine 

the influence of other surface configurations on the creep behavior of grouted 

anchors.

2. The lengths and diameters of the test anchors were constant in this study. Future 

research needs to examine the influence of the anchor length and diameter on the 

creep behavior.

3. This study focused on the creep behavior of grouted anchors in ice-rich silt. The 

findings from this research might not applicable for grouted anchor in other soil 

types, such as ice-rich sand or clay. More research is needed in this direction.

4. Effects of the moisture content were investigated for the creep of grouted anchors 

in this study. It was found that the displacement rate increased with an increase in 

the soil moisture content. This effect might be related to the unfrozen water 

content and the ice distribution with the embedment depth. More research is 

needed in this direction.
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Appendix A: Anchor Load Tests in the Laboratory

The purpose of Appendix A was to provide detailed information about the anchor load 

tests in the laboratory. Section A.1 described the anchor fabrications and 

configurations. Section A.2 described design of the load frames. Section A.3 

described the method for displacement measurement. Section A.4 described the 

detailed testing procedures.

A.1 Test Anchor Configurations and Fabrications

The configuration of the test anchors is shown in Figure A.1. A typical anchor has a 

length of 24 inches, and a diameter of 4 inches. The thread bar provided by 

DYWIDAG Systems International (DSI) was used as the anchor tendon. The bar had 

a diameter of 1.375 inches, effective section area 1.58 in , yielding load 189kips, 

ultimate load 237 kips, and a unit weight 5.56 lb/ft. The section of the threaded bar 

facilitate the installation of strain gages at the flat sides. Thermistors were installed in 

order to monitor the temperature along the anchor embedment. Each thermistor was 

calibrated by a pure ice-water mixture which has a temperature of 0 oC. The resolution 

of the thermistors was ± 0.1 oC. Strain gages were also installed along the tendon with 

intention to monitor the strain distribution along the tendon. But most of them 

performed poorly after installation due to frequent transportation of anchors and 

accidental cable damage.
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Figure A.2 shows the procedures of anchor fabrication. Plastic molds were made as 

the grout formwork. Non-Shrink Precision Grout purchased in the local store was 

hand mixed with water. According to the product specification, about 9.5 pints (20 

liters) of water was added into 50 lbs grout materials to form a flowable mixture. The 

instrumented tendon was placed into the plastic mold and fixed at the center of the 

plastic mold. Then the fresh grout was poured into the annular space between the
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Figure A. 2 Fabrication of the test anchors.

tendon and the plastic mold. A rubber mallet was used to tamp the plastic model to 

facilitate the flow of the grouted materials.

Figure A.3 shows the three anchors made by above method. Generally, the anchors 

had a smooth lateral surface, except for some corrugated area due to the uneven inside 

surface of plastic mold. In this study, the newly grouted anchors were cured at a damp 

and warm place for three days. After three days, the plastic molds were removed and 

another four day's curing in the water was performed. The seven day's tension 

strength for the grout materials were tested by similar grout samples and were found 

to range from 480 psi to 626 psi. These values were acceptable, compared to a typical 

value of 420 psi for normal grout (Powers and Briaud, 1993).
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Figure A.3 Configuration of the test anchors.

A.2 Load Frame Configurations and Calibrations

Figure A.4 shows the dimensions of the load frame for anchor load tests. The load 

frame was 50 inches high and 50 inches wide, with the third direction about 4 inches. 

The frame consisted of one main box beam supported by four columns. A lever was 

made from two channel beams, with a lever arm ratio of 10. The lever was bolted to 

the main beam at a flat bar. At the rotation point of the lever, a needle bearing was 

used to reduce the friction. A steel chain was used to connect the short end of lever 

and the hex nut of the anchor head. Two beams were placed on the frozen soils 

together with the barrel and overlaid by another two beams which were connected to
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Main Beam

Column

-24"
Figure A.4 Front view of the Load frame with dimensions.

the frame columns (see Figure A. 4). In this way, the movement of barrel was 

restrained. The design pullout capacity of the test frame was about 7 kips, 

corresponding to a shear stress on the anchor about 20 psi.

Figure A.5 provides a perspective view of the load frame. Figure A.6~A.8 show the 

sections of the principle elements in the load frame. And Table A.1 gives the section 

details of the principle frame elements.
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Figure A.5 Perspective view of the load frame. (1). Weights; (2). Lever arm; (3). Steel 

chain. (4). main beam; (5). Reaction beams; (6). LVDT stand; (7). Flat steel bar; (8). 

Frozen silt; (9) Barrel.
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Table A. 1 Summary of the load frame elements.

Parts Beam Type Section (in) Weight (lb/ft) Length / Piece(in)

Main beam Box Beam 4*2*1/4 8.80 38
Columns Box Beam 2*2*1/8 3.04 50

Lever Channel 4*2*1/8 4.75 36
Reaction beam Box Beam 2*2*1/8 3.04 38

Figure A.9 to A.11 give the calibration curves for the lever arm. The arm ratio was 

calibrated by a load cell at both the room temperature and the cold temperature. Minor 

difference was found between these two temperatures. The load applied on the anchor 

was calculated based the calibrated ratio and the added steel weights.

Weight added, Kg

Figure A. 9 Calibration Curves for Test Frame 1.
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Figure A. 10 Calibration Curves for Test Frame 2
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Figure A. 11 Calibration Curves for Test Frame 3.

A.3 Displacement Measurement

The relative movement between the anchor and surrounding soils was measured by a 

LVDT, as illustrated in Figure A.12. The LVDT had a thermal effect smaller than



0.003% and a resolution of ±0.001 inch after calibration (See Figure A.7). The 

working temperature for the LVDT ranged from -20 oC to 80 oC. In Figure 3.7, two 

reaction beams were hidden so that the LVDT and the mounting place can be seen. 

The LVDT was connected to a base on the anchor tendon and mounted on a flat steel 

bar with a magnetic LVDT holder. The flat steel bar was embedded about 4 inches 

into the frozen soils and was about 5 inches from the anchor. It was just out of the 

region covered by the reaction beams. The flat steel bar was free of forces. It was 

considered that the measurement was not affected by the movement of the oil drum or 

the deformation of test frame after loading.
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Figure A.12 The setup for creep displacement measurement.
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Voltage Output, V 

Figure A.13 Calibration Curves for the LVDT.

A.4 Testing Procedures

The detailed procedures to conduct an anchor load test in laboratory are given below.

1. Make an oversized hole.

Figure 3.9 illustrates process for making an oversized hole in the ice-rich silt stored in 

the barrel. There was an anchor embedded in silt which was failed in the previous test. 

The barrel was laid down firstly on a hand truck. Then a nozzle which was connected 

to the hot-water faucet could generate pressurized hot-water to wash the frozen silt 

around the anchor. Only the silt around the anchor was washed away. After the anchor 

was taken out, the hot-water circulation was continued to form a relatively round hole 

with a diameter about 8 inches. A basin below the barrel was used to collect the 

thawing silt so that the sink would not be filled and blocked. It took take about fifteen 

to thirty minutes to make such a hole. No significant thawing happened to the rest of
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silt during this process.

Figure A. 14 Make an oversized hole by hot-water washing.

2. Backfill with ice-rich slurry

In Figure A.15, an anchor was placed at the center of the oversized hole made in the 

last step. Then the annular space was backfilled with ice-rich silt slurry. The slurry 

had the same moisture content as the native silt. A steel rod was used to stir the slurry 

after each round of backfilling. It took 3 to 4 placement to fill the whole the annular 

space. The freezing process was not started until the annular space was filled.
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Figure A.15 Backfill the silt slurry into the annular space.

3. Slurry freezing and soil conditioning

Figure A.16 shows the test anchor embedded in the unfrozen silt slurry in the 

oversized hole. The slurry was frozen for two or three days. The temperature of the 

cold room was usually set to -10 oC for freezing. Massive ice was found on the 

surface during the freezing process.
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Figure A.17 Ice formed on the surface after the silt was frozen.
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4. Cable wiring and weight loading

After the freezing process finished, another 4 to 5 days were needed to condition the 

silt at the designated temperatures (e.g., -0.5 oC, -1.5 oC, and -2.5 oC). Then the cables 

for strain gages and LVDT were wired to a Campbell data logger (CR9000) which sits 

outside the cold room. The time interval was 10 seconds for displacement 

measurement. The temperature was obtained by reading the thermistors with a 

multi-meter. Figure A.18 shows the anchor under loading. The weight was added in 

one or two minutes for each load stage.

Figure A.18 Backfill the silt slurry into the annular space.



Section B.1 lists the loading conditions of all the anchor load tests, focusing on the 

load stages, duration, temperatures, and anchor status. Section B.1 presents all the 

creep curves from the anchor load tests.

B.1 Load Conditions

Table 3.1 summarizes the loading conditions for the nineteen anchor load tests 

(staged-load) conducted in seven periods of time. The "test No." in the table indicates 

the information about the test period and the type of silt used (e.g., 1-120 means the 

first test period for silt with a moisture content of 120%). For every stage in each test, 

Table 3.1 gives the testing date, anchor embedment, applied load and average shear 

stress, test duration, and variations of temperatures along the anchor ( at different 

depths). Generally, the temperature along the anchor was not equal and there was 0.36 

to 1.7 °F difference between the top and the bottom of the anchor. The temperatures 

were generally stable during all the load stages, except for the three tests in the second 

test period. The last column in Table 3.1 also indicated whether the anchors were 

pulled out or not in each test.
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Appendix B: Anchor Load Test Results
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Table B.1 Loading conditions for nineteen anchor load tests.

Test No. Testing
Date

L,
inch

P,
kips

x,
psi

t,
hr

T
oC Pullout?

1-120 2010/3/3 20:04 23.8 0.9 3 51 -1.1—1.3 No
-- 2010/3/5 23:04 -- 1.5 5 72 -0.9—1.0 No
-- 2010/3/8 23:04 -- 3.0 10 10 -0.7—0.9 Yes

2-120 2010/3/25 15:56 23.8 3.3 11.2 77 -0.8—1.5 No
-- 2010/3/28 21:15 -- 0.9 3 8.4 -0.1—0.8 Yes

2-80 2010/3/25 15:56 21.0 0.8 3 72 -0.5—1.2 No
-- 2010/3/28 21:15 -- 1.3 5 10 -0.4—0.5 No
-- 2010/4/1 5:34 -- 1.8 7 29 -0.3—0.4 Yes

2-50 2010/3/25 15:56 23.8 0.9 3 77 -0.7—1.6 No
-- 2010/3/28 21:15 -- 1.5 5 20 -0.2—0.5 Yes

3-120 2010/5/1 5:43 23.8 1.6 5.3 5 -1.1—1.8 No
-- 2010/5/1 10:43 -- 2.2 7.3 9 -1.2—1.9 No
-- 2010/5/1 19:19 -- 2.8 9.3 38 -1.2—1.8 No
-- 2010/5/3 8:55 -- 3.4 11.3 7 -1.3— 2.0 No
-- 2010/5/3 16:15 -- 4.0 13.3 37 -1.3—2.0 Yes

3-80 2010/4/29 19:53 21.0 2.0 7.4 33.8 -0.8—1.0 No
-- 2010/5/1 5:41 -- 2.6 9.6 13.7 -1.1—1.2 No
-- 2010/5/1 19:22 -- 3.1 11.8 66.6 -1.2—1.3 Yes

3-50 2010/5/1 5:54 23.8 1.5 5.1 5 -1.2—1.9 No
-- 2010/5/1 10:48 -- 2.1 7.0 9 -1.3—1.9 No
-- 2010/5/1 19:53 -- 2.7 8.9 17 -1.4—1.9 No
-- 2010/5/2 12:31 -- 3.2 10.8 21 -1.4—1.9 No
-- 2010/5/3 9:16 -- 3.8 12.7 19 -1.5—1.9 No
-- 2010/5/4 4:19 -- 4.4 14.7 17 -1.6—1.9 No
-- 2010/5/4 21:10 -- 5.0 16.6 12 -1.6—1.9 No
-- 2010/5/5 9:20 -- 5.5 18.5 12 -1.6—1.9 No
-- 2010/5/5 21:20 -- 6.1 20.4 6 -1.6—1.9 No
-- 2010/5/6 3:20 6.7 22.4 6 -1.6—1.9 No

L, anchor embedment; P, applied load; x, 
variation of temperatures along the anchor.

average shear stress; t, test duration; T
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Table B.1 Loading conditions for nineteen anchor load tests. (cont.)

Test
No.

Testing
Date

L,
inch

P,
kips psi

t,
hr

T,
oC Pullout?

4-120 2010/5/17 9:29 23.8 1.5 5.0 9 -1.1—1.7 No
-- 2010/5/17 18:16 -- 2.1 7.0 8 -1.1—1.7 No
-- 2010/5/18 2:13 -- 2.7 9.2 16 -1.1—1.8 No
-- 2010/5/18 17:45 -- 3.3 11.2 29 -1.1—1.8 Yes

4-80 2010/5/17 9:35 21.0 1.5 5.5 7 -1.0—1.4 No
-- 2010/5/17 16:15 -- 2.1 8.0 10 -1.2—1.4 No
-- 2010/5/18 2:11 -- 2.7 10.3 14 -1.0—1.3 Yes

4-50 2010/5/17 9:32 23.8 1.5 5.0 9 -1.0—1.7 No
-- 2010/5/17 18:16 -- 2.1 8.0 8 -1.0—1.7 No
-- 2010/5/18 9:56 -- 3.8 12.6 23 -1.0—1.7 No
-- 2010/5/19 9:06 -- 4.9 16.4 13 -1.0—1.7 Yes

5-120 2010/5/28 7:56 23.8 0.9 3 6 -0.1—0.2 Yes
5-80 2010/5/28 7:56 21 0.8 3 23 -0.6—0.8 No

-- 2010/5/29 6:56 -- 1.3 4.8 23 -0.6—0.9 Yes
5-50 2010/5/28 7:56 23.8 0.9 3.0 23 -1.0—1.6 No

-- 2010/5/29 6:56 -- 1.7 5.8 32 -1.0—1.7 No
-- 2010/5/30 14:56 -- 2.4 8.0 23 -1.0—1.6 No
-- 2010/5/31 13:56 -- 3.1 10.5 10 -1.1—1.6 No
-- 2010/5/31 23:56 -- 3.9 13.2 24 -1.2—1.7 Yes
-- 2010/6/1 23:56 -- 4.7 15.8 2 -1.3~1.6 Yes

6-120 2010/6/15 10:05 23.8 2.8 9.4 42 -2.7—3.3 No
-- 2010/6/17 3:46 -- 4.2 14.1 24 -2.7—3.1 No
-- 2010/6/18 3:58 -- 5.8 19.4 66 -2.7—3.1 Yes

6-80 2010/6/15 10:05 21.0 2.8 10.7 42 -2.4—2.6 No
-- 2010/6/17 3:46 -- 4.1 15.6 53 -2.2—2.5 No
-- 2010/6/19 8:28 -- 5.3 19.9 67 -2.2—2.4 Yes

6-50 2010/6/15 10:05 23.8 2.7 8.9 132 -2.1—2.5 No
-- 2010/6/20 22:16 -- 5.5 18.4 29 -2.3—2.9 Yes

7-120 2010/6/25 7:40 23.8 2.0 6.8 24 -0.7—1.3 No
-- 2010/6/26 7:40 -- 3.0 10.1 4 -0.8—1.1 Yes

7-80 2010/6/25 7:40 21.0 1.6 6.2 24 -0.7—0.8 No
-- 2010/6/26 7:40 -- 2.4 9.2 4 -0.6—0.7 Yes

7-50 2010/6/25 7:40 23.8 1.9 6.3 24 -0.4—1.0 No
-- 2010/6/26 7:40 -- 2.8 9.5 13 -0.4—0.9 Yes
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B.2 Creep Curves from the Nineteen Load Tests
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Figure B.1 Test results for test #1-120. (a) Creep curves at all stages. (b) minimum
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displacement rate and onset of tertiary creep at shear stress = 10 psi.
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Figure B.2 Test results for test #2-120. (a) Creep curves at all stages. (b) minimum 

displacement rate and onset of tertiary creep at shear stress = 5 psi.
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Figure B.3 Test results for test #2-80. (a) Creep curves at all stages. (b) 

displacement rate and onset of tertiary creep at shear stress = 7 psi.
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Figure B.4 Test results for test #2-50. (a) Creep curves at all stages. (b) minimum 

displacement rate and onset of tertiary creep at shear stress = 5 psi.
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Figure B.5 Test results for test #3-120. (a) Creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 13.3 psi.
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Figure B.6 Test results for test #3-80. (a) Creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 11.8 psi.
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Figure B.7 Test results for test #3-80.



73

Time, Minutes

(a)

Time, Minutes
(b)

Figure B.8 Test results for test #4-120. (a) Creep curves at all stages. (b) Minimum 

displacement rate and onset of tertiary creep at shear stress = 11.2 psi.
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Figure B.9 Test results for test #4-80. (a) creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 10.3 psi.
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Figure B.10 Test results for test #4-50. (a) Creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 16.4 psi.
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Figure B.11Test results for test #5-120. (a) Creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 3 psi.



D
isp

la
ce

m
en

t, 
0.0

01
 i

nc
h

77

Time, Minutes

(a)

Time, Minutes
(b)

Figure B.12 Test results for test #5-80. (a) creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 4.8 psi.
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Figure B.13 Test results for test #5-50. (a) Creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 13.2 psi.
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Figure B.14Test results for Test # 6-120.
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Figure B.15 Test results for Test # 6-80.
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Figure B.16 Test results for Test # 6-50.
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Figure B.17 Test results for test #7-120. (a) Creep curves at all stages. (b) minimum 

displacement rate and onset of tertiary creep at shear stress = 10.1 psi.
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Figure B.18 Test results for test #7-80. (a) creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 9.2 psi.
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Figure B.19 Test results for test #7-50. (a) creep curves at all stages. (b) minimum

displacement rate and onset of tertiary creep at shear stress = 9.5 psi.
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Appendix C: Data Regression Results

Testing Shear Stress , psi

Figure C. 1 Regression result for M.C. = 120%. T is temperature in Fahrenheit.

Measured Shear Stress , psi

Figure C.2 Regression result for M.C. = 80%. T is temperature in Fahrenheit.
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Measured Shear Stress , psi

Figure C.3 Regression result for M.C. 50%. T is temperature in Fahrenheit.


