
A LEXICAL TRANSDUCER FOR NORTH SLOPE INUPIAQ

RECOMMENDED:

APPROVED:

By
Aric R. Bills

Lori Levin
/ /
-» . ,<>1/ / r / ^

Anna Berge

Burns Cooper, Jr^terim Dean, College of Liberal Arts

/ :
aw rence Duffy, Interim Dean of fcne G raduate School

//
Date

~ 7 /

A LEXICAL TRANSDUCER FOR NORTH SLOPE INUPIAQ

A
THESIS

P resen ted to the Faculty
of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirem ents
for the D egree of

MASTER OF ARTS

By

Aric R. Bills, B.A.

Fairbanks, Alaska

May 2011

iii

A bstract

This thesis describes the creation and evaluation of softw are designed to analyze and genera te North
Slope Inupiag words. Given a com plete Inupiag word as input, it a ttem pts to identify the w ord's stem and
suffixes, including the gram m atical category and any inflectional inform ation contained in the word. Given
a stem and list of suffixes as input, it attem pts to produce the corresponding Inupiag word, applying phono
logical p rocesses as necessary. Innovations in the im plem entation of this softw are include Inupiag-specific
form ats for specifying lexical data, including a table-based form at for specifying inflectional suffixes in
paradigm s; a trea tm en t of phonologically-conditioned irregu la r allom orphy which leverages the pattern-
recognition capabilities of the x fs t program m ing language; and an idiom for composing m orphographem ic
rules tog e th er in x fs t which cap tures the s ta te of the softw are each tim e a new rule is added, maximizing
feedback during softw are compilation and facilitating troubleshooting.

In testing, the softw are recognized 81.2% of all word tokens (78.3% of unigue word types) and guessed
a t the morphology of an additional 16.8% of tokens (19.4% of types). Analyses of recognized words were
largely accurate; a heuristic for identifying accura te parses is proposed. M ost guesses w ere a t least partly
inaccurate. Im provem ents and applications are proposed.

Signature P a g e ... i
Title P a g e ..ii
A b s t r a c t .. iii
Table of C o n te n ts ...iv
List of F ig u re s ..ix
List of T a b l e s ... xii
List of O ther M a te r ia l s ... xii
List of Appendices ... xii
List of A b b re v ia tio n s ...xiii
A cknow ledgm ents..xv
C hapter 1 In tro d u c t io n ..1
C hapter 2 B a c k g r o u n d ... 3

2.1 Inupiag ..3
2.1.1 Phonology and O r th o g ra p h y ... 5

2.1.1.1 C o n so n an ts ..5
2.1.1.2 V o w e ls ...6

2.1.2 Phonological P h en o m en a ...7
2.1.2.1 Regressive A ss im ila tio n ...7
2.1.2.2 Palatalization ...9
2.1.2.3 A lternation of fil and [a] ... 11

2.1.2.3.1 A lternation Due to a Following V o w e l .. 11
2.1.2.3.2 A lternation Due to Gem ination of a Preceding Consonant . . 12

2.1.2.4 Prevention of Three-Vowel C lu s te r s .. 14
2.1.2.5 G em ination .. 16
2.1.2.6 Suffix A ttachm ent P a t t e r n s .. 18
2.1.2.7 /t'i/-[n] A lte rn a tio n .. 22
2.1.2.8 A llom orphy .. 23

2.1.3 Phonotactics .. 25
2.1.3.1 Consonant C l u s t e r s .. 25
2.1.3.2 Vowel C lu s te r s ... 25
2.1.3.3 M orphem e and Word S t r u c tu r e ... 25
2.1.3.4 D istribution of Specific P h o n e s ... 26

2.1.4 M orpho logy .. 27
2.1.4.1 G ram m atical C a te g o rie s ... 27
2.1.4.2 Categories of Word F o rm a t iv e s ... 28
2.1.4.3 M orphotactic C o n s tr a in ts .. 36

2.2 Com putational M orpho logy .. 37
2.2.1 Dictionary L o o k u p .. 38

iv

Table of Contents
Page

V

2.2.2 S te m m in g ... 38
2.2.3 Finite-State M o rp h o lo g y ... 39

2.2.3.1 D e fin it io n s .. 40
2.2.3.2 M athem atical Properties of Finite-State M a c h in e s .. 42
2.2.3.3 Finite-State Approaches to M orph o p h on o lo gy .. 45

2.3 The Xerox Finite State T o o l s ... 50
2.3.1 M ulticharacter S y m b o ls ... 50
2.3.2 Lexicon C r e a t io n ... 51
2.3.3 M orphographem ic R u l e s ... 53
2.3.4 Rule T r ig g e r s .. 54
2.3.5 Flag Diacritics and F i l t e r s ... 55
2.3.6 Dictionary D o w n tra n s la t io n ... 58
2.3.7 Stem G u e s s e r s ... 59

2.4 Langgard and T rosterud 's Inupiag T r a n s d u c e r .. 60
2.4.1 M orphographem ics ... 60
2.4.2 Lexical C o v e ra g e ... 61
2.4.3 Lexical A r c h i te c tu r e .. 61

2.4.3.1 M e c h a n ic s .. 61
2.4.3.2 M orphologically M otivated F e a tu r e s .. 62
2.4.3.3 Phonologically M otivated F e a tu r e s ... 64

2.4.4 File S tructure and Compilation .. 66
C hapter 3 Im p le m e n ta tio n ... 67

3.1 Lexical M o d e l .. 68
3.2 Formative Data F i l e s .. 69

3.2.1 S t e m s ... 70
3.2.1.1 S y n t a x ... 70
3.2.1.2 Category C o d e s ... 72
3.2.1.3 Sources and Data Entry M ethodology .. 76

3.2.2 P o s tb a s e s ... 77
3.2.2.1 S y n t a x ... 77
3.2.2.2 Category C o d e s ... 80
3.2.2.3 Sources and Data Entry M ethodology .. 83

3.2.3 Inflectional Endings .. 83
3.2.3.1 Category Codes and M etadata .. 84
3.2.3.2 Inflection Table Syntax ... 87
3.2.3.3 Accommodating Complex Paradigm s Using Two-Dimensional Tables . . . 92

3.2.3.3.1 Nominal I n f l e c t io n ... 92
3.2.3.3.2 Intransitive Verbal In f le c tio n ... 92
3.2.3.3.3 Transitive Verbal In flec tio n .. 93

Page

vi

3.2.3.3.4 Dem onstrative In f le c t io n .. 94
3.2.3.4 Sources and Data Entry M ethodology ... 95

3.2.4 E n c litic s ... 95
3.3 Definitions of Allomorph Conditioning E n v iro n m e n ts ... 96

3.3.1 L o g i c .. 98
3.3.2 S y n ta x ... 101

3.4 Formative Class D ec la ra tio ns .. 104
3.5 Declaration of M ulticharacter Symbols ...105
3.6 Conversion of Lexical D ata to X M L..108

3.6.1 S tructure of the Resulting XML D o c u m e n t ... 108
3.6.2 Modifications Made to Data During Conversion to X M L .. 110

3.7 Conversion of XML Data to XFST F o rm a ts ... 110
3.7.1 Resolution of M em bership in M ore Than One C la s s ...I l l
3.7.2 Resolution of Continuation to M ore Than One C l a s s ... 112
3.7.3 Resolution of "Otherwise" C o n d itio n s ..112
3.7.4 O utputting the Lexicon in lexc F o rm a t..113
3.7.5 O utputting Allomorph Conditioning Environm ent Data in xfst F o r m a t113

3.8 M orphophonological R u l e s .. 114
3.8.1 A rchitecture and I d i o m s ...114
3.8.2 The R u le s ..116

3.8.2.1 Loading the Lexicon; Elim inating Flag D iacritic s ..116
3.8.2.2 Global Convenience D e fin itio n s .. 117
3.8.2.3 Limiting Word L e n g th .. 118
3.8.2.4 Elim inating Capital L etters from the L ex icon ... 119
3.8.2.5 Defining Stem G u e s s e r s ...119
3.8.2.6 Filters for Irregu lar Inflected F o r m s ..121
3.8.2.7 Reducing Two Consecutive Boundary M arkers to O n e 122
3.8.2.8 Changing Noun-Stem-Final -n to - t i ... 122
3.8.2.9 Forming the Absolutive D u a l ..123
3.8.2.10 Handling Optional Gem ination and Stem s with "Historic Consonants" . . 124
3.8.2.11 Applying Conditioning Environm ent Filters ...126
3.8.2.12 Deriving Dem onstrative S t e m s .. 126

3.8.2.12.1 Dem onstrative Adverb Stem s .. 126
3.8.2.12.2 Dem onstrative Pronoun S t e m s .. 128

3.8.2.13 "Weakening" HI Due to a Following P o s tb a s e ... 128
3.8.2.14 G em ination ..129
3.8.2.15 Velarization of Stem-Final / q / ..130
3.8.2.16 Uvularization of Enclitic-Initial 1 ^ 1 ... 131
3.8.2.17 Vowel Lengthening ..131

Page

vii

3.8.2.18 Handling Allomorphy Shorthand N o ta tio n s ... 131
3.8.2.19 Suffix A ttachm ent P a t t e r n s .. 133

3.8.2.19.1 Minus P a t te r n ... 133
3.8.2.19.2 Plus P a t t e r n ... 133
3.8.2.19.3 Colon P a t t e r n ... 134
3.8.2.19.4 Division P a t te r n ..134
3.8.2.19.5 Plus Over Minus P a t t e r n ..134
3.8.2.19.6 Minus Over Plus P a t t e r n ..135
3.8.2.19.7 Eguals Pattern135
3.8.2.19.8 Tilde P a t t e r n ... 136

3.8.2.20 Regressive P a la ta l iz a t io n ..137
3.8.2.21 Preventing HI from Becoming [a] ... 138
3.8.2.22 Breaking Up Three-Vowel C l u s t e r s ..139
3.8.2.23 Optional Deletion of Laterals in Contem porative 1 E n d in g s 139
3.8.2.24 Palatalization ... 140
3.8.2.25 Removing M orphem e B o u n d a rie s ... 141
3.8.2.26 Consonant A ss im ila tio n ... 141
3.8.2.27 Changing fi/ to [a] a t the Beginning of Vowel C lu s te r s 142
3.8.2.28 Standardizing Lower-Language O rthography .. 143
3.8.2.29 Converting U pper-Language Forms to a S tandard F o rm a t................................ 143
3.8.2.30 Saving the Compiled T ransducers............ .. 144

C hapter 4 E v a lu a t io n .. 146
4.1 Corpus of N orth Slope Dialect T e x t s .. 146
4.2 Evaluation P r o c e d u r e s ... 147
4.3 Results ..148

4.3.1 R e co g n itio n ... 148
4.3.2 Accuracy of Parses Not Involving G u e s s in g .. 150

4.3.2.1 C haracteristics of the Sample to Be A n a ly z e d ..150
4.3.2.2 R e s u l t s ..151

4.3.3 Analysis of Failures of the Non-Guessing T ra n s d u c e r ... 152
4.3.3.1 Stem -Related F a i lu re s ... 153
4.3.3.2 Postbase-Related F a i lu r e s ..154
4.3.3.3 Inflection-Related Failures .. 155
4.3.3.4 Enclitic-Related Failures ..155
4.3.3.5 Failures Due to Phonological and M orphotactic R u l e s155
4.3.3.6 Failures Due to Typographic E r r o r s ..156
4.3.3.7 Dealing with Causes of F a i l u r e ... 156

4.3.3.7.1 Postbases Not in L e x ic o n ... 156
4.3.3.7.2 T y p o s ..156

Page

viii

Page
4.3.3.7.3 Inadeguate Phonological R u le s ..156
4.3.3.7.4 Stems Not in L e x ic o n ..156
4.3.3.7.5 U nusual Inflectional M o rp h o p h o n o lo g y ..156
4.3.3.7.6 English S te m s .. 157
4.3.3.7.7 M issing Phonological Rules ... 157
4.3.3.7.8 Inadeguately Specified P o s t b a s e s ...157
4.3.3.7.9 Stem Variants Not in Lexicon ..157
4.3.3.7.10 Inadeguately Specified Inflectional E n d in g s157
4.3.3.7.11 Inadeguate M o rp h o ta c t ic s ...157
4.3.3.7.12 Postbase Allomorphs Not in L e x ic o n ...157
4.3.3.7.13 Reduced Forms Not in L ex icon ..157
4.3.3.7.14 Incorrectly Specified Stem s ... 157
4.3.3.7.15 Enclitic Not in L e x ic o n .. 157
4.3.3.7.16 Flaw in Postbase File Long Distance D ependency Logic . . . 158
4.3.3.7.17 Stem Not Specified as T ra n s itiv e .. 158
4.3.3.7.18 S u m m a r y ... 158

4.3.4 Accuracy of Parses Involving G u e s s i n g .. 158
4.3.4.1 C haracteristics of the sam ple to be a n a ly z e d ..158
4.3.4.2 R e s u l t s ..159

C hapter 5 C o n c lu s io n .. 162
5.1 Contributions and L im i ta t io n s ...162
5.2 Possible Im provem ents to the Im plem entation of the T ransducer ...164

5.2.1 Specification of I n f l e c t io n ..164
5.2.2 A Preprocessor for x f s t ...164
5.2.3 Separate Permissive and Prescriptive T ra n s d u c e rs ... 165

5.3 Possible Applications of the T r a n s d u c e r ...165
5.3.1 Computer-Assisted Language L e a r n in g ...165
5.3.2 Enhanced Dictionary In te r fa c e ...166
5.3.3 S pell-C hecker...166

5.3.3.1 O ther Possible A p p lic a tio n s .. 167
A p p e n d ic e s ..168
B ib liography ..186

2.1 Map of Inupiag-speaking areas in Alaska ...4
2.2 Kaplan's reg ressive assim ilation rule .. 8
2.3 Fortescue's sentential verbal suffix ordering r u l e ... 36
2.4 De R euse's "position-based" m orphotactic m o d e l ... 37
2.5 An FSA th a t com putes the regu lar language {can, cast, cost, man, m ast, most} 40
2.6 An FSA m odeling simplified Hawaiian p h o n o ta c tic s ... 41
2.7 An FST th a t com putes p resen t (non-3sG) and past forms of the words run , read , ren t, and r isk . . 41
2.8 AN FST tha t com putes the regu lar relation corresponding to the rule n ^ n / i 42
2.9 A portion of the forest-of-tries Finnish lexicon described in Koskenniemi (1983) 47
2.10 Form ative classes defining a regu lar language containing some French infinitive verbs 52
2.11 Modified form ative classes defining a regu lar r e l a t i o n .. 52
2.12 Accounting for a discontinuous dependency using form ative classes and c o n tin u a tio n s 56
2.13 Form ative classes which fail to account for discontinuous d e p en d en c ie s .. 56
2.14 Form ative classes which account for discontinuous dependencies using flag d ia c r i t i c s 57
2.15 Simplified overview of the lexicon of Langgard and T rosterud 's Inupiag tran sdu ce r 63
3.1 High-level schem a of data and softw are used to produce the Inupiag t r a n s d u c e r 67
3.2 Contents of the LongD istanceD ependencies section of the stem f i l e ... 71
3.3 Contents of the Gram m aticalCategoryTags section of the stem f i l e ... 71
3.4 Example entries from the M orphem es section of the stem f i l e .. 72
3.5 Contents of the Categories section of the postbase f i l e ... 78
3.6 Contents of the Continuations section of the postbase f i l e ... 78
3.7 Contents of the LongD istanceD ependencies section of the postbase f i l e .. 79
3.8 Example entries from the M orphem es section of the postbase f i l e ... 80
3.9 Post-inflectional suffixes im plem ented in special categories .. 81
3.10 Post-inflectional suffixes im plem ented as " h y b r id s " .. 82
3.11 Category definitions in inflection data f i l e .. 85
3.12 Continuations defined in inflection data f i l e .. 86
3.13 Long distance dependencies defined in inflection data f i l e ... 86
3.14 Example inflectional table with no p r e f i x e s .. 89
3.15 Example inflectional table using rows with the-p refixes option .. 90
3.16 Example inflectional table using rows with the -p refix se t o p t i o n .. 91
3.17 Example inflectional table with "holes" (cells for which no suffix exists), m arked by zeros . . . 94
3.18 Inflectional tables im plem enting dem onstrative in f l e c t i o n .. 95
3.19 Category and continuation definitions in enclitic data file ... 96
3.20 R egular expression m odel for filters not sensitive to the left edge of a w o r d 98
3.21 A utom aton w ithout ignore operator, illustrating the expression [V C V] 99
3.22 A utom aton with ignore operator, illustrating the expression [[V C V]/ SymbolsToIgnore] 99
3.23 R egular expression for the "opposite" of the language expressed in Figure 3 . 2 0101

ix

List of Figures
Page

X

3.24 Contents of the xfst section of the filter definition f i l e .. 102
3.25 Contents of the Tel section of the filter definition f i l e .. 103
3.26 Example entries from the Patterns section of the filter definition f i le ..104
3.27 Examples of form ative class declarations and epsilon continuation definitions 106
3.28 Examples of m u lticharacter symbol d e c la r a t io n s ..107
3.29 Schem atic of the s truc tu re of the XML file containing the l e x i c o n ...109
3.30 T reatm ent of form atives with m ultiple class m e m b e rs h ip s ... I l l
3.31 A m ore optimal lexc trea tm en t of the form atives in Figure 3 . 3 0 .. 112
3.32 T reatm ent of form atives with m ultiple c o n tin u a t io n s ..113
3.33 Code to load the lexicon and elim inate flag d ia c r i t ic s ..117
3.34 Global convenience d e f in it io n s ... 118
3.35 Code to limit word le n g th ... 119
3.36 Code to limit word le n g th ... 119
3.37 Convenience definitions for guessing s t e m s .. 120
3.38 Rules for guessing noun and verb stem s based on Inupiag p h o n o ta c tic s .. 121
3.39 Code to insert the stem -guessing ru les into the t r a n s d u c e r ... 121
3.40 Code to filter out una ttes ted "regular" dual or p lural m em bers of a p a ra d ig m122
3.41 Code to fix strings of two consecutive boundary m a r k e r s .. 122
3.42 Code defining the /ti/-[n] a l te rn a tio n ..123
3.43 Code for form ing the absolutive dual .. 125
3.44 Code for handling optional gem ination and "historic" c o n s o n a n t s .. 125
3.45 Code for deriving stem s from dem onstrative a d v e r b s ... 128
3.46 Code for deriving stem s from dem onstrative p r o n o u n s ..129
3.47 Code for deriving stem s from dem onstrative p r o n o u n s ..129
3.48 Code to im plem ent g e m in a tio n ...130
3.49 Code to im plem ent velarization of stem-final / q / .. 130
3.50 Code to im plem ent uvularization of e n c litic - in itia l/g /... 131
3.51 Code to lengthen v o w e l s ... 132
3.52 Code for handling b racket notation ..132
3.53 Code for handling consonant over consonant n o t a t i o n ..132
3.54 Code im plem enting the "minus" suffix attachm ent p a t t e r n ...133
3.55 Code im plem enting the "plus" suffix a ttachm ent p a t t e r n .. 133
3.56 Code im plem enting the "colon" suffix a ttachm ent p a t t e r n ...134
3.57 Code im plem enting the "division" suffix a ttachm ent p a t t e r n ... 135
3.58 Code im plem enting the "plus over minus" suffix a ttachm ent p a t te r n ...135
3.59 Code im plem enting the "minus over plus" suffix a ttachm ent p a t te r n ...135
3.60 Code im plem enting the "eguals" suffix a ttachm ent p a t te r n ...136
3.61 Code im plem enting the "tilde" suffix a ttachm ent p a t t e r n .. 138
3.62 Code im plem enting the "tilde" suffix a ttachm ent p a t t e r n .. 138

Page

xi

3.63 Code to prevent HI from becom ing [a] ...138
3.64 Code to break up three-vowel c lu s t e r s ...139
3.65 O lder code to b reak up three-vowel clusters (f la w e d) .. 139
3.66 Code to optionally delete laterals in certain contem porative 1 endings ...140
3.67 Code to (optionally) palatalize alveolar consonants following H I ...140
3.68 Code to rem ove m orphem e boundary symbols from the low er language of the transducer . . . 141
3.69 Code im plem enting consonant a s s im ila t io n .. 142
3.70 Code to change HI to [a] a t the beginning of vowel c lu s te r s ... 143
3.71 Code to convert low er-language to standard Inupiag o r th o g ra p h y ...143
3.72 Code to standardize the tran sdu cer's upper language ... 143
3.73 Code to finalize the upper languages and save the guessing and non-guessing transducers . . 144
4.1 Lookup-strategy scrip t used for evaluating the t r a n s d u c e r ... 147
4.2 G uesser results: num ber of guesses p lotted against word length in c h a r a c te r s149
4.3 Parses p e r recognized type: all recognized words vs. subset to be analyzed for accuracy 150
4.4 Parses p e r guessed type: all guessed words vs. subset to be analyzed for a c c u ra c y159

Page

2.1 Consonants of N orth Slope Inupiag .. 5
2.2 Cognate consonant clusters in N orth Slope Inupiag and M alimiut In u p ia g .. 8
2.3 Graphem ic reflexes of a ss im ila tio n ..9
2.4 M acLean's suffix a ttachm ent p a t t e r n s ... 19
2.5 "Post-inflectional" derivational suffixes .. 31
2.6 Closure of regu lar languages and relations under various o p e r a t io n s .. 44
2.7 Two-level rule ty p e s ... 46
2.8 Two-level output com pared to traditional m orphological analysis ... 47
2.9 Flag diacritic types available in x f s t ... 57
3.1 Stem category codes and associated m e t a d a t a ... 73
3.2 Dem onstrative stem s realized as adverbs and pronouns ... 74
3.3 Suffix a ttachm ent symbols used in the transducer (see also Table 2 .4) .. 79
3.4 Postbase category c o d e s .. 81
3.5 Suffix a ttachm ent symbols in the lexical data files and in xfst/lexc files ... I l l
3.6 Effects of the absolutive dual ending on the preceding s t e m ...124
3.7 Examples of dem onstratives w ith adverbial and pronom inal citation forms and "stem s" 127
3.8 Stem patte rns and the "colon" rule operations which may affect t h e m ...135
4.1 Recognition results, not taking accuracy into account ..148
4.2 Parses p e r word, by c a te g o ry ..149
4.3 Com parison of parse statistics: all recognized words vs. subset to be analyzed for accuracy . . 150
4.4 Result of autom atically selecting parses w ith few est m orphem e b o u n d a r ie s .. 153
4.5 Causes of non-guessing tran sdu ce r fa i lu re ...153
4.6 Com parison of parse statistics: all guessed words vs. subset to be analyzed for accuracy . . . 159

List of O ther M aterials

CD-ROM with T ransducer Source Code and Electronic Copy of T h e s is .. pocket

List of Appendices
Page

Appendix A Basics of x f s t ..168
Appendix B G ram m ar Tags Used in the Inupiag T ransducer ... 171
Appendix C Files, D ependencies, Build Process, and Use of the T r a n s d u c e r ..180

xii

List of Tables
Page

xiii

List of Abbreviations

1 first person
2 second person
3 third person non-reflexive (in dependent moods, indicates tha t the an teceden t is

not co-referent with the subject of the m ain verb)
3R third person reflexive (indicates co-reference w ith the subject of the m ain verb;

called 4 th person in some gram m ars of Eskimo languages)
a b s absolutive case
a n a anaphoric
C any consonant
c o n d conditional (a dependent verb mood)
c o n s e q conseguential (a dependent verb mood)
c o n t e m p I contem porative 1 (a dependent verb mood)
c o p copula
d i r . o b j direct object
d u dual (see also p l)
e x t extended (of dem onstratives; see also r e s t r and n v)
FSA finite-state autom aton
FST finite-state transducer
f u t future
im p im perative
i n d indicative
i n d . o b j indirect object
i n t interrogative
IPA International Phonetic A lphabet
lit. literally
lexc a language in the Xerox Finite State Toolkit for defining lexicons (name derived

from the phrase "Lexicon Compiler"; see also XFST, xfst)
m o d modalis case
n.d. no date
n e g negative
n e g C o n t e m p negative contem porative (a dependent verb mood; also serves as negative

coun terpart of im peratives and intransitive optatives)
NLP natural language processing
nv not visible (of dem onstratives; see also e x t and r e s t r)
0 d irect object
o p t optative
P possessor
p a r t participial

xiv

p l plural (>3; see also d u)
p r s "present" (not a tru e p resen t tense)
p s t "past"
r e a l realized aspect
r e l relative case (marks possessors and definite subjects of transitive verbs)
r e p reportative
r e s t r restric ted (of dem onstratives; see also e x t and nv)
s g singular
s im similaris case
s i m u l I sim ultaneitive 1 (a dependent verb mood)
Tel a general-purpose program m ing language crea ted by form er University of

California Berkeley professor John O usterhout; the nam e originally stood for
"Tool Command Language"

t r m term inals case
U+xxxx Unicode code point xxxx (where x is a hexadecim al digit)
u n r e a l unrealized aspect
V any vowel
v ia vialis case
XFST Xerox Finite State Toolkit (see also xfst, lexc)
xfst a language from the Xerox Finite State Toolkit for defining finite-state m achines

(see also XFST, lexc)
XML Extensible M arkup Language

XV

Acknowledgments

I wish to express my sincere gratitude to the many people who helped m ake this thesis possible.
First, I'm grateful to the National Science Foundation for funding this work (Award 0534217) and

to Drs. Jaim e Carbonell and Alon Lavie of C arnegie Mellon University, the principal investigator and co
principal investigator, respectively, for this grant.

It has been a privilege to have Dr. Lawrence Kaplan as my advisor. He has employed me, guided
me in my study of Inupiag, patiently answ ered even the m ost elem entary guestions, and encouraged me
throughout the en tire process. His trem endous assistance in evaluating the transducer was invaluable. I
could not have asked for a b e tte r advisor.

This thesis would not have happened w ithout Dr. Lori Levin of C arnegie Mellon University, who has
provided valuable guidance on the design and evaluation of the transducer from its inception. It was also
thanks to h e r encouragem ent and assistance th a t we w ere able to p resen t a paper on the tran sdu ce r at
SALTMiL 2010.

It is hard to adeguately express my gratitude for everything Dr. Anna Berge has done for me. I was
privileged to work for h er for th ree years, during which tim e she taugh t me m ost of w hat I know about lin
guistic fieldwork and the Aleut language, and provided opportunities for me to learn about audio recording
and processing (for which I am also indebted to ta len ted sound engineer Ed Smith and to UAF professor
Gary Holton). Along with Dr. Sabine Siekm ann and Dr. Patrick Marlow, she supervised my (still incom
plete) work digitizing Knut B ergsland 's A le u t D ic tionary. She has provided insightful com m ents on this
thesis. For all this and much, m uch more, I offer my sincere thanks.

Per Langgard, Senior Advisor a t Okaasileriffik (the G reenland Language Secretariat), and Dr. Trond
T rosterud of the University of Tromso have been m ost helpful. They provided me with the source code
to the ir transducers, including an Inupiag transducer discussed in C hapter 2, which helped me learn xfst
and lexc. They also provided valuable feedback on the SALTMiL 2010 paper, both before and after it was
presen ted . My sincere thanks to them.

Dr. Edna M acLean has been generous with h e r w onderful Inupiag language m aterials, h er expertise in
the language, and h er encouragem ent. This thesis could not have happened w ithout her.

My underg raduate mentor, Dr. Deryle Lonsdale of Brigham Young University, has offered useful advice
and encouragem ent throughout my g raduate career, in addition to the wonderful tu telage and support he
gave me as an undergraduate . I'm also grateful to Drs. Lane Steinagel, M ark Tanner, Willis Fails, Alan
M anning, Cynthia Hallen, Alan Melby, Diane Strong-Krause, and Ray Graham, all of BYU, for helping me
build a solid foundation in linguistics.

I'm grateful to Dr. Robert Frederking of C arnegie Mellon University, who provided useful advice and
feedback during the creation of the transducer.

G raduate studen t Shinjae Yoo of C arnegie Mellon and underg raduates Ida Mayer, J. Eliot DeGolia, and
Sai V enkateswaran of Carnegie Mellon and Paul Lundblad of the University of P ittsburgh crea ted a corpus
of N orth Slope Inupiag w ithout which I could not have evaluated the transducer.

I wish to thank my Inupiag instructors, Dora Itta and Ronald Brower. Mr. Brower was also kind enough
to let me do my linguistic internsh ip in his beginning Inupiag class in Fall 2006; he also assisted Dr. Kaplan

xvi

in evaluating the ou tput of the transducer, for which I am indebted to him.
I also express g ratitude to my linguistics professors a t UAF: Drs. Sabine Siekmann, Siri Tuttle, Gary

Holton, and Patrick Marlow. Thanks are also due to the following individuals from the University of Wash
ington: Dr. Sharon H argus, who pigued my in te re st in the languages of N orth America and who encouraged
me to attend UAF; Dr. Emily Bender, who, in the short tim e I was enrolled in her class, introduced me to
LaTeX; and Drs. H unter Hoffman and Todd Richards, who gave me opportunities to help them with the ir
fascinating research .

Finally, I am grateful to my family for the ir support and patience throughout this process. My wife
has m ade some trem endous sacrifices over the course of my g raduate program , including following me to
Alaska and w aiting six years for me to graduate. Our children have been pa tien t and encouraging. My
paren ts have gone out of the ir way to help w atch our children so tha t I could have a guiet environm ent in
which to work (even while my mom finished a college degree of h e r own); they have also se t wonderful
exam ples for me, teaching me from an early age the im portance of education. My fa ther was also my
first com puter science teach er and laid the foundation for all my subseguent com putational endeavors,
including this thesis. And my parents-in-law have been kind and supportive in spite of everything I've put
the ir daughter and grandchildren through. My deepest thanks to all of them.

Three of my g randparen ts have died during my tim e a t UAF. All th ree w ere professional educators
whose love of learning was contagious. All th ree earned m aster's degrees. I dedicate this thesis to the ir
memory, and to my surviving grandm other, in recognition of the ir profound impact, d irect and indirect, on
my life.

1

Chapter 1 Introduction

The English-speaking world benefits trem endously from natural language processing (NLP) software. At
presen t, NLP technologies for English are comm onplace; these include, among others, spellcheckers,
gram m ar checkers, docum ent retrieval system s (notably including in te rn e t search engines), optical char
ac te r recognition, speech synthesis and speech recognition, and m achine translation. Many m inority lan
guage com m unities would like to see a t least some of these applications m ade available in the ir comm u
nity 's language (see for exam ple Sarasola 2000; Ui D honnchadha 2003; Hussain 2004). M orphological
analysis is fundam ental to many NLP technologies, and can enhance m any others; it stands to reason,
then, th a t a first (or a t least early) step tow ard NLP in a particu lar language is to develop a morphological
analyzer for tha t language (Beesley 2004c,• Sarasola 2000).

This docum ent describes the developm ent of a m orphological analyzer/generator for N orth Slope Inu-
piag, an im portant native language of Alaska for which little (if any) NLP softw are is available. This
analyzer/generator is im plem ented as a finite-state transducer, and could serve as the foundation for a
spellchecker (Beesley and K arttunen 2003:451; Schulz and Mihov 2002) or as the lexical com ponent of a
part-of-speech disam biguator/tagger (Beesley and K arttunen 2003:454-455; Aduriz e t al. 1995), and may
be used to improve or facilitate the developm ent of m ore complex NLP technologies for Inupiag, such
as optical charac te r recognition (Yoo 2008), docum ent retrieval, or com puter assisted language learning
software.

A key goal in the developm ent of the transducer has been to cover as m uch of the N orth Slope Inupiag
lexicon as possible. The tran sdu cer's lexicon includes nearly all stem s and enclitics from M acLean (n .d .a),
as well as m ost postbases believed to be productive. The transducer also includes a com ponent which will
a ttem pt to guess the stem of unrecognized words (see Section 3.8.2.5 on pages 119- 121). However, there
is currently no support for compound nouns such as ig lig u tiksra g a sa va a m 'budget', and very little support
for words of foreign origin which do not conform to native Inupiag phonotactics (e.g., God, English names,
etc.).

The contributions of this thesis are twofold. First, language learners, researchers, and o thers who have
occasion to analyze and/or synthesize Inupiag words will now have a tool to assist them in this process
(though the tool will not, and should not, replace hum an judgm ent). Second, the unigue im plem entation
of the tran sdu ce r may be of in te re st to o ther com putational m orphologists; in particular, it differs from
m ost o ther lexical transducers of which I am aw are in tha t its lexicon is not im plem ented directly in a
finite-state language (such as Xerox's lexc form at) bu t ra th e r in a language-specific form at which is then
converted into lexc form at for compilation. This approach allows lexical and inflectional data to be specified
in m ore n atural ways than would be possible, for example, using lexc directly (see C hapter 3, beginning on
page 67; see also Bills e t al. [2010]). The m ethod used to compile m orphographem ic rules is also novel, to
my knowledge; variables are defined a t each stage in the compilation process, capturing the transducer's
s ta te each tim e a new rule is added. This allows XFST to provide m ore feedback during the compilation
process, and m akes debugging easier by allowing the developer to pinpoint the rule which causes output
to deviate from w hat is expected, w ithout having to recom pile the transducer. The approach used for this
thesis may be inform ative to those working on com putational m orphologies of polysynthetic languages,

2

languages with considerable phonologically conditioned irregu lar allomorphy, or languages with extensive
inflection.

I've a ttem pted to w rite this docum ent in sufficient detail th a t a linguist with com putational aptitude
and a willingness to becom e fam iliar with the Xerox Finite State Tools (XFST) will be able to understand,
modify, and extend the tran sdu ce r 's lexicon and rules. This docum ent may also be useful to would-be com
putational m orphologists who would like to see a com plete exam ple of how a transducer is im plem ented
in XFST. Some sections of C hapter 2 may also be helpful to read ers in te rested in Inupiag phonology or
morphology bu t not necessarily in com putational models of these.

The rem ainder of the docum ent is organized as follows: C hapter 2 provides pertinen t background in
form ation. This includes a discussion of the phonological phenom ena and m orphological characteristics
of Inupiag which a com putational m orphology m ust take into account; a review of different approaches
to com putational morphology; an overview of the Xerox Finite S tate Tools, which are probably the m ost
common fram ew ork for im plem enting com putational m orphologies today; and an exam ination of the proof-
of-concept Inupiag transducer developed by Per Langgard and Trond T rosterud. C hapter 3 covers the
im plem entation of the transducer: the conceptual m odel of the Inupiag lexicon used by the transducer;
the specification of stem s, postbases, inflectional endings, enclitics, and m etadata used to construct the
lexicon; the conversion of lexical data from project-specific form ats into the lexc language; and the mor-
phophonological rules used by the transducer. C hapter 4 provides an evaluation of the tran sdu cer's effec
tiveness in parsing Inupiag words draw n from published texts. Finally, C hapter 5 sum m arizes the m ajor
contributions of this thesis and proposes fu ture im provem ents to the tran sdu ce r and possible applications.

3

Chapter 2 Background

The organization of this chap ter stem s from the prem ise tha t in o rder to crea te a com putational m orphology
engine for a particu lar language, one needs to know w hat linguistic facts are to be modeled, and one needs
a fram ew ork in which to construct the model. Accordingly, Section 2.1 covers the m ost im portan t aspects
of Inupiag orthography, phonology, and morphology, and Section 2.2 discusses th ree m ajor com putational
approaches to m orphological analysis.

The only o ther com putational m odel of Inupiag morphology of which I am aw are is a lexical tran sdu
cer crea ted by Per Langgard and Trond Trosterud; this is review ed in Section 2.4 . To provide essential
background inform ation for this discussion and the one in C hapter 3, Section 2.3 explains some features
of the Xerox Finite State Toolkit, which Kornai (1999:4) has called "the dom inant finite s ta te paradigm "
for morphology.

2.1 Inupiag

Inupiag is an Eskimo language and p a rt of the Inuit dialect continuum , which stre tches from the Se
w ard Peninsula in Alaska across northernm ost Canada and into all inhabited areas of Greenland. Krauss
(2007:408) reports th a t the re w ere roughly 2100 speakers. In addition to a num ber of lexical differences, it
is the m ost phonologically conservative variety of Inuit (Kaplan 1990:145): it re tains Proto-Eskim o's four-
vowel system to a g rea te r degree than any o ther Inuit dialect; it has a pair of retroflex consonants which,
outside of the Alaskan branch of Inuit, are found only in the N atsilingm iutut subdialect of Inuktitut;1 and
it exhibits the m ost complex consonant clusters found in any variety of Inuit.

Inupiag itself can be subdivided into two main dialect groups, N orth Alaskan Inupiag and Seward
Peninsula Inupiag; each of these can be fu rth er subdivided into two dialects: N orth Alaskan Inupiag com
prises the N orth Slope and Malimiut dialects, while Seward Peninsula Inupiag consists of the Qawiarag
and Bering S trait dialects (Kaplan 1981c:7-8). N orth Alaskan Inupiag can be distinguished from Seward
Peninsula Inupiag by the presence of palatalization (see Section 2.1.2.2 on pages 9- 11) and the absence
Sew ard Peninsula Inupiag 's unigue "consonant w eakening" processes, whose presence in those dialects
is probably due to language contact with C entral Alaskan Yup'ik (Kaplan 1981c:7; 2000).

The p resen t work deals w ith the N orth Slope dialect, which is spoken in the villages of Kivalina,
Point Hope, Point Lay, Wainwright, Atgasuk, Barrow, Nuigsut, Kaktovik, and Anaktuvuk Pass (MacLean
[1986a:x]; see Figure 2.1 on the next page).2-3 C haracteristics th a t se t the N orth Slope dialect ap a rt from

1These consonants are remnants of Proto-Eskimo 1*61. In all non-Inupiaq dialects except Natsilingmiutut, this phoneme has
merged with some other phoneme (Dorais 1990:39).

2The map in Figure 2.1 was created using the following GIS datasets from the Alaska Department of Natural Resources, Land
Records Information Section, Anchorage, Alaska: "Simplified Alaska Coastline," "Canada Coastline," "Alaska DNRRussia Coastline,"
and "Alaska Major Rivers," all available from http://www.asgdc.state.ak.us/. Data was rendered using Quantum GIS 1.4.0 (http:
//www.qgis.org/) and Inkscape 0.46 (http://inkscape.org/). Coastline data was smoothed using Inkscape's sim plify path tool. Dialect
areas, cities and villages were marked and labeled by hand and are approximate. Dialect areas are based on MacLean (1981:iv) and
Kaplan (2000:90). Place names and locations are based on the "Populated Alaska Places" GIS dataset from the Alaska Department
of Natural Resources, Land Records Information Section (see above).

3Uummarmiutun or Mackenzie Delta Inupiaq, spoken in Northwest Territories, Canada, could also be considered a variety of
North Slope Inupiaq (Dorais 1990:46; Kaplan 1981c:78), but because virtually none of the sources on the phonology and lexicon of
North Slope Inupiaq cover this subdialect, I have excluded it from the present work.

http://www.asgdc.state.ak.us/
http://www.qgis.org/
http://www.qgis.org/
http://inkscape.org/

4

the Malimiut d ialect include a g rea te r degree of consonant assim ilation (or conversely, a sm aller num ber
of allowable consonant clusters), the absence of velar palatalization, and the presence of vowel clusters
w ith different surface gualities (in Malimiut, all vowel clusters are reduced phonetically to long vowels), as
well as a num ber of lexical differences. Although hard num bers are not available, perhaps roughly half of
all Inupiag speakers speak the N orth Slope dialect (Lawrence Kaplan, personal comm unication, 29 M arch
2 0 1 0).

Barrow

5

2.1.1 Phonology and O rthography

2.1.1.1 Consonants

The consonants of N orth Slope Inupiag are p resen ted in Table 2.1 (based on Kaplan [1981c:20-28;
2000:4-10] and M acLean [1986a:4-10]). In cases w here the IPA symbol for a consonant differs from its
rep resen ta tion in the standard Inupiag orthography, the phone is given in sguare b rackets and its cor
responding graphem e(s) in angle brackets. Consonants not considered phonem es in the ir own righ t are
italicized and grouped in a shaded box with the prim ary allom orph of the phonem e, [tf] and [s] rep resen t
a special case, and will be discussed on page 11 in Section 2 .I .2 .2 .4

Table 2.1: Consonants of North Slope Inupiaq

Labial Alveolar Palatal Retroflex Velar Uvular Glottal
Stops P t [tf] (ch, t) | k q m n

Voiceless fricatives ItJ iv) 1 s __ [§] (sr) LxJ (kh, k) Lxi (qh, q, h) h
Voiced fricatives v 0] <y> [?J (r) [3] <g> LkJ (g)

Nasals m n [p](n) q [n] (g)
Voiceless laterals [4] (1) ® a>

Voiced laterals 1 OT (!)

In the standard Inupiaq orthography, a num ber of consonants rep resen t m ore than one sound, (q)
and (k) rep resen t fricatives when ad jacen t to fricatives or laterals, and stops otherw ise, (v) rep resen ts a
voiceless fricative w hen ad jacen t to o ther voiceless fricatives, and a voiced fricative elsew here. In some
dialects, (g) is a nasal when adjacent to ano ther nasal, and a voiced fricative elsew here, (t) rep resen ts
[tf] w hen p receded by a palatalizing /i/ (see Section 2.1.1.2) and [t] elsew here. Unlike o ther consonants
m entioned in this paragraph , it is not always possible to determ ine from the standard spelling of a word
which pronunciation of (t) applies: in tik itp a 'did he/she arrive?' the second (t) rep resen ts [tf]; in m a kitp a
'did he/she stand up?' the (t) rep resen ts [t]. Inupiaq pedagogical m aterials som etim es add a dot below the
(t) to indicate the pronunciation [tf] (e.g., tik itp a) and this convention will also be followed in this docum ent
in cases w here this distinction is im portan t to the discussion.

(h) rep resen ts [h] a t the beginning of a handful of interjections (for example, h au k 'I'm tired!'). Fol
lowing a consonant, (h) is pronounced [j] or [h] depending on the speaker (Kaplan 1981c:20, 22).

(h), (k), (q), (s), and (r) also do double duty in th a t they occur both on the ir own and as p a rt of one
4The complementary distribution of these pairs are documented as follows: [v] and [f], Kaplan (1981c:25); [k] and [n], Kaplan

(1981c:25-26): [n] and [p], [1] and [A], [i] and [A], Kaplan (1981c:90). In order for these last three pairs to be considered in comple
mentary distribution, the reader must accept the existence of two underlying phonemes corresponding to surface [i], a claim which
will be addressed in section 2.1.1.2 on the following page.

Note that while Kaplan acknowledges the complementary distribution of [tf] and [s], he prefers to treat the two sounds as separate
phonemes except in the case of palatalization, in which case both are allophones of /t/ (Kaplan 1981c:86, 94-96, 176-179).

6

or m ore digraphs: (kh), (qh), (ch), and (sr). (c) has the distinction of being the only le tte r in the Inupiaq
orthography which only occurs as p a rt of a digraph.

Inupiaq m akes a phonetic distinction betw een short and long consonants. A part from consonants [f],
[§L [x], [xL [h], and [n], all of the consonants in Table 2.1 have a long coun terpart (Kaplan 1981c:32);
in m ost cases, this is simply the gem inated form of the corresponding short consonant, and is w ritten by
doubling the appropria te graphem e (Kaplan 2000:93). The long coun terpart of (ch), [tf:], is rep resen ted
in the orthography as (tch); (s) also gem inates to (tch). In some lexically conditioned cases, [g] gem inates
to (kk) [k:], [k] gem inates to (qq) [q:], and [y] gem inates to (tch) [tf:] (M acLean [1986a:27]; see Section
2.1.2.5, particularly pages 17- 18). Although the re is a productive gem ination process in Inupiaq, not all
long consonants resu lt from this process; m any resu lt from regressive assim ilation of a consonant cluster
or simply rep resen t the chance occurrence of two identical phonem es in a row (Kaplan 1981c:221).

A non-phonetic (and arguably non-phonological) distinction is m ade betw een so-called "weak" and
"strong" /q/. The distinction is relevant only for a handful of suffixes which a ttach to noun stem s; these
suffixes delete stem-final "weak" /q/ bu t p reserve o ther stem-final consonants (Kaplan 1981c:230-231).
One such suffix is the ablative singular ending -m in . This suffix triggers deletion of the "weak" /q/ a t
the end of q im m iq 'dog', yielding q im m im in 'from the dog'; by contrast, the suffix does not delete the
"strong" /q/ a t the end of av iq qa q 'lem m ing', instead leaving it to be partially assim ilated to (g) by the
following nasal: a v iqq ag m in 'from the lem m ing' (examples from M acLean 1986a:116-117). The distinction
betw een w eak /q/ and strong /q/ is purely abstract; the re is no phonetic difference betw een the two (Kaplan
1981c:229, 231).5 The disposition of a p a rtic u la r /q /is only partially determ ined by the preceding phonetic
environm ent (M acLean [1986a:76-77]; phonetic constrain ts on weak and strong /q/ will be discussed on
pages 26- 27 in Section 2.1.3.4). Throughout this docum ent, I will use the notation /q/ to denote weak /q/
and /q/ to denote strong /q/. (For m ore inform ation on the suffixes for which this distinction is pertinent,
see the discussion of the '+ ' p a tte rn in Section 2.1.2.6, especially page 21 .)

2.1.1.2 Vowels

On the surface, N orth Slope Inupiaq has a system of th ree short vowels (Kaplan 1981c:31), rep resen ted
orthographically as (a), (i), and (u). Inupiaq allows all possible tw o-letter com binations of these th ree
vowels, including long vowels. The exact phonetic realization of short vowels, long vowels, and vowel
clusters can vary considerably depending on ad jacent phones (Kaplan 1981a:6; 1981c:32, 164) and from
dialect to dialect (Kaplan 1981c:32, 164-165).6

Although N orth Slope Inupiaq (like m ost of the Inuit continuum) has a three-vowel system, Proto-
5However, whatever phenomenon in Proto-Eskimo led to the distinction between strong and weak [q] probably did involve a

phonetic distinction (Kaplan 1981c:233).
6From the descriptions in Kaplan (1981a:6) and MacLean (1986a: l l) , (a), (i), and (u) would correspond very roughly to proto

typical phones [a], [i], and [u], respectively. I am not aware of published studies on the phonetics of North Slope Inupiaq vowels,
but from informal observation it is clear that for any vowel phoneme, the first and second formants vary considerably depending on
adjacent phones (Taff et al. [2001] observed in Pribilof Island Aleut, a related language with a similar three-vowel system, that vowel
quality is often significantly affected by the place of articulation of adjacent consonants; uvulars triggered the largest changes in
vowel quality, which seems to be the case in Inupiaq as well). In the absence of hard phonetic data on North Slope Inupiaq vowels,
I will use the notations [a], [i], and [u] to represent surface vowels corresponding to (a), (i), and (u), respectively, even when the
actual vowels produced by a native speaker might be more accurately represented by other IPA symbols. While this notation will be
phonetically unreliable, it will make clear whether or not an underlying vowel is realized faithfully, that is, as an allophone that a
native speaker would recognize as an instance of the underlying vowel.

7

Eskimo had four vowels, as do today 's Yupik languages (Kaplan 1981c:76; Jacobson 1984:8). The fourth
vowel of Proto-Eskimo is reconstructed as /*e/ and corresponds to Yupik (e). Phonetically, the N orth Slope
Inupiag reflex of Proto-Eskimo /*e/ is indistinguishable from the reflex of Proto-Eskimo /*U, and both are
w ritten (i). Phonologically, however, artifacts of the distinction persist, as evidenced by the "split person
ality" of (i):

• Instances of (i) which derive from /*i/ (almost) never p recede alveolar consonants o ther than /s/, or
consonant clusters containing alveolars o ther than /s/; those which derive from /*e/ never p recede
palatals o ther than /j/, or consonant clusters containing palatals o ther than /j/ (Kaplan [1981c:91];
see Section 2.1.2.2 on page 9). For example, the (i) in tu p iq 'te n t' (which comes from /*e/) may not
p recede palatals, while the (i) in sa v ik 'knife ' (from /*i/) may not p recede alveolars; thus, tup iligaaq-
tu a q 'he/she took along a te n t' contains (1) while sav ilig a a q tu a q 'he/she took along a knife' contains
U>.

• Only the instances of (i) which reconstruct to /*e/ undergo a change in vowel guality w hen the follow
ing phonem e is a vowel (Kaplan [1981c:91, 118-121, 125-126]; see page 12) or w hen the preceding
consonant has undergone gem ination and the following suffix begins with a velar or uvular (Kaplan
[1981c:121-124]; see pages 13- 14). For example, the derivational suffix -a luk 'old; worn-out' and
the dual m arker -k trigger changes in vowel guality in tu p a a lu k 'old ten t' and tu p p a k 'two ten ts ' bu t
not in sa v ia lu k 'old knife' or sa vv ik 'two knives' (data from M acLean [n .d .a, 1986a:78]).

• C ertain suffixes trigger deletion of /*e/-derived (i) (but not /*i/-derived (i» in stem s to which they
a ttach .7 One such suffix is the p lural m arker -it: the (i) of tu p iq is deleted in the p lural (tu p q it) while
the (i) of sa v ik rem ains (sa v iit) (data from M acLean 1986a:79).

Thus, (i) comes in two distinct flavors. The one tha t may p recede palatals and not alveolars is generally
cognate with Yupik (i) and derived from Proto-Eskimo /*U, and is som etim es called "strong i" in the litera
tu re (see for exam ple M acLean [1986a:19]; Dorais [1990:48-49]); the o ther Inupiag (i), so-called "w eaki,"
is generally cognate with Yupik (e) and derived from Proto-Eskimo /*e/ (Kaplan 1981c:76-77, 83-84, but
see Kaplan 1981b). In keeping with convention (Kaplan 1981c, 2000), I will rep resen t the N orth Slope Inu-
piag derivative of Proto-Eskimo /*e/ as i; breaking from the sam e convention, I will rep resen t the derivative
of /*i/ as i, in o rder to rem ove some am biguity from the symbol i, which I will use w hen the distinction is
unim portant.

2.1.2 Phonological Phenom ena

2.1.2.1 Regressive Assimilation

North Slope Inupiag has a productive regressive assim ilation process. Although alternations resulting
from this process can only be observed synchronically a t m orphem e boundaries, the sam e assim ilation
process has also applied diachronically within m orphem es (Kaplan 1981c:42-43), as can be seen by com
paring N orth Slope words with cognates in o ther Alaskan Inupiag dialects (see Table 2.2 on the following
page).

7Deletion is also contingent on the phonetic environment of the (i); see Section 2.1.2.6, particularly the discussion of the
pattern on pages 20- 21, for more details.

8

Table 2.2: Cognate consonant clusters in North Slope Inupiaq and Malimiut Inupiaq

North Slope Malimiut English gloss
qimmiq qipmiq 'dog'
imnaiq ipnaiq 'sheep'
navlu naplu 'knee joint'
qarraq qatraq 'an echo'
pallik- patlik- 'be by the edge of something’
pavri- papri- 'bother or pester someone'

The rule for N orth Slope regressive assim ilation given by Kaplan (1981a:41) is reproduced in Fig
u re 2 .2 . This rule stipulates that, given two ad jacen t consonants Ci and C2, Ci will adap t as necessary to
agree with C2 in voicing and continuancy; if Ci is not a back consonant, it will additionally agree in term s
of nasality, and if it is a coronal (in o ther words, alveolar, palatal, or retroflex), it will additionally agree
in term s of laterality. (For Kaplan's analysis of the distinctive features of Inupiaq consonants, see Kaplan
[1981c:29]).

C
-back

+coronal}

a continuant
voice

y nasal
(6 la tera l}

a continuant
voice

y nasal
6 lateral

Figure 2.2: Kaplan's regressive assimilation rule

/

The rule given in Figure 2.2 m ust be qualified by th ree considerations. First, in some subdialects of
N orth Slope Inupiaq, even back consonants m ust ag ree with the following consonant in nasality (Kaplan
1981c:39; M acLean 1986a:28). Second, according to M acLean (1986a:15-17, 28), some dialects allow
nasals to rem ain unchanged w hen followed by HI. Finally, sequences /ts / and /ty/ do not undergo regressive
assim ilation, instead becom ing [tf:] (M acLean 1986a:29; 1981:83).

The graphem ic correlate of assim ilation is slightly sim pler than its phonological coun terpart due to the
fact th a t a single le tte r in the Inupiaq alphabet often rep resen ts two hom organic consonants. For example,
although the phonem e /q/ assim ilates to [j] before a voiceless continuant, it is w ritten (q) in both cases,
and thus no graphem ic rule is necessary. Table 2.3 on the following page gives exam ples of graphem es
which may change form due to assimilation.

9

Table 2.3: G raphem ic reflex es o f assim ilation

Underlying Surface Environment Example
(k) <g> voiced consonant savik 'knife' + -mik mod.sg

savigmik 'with a knife'
(k) (q)/(g) nasal savik 'knife' + -mik mod.sg

savigmik / savigmik 'with a knife'
(m) <v) / (m) (1) iglum 'house (rel.sg)' + =lu 'and'

igluvlu / iglumlu 'and (of) the house'
(n) (1) / (n) (1) tiggun 'airplane' + =lu 'and'

tiggullu / tiggunlu 'and the airplane'
<q> <g> voiced consonant miquq- 'sew' + -niaq- f u t + -tuq ind.prs.3sg

miqugniaqtuq 'he/she will sew'
(t) (i) (1) annugaat 'clothing (pl)' + =lu 'and'

annugaallu 'and the clothing'
(t) (i) (1) aqpat- 'run (of human)' + -tuni contem p1.real.3sg

aqpattuni 'he/she running, ...'
(t) (n) any nasal aqpat- 'run' + -niaq- f u t + -tuq ind.prs.3sg

aqpanniaqtuq 'he/she will run'
(t) (r) (v, r, g) (but see next line) it- 'be, exist' + -vik 'place/time/source'

irvik 'usual place; place to be'
(t, ch) <y> <g> qimmit/qimmich 'dogs' + =gguuq 'it is said that'

qimmiyguuq 'it is said that dogs ...'

2.1.2.2 Palatalization

Palatalization is a distinguishing characteristic of N orth Alaskan Inupiag. M ost Inuit dialects exhibit no
palatalization a t all, and when non-Alaskan dialects8 do exhibit palatalization (or m ore accurately, assibi-
lation), the only affected phonem e is It/ (Compton and D resher 2008; Kaplan 1981c:78), w hereas in North
Slope Inupiag, phonem es It/, HI, HI, and In / are all subject to palatalization; th a t is, in the environm ent
i(C) , these alveolar phonem es are realized as the ir phonem ically (if not phonetically) palatal allophones:
It/ becom es [tf] or [s], HI becom es [A], HI becom es [A], and In / becom es [p]. (Malimiut Inupiag exhibits an
even g rea te r range of palatalization phenom ena; see Kaplan [1981c:96-103].)

Examples (l) - (5) below illustra te the alternation betw een alveolar and palatal consonants. Underlying
alveolars are realized as palatal consonants following III ('a ' exam ples); following HI ('b ' exam ples) or any
o ther vowel ('c ' examples), they are realized as alveolar.

sAn exception is the Mackenzie Delta or Uummarmiutun dialect, which is the result of an eastern migration of Alaskan Inuit
around the turn of the 20th century (Kaplan 1981c:78; Dorais 1990:46).

10

Ex. (1)

c

Ex. (2)

c

Ex. (3)

ka v iq su q
ka v iq -tu q
b e .re d - iN D .P R S .3 s G
'it is r e d '
q a tiq tu q
qati'q-tuq
be.white-iND.PRS.3sG
'it is white'
m a g a q tu q
m a g aq -tuq
be.black-iND.PRS.3sG
'it is black'

I X-Nau lla rrit / aullarrich
aullarri-t
leader-ABS.PL
'lead ers'
ih u u n n ia q tit
in u u n n ia q ti-t
physician-ABS.PL
'physicians'IK u u va g m iu t
K u u va g m iu -t
inhabitant.of.Kobuk.Valley-ABS.PL
'inhabitan ts of the Kobuk Valley'

n ig in iaq tuq
n ig i-n iaq-tuq
eat-FU T-IN D .PR S.3SG
'he/she/it will eat'
iq ag in ia q tu q
iqagi'-niaq-tuq
wash.hands/face-FUT-iND.PRS.3sG
'he/she w ill w ash h is/her hands
and/or face'

Iig lag a n ia q tuq
ig laga-n iaq-tuq
smile-FUT-iND.3sG
'he/she w ill sm ile'

y
n a tch ig lu Ex. (4) a.
n a tch iq= lu
seal=and
'and the seal'
aivig lu b.
aivi'q=lu
w alrus=and
'and the w alrus'
a viggag lu c.
av iggaq= lu
lem m ing=and
'and the lemm ing'

Ia g u tig ik iu n i Ex. (5) a.
ag u tig ik-lu n i
be.handsome-coNTEMPl.REAL.3sG
'he b ein g handsom e, ...'
nag iiiun i b.
nagi't-luni
be .S ick-C 0N T E M P l.R E A L .3S G
'h e / s h e b e i n g s i c k , . . . '
p in a q iu n i c.
p inaq-lun i
be.generous-coNTEMPl.REAL.3sG

'he/she being generous, ...'

A peculiarity surrounding palatalization in N orth Slope Inupiag is tha t not all palatal phonem es share
the sam e distribution or behavior. Laterals and nasals are straightforw ard enough; palatal laterals and

11

nasals only occur following III (Kaplan 1981c:90).9 The o ther palatal consonants, [j] and [tf], have a much
w ider distribution, as evidenced by the following words: a y u k ta q 'ball', u ya g a k 'stone, rock', ka tch i 'wall',
ig u tch a q 'bum blebee', [j] simply doesn 't behave like o ther palatals with respec t to the palatalization pro
cess; it is a phonem e in its own right, derived from Proto-Eskimo /*j/ (Dorais 1990:48). [tf] is m ore complex;
it does a lternate with [t], as in exam ple (5), bu t only w hen III precedes; in o ther environm ents the re is no
reason to analyze [tf] as underlying It/ (Kaplan 1981c:90).

The situation of [s] also deserves some attention. Although phonetically alveolar, [s] behaves like a
palatal in th a t it a lternates with [t] following HI. In fact, [tf] and [s] are in com plem entary distribution; [s]
cannot be long, cannot begin a consonant cluster, and cannot occur morpheme-finally; [tf] cannot occur
word-initially, cannot be short except morpheme-finally, and cannot end a consonant c luster o ther than
[tf:] (Kaplan 1981c:86). W ithout any loss of descriptive adeguacy, one could analyze non-alternating [s]
as the pre-vocalic allophone of /tf/, bu t Kaplan finds this analysis unsatisfactory because short [tf] never
occurs in surface forms except as an allophone of It/. Alternatively, one could analyze [tf] as an allophone
of Is/; this would imply tha t It/ palatalizes to [s] in all cases and then becom es [tf] w hen no vowel follows.
Kaplan finds this im plausible because it would involve changing a stop to a fricative to a stop. Because both
single-phonem e analyses p resen t explanatory draw backs, Kaplan prefers to analyze [tf] and [s] as separate
phonem es when they do not a lte rna te with It/; w hen they do a lte rna te with It/, he derives [s] from [tf] in
the environm ent X V w here X is any segm ent except [tf]; this ru le leaves [tf:] unchanged. In this work I
will also tre a t non-palatalized [tf] and [s] as separa te phonem es, bu t this should be seen m ore as a m a tte r
of convenience than as a theoretical claim on my part: the phonological rules in M acLean (1986a) are also
(implicitly) w ritten from a separate-phonem e point of view, and adopting this view facilitates com putational
adaptation of these rules.

2.1.2.3 A lternation of /!/ and [a]

Two environm ents cause an underlying /!/ to change to [a]. The first is a following vowel; the second
is gem ination of the preceding consonant. These will be considered in turn.

2.1.2.3.1 A l t e r n a t i o n D u e t o a F o l l o w i n g V o w e l With very few exceptions, N orth Slope Inupiag HI is
realized as [a] w hen ano ther vowel follows (Kaplan 1981c:118-121). Examples of this phenom enon are
given below (data from M acLean [n .d .a]).

>|rEx. (6) a. n iq a a tch ia g n ia q tu g a c. a tig a u k k a q tu t
niq 'i-a tchiaq-niaq-tuga a tig 'i-ukkaq-tu t
meat-ask.other.household.for-FUT-iND.PRS.3sG parka-possess.many-iND.PRS.3PL
'I will go ask (another household) for m eat' 'they have m any parkas'

b. a n u g a iq su q
anu g i-iq -tuq
wind-lack-iND.PRS.3sG
'(the w eather) is calm , lit. lacks wind'

9I am aware of two minor exceptions: the interjection niaq 'don't do that!' (Kaplan 1981c:32-33) and the verb stem laiiak- 'to
bark ferociously and be about to fight (of dog)' (MacLean n.d.a).

12

Suffixes -anik- 'previously, already ' and -aqsi- 'abou t to; beginning to ' rep resen t an exception to this
rule; they cause a preceding HI to be realized as [i] (Kaplan 1981c:120-121), as illustra ted in (7) below (data
from M acLean [n .d .a]); this may be due to an underlying consonant a t the beginning of these postbases
(Lawrence Kaplan, personal comm unication, 21 M arch 2011).

Ex. (7) a. su p ia n ik ta a
sup i-an ik-taa
blow. out-already-iND.PRS.3sG>3sGO
'he/she already blew it out'

b. itiaq siruq
itiq -aqsi-ruq
wake.up-begin-iND.PRS.3sG
'h e/sh e b eg an to w ake up'

m may begin a stem but not a suffix (Kaplan 1981c:105, 119). Conseguently, the re are very few situa
tions w here /i/ could follow ano ther vowel; Kaplan identifies two. The first is the dem onstrative ta inn a 'in
tha t way or m anner', form ed from Inupiag 's only prefix, ta(t)- 'th a t specific person, thing, or concept; tha t
person or thing closer to the lis tener than the speaker' and the stem inna 'like this ', whose initial vowel is
HI, as evidenced by the alveolar consonants th a t follow. The o ther example, also m entioned by MacLean
(1986a:118), is the suffix pair -m iit-/-niit- 'be located in, at, o n ' (-m iit- is used for singular objects, -niit-
for p lural objects). These suffixes are a tran sp a ren t com bination of the locative noun endings plus the verb
stem it- 'to be, exist', and the sam e idea may be expressed as one word or two, as shown in exam ple (8)
(data from Kaplan [1981c:105] and M acLean [1986a:118]). In fact, the degree to which -m iit- and -niit-
are a single unit is debatable; Lawrence Kaplan (personal comm unication, 21 M arch 2011) characterizes
it as a "superficial 'run-on"' and notes th a t it is not possible in some o ther d ia lects.10

Ex. (8) a. ig lu m iittu q
ig lu -m iit-tuq
house-be.located.in-iND.PRS.3sG
'he/she/it is in the house'

b. ig lum i ittu q
iglu-m i it-tuq
house-Loc.sG be-iND.PRS.3sG
'h e/sh e/it is in the house'

In both cases, it is c lear th a t the HI from it- is HI because the following consonants are not palatalized
(which would give *itchuq). It appears, then, th a t HI may be realized as [i] w hen it follows ano ther vowel,
bu t not w hen it p recedes ano ther vowel (except in the ra re cases discussed above).

2.1.2.3.2 A l t e r n a t i o n D u e t o G em in a tio n o f a P r e c e d in g C o n s o n a n t In Inupiag, gem ination of under
lying short consonants is morphologically conditioned (Kaplan 1981c:221-222); m ore specifically, certain
allom orphs of certain m orphem es, w hen a ttached to stem s ending in V1CiV2(C2), cause Ci to gem inate.
Suffixes which trig g er gem ination and begin with a velar or uvular consonant cause an underlying HI in
the V2 position to be realized as [a] (Kaplan 1981c:121-124, 128-130):

10Woodbury (2002:86-87) discusses an analogous construction in Cup'ik, which, unfortunately, involves different phonological
processes and so sheds no light on the guestion under consideration here.

13

c. aw a q
av'ik-q
divide.in.half-result.of
'a half' (M acLean n .d .a)

kam'ik-k
bOOt-ABS.DU
'p a ir of boots' (Kaplan 1981c:122)i.

b . sinnaqturuq
sinik-qtu-ruq
sleep-excessively-iND.PRS.3sG
'he/she sleeps a lot' (M acLean n .d .a)

Gem inating suffixes beginning with phonem es o ther than a back consonant do not exhibit this a lter
nation, although they may exhibit o ther alternations. Im perative suffixes -in 2sg and -uq 2sg>3sgO cause
stem-final HI to be realized as [u] (Kaplan 1981c:125),11 while postbase -vik 'p lace or tim e f o r____ ' causes
stem-final HI to be realized as [i] (Kaplan 1981c:131) (data from Kaplan [1981 c :125, 131]):

phonological environm ent (Kaplan 1981c:132), the /i/-[a] alternation is clearly conditioned by the initial
back consonant of the suffix triggering gem ination (Kaplan 1981c:129). Kaplan suggests tha t the /i/-[a]
a lternation due to a following vowel is also conditioned by a back consonant, which would be the underlying

preceded by two vowels and followed by a vowel (Kaplan 1981c:130). The sta tus of this consonant will be
considered in Section 2.1.2.4 on pages 14- 16. For the p resen t discussion, note tha t vowel clusters cannot
contain [i], so [i] and this hypothetical underlying back consonant cannot co-occur in a surface form. If
a back consonant is necessary to cause HI to a lternate with [a], it is not sufficient; as shown in exam ples
(12)- (14), suffixes beginning in a velar consonant preserve the underlying vowel guality of a preceding HI
by default (data from M acLean [n .d .a]):

Ex. (10) a. tiqquin
tiqi'-in
take.flight-iMP.2sG
'take flight!'

b . attuuq
ati-uq
put.on-iMP.2sG>3sGO
'pu t it on!'

Ex. (11) a. suppivik
sup'i-vik
blow-place/tim e
'break-up tim e'

b. tiqqivik
tiqi'-vik
take.flight-place/tim e
'S eptem ber (lit., tim e of taking flight)'

While the /i/-[u] a lternation is lim ited to a handful of suffixes and not conditioned by any obvious

first phonem e of the suffix following underlying HI, and which would only appear in the surface form w hen

Ex. (12) a. ilisagigaluaqtaa
ilisagi-kaluaq-taa
recognize-without.desired.result-iND.PST.3sG>3sGO
'he/she recognized him/her, b u t ...'

11Kaplan (1981c:126) notes the existence of innovative versions of these morphemes which cause preceding /i/ to surface as [i].

14

b. isigaluaqtuaq
isiq-kaluaq-tuaq
enter-without.desired.result-iND.PST.3sG
'he/she en tered , b u t ...'

Ex. (13) a. ikayuqtikaaq
ikayuqti'-kaaq
helper-usual
'the one who usually helps'

b. inikaaq
in'i-kaaq
room /place-usual
'usual p lace'

Ex. (14) a. iriqpagik
iri'-qpak-gik
eye-big-ABS.Du.3sGP
'his big eyes'

b. sinikpaksim aruaq
sinik-qpak-sima-ruaq
sleep-too.much-it.is.known-iND.PST.3sG
'he/she overslept'

I

Thus, while back consonants are in p a rt responsible for conditioning the /i/-[a] alternation th a t co
occurs with gemination, they do not condition this alternation by them selves (that is, in the absence of
gemination). As for the /i/-[a] a lternation before ano ther vowel, the argum ent tha t a velar consonant is
synchronically responsible for conditioning this alternation seem s a stre tch a t best, given the following
th ree observations: first, that, as dem onstrated , velars generally do not have this effect in the synchronic
phonology of Inupiag; second, tha t the velar in guestion rare ly appears on the surface in any case, and
never next to an [a] which is underlyingly /i/; third, th a t the re is another, m ore obvious environm ent condi
tioning this alternation: a vowel following underlying fH. I will therefore assum e that, synchronically, the
two environm ents conditioning the /i/-[a] alternation rep resen t separate rules (probably stem m ing from a
single historic origin).

2.1.2.4 Prevention of Three-Vowel Clusters

Inupiag does not allow clusters of m ore than two vowels to occur in the surface form of a word (MacLean
1986a:28; Kaplan 1981a:61). This restric tion comes into play w hen a suffix which would begin w ith a vowel
in the environm ents -C and -CV is a ttached to a stem ending in -W (see exam ples (15) and (16)) or, if
the suffix deletes stem-final consonants, -VVC (see exam ple (17)).

15

Ex. (17) suagaqsigaa
suak-aqsi-gaa
scold-about.to-iND.PRS.3sG>3sGO
'H e/she is about to scold him /her'

Ex. (16) nauganigmata
nau-anik-mmata
grow-already-coNSEQ.3PL
'w hen they [i.e., fruit] had already
grown'

Ex. (15) sumiuguvich
su-miu-u-vit
what-inhabitant.of-cop-iNT.2sG
'W hat place are you from?'

In each of the exam ples above, the le tte r (g) betw een the two m orphem es prevents a cluster of th ree
vowels. In the case of the suffix -a, which m arks possession in the absolutive case of a singular possessum
by a third person singular possessor, the intervening consonant is not (g) bu t (g) (Kaplan 1981c:190-192),
as shown in (18). In (19), the re are no potential three-vowel clusters, and (g) is ab sen t.12 Data for both
exam ples are from Kaplan (1981c:190, 192).

Ex. (18) a.

b.

kuuga
kuuk-a
river-ABS.SG.3sGP
'h is/her/its river'
puuga
puuq-a
Sack-ABS.SG.3SGP
'h is/her/its sack'

Ex. (19) a. inaa
ini-a
place/room-ABS.SG.3sGP
'h is/her/its place/room '

b. savia
savik-a
knife-ABS.SG.3sGP
'h is/her knife'

The [ft] ((g)) and [g] (in the case of the possessive suffix -a) which prevent three-vow el clusters may
be analyzed as epenthetic or underlying. If epenthetic, they would be inserted w henever suffixation of a
vowel-initial m orphem e would crea te a three-vowel cluster; if underlying, they would be deleted except
when deletion would crea te a three-vowel c luster (Kaplan 1981c:188-193). Kaplan prefers the underlying
analysis, while M acLean adopts the epenthetic analysis (see M acLean 1986a:53). Kaplan's reasoning is as
follows:

• if one views the phenom enon as epenthesis, one needs two epenthesis rules (one for the possessive
suffix and ano ther for all o ther vowel-initial suffixes);

• the deletion analysis supports the hypothesis tha t the /i/-[a] alternation is conditioned by a velar (see
Section 2.1.2.3, particularly pages 13- 14);

• the word inuggun 'life', nominal form of inuu- 'to be alive', derived from inuk 'person ' and -u- c o p ,
suggests the p resence of a velar consonant a t the beginning of the copular suffix, since the final
consonant of inuk would have been deleted, probably irretrievably, by the suffixation of -u-;

12Note, however, that a more innovative form of the a b s .s g . 3 s g P suffix is -pa; thus the forms inipa and savipa also exist (Ka
plan 1981c:192). However, the forms *kuua and *puua, hypothetical homologues to inaa and savia, do not exist; the appropriate
conservative forms of these words are kuupa and puupa.

16

• in today 's N orth Slope Inupiaq, the abs.sg.3sgP possessive suffix -a has been reanalyzed as -ga (the
[q] appearing in all surface forms), suggesting th a t the initial consonant was p a rt of the conservative
suffix (where it would have been deleted except to prevent three-vowel clusters).

From a purely synchronic perspective, however, the epenthetic analysis is attractive, despite its ex
planatory draw backs. It assum es th a t suffixes which in m ost environm ents begin with a vowel also begin
with a vowel underlyingly. Positing an underlying initial velar would require a distinction betw een "real"
suffix-initial velars (as with the postbase -gi- 'have as o n e 's ') and "deletable" ones (as with the copula
-(g)u-); this is unnecessary under the epenthetic analysis. With the exception of the possessive ending -al
ga, an epenthesis rule provides a simple yet adequate account of how Inupiaq avoids three-vowel clusters.
The possessive ending and o ther issues raised by Kaplan (1981c) can be accom m odated in an epenthetic
model as follows:

• the form -ga of the abs.sg.3sgP possessive suffix can be considered an allom orph conditioned by the
environm ent W (C) (see Section 2.1.2.8 on pages 23- 25). Note th a t the [q] in question m ust be
considered exceptional in both the epenthetic and underlying analyses; ne ith er analysis explains
why in this case alone the consonant would be nasal.

• the presence of velar consonants in in u g g u n is evidence of a historic (lexicalized), ra th e r than syn
chronic, phenom enon, and need not be accounted for here; like all o ther words whose derivation
is not com pletely transparen t, this word can simply be trea ted as a lexem e without regard to its
etymology.

• the possibility of an underlying velar consonant conditioning the /i/-[a] a lternation before another
vowel was discussed in Section 2.1.2.3 on pages 13- 14. While this alternation may have arisen
due to a historic velar consonant, it is m uch easier to assum e tha t synchronically the alternation is
triggered by a preceding vowel than by a preceding disappearing velar.

For p resen t purposes, ano ther advantage of the epenthetic analysis is th a t it m akes it easier to convert
M acLean's m aterials into a com putational morphology, since she trea ts the phenom enon as epenthesis. For
these reasons, and because my goal is m ore descriptive than explanatory, I adopt the epenthetic analysis
in the p resen t work.

2.1.2.5 Gemination

As m entioned in Section 2.1.2.3, gem ination of underlying short consonants is morphologically condi
tioned in Inupiaq (Kaplan 1981c:221-222). W hen a suffix which triggers gem ination is a ttached to a stem
ending in ViCiV2(C2), underlying Ci is realized on the surface as its long counterpart. In m ost cases, this
coun terpart is simply the phonetic gem inate of Ci, bu t Is/ gem inates to [tf:].

M acLean's trea tm en t of Inupiaq m orphophonology (e.g., 1986a; 1986b; n .d .b ; n .d .a) ascribes the ability
to trigger gem ination to allom orphs ra th e r than to m orphem es. This provides a straightforw ard m echanism
to deal with the fact tha t "gem ination usually depends in some way upon the final segm ent of the stem and
does not occur categorically before a certain m orphem e..." (Kaplan 1981c:225). For example, the suffix
-vik 'place, tim e' causes gem ination only in stem s ending in a vowel (example (20); data from MacLean
[n .d .a]), while singular relative case m arker -(u)m causes gem ination only in stem s ending in /q/ (example

17

(21); data from (M acLean 1986a:148)). M acLean analyzes -vik as having two allom orphs, identical in
form, one of which follows vowels and triggers gem ination, the o ther of which follows consonants and
does not trig g er gem ination. Similarly, the singular relative case marker, ~(u)m, is analyzed with th ree
allomorphs: -m which does not allow gem ination occurs after vowels, -m which does allow gem ination
occurs after /q/, and -um (which does not allow gemination) occurs after "strong" consonants. I adopt
this approach in the p resen t work. An alternative to this approach would be to specify allom orphy and
gem ination pa tte rns separately. Such an approach would be m ore elegant in the case of m orphem es such
as the relative singular ending, which could be analyzed as having two allom orphs, one of which exhibits
two distinct gem ination patte rns, ra th e r than th ree allom orphs, two of which have identical forms but
d ispara te gem ination patte rns. However, specifying separate conditioning environm ents for allomorphy
and gem ination would reguire additional notational complexity, which m akes the approach less attractive
for purposes of com putational morphology. Also, because M acLean's work is the m ain source of lexical
data for this thesis, adopting h er trea tm en t of gem ination simplifies the lexicon creation process.

niggivik Ex. (21) a. ammim
nigi-vik amiq-m
eat-place animal.hide-REL.sG
'tab le ' '(of) the anim al hide'
annivik b. qayyam
am-vik qayaq-m
birth-tim e kayak-REL.sG
'birthday '
nagirvik c.

'(of) the kayak'
.<inim

nagit-vik ini’-m
sick-place place-REL.SG
'hospital' '(of) the p lace'
savagvik d. tupqum
savak-vik tupiq-um
work-place tent-REL.SG
'office, place of em ploym ent' '(of) the ten t'

Many allom orphs allow but do not reguire gem ination. The relative singular case ending is one such
suffix. Thus, the forms am m im '(of) the anim al hide ' and qayyam '(of) the kayak' given in exam ple (21)
exist alongside innovative non-gem inated forms amim and qayam (M acLean 1986a:148; Lawrence Kaplan,
personal comm unication, M arch 21, 2011).

In certain stem s, the consonant resulting from gem ination is unpredictable from the form of the stem.
These unpredictable gem inates fall into two categories: stops which correspond to continuants in the
ungem inated stem (see exam ple (22), data from M acLean [1986a:93]), and intervocalic voiced fricatives
tha t correspond to zero in the ungem inated stem (see exam ple (23), data from M acLean [1986h:25, 107]).
In all cases, phonological change is responsible for these unusual gem inates, [j] which gem inates to [tf:]
is likely due to a historic alternation betw een [j] and [tf] (Kaplan 1981c:179). All o thers are due to a
diachronic process of consonant gradation w hereby (among o ther changes) ungem inated stops becam e

18

voiced fricatives and ungem inated voiced fricatives w ere deleted, while in the ir gem inated forms the con
sonants re ta ined the ir historic form (Kaplan 1982).

Ex. (22) a. qilalukkak
qilalugaq-k
beluga-ABS.Du
'(two) beluga whales'

b . papiqquk
papiguq-k
fishtail-ABS.Du
'(two) fish ta ils '

c. qatchut
qayuq-t
b ro th -A B S .P L
'pots of b ro th '

Ex. (23) a. paggiih
pagi-in
stay-iMP.2sG
'stay a t hom e!'

b . qaggiin
qagi-ih
come-iMP.2sG
'com e here!'

c. tagirrirut
tagiruq-i-rut
salt-make-iND.PRS.3PL
'they a re producing sa lt '

2.1.2.6 Suffix A ttachm ent Patterns

Many of the m orphophonological changes tha t occur a t m orphem e boundaries are conditioned by the
suffix being attached. Although the p a tte rn of a ttachm ent depends to some degree on the initial phonem e of
the suffix, it is not entirely p red ictable from phonological form, as dem onstrated by postbases -sagataq- 'for
a long tim e', -sugruk- 'a lot', and -sinnaq- 'only', -sagataq- a ttaches directly to the stem w ithout deleting
any segm ents (see exam ple (24) below); -sugruk- deletes any stem-final consonant (example (25)); and
-sinnaq- deletes stem-final It/ bu t not /k/ or /q/ (example (26)) (data for exam ples (24)- (26) from MacLean
[n .d .a]).

Ex. (24) a. aqpatchagataguuruq
aqpat-sagataq-uu-ruq
run-for.a.long.time-usually-iND.PRS.3sG
'he/she usually runs for a long tim e'

b . savaksagataguuruq
savak-sagataq-uu-ruq
work-for.a.long.time-usually-iND.PRS.3sG
'he/she usually works for a long tim e'

c. nigisagataqtuq
nigi-sagataq-tuq
eat-for.a.long.time-iND.PRS.3sG
'he/she eats for a long tim e'

Ex. (25) a. aqpasugruktuaga
aqpat-sugruk-tuaga
run-a.lot-iND.PST.lsG
'I ra n a lo t'

b . uqasugrugnak
uqaq-sugruk-nak
talk-a.l0t-NEGCONTEMP.2SG
'd o n 't talk too m uch'

c. nigisugruktuagut
nigi-sugruk-tuagut
eat-a.lot-iND.psT.3PL
'we a te a lo t'

19

Ex. (26) a. aquvisihhaqtuaq c. napisinnaqlugich
aquvit-sihhaq-tuaq napi-sihhaq-lugich
sit-only-iND.PST.3sG cut.in.half-only-coNTEMPl.REAL.3PLO
'he/she ju s t sa t down (he did nothing else)' 'they having been cut (just) in half'

b. uqaqsinnaqtuat
uqaq-sihhaq-tuat
talk-only-iND.PST.3PL
'they ju s t talked (they did nothing else)'

MacLean, in her dictionaries and pedagogical gram m ar books, identifies six13 m ain attachm ent p a t
terns (1981:xi; 1986a:261; 1986h:102, 105). R ather than nam e the patte rns, she assigns them symbols.
The pa tte rns are listed in Table 2.4; exam ples follow. Discussion continues on page 22 .

Table 2.4: M acLean's suffix attachm ent patterns

Symbol Explanation
- Delete any stem-final consonant (see example (25) on the preceding page)

+ Attach directly to stem (see example (24) on the preceding page); stem-final stops become voiced
fricatives if the suffix begins with a voiced phonem e (see example (27) on the following
page); if the stem ends in a consonant and the suffix begins with a consonant cluster, the
first consonant of the suffix is deleted (see example (28) on the next page)

: For stem s ending in VC}iC2: delete /!/; assim ilate C2 to agree with Ci in term s of voicing,
continuancy, and optionally nasality (see example (29.a) on the following page)

For stem s ending in VCiC2'iC3 -. C3 becomes a voiced fricative (see example (29.b) on the next
page); alternatively, some speakers delete C3 and trea t /!/ as /i/ (MacLean 1986u:52)

For stem s ending in VC where V is a vowel other than f t j : delete C (see example (29.c) on page 21)
For stem s ending in V : attach the stem directly (/!/ becomes [a] as described in Section 2.1.2.3 on

pages 11- 14; potential three-vowel clusters are broken up by a [^] ((g)) as described in
Section 2.1.2.4 on pages 14- 16) (see example (29.d) on page 21)

* delete stem-final /g/ (see example (30) on page 21)

± delete any stem-final back consonant (see example (31) on page 21)

+ delete any stem-final /t/ (see examples (26) on the preceding page and (32) on page 22)

13Two additional patterns, denoted with the symbols '= ' and are omitted from the present discussion. These are minor
patterns which occur only with a handful of suffixes and only in restricted phonological environments, and allomorphs exhibiting these
patterns often have slightly different semantics from other allomorphs. These facts suggest that these patterns are not synchronically
productive.

20

The p a tte rn was illustra ted in exam ple (25) on page 18. Suffixes exhibiting this p a tte rn cause
the deletion of the final consonant of the stem to which they attach. As described in Section 2.1.2.4 on
pages 14- 16, potential three-vowel clusters crea ted by this deletion are broken up by a [^] ((g)) inserted
before the initial vowel of the suffix.

Examples (27) and (28) illustra te the '+ ' p a tte rn (see also (24) on page 18). Postbase -ruinnaq- 'finally'
causes reg ressive assim ilation of stem-final consonants; postbase -qpak(-) 'a b ig ; t o a lot, exces
sively' begins w ith two consonants, the first of which is deleted when a ttached to a consonant-final stem.
Data for both exam ples come from M acLean (n .d .a).

Ex. (27) a. aaglugruihhaqtuq
aagluq-ruinnaq-tuq
raise.head-finally-iND.PRS.3sG
'it finally raised its head '

b. avirruinnaqtuak
avit-ruihhaq-tuak
get.a.divorce-finally-iND.PRS.3Du
'they finally got a divorce'

c. katagruinnaqtuq
katak-ruinnaq-tuq
fall-finally-iND.PRS.3sG
'h e /sh e finally fell'

Ex. (28) a. nigiqpagnak
nigi-qpak-nak
eat-a.l0t-NEGCONTEMP.2SG
'd o n 't ea t too m uch'

b. umiaqpak
umiaq-qpak
boat-big
'ship (lit., big boat)'

c. savikpaga
savik-qpak-ga
knife-big-ABS.SG.3sGP
'his sword (lit., big knife)'

Example (29) exemplifies the complex ':' patte rn , which affects stem s differently depending on the ir
final phonem es. Stem s ending in VC11C2 undergo the m ost drastic change; HI is deleted, creating a conso
nan t c luster in which the second consonant undergoes assim ilation for voicing, continuancy, and nasality
(29.a). In stem s ending in VCiC2iC3, deletion of fil would crea te a three-consonant cluster, which is not
allowed in Inupiag; instead, the final consonant becom es a voiced fricative (29.b). With stem s ending in VC
w here V is a vowel o ther than HI, the ':' p a tte rn is identical to the ' - ' pattern : the stem final consonant is
deleted (29.c). W ith vowel-final stems, the ':' p a tte rn is identical to the '+ ' pattern ; stem-final HI becom es
[a] (see Section 2.1.2.3 on pages 11- 14) and potential three-vowel clusters are broken up by a [ft] ((g))
(see Section 2.1.2.4 on pages 14- 16) (29.d). It's w orth noting tha t all suffixes exhibiting the ':' p a tte rn
begin w ith a vowel. The postbase used in the exam ple below is -it- 'to la c k ; to not b e '; data are
from M acLean (1986a:51-53).

Ex. (29) a. i. kam gitchuq ii. tupqitchuga
kamik-it-tuq tupiq-it-tuga
boot-lack-iND.PRS.3sG tent-lack-iND.PRS.lsG
'h e h a s no b o o ts ' I 'h e is n o t 'I h av e no te n t(s) '
w e a rin g b o o ts ' I 'th e re a re no
b o o ts '

21

b. ig n ig itch u q
igni’q-it-tuq
son-lack-iND.PRS.3sG
'he has no son (s) '

c. m iq liq tu itch u q
m iq liq tu q -it- tu q
ch ild -la ck -iN D .P R S .3 sG
'he/she has no child(ren)' / 'the re are
no children'

d . i. a tig a itch u g a
atig i’-it-tuga
parka-lack-iND.PRS.lsG
'I have no parka(s)' I 'I am not
w earing a parka'

ii. q ua g itch u g a
quaq-it-tu ga
frozen.meat-lack-iND.PRS.lsG
'I have no frozen m eat'

The p a tte rn is illustra ted in exam ple (30) using the term inalis singular ending -m un ' t o (which
is singular)'. This p a tte rn is res tric ted to a handful of nasal-initial nominal inflectional endings and the
derivational suffixes th a t are derived from these endings. This p a tte rn involves the deletion of stem-final
/q/; any o ther underlying stem-final phonem e is retained . The data p resen ted below are from MacLean
(19860:115-117).

Ex. (30) a.

b.

ig lu m un
ig lu-m un
hOUSe-TRM .SG
'to the house'
tu p ig m u n
tu p iq -m un
tent-TRM.SG
'to the ten t'

q im m im u n
q im m iq -m u n
d o g -T R M .s G

'to the d o g '

The '± ' patte rn , shown in exam ple (31), deletes stem-final back consonants only. Suffix -kasak- 'reg u
larly, routinely ' exhibits this p a tte rn (data from M acLean [n .d .a]).

Ex. (31) a. n ig ika sa k tu a n i uvap tin n i
n ig i-ka sa k-tuan i uvapti't-n i
eat-regularly-iND.psT.lPL we/us-Loc
'w e've been eating regularly a t our place'

b. a q p a tka sa k tu a g n i
a q p a t-kasa k-tua g n i
run-regularly-iND.PST.lDu
'the two of us have been running regularly '

ika yu ka sa k ta g a
ika yu q -ka sak -ta ga
help-regularly-iND.PST.lsG>3sG0
'I've been helping him /her regularly '

The '+ ' p a tte rn deletes only It/ (the only underlying stem-final coronal consonant allowed in Inupiag
phonotactics). This p a tte rn is exemplified in (32) below using the suffix -tilaaq(-) which expresses (among
o ther things) m easurem ent of a guality or perform ance of an action to the g rea test extent possible (data
from M acLean [n .d .a]). See also exam ple (26) on page 18.

22

Ex. (32) a. akisutilaaq c. uqumaisilaaq
uqum ait-tilaaq-0
be.heavy-measure-ABS.SG
'w eight'

akisu-tilaaq-0
be.valuable-measure-ABS.SG
'price '

b. pisuqtilaaglusik
pisuq-tilaaq-lusik
be.good.at-to.one's.ability-coNTEMPl.uNREAL.2Du
'you (two) doing your best'

As with the conditioning of gem ination (see 2.1.2.5 on page 16), M acLean (e.g., 1986a; 1986b; n .d .b ;
n .d .a) trea ts suffix attachm ent pa tte rns as a property of individual allom orphs ra th e r than of m orphem es.
This approach is clearly necessary for m orphem es which exhibit widely divergent allomorphy, such as
the suppletive pair +tit-/+pkaq- which express causation: -tit- occurs following consonants, while -pkaq-
follows vowels. But this m ethod is also practical for describing the situation of suffixes which exhibit more
than one a ttachm ent patte rn . For example, dim inutive m orphem e -uraq usually exhibits the ':' pattern ,
bu t a ttaches to stem s ending in W C according to the '= ' pattern ; trea ting this m orphem e as having two
allom orphs, :uraq and =uraq, provides a straightforw ard way to describe this behavior.

2.1.2.7 /ti/-[n] A lternation

As a general rule, the absolutive singular form of an Inupiag noun is taken as tha t noun 's stem. But
this appears not to be the case for absolutive singular nouns ending in [n] or its palatal allophone, [p] ((n».
With these nouns, the final nasal of the absolutive singular form corresponds to [t'i] ([si] for (n» before
m ost suffixes o ther than enclitics. This is illustra ted in exam ples (33) and (34) below.

Ex. (33) a. aqun e. aqutigik-
aqut'i-0
m a n -A B S .S G

'm an'

aquti'-gik-
m an-beautiful
'to be handsom e' (M acLean n .d .a)

yvb. aqutik
aquti-k
m an-A BS.D u
'two m en' (M acLean 1986a:77)

Ex. (34) a. akin
akis'i-0
pillOW-ABS.SG
'p i l l o w 'c. aqutim

aqut'i-m
man-REL.SG

b. akisik
akis'i-k
pillOW-ABS.DU
'two pillows' (M acLean 1986a:77)

'(of) the m an' (M acLean 1986a:148)
d. aqutauruq

aquti-u-ruq
man-cop-iND.PRS.3sG
'it is a m an' (M acLean n .d .a)

c. akisim
akis'i-m
pillOW -REL.SG
'(of) the pillow' (M acLean 1986a:148)

23

There are, however, a handful of exceptional suffixes which allow [n] or [p] in the surface form instead of
[t'i] or [si]. These are the singular inflectional endings of the following cases: modalis (-mik), locative (-mi),
ablative (-min), and term inalis (-mun) (M acLean 1986a:97, 115). Thus, forms like agunm un 'to the m an'
and akinmi 'on the pillow' are allowed (as are agutim un and akisimi). The fact tha t noun stem s exhibiting
this alternation tend to appear with [t'i] by default and with [n] only before certa in suffixes points to [t'i] as
the underlying form (a conclusion implicit in Kaplan [1981c]).

The /ti/-[n] alternation is clearly m orphologically conditioned (Kaplan 1981c:147), bu t while all abso
lutive singular nouns ending in (n) or (n) exhibit the alternation described here (Kaplan 1981c:149), the
converse is not true. That is, the re are noun stem s ending in /t'i/ or /si/ which do not a lternate with (n) or
(n), even in the presence of suffixes which trigger this alternation. Examples of stem s not exhibiting the
/ti/-[n] alternation include aglakt'i 'secretary ,' agaiyyuliqsi 'p reacher,' aqpat'i 'runner,' pisiks'i 'bow (hunt
ing im plem ent),' s is i 'burrow, den ' (Kaplan 1981c:147; M acLean 1981). Stem s ending in VCCi, such as
aglakt'i and pisiks'i, could not undergo this alternation due to phonotactic constrain ts (a stem cannot end in
two consonants; see page 26), bu t these constrain ts cannot explain why aqpat'i and s is i do not exhibit the
alternation (the Kobuk eguivalent of s is i actually does undergo this alternation, becom ing sin [Lawrence
Kaplan, personal comm unication, 5 April 2011]). Stem s which undergo the alternation m ust be specifically
m arked as such; specifically, the stem s subject to this a lternation all end w ith the instrum ental nominal-
izing m orphem e -uti, etymologically if not synchronically (Kaplan 1981c:147-148). Thus, the alternation
is conditioned by both m orphological and lexical criteria; underlying /ti/ is only realized as [n] when the
stem ends in -u ti and is followed by a suffix which triggers this alternation (Kaplan 1981c:148).

Although /ti/ and /si/ m ore accurately reflect the underlying forms of stem s which exhibit the /ti/-[n]
alternation, glosses in this docum ent (except in exam ples (33) and (34) in this section) use the form with [n]
instead. This is done for two reasons: first, because readers aw are of this alternation will recognize tha t
a stem-final (n) is underlyingly /ti/, w hereas they cannot know a priori w hether a given /ti/ a lternates with
[n]; and second, because the form ending with a nasal, as the absolutive singular form, is conventionally
used as the citation form in Inupiag dictionaries and g ram m ar texts. Using this form may m ake this work
m ore accessible to those fam iliar with existing Inupiag language resources.

2.1.2.8 Allomorphy

I have already discussed allom orphy in the contexts of gem ination (see pages 16- 17) and suffix affix
ation pa tte rns (see preceding page). These types of allom orphy stre tch the traditional definition of "allo
morph" in th a t the allom orphs in guestion often differ from each o ther not in phonetic form, bu t ra th e r in
the effects they have on the stem s to which they attach.

That is not to say th a t Inupiag lacks allom orphy in the m ore conventional sense of the term . As Ka
plan (1981c:232) w rites, "a g rea t m any Inupiag suffixes exhibit allom orphy for which no one proposes
a synchronic phonological account." Common allom orphic variations include voiceless vs. voiced initial
consonant and presence or absence of an initial consonant; less common variations include presence or
absence of an initial vowel, syllable, or consonant cluster. There is also a t least one productive case of
suppletive allomorphy: the causative suffixes -tit- and -pkaq-.

For the m ost part, productive allom orphy in Inupiag is phonetically conditioned, usually by the final seg

24

m ent or syllable of the stem , bu t occasionally by longer strings of phonem es. For the pairs -palHq-/-valHq-
'appears to be, is probably, sounds like one i s ing ' in exam ple (35) and -sim a-/-m a- 'it is now know tha t
one h a s ed, i s ing, or i s ed ' in exam ple (36), the first allom orph is used for consonant-final
stem s, and the second for vowel-final stem s. With the pair -suk-/-uk- 'to w ant t o ' in exam ple (37), the
first allom orph is used for stem s ending in a vowel or (t), the second for stem s ending in a back consonant.
Data for all th ree exam ples is from M acLean (n .d .a).

Ex. (35) a. s ih ikp a lliq su t
s in ik -pa lliq -tu t
sleep-probably-iND.PRS.3PL
'they are probably sleep in g'

b. kasim avaU iqsu t
ka sim a-va lliq -tu t
hold.a.meeting-probably-iND.PRS.3PL
'they are probably having a m eeting'

Ex. (36) a. paq isim araa
paq it-sim a-raa
find-it.is.known-iND.PST.3sG>3sGO
'he/she did find it'

b. n a a tch im a ru a t
naa tch i-m a -rua t
finish-it.is.known-iND.PST.3PL
'they did finish'

Ex. (37) a. ila u su k p it
ilau -suk-p it
be.included-want-iNT.2sG
'do you w ant to be included?'

b. m a k itch u kp is i
m a kit-su k-p isi
stand.up-w ant-iN T.2pL
'would you all like to stand up?'

c. ta u tu g u k k ig a
ta u tu k -su k -k ig a
see-want-iND.PRS.lsG>3sG0
'I would like to see it'

An exam ple of m ore complex allophonic conditioning is the second person im perative ending -in, which
has four allom orphs: -in which triggers gem ination attaches only to stem s of the form (C)VCV (see example
(38)); -in which does not trigger gem ination attaches to stem s ending in a back consonant and stem s
longer than two syllables which end in a vowel (see example (39)); -tin a ttaches to stem s ending in f t / (see
exam ple (40)); and -gguin a ttaches to stem s which end in a two-vowel cluster (see exam ple (41)) (MacLean
1986h:27-28, including examples).

Ex. (38) a. niggiin
nigi-ih
eat-iMP.2sG

'ea t!'
aggiin
a9i-ih
go.home-iMP.2sG
'go hom e!'

Ex. (39) a. savag in
savak-in
work-iMP.2sG
'work!'

✓sig lagain
iglaga-in
sm ile - iM P .2 s G
'sm ile!'

25

Ex. (40) a. makittin
makit-tin
stand.up-iMP.2sG
's tand up!'

b. aqpattin
aqpat-t'in
run-iMP.2sG
'run!'

Ex. (41) a. iglaugguin
iglau-gguin
be.moving-iMP.2sG
'keep moving!'

b. nakuugguin
nakuu-gguin
be.good-iMP.2sG
'be good!'

2.1.3 Phonotactics

2.1.3.1 Consonant Clusters

Consonant clusters contain exactly two phonem es (Kaplan 1981c:32; M acLean 1986a:28). For p u r
poses of this discussion, a long consonant may be considered a consonant cluster, [f], [§], [x], ft], [h], [n],

and [s] may not occur as long consonants (Kaplan 1981c:32) (underlying [s] gem inates to [tf:]; the o ther
consonants ju s t listed do not undergo gemination).

The process of reg ressive assim ilation is responsible for many of the surface constrain ts on consonant
clusters (see section 2.1.2.1 on pages 7- 8): ad jacen t consonants m ust share the sam e voicing and con-
tinuancy; a cluster-initial consonant o ther than a velar or uvular m ust m atch the nasality of the following
consonant (in some dialects, the nasality constra in t applies also to back consonants), and a cluster-initial
alveolar, palatal, or retroflex consonant m ust agree in laterality with the following consonant (Kaplan
1981c:39-41).

A consonant cluster cannot contain both a velar and a uvular (M acLean 1986a:29), nor can it contain
both an alveolar and a palatal (in conseguence of the palatalization ru le Kaplan [1981c:85]; see section
2.1.2.2 on pages 9- 11). [s] is considered a palatal for the purposes of this constra in t (see page 11).

2.1.3.2 Vowel Clusters

As discussed in Section 2.1.2.4 on pages 14- 16, vowel clusters are lim ited to two vowels (MacLean
1986a:28; Kaplan 1981a:61). Except for the cases m entioned on page 12 in Section 2.1.2.3, /i/ cannot
appear as such in a vowel cluster; all o ther com binations of vowels are allowed (Kaplan 1981c:31-32).

2.1.3.3 M orphem e and Word S tructure

Both en tire words and individual m orphem es in Inupiag consist of alternating vowel groups and con
sonant groups (where a group is one or two phonem es of the sam e category (consonant or vowel) bounded
on each side eithe r by an edge or by a phonem e of the opposite category). A word minimally consists of a
single vowel group.

Stem s in N orth Slope Inupiag may begin with a vowel or vowel c lu ste r14 or with any of the following
14A11 possible vowel clusters are well attested stem-initially except [iu], which to my knowledge is unattested, and [ia], for which

MacLean (n.d.a) lists only the exclamation iaqi 'don't!'.

26

consonants: [p], [t], [k], [q], [s], [m], [n], and rarely, [y], [1], and [v] (Kaplan 1981c:32; M acLean 1986a:28).
In terjections may begin w ith o ther consonants, for example, h au k (exclam ation of fatigue), niaq 'don 't! '
(Kaplan 1981c:32-33; M acLean n .d .a). Stems may not begin w ith a consonant c luster (Kaplan 1981c:32;
M acLean 1986a:28).

Noun stem s and verb stem s allow different stem-final phonem es. Verb stem s may end in [q], [k], [t], [tf]
(as a palatalized allophone of [t]), or a vowel; noun stem s may end in [q], [k], or a vowel (Kaplan 1981c:34).
Nouns in the absolutive singular may also end in [n] or [p] ((n)); however, these consonants correspond to
underlying /ti/ and /si/ (see section 2.1.2.7 on pages 22- 23). For both noun stem s and verb stem s, stem-
final vowel clusters are perm itted, bu t stem-final consonant clusters are not (Kaplan 1981c:32; MacLean
1986a:28).

A stem m ust contain a t least one vowel; beyond that, in theory, stem s may be arb itrarily long.
Suffixes, including enclitics, may begin with a vowel cluster, a single vowel with the exception of /i/

(Kaplan 1981c:105-119), a consonant cluster, or a single consonant. Suffixes and words in general may
end with a vowel cluster, a vowel, or a single consonant. The sam e constrain ts tha t apply a t the right edge
of noun stem s also apply a t the right edge of suffixes which derive nouns: if they end in a consonant, tha t
consonant m ust be [q] or [k]. Likewise, suffixes which derive verbs are subject to the sam e right-edge
constrain ts th a t apply to verb stem s (the only consonants allowed are [q], [k], [t], and [tf]). Words and
inflectional suffixes may end with any of the following consonants: [t], [tf], [k], [q], [m], [n], [p], and [q]
(Kaplan 1981c:3 3 ;M acLean 1986a:28).15

Except for enclitics, suffixes need not contain a vowel group, as long as they satisfy all of the conditions
for initial and final phonem es; like stem s, suffixes may theoretically be arbitrarily long, although the vast
majority contain no m ore than two vowel groups.

2.1.3.4 D istribution of Specific Phones

As discussed on page 11, [tf] and [s] occur in com plem entary distribution: [s] may only occur word-
initially, a t the end of a consonant cluster, and betw een vowels as a short consonant, while [tf] may only
occur word-finally, a t the beginning of a consonant cluster, and betw een vowels as a long consonant (Kaplan
1981c:86).

[i] may not follow word-initial [n] or any [t] (word-initial or otherw ise) (Kaplan 1981c:91-92). [i] may not
follow [s] unless tha t [s] is underlyingly/t/; word-initial [s] is always Is/ underlyingly (Kaplan 1981c:91-93).
Aside from the handful of exceptions given on page 12 in Section 2.1.2.3, HI cannot occur in a vowel cluster
(Kaplan 1981c:118-121). As was m entioned in Section 2.1.3.2 on the preceding page, /!/ cannot be the
initial phonem e of a suffix (Kaplan 1981c:105, 119).

In consequence of palatalization, [p], [A], [A], and short [tf] can only occur in the environm ent i(C)__
(see Section 2.1.2.2 on pages 9- 11).

Any /q/ a t the end of a noun stem is e ithe r weak (q) or strong (q) (see page 6 in Section 2.1.1.1). Only
/q/ is allowed in the environm ent i Only /q/ is allowed in the environm ent VCVi(V) (where Vi is a
vowel o ther than /i/). In o ther environm ents, the lexicon determ ines w hether each instance of stem-final

15There are no noun inflections which end in [q], though many absolutive singular nouns do. There are no verb inflections which
end in [m] aside from participial and gerundive endings.

27

Iq l is w eak or strong (M acLean 1986a:76-77).

2.1.4 M orphology

The discussion in this section will draw on work pertaining to several languages w ithin the Eskimo
family and several dialects within the Inuit branch. This is possible because the various Eskimo languages
have very sim ilar m orphologies (W oodbury 2002:80; Tersis and T herrien 2000:20). The shared properties
of particu lar in te re st in this section are a common set of basic gram m atical categories (e.g., noun, verb,
pronoun, dem onstrative, etc.) and a common word s truc tu re (that is, a stem followed by zero or more
postbases, followed by inflection, followed by zero or m ore enclitics). These are explored in m ore detail
below.

2.1.4.1 G ram m atical Categories

Eskimo gram m atical categories can be grouped according to w hether or not they allow inflection
(M ithun 2000:85; W oodbury 2002:81-84; Miyaoka 2000:226-227). The class of uninflected words, often
lum ped together as "particles," may be fu rther divided into interjections, conjunctions, adverbs, enclitics
(which are phonologically (and orthographically) suffixed to the preceding word bu t which function syn
tactically as separate words [Woodbury 2002]) and perhaps o ther m inor categories (Fortescue 2004:1390;
W oodbury 2002:84; Miyaoka 2000:227). The class of inflected gram m atical categories can be divided into
nominal and verbal subcategories (or, in term inology-neutral analyses such as Lowe (1996, 2000) and
Cornillac (2000), words denoting beings or substances and words denoting processes or states).

All nominals are inflected for some subset of the following: case, number, and possessor if appli
cable. The largest, m ost prototypical subset of nominals, which we m ight call "nouns proper" or ju s t
"nouns", is inflected for all th ree properties. Personal pronouns are also considered nominal (e.g., Fortes
cue 2004:1390); these are inflected for case and num ber and reflect gram m atical person. Fortescue
(2004:1390) also trea ts dem onstratives as nominal; Jacobson (1984:653) and M acLean (1986a:227) distin
guish betw een dem onstrative pronouns and dem onstrative adverbs (without placing e ither se t of dem on
stratives within or outside any particu lar category). D em onstrative pronouns are inflected for num ber
and case, while dem onstrative adverbs may only be inflected for case, and even then only for those cases
expression location or direction (note also tha t zero-m arked dem onstratives are trea ted by M acLean and
Jacobson as "interjectional," in con trast to zero-m arked nouns, which are analyzed as "absolutive"). If one
considers dem onstrative adverbs nominals, they are the m ost atypical m em bers of the set.

All m em bers of the verbal category can be considered "verbs proper"; we can, however, recognize a
distinction betw een words whose inflections reflect a d irect o b jec t-tran s itiv e verbs—and words whose
inflections do not—intransitive verbs. Verbs are inflected for mood, gram m atical num ber and person of
subject, and gram m atical num ber and person of d irect object if applicable.

Only nouns and verbs are open categories in Inupiag.

28

2.1.4.2 Categories of Word Form atives

M ost Eskimo word form atives16 can be classed into one of th ree main categories, although different
analyses may re fe r to these using slightly different terminology. I will use the term s base, postbase, and
inflection, which are perhaps the m ost common term s in the litera tu re on Eskimo morphology. Bases
(sometimes also called roots or stems) are free forms; postbases are generally thought of as derivational
suffixes, although some are gram m atical in natu re (Fortescue 2004:1393-1394); and inflectional endings
are paradigm atic gram m atical suffixes. O ther form ative categories include enclitics and "reduced" (cliti-
cized) words, post-inflectional derivational suffixes, and the dem onstrative prefix ta(t)-. These will be
discussed la te r in this section.

Ju st as Inupiag words can be classified as nouns, verbs, and so on, bases, postbases, and inflectional
endings may be classified into gram m atical categories.The classification schem e developed here is based
on ideas expressed in Lowe (2000), bu t unlike Lowe, I employ traditional part-of-speech term s from the
Indo-European gram m atical tradition. I note the objections of Cornillac (2000:178-179) regard ing this
practice: th a t such term s obscure the significant differences betw een Indo-European and Eskimo mor-
phosyntax, particularly the fact th a t the nominal or verbal sta tus of an Eskimo lexem e in no way predicts
the nominal or verbal sta tus of the word containing tha t base. While Cornillac's point is well-taken, I find
tha t term s such as "noun" and "verb" convey in a concise way im portant a ttribu tes of these form atives
tha t could otherw ise only be awkwardly expressed. Similar conventions are used by many Eskimologists
(see for exam ple Fortescue 1980, 2004; M acLean 1986a:42; W oodbury 2002:84).

One could devise a complex se t of rules, including sem antic and syntactic considerations, for classifying
Eskimo form atives, bu t for p resen t purposes I rely prim arily on a few simple m orphological criteria. I
assum e th a t each paradigm atic se t of inflectional endings is trivially identified as pertaining to nouns,
intransitive or transitive verbs, personal pronouns, or dem onstratives. A base may then be classified
according to the inflectional paradigm s th a t apply to it. For example, the base aqpat- 'to run (of a hum an)'
takes verbal inflectional endings such as -tuq , -vluqa , and -kuv it, and thus can be classified as a verb base;
the base n an u q 'po lar b ea r ' takes nominal inflectional endings such as -t, -nik, and -tun , and thus can
be classified as a noun base. In addition to nouns and verbs, I recognize dem onstrative bases, pronoun
bases, and partic les (m em bers of this last se t cannot be inflected). As Inupiag has distinct intransitive and
transitive inflectional paradigm s, verb bases may be fu rther categorized as either intransitive, transitive,
or am bitransitive (M ithun 2000:86-87). Some bases may take both nominal and verbal inflection (possibly
with slightly different [though related] m eanings depending on gram m atical category). An exam ple of such
a base is im iq-, which m eans "drinking w ater; an alcoholic drink" w hen followed by nom inal morphology,
and "to drink" w hen followed by verbal m orphology (M acLean 1981:14); ano ther exam ple is auk-, which
m eans "blood" as a noun and "to melt; to bleed" as a verb (M acLean 1981:9). There are th ree possible
treatm en ts for such bases (or base pairs). The first is to tre a t them as a single lexeme with m em bership
in multiple categories. The second is to tre a t them as a single lexem e belonging to a single category and
recognize a zero derivational suffix transform ing them into m em bers of a second category. The third is
to tre a t them as separa te lexemes, though obviously descended from the sam e historical lexeme and with

16This term is borrowed from Lowe (1996). I prefer it over "morpheme" because many formatives may be analyzed as multimor-
phemic.

29

clear sem antic overlap. The first trea tm en t fails to explain sem antic differences betw een the two versions
of the base (beyond the fact th a t one is nominal and the o ther verbal). The second inherits this flaw and
additionally requires a way to specify which bases accept a zero derivational suffix, since many or m ost
bases clearly belong to only one category. W hat the third trea tm en t lacks in term s of explicitly linking the
two bases it m akes up for in its ability to differentiate betw een them on sem antic as well as categorical
grounds. This is the approach I adopt in the p resen t work.

Nominal bases can be grouped as "noun bases proper" (hereafter simply "noun bases"), personal p ro
noun bases, and dem onstrative bases, depending on the inflectional paradigm tha t pertains to a given
base. Noun bases p roper cannot be subclassified in the sam e way tha t verb bases can, bu t a group of noun
bases called "positional nouns" probably deserve the ir own subcategory. These are morphologically noun
bases which serve a sim ilar function to prepositions in English, expressing relative physical or m etaphor
ical position. These bases are generally followed by e ither possessive inflection or special positional noun
postbases (Seiler 2005:22). Put ano ther way, they take noun inflectional endings, bu t the re is a large se t
of noun suffixes th a t they cannot (or generally do not) take, as well as a small se t of suffixes they can
take, which o ther noun bases cannot. Examples of positional noun bases include aki 'a rea opposite ', sivu
'a rea in front; tim e prior', and sani 'a rea by the side' (see exam ples (42)- (44)). Postbase -nmuk- 'go/move
to w a rd ' in exam ple (44) is a suffix which normally attaches to dem onstratives bu t can also a ttach to
positional noun bases (but not o ther noun bases, which take -muk- instead).

Ex. (42) akiptinni igluqaqtut
aki-ptinni iglu-qaq-tut
opposite-Loc.SG.lPL house-have-iND.PRS.3PL
'They have a house across from ours' (M acLean n .d .a)

Ex. (43) sivuani tikitchuani
sivu-ani tikit-tuani
time.before-LOC.SG.3sG arrive-tex tsc ind .pst.lp l
'We arrived before she/he did' (M acLean n .d .a)

Ex. (44) saninm ugug taamna
sani-nmuk-ug ta(t)-am-na
area.by.side-move.toward-iMP.2sG.3sGO near.listener-that.one.RESTR-ABS.SG
'Turn tha t one sideways' (M acLean 1986h:53)

Postbases may be classified in a m anner sim ilar to bases, bu t w hereas bases are only categorized along
one axis (the class(es) of inflectional endings tha t may be suffixed to them), postbases are categorized along
two: the class(es) of inflectional endings th a t may be suffixed to them (in o ther words, the category they
derive), and the class(es) of bases to which they may be suffixed (the category from which they derive)
(see de Reuse 1992:164; Smith 1980:283-284). For postbases which derive verbs, a distinction m ust be
m ade betw een those which a lter valence (causatives and passives, for example) and those which do not
(Fortescue 2004:1395, M ithun 2000).

While bases, postbases, and inflectional endings are the m ost obvious categories of form atives, several

30

form atives exist which do not fall so neatly into these categories. One such form ative is the prefix ta(t)-
which attaches to dem onstratives. It is the only prefix in the language, and it indicates tha t the location of
the entity or place refe rred to is relative to w hat Denny (1982:361-363) calls "o ther field"—some reference
point in con trast to the speaker's location in space or time.

A nother group of form atives tha t do not fit so neatly into the base/postbase/inflection categorization
schem e are the suffixes I will re fe r to as "post-inflectional derivation." As will be exam ined in m ore detail
in Section 2.1.4.3 on pages 36- 37, Eskimo words typically begin with a base, followed by zero or more
postbases, followed by inflection. These suffixes are derivational, like postbases, bu t depending on how
one analyzes them , they e ither follow inflectional endings or convey inflectional information, ne ith er of
which a typical postbase does. Table 2.5 on the following page lists the post-inflectional suffixes I am
aw are of;17 exam ples of these postbases are given below.18

Ex. (47) unuunnaaglunuk ailuk
un-uuna-aq-lunuk ai-luk
down.there/down.the.coast.EXT-viA-vERBALizER-coNTEMPl.uNREAL.lDu go.home-OPT.lDu
'Why don 't we [two] go home through th a t [extended] a rea down there/along the beach?'
(M acLean 1986h:49)

Ex. (48) a. pamugagluk
pam-uga-q-luk
Up.there.NV-TRM-VERBALIZER-OPT.lDU
'L et's [both] go upsta irs .' (M acLean 1986h:49)

b. ikaggaqpata apiqsrugniagivuk
ik-agga-q-pata apiqsruq-niaq-kivuk
aCrOSS.there.RESTR-ABL-VERBALIZER-COND.3PL aSk-FUT-IND.PRS.lDU>3DU/PL0
'We [two] will ask them w hen they re tu rn from [that restric ted area] over th e re .' (M acLean
1986h:50)

Ex. (49) qavuganmun um iaqtuqtut
qav-uga-nmun um iaq-tuq-tut
to.the.east.EXT-TRM-orientation.toward boat-use-iND.PRS.3PL
'They are out boating traveling eastw ard .' (M acLean 1986h:50)

170ne possible addition is the suffix -tchiaq 'on th e side of' (Edna MacLean, personal communication, 2 July 2009), as in
taunanitchiani (Kaveolook 1974:1) and taunuqatchianun (Kaveolook 1974:7), which I analyze as follows:

Ex. (45) tat-un-ani-tchiaq-ni Ex. (46) tat-un-uqa-tchiaq-nun
ANA-down.there.EXT-Loc-this.side.of-Loc ANA-down.there.EXT-TRM-this.side.of-TRM
'on this side of the [extended] a rea down th ere ' 'to /tow ard this side of the [extended] area

down there'

The suffixes -ni and -nun, while obviously reflecting the case of the preceding demonstratives, are somewhat problematic in that they
are neither standard demonstrative case markers nor nominal singular case markers (in fact, they are identical to nominal plural
markers, but nothing in the context where these words appear suggests a nominal reading). The status o f -tchiaq itself is not entirely
clear; Edna MacLean prefers to analyze it as an enclitic (personal communication, 2 July 2009): while I have no better analysis, I am
unaware of other enclitics that can take case endings.

ls Thanks are due to Lawrence Kaplan for clarifying key points about this set of suffixes.

31

Suffix
-aq-

-q-

-nm un

-nmuk-

-min

-mik-

-[m/qn/n]iit-

-[m/gn/n]uk-

-[m/qn/n]mqaq-

-[k/k/tig]uaq-

-aglaaq-

-qsiuq-

Table 2.5: "Post-inflectional" derivational suffixes

Attaches to
Demonstratives in vialis case

Demonstratives in ablative or term inalis case

Demonstratives in term inalis case

Demonstratives in term inalis case

Demonstrative adverbs which denote an
extended area and are in ablative case

Demonstrative adverbs which denote an
extended area and are in ablative case

Nouns; suffix is derived from locative case
ending and reflects the gram m atical num ber
of the noun stem to which it attaches
Nouns; suffix is derived from terminalis case
ending and reflects the gram m atical num ber
of the noun stem to which it attaches
Nouns; suffix is derived from ablative case
ending and reflects the gram m atical num ber
of the noun stem to which it attaches
Nouns; suffix is derived from vialis case
ending and reflects the gram m atical num ber
of the noun stem to which it attaches
Nouns in term inalis case

Nouns, dem onstrative pronouns, and
dem onstrative adverbs in locative case

Results in
Verb expressing travel through or by way of a
place or area (see example (47) on the
preceding page)
Verb expressing travel to (for demonstratives
in terminalis) or from (ablative) a place or
area (see example (48) on the preceding
page)
Nominal expressing direction of movement
or progression of an event tow ard a place or
area (see example (49) on the preceding
page)
Verb expressing direction of movement or
progression of an event toward a place or
area (see example (50) on the following page)
Nominal expressing origin of movement or
progression of an event away from an area
(see example (51) on the next page)
Verb expressing origin of movement or
progression of an event away from an area
(see example (52))
Verb expressing location (see example (8) on
page 12 and example (53) on the next page)

Verb expressing travel to a place (see
example (54) on the following page)

Verb expressing arrival from a place (see
example (55) on page 33)

Verb expressing travel through or by way of a
place (see example (56) on page 33)

Verb expressing arrival as far as a point in
space or time (see example (57) on page 33)
Verb expressing experience or activity in or
near a place, area, or object (see
example (58) on page 33)

32

Ex. (50)

Ex. (51)

Ex. (52)

Ex. (53) a.

b.

Ex. (54) a.

pauganm uktuak uvlaaq uniagaqlutik
pag-uga-nmuk-tuak uvlaaq uniagaq-vlutik
landward.EXT-TRM-go.toward-iND.psT.3Du today travel.by.dogsled-coNTEMPl.3Du
'They [two] w ere heading inland this m orning by dogsled.' (M acLean 1986h:51)

avaggamin tusaagikput nipattuaq
av-agga-min tusaa-kikput nipat-tuaq
down.the.coast.EXT-ABL-origin hear-iND.PRS.lPL>3sG0 make.sound-PART.3sG.ABS
'We heard the sound originating from down the coast.' (M acLean 1986h:51)

avaggam iksut
av-agga-mik-tut
over.there/down.coast.some.distance.from.shore.EXT-ABL-moving.from-iND.PRS.3sG
'They are on the ir way up the coast from down the coast.' (M acLean 1986h:52)

agnagniiniaqtuga
agnaq-gniit-niaq-tuga
woman-be.located.Du-FUT-iND.PRS.lsG
Alternatively:
agnaq-gni-it-niaq-tuga
w o m an -L O C .D u -b e-F U T -iN D .P R S .lsG
'I will be with the [two] w om en' (M acLean 1986a:118)
agnaniinniaqtuga
agnaq-niit-niaq-tuga
w o m a n -b e .lo c a te d .P L -F U T -iN D .P R S .lsG
Alternatively:
agnaq-ni-it-niaq-tuga
w o m a n -L o c .P L -b e -F U T -iN D .P R S .lsG
'I will be with the [three or more] wom en' (M acLean 1986a:118)

iglum uktuaq
iglu-muk-tuaq
house-go.to.SG-iND.psT.3sG
Alternatively:
iglu-mun-k-tuaq
hOUSe-TRM .SG-gO-IND.PST.3SG
'He w ent to the house' (M acLean 1986a:118)

33

Ex. (55)

Ex. (56) a.

b.

Ex. (57) a.

agnanugniaqtuga
agnaq-nuk-niaq-tuga
w o m a n -g o .to .P L -F U T -iN D .P R S .lsG
Alternatively:
agnaq-nun-k-niaq-tuga
W O m an-TRM .PL-gO -FU T-IN D .PRS.lSG
'I will go to the w om en' (M acLean 1986a:118)

sumingaqpisi?
su-mingaq-pisi
what-come.from-iNT.2pL
Alternatively:
su-min-ggaq-pisi
what-ABL.SG-come.from-iNT.2pL
'W here did [all of] you arrive from ?' (M acLean 1986a:119)

nagirvikuaqpisik uvlupak
nagirvik-kuaq-pisik uvlupak
hospital-go.by.way.of.SG-iNT.2Du today
Alternatively:
nagirvik-kun-aq-pisik
hospital-viA.SG-go-iNT.2Du
'Did you [two] go by way of the hospital today?' (M acLean 1986a:190)
iglutiguaqtuat qinigivuk
iglu-tiguaq-tuat qini'q-kivuk
h o u se -g o .th ro u g h .P L -P A R T .3 P L .A B S w a tc h - iN D .P R S .lD u > 3 D u /P L
Alternatively:
iglutigun-aq-tuat
hOUSe-VIA.PL-gO-PART.3PL.ABS
'We are w atching the ones th a t are going through the houses.' (M acLean 1986a:190)

qitqanuaglaagami utigm iuq
qit'iq-nun-aglaaq-kami utiq-mmi-tuq
middle-TRM.SG.3sG-arrive.as.far.as-coNSEO.3RsG return-also-iND.PRS.3sG
'W hen she got halfway through it, she re tu rn ed unexpectedly.' (M acLean n .d .a)
sum uaglaaqpat unnuaq
su-mun-aglaaq-pat unnuaq
what-TRM.SG-arrive.as.far.as-iNT.3PL last.n ight
'How far did they progress last n ight?' (M acLean n .d .a)

34

Ex. (58) a. um ia m iq siu g n a si
um iaq-m i-qsiuq-nasi
boat-Loc.SG-experience-NEGCoNTEMP.2pL
'D on't hang around the boat.' (M acLean n .d .a)

b. sa m a n iq s iu q p is i
sa m m a-n i-qsiu q-p isi
down.there.Nv-LOC-experience-iNT.2pL
'Have you been down the re? ' (M acLean n .d .a)

There is a certain am ount of inconsistency in the list in Table 2.5; m ost of the suffixes which a ttach
to nouns are p resen ted as postbases derived from an inflectional suffix followed by a derivational suffix,
while -aglaaq-, -qsiuq- and suffixes which a ttach to dem onstratives are listed detached from the inflectional
endings with which they co-occur. The suffixes are given in the table as they appear in M acLean (1986a),
M acLean (1986b), and, in the case of -aglaaq- and -qsiuq-, M acLean (n .d .a). Examples (53) through (56)
p resen t two analyses for the nominal suffixes: as postbases containing inflectional information, and as for
m atives divisible into inflectional and derivational com ponents (with the derivation coming second). Smith
(1980:282-283) provides yet ano ther analysis for a sim ilar phenom enon in L abrador Inuttut: tha t the for
m atives I have been calling inflectional endings be considered postbases w hen followed by non-enclitic
derivational morphology. However one chooses to analyze them , the fact tha t these suffixes eithe r ex
hibit paradigm atic variation or a ttach to inflectional endings (or, in Sm ith 's analysis, postbases tha t would
otherw ise be considered inflectional) differentiates them from the vast m ajority of postbases. For compu
tational morphology, the unigueness of these postbases reguires unigue treatm ent: if they are viewed as
com pounds containing inflectional information, this inflectional inform ation m ust be conveyed in analyses;
if viewed as suffixes to inflectional endings, they m ust be specified with special m orphotactic rules from
which m ost postbases would be exem pt.19

The rem aining two categories of form atives—enclitics and reduced (cliticized) w ords—differ from those
discussed so far in that, while they are phonologically and orthographically bound to host words, they
can be considered syntactic words in the ir own righ t (Miyaoka 2000:228; W oodbury 2002:84; de Reuse
1992:163). Reduced words differ from enclitics in th a t they correspond to full forms which can exist
prosodically separate from a host word, w hereas enclitics cannot. Both enclitics and reduced words attach
a t the extrem e right of the prosodic word, and m any linguists may p refer to tre a t them as a single category
(see for exam ple W oodbury 2002:89-91). Certainly, the reduced forms are as m uch enclitics as -n 't in
English 'd o n 't.' The decision to distinguish betw een them for purposes of the Inupiag tran sdu ce r arose
from a M arch 2009 discussion betw een Edna M acLean, Larry Kaplan, Lori Levin, Bob Frederking, Eliot
DeGolia, Ida Mayer, and myself, w here we concluded tha t reduced words are fundam entally different from
Inupiag enclitics (just as English -n 't is fundam entally different from possessive -'s), and th a t m aking a
form al distinction may be beneficial to language learners in particular.

Some im portant enclitics include = g gu uq (reportative evidential), =H (indicates change of subject),
=lu 'and ', and = tuq 'I hope'. These are illustra ted in exam ples (59)- (62) below.

19See also Lowe (1996:222-223) for examples of the Inuktitut post-inflectional suffix -uq 'act, behave' following terminalis, vialis,
and similaris noun inflectional endings; this suffix has no direct eguivalent in North Slope Inupiag (Lawrence Kaplan, personal
communication, 7 May 2009) but demonstrates that the phenomenon of post-inflectional derivation extends beyond the North Slope.

35

Ex. (59) um iagguuq unna atugniagaa
um iaq=gguuq unna atuq-niaq-kaa
boat.A B S.SG =REP d o w n .th e re .E X T use-FU T -iN D .PR S.3sG >3sG O
'He said he will use tha t boat which is down th e re ' (M acLean 1986a:44)

Ex. (60) agnaq m iquqtuq, agunli sihiktuq
agnaq m iquq-tuq agun=U sihik-tuq
woman.ABS.SG sew-iND.PRS.3sG man.ABS.SG=change.of.subject sleep-iND.PRS.3sG
'The woman is sewing, w hereas the m an is sleeping.' (M acLean 1986a:123)

Ex. (61) amaguglu qimmiglu pagaliktuk
amaguq=lu qimmiq=lu pagalik-tuk
wolf.ABS.SG=and dog.ABS.SG=and run(of.animal)-iND.PRS.3Du
'The wolf and the dog are running ' (M acLean 1986a:34)

Ex. (62) ilisagilagutuq
ilisagi-lagu=tuq
recognize-OPT.lsG>3sGO=I.hope
'I hope I recognize him ' (M acLean 1986a:44)

Reduced words may be particles, personal pronouns, or dem onstratives. Examples are given below:

Ex. (63) Sunauna?
suna=uv-na
what.ABS.SG =here.RESTR-ABS.SG
'W h a t 's t h i s ? '

Ex. (64) Aquvittuaq iglarraqsivluniasii
aquvit-tuaq iglaq-rraqsi-vluni=aasii
sit-iND.psT.3sG laugh-begin-coNTEMPl.REAL.3sG=and.then
'He sa t down and began to laugh ' (M acLean 1986h:10)

Enclitics and reduced words can appear in the sam e phonological/orthographic word, as in taimmagu-
uquna in exam ple (65) and ihuqagnailaummivluniluuvva in exam ple (66).

Ex. (65) Taimmaguuquna ihuuniagniqsuq aahaaliq
taim m a=guuq=una inuuniaq-niq-tuq aahaaliq
once=REP=this live-reportedly-3sG longtailed.duck
piayaagilu tapqami
piayaaq-gi=lu tapqaq-mi
young.animal-ABS.PL.3sG small.island/sand.spit-LOC.SG
'Once, a long-tailed duck lived with her ducklings on a small island/sand spit, it is said.'

36

(Kaveolook 1974:1)

Ex. (66) ihuqagnailaummivluniluuvva
ihuqagnailaq-u-mmi-vluni=lu=uvva
murderer-cop-also-coNTEMPl.REAL.3sG=and=here
'and he also being the m urderer h ere ' (N ashaknik 1973:34)

2.1.4.3 M orphotactic Constraints

In the litera tu re on Eskimo languages, the construction of a phonological or orthographic word is often
explained with a schem a such as the following:

word = base + zero or m ore postbases + inflection + zero or m ore enclitics

(see for exam ple de Reuse 1992:163; Smith 1980:282; Lowe 2000:154; Miyaoka 2000:228). A few
scholars have proposed m ore detailed m orphotactic models. Fortescue's (1980) trea tm en t of West
G reenlandic form ative ordering is based on a subcategorization of postbases which is prim arily mo
tivated by sem antic considerations. While the m odel is relatively complex, only one of his rules ac
tually m akes any purely m orphotactic predictions beyond those in the form ula above.20 The post
bases for which Fortescue's m odel p redicts a specific order are w hat he calls "sentential verbal suf
fixes," which he understands to have clause-level ra th e r than word-level scope (Fortescue 2004:1395);
these include the categories of tense (Seiler [1997] prefers to call this aspect; exam ples from West
G reenlandic include -qqammir- "recently," ssa "future"), epistem ic modality (for example, -gunar- "it
seem s/probably," -ssagaluar- "should/would—irrealis"), negation21 {-nngit- "not," -pianngit- "not really"),
subjective/narrative coloration {-ratar- "at last/surprise; -kasig-/-kassag- "disdain/com plicity/dear old"),
and conjunction {-galuar- "although," -qqajanngit- "long before") (all exam ples from Fortescue 1980:277).
Fortescue's proposed ordering rule for these (1980:261) is reproduced in Figure 2 .3 . All elem ents in this
rule are optional, bu t they m ust occur in the order specified, and no o ther postbases may follow.

(\ r 1 f x v i ^ V n e g) (+ V sub)(v») <+ v«„) j (+ ̂

Figure 2.3: F ortescu e's sen ten tia l verb a l suffix orderin g ru le

Seiler (1997) has proposed an extension to Fortescue's model, bu t like m ost of Fortescue 's m odel itself
it p redicts only the sem antic scope of postbases, ra th e r than specifying purely m orphotactic constrain ts

20What his rules do predict that those inherent in the basic schema do not is constituency and semantic scope, but these predic
tions, while extremely important, fall outside the scope of this thesis.

21Other rules also include negative suffixes; in those rules, the negative suffixes are not considered sentential verbal suffixes,
and no meaningful constraints on their possible position relative to other non-sentential suffixes are expressed.

37

(that is, constraints which would apply regardless of semantics, such as the constraint that deverbal post
bases attach to verb stems), de Reuse (1988) has proposed an alternative model, based on his work with
Siberian Yupik, which makes different, though not necessarily more, morphotactic predictions. The model,
reproduced in Figure 2.4, distinguishes between "absolutely ordered" and "relatively ordered postbases;
zero or more relatively ordered postbases may occupy any slot marked with a row of dots. Absolutely or
dered postbases, which correspond roughly to Fortescue's sentential postbases, are also optional but may
only occupy specifically designated slots. There is a fundamental disagreement between the two models:
Fortescue's does not allow any interleaving of sentential and non-sentential postbases, while de Reuse's
allows extensive interleaving, except between slots 4 and 5.

Verb s tem ;

1. MODALITY;

2. PAST TENSE;

3. PROGRESSIVE;

4. FUTURE/INEFFECTIVE;
5. EVIDENTIALS;
Verb inflection.

F i g u r e 2.4: De Reuse's "position-based" m orphotactic model

To my knowledge, no serious attempt has been made to classify Inupiag postbases according to cate
gories such as Fortescue's and de Reuse's. Without such a classification, it is impossible to evaluate how
well these models apply to Inupiag.

2.2 Computational Morphology

Morphological analysis (or something akin to it) is essential to fundamental NLP tasks such as iden
tifying a word's lemma, grammatical category, inflection, etc. Most computational technigues for obtain
ing morphological (or morphology-like) information can be assigned to one of four categories: dictionary
lookup, stemming, finite-state morphology, or machine learning. Although machine learning promises to
be the "next big thing" in computational morphology, I omit it from the discussion that follows. An overview
can be found in (Roark and Sproat 2007:116-136), who note that "despite the substantial progress in re
cent years on automatic induction of morphology, there are also still substantial limitations on what current
systems are able to handle" (p. 136); in contrast, many hand-written analyzers are able to handle "a sig
nificant portion of the morphology of even a morphologically complex language such as Finnish, within the
scope of a doctoral-dissertation-sized research project" (Roark and Sproat 2007:116-117; see also Beesley
2004c).

In the rest of the section, I will discuss the strengths and weaknesses of the dictionary lookup, stem

38

ming, and finite-state approaches to computational morphological analysis.

2.2.1 Dictionary Lookup

Particularly in the case of morphologically simple languages such as English, some applications can
satisfy their morphological analysis reguirements with the aid of a "dictionary"—a table or database whose
keys are fully derived, fully inflected words (Sproat 1992:xi; Anderson 1988:1). Advances in the processing
power and storage capacity of computer hardware make dictionary lookup approaches increasingly feasi
ble (Sproat 1992:xii; Anderson 1988:2), perhaps even for morphologically complex languages like Finnish
(Church 2005). Church (2005) argues that the more complex the methods used to do computational mor
phology, the greater the risk of errors in general, and the greater the risk of more dangerous errors than
would be introduced by simpler methods. On these grounds, he advocates dictionary lookup methods
where feasible (except in cases where it is reasonable to avoid morphological analysis altogether).

Freguently, however, dictionary lookup approaches are insufficient, unfeasible, or undesirable. Ander
son (1988:2) and Sproat (1992:xii-xiii) point out that an approach in which each word is listed separately
fails to capture the redundancy of the lexicon (i.e., that the same morphemes appear in multiple words) and
is thus both inefficient and descriptively deficient. Sproat (1992:xii-xiii) raises perhaps a more important
criticism: that "no dictionary contains all the words one is likely to find in real input." This is especially
true for morphologically rich languages.

2.2.2 Stemming

In the field of information retrieval, documents are indexed according to the terms they contain. It
is often beneficial to treat the various inflected and derived forms of a given lemma as instances of the
same term. The process of mapping these variants onto some canonical form is known as term conflation
or word normalization and is often accomplished using one of several technigues collectively known as
"stemming" algorithms.

Following Galvez et al. (2005), I will draw a distinction between stemmers and lemmatizers, both of
which are used for term conflation. Lemmatizers are considered "linguistic" methods because they iden
tify lemmas through morphological analysis, including full consideration of morphographemic processes
and morphotactic constraints. The lemmas they identify are generally "real" orthographic words. Lem
matizers are generally implemented using finite-state morphology (although there are exceptions; see for
example Khaltar and Fujii [2008]); "linguistic" finite-state morphology will be discussed in Section 2.2.3
on pages 39- 50.

Although stemming algorithms are usually motivated by linguistic analysis of the language to which
they apply, they are considered "non-linguistic" methods in that they do not actually analyze the mor
phology of the words they operate on and conseguently identify "stems" which may not be linguistically
meaningful (Galvez et al. 2005:523; Pirkola 2001:332-333) and which occasionally conflate terms improp
erly, or mistakenly index terms which should be ignored. For example, the Porter stemmer (Porter 1980),
one of the most popular stemming algorithms for English, conflates "general", "generous", and "gener
ation" under the stem gener, but fails to conflate "recognize" and "recognition", assigning these to the
stems recogn and recognit , respectively (Hull and Grefenstette 1996:2). Krovetz (1993:192) points out

39

that the Porter stemmer conflates "doing" to d o e ; as a result, the word is likely to be indexed, even though
the actual lemma, "do", is generally considered unimportant for information retrieval (see also Pirkola
2001:334-335).

Given that the raison d'etre of stemmers is to conflate terms, it should come as no surprise that (even
ignoring conflation errors) stemmer output generally makes poor input for further analysis, such as syntac
tic parsing (Galvez et al. 2005:523) or word sense disambiguation (Krovetz 1993:192; note that Krovetz's
stemmer was designed in an attempt to address this shortcoming). What may be surprising is that there is
a debate over whether term conflation generally improves information retrieval results, especially for mor
phologically impoverished languages like English (Manning and Schutze 1999:132-133). Harman (1991)
found that stemming made no significant difference in English retrieval performance. However, Krovetz
(1993) and Hull and Grefenstette (1996) conclude that term conflation is consistently, if modestly, benefi
cial in English information retrieval. In many languages with more complex morphology, term conflation
has been more demonstrably effective; these include French (Savoy 1999), Swedish (Carlberger et al.
2001), Finnish (Korenius et al. 2004; Kettunen et al. 2005), and Turkish (Ekmekgioglu and Willett 2000;
Sever and Bitirim 2003). Pirkola (2001) makes two typology-based predictions about the utility of term
conflation: first, that conflation is more beneficial in languages with more complex inflectional systems
(see also Manning and Schutze 1999:133), and second, that conflation of derived forms and/or compounds
is more useful the more transparent a language's derivational/compounding semantics are.

Hull and Grefenstette (1996), Kettunen et al. (2005), Korenius et al. (2004), and Galvez and Moya-
Anegon (2006) all show that lemmatization can be as effective as (in the case of the last two articles, more
effective than) non-linguistic stemming approaches at conflating terms. The main drawback of lemma
tizers is their inability to deal with unknown words, but as Koskenniemi (1996) demonstrates, this can be
overcome by including a "guessing" component which can analyze the derivational and/or inflectional mor
phology of a word, even if the stem is unknown (see Section 2.3.7 on pages 59- 60). Another freguently-cited
drawback, slowness (Galvez et al. 2005:528; Alegria et al. 1996:198; Sever and Bitirim 2003), is probably
more a property of the particular method used than of lemmatization itself; for example, Alegria et al.
(1996) report a speed increase on the order of 1000 times by switching from a KIMMO-style system (see
pages 45-48) to a lexical transducer (see pages 48- 50). A final drawback which may be inevitable is that
creating a lemmatizer (a full-fledged morphological model of a language) typically reguires more time,
more linguistic knowledge, and a more thorough development process than creating a passable stemmer.
Despite the advantages of lemmatization over stemming (including increased accuracy (Koskenniemi 1996;
Galvez et al. 2005; Galvez and Moya-Anegon 2006) and linguistically meaningful results usable in other
NLP analyses (Galvez et al. 2005)) it is probably due to this last drawback that stemming remains popular
in information retrieval.

2.2.3 Finite-State Morphology

For morphologies of any complexity, full morphological analysis reguires phonological analysis.22 Since
Koskenniemi's dissertation was published in 1983, finite-state machines have gained wide acceptance in

22 Since most morphological transducers operate on orthographic rather than phonetic forms, it would be more accurate to speak
of graphemics than phonology; however, for the sake of simplicity, I will continue to lump graphemics under the umbrella of phonology
in this section.

40

computational models of phonology and morphology (Roark and Sproat 2007:101). Their simplicity gives
rise to important mathematical properties which make them compact, efficient, and scalable. Beesley
(2004c:3) writes, "Finite-state methods certainly cannot do everything in natural language processing;
but when they are appropriate, they are extremely attractive." The two main approaches to finite-state
morphology have been two-level systems and lexical transducers.

2.2.3.1 Definitions

Informally, a finite-state automaton (FSA) is a directed graph that represents or "accepts" a set of
strings of symbols called a (formal) "language". Figure 2.5 shows a simple FSA that represents the lan
guage {can, cast, cost, man, mast, most}. It is made up of s ta t e s (the numbered circles) connected by
transitions (shown as labeled arrows; in graph theory, these are called ed ges) . State 1 is the initial s ta te ,
and state 6 is the final or accep t in g s ta te . The language accepted by an FSA is the set of strings that can
be constructed by concatenating all the labels along some path of edges which begins at the initial state
and ends at some final state (an FSA may have multiple final states, but only one initial state).

While the number of states and transitions in an FSA must be finite, as the name suggests, the language
represented by an FSA may be infinite.23 Figure 2.6 on the following page illustrates one such language:
the set of all strings conforming to a series of constraints I will call "simplified Hawaiian phonotactics." The
FSA accepts any string, regardless of length, which consists of symbols from the Hawaiian alphabet, ends
in a vowel, and contains no consonant clusters. The comma-separated lists in the figure are eguivalent to
separate edges for each item in the list.

Like an FSA, an FST is a directed graph, but rather than simply representing a set of strings of symbols,
it maps sets of strings of symbols onto other sets of strings of symbols; that is, it expresses a relation
between a given number of formal languages. The number of formal languages in a relation is called
the arity of the relation and may be arbitrarily large (Kaplan and Kay 1994:340), though FSTs modeling
linguistic phenomena rarely have an arity greater than two (though see Kiraz 2000, 2001). An FSA can
be considered an FST with an arity of one, or in other words an FST which computes a unary relation; it

23However, not all infinite languages can be represented by FSAs. For example, no FSA can represent a language with a constraint
of the type anbn where n is unbounded. So an FSA cannot be used to test, for example, whether the parentheses in a string are
balanced, unless one places a finite upper limit on allowable parenthesis nesting.

There is a scale in formal language theory called the Chomsky(-Schutzenberger) hierarchy which classifies formal grammars by
restriction. The most restricted category is regular grammars; these are followed by context-free, context-sensitive, and unrestricted
grammars. a"b" is context-free in power, and FSAs can only compute regular languages, so no FSA can handle a language with such
a constraint.

41

a, e, i, o, u, a, e, i, o, u

Figure 2.6: An FSA modeling simplified Hawaiian phonotactics

follows that all special properties of FSTs which do not derive from an FST's arity are shared by FSAs, and
vice versa.

An FST with an arity of two is said to have an u p p e r language and a lower language. Figure 2.7
shows a simple FST which computes the present (non-3sG) and past tense forms of the words run, read,
rent, and risk. The label on each edge has two parts, separated by a colon; the left part belongs to the
upper language, the right part to the lower language. The symbol e indicates an empty string. The lower
language of this FST is the set of surface forms {run, ran, read, rent, rented, risk, risked}; the upper
language contains the citation form of each word, suffixed with the grammatical tags +Prs (present) and
+ P s t (past). Most of the correspondences represented in this particular FST are one to one (for example,
risked in the upper language corresponds only to r i sk + P s t in the lower language, and vice versa), but
there is one one-to-many correspondence: read in the upper language corresponds to both rea d + P rs and
r e a d + P s t in the lower language. Although the FST in Figure 2.7 contains no many-to-one or many-to-many
correspondences, these may also be represented in an FST.

Figure 2.7: An FST that computes present (non-3sG) and past forms of the words run, read, rent, and risk

Just as an FSA can represent a set of all strings corresponding to an abstract pattern (as in the simplified
Hawaiian example in Figure 2.6), an FST can represent a relation between all strings which correspond
according to a particular pattern (as long as the pattern is regular in power; see footnote 23 on the preced
ing page). A phonological rewrite rule can be thought of as a pattern of correspondences. Figure 2.8 gives

42

an example of a phonological rule (n ^ h / i , part of the palatalization process in Inupiaq; see 2.1.2.2
on pages 9- 11) encoded as a finite-state transducer. I denotes the alphabet or set of symbols recognized
by the transducer; it contains i, n, n, and any other symbol that might appear as input to the transducer.
a is a wildcard denoting any symbol in I . In this transducer, the upper language is the set of all strings
which can be built from symbols in I , and the lower language is the set of all strings which can be built
from symbols in I and which do not contain the sequence in. The upper language represents an abstract,
"underlying" form, and the lower language represents the corresponding "surface" form.

<J:<J | a € I , a * {!} 1:1

F i g u r e 2 .8 : AN FST t h a t c o m p u t e s t h e r e g u l a r r e l a t i o n c o r r e s p o n d i n g to t h e r u l e n ^ n/ i __

The transducer begins in state 1, and transitions back to the same state unless it encounters the symbol
1, in which case it transitions to state 2. From state 2, the transducer transitions back to state 1 on any
input other than i; as long as the input is i, the transducer stays in state 2. For each symbol in the input, the
transducer outputs a symbol. In this transducer, the output symbol is identical to the input symbol unless
the transducer is transitioning from state 2 to state 1 on n (if it is being applied upward, that is, with
lower language input and upper language output) or n (in either direction). If the transducer is applied
downward and receives the input symbol n while in state 2, it will emit the symbol n. If the transducer is
applied upward and receives the input symbol n while in state 2, there are two possible transitions: n may
correspond to n, or to n (by the transition a-.a \ a e I , a £ {1, n}); this is because the upper language is
unrestricted and thus allows the sequence in as well as in. Because there are two possible corresponding
symbols, the transducer emits two strings. Thus, if the transducer is applied upward on the input string
inuk, it generates two results, inuk and inuk; if the transducer is applied downward on either inuk or inuk,
it generates inuk. Put a different way, one of the relations encoded by the transducer is the many-to-one
relation ({inuk, inuk}, inuk). If the transducer is applied upward and receives the input symbol n while in
state 2, there is no possible transition; the sequence in is disallowed by the lower language. The transducer
would fail on this input.

2.2.3.2 Mathematical Properties of Finite-State Machines

FSAs and FSTs provide several advantages over other possible computational approaches to morphol
ogy. Many of these advantages stem from the fact that FSTs compute regular (or rational) relations (Roark
and Sproat [2007:5] Roche and Schabes [1997:14]; unary regular relations, which FSAs compute, are
called regular languages [Roark and Sproat 2007:4; Roche and Schabes 1997:5]).

43

Not all linguistic phenomena can be modeled by regular languages or relations; syntax in particular has
gained notoriety as a system not describable by a regular grammar, thanks to Chomsky (1956). However,
phonological rules, at least within the framework of Generative Phonology, are constrained enough to be
describable by regular relations (Johnson 1972; Kaplan and Kay 1994). Morphological operations, includ
ing affixation, root-and-pattern morphology, and (to some extent) reduplication, can also be described by
regular languages (see Roark and Sproat 2007:23-61).

One of the most useful attributes of regular languages and relations is their closure properties, which
are enumerated in Table 2.6 on the next page (Kaplan and Kay 1994:340-344; Roche and Schabes 1997:5-6,
17-19; Beesley and Karttunen 2003:54-56).24 These properties define the operations that can be used to
derive complex regular languages and relations from one or more simpler regular languages or relations.
A set is said to be closed under a given operation if, when one applies the operation to members of the set,
the result is a member of the set. For example, the set of regular languages is closed under intersection, so
if Lj and L2 are regular languages, then the intersection of Lj and L2 is also a regular language. Likewise,
regular relations are closed under composition, so if Rj and R2 are regular relations, then the composition
of Ri and R2 is also a regular relation. Additionally, the identity relation of a regular language is a regular
relation, and the Cartesian product of two regular languages is a regular relation.

When a complex phenomenon can be modeled by a regular language or relation, and the phenomenon
4Following are brief explanations for the operations in Table 2.6:

Concatenation (Lj ■ L2) joins two languages or relations in se-
guence. If Lj is {fast, small} and L2 is {er, est}, then Lj-
L2 is {faster, smaller, fastest, smallest}.

K leene closure (I*) licenses zero or more repetitions of a lan
guage or relation. If Lj is the regular language {a}, then
Lj * licenses the strings "a", "aa", "aaa", "aaaa", etc., as
well as the empty string (zero instances of 'a').

Union (Lj u L2) creates a language or relation containing all
members of each of its operands. If Lj is {big, large}
and L2 is {huge, gigantic}, then Lj u L2 is {big, large,
huge, gigantic}.

Reversal (IT or LR) produces a language or relation that is the
reverse of its operand. If L is {edit, keel, drawer, relaid},
then IT is {tide, leek, reward, dialer}.

Intersection (Lj n L2) creates a language containing only those
members of Lj which are also members of L2 . If Lj is
{car, truck, bicycle} and L2 is {car, card, carry}, then Lj
n L2 is {car}.

Difference or Relative Complement (Lj - L2 or Lj \ L2) cre
ates a language containing all members of Lj which are
not members of L2 . If Lj is {car, truck, bicycle} and L2
is {car, card, carry}, then Lj - L2 is {truck, bicycle}.

Com plem entation or Absolute Complement (I) produces a
language containing all strings over an alphabet 1 which
are not members of L. If 1 corresponds to the Roman
alphabet and L is {apple, pear, peach}, then L is a
language containing all strings of Roman alphabet let
ters (including "apples," "peachy," "pearl," "banana,"
"bzfglllmrxjpgiffzvw," etc.) except "apple," "pear," and
"peach".

Composition (Rj ° R2) creates a relation that maps strings from
the upper language of Rj directly onto the lower lan
guage of R2 . If Rj is the relation {(one,un), (two,deux),
(three,trois)} and R2 is the relation {(un,ett), (deux,tva),
(trois, tre)}, then Rj ° R2 is the relation {(one,ett),
(two,tva), (three,tre)}. So, by composing Rj and R 2,
we can compute the Swedish eguivalent for a given En
glish number without recourse to any intermediate value
(the eguivalent French number). Composition of rela
tions is analogous to the algebraic concept of composition
of functions, but the notational convention for functional
composition is the reverse of the convention for relational
composition (Matousek and Nesetril 2009:25); that is, for
relations, the part to be computed first is listed first, but
for functions, the part to be computed first is listed last:
if f (x) = 2x + 1 and g(x) = 3x then g ° f = g (f (x)) =
(3(2x + 1)) = 6x + 3.

Inversion (R'1) creates a relation identical to its operand ex
cept that the upper and lower languages are switched. If
R is {(red,rouge), (green,vert), (blue, bleu)}, then R'1 is
{(rouge,red), (vert,green), (bleu,blue)}.

Identity (Id(L)) creates a relation whose upper and lower lan
guages are both I . If L is the regular language {me, my
self, I}, then Id(L) is {(me,me), (m yselfmyself), (1,1)}.
The identity relation of an FSA may be combined with an
FST using operations such as union, composition, etc.

Cartesian product (sometimes called cross product) (Lj x
L2) creates a relation such that each element in Lj is
associated with each element in L2 . If Lj is {astute,
diminutive, shy} and L2 is {mouse, cat, giraffe} then Lj x
L2 is {(astute,mouse), (diminutive,mouse), (shymouse),
(astute,cat), (diminutive,cat), (shy,cat), (astute,giraffe),
(diminutive,giraffe), (shygiraffe)}.

44

Table 2.6: C losure o f regu lar la n g u a g e s and rela tion s u n d er various operations
Operation Languages Relations
c on ca ten ation y e s y e s
K leene c losu re y e s y e s
union y e s y e s
reversa l y e s y e s
in tersec tio n y e s no
d ifferen ce y e s no
com p lem en tation y e s no
com p osition n/a y e s
in version n/a y e s

can be broken down into smaller constituent phenomena which can also be modeled by regular languages
or relations, then the closure properties of regular languages and relations provide an elegant and math
ematically straightforward way to construct the model. For example, one can model the phonology of a
(natural) language in a single transducer by creating individual transducers for each phonological rule,
and then composing these together in the order in which they should fire (Johnson 1972; Kaplan and Kay
1994); this is conceptually similar to an ordered chain of phonological rewrite rules. Similarly, one can
often define a lexicon in terms of regular languages of stems and affixes which are concatenated in the
proper order (Beesley and Karttunen 2003:375).

Another useful property of finite-state machines is their capacity for optimization. Well-documented,
mathematically proven methods exist to maximize the space and time efficiency of finite-state machines; as
a result, FSAs and FSTs tend to be smaller and faster than alternative morphological processing algorithms
(Roche and Schabes 1997:6-7; Beesley 2004c:3). FSAs can be made de term in is t ic such that for any state,
there is at most one transition out of that state with a particular label, and minimal such that no two
states in the FSA are eguivalent (Roche and Schabes 1997:6-7; Aho and Ullman 1995:547-555). FSTs can
be minimized (Roche and Schabes 1997:53) and, freguently, made seq u en tia l25 (deterministic for either
the input or output language; Mohri 1997; Roche and Schabes 1997:43-46). Unambiguous transducers
which are not seguentiable can be converted into bim achines, a pair of seguential transducers, one of
which processes input from left to right, the other of which processes input from right to left; these are
applied in seguence (Beesley and Karttunen 2003:77-78). The effect of all these optimizations is to create
the smallest automaton or transducer such that for any input string there is at most one path of states
and transitions through the automaton or transducer (in the case of a bimachine, one path through each
transducer). Such a state machine can be applied in linear time26 with little computational overhead.

Finally, unlike other approaches to computational morphology, FSTs are inherently bidirectional. Ap
plied in one direction, they compute surface strings (generation); in the other, they compute underlying
representations (analysis) (Beesley 2004c:3; Beesley and Karttunen 2003:14).

25The terminology surrounding (partial) determinization of FSTs is particularly confusing. My use of the term "seguential trans
ducer" follows Mohri (1997) and (Beesley and Karttunen 2003:76): Roche and Schabes (1997:43-46) use the term "subseguential
transducer" to denote the same thing (and define a seguential transducer as something else; Mohri has his own definition of a sub
seguential transducer which is incompatible with that of Roche and Schabes). Roche and Schabes also note that what I am calling a
seguential transducer is sometimes called a deterministic transducer.

26An algorithm's time efficiency is linear if the time reguired to obtain a result is directly proportional to the length of the input.

45

2.2.3.3 Finite-State Approaches to Morphophonology

Of the finite-state morphophonological models that have been proposed over the years, two have dom
inated all others: "two-level" systems based on Koskenniemi (1983), and so-called "lexical transducers"
based on the work of Kaplan and Kay (published in 1994 but disseminated through conference presenta
tions and personal communications as early as the 1980s) together with that of Karttunen et al. (1992). As
mentioned previously, in his 1970 doctoral dissertation (published in 1972), C. Douglas Johnson showed
that phonological rewrite rules from Generative Phonology are finite-state in power, and that in theory
a set of ordered phonological rules could be composed into a single transducer. Kaplan and Kay redis
covered the same fact independently around 1980 (Karttunen and Beesley 2005:72). However, neither
Johnson nor Kaplan and Kay were immediately successful in implementing a concrete finite-state compu
tational morphology framework; most computers at the time lacked the speed and memory necessary to
compile full rule systems together (Roark and Sproat 2007:111; Karttunen and Beesley 2005:72; Kosken
niemi 1983:14). There was also an unresolved problem of how to prevent generative rules applied "in
reverse" from generating multiple analyses for a given word, many of which would be spurious (Karttunen
and Beesley 2005:72-74). Karttunen and Beesley give the example of two ordered rewrite rules (slightly
simplified here): m / p and p ^ m / m From the lexical form kanpat, these rules generate just
one surface form, kam m at. Applied in reverse, however, the rules do not specify that an'm' must derive
from either an 'n' or a 'p'; thus, from the form kam m at, the rules propose the forms kanpat, kam pat, and
kam m at, the last two of which may be not be real lexical items (Karttunen and Beesley 2005:73).

In light of the computational limitations at the time, Koskenniemi (1983) devised a radically different
model for finite-state morphophonology. The unigueness of this model is perhaps best understood in con
trast to generative phonology, the prevailing phonological theory at the time. In generative phonology, an
underlying representation is gradually transformed into a surface form via an ordered series of rewrite
rules, implying that underlying and surface forms are separated by several levels of intermediate repre
sentations. In Koskenniemi's model, on the other hand, there are only two levels, lexical and surface, and
Koskenniemi's rules establish constraints on which lexical symbols may correspond to which surface sym
bols and vice versa. All symbol correspondences are one-to-one, but in order to facilitate insertions and
deletions, Koskenniemi allows an empty symbol in one level to correspond to a non-empty symbol in the
other level. Where generative rules apply in series, two-level rules are unordered and, in theory, apply in
parallel. Parallel rule application, as implemented in Koskenniemi's system, is theoretically eguivalent to
computing the intersection of each rule, which illustrates an important mathematical property of the two-
level model: regular relations are not generally closed under intersection, but two-level rules are limited
to same-length regular relations, which are closed under intersection (proofs can be found in Kaplan and
Kay [1994:342-344] and Roark and Sproat [2007:106-108]).

Output in Koskenniemi's system is further constrained by a lexicon. Any output candidate whose lexical
level does not correspond to an entry in the lexicon is rejected (Karttunen and Beesley 2005:76); this
resolves the problem illustrated in the kan pat example above. Lexical lookup occurs simultaneously with
rule application, and is theoretically eguivalent to composing the lexicon and the intersection of the rules
(Karttunen and Beesley 2005:76). Because all interactions among rules and between the rules and the
lexicon happen at runtime, it is not necessary to actually compile the system into a single FST (Roark and

46

Sproat 2007:111). Thus, Koskenniemi's model was able to overcome the limitations of 1980s computer
hardware, although by doing so he lost much of the time efficiency normally associated with finite-state
machines.

Two-level rules can be categorized into four types (Koskenniemi 1983:36-38; Karttunen and Beesley
1992, section 3.3; Roark and Sproat 2007:109), presented in Table 2.7. The notation a:b represents a
lexical symbol a and a surface symbol b whose relationship is to be constrained in some way by the rule;
LC represents a left context, and RC a right context (both contexts can be specified in terms of zero or
more lexical or surface symbols); and marks the position of a:b, defining the boundaries of LC and RC.

Table 2.7: Two-level rule types

Rule type Notation Meaning
Exclusion a:b /^ LC_RC a cannot correspond to b in the given context
Context restriction a:b ^ LC_RC only in the given context can a correspond to b

(but a need not correspond to b in this context)
Surface coercion a:b ^ LC_RC in the given context, a can only correspond to b

(but this correspondence may also occur in other
contexts)

Composite a:b « LC_RC a always corresponds to b in the given context,
and this correspondence does not occur in any
other context

Linguists are not generally accustomed to thinking in terms of such rules, however, and the formalism
can become particularly awkward when one needs to describe a correspondence involving more than one
symbol (such as the rule y ^ ie / +s).27 Ruessink (1989) has proposed an alternative rule framework
(for which Grimley-Evans et al. (1996) have written a compiler) to overcome some of these shortcomings.

Karttunen et al. (1992) point out two other considerable drawbacks to the two-level model (or at least
common implementations of it): the arbitrary nature of lexical representations, and the treatment of mor
phological category tags as metadata rather than as part of the representation of the lexical form of words.
An examination of the two-level lexical model described in Koskenniemi (1983:107-113) and a look at some
sample two-level output will help demonstrate the import of these criticisms.

Koskenniemi's lexicon is implemented as a forest of tries (Karttunen and Beesley 2005:76). A trie is a
tree which can represent a set of strings. Except for the root, each node in the tree is associated with a
symbol. Any node may be designated as a leaf node; the path from the root to a leaf represents a string
in the set. If two strings in the set share an overlapping prefix (such as corn- in co rn e r and cornea), their
representation in the trie will overlap for the nodes corresponding to that prefix. More information on
tries can be found in a textbook on data structures (see for example Aho and Ullman 1995:223-234). In
Koskenniemi's lexicon, each trie encodes a set of stems or suffixes, and the leaf node of each stem or suffix

27This example comes from page 13 of the Stuttgart Finite State Transducer Tools (SFST) tutorial by Helmut Schmid: ftp://ftp.
ims.uni-stuttgart.de/pub/corpora/SFST/SFST-Tutorial.pdf

ftp://ftp.ims.uni-stuttgart.de/pub/corpora/SFST/SFST-Tutorial.pdf
ftp://ftp.ims.uni-stuttgart.de/pub/corpora/SFST/SFST-Tutorial.pdf

47

may point to one or more "continuation classes"—tries containing suffixes that can be legally attached to
the stem or suffix in guestion. The leaf node of each morpheme may also contain metadata about that
morpheme, such as a canonical citation form (in the case of a lexeme) or a morphological category tag (in
the case of a grammatical affix); this metadata is emitted as words are analyzed, making the analysis more
meaningful. A small part of the nominal portion of Koskenniemi's lexicon is presented in Figure 2.9. Trie
names are in bold (I have taken the liberty of labeling the first trie "nouns"; other labels are Koskenniemi's);
dotted lines represent "branches" to continuation classes; boxed material is morphological metadata, and
the nodes to which boxes are attached are leaf nodes. The abbreviations used in the boxes are as follows:
S: substantive; GEN: genitive case; TRA: translative case; NOM: nominative case; ESS: essive case; P T V :
partitive case; SG: singular.

Nouns

F i g u r e 2.9: A portion of the forest-of-tries Finnish lexicon described in Koskenniemi (1983)

Table 2.8 shows a sample two-level analysis alongside a more traditional morphological analysis of the
same word. The word being analyzed is hakatu im m assa 'in the most hit/chopped up/beaten,' which is a
superlative passive past participle in the inessive case (see Karlsson 1999:194-210). The two-level analysis
comes from Koskenniemi (1983:158); the translation and traditional analysis are my own.

T a b le 2.8: Two-level output com pared to traditional morphological analysis

Two-level output Traditional morphological analysis
hakKa$t*$ZTU$+imPA$+ssA hakat-ttu-impa-ssa
Hit V PCP2 PSS SUP INE SG hit-PAST.PASSIVE.PART-SUP-INESSIVE.SG

One of the first things one notices in both Figure 2.9 and Table 2.8 is the abundance of capital letters and
other unusual symbols. In the case of the sample output, some of these symbols have no obvious correspon
dence with letters in the surface word. Finnish has a well-known series of consonant lenition/assimilation
processes collectively known as "consonant gradation" (see Karlsson 1999:28-38). The infinitive stem
hakat- has actually undergone consonant gradation, reducing an underlying 'kk' to a non-geminated 'k'.

48

The passive marker -ttu- (or more specifically, its allomorph -tu-, since the stem ends in't') triggers the
same gradation; thus, the surface word has only a singleton 'k'. The superlative marker -impa- causes gra
dation of the 'tt', reducing it to't'. Finally, the inessive case marker causes the 'p' in the superlative marker
to weaken/assimilate to'm'. The symbols 'K', 'Z', 'T', and 'P' in the lexical representation of the word are
sensitive to consonant gradation rules. Symbol '$' is used to trigger consonant gradation (in other words,
gradation rules include '$' in the lexical part of the right context, and suffixes which cause gradation have
a '$' in their lexical representation). '+' is a boundary marker usually used before case endings; marks
the left boundary of a passive suffix. The remaining special symbols, A and 'U', are sensitive to vowel
harmony rules. This inelegant lexical representation is necessary because of the restriction that all rules
involve symbol correspondences, and because there can only be two levels of representation, one of which
must be the surface level.

Ignoring the special symbols for a moment, the morphemic gloss presented on the second line of the
two-level output in Table 2.8 is completely accurate and conveys the same information as the corresponding
line in the traditional analysis; in fact, it is slightly more specific because it notes that the stem is a verb (the
somewhat cryptic abbreviations are not due to any limitation of the two-level model; they are simply the
convention Koskenniemi chose for his Finnish analyzer). For purposes of morphological analysis, the two-
level model is satisfactory. As long as the user is familiar with the lexical and glossing conventions of the
transducer (the user guite possibly being a computer program rather than a human), he/she/it can make
sense of the output, and because the input consists of words represented in conventional orthography,
producing "correct" input is not an issue.

Generation of surface forms is a different story. There are two possible forms that could be used as
input, and each presents challenges. In order to supply an appropriate lexical representation (such as the
form hakKa$t*$ZTU $+im PA $+ssA from Table 2.8 on the preceding page) one must be intimately familiar
with the lexicon, particularly in cases where a morpheme has multiple allomorphs or non-alphabetic char
acters (the genitive singular endings in Figure 2.9 on the preceding page has both several allomorphs and
non-alphabetic characters). A more natural way to specify input would be to supply a morphemic gloss,
such as H it V PCP2 PSS SUP INE SG from Table 2.8; the two-level engine could then substitute the corre
sponding lexical form and generate the surface form. But because the elements of the gloss are encoded
as metadata on leaf nodes rather than as part of the structure of the lexicon, there is no easy way to look
them up (Karttunen et al. 1992:142).28

To remedy the problems of arbitrary lexical representations and hard-to-look-up morphological cat
egory tags, Karttunen et al. (1992) propose that all inflected surface forms of a word be mapped onto
their respective lemma, and that for inflectional morphemes, grammatical tags be used instead of abstract
underlying forms (this would make the grammatical tags an integral part of the lexicon rather than as
sociated metadata). The word analyzed in Table 2.8 would then have a lexical representation along the
lines of h a k a ta + p a r t+ p a s t+ p a s s + s u p + in e s s + s g (hakata is the infinitive form of the verb and the form con
ventionally used in Finnish dictionaries). Within the framework of two-level morphology, these proposals
present a challenge: the more dissimilar surface and lexical representations of a word are, the more diffi
cult it becomes to write adeguate symbol correspondence rules between the two forms (Karttunen et al.

28The task is somewhat analogous to searching for the French translation of an English word using a French to English dictionary:
chances are that many entries will have to be examined before the relevant one is found.

49

1992:142). The solution offered by Karttunen et al. is to abandon the two-level limit in favor of serial rule
composition.

The most important contribution of Karttunen et al. (1992) is to extend the compositional model of
Johnson and Kaplan and Kay to the lexicon. Composing the lexicon with the morphophonological rules
effectively computes the surface and lexical representations of all legal forms of all words described by
the lexicon. The resulting "lexical transducer" (Karttunen 1994) is considerably more efficient than two-
level morphological engines.29 In the original two-level model, rules are th eore tica lly intersected into a
single transducer, and the lexicon is th eore t ica lly composed to the lexical side of this transducer, but in
actual practice, each rule is implemented as a separate transducer, the lexicon is distinct from the rules,
and each must be traversed separately. In a lexical transducer, the lexicon and all rules are combined into
a single transducer, not just theoretically but in reality.

A surprising side-effect of composing the lexicon with the phonological rules is that (aside from trivial
cases) the resulting transducer is smaller than the sum of the sizes of the lexicon and the phonology as
individual state machines. In fact, the lexical transducer is often smaller than the size of the phonological
transducer alone, even in cases where the lexicon is guite large (see Karttunen et al. 1992:146; Beesley
and Karttunen 2003:xvi-xvii). In order to understand how this is possible, recall from the k an pa t/kam m at
discussion on page 45 that in the two-level model, the lexicon serves to rule out spurious analyses gener
ated by decontextualized rules. The lexicon serves the same purpose in a lexical transducer. However,
nonexistent candidates are not simply discounted as the transducer is applied; they are actually eliminated
from the transducer through the process of composition.

Lexical transducers thus represent a more time- and space-efficient alternative to two-level morphology
engines, allowing more natural lexical entries and a more flexible way to write and combine phonological
rules. In fairness to Koskenniemi, it must be noted that the computational resources reguired to compile
lexical transducers were not available at the time (Roark and Sproat 2007:111), and that two-level phonol
ogy represents an ingenious workaround for these computational limitations. But in most cases today,
the advantages of the compositional model outweigh those of the two-level model. This is even more true
thanks to the introduction of more powerful rule types such as conditional and non-conditional string re
placement (Karttunen 1997), which are neither restricted to single symbols nor same length relations, and
which (unlike two-level rules) closely resemble the generative rules familiar to most linguists.

Although the compositional approach provides several advantages over the two-level model, it should
be seen as subsuming rather than superseding it. Some morphophonological phenomena are more easily
modeled using two-level rules than rewrite rules (Beesley and Karttunen 2003:384-385). Since two-level
rules can be compiled into finite-state transducers, they can be combined with other transducers using
any appropriate operation under which transducers are closed (Roark and Sproat [2007:113]; this should
also be obvious from Karttunen et al. [1992]).

Several toolkits for developing lexical transducers exist. Foremost among these is probably the Xerox
Finite State Tools (XFST), described in tutorial fashion in Beesley and Karttunen (2003) and much more
briefly in (Beesley 2004c:3-4).30 Similar toolkits include the AT&T FSM library (http://www2.research.

29Alegria etal. (1996:201) report that their lexical transducer for Basque performed 500 times faster than the equivalent two-level
engine.

30Much of the research on modern finite-state morphology has been carried out atXerox and its subsidiaries and spinoffs; current

http://www2.research.att.com/~fsmtools/fsm/
http://www2.research.att.com/~fsmtools/fsm/

50

att.com/~fsmtools/fsm/), the Finite State Automata Utilities (Fsa Utils 6) by Gertjan van Noord and Dale
Gerdemann (http://www.let.rug.nl/vannoord/Fsa/), and the Stuttgart Finite State Transducer Tools (SFST)
by Helmut Schmid (http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html), among
others. These toolkits allow linguists to create morphological engines in high-level terms of set-theoretic
operations on regular languages and relations rather than in low-level terms of states and transitions.
Kaplan and Kay (1994:376) make a forceful case for the necessity of such toolkits:

The common data structures that our programs manipulate are clearly states, transitions, la
bels, and label pairs—the building blocks of finite automata and transducers. But many of
our initial mistakes and failures arose from attempting also to think in terms of these objects.
The automata reguired to implement even the simplest examples are large and involve con
siderable subtlety for their construction. To view them from the perspective of states and
transitions is much like predicting weather patterns by studying the movements of atoms and
molecules or inverting a matrix with a Turing machine. The only hope of success in this do
main lies in developing an appropriate set of high-level algebraic operators for reasoning about
languages and relations and for justifying a corresponding set of operators and automata for
computation.

2.3 The Xerox Finite State Tools

The Xerox Finite State Toolkit (XFST) is probably the most widely used software for creating lexi
cal transducers (Kornai 1999:4). It provides two languages, x/st31 and iexc, designed to be used in tan
dem.32 Lexc is a right-recursive phrase structure grammar used to create lexicons (Beesley and Karttunen
2003:203), and xfst is a regular expression language for writing morphographemic rules and combining
these together (Beesley and Karttunen 2003:81). This section will provide an overview of how lexical
transducers are constructed using xfst and lexc, with a special emphasis on features and technigues that
will be useful in modeling Inupiag morphology.

2.3.1 Multicharacter Symbols

The fundamental unit of input (and output, if applicable) in a finite-state machine is the symbol. Some
times it is convenient for several characters (or code points) to be treated as a single symbol:

• In the orthographic traditions of some languages, digraphs are considered distinct letters. For ex
ample, Croatian digraphs (dz), (lj), and (nj) are considered single letters for purposes of collation.
Computational morphologists may prefer to treat them as single symbols in a transducer as well.

• Some accented letters are not given their own slot in the Unicode standard, and can only be repre
sented as a seguence of code points; for example, the letter (x), used in Aleut, must be composed

and former Xerox scientists working on finite-state morphology include Ronald Kaplan, Martin Kay, Lauri Karttunen, Kenneth Beesley,
Annie Zaenen, and undoubtedly many others.

31I will use lower case letters to denote the xfst regular expression language, and capital letters to denote the XFST software.
This convention is also used in Beesley and Karttunen (2003).

32XFST also provides a third, less commonly used language called twolc for specifying two-level rules, twolc can be used in
conjunction with x fs t and/or lexc, but most linguists prefer not to deal with two-level rules.

http://www.let.rug.nl/vannoord/Fsa/
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html

51

from code points U+0078 (lower-case x) and U+0302 (combining circumflex).33 If a transducer is
to contain an accented letter such as this, it makes sense to declare the sequence a multicharacter
symbol (but see remarks on (1) in Section 2.4.3.1, pages 61- 62).

• By Xerox convention, grammatical tags such as + 3 s g are treated as one symbol.
• "Rule triggers" (to be discussed in Section 2.3.4 on pages 54- 55), which are attached to specific mor

phemes to mark them as subject to particular morphologically or lexically conditioned alternations,
are most conveniently treated as single symbols even if they consist of several characters.

• Flag diacritics (to be discussed in Section 2.3.5 on pages 55- 58) must be treated as single symbols
in order to function properly.

Mechanisms exist in both xfst and lexc for designating strings of characters as multicharacter symbols.
In xfst, symbols are normally separated by whitespace or xfst syntax characters, so any time a string of
several non-whitespace, non-syntactic characters is encountered, it is treated as a multicharacter symbol.
In lexc, symbols are not separated by whitespace; by default, each character is treated as a distinct symbol.
Multicharacter symbols in a lexc file must be explicitly declared at the beginning of the file; this allows
lexc to properly tokenize lexc entries into the intended symbols.

2.3.2 Lexicon Creation

In lexc, lexicons are specified in terms of classes of formatives.34 A formative class is a named set of
string/continuation class pairs. Typically, the strings are word formatives, but they may also include special
symbols such as grammatical tags, rule triggers (see Section 2.3.4 on pages 54- 55), or flag diacritics (see
Section 2.3.5 on pages 55- 58), or they may be empty strings. A continuation class is either an end-of-word
indicator or the name of a formative class. One formative class is designated as root. A word in the lexicon
consists of a string from the root class, followed by a string from the continuation class of the first string,
followed by a string from the continuation class of that string, and so on until the final string continues to
the end of the word rather than to another formative class.

Figure 2.10 on the following page illustrates the concept of formative classes and continuations as
applied to the French infinitive verbs couper, couvrir, constru ire , voir, lever, recouper, recouvrir, recon-
s tru ire, revoir, relever, decouper, decouvrir, and deconstru ire . The base forms in this example (couper,
couvrir, constru ire, voir, and lever) are all verbs in their own right; each of them may also be prefixed with
re-. But vo ir and l e v e r may not be prefixed with de-, so we must distinguish two classes of verbs. Since the
root class must begin at the left edge of the word, it contains the two prefixes as well as an empty string
(represented by the symbol 'e') to accommodate unprefixed verbs. The prefix de- continues directly to the
set of verbs it may prefix (Verbsl), but the prefix re- and the empty prefix continue to an intermediate
class (AllVerbs) which contains only empty strings, each of which continues to a different class of verbs.
All stems are marked as end-of-word strings (#).

In addition to regular languages, lexc allows one to define regular relations. This facility is not intended
for creating complete lexical transducers; xfst provides a more practical interface for describing most

33See the Unicode Consortium's "Frequently Asked Questions: Characters and Combining Marks," http://unicode.org/faq/char_
combmark.html.

34Beesley and Karttunen (2003) call these "lexicons," which leads to ambiguity: one defines lexicons (in the more traditional
sense) in terms of lexicons (in the innovative sense). For this reason, I prefer to call these formative classes.

http://unicode.org/faq/char_combmark.html
http://unicode.org/faq/char_combmark.html

52

Root
re AllVerbs
de Verbsl
£ AllVerbs

AllVerbs Verbsl Verbs2
Verbsl
Verbs2

couper #
couvnr #
construire #

voir #
lever #

F i g u r e 2 .1 0 : Formative classes defining a regular language containing some French infinitive verbs

alternations. Relations in lexc are best used to account for idiosyncratic differences between underlying
and surface forms, in such cases as suppletion, irregular members of paradigms, or the mapping of abstract
tags such as + In f onto surface strings such as e r (Beesley and Karttunen 2003:203, 226-227, 230-232).
It is possible to define guite complex relations in a lexc entry, but for this thesis we limit ourselves to the
most basic kind, where one simply specifies an upper string and a lower string which correspond to each
other.

Figure 2.11 illustrates formative classes that define a regular relation. This example builds upon the
previous one, and classes Root and AllVerbs remain unchanged from that example and have not been repro
duced here. The relation defined in this example contains the same verbs as the previous example, but in
addition to infinitives, this relation contains past participles (inflected for number and gender) and present
indicative forms for 1st person singular and plural subjects. The upper language consists of verbs in their
infinitive forms followed by grammatical tags35 (e.g., revo ir+ P stP a rt+ F +P l, c o n s tr u ir e + I n d + P r s+ lsg) .
The lower language consists of the corresponding surface forms (e.g., revues, construis). In the figure,
colons separate corresponding upper and lower strings, with upper strings on the left.

Verbsl
couper:coup erlnflection
couvrir:couv vrirlnflection
construire:constrni uirelnflection

Verbs2
voir:v
leverdev

voirlnflection
erlnflection

erlnflection
+Inf:er #
+PstPart:e Gender
+ Ind + P rs+ lsg :e #
+Ind+P rs+ lp l:ons #

vrirlnflection uirelnflection
+Inf:rir #
+PstPart:ert Gender
+ Ind + P rs+ lsg :re #
+ Ind+ P rs+ lp l:rons #

+Inf:re #
+PstPart:t Gender
+ Ind+ P rs+ lsg :s #
+Ind+ P rs+ lp l:sons #

Gender Vumber
+ M:£ Number + Sg:£ #
+ F:e Number + P1:S #

voirlnflection
+Inf:oir #
+PstPart:u Gender
+ Ind+ P rs+ lsg :o ie #
+Ind+Prs+ lpl:oyons #

F i g u r e 2 .1 1 : Modified formative classes defining a regular relation betw een gram m atical analysis and surface forms
of some French verbs

35Tags used in this example are + Inf infinitive, +PstPart past participle, +Prs present, +Ind indicative, + lsg 1st person singular,
+ lp l 1st person plural, +M masculine, +F feminine, +Sg singular, +PI plural.

53

This should not be taken as the only or best way to organize a French lexicon, but it will serve to
illustrate some important points. The relation mechanism serves two purposes in this example: mapping
citation forms (e.g., co u per , voir) onto more stem-like forms (e.g., coup, v), and mapping grammatical tags
(e.g. +Inf, +P1) onto concrete strings. Tags + M and + S g correspond to empty surface strings, as French
lacks overt masculine and singular markers for adjectives.

Verbs co u p er and l e v e r have very similar conjugation patterns, and both continue to the erlnflection
class. However, the resulting forms are not entirely correct for lever; the formative classes in the example
will define the surface form */eve for the 1st person singular indicative present form, instead of the correct
form /eve. This situation could be remedied by creating a class everlnflection, but in fact the alternation
between [a] (as in lever) and [e] (as in /eve) applies to all verbs ending in -er which have a schwa as
the nucleus of their penultimate syllable (see Bescherelle 1995:24, 26, 27). Rather than create separate
classes for -ecer, -eler, -emer, -ener, -eper, -erer -eser, -eter, -ever, and -evrer, it would be much simpler to
use the erlnflection class for all of these cases, and compose the resulting lexicon with a rule written in
xfst to change the vowel when appropriate.36

2.3.3 Morphographemic Rules

Morphographemic rules are expressed in the xfst language and can be divided into two types: those
which define languages, and those which define relations. Rules which define languages are conceptually
similar to regular expressions found in many modern programming languages, except that they may be
combined with other rules using a number of operations not commonly found in programming languages
(such as composition and intersection). They may include strings of symbols, wildcards, iterators (indicat
ing, for example, zero or one, zero or more, or one or more instances of a particular seguence of symbols),
and operators for operations under which regular languages are closed (see pages 43-44). Rules which
define relations most commonly use a mechanism called the replace operator (Karttunen 1997; Beesley
and Karttunen 2003:66-74, 132-137), which defines directional correspondences between an upper and a
lower language. The replacement may be obligatory or optional, and it may be conditional or unconditional.
It is defined in terms of the universal language (the set of all possible strings composed of symbols from
some finite alphabet), so that any string not specifically targeted by a given rule automatically corresponds
to an identical string.

An unconditional rule has three parts: a direction (leftward or rightward) and two expressions, which
I will call UpperExp and LowerExp, each defining a regular language. In xfst notation, an unconditional
rule takes the form U pperExp Direction LowerExp; Direction is either -> or <-, and is surrounded by
parentheses if the rule is optional. A obligatory unconditional rightward rule specifies that every string
in the upper language corresponds to an identical string in the lower language, unless it contains one or
more substrings defined by UpperExp; in that case, it corresponds to all lower-language strings where each
substring from UpperExp has been replaced by a string defined by LowerExp. An optional rightward rule
additionally specifies that every string in the upper language containing substrings defined by UpperExp
also corresponds to an identical string in the lower language. A obligatory unconditional leftward rule is
analogous to a rightward rule, but substrings from LowerExp in lower-language strings are replaced in

36The complete solution to this problem is actually slightly more complex than this, as will be explained in Section 2.3.4 below.

54

the corresponding upper-language strings with strings defined by UpperExp.
To illustrate, consider a obligatory unconditional rule whose direction is rightward, where UpperExp

defines the set {a, e, i, o, u}, and where LowerExp defines the set {V}. In xfst notation, this rule would be
written [[a | e | i | o | u] - > V] (sguare brackets group expressions; the pipe symbol (|) is the union operator).
The upper language of this rule would be the universal language; the lower language would be the set of
all strings which do not contain any of the symbols a, e, i, o, or u. Some string correspondences defined by
this relation are {bcdfg, bcdfg), {yes, yVs), and {congratulations, cV n grV tV lV tW n s). Note that obligatory
rules may restrict the language where replacement takes place, but will not restrict the other language.
In the rule defined in our example, the string y e s in the upper language corresponds only to the string yV s
in the lower language, but the lower language string yV s corresponds to several upper language strings:
ye s , yas, yis , yos, yus , and its identity, yVs. The presence of the identity may seem counterintuitive, but it
is a conseguence of directed (as opposed to bidirectional) replacement (see the k a n pa t /kam m at discussion
on page 45).

Conditional rules have the same three parts as unconditional rules, but they also specify a left and
right context, which I will call LeftExp and RightExp; they also specify in which language (upper or lower)
each context should apply; in this thesis, all conditional rules will specify upper-language contexts. Either
context may be unspecified (if both are unspecified, the rule is eguivalent to an unconditional rule). The xfst
convention for conditional rules with upper-language contexts is UpperExp Direction L ow erExp || LeftExp _
RightExp. A rightward conditional rule where both contexts refer to the upper language specfies that every
string in the upper language corresponds to an identical string in the lower language, unless it contains
one or more substrings defined by UpperExp which are immediately preceded by a substring defined by
LeftExp and immediately followed by a substring defined by RightExp; in this case, it corresponds to all
lower-language strings where each substring from UpperExp occurring in the defined context is replaced
by a substring defined by LowerExp. Note that the contexts are not replaced; only the substring defined
by UpperExp is replaced.

The rule n^> n / i , shown as a finite-state transducer in Figure 2.7 on page 41, can be specified as a
conditional replace rule. UpperExp is {n}, LowerExp is {n}, LeftExp is {i}, and RightExp is unspecified.
The direction is rightward and the rule is obligatory; the contexts refer to the upper language. This rule
would be written [n -> n || i _]. The rule establishes correspondences between all strings containing
the seguence in in the upper language and strings in the lower language that are identical except that in
has been replaced with in. The seguence in in lower-language strings corresponds to both in and in in
upper-language strings.

Rules which define relations may be combined using operations under which regular relations are
closed (see pages 43-44).

2.3.4 Rule Triggers

Some morphologically and lexically conditioned alternations are best handled through the continua
tion class mechanism, but others are easier to model through conditional xfst rules. For such rules to
apply properly, the affected words or morphemes must be distinguished from all others. This can be done
using symbols which are not part of the orthography of the language. These symbols are included in the

55

specification of the affected words (this will be illustrated below). Rules can then make reference to these
symbols, either as part of the context (LeftExp or RightExp) or in the expression defining substrings to
be replaced (UpperExp or LowerExp). Ui Dhonnchadha (2003:46) refers to such symbols as "rule trig
gers"; Beesley (2003:22) and Alegria et al. (1996:195,202) also report using symbols of this type in their
transducers, and Langgard and Trosterud (n.d.; see Section 2.4 on pages 60- 66) use them in their Inupiag
transducer, where they refer to them as "dummies". An illustration of rule triggers is given below.

In the discussion of French verbs in Section 2.3.2, it was mentioned that all French verbs ending in
-er which have a schwa as the nucleus of the penultimate syllable are subject to an alternation where the
schwa becomes [e], and that this alternation was more easily handled with a general rule than through
several very similar formative classes. However, as is freguently the case with French, the orthographic
reflex of this phenomenon is slightly more complex than the phonetic phenomenon itself. For most of the
verbs affected by this alternation, the change in vowel guality is represented by changing the (e) of the
infinitive form to (e): lever / leve . Verbs ending in -e/er and -e te r generally double the consonant following
the alternating vowel, leaving the (e) untouched: appeler /appe lle . But a handful of verbs ending in -e/er
and -e te r mark the change with (e) and leave the following consonant single: ach eter /ach ete .

To properly model this fact, we need two rules, one to map (e) to (e), and the other to map the consonant
following the (e) to its doubled eguivalent. For most of the affected verbs, the first rule can be applied
based on phonological criteria alone, but for verbs ending in -e/er and -eter, it is impossible to know a priori
which rule should apply. We can address this situation by marking the consonant-doubling verbs with rule
triggers (e.g., appelDOUBLECer, etincelDOUBLECer, marquetDOUBLECer, where DOUBLEC has been
declared a multicharacter symbol) and writing the consonant-doubling rule so that this symbol appears in
the right context of the rule. (We will also want an unconditional rule to delete the DOUBLEC symbol; this
rule should probably be composed immediately below the consonant doubling rule.) The vowel-changing
rule does not need to refer to the DOUBLEC symbol in any way; it can be written in such a way that (e)
is mapped to (e) (the default mapping) rather than (e) if a double consonant follows. As long as the rules
are ordered so that the consonant-doubling rule applies first, each rule will apply only to verbs to which it
pertains.

2.3.5 Flag Diacritics and Filters

Long-distance m orphological dependencies are not easily encoded using continuation classes (Beesley
and K arttunen 2003:247-248). For example, in Amharic, definite d irect objects are m arked with a suffix
(-n), bu t ind irect objects are m arked with a prefix (la-).37 For purposes of illustration, I will assum e tha t
a noun may b ear neither or one marker, bu t not both. Such a constra in t can theoretically be modeled
using continuation classes, as shown in Figure 2.12 on the following page (see also Beesley and K arttunen
2003:250), but the resu lt is redundan t and inelegant, as whole form ative classes m ust be duplicated .38
The form ative classes in Figure 2.13 on the next page resolve the duplication, bu t fail to account for
the discontinuous dependency and therefore overgenerate, producing illegal forms such as *la-wand-u-n
'iND.OBj-boy-the-DiR.OBj' (see Beesley and K arttunen 2003:251).

37Amharic examples follow the transliteration conventions of Leslau (1995).
38A complete model of Amharic nouns would contain even more duplication, as one adds suffixes for grammatical number and

possessor marking, both of which intervene between the noun stem and the direct object marker.

Root LaNouns Nouns

56

+IndO bj:la LaNouns w an d LaArt w an d Art

£ Nouns w attad d ar LaArt w attad d ar Art
gab LaArt gab Art
m a sh af LaArt m a sh af Art

LaArt Art DirObj
+A rt:u # +A rt:u DirObj +DirO bj:n #
£ # £ # £ #

F i g u r e 2 .1 2 : A ccou n tin g for a d iscon tin u o u s d ep en d en cy u sin g form ative c la sse s and contin u ation s

Root Nouns Art DirObj
+IndO bj:la Nouns
e Nouns

w an d Art
w attad d ar Art
gab Art
m a sh af Art

+A rt:u DirObj

£ #
+DirO bj:n #
£ #

F i g u r e 2 .1 3 : F orm ative c la sse s w h ich fail to a cco u n t for d iscon tin u o u s d e p en d en c ies

If not for the problem of overgeneration, it would be preferable to create lexicons as in Figure 2.13
rather than as in Figure 2.12. xfst makes this possible by providing two eguivalent mechanisms to control
this type of overgeneration. The first, which Beesley and Karttunen (2003:249-254) call a filter, involves
creating a rule to define a regular language which contains all strings except the offending ones (e.g.
*lawandun) and composing this rule with the lexicon; the composition process eliminates the ungrammat
ical words from the transducer. In the case of the Amharic example, the rule would define the comple
ment of the language in which all strings contain the multicharacter symbol +IndObj followed by zero or
more symbols followed by the multicharacter symbol +DirObj (see Beesley and Karttunen 2003:252-253;
Beesley 1998:122-123).

Filters provide an elegant, finite-state solution to the problem at hand, but sometimes they lead to a
dramatic increase in the size of a transducer (Beesley 1998:122; Beesley and Karttunen 2003:339), which
may make compilation of the transducer impractical or, depending on hardware constraints, impossible.
For this reason, xfst includes an alternative method of disallowing illegal combinations of discontinuous
morphemes: flag diacritics. Flag diacritics are special multicharacter symbols which set, unset, or test
memory registers. They are incorporated into the appropriate entries in the lexicon, similarly to rule
triggers (see section 2.3.4). Unlike other multicharacter symbols, flag diacritics are usually invisible to
the end-user, but within the transducer they label transitions between states, just as any other symbol. As
xfst encounters flag diacritics while traversing a particular path in an FST, it performs the memory actions
they specify. If xfst encounters a flag diacritic testing a register for a certain value and the test fails, that
path through the transducer is considered a failure and xfst backtracks in an attempt to find an alternative
path.

xfst provides several types of flag diacritics, enumerated in Table 2.9 on the following page. In our

57

Amharic example, we could create a flag diacritic @P.CASE.MARKED@ (that is, a Positive-type diacritic
that would set the register CASE to the value MARKED) to attach to the indirect object marker, and another
diacritic @D.CASE.MARKED@ (to disallow a CASE value of MARKED) to attach to the direct object marker.
The formative classes from Figure 2.13 on the preceding page could be revised as in Figure 2.14 to include
these flag diacritics.

Table 2.9: F lag d iacritic ty p es availab le in x fst

Type Arguments
Positive Register , Value
Negative Register , Value

Clear R e g is te r
Reguire Register , Value
Disallow Register , Value
Unify Register , Value

Function
Sets or resets R e g is te r to Value
Sets or resets R e g is te r to the complement of Value (i.e.,
all values other than Value)
Sets or resets R e g is te r to no particular value
Tests whether R e g is te r is set to Value
Tests whether R e g is te r is set to a value other than Value
If R e g is te r is not set to a specific value, sets it to Value;
otherwise, tests whether R e g is te r is set to Value

Root
@U.CASE.M ARKED@ +IndObj:@ U.CASE.M ARKED@ la N o u n s
e N o u n s

Art DirObj

Nouns
w an d A r t
w attad d ar A r t
gab A r t
m a sh af A r t

+A rt:u D irO bj
e #

@ D.CASE.M ARKED@+DirObj:@D.CASE.MARKED@n #
E #

Figure 2 .14 : F orm ative c la s se s w h ich a cco u n t for d iscon tin u ou s d ep en d e n c ie s u sin g flag d iacritics

In the transducer, the diacritics are treated as symbols, so the transducer will contain lower-language
strings such as mdshafu@D.CASE.MARKED@n and @U.CASE.MARKED@ldgab, corresponding to upper-
language strings such as m dshaf+Art@ D .CASE.M ARKED@ +DirObj and @U.CASE.M ARKED@+IndObjgab
(note that each diacritic must appear on both the upper and lower sides of the transducer, since the strings
they are meant to suppress must be suppressed in both the upper and lower languages.) Strings represent
ing ungrammatical words, such as @ U.CASE.M ARKED@ldwdttaddaru@D.CASE.M ARKED@n, will also be
present in the transducer, but will never be returned to the end user because the disallow test of the
second flag diacritic will always fail.

One potential pitfall associated with flag diacritics is that, while they are generally hidden from the end
user, their presence must be taken into account by any rules that will be composed with the transducer.39

39Similar statements could be made about rule triggers. An obvious difference between rule triggers and flag diacritics is that

58

For example, a rule which includes the substring un in its context will never fire for any of the words
defined in Figure 2.14; the rule should specify the context u@D.CASE.MARKED@n instead. It is easy to
forget to do this, and bugs that result from not taking flag diacritics into account are very hard to track
down. Another drawback of flag diacritics is a loss of time efficiency, since they create the possibility that
several disallowed paths will have to be evaluated in addition to all allowed paths (Beesley and Karttunen
2003:360).

While the flag diacritic mechanism is not finite-state in nature (it goes beyond the machinery of states
and transitions), it is finite-state in power, and functionally eguivalent to filters (Beesley and Karttunen
2003:359). Because of this eguivalence, a transducer containing flag diacritics can be converted to a
filtered, flag-free transducer. The conversion process is not necessary, and because it does away with
the additional space efficiency flag diacritics provide, in many cases is inadvisable. But where space is
not an issue, eliminating flags can be a useful strategy for morphologists who find it easier to constrain
discontinuous dependencies with diacritics rather than filters, but who do not want to deal with diacritics
in their rules.

2.3.6 Dictionary Downtranslation

As was made clear in Section 2.2.3.3 on pages 45- 50, a lexicon is a key component in linguistically
motivated computational morphology. But the need for structured lexical information is not limited to
morphological parsers; many NLP applications reguire some kind of lexical database, although the spe
cific reguirements vary from application to application. A lexical transducer reguires relatively simple
lexical data—essentially a set of fully inflected words and associated lemmata and grammar tags. If one is
using XFST, the most obvious way to structure the necessary lexical data is lexc formative classes. How
ever, Beesley (2004a, c, 2003) advises against creating lexc files from scratch, calling them a "dead-end"
(2004a:2) because the format is specific to XFST and the data are too sparse to be very useful to other
applications. (To these criticisms I would add that lexical data is rarely presented in terms of formative
classes of the type used by lexc, and thus creating a lexc file generally involves completely reorganizing
one's data.) As an alternative to developing directly in lexc, Beesley recommends creating lexical resources
in XML, a meta-language for data markup which can be used to represent data sets of arbitrary complex
ity. A single XML database can contain all the data necessary for whichever NLP applications one wishes
to develop. For example, if there are plans to develop a morphological parser, syntactic parser, and elec
tronic dictionary for a language, then each entry in the XML database might include a lemma, grammatical
category, inflectional pattern, valency information, definitions or glosses for each sense, semantic frame
data (see for example Johnson and Fillmore 2000; Atkins 1996), and so on. Some data are not needed for
some applications; for example, semantic frames are irrelevant to morphological parsing, and inflectional
patterns have no bearing on syntactic parsing. But some data, like lemmata or grammatical categories,
are important for several applications.

Before the data in an XML file can be used in a morphological parser, however, it needs to be "down-
translated" into a format XFST can understand (Beesley 2004a). The downtranslation process involves
the former are created for use in rules, whereas the latter are not. However, depending on the design of the transducer, it may still
be necessary to write rules in which rule triggers appear in the context not because the phenomenon being modeled is sensitive to
them but simply because they happen to occur in the character string between symbols to which the phenomenon is sensitive.

59

discarding XML markup as well as any data not pertinent to morphological parsing (such as glosses) and
reformatting the pared-down data in terms of formative classes and continuations. There are a number
of possible ways to accomplish this task; Beesley (2004a) recommends writing a computer program using
a language with strong string-handling facilities (such as Perl or Python) and an XML processing library
(such as Perl's XMLuTwig40 or Python's pulldom41).

2.3.7 Stem Guessers

While a lexicon is important for eliminating spurious parses, no lexicon can contain all the words in a
language. To a certain degree, it is possible to compensate for this shortcoming using a technigue called
stem or root guessing. First developed by Black et al. (1991) for use in speech-synthesizing transducers,
the technigue has proven beneficial for other morphological parsers as well (see for example Alegria et al.
1996:200; Bosch and Pretorius 2003:33; Beesley 2003:24-25). It involves defining, for each open category
of stems, a transducer that (ideally) generates all phonotactically possible members of that class (Beesley
and Karttunen 2003:450). In the upper language of this phonotactic transducer, all strings terminate with
a tag which labels them as guesses rather than as official entries in the lexicon; this tag corresponds to
an empty string in the lower language (Beesley and Karttunen 2003:446). The phonotactic transducer is
made a member of an appropriate class of stems, and designated to continue to the class containing all
affixes which may be attached to that particular category of stems (see Beesley and Karttunen 2003:445).
By filtering out all paths in the transducer which do not contain the guess tag, one obtains a transducer
which produces only guesses (by the same token, one can filter out all paths containing the tag and obtain
a transducer which produces no guesses; see Beesley and Karttunen [2003:446, 448]).

A guessing transducer can be used as a backup to a standard lexical transducer, made to apply only
when the non-guessing version cannot propose an analysis (Beesley 2003:24-25; Beesley and Karttunen
2003:449-450). An obvious limitation of stem guessing based on native phonotactics is that stems bor
rowed from other languages may not be recognized; a possible workaround would be to define a second,
more generous guesser (possibly limited to stems shorter than some given length) and configure the sys
tem so that the second guesser only applies in cases where the non-guessing transducer and the native-
phonotactics guesser both fail to produce an analysis.

A well-designed stem guesser constrains the set of analyses by eliminating parses which are impos
sible phonotactically or inflectionally. However, for most input strings, a guesser is likely to generate
multiple analyses, some of which will be better than others. Paradoxically, the number of incorrect anal
yses increases with the number of affixes included in the lexicon (see Black et al. 1991:105). For their
morphological analyzer for speech synthesis of English, Black et al. (1991:104) propose a set of heuristics
to rank analyses with guesses: length of unknown root, structural ordering rules (for example, analyses
involving prefixes were given priority over analyses involving suffixes), and affix freguency. The analysis
with the highest total ranking (calculated as a weighted sum of the individual scores from each heuristic)
was selected as most probable. In a test of 200 words, this ranking procedure selected the correct analysis
67% of the time; however, given the language-specific nature of the heuristics, one would not necessarily

40http://search.cpan.org/perldoc?XML::Twig
41http://wiki.python.org/moin/PullDom; http://docs.python.org/library/xml.dom.pulldom.html

http://search.cpan.org/perldoc?XML::Twig
http://wiki.python.org/moin/PullDom
http://docs.python.org/library/xml.dom.pulldom.html

60

expect a similar result for a transducer of another language. Alegria et al. (1996:200), in their Basgue
transducer, eliminate unlikely guesses using a slightly different heuristic based on the length and final
segments of guessed stems; unlike Black et al., however, their software was not reguired to select one
"best" analysis. In a test of 285 unknown words, the Basgue guesser proposed the correct analysis (pos
sibly among other analyses) 91.23% of the time. While the results for the English and Basgue guessers
cannot be directly compared, both are sufficiently high to support the conclusion that stem guessing is
useful for extending the coverage of a morphological transducer.

2.4 Langgard and Trosterud's Inupiag Transducer

To my knowledge, there exists only one other computational model of Inupiag: a proof-of-concept lexical
transducer created by Per Langgard of Okaasileriffik (the Greenland Language Secretariat) and Trond
Trosterud of the University of Tromso (Langgard and Trosterud n.d.). The architecture of the transducer
is based on Langgard's much more extensive Greenlandic transducer and Trosterud's transducers for
Sami. Langgard and Trosterud generously furnished me with the source code of their transducer, which
I referred to regularly in the early stages of development of my own Inupiag transducer. This section
presents an overview of the key features of their transducer, many of which I have incorporated into my
own.

Langgard and Trosterud's transducer is implemented with the Xerox Finite State Toolkit (XFST), de
scribed in Section 2.3 on pages 50- 60.

2.4.1 Morphographemics

The transducer's morphographemic component is implemented in xfst (see Section 2.3.3 on pages 53
54). It begins with the definition of a number of sets of graphemes and digraphs for convenience in
writing rule contexts.42 These include a set of vowels, a set of stops, a set of nasals, etc., but also a set
of rule triggers (referred to as "dummies" in Langgard and Trosterud's source code; see Section 2.3.4 on
pages 54- 55) and a set of flag diacritics (see Section 2.3.5 on pages 55- 58). Recall that both rule triggers
and flag diacritics are treated as symbols in the transducer and that rules must take their presence into
account (see pages 57- 58).

The grapheme set definitions are followed by a number of morphographemic rules, which can be di
vided into three groups: those which operate due to rule triggers (used to model morphologically or lex
ically conditioned alternations), those which operate in the context of regular symbols (used to model
phonologically conditioned alternations), and those which operate regardless of context (used to delete
rule triggers and to convert other special symbols into standard orthographic symbols—for example, to
convert the symbol (e), used for HI, into (i». After all the rules have been defined, they are composed
together in a single cascade.

42I assume this is a common technique; it can also be seen in examples from Beesley and Karttunen (2003:e.g., 144, 470, 473)
and Roark and Sproat (2007:71, 95).

61

2.4.2 Lexical Coverage

The transducer focuses primarily on Inupiaq nominal and verbal morphology. Most stems were ex
tracted from Webster and Zibell (1970). The bulk of the lexicon consists of noun and verb stems, with nine
deverbal postbases {-Hatu- 'enjoy', -Uatuniaq- 'enjoy + f u t ' , -niaq- f u t , -niagit- f u t + n e g , -git- n e g , -saagi-
'deliberately', -saagigit- 'not deliberately', -tiq- 'quickly, abrubtly', and -vik 'place, time'), two denominal
postbases {-qaq- 'have' and -it- 'lack'), several verbal inflections ("present" and "past" indicative, inter
rogative, realized and unrealized contemporative, and consequential [only implemented for 3rd person
singular intransitive]), unpossessed nominal inflections (absolutive, relative, locative, terminalis [not fully
implemented], modalis [not fully implemented], and ablative [not fully implemented]) and two enclitics (-/u
'and' and -guuq 'it is said that'). The lexicon also includes three pronouns (suna 'what', kina 'who', and
una 'this (restricted and visible)') implemented in the absolutive singular only. No demonstratives (other
than una, just mentioned) or numerals are included. Some interjections are implemented, along with a few
other particles. Several Malimiut stems are mixed in with the North Slope stems, as Webster and Zibell
(1970) covers both dialects. Since the transducer does not contain Malimiut-specific phonological rules or
inflectional endings, the inclusion of Malimiut stems is probably an error.

2.4.3 Lexical Architecture

2.4.3.1 Mechanics

The lexicon is implemented in lexc (see Section 2.3.2 on pages 51- 53). The organization of the forma
tive classes will be discussed in Sections 2.4.3.2 and 2.4.3.3 below.

A number of multicharacter symbols and other special symbols are used in the lexicon, particularly
in the upper (analysis) language. These include flag diacritics, rule triggers, a number of grammar tags
(e.g., +N, +V, +Prs, + l S g , +Abs), and a morpheme boundary marker (>) which is used in the contexts of
several morphographemic rules in addition to its obvious informative purpose in the analysis-side output.
Postbases and enclitics in the lower language are also mapped to multicharacter symbols in the upper
language (e.g., +QAQ for postbase -qaq- 'have', +LU for enclitic =lu 'and'). This bears a certain similarity
to the grammar tags traditionally used in FSTs since the publication of Karttunen et al. (1992) as upper-
language representations of inflectional morphemes. But where grammar tags summarize an inflectional
morpheme's meaning, and if applicable, its place in a paradigm, these 'postbase tags' convey no such
information. In fact, they convey no information beyond the citation form of the postbase or enclitic.
Given that actual orthographic forms must be used in the lower language in any case, it seems simpler to
use the same orthographic forms in the upper language. However, this is a minor contention and ultimately
a matter of taste.

The orthography used in the transducer follows standard Inupiaq conventions, with two exceptions:
• (1) (U+013E) is used in place of (1) because the former is defined as a precomposed glyph in the Uni

code standard, while the latter can only be represented as a sequence of two code points (U+0142
U+0323). Although the multicharacter symbol mechanism could be used to accommodate (1), it
would require that rules be written with additional care. Also problematic is the fact that the com

62

bining dot accent character is rendered improperly on many computers.
• Within the transducer, fil is represented as (e); however, this character is mapped back to (i) in all

transducer output and so is not visible to end-users.

2.4.3.2 Morphologically Motivated Features

Langgard and Trosterud's lexicon is rather complex, not unlike the morphology it attempts to model.
To simplify the discussion of their lexicon, I have omitted several less-significant details in favor of more
clearly conveying the most important aspects of the design. For example, several formative classes in the
lexicon exist primarily to add a particular multicharacter symbol to the appropriate lexical entries, such as
tagging all nouns with + N or attaching a flag diacritic to the set of stems to which it pertains. While these
are clever and appropriate uses of the formative class/continuation mechanism, they serve a relatively
minor function and will be left out of the following discussion as well as Figure 2.15 on the next page. I
have also taken the liberty of renaming some formative classes to make their functions more obvious. In
reading this section and Section 2.4.3.3 below, bear in mind that the lexicon under review is a proof of
concept and that in the course of further development, many or all of the issues raised below would likely
be resolved.

A simplified overview of the lexicon appears in Figure 2.15 on the following page. As with the figures
in Section 2.3.2, s represents an empty string, a colon separates corresponding upper- and lower-language
forms, and the symbol # marks the right boundary of a word in the lexicon. The string TRUNC is a rule
trigger to cause deletion of a stem-final consonant. The symbol > serves as a morpheme boundary marker.
Classes ending with e tc . contain more members than are shown in the figure. Due to space constraints,
some of the continuation classes which are referenced in the figure are not illustrated; these are marked
with an asterisk. In all cases, classes with an asterisk are similar to some other class which is illustrated; for
example, the Irregularly Gem inating Noun Suffixes class, referenced in the Noun S te m s class, is analogous
to the Default Noun Suffixes class.

As discussed in Section 2.3.2, all lexicons designed in lexc begin with a root class. Langgard and
Trosterud's root class branches to separate classes for noun stems (this class also includes particles),
verb stems, and pronouns. With the exception of the particles, each member of the noun stem and verb
stem classes continues to a class of suffixes; the specific class chosen depends in part on phonological
factors, which will be discussed in Section 2.4.3.3 below. Particles and members of the pronoun class are
complete words and continue directly to a class of enclitics (verbs continue to the enclitic class from classes
of inflectional endings; nouns continue to the enclitic class from classes of inflectional and derivational
morphemes). The enclitic class defines the right-side boundary of all strings in the lexicon; it contains an
empty string member for words with no enclitics (which is the usual case).

Noun suffixes are separated into sets of singular, dual, and plural formative classes (postbases are
included in the singular classes). This allows pluralia tantum (noun stems which cannot bear singular
marking, such as uniaq-, stem of uniat 'sled') and singularia tantum (noun stems which can only bear sin
gular marking; the only example of this in Langgard and Trosterud's transducer is irri 'cold air, weather')
to be handled using continuation classes. Stems with no grammatical number restrictions continue to
intermediate classes which branch to singular, dual, and plural marking (see Default Noun Suffixes in

63

Root Pronoun Stems Enclitics
£ N o u n S te m s
£ V erb S te m s
£ P ro n o u n S te m s

suna E n c lit ic s
kina E n c lit ic s
una E n c lit ic s

+ G U U Q :> gu u q #
+ L U :> lu #
£ #

Noun Stems
aaka D e fa u lt N o u n S u ff ix e s
aa q agu (p a rtic le) E n c lit ic s
am agu q Ir re g u la r ly G e m in a tin g N o u n S u ffix es*
ap u m apu te ti-> n N o u n S u ffix e s*
irri:erre D e fa u lt S in g u la r N o u n S u ff ix e s
sik srik :sek srek k-F inal N o u n S u ffix e s*
uniat:un iaq D e fa u lt P lura l N o u n S u ffix es*
e tc .

Default Noun Suffixes Default Singular Noun Suffixes
£ D e fa u lt S in g u la r N o u n S u ff ix e s
£ D e fa u lt D ua l N o u n S u ffix es*
£ D e fa u lt P lura l N o u n S u ffix es*

+ N + A b s+ S g :£ E n c lit ic s
+ N + R el+ S g :T R U N C > m E n c lit ic s
+Q A Q :TR U N C >qaq D e fa u lt In tr a n s i t iv e S u ff ix e s
e tc .

Verb Stems Default Intransitive Suffixes
kam ik:kam ek D e fa u lt In tr a n s i t iv e S u ff ix e s
kam ik:kam ek D e fa u lt T ra n s itiv e S u ff ix e s
kaviq iC-F inal In tr a n s i t iv e In fle c tio n s*
nakuu V ow el-F inal In tr a n s i t iv e S u ffix e s*
tautuk V ow el-F inal T ra n s it iv e S u ffix es*
e tc .

£ N o m in a liz e r s
£ V erbal D e r iv a tiv e s
£ D e fa u lt In tr a n s i tiv e In f le c tio n s

Nominalizers Verbal Derivatives
+V IK :>vik k-F inal N o u n S u ffix e s* +L L A TU T R U N C :>llatu

+L L A TU T R U N C :>llatu
+N IA Q :>niaq
+N IA Q :>niaq
e tc .

V ow el-F inal In tr a n s i t iv e In fle c tio n s*
V ow el-F inal T ra n s it iv e In fle c tio n s*
D e fa u lt In tr a n s i t iv e In fle c tio n s
D e fa u lt T ra n s itiv e In fle c tio n s*

Default Intransitive Inflections Indicative Person Affixes
+ V + In d + P rs:> tu In d ic a t iv e P erso n A ffix e s
+ V + In d + P st:> tu a In d ic a t iv e P erso n A ffix e s
+ V + In t:> p i N o n -3 rd P erso n In te r r o g a tiv e In tr a n s i t iv e A ffix es*
+ V + In t:> p a 3 r d P erso n In te r r o g a tiv e In tr a n s i t iv e A ffixes*
e tc .

+ lS g :> g a E n c lit ic s
+ lD u :> g u k E n c lit ic s
+ lP l:> tu t E n c lit ic s
+ 2 S g :> te n E n c lit ic s
e tc .

Figure 2 .15: S im plified ov erv iew o f th e lex ico n o f L anggard and T rosteru d 's Inupiaq tran sd u cer

Figure 2.15), while stems which are restricted to specific grammatical numbers continue directly to the
classes corresponding to the allowed numbers. One significant problem with this approach (at least as im
plemented in Langgard and Trosterud's transducer) is that it erroneously prevents derivational suffixation
on pluralia tantum, since the stems must continue directly to number-marking suffixes.

Verb suffixes are divided into classes of nominalizing (deverbal-nominal) postbases, deverbal-verbal

64

postbases, and inflectional suffixes (with distinct sets of classes for intransitive and transitive endings).
Intermediate formative classes are used to link most verb stems to multiple classes of suffixes (for example,
the formative class Default In transitive Suffixes in Figure 2.15 continues to a class of nominalizers, a class
of verbal postbases, and a class of intransitive inflectional endings). For reasons of allomorphy, intransitive
stems ending in /iC/ where C is a consonant other than /t/ continue directly to a formative class containing
inflectional endings. A similar class designed as a continuation for stems ending in /it/ exists, but no stems
are currently designated to continue to it. The phonological ramifications of these two formative classes
will be discussed in Section 2.4.3.3 below. For the moment, I wish only to point out that this design, like
the treatment of pluralia tantum discussed above, incorrectly disallows derivational suffixation on these
verb stems.

All postbases in the lexicon continue to an appropriate class of inflectional endings. This prevents the
transducer from computing words with more than one postbase (except for the few precomposed postbases
Langgard and Trosterud have implemented, such as -Uatuniaq- and -saagigit-; see Section 2.4.2 on page 61
for the full list of postbases in the transducer). This is a limitation of this particular transducer, not of the
Inupiag language (see Section 2.1.4.3 on pages 36- 37).

Langgard and Trosterud use flag diacritics (see Section 2.4.3.3 on pages 64- 66) to enforce valence
restrictions on verbal inflection. Two flags, IV and TV! are used. Stems are positively marked using the
diacritic @P.IVON@ for intransitive stems, or @P.TVON@ for transitive stems. Inflectional endings are
marked to reguire an "ON" value for the appropriate flag.

2.4.3.3 Phonologically Motivated Features

Several of the lexicon's formative classes exist specifically to handle phenomena which are commonly
treated as morphophonological in the Alaskan tradition of Eskimo linguistics. For example, noun stems
ending in /ti/ whose absolutive singular form ends with (n) have a different continuation class than noun
stems ending in, say, (a) or (g) (see Section 2.1.2.7 on pages 22- 23). Where other continuation classes
for noun stems have an empty string for the absolutive singular ending, the continuation class for (n)-
final nouns has the string CVCTRUNCn (CVCTRUNC is a rule trigger causing deletion of the stem-final
(ti)). Similarly, verb stems ending in vowels have a different continuation class than verb stems ending
in consonants, since many verbal inflections have different allomorphs depending on whether the stem-
final segment is a consonant or a vowel (e.g., pisuaq-tu t 'they are walking', im iq-tut 'they are drinking'
vs. tigi-rut 'they are taking off/flying away', nigi-rut 'they are eating'). For intransitive endings, additional
continuation classes are provided for verb stems ending in /it/ (e.g., tikit-chut 'they are arriving') and stems
ending in /iC/ where C is a consonant other than /t/ (e.g., qitigusiq-sut 'they are eating lunch'). These last
two categories differ from the basic consonant/vowel distinction in that the forms which justify their exis
tence {-sut, -chut, etc.) are not idiosyncratic allomorphs (as -tut and -rut are), but rather are derived from
the consonant-following allomorphs {-tut, etc.) by productive phonological processes (specifically, palatal
ization; see Section 2.1.2.2 on pages 9- 11). Langgard and Trosterud also handle "strong" consonants (see
page 6)43 and unpredictable gemination in nouns (see pages 17- 18) in part through formative classes and

43Per Langgard (personal communication, 22 March 2010) points out that the distinction between strong and weak consonants
is not really phonological, and asserts that it is best treated as a distinction between two inflectional classes. However, as argued in
Bills et al. (2010), it is not hard to treat the weak/strong consonant distinction as if it were phonological, in which case variant forms

65

continuations.
Creating separate formative classes for different phonological (or, in the case of strong and weak con

sonants, pseudo-phonological) phenomena has some drawbacks, not least of which is a high degree of
redundancy between analogous classes. For example, the suffix -qaq- 'have' is defined, identically, in five
classes: the default class, the class following noun stems with irregular geminates, the class following
noun stems whose absolutive singular form ends in [n], the class following noun stems ending in /q/, and
the class following noun stems ending in /k/. The absolutive singular first person singular possessive end
ing is defined identically in four of these five formative classes (it was omitted, probably unintentionally,
from the class following noun stems ending in /q/). Within the verbal formative classes, the three classes of
intransitive endings that follow verb stems ending in consonants (one class for stems ending in /it/, one for
stems ending in /i/ followed by a consonant other than /t/, and one for stems ending in vowels other than
/i/ followed by any consonant) are identical except for the entries for the indicative present and indicative
past mood markers, which differ only in the first consonant.

The case of the verbal continuation classes for stems ending in consonants is reminiscent of the sit
uation of French verbs whose penultimate vowel is a schwa (see Section 2.3.2 on pages 51- 53). While
those verbs could be modeled by creating separate formative classes for each ending (-ecer, -emer, -eper,
etc.), it is simpler to use the general continuation class for verbs ending in -er and write rules to handle
forms which differ from the vanilla -er paradigm. In the case of Inupiaq verbs, the creation of separate
continuation classes makes even less sense given that the rules responsible for the different forms {-tut,
-sut, -chut, etc.) apply throughout the language, not just before verb inflections, so the transducer must
incorporate them in any case.

A stronger case can be made for using separate formative classes for allomorphs such as - tut and -rut
which do not result from synchronically productive phonological processes. It would be impractical to write
rules for every such instance. The challenge in creating separate classes to deal with Inupiaq allomorphy
lies in the (relatively) large number of different conditioning environments to which various allomorphs
are sensitive (see Section 2.1.2.8 on pages 23- 25). The overlap between these environments necessitates
the creation of several different classes, adding greatly to the complexity of the lexicon's structure. For
example, with allomorphs -sima- and -ma- 'it is now known that', selection depends on whether the pre
ceding stem ends in a consonant or a vowel; with allomorphs -uk- and -suk- 'want to', selection depends on
whether the stem ends in a back consonant or some other segment (see Section 2.1.2.8 on pages 23-25).
To accommodate just these two morphemes, three continuation classes are required: one for stems ending
in a vowel, which would contain (or continue to) -ma- and -suk-, one for stems ending in a back consonant,
which would contain or continue to -sima- and -uk-, and one for stems ending in /t/, which would contain
or continue to -sima- and -suk-. Some inflectional morphemes, such as the second person singular intran
sitive imperative, are sensitive to stem length and syllable structure (see 2.1.2.8), further compounding
the problem.

Langgard and Trosterud's transducer sidesteps many of these issues due to the limited number of
suffixes it contains; its postbases exhibit little or no allomorphy, while its inflectional suffixes are slightly
more complex. A more complete transducer would not have the luxury of avoiding these issues and would
necessarily involve more complexity, either in the lexicon, the morphographemic rules, or both.
of inflectional endings can be treated as phonologically conditioned allomorphs rather than as forms conditioned by inflectional class.

66

While the structure of Langgard and Trosterud's lexicon seems unnecessarily complex, the additional
complexity is deliberate (Per Langgard, personal communication, 23 March 2010). By shifting more of
the descriptive burden from morphophonological rules to enumerated forms in the lexicon, their design
minimizes compile-time computation (and therefore the total time and resources reguired to compile the
transducer). Put another way, many of the phenomena which could be handled computationally (for ex
ample, the generation of phonologically conditioned allomorphs) but would be recomputed every time the
transducer was compiled, have instead been computed by hand, once and for all. The gains from this
approach increase as the transducer increases in coverage, and particularly as more phonological phe
nomena are handled without rules. However, these gains are offset by the additional effort needed to
create the lexicon (Bills et al. 2010:24).

2.4.4 File Structure and Compilation

The components of the transducer are spread over several files. The shell of the lexicon is in one file,
with separate files for each of the following: noun stems, noun suffixes, verb stems, and verb suffixes. Most
morphographemic rules are located in one file, while minor, optional rules for converting input words to
lowercase and tokenizing text are located in separate files.

A UNIX Makefile contains the necessary instructions to combine all the files into a single transducer.

67

Chapter 3 Implementation

The final product of the work described in this thesis is a computer program which I refer to as the "Inupiaq
lexical transducer." It is actually a pair of XFST-generated binary files: a strictly lexical transducer, and
a stem-guessing transducer. These are intended to operate in sequence as described in Section 2.3.7 on
pages 59-60.

The transducer is created by a handful of computer programs operating on a set of data files. This
process is outlined in Figure 3.1. Primary data files are represented in bold, computer programs are in
rectangles, and program outputs are italicized (I consider the morphographemic rules and instructions to
build the transducer something of a hybrid between a primary data file and a computer program). The
language or format of each file is given in parentheses. Languages and formats used include xfst and
lexc (described in Section 2.3 on pages 50- 60), Tel (Tool Command Language; see Ousterhout and Jones
[2009]), XML (Extensible Markup Language; see http://www.w3.org/TR/REC-xml/), and custom formats
described later in this chapter.

formatives
(text/Tcl)

(S ectio n 3 .2 , 6 9 -9 6)

conditioning environments
for allomorphs
(xfst/Tcl/text)

(S e c tion 3 .3 , 9 6 -1 0 4)

formative class
declarations

(text)
(S ectio n 3 .4 , 1 0 4 -1 0 5)

multicharacter symbol
declarations

(text)
(S ectio n 3 .5 , 1 0 5 -1 0 6)

l e x i c o n t o x m l
(T c l f

(S ectio n 3 .6 , 1 0 8 -1 1 0)

c o m b in e d lex ica l d a ta
(X M L)

lex ic o n
(lexc)

m o rp h o p h o n o lo g ic a l f i l te r s
(x fs t)

morphographemic rules / instructions to build transducer
(xfst)

(S ectio n 3 .8 , 1 1 4 -1 4 5)

lex ica l t ra n s d u c e r g u e s s in g tra n s d u c e r
(X F S T b in a ry)(X F S T b in a ry)

F i g u r e 3 .1 : H igh-level sch em a o f data and so ftw are u se d to prod u ce th e Inupiaq tran sd u cer

http://www.w3.org/TR/REC-xml/

68

3.1 Lexical Model

As can be seen in Figure 3.1 on the preceding page, the lexicon used in the Inupiag transducer is not
specified directly in lexc. This fact allows the transducer to use a slightly different data model than the
formative class/continuation model inherent in lexc (see Section 2.3.2 on pages 51- 53), although the model
inherits many concepts from lexc, including being built from formatives grouped together into classes.

Formatives in lexc possess the following properties: upper-language and lower-language representa
tions; membership in a formative class; and a continuation to another class or to the end of the word. To
these properties the Inupiag transducer adds properties for handling allomorphy and reduced forms (to be
explained later), a way to specify an English gloss,1 and the possibility to make a formative a member of
more than one formative class. The complete set of formative properties in the Inupiag transducer model
is given below (departures from the lexc model are italicized):

• a canonical form to be used as its upper-language representation
• one or m ore allom orphs, each o f which has:

- a (lower-language) form
- a conditioning env iro nm ent

• membership in one (or, in rare instances, m ore than one) formative class
• a continuation
• an optional English gloss
• an optional r ed u c ed form (s tem s only)
For inflectional endings, the canonical form will convey grammatical information such as grammatical

category, number, case, or subject through the use of grammar tags (+N, +P1, +Abs, +3Sg, etc.). For all
suffixes, lower-language forms may include a suffix attachment pattern (see Section 2.1.2.6 on pages 18
22).

Formative classes in the Inupiag transducer serve similar purposes to their lexc counterparts, but the
mechanisms by which they do so are conceptually different. In lexc, files are organized in terms of for
mative classes. Members of these classes are not limited to actual word formatives, but may also include
"convenience" entries which serve to insert, for example, flag diacritics (see Section 2.3.5 on pages 55- 58),
rule triggers (see Section 2.3.4 on pages 54- 55), or grammar tags into the lexicon. One particularly inter
esting class of non-linguistic entries is empty strings, which have no overt form but provide a continuation
to some other formative class. In effect, these empty-string entries allow the class to which they belong
to subsume, augment, or combine with the class to which they continue.2 The notion of an entity whose
sole function is to extend membership in one formative class to all members of another formative class is
important enough to merit a name; I will refer to such an entity as an epsilon continuation (epsilon being
the symbol conventionally used to represent empty strings in finite-state machines).

In the Inupiag transducer, lexical data is organized primarily in terms of individual formatives, rather
than formative classes. Rather than treat flag diacritics (used to enforce valence and number limitations)

1The gloss is not used in the transducer but may make the data files more readable, and may be useful if the lexicon is used in
other projects.

2Subsuming, augmenting, and combining are not meant to be mutually exclusive operations, but rather three different ways to
view the same operation.

69

and epsilon continuations as formatives, which clearly they are not, the Inupiaq transducer treats them as
properties of specific formative classes.

In addition to being grouped into classes, formatives in the Inupiaq transducer are also categorized
as stems, postbases, inflectional endings, or enclitics. Each category imposes a set of restrictions on the
allowable properties of its members:

• Stems do not generally exhibit allomorphy (each stem is specified with a single allomorph whose
conditioning environment is all-inclusive), and all stems in a particular formative class must have
the same continuation class. No stem may belong to more than one class, although an equivalent
effect can be achieved with epsilon continuations.3

• Individual postbases may not belong to more than one class.
• All inflectional endings in a particular formative class share a common continuation class.
• Enclitics do not exhibit allomorphy. All enclitics, regardless of the formative class to which they

belong, share a single continuation class.
For purposes of imposing restrictions on specific categories as just described, reduced forms are con

sidered stems, and post-inflectional derivational formatives are treated as postbases. The demonstrative
prefix ta(t)- is considered part of the demonstrative stems.

3.2 Formative Data Files

Formative data for the Inupiaq transducer's lexicon is specified in four separate files, all in the data
directory: stems.txt, postbases.txt, inflections.txt, and enclitics.txt. Rather than use lexc, which Beesley
(2004a:2) has called a "dead end" (see Section 2.3.6 on pages 58- 59), these files use a set of custom
formats. A key advantage of these formats is ease of data entry. Recall that the lexc format requires
formatives to be organized into formative classes that rarely correspond to the way linguists organize
their data. In contrast to that approach, the formats used for this project allow stems, postbases, and
enclitics to be specified in whatever order one wishes, including the order in which they appear in a
dictionary. Inflectional data is specified in terms of tables, mimicking the way linguists generally structure
paradigms. By freeing the computational morphologist from the need to drastically reorganize the data to
be modeled, these formats make data entry much more straightforward.

The formats are text-based rather than XML-based; this is because writing XML by hand is cumbersome
and error-prone. An anonymous reviewer of Bills et al. (2010) pointed out that XML editing software would
adequately address these concerns, and in retrospect it would have been wise to store lexical data directly
in XML. However, the formats created for this project are not entirely without merit; in particular, they
are simple enough that

• they can be edited in any Unicode-compatible text editor,
• well-formedness and validity are trivially checked, and
• structure is minimal, but adequate to describe the appropriate data.
3To be more specific, one way to make stem a a member of classes a and ft, where ft is the more restricted class, would be to

include a directly in ft, and create an epsilon continuation from a to p.

70

At a later stage in the compilation of the Inupiaq transducer, the lexical data entered using these formats
is "uptranslated" to XML (see Section 3.6 on pages 108- 110), so that it can be more easily used in other
projects.

Because most of the lexical data comes from sources by Edna MacLean (1981; 1986a; 1986b; n.d.b;
n.d.a), these files use an orthography based on her notational convention, which differs slightly from the
standard Inupiaq orthography in that "strong q" (/q/) is written (Q), and "strong i" (/i/) is written (I) (the
latter can optionally be written (i) in cases where surrounding letters distinguish it from "weak i", for
example, in a vowel cluster or preceding a palatalized consonant). One slight variation from MacLean's
orthography is used for the suffix -miit- 'be located in, at, o n ' and the various forms of the demon
strative ta'inna 'in that way or manner', where the HI occurs in a vowel cluster (see page 12); in these
exceptional cases, HI is represented by the symbol (e).

3.2.1 Stems

The file data/stems.txt contains all stems in the lexicon and associated metadata. It is divided into
four sections: Continuations, LongDistanceDependencies, GrammaticalCategoryTags, and Morphemes.
Entries in the Morphemes section define all the stems in the lexicon, as well as a handful of fully-inflected
words. Each entry in this section is assigned a category code; category codes are used by the other sec
tions to associate metadata with the stems. Section Continuations associates each category code with a
continuation class; section LongDistanceDependencies assigns flag diacritics to certain category codes;
and GrammaticalCategoryTags appends appropriate grammar category tags to upper-language represen
tations of members of particle categories.4

3.2.1.1 Syntax

Each section begins with the word SECTION followed by a space and the name of the section. Data
items in each section are separated by newline characters. Comments begin with an exclamation point
and are ignored, as are blank lines.

Entries in the section Continuations consist of a category code followed by a space and the name
of a continuation class (formative classes are defined in data/classes.txt; see Section 3.4 on pages 104
105). There should be exactly one entry in this section for each category code used in the file. Declaring
continuation classes for unused category codes is not an error and has no effect, but failing to declare a
continuation class for a category code which is used in the Morphemes section is an error.

The section LongDistanceDependencies is used to associate specific flag diacritics with category codes
that involve long-distance dependencies (specifically, restrictions on inflectional valence for verbs and
restrictions on grammatical number for certain nouns). Each entry begins with a category code followed
by a space and a space-delimited list of xfst flag diacritics which apply to that category. The complete
contents of this section are given in Figure 3.2 on the next page.

Note that verb valence is handled with positive flag diacritics while number restrictions are handled
4While not absolutely necessary, including grammatical category tags in analyses makes the transducer output more useful for

applications such as automatic syntactic analysis. Tagging of uninflected grammatical categories happens in the stem component of
the lexicon; tagging of inflected categories happens in the inflection component (see page 88).

71

SECTION LongDistanceDependencies
i @P.VALENCE.INTR@
t @P.VALENCE.TR@
it @P.VALENCE.INTR@ @P.VALENCE.TR@
n2+ @U.NUMBER.DU@ @U.NUMBER.PL@
nl2 @U.NUMBER.SG@ @U.NUMBER.DU@
n l- @U.NUMBER.SG@
n2- @U.NUMBER.DU@
n3- @U.NUMBER.PL@

F igure 3.2: Contents of the LongDistanceDependencies section of the stem file

using unification flag diacritics.5
The section GrammaticalCategoryTags is used to append grammatical category tags to the end of

upper-language representations of particles. All words in the upper language have a grammatical category
tag; for inflected words, these tags are added after the inflectional ending and are defined along with those
endings (see Section 3.2.3.2 on pages 87- 92). Because particles are uninflected and not subject to postbase
suffixation, grammatical tags can be added in the stem file. Entries in this section begin with a category
code followed by a space and a grammatical category tag. (The tags begin with a percent sign to tell lexc
to treat the following greater-than sign, which is used in the transducer as a morpheme boundary marker,
as a literal character.) The contents of this section are given in Figure 3.3.

SECTION GrammaticalCategoryTags
SECTION GrammaticalCategoryTags
conj %>+Conj
adv % >+Adv
interj %>+lnterj
quest % >+Adv

F igure 3.3: Contents of the GrammaticalCategoryTags section of the stem file

The Morphemes section makes up the bulk of the file. Items in this section consist of a stem, a category
code, a reduced form if applicable, an optional English-language gloss, and optional comments. Some
examples are given in Figure 3.4 on the next page. All Inupiaq stems cited in the next four paragraphs
correspond to example entries given in this figure.

An entry minimally consists of a stem followed by white space followed by a category code, as with
pui- 'to emerge, surface'. Some entries in MacLean (1981) are made up of more than one word; these are
arguably syntactic rather than morphological constructions and as such are not used in the transducer,
but they are included in the stem file for completeness, as other applications may wish to use them. Multi
word lexemes are surrounded by curly braces, as with napaaqtum aqarg iq 'spruce grouse'. A stem may
include separate upper- and lower-language representations; these are separated with a colon, as with

5For an explanation of flag diacritics, see Section 2.3.5 on pages 55- 58. For flag diacritics associated with postbases, see
pages 77- 78. For flag diacritics associated with inflectional endings, see pages 86- 87.

72

SECTION Morphemes

aasii conj ~asii
aiyugaaqtlq i # to invite [someone/something] ! detransitivized form of aiyugaaq (2:91)
{napaaqtum aqarglq} n
niaq interj # don't do that
pui i
punniQ n ! student dictionary lists punnlQ, but Kaplan's dissertation and MacLean's draft dictionary both list punniQ
qayuqYTCHn
su>+Pro+Abs+Sg:suna pro
taglruqHISTORICCONSONANT n

F igure 3.4: Example entries from the M orphemes section of the stem file

suna 'what; what thing'. Some stems are subject to lexically conditioned morphophonological events,
particularly irregular gemination (see pages 17- 18); the lower-language representation of these stems
ends with a multicharacter rule trigger symbol such as YTCH or HISTORICCONSONANT (see specification of
qayuq 'broth' and tag iuq 'salt; ocean' in Figure 3.4).

If a stem can occur as a reduced form (see on pages 34- 36), the surface form of the reduced form is
given after the category code and marked with a tilde, as with aasii 'and [then]'. The upper-language form
of the stem will also be used for the reduced form, so that a word like iglarraqsivluniasii 'and then he began
laughing' (MacLean 1986h:10) will produce the analysis iglaq>rraqsi>+V+Contl+Real+3Sg|aasii>+Conj

with the final formative analyzed as aasii rather than asii (the pipe symbol [|] marks the left boundary
of a reduced form).

English-language glosses are optional; they were not originally part of the file format but were added
when data from Webster and Zibell (1970) was added because glosses from that dictionary were already
available in electronic format and did not need to be re-entered. For the most part, glosses have not been
added to entries other than those from Webster and Zibell, although this could be done if the need arose.
Glosses begin with a hash mark (#) and optional whitespace. Glosses follow the category code and reduced
form (if any); see niaq 'don't do that!'.

Comments are also optional and begin with an exclamation point. These must occur to the right of any
meaningful data (see punniq). They are strictly for the benefit of those reading and editing the file and
are completely ignored by the computer. An entry may of course contain a gloss and a comment, as with
aiyugaaqliq.

3.2.1.2 Category Codes

As was seen in the previous section, category codes are used to assign continuation classes to items,
to impose long-distance dependency constraints as appropriate, and to add grammatical category tags to
the upper-language forms of particles. The list of category codes used in the stem file is given in Table 3.1
on the following page.

Some of the categories in Table 3.1 deserve some additional explanation. Category is used in cases

73

T a b le 3.1: Stem category codes and associated m etadata

Code Explanation Continuation class Other properties
n nouns NounSuffixes
i intransitive verbs VerbSuffixes intransitive valence flag dia

critic
it am bitransitive verbs VerbSuffixes transitive and intransitive va

lence flag diacritics
t transitive verbs VerbSuffixes transitive valence flag diacritic
interj interjections EncliticsOrEnd gram m ar tag >+lnterj
conj conjunctions EncliticsOrEnd gram m ar tag >+Conj
adv adverbs EncliticsOrEnd gram m ar tag >+Adv
* inflected words with morphological

information included directly in the entry
EncliticsOrEnd

N proper nouns NounSuffixes
da dem onstrative adverbs DemAdvSuffixes
dP dem onstrative pronouns DemProSuffixes
dpna irregular forms of dem onstrative

pronouns th a t do not occur in the
absolutive case

dpns irregular forms of dem onstrative
pronouns th a t do not occur in the
singular

DemProNonAbsSuffixes

n l2 noun stem s which occur only in singular
and dual

NounSuffixes singular and dual num ber flag
diacritics

n l- noun stem s which occur only in singular
(singularia tantum)

NounSuffixes singular num ber flag diacritic

n2+ noun stem s which occur only in dual and
plural (pluralia tantum)

NounSuffixes dual and plural num ber flag di
acritics

n2- noun stem s which occur only in dual NounSuffixes dual num ber flag diacritic
n3- noun stem s which occur only in plural NounSuffixes plural num ber flag diacritic
num num ber stems NumSuffixes
pos positional noun stems PositionalBaseSuffixes
pro personal pronouns EncliticsOrEnd
kisi forms of the pronoun kisi 'X alone' KisiSuffixes
quest interrogative particles EncliticsOrEnd

where an entire inflected word, rather than just the stem, is included in the stem file. This is done in
cases where the inflection differs enough from the standard pattern that it is as easy or easier to enumer
ate the forms explicitly than to create special continuation classes to handle the situation. For example,
i'nna and ta'inna may be treated as "defective" demonstrative adverbs; in addition to their basic ("interjec-
tional") form (see on page 27), they may occur in terminalis and similaris cases, but not in vialis or ablative
(MacLean 1986h:53-54). Rather than create a special inflectional continuation class for these two stems,
I just list all inflected forms in the stem file:

74

inna> + Dem+Adv:enna *

tat>inna>+Dem+Adv:taenna *

inna> + Dem+Adv+Trm:ennamun *

tat>inna>+Dem+Adv+Trm:taennamun *

inna> + Dem+Adv+Sim:ennatun *

tat>inna>+Dem+Adv+Sim:taennatun *

Another set of words included in category are irregular first person possessed relative forms of
kinship terms: aaka-a '(of) my mother', aapa-a '(of) my father', aana-a '(of) my grandmother/great-aunt',
and ataa taa '(of) my grandfather'. The stems of these nouns are otherwise regular and are listed separately
in the stem file as normal nouns, but these four irregular forms are listed in their full forms:

aaka>+N + Rel+Sg+lSg:aakaa *

aapa> + N+Rel+Sg+lSg:aapaa *

aana> + N+Rel+Sg+lSg:aanaa *

aataata> + N+Rel+Sg+lSg:aataataa *

Categories 'da' (containing demonstrative adverbs) and 'dp' (containing demonstrative pronouns) dif
fer from most other categories in that the listed forms are not stems but complete citation forms. Theoret
ically, demonstrative stems fall into a single category, but there can be considerable differences between
the adverbial and pronominal manifestations of those stems, as can be seen in Table 3.2 below (adverbs in
the table are given in "interjectional" (citation) form; pronouns are given in nominative singular). Since
most non-linguists are unaccustomed to demonstrative stems, using citation forms for the upper-language
representations makes the transducer easier for a larger audience to use. Within the transducer, mor
phographemic rules derive the stems from the citation forms (see Section 3.8.2.12 on pages 126- 128).

T a b le 3.2: Demonstrative stems realized as adverbs and pronouns

Stem Adverb Pronoun Meaning
uv- uvva una object or area tha t is restricted, visible, and near to the speaker
mar- marra manna object or area near the speaker, extended, and visible
qakim- qaqma qakimna object or area outside or next door, distant from both speaker and

listener, and not visible

The odd category 'dpna' (demonstrative pronoun, no absolutive) exists specifically for a variant of the
pronoun igna denoting a restricted, visible object or area away from both speaker and listener, down the
coast to the west or across a river or large area. Most demonstrative pronouns have dialectal variants
for inflected singular forms in cases other than absolutive, and these variants can be reliably generated
by morphographemic rules (see page 128); but igna has a set of variants beginning with irr- which are
not generated by those rules. Rather than create special rules to generate these forms, I define the stem
entry igna:irr dpna, as well as a special continuation class 'DemProNonAbsSuffixes' containing all singular

75

non-absolutive inflectional endings for demonstrative pronouns (see Section 3.2.3.1 on pages 84- 87). An
alternative to this approach would have been to create categories similar to but having the same con
tinuation classes as inflected demonstrative pronouns, and to explicitly enumerate all forms of igna that
begin with irr-. Because demonstrative continuation classes are somewhat complex, however, the current
approach is probably easier.

The category 'dpns' (demonstrative pronoun, no singular) has a similar raison d'etre. Demonstrative
pronoun manna has predictable dual and plural forms beginning with matk-. But variant forms beginning
with mak- and makk- also exist, and the rule described page 128 will not generate these. To deal with
this situation, the stem file contains the entries manna:ma dpns and manna:mak dpns. The continuation
class for these special stems is 'DemProNonSingularSuffixes'; an instruction in the inflectional ending file
populates this class with only non-singular demonstrative pronoun inflectional endings (see Section 3.2.3.1
on pages 84- 87).

A number of categories exist specifically to limit the grammatical numbers for which particular nominal
stems can be inflected: 'nl2', 'nl-', 'n2+', 'n2-', and 'n3-'. All of these are used at least once except 'nl2'
and 'nl-'; the fact that they are defined but not used has no impact on the transducer. I treat limitations
of grammatical number as a long-distance dependency similar to limitations on verb valence, and use the
flag diacritic NUMBER to enforce this restriction (see Section 2.3.5 on pages 55- 58). Many members of
the 'n2 + ' category are specified with an upper-language form identical to the (dual or plural) citation form
of the stem, and with a lower-language form without this number inflection. For example, the entry for
kam ikiuuk 'pants' is kamik!uuk:kamik!uk n2+. The uninflected stem, kamikiuk, is used within the transducer,
producing correct suffixed forms (for example, kam ikiuktuq tuq 'he is wearing pants'), but for purposes of
specifying or generating an analysis, the more familiar form kamikiuuk is given even though this bears
dual inflection. Members of the categories 'n2-' and 'n3-' are specified in a similar manner.

Category code 'num' is used for number stems such as atausiq 'one' and m alguk 'two'. Numbers in
Inupiag are grammatically nouns, but there are a handful of postbases which attach only to number stems.
Having a separate category for numbers makes it possible to ensure that both general nominal postbases
and number-specific postbases may be suffixed to number stems.

Category code 'pro' is used for personal pronouns. All forms of personal pronouns are explicitly enu
merated in the stem file. The basic personal pronouns are given with upper-language forms consisting
entirely of grammatical tags; for example, uvaga ' I ' is specified as +Pro+lSg+Abs:uvaga pro; Higinnun 'to
them (3 or more)' is specified as +Pro+3PI+Trm:iliginnun pro. Also included in category 'pro' are forms of
kina 'who?', kisu 'which one?', iluqaq 'all of X' (e.g. i iuqagma 'all of me'; iiuqaisa 'all of them [3 or more]'),
and ta m a q 'all of X' (e.g. tam a gm a 'all of me'; tam aisa 'all of them [3 or more]'). Forms of the stem kisi 'X
alone' are also pronominal, but are given the category code 'kisi' to allow them to continue to the enclitic
= tch iaq 'by X's self' (Edna MacLean, personal communication, 2 July 2009). Example entries are given
below:

76

Example entry
kina>+Pro+Sg+Abs:kina pro

Gloss
'who?'
'from whom (3 or more)?'
'which two?'
'from which one?'
'all of me'

kina>+Pro+PI+Abl:kitkunnin pro

kisu>+Pro+Du+Abs:kisuk pro

kisu>+Pro+Sg+Abl:kisumin pro

iluqaq> + Pro+lSg:iluqagma pro

iluqaq> + Pro+3PI+Trm:iluqaqannun pro 'to all of them'

tamaq> + Pro+lSg:tamagma pro 'all of me'

tamaq> + Pro+3PI+Trm:tamaqannun pro 'to all of them'

'all of me'

kisi> + Pro+3RSg:kisiml kisi

kisi> + Pro+3Sg:kisian kisi

kisi> + Pro+2Du+Abl:kisivsignin pro

'he alone'
'him alone'
'from the two of you alone'

Forms of kina and kisu are not marked for person; the person of kina is by definition unknown, and
kisu can only be 3rd person. Forms of iluqaq, tamaq, and kisi are not marked for case except in terminalis
or ablative. They cannot occur in modalis, similaris, vialis, or locative case, and it would be inappropriate
to label their default form as either absolutive or relative,-in this form, they may function as subjects
or objects of transitive verbs or subjects of intransitive verbs (in the 3rd person, a distinction is made
between "reflexive" and "non-reflexive" forms; non-reflexive forms are used as objects of transitive verbs,
while reflexive forms are used as subjects of transitive or intransitive verbs).

3.2.1.3 Sources and Data Entry Methodology

Stem data in the transducer comes from three main sources: MacLean (1981, n.d.a) and the electronic
version of Webster and Zibell (1970). Additionally, MacLean (1986a, b , n.d.h) were mined for stems. Of
these, by far the most comprehensive is MacLean (n.d.a), but permission to use this resource was not
secured until after the other stem data had already been entered; otherwise, I probably would not have
bothered with the other material. There is a certain amount of overlap between the lexical coverage of
the sources used, but while this has made data entry less efficient, it has not had any detrimental effects
on the transducer itself.

Stems from MacLean (1981) were typed by myself as well as Carnegie Mellon University undergradu
ates Ida Mayer, J. Eliot DeGolia, and Sai Venkateswaran and University of Pittsburgh undergraduate Paul
Lundblad; later, I tagged each stem with an appropriate category code. The rest of the data entry was
carried out by me. The content of Webster and Zibell (1970) was extracted from the Internet using a Tel
script and converted into a spreadsheet, where entries marked as Kobuk (Malimiut) forms were filtered
out, inflectional endings manually removed from words, instances of (i) and (q) marked as strong or weak
when such distinctions could be made (stems for which a distinction could not be made were omitted
from the lexicon); and category codes added. Stems from the end-of-chapter vocabulary lists in MacLean
(1986a, h, n.d.h) were added directly to the stem file together with appropriate category codes. Similarly,
stems from MacLean (n.d.a) were listed and categorized directly in the stem file.

For most stems, it was clear which category code to assign. The overwhelming majority of stems in the
lexicon are nominal or verbal, and the dictionary definitions of most verbal stems give a clear indication of

77

the stem's valence. I have classified stems that did not seem to fit into any other category as adverbs, and
while I think this characterization is mostly accurate, the adverb category probably deserves a thorough
review at some future time.

3.2.2 Postbases

Postbases and post-inflectional derivational suffixes are defined in the file data/postbases.txt. The file
is structured similarly to data/stems.txt, but must take into account the specific properties of postbases:

• postbases must be categorized along two axes: the class of stems to which they attach, and the class
of stems which they derive

• many postbases exhibit phonologically-conditioned allomorphy; each allomorph needs its own lower-
language form, but all allomorphs should map to the same upper-language form; also needed is a
description of the conditions under which each allomorph surfaces

• some postbases will be subject to valence constraints imposed by stems (for example, attaching
only to intransitive stems); others will impose their own long-distance constraints (for example,
valence changers and denominal postbases with an inherent grammatical number) and still others
will neither impose nor be subject to any particular valence or grammatical number constraints

To account for these facts, the sections LongDistanceDependencies and Morphemes are structured
slightly differently from their counterparts in the stem file. There is also an additional section, Categories.
A key difference from the stem file is that entries in the Morphemes section are given two category codes:
an attaching category code defining the type of stem to which they may attach, and a resulting category
code defining the type of stem the postbase derives.

3.2.2.1 Syntax

As with the stem file, sections begin with the word SECTION followed by a space and the name of the
section; items in each section are separated by newline characters; and comments (which begin with an
exclamation point) and blank lines are ignored.

The section Categories associates each attaching category code with a specific formative class. Each
attaching category code used in the Morphemes section should correspond to exactly one entry in the
Categories section. Each entry consists of an attaching category code followed by a space and the name
of the corresponding formative class. The contents of this section are given in Figure 3.5 on the following
page.

The section Continuations associates each resulting category code with a specific continuation class.
The format is exactly the same as that of the Categories section. The contents of this section are given in
Figure 3.6 on the next page.

The section LongDistanceDependencies is guite different from its stem-file counterpart. This is be
cause postbases may impose long-distance dependencies based on either the attaching category code, the
resulting category code, or both.

Entries in this section consist of an expression followed by a space followed by a space-delimited list
of flag diacritics. The expression is surrounded in curly braces and consists of one or more triples of the

78

SECTION Categories
n NominalPostbases
num NumberPostbases
i VerbalPostbases
t VerbalPostbases
it VerbalPostbases
pos PositionalBasePostbases
DemAny DemAnyPostlnflection
DemAdvAbl DemAdvAblPostlnflection
DemAdvTrm DemAdvTrmPostlnflection
DemAdvVia DemAdvViaPostlnflection
DemAdvLoc DemAdvLocPostlnflection
DemProLoc DemProLocPostlnflection
NTrm TerminalisNounPostlnflection
NLoc LocativeNounPostlnflection

F igure 3.5: Contents of the Categories section of the postbase file

SECTION Continuations
n NounSuffixes
n2- NounSuffixes
n3- NounSuffixes
i VerbSuffixes
t VerbSuffixes
it VerbSuffixes
same VerbSuffixes
C onti Contllnflection
ContNeg ContNeglnflection
Cond Condlnflection
Conseq Conseqlnflection
* EncliticsOrEnd

F igure 3.6: Contents of the Continuations section of the postbase file

form <CODE> <COMPARISON OPERATOR> <VALUE>; if an expression contains more than one triple, they are
joined by logic operators && (logical and) or || (logical or). <CODE> is either "CATEGORY" (the attaching
category code) or "CONTINUATION" (the resulting category code). <COMPARISON OPERATOR> is either
"eq" (equals), "ne" (does not equal), "in" (is a member of the following list), or "ni" (is not a member
of the following list). If <COMPARISON OPERATOR> is "eq" or "ne", then <VALUE> should be a category
code enclosed in double quotes (""); if <COMPARISON OPERATOR> is "in" or "ni", then <VALUE> should be
a space-delimited list of category codes enclosed in curly braces.

Each expression defined in the LongDistanceDependencies section is evaluated against each entry
in the Morphemes section. If the expression evaluates to true, then the flag diacritics associated with
that expression are applied to the postbase defined in the Morphemes section entry. The contents of the
LongDistanceDependencies section are shown in Figure 3.7 on the following page.

The Morphemes section contains all the postbases defined in the transducer. Entries in this section

79

SECTION LongDistanceDependencies

! all deverbal postbases clear valence
{CATEGORY in {i t it} && CONTINUATION ni { i t it sam e}} @C.VALENCE@

! dual-only postbases require dual inflection
{CONTINUATION eq "n2 -"} @U.NUMBER.DU@

! plural-only postbases require plural inflection
{CONTINUATION eq "n3 -"} @U.NUMBER.PL@

! intransitive-only postbases require an intransitive stem
{CATEGORY eq " i" } @R.VALENCE.INTR@

! transitive-only postbases require a transitive stem
{CATEGORY eq "t "} @R.VALENCE.TR@

! postbases that create verbs need to set appropriate transitivity flags
{CONTINUATION eq " i" } @RVALENCE.INTR@
{CONTINUATION eq " t " } @RVALENCE.TR@
{CONTINUATION eq " it" } @RVALENCE.INTR@ @RVALENCE.TR@

F igure 3.7: Contents of the LongDistanceDependencies section of the postbase file

consist of a form specification, a space, an attaching category code, another space, a resulting category
code, an optional English-language gloss and an optional comment. Category codes will be explained in
greater detail in Section 3.2.2.2 on pages 80- 83. Glosses begin with a hash mark and continue until the
beginning of a comment or the end of the line. Comments begin with ane exclamation point and continue
to the end of the line; they are ignored in the process of building the lexicon.

The form specification may be quite complex. In its simplest form, it consists of a suffix attachment
symbol followed (with no intervening space) by the orthographic form of the postbase (in MacLean's or
thography) which will serve as both the upper-language and lower-language representation of the post
base. The suffix attachment symbols are based on the ones used by Edna MacLean (see Section 2.1.2.6,
particularly Table 2.4 on page 19). The symbols used in the transducer are given in Table 3.3.

Table 3.3: Suffix attachm ent symbols used in the transducer (see also Table 2.4)

Transducer symbol Corresponding symbol in MacLean system
+ +

/ -
+- ±
-+ +

80

If a postbase has multiple allomorphs, the form specification is enclosed in curly braces and consists
of space-separated pairs of conditioning pattern names and allomorph forms. Conditioning patterns are
defined in data/patterns.txt (see Section 3.3 on pages 96- 104). The first allomorph form given is used as
the upper-language representation for all allomorphs.

Shorthand annotations exist for some common forms of allomorphy. If the initial consonant alternates
depending on whether the preceding phoneme is a consonant or a vowel, the consonant-following pho
neme can be given, followed by two forward slashes and the vowel-following phoneme, followed by the
non-alternating part of the morpheme: -+t//liq (-tiq-/-liq- 'quickly, abruptly'). If a postbase begins with a
consonant only when the preceding phoneme is a vowel or It/, that consonant may be surrounded by square
brackets: +[s]uk {-suk-/-uk- 'to want to'). Both of these conventions come directly from MacLean (1981).

In rare cases, it's necessary to specify an upper-language form for a postbase that is different from
the lower-language form. This is necessary for post-inflectional suffixes, where the upper-language form
contains grammatical tags, which should not appear in a surface form. It is also done for postbase -
gaa gru it 'many' whose citation form includes the absolutive plural ending -it, which must be removed
from the surface form so that other inflectional endings (say, the ablative plural) may be correctly suffixed
to it. A comma is used to specify separate upper- and lower-language forms; there must be no space before
or after the comma. Only the first allomorph in a list can have separate upper- and lower-language forms.

Example postbase entries are given in Figure 3.8.

Example entry
-gaaguit.-gaaguk n n3-
+gruinnaQ n n
+N+Via+Sg%>kuaq,'-kuaq n

Gloss
many
merely, only, ju s t a ____
to go by way of a (which is
singular)
(intrans.) to cause or allow oneself to
b e ed; (trans.) to allow or cause
him/it t o , b e ed, or rem ain

{?V +pkaq ?C -+ t it } it it

+[s]uk it same
-+t//liq it same

to w ant to
quickly, abruptly

F i g u r e 3 .8 : Example entries from the M orphemes section of the postbase file

3.2.2.2 Category Codes

The complexity of the postbase file having two sets of category codes is offset somewhat by the fact
that the number of codes in the two sets combined is smaller than the number of codes defined in the stem
file. The complete set of codes is shown in Table 3.4 on the following page.

81

Table 3.4: Postbase category codes

Attaching category codes

Code Explanation
n noun-suffixing postbases
num number-suffixing postbases
i postbases suffixing intransitive verbs
t postbases suffixing transitive verbs
it postbases suffixing verbs of either valence
DemAdvAbl post-inflectional suffixes for dem onstrative adverbs in ablative case
DemAdvTrm post-inflectional suffixes for dem onstrative adverbs in term inalis case
DemAdvVia post-inflectional suffixes for dem onstrative adverbs in vialis case
DemAdvLoc post-inflectional suffixes for dem onstrative adverbs in locative case
NTrm post-inflectional suffixes for nouns in term inalis case

Resulting category codes

Code Explanation
n de-nominal suffixes
n2- inherently dual de-nominal postbases
n3- inherently plural de-nominal postbases
i inherently intransitive de-verbal suffixes
t inherently transitive de-verbal suffixes
it inherently am bitransitive de-verbal suffixes
same de-verbal suffixes with no inherent valence
* suffixes which do not perm it additional derivation or inflection

Attaching category codes 'DemAny', 'DemAdvAbl', 'DemAdvTrm', 'DemAdvVia', 'DemAdvLoc', 'Dem-
ProLoc', 'NTrm', and 'NLoc' are used for post-inflectional suffixes and apply to only a few suffixes, given
in Figure 3.9 (see pages 30- 34).

-aglaaq NTrm i
OPTGEMaq DemAdvVia i
+ mlk DemAdvAbl i
+ mln DemAdvAbl *
+ nmun DemAdvTrm *
+ nmuk DemAdvTrm i
+q DemAdvAbl DemAdvTrm i
-qpanl DemAdvLoc *
-qpanin DemAdvLoc *
-qpanun DemAdvLoc*
+ qsiuq {NLoc DemAdvLoc DemProLoc} i
{?Always {saagruk%>+Adv,-saagruk saaq% >+Adv,-saaq}} DemAny i

F igure 3.9: Post-inflectional suffixes im plem ented in special categories

82

Most nominal post-inflectional suffixes are given a slightly different treatment (see listing in Fig
ure 3.10). Unlike the suffixes in Figure 3.9, which are strictly separated from the inflectional endings they
follow, the nominal suffixes are encoded as compounds of an inflectional ending and a post-inflectional suf
fix, and categorized with attaching category code 'n' like more typical noun-suffixing postbases. In their
upper-language forms, they contain both grammatical tags (indicating the case from which the suffix was
derived and the grammatical number it conveys) and an orthographic form which is a blend of the singular
inflectional ending and the following suffix. In their lower-language forms, they consist of a blend of the
actual ending, whatever its grammatical number, and the following suffix. The inclusion of case tags in
the upper-language representation of these suffixes is unorthodox, but provides consistency with the treat
ment of derivational post-inflectional suffixes. The use of a blended citation form reflects the treatment
of these suffixes in MacLean (1986a), but creates some inconsistency with demonstrative post-inflectional
suffixes. However, this inconsistency comes from the divergent treatment of these two sets of suffixes in
MacLean (1986a, h); since students and scholars of Inupiag are most likely to associate these suffixes with
the citation forms given in these two books, I believe it makes sense to reproduce them using these forms,
consistent or not.

+N+Loc+Sg%>mlet,/mlet n i
+ N+Loc+Du%>mlet,ABSDUAL/nlet n i
+N+Loc+PI%>mlet,/nlet n i

+N+Abl+Sg%>minoaq,/mini]aq n i
+ N+Abl + Du%>min0aq,ABSDUAL/nin0aq n i
+N+Abl+PI%>minoaq,/nini]aq n i

+N+Trm+Sg%>muk,/muk n it
+ N+Trm+Du%>muk,ABSDUAL/nuk n it
+N+Trm+PI%>muk,/nuk n it

+N+Via+Sg%>kuaq,'-kuaq n i
+ N+Via + Du%>kuaq,ABSDUAL/kuaq n i
+N+Via+PI%>kuaq,/tiguaq n i

F igure 3.10: Post-inflectional suffixes im plem ented as "hybrids" within the standard nominal suffix formative class

Resulting category codes 'n2-' and 'n3-' apply only to a handful of postbases, such as -giik 'a relationship
where one has another as his/her/its ' (MacLean n.d.a) and -gaaguit 'many'.

Resulting category codes 'i', 't', and 'it' involve implicit valence. Most postbases categorized with
resulting category code 'it' are noun-suffixing deverbal postbases such as -illiuq- 'to need or experience
a lack o f (for him/her/it/etc.); to have difficulty providing for him/her/it/etc.' and -tchiaq- 'to
acquire a n ew (for him/her/it/etc.)'. Valence-increasing suffixes such as -tit-/-pkaq- (causative) are
also currently categorized this way to allow for intransitive inflection (which indicates that the direct
object is co-referential with the subject). Since this property is shared by transitive verbs generally, this
is probably a design flaw.

83

Resulting category code 'same' is used with verbal postbases to indicate no change in valence. It
is used with postbases such as -anik- 'previously, already', -kagit- 'to delay ing, n o t early', and
-(si)ma- 'it is now known that'.

3.2.2.3 Sources and Data Entry Methodology

Initially, postbase data was drawn from MacLean (1981, 1986a, b, n.d.h), with a handful of additional
postbases drawn from Webster and Zibell (1970). When permission was secured to use MacLean (n.d.a),
an entirely new postbase file was created containing only material from this dictionary, with the excep
tion of five "post-inflectional" demonstrative suffixes from MacLean (1986h:ch. 16), which are defined
in the dictionary but were copied from the previous postbase file where they were conveniently grouped
together. Other than these five suffixes, no material from the previous postbase file is currently used in
the transducer.

Allomorphs and suffix combination patterns were checked against examples given in the dictionary
and adjustments made as necessary to ensure that each postbase would generate the proper forms in
combination with the transducer's morphographemic rules. For example, a number of postbases in the
dictionary begin with the string +[g], for example +[g]i- 'to have him/her/it for one's '; +[g]iit- 'to have
a bad ; to have a ache'; +[g]Ik- 'to be tasty, beautiful, handsome; to have a beautiful, good '.
When these suffixes attach to a stem ending in a single consonant, the resulting word contains a single
consonant at the boundary of the two morphemes: (g) if the stem ended in (t) or (k), and (g) if the stem
ended in (g). Entering these postbases using the notation +[g] will not yield these results, so instead the
postbases are entered with two allomorphs, one that begins with -g which occurs following stems ending
in (g), and another that begins with (-g) and occurs in all other environments.

Postbases marked "limited" in MacLean (n.d.a) were not entered into the postbase file, because they
represent historic postbases whose only use now is in lexicalized forms (which would be listed in the
stem file). Allomorphs listed with combination patterns = or ~ were almost always excluded from the file
because these patterns are mostly unproductive and generate large numbers of incorrect analyses when
associated with short suffixes. Currently, only three allomorphs in the transducer are specified with the =
pattern: -ijaq(-) 'one without, area which lacks ; one who is n ot ; to be or do without '; -iqi-
(variant of -liqi-) 'having to do with hunting, preparing, repairing, cleaning, associating, messing around
with '; and -uraq 'a smaller version of a ; a diminutive ; immediate vicinity o f '. Only one
allomorph is specified with the ~ pattern: -qsraq- 'to continue to ; to experience '; its application
is limited to stems ending in fH.

3.2.3 Inflectional Endings

The inflectional ending file is guite different from all other formative files, which is fitting given that
inflectional endings are guite different from all other formatives. In reference works, stems, postbases, and
enclitics are presented in list format, as dictionary or glossary entries. In contrast, inflectional endings are
given in tabular format, in paradigms. As lexc is inherently list-like, the original purpose of the inflectional
ending file (or, more accurately, its predecessor) was to generate a list of inflectional endings from tabular
data. The tabular data was originally intended to be temporary, and the generated list was to become

84

the permanent source of inflectional data. However, it became clear that the tabular format was a more
natural treatment for these formatives, and it was retained, quirks and all.

In the model used in this transducer, inflectional endings have the following properties:
• an upper-language form consisting of a string of grammatical tags
• one or more lower-language forms (including allomorphs and dialectal variants), possibly condi

tioned by specific phonological environments
• a category code
• the possibility to belong to more than one formative class
The inflection file was designed to take advantage of an idiom commonly used in conjunction with

the Tel programming language, alternately called "data as code"6 and "data is code"7. This idiom involves
structuring data in such a way that it conforms to standard Tel syntax, with each meaningful line beginning
with a keyword. For each keyword, a procedure is defined which performs some operation using the rest
of the line as input. In the case of the inflection file, the operation is to convert the data into an XML-
based format (see Section 3.6 on pages 108- 110). Once the appropriate procedures are loaded into the
Tel interpreter, the data can then be loaded into the interpreter as a Tel program. The advantage of this
idiom is that it leverages the Tel parser, eliminating the need to write separate code to load and parse the
data.

Tel syntax is governed by twelve rules,8 facetiously referred to as the "dodekalogue". Of interest at
present are the following points:

• a Tel script is a string of commands; commands are separated by newlines (but see the point on curly
braces below)

• a command consists of words, which are separated by whitespace; the first word is used to identify a
procedure to evaluate the command; the remaining words are passed to that procedure as arguments

• everything inside a pair of curly braces is treated as a single word; because of this, any newlines
that may occur within curly braces do not have the effect of separating commands

• if the first non-whitespace character in a command is a hash mark (#), the entire line is treated as
a comment and ignored

3.2.3.1 Category Codes and Metadata

Instead of sections, the inflection file has the following top-level keywords: 'Categories', 'Additional-
Categories', 'Continuations', 'AdditionalContinuations', 'LongDistanceDependencies', 'AdditionalLongDis-
tanceDependencies', and 'Table'. With the exception of 'Table', each of these keywords takes a single ar
gument, a paired list surrounded by curly braces, with each pair separated by a newline. Following is an
explanation of each keyword and its argument.

The 'Categories' and 'AdditionalCategories' parts of the inflection file are reproduced in Figure 3.11
on the next page. Keyword 'Categories' is analogous to the Categories section in the postbase file; it as
sociates category codes with formative classes. The argument consists of a paired list where each line

6See http://groups.google.com/group/comp.lang.tcl/browse_frm/thread/57b936b3d6bc34af/e63dd0c48a985f3c.
7See "data is code," http://wiki.tcl.tk/17869.
sThe rules are documented in the Tel manual page Tel', a copy of which can be found at http://www.tcl.tk/man/tcl8.5/TclCmd/

Tcl.htm.

http://groups.google.com/group/comp.lang.tcl/browse_frm/thread/57b936b3d6bc34af/e63dd0c48a985f3c
http://wiki.tcl.tk/17869
http://www.tcl.tk/man/tcl8.5/TclCmd/Tcl.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/Tcl.htm

85

lists a category code followed by a space followed by the name of a formative class. Keyword 'Addition-
alCategories' allows inflectional endings matching specific patterns to be included in additional formative
classes. This mechanism was created to allow forms of demonstrative pronoun igna which begin with irr-
to be inflected only with endings actually attested with that stem allomorph (see pages 74- 75), and to
allow positional noun stems to be inflected with possessive endings only (see page 29). The list in the
argument to AdditionalCategories' is also a paired list; the first item in the pair is a Tel regular expression
to be matched against the grammatical tags associated with each inflectional ending defined in the file;
any ending whose tags match the pattern is included in the specified formative class (the second item in
the pair). In the listing below, the first regular expression matches all endings tagged as nominal which
are followed by a grammatical person tag; this class is defined in order to facilitate the implementation of
positional bases (see page 29). The second pattern matches all endings tagged as demonstrative pronouns
(+Dem+Pro) in any case other than absolutive and which have a singular grammatical number tag; this
category is necessary for the implementation of variant forms of the demonstrative pronoun igna which
begin with irr- (see pages 74- 75). The third pattern is similar in form and purpose to the previous pat
tern. It matches non-singular demonstrative pronoun endings; it exists to facilitate the variant forms of the
demonstrative pronoun manna that begin with mak(k)- rather than matk- (see page 75). The remaining pat
terns match endings for the negative contemporative, contemporative 1, conseguential, and conditional,
respectively, and are used for postbases which are restricted to specific moods.

Categories {
n Nounlnflection
i Intransitivelnflection
tTransitivelnflection
da DemAdvlnflection
dp DemProlnflection

}
AdditionalCategories {

\\+N.*\\+[l-3]R?(?:Sg|Du|PI) PossessiveNounlnflection
\\+Dem\\+Pro\\+(?:Rel|Loc|Via|Abl|Trm|Sim|Mod)\\+Sg DemProNonAbslnflection
\\+Dem\\+Pro.*\\+(?:Du|PI) DemProNonSingularlnflection
\\+ContNeg ContNeglnflection
,*\\+Contl* Contllnflection
\\+Conseq Conseqlnflection
,*\\+Cond* Condlnflection

}

F i g u r e 3 .1 1 : C ategory d efin itions in in flection data file

Continuations defined in the inflection file are given in Figure 3.12 on the next page. As with cate
gories, there are two sets of continuations defined. Keyword 'Continuations' defines continuations on the
basis of category codes; the format is analogous to that used in the argument to 'Categories'. Keyword
'AdditionalContinuations' defines continuations based on grammatical tag patterns. Additional continu
ations facilitate post-inflectional derivation by allowing inflectional endings whose grammar tags match

86

specified patterns to have two continuations: the usual continuation to enclitics, reduced forms, or the
end of the word, and an extra continuation to a class of derivational suffixes.

Continuations {
n EncliticsOrEnd
i EncliticsOrEnd
t EncliticsOrEnd
da EncliticsOrEnd
dp EncliticsOrEnd

}
AdditionalContinuations {

\\+Dem\\+Adv\\+Loc DemAdvLocPostlnflection
\\+Dem\\+Adv\\+Abl DemAdvAblPostlnflection
\\+Dem\\+Adv\\+Trm DemAdvTrmPostlnflection
\\+Dem\\+Adv\\+Via DemAdvViaPostlnflection
\\+Dem\\+Pro\\+Loc DemProLocPostlnflection
\\+Dem* DemAnyPostlnflection
\\+N\\+Loc* LocativeNounPostlnflection
\\+N\\+Trm* TerminalisNounPostlnflection

}

F i g u r e 3.12: C on tinuations defin ed in in flection data file

Long-distance dependencies are also defined in two ways, as shown in Figure 3.13. Long-distance de
pendencies due to verb valence are handled defined using the keyword 'LongDistanceDependencies' using
category codes and "reguire" flag diacritics (see Section 2.3.5 on pages 55- 58). Long-distance dependen
cies due to number restrictions on nouns are defined with the keyword 'AdditionalLongDistanceDepen-
dencies' using grammatical tag patterns and unification flag diacritics. The patterns essentially associate
each nominal inflectional ending of a specific grammatical number with a corresponding flag diacritic.

LongDistanceDependencies {
i @R.VALENCE.INTR@
t @R.VALENCE.TR@

}
AdditionalLongDistanceDependencies {

\\+N.*\\+Sg @U.NUMBER.SG@
\\+N.*\\+Du @U.NUMBER.DU@
\\+N.*\\+PI @U.NUMBER.PL@

}

F i g u r e 3.13: Long d istan ce d ep en d e n c ie s d efined in in flection data file

87

Flag diacritics on inflectional endings serve to filter out disallowed stem9-inflection combinations, such
as the use of a transitive verb ending with an intransitive-only verb stem. The flag diacritics on verb
inflections are "reguire" diacritics because all verb stems should be flagged for valence, and those flags
will either agree with the flags on the inflectional endings (in which case concatenation of the stem and
inflection is allowed in the transducer) or not (in which case the stem-inflection combination is filtered
out of the transducer). In contrast to verbs, most noun stems can take any nominal inflection and so are
not flagged. Because of this, noun inflection diacritics use unification: only stem-inflection combinations
where the stem has a flag diacritic whose value is incompatible with the inflection's flag diacritic are
filtered; combinations containing stems without flag diacritics and stems with flag diacritics whose value
does not conflict with the flag diacritic on the inflection are allowed. (See pages 70- 71 for a discussion of
flag diacritics attached to stems, and pages 77- 78 for a discussion of flag diacritics attached to postbases.)

3.2.3.2 Inflection Table Syntax

After the category codes and metadata, the rest of the file consists of instances of the 'Table' keyword.
Tables define two-dimensional inflectional paradigms whose upper-language representations are strings of
grammar tags and whose lower-language representations are surface forms similar to those in the postbase
section; they usually begin with a suffix attachment symbol (see pages 79- 80), and there may be multiple
allomorphs or dialectal variants for a single member of a paradigm. Transitive verb paradigms also have
"holes" (slots in the table where no legal suffix exists); this is because coreference between the subject
and object of a verb is expressed by using an intransitive inflectional suffix.

Tables are made of rows and columns. Specific grammatical tags can be associated with the table itself
and with each row and column. The upper-language representation of an inflectional ending is generated
by concatenating the corresponding grammar tags in this order: table tag(s) + row tag(s) + column tag(s).
Lower-language representations are specified within the row.

The 'Table' keyword takes three arguments: a category code (which applies to each inflectional ending
in the table), a string of table-level grammatical tags, and the table contents, enclosed in curly braces.
The table contents are also evaluated as Tel code. Two keywords are allowed inside the table contents:
'Columns' and 'Row'. 'Columns' takes one argument: a whitespace-separated list of grammatical tag
strings, one for each column in the table. 'Row' may be invoked in one of three ways:

• Row <rowTags> <rowContents>
• Row <rowTags> -prefixes <prefixList> <rowContents>
• Row <rowTags> -prefixset <prefixSet> <rowContents>

<rowTags> is a string of grammatical tags that apply to all inflectional endings in that row; <rowContents>
is a list of surface forms of suffixes separated by one or more whitespace characters (possibly includ
ing newlines). Suffixes with allomorphs or dialectal variants are enclosed in curly braces and consist of
whitespace-separated lists of conditioning patterns (see Section 3.3 on pages 96- 104) and orthographic
forms. Zero morphs, such as the absolutive singular ending, may be specified using an empty set of curly

9"Stem" in this paragraph includes stems derived from other stems by means of one or more postbases.

88

braces: {}. Holes in a paradigm are specified with the character '0' (zero). Comments may be added in
one of two forms, consistent with the Tel commenting rules:10 comments on a line that contains nothing
else but whitespace begin with a hash mark; comments at the end of a line containing non-whitespace
begin with a semi-colon, optional whitespace, and a hash mark.

Figure 3.14 on the next page illustrates a table with the most basic type of row (one that does not
specify -prefixes or -prefixset). This is extracted from the table specifying nominal inflection. While the
table in the figure contains only the row corresponding to locative singular endings, the actual table in the
inflection file contains 24 rows, one for each possible combination of case and number. The columns in
this table are grammatical possessors. The first column represents unpossessed endings; accordingly, the
grammar tag for that column is an empty string (specified with an empty pair of curly braces). The table
has the tag +N in order to mark all nouns as such (see footnote 4 on page 70).

A few items in the table deserve additional explanation. The columns and row contents are broken
into several lines, one for each grammatical person. This is done strictly to improve human readability;
it has no impact on how the computer will interpret the table. The unpossessed locative singular ending
begins with the rule trigger OPTNSTEM, which indicates that, when this suffix is attached to nouns whose
absolutive singular form ends in (n), the (n) may be left as is or converted back to its underlying form, /ti/
(see Section 2.1.2.7 on pages 22- 23); thus, for apqun 'road', both apqunm i and apqutim i are acceptable
locative singular forms (MacLean 1986a:115). For each third person non-reflexive possessive ending,
two variants are given, one which applies in all cases (preceded by condition code /Always), the other of
which applies in cases where the preceding stem does not end in a vowel cluster (preceded by condition
code ZnotVthenV). This is not (only) a case of allomorphy. The forms beginning with -g were originally
allomorphs of the forms beginning with :a, occurring only when the preceding stem ended in a vowel
cluster. However, due to relatively recent innovation, the forms beginning with -g have come to be accepted
in all phonological environments. Forms beginning with :a are more conservative (MacLean 1986a:166;
Kaplan 1981c:188-192).

The basic row mechanism works well for nominal inflection but leaves something to be desired for
verbal inflection. With few exceptions, verbal inflectional endings in Inupiag may be divided into a mood
marker and a suffix indicating the grammatical person and number of the subject and object (if any). For
example, the indicative "present" intransitive mood marker is -tu- {-ru- after vowels). To this marker may
be added person suffixes, such as -qa 'I', -si 'you (three or more)', or -k 'they (two)'. Different moods
reguire different sets of person suffixes, and in several moods the mood marker changes depending on the
grammatical person of the subject (most freguently, third-person non-reflexive subjects have a different
mood marker than other subjects). The imperative mood has no obvious mood marker.

The most naive way to deal with this within the table framework would be to treat each verbal in
flectional suffix as a compound, entered in a row like this: {?C +tuga ?V +ruga} {?C +tuguk ?V +ruguk}

{?C +tugut ?V +rugut} etc. This would work, but would be rather redundant. Alternatively, verb inflec
tions could be separated into mood markers and person suffixes; this is the approach taken by Langgard

10Despite their surface appearance, comments inside the row contents are not actually treated by the Tel parser as comments,
because the row contents are never evaluated as a set of commands—they are simply an argument to the Row command. This
command contains instructions to strip out comments before processing the row contents. Tel comment syntax was used within
rows to maintain consistency with comments elsewhere in the file, which are actual Tel comments and treated as such by the Tel
interpreter.

89

Table n +N {
Columns {

{}
+ lS g + lD u +1PI
+2Sg +2Du +2PI
+3Sg +3Du +3PI
+3RSg +3RDu +3RPI

}
Row +Loc+Sg {

row is split into sections for ease of reference
OPTNSTEM/mi ;# no possessor
-mnl -ptignl -ptinnl ;# 1 st person possessor
+gni -vsigni -vsinni ;# 2 nd person possessor
{?Always -ganl ?notVthenV :anl}

{?Always -Qagnl ?notVthenV :agnl}
{?Always -gannl ?notVthenV :annl} ;# 3rd person possessor

/mini /mignl /mignl ;# 3rd person reflexive possessor

}
}

F igure 3 .14 : E xam ple in flection a l tab le w ith no prefixes

and Trosterud. This would make the specification more compact, but would require additional formative
classes and continuation classes. This approach is also complicated by the fact that, while MacLean's
grammars divide verbal inflections into mood markers and person suffixes, there is no analysis across
moods of which person endings go with which mood markers; that analysis would have to be done before
inflectional suffixes could be entered, creating additional work.

The solution I have adopted is somewhat of a hybrid between treating verbal inflections as compounds
and separating them into mood markers and person endings. For each row, it is possible to specify "pre
fixes" which will be attached to each string in the row contents. The prefixes reduce redundancy, like
the "separate mood marker" approach (albeit to a lesser extent); but because the prefixes are associated
with specific rows, they eliminate the need for separate formative classes for mood markers and person
suffixes, like the "compound suffix" approach. Thus the prefix approach allows mood markers and person
suffixes to be teased apart, yet contained within the same table; in this respect, it models the way verbal in
flections are presented by MacLean (1986a, b , n.d.h) more closely than either other approach, facilitating
data entry.

There are two ways to specify prefixes; both make it possible to specify variant forms. The simplest
way, used in the majority of cases, is to use the keyword -prefixes followed by a paired list of conditioning
patterns and orthographic forms, surrounded by curly braces. Two rows using this format are shown in
Figure 3.15 on the next page; these were extracted from a larger table in the inflection file. The table
contains intransitive verbal inflections and is tagged +V; the table's category code is 'i' (tables containing
transitive inflections are also tagged +V but have category code't'). The columns in this table correspond
to grammatical subjects. Note that different verb moods correspond to different subjects; for example, the
imperative mood applies only to second person subjects, while the optative mood is used only in first and
third person; most dependent moods have a set of third person reflexive (sometimes called fourth person)

90

forms, while independent verb moods by definition do not. Each unique set of subjects requires a different
set of columns and therefore a separate table.

Table i +V {
Columns {

+ lS g + lD u +1PI
+2Sg +2Du +2PI
+3Sg +3Du +3PI

}
Row +lnd+Prs -prefixes {?C +tu ?mml +u ?Otherwise + ru } {

ga guk gut
tin {sik tik } si
q k t

}
Row +Simul2 -prefixes {?Always -ggaq} {

+ma -mnuk -pta
{+ kp lt +kpln> -vsik -vsl
-an -agnik -isa

}
}

Figure 3 .15: E xam ple in flection a l ta b le u sin g row s w ith th e -prefixes option

The two rows in Figure 3.15 correspond to the indicative "present" and the simultaneitive II moods,
respectively.11 The indicative present mood marker has two main allomorphs, -tu- (which occurs following
a consonant) and -ru- (which occurs following a vowel). However, the postbase -mmi- 'also' deletes the
initial consonant of the indicative present mood marker. Because it does not have this effect on any other
morpheme, the easiest way to deal with it is to treat the mood marker minus its initial consonant as
another allomorph, one with a very specific conditioning environment. The allomorph -tu- is predictably
associated with the condition code ?C, and the "allomorph" -u- is unsurprisingly associated with the code
?mml, but allomorph -ru- is not associated with the code ?V as one might expect. The reason is that ?V would
incorrectly allow the sequence -mmi-ru-. Instead, the special condition code ?Otherwise is used. This code
signals that the corresponding allomorph is used whenever all other conditions in the prefix set do not
apply—in this case, whenever the preceding stem does not end with a consonant or with the morpheme
-mmi-. The magic behind ?Otherwise is described on pages 100- 101. The simultaneitive II mood marker
is -ggaq- in all cases; it is not subject to any allomorphy except as produced by synchronically productive
rules. Accordingly, the special condition code ?Always is used.

Both rows contain cells surrounded with curly braces; in these cases, a surface form is defined for
each combination of each prefix and each suffix. For example, in the case of the indicative present second

11The indicative "present" is the default verb mood and generally expresses events and actions which are either ongoing or
recently completed (MacLean 1986a:65). Over time, the Inupiaq participial mood has been reinterpreted as an indicative past mood
(the participial usage is retained as well) and the original indicative has acquired a present meaning.

The simultaneitive II mood is a dependent verb mood used for events and actions taking place at the same time as the event or
action described by the main verb. The subject of a simultaneitive II verb is never coreferential with the subject of the main verb
(MacLean n.d.b:chapter 23, page 1).

91

person dual, a total of six surface forms are associated with the lexical form +V+lnd+Prs+2Du: +tusik,

+tutik, +usik, +utik, +rusik, and +rutik.

Contents of the simultaneitive II row begin with suffix attachment symbols (see pages 79- 80), while
contents of the indicative present row do not. This is because no special morphophonological interaction
occurs after the indicative present mood marker, whereas the simultaneitive II mood marker ends with a
(g) which is retained or deleted depending on the specific personal suffix. Suffix attachment symbols are
available if necessary and add to the descriptive power of the prefix mechanism, but they need not be used
in situations where simple concatenation of prefixes and suffixes is sufficient.

Most verbal inflections can be handled using -prefixes, but some verb moods involve a more complex
interaction between mood markers and person suffixes. The conditional is such a mood.12 If the subject is
third person non-reflexive (that is, not coreferential with the subject of the main verb), the mood marker
-kpa- is used; otherwise, the mood marker is -ka-, which becomes -ga- when preceded by a vowel, and -ga-
when the stem ends in (g) (the (g) takes the place of the (g». Rows invoking the -prefixset argument can
handle such complexities.

Figure 3.16 shows a table implementing the conditional intransitive endings using -prefixset. The prefix
set consists of a whitespace-separated paired list of keys and prefix lists. Each prefix list has the same
format as the prefix lists used with the -prefixes option. Keys may be arbitrary characters, but should be
non-alphabetic; the key 0 may not be used. The string default is also allowed as a key and has special
meaning. Each suffix in the row contents may begin with a key from the prefix set, in which case the
prefixes from the corresponding list are applied. If the suffix does not begin with a key, then the default
prefixes are applied. (The -prefixes option is eguivalent to specifying a prefix set whose only key is default.)

In Figure 3.16, the default prefix list is applied to all person suffixes except for the third person non
reflexive suffixes, which are marked with the key of the other prefix list, 1.

Table i +V {
Columns {

+ lS g + lD u +1PI
+2Sg +2Du +2PI
+3Sg +3Du +3PI
+3RSg +3RDu +3RPI

}
Row +Cond -prefixset {

default {?V +gu ?AnyQ -gu ?Otherwise +ku}
1 {?Always +kpa}

} f
ma mnuk pta
{v lt v ln } vsik vsl
In lgn ik lta
ml mik {m ik m ig}

}
}

Figure 3 .16: E xam ple in flection a l ta b le u sin g row s w ith th e -p refixset option

12The conditional mood is a dependent mood expressing concepts such as "when (in the future)" and "if" (MacLean 1986h:93).

92

One final detail about inflection table syntax that needs to be mentioned is the use of an asterisk either
as the first character in a cell or as the first character in a prefix. In either case, the asterisk was intended
to mark the corresponding formative or (in the case of a prefix) formatives as non-standard, that is, either
innovative or archaic. With this information, it would be possible to parametrize the process of compiling
the transducer to produce either an inclusive or an exclusive transducer; the former could be used for
recognition, while the latter could be used for generation. In retrospect, limiting the parametrization to a
single binary property was short-sighted, and the capability of specifying parameters to the process which
builds the transducer has not been implemented. However, this feature, if properly developed, could be
very beneficial, and warrants additional planning and development.

3.2.3.3 Accommodating Complex Paradigms Using Two-Dimensional Tables

As mentioned in Section 2.1.4.1 on page 27, nouns are inflected for case, number, and possessor, if
any. Thus, the nominal paradigm has at least three axes (more if one divides the possessor axis into
presence/absence of a possessor, grammatical person of the possessor, and grammatical number of the
possessor). Verbs are inflected for mood, subject, and object, if any. Demonstrative adverbs are inflected
only for case, while demonstrative pronouns are inflected for case and number. Since only one of the four
paradigms is actually two-dimensional, one may wonder why the inflectional model used here is inherently
restricted to two dimensions, rather than supporting a variable number of dimensions. The choice to
use two-dimensional tables was based on the fact that most inflectional endings in MacLean's books are
presented in such tables. In hindsight, it may have been a good idea to consider a framework where the
number of dimensions in a table could fluctuate, but the two-dimensional model has proven guite adeguate.
Four key features add flexibility to the model:

• tables are not exclusive—it's permissible to define more than one table with the same category code,
grammatical tag string, and/or column definition

• with the help of newlines, spaces, and comments, row data can be made more readable (for example,
all 1st person endings can be grouped together on their own line)

• empty strings are allowed both as tag strings and as surface forms
• it's possible for a table to contain "holes"—positions in the paradigm where no suffix exists
The rest of this section explores the implementation of each set of inflectional endings.

3.2.3.3.1 N o m in a l I n f l e c t i o n All nominal inflectional suffixes are contained in a single table. The col
umns of the table are possessors; the first column is for unpossessed nouns (the grammatical tag for that
column is an empty string). The rows in the table correspond to the Cartesian product of possible values
for case and number; in other words, one row contains absolutive singular endings, the next absolutive
dual endings, then absolutive plural, then relative singular, and so on.

3.2.3.3.2 I n t r a n s it iv e V e r b a l I n f l e c t i o n Intransitive inflection is divided into eight separate tables. For
most of these tables, the columns correspond to subjects, and the rows correspond to verb moods. The
largest table contains the following moods: indicative present and past, interrogative, contemporative I re
alized and unrealized, negative contemporative, contemporative II realized and unrealized, simultaneitive

93

II, and kiisaimmaa. Each of these moods applies to the set of first, second, and non-reflexive third person
subjects. Rows corresponding to the interrogative, negative contemporative, simultaneitive II, and kiisaim
maa moods have one grammatical tag each, while rows corresponding to the indicative, contemporative
I, and contemporative II moods each have two tags (e.g., +lnd+Prs for indicative present; +Cont2 + Real for
contemporative II realized).

The next table covers the simultaneitive I and III moods. The subject of a simultaneitive I or III verb
must be coreferential with the subject of the main verb, so the applicable subjects are first, second, and
reflexive third persons.

Optative and imperative moods are each given their own table. The optative table applies to first and
non-reflexive third person subjects, while the imperative table applies to second person subjects.

Conseguential and conditional moods share a table. Possible subjects for these moods include first,
second, non-reflexive third and reflexive third persons.

The remaining three tables implement verbal nouns (participials and gerunds). Controversially, these
tables are tagged +V just like all the other verbal inflectional tables, despite the fact that verbs so inflected
are syntactically nouns. This decision was made on the grounds that these inflectional endings apply only
to verb stems; in any case, the fact that they are marked as gerunds or participials should provide sufficient
notice of their nominal status.

The participial is split into two tables, one covering first and second person forms, the other covering
third person forms. The form of first and second person participials remains the same whether they are
objects of a transitive verb or subjects of a transitive or intransitive verb; this suggests that it is inap
propriate to tag these forms with case markers. However, these participials may be optionally marked
as vocative by lengthening the vowel of the final syllable. To account for these facts, the columns in the
table of participials are first and second person subjects with and without vocative marking (the actual col
umn declaration is { + lSg + lD u +1PI +lSg+Voc +lDu+Voc +lPI+Voc +2Sg +2Du +2PI +2Sg+Voc +2Du+Voc

+2PI+Voc}). The table contains a single row, tagged +Part.

Third person participials occur in all noun cases but have no vocative form. For ease of input, the
third person participial endings are listed in a single row, tagged +Part; the columns in the table are the
Cartesian product of the sets {+3Sg, +3Du, +3PI} and {+Abs, +Rel, +Mod, +Abl, +Trm, +Loc, +Via, +Sim}.

Of course, it would have been possible to arrange the table with one row for each third person number,
in which case only eight columns would have been reguired rather than 24. I declined to use this format
because it would have reguired me to enter the suffixes in a different order than they appear in MacLean's
work.

The gerund table is very simple; it contains one column, tagged with an empty string, and one row,
tagged +Gerund. The table format is clearly not ideal for individual suffixes such as the gerund (which
is simply the relative case marker attached to a verb stem), but it can be made to accommodate them
nonetheless.

3 . 2 . 3 . 3 . 3 T r a n s i t i v e V e r b a l I n f l e c t i o n With transitive verbs, each verb mood is given its own table. All
mood-related tags are included with the verb tag in the table tags; for example, the tag string associated
with the table for the indicative present mood is +V+lnd+Prs. The columns in each table correspond to di
rect objects. The rows correspond to grammatical subjects, except in the cases of the contemporative I and

94

II and negative contemporative moods, which are not inflected for subject when transitive. The contem
porative I and II tables have a row each for realized and unrealized aspect; the negative contemporative
mood has only one row, whose tag string is empty.

As mentioned on page 87, because coreference of subject and object is expressed by using intransitive
endings, transitive paradigm tables contain "holes"—cells for which no suffix exists. In the format used
in the inflection file, these cells are marked with zeros (see on page 88). Figure 3.17 contains the first
person singular row from the transitive interrogative mood table. Because the suffixes in this row have a
first-person subject, they cannot also have a first-person object, so these columns contain zeros.

Table t +V+lnt {
Columns {

+ lS gO +1DuO +1PIO
+2SgO +2DuO +2PIO
+3SgO +3DuO +3PIO

}
Row + lS g -prefixes {?V +vl ?C + p l} {

0 0 0

gin sik si
gu gik {g l g it}

}

F igure 3 .17: E xam ple in flection a l tab le w ith "holes" (c e lls for w h ich no suffix ex ists), m arked by zeros

3.2.3.3.4 D e m o n s t r a t i v e I n f l e c t i o n As discussed on pages 74- 75, demonstratives may be inflected ei
ther as pronouns or as adverbs, but because non-linguists are unlikely to be familiar with bare demon
strative stems, the stem file lists demonstratives separately as adverbs (in "interjectional" form) and as
pronouns (in absolutive singular form). Special sets of morphographemic rules transform these demon
stratives into stems to which other inflectional suffixes can be added. These rules are sensitive to the trig
gers DASTEM (for demonstrative adverbs) and DPSTEM (for demonstrative pronouns); an additional trigger,
DELETEEXTRAVOWEL is used with the demonstrative adverb locative case ending -uuna to prevent three-
vowel clusters. These triggers are prefixed to the non-default inflectional suffixes; the default suffixes are
left empty, since the demonstratives are listed in the stem file in fully-inflected forms. In the demonstrative
adverb table, the columns are cases (the first column being associated with an empty string, corresponding
to the interjectional form), and there is only one row, with no tags. In the demonstrative pronoun table,
the columns are grammatical numbers, and the rows are cases. The demonstrative pronoun table takes
advantage of the -prefixes option to apply the rule trigger DPSTEM to non-absolutive suffixes (this technigue
cannot be used with demonstrative adverbs because the row contains the interjectional form, which should
not be reduced to a stem). The demonstrative tables are reproduced in Figure 3.18 on the next page.

95

Table da +Dem+Adv {
Columns { { } +Loc +Via +Abl +Trm}
Row { } {

{ } DASTEMani DASTEMDELETEEXTRAVOWELuuna DASTEMaqqa DASTEMuqa

}
}
Table dp +Dem+Pro {

Columns {+Sg +Du +PI}
Row +Abs { { } DPSTEM-kuak DPSTEM-kua}
Row +Rel -prefixes {?Always DPSTEM} {uma -kuak-kua}
Row +Loc -prefixes {?Always DPSTEM} {umanl -kuknagnl -kunanl}
Row +Via -prefixes {?Always DPSTEM} {umuuna -kuknuuna -kunuuna}
Row +Abl -prefixes {?Always DPSTEM} {umaQga -kuknagga -kunagga}
Row +Trm -prefixes {?Always DPSTEM} {umuga -kuknuga -kunuga}
Row +Sim -prefixes {?Always DPSTEM} {umatun -kuknaktun -kunatitun}
Row +Mod -prefixes {?Always DPSTEM} {umiga -kukniga -kuniga}

}

F igure 3.18: In flectional ta b les im p lem en tin g d em on strative in flection

3.2.3.4 Sources and Data Entry Methodology

All inflectional endings came from MacLean (1986a, b, n.d.h). Inflectional endings from these sources
are presented as tables; the data in the tables were rearranged as necessary to ensure that grammar tags
were concatenated in the appropriate order; see Section 3.2.3.3 for details on how specific paradigms are
specified in the inflection file.

3.2.4 Enclitics

Although enclitics are syntactically independent words, they are phonologically and orthographically
bound to the words that precede them. Also, certain enclitics appear to attach only to words of a particular
grammatical category, inflected with specific endings. In these respects, enclitics are similar to postbases,
and for this reason, the same file format that is used for postbases is used for enclitics (see pages 77- 80
for an explanation of the syntax). The enclitic file is much simpler, however; enclitics are not subject to
long-distance dependencies, and the morphotactics of enclitics are certainly less complex than those of
postbases (the present implementation probably oversimplifies here, allowing enclitics to continue to the
class of all reduced forms and enclitics that are not restricted to specific grammatical categories).

Figure 3.19 on the following page gives the category and continuation definitions from the enclitic file.
Most enclitics fall under attachment category code 'e' indicating that they are not restricted to specific
grammatical categories or inflections. Enclitic -tchiaq 'by oneself' (Edna MacLean, personal communica
tion, 2 July 2009) is categorized as applying only to forms of the pronoun kisi 'X alone,' since I am not
aware of other instances of this enclitic. Homophonic enclitic -tchiaq 'on the side of' (Edna MacLean,
personal communication, 2 July 2009) is listed with appropriate case endings in categories 'daLoc', 'da-
Trm', and 'daAbl' (for example, the entry associated with the demonstrative locative is tchiaq> + Loc,-tchianl

96

daLoc ee). This -tchiaq might be better categorized as a post-inflectional suffix; see footnote 17 on page 30.
Suffix -gruihhaq is also listed as an enclitic in the 'daTrm' and 'daAbl' categories, because it appears in
the development data of the test corpus (see Section 4.1 page 146) in the words tam aaqqagru ihhaq 'out of
nowhere/from nowhere' and ta im uqagruihhaq 'for a long period of time' (translations provided by Ronald
Brower, 6 April 2011). Enclitic - tuq 'I hope' occurs only in sentences with verbs in the optative mood, but
is listed with category code 'e' rather than a more restrictive code because, like many enclitics, it gener
ally attaches to the first word in the sentence, whether or not that word is a verb in the optative mood
(MacLean [1986b:32-33];see (67)).

SECTION Categories
e Enclitics
kisi KisiSuffixes
daLoc DemAdvLocPostlnflection
daTrm DemAdvTrmPostlnflection
daAbl DemAdvAblPostlnflection

SECTION Continuations
ee EncliticsOrEnd

F igure 3.19: C ategory and con tin u ation d efin itions in en c litic data file

Ex. (67) Uvlupaktuq A aq a tk u t agvaglit
u v lu p a k = tu q Aaqa-tku t agvak-Ht
today=I.hope Aaga-party.of.abs.pl catch.a.whale-0PT.3PL
'I hope Aaga and his crew get a whale today' (M acLean 1986h:33)

The sources for the enclitics listed in this file are MacLean (1981, n.d.a).

3.3 Definitions of Allomorph Conditioning Environments

As discussed in 2.1.2.8 on pages 23- 25, a large number of Inupiag suffixes exhibit allomorphy. Lang
gard and Trosterud's strategy for handling this allomorphy is to group formatives that reguire the same
phonological environment into the same class, and to establish continuation classes so that formatives
which fulfill particular environments continue to classes of formatives which reguire those environments.
For example, verbal formatives that end in a vowel continue to a class of deverbal suffixes that are allowed
to follow vowels. The challenge that this approach creates is described in Section 2.4.3.3 on pages 64- 66;
briefly, the substantial number of conditioning environments reguires a complex maze of formative classes
and continuations. In the Inupiag transducer, due to the format used for specifying the lexicon, the prob
lem with this approach is not how to construct such a maze by hand, but how to instruct a computer to do
so.

My initial approach to this problem was to create a lexc file similar to the one used by Langgard and

97

Trosterud (n.d.; see Section 2.4.3 on pages 61- 66). First, for each conditioning environment to which an
allomorph in the lexicon is sensitive, I created a Tel regular expression that would match strings containing
that environment. I then used the following algorithm to generate the lexc file:

1. group the allomorphs of each postbase and inflectional suffix by the grammatical category they
attach to and the conditioning environment to which they are sensitive; a side-effect of this grouping
procedure is to identify the conditioning environments that apply to each grammatical category

2. for each stem and postbase, apply the set of regular expressions that correspond to the conditioning
environments of the grammatical category to which the stem or postbase belongs (in the case of
postbases, this is the category the postbase derives); remember which set of conditions each stem
or postbase satisfies

3. identify the set of unigue sets of conditions satisfied by stems and postbases of each grammati
cal category (for example, there may be several nominal formatives which provide the environ
ments "consonant-final", "back-consonant-final", "g-final", and " 'weak-g'-final"; these four condi
tions would then constitute one unigue set of conditions for the noun category)

4. create a formative class for each conditioning environment of each grammatical category (as iden
tified in step 1), to contain the allomorphs of postbases and inflectional endings that reguire that
environment

5. for each unigue set of conditions identified in step 3, create a formative class of epsilon continuations
(see page 68) to each of the relevant classes created in step 4

6. populate a class of stems as well as each class defined in step 4 such that each stem and postbase
allomorph continues to the appropriate class from step 5; inflectional suffix allomorphs will continue
to the class of enclitics or to the end of word marker

This approach was functional but inelegant, not in the least because it was as difficult to program
as it is to describe, or because it took a long time to run. The biggest drawback, however, was that by
generating, on the fly, an unknown number of formative classes, it became very difficult to create a stem
guesser (see Section 2.3.7 on pages 59- 60). Generally, one creates a stem guesser for each open class of
stems; a stem guesser belonging to a particular class should continue to any classes containing suffixes
that can be attached to stems of the class to which the stem guesser belongs. When that set of classes
is generated automatically, it becomes more difficult to continue to all of them. More problematically, a
stem guesser designed to generate all phonotactically possible stems of a particular grammatical category
will violate the phonological constraints of each phonologically-defined continuation class. To solve that
problem, separate stem guessers would have to be created to satisfy each condition that pertains to the
grammatical class of the guesser, and each of these would need to continue to the appropriate continuation
class. In order to create these separate guessers, one would either need to know which conditions apply
to which grammatical category, which would defeat some of the point of generating the file automatically,
or else one would need to generate the guessers along with the formative classes to which they continue,
which would be possible but non-trivial.

An alternative to creating a lexicon that respects the phonological constraints of all allomorphs is to
create an overgenerating lexicon that respects none of these constraints, and then to filter out generated
words which contain allomorphs in disallowed environments (Bills et al. 2010:24). The filtering mechanism

98

is a set of regular expressions, written in xfst rather than in Tel, which apply to entire words rather than
individual formatives. For this strategy to work, allomorphs are marked with rule triggers to which the
filtering expressions are sensitive; the filters disallow any strings which contain the rule trigger but not the
appropriate preceding environment. After performing this filtering, the filter rules map the rule triggers
to empty strings, in effect deleting the triggers from the surface forms of the words (separate rules clean
up the upper-language representation of the lexicon so that none of the triggers are visible to the end-user
in either lexical forms or surface forms).

Because the filters apply to full words, they filter out any guessed stems which violate the phonological
constraints of allomorphs; thus, only one set of guessing rules is reguired per open stem class (in the
case of Inupiag, nouns and verbs). This approach also makes it completely unnecessary to take phonology
into account when establishing formative classes in the lexicon, allowing the linguist to focus on purely
morphotactic considerations.

The file data/patterns.txt contains definitions for the allomorph conditioning environment filters used
in the Inupiag transducer. The remainder of this section discusses the logic used by these filters and the
syntax used to define them.

3.3.1 Logic

The rules that check conditions are based on logic described in Beesley and Karttunen (2003:252-253)
and Kaplan and Kay (1994:345). Given some pattern P and an associated rule trigger T, a filter rule needs
to disallow strings that contain T when preceded by anything that does not match P. We also need to
make allowance for non-alphabetic symbols that may be present in the string, such as other rule triggers
or flag diacritics. The way the rule is written depends in part on whether the pattern needs to take into
consideration the left edge of the string to be matched (for example, the left edge is not needed to determine
whether a stem is vowel-final, but it is needed to determine whether a stem is two syllables long). If, as in
the majority of cases, the left edge is unimportant, the regular expression will follow the model given in
Figure 3.20. In the discussion that follows, I will build up this expression one piece at a time, explaining
the relevance of each part.

[[Pattern / SymbolsTolgnore] Trigger | \Trigger]*

F igure 3.20: Regular expression model for filters not sensitive to the left edge of a word

As previously stated, a filter should disallow strings that contain a trigger T preceded by a stem that
does not match a pattern P. If, however, the string does not contain T, then the filter is irrelevant for that
string and should let the string through (or in other words, the filter should recognize any string that does
not contain T). Because finite-state automata cannot match the absence of something, we must construct
our regular expression in terms of the presence of something else: symbols which are not the rule trigger
in guestion. The term complement operator, which in xfst is a backslash (Beesley and Karttunen 2003:47),
yields a language which is the set of all single symbols which are not in the language denoted by its

99

operand. Thus, \Trigger is the set of all symbols that are not the rule trigger defined by Trigger. We would
like to be able to define the language of all strings which consist entirely of symbols that are not the rule
trigger corresponding to our filter; the Kleene star iterator (*) will allow us to do this. Thus, our expression
for strings that do not contain the rule trigger Trigger is [\Trigger]*.

We also want to recognize strings that do contain the rule trigger as well as the appropriate preceding
environment. With very few exceptions, the preceding environment will be defined strictly in terms of let
ters of the Inupiag alphabet (for example, seguences of the form Vowel-Consonant-Vowel, which I denote
with the expression [V C V]). However, words in the lexicon also contain non-alphabetic symbols such as
flag diacritics, rule triggers, or morpheme boundaries; these should not be taken into account when de
termining whether the string follows the pattern associated with the filter. This can be accomplished with
the ignore operator, indicated in xfst with a forward slash (Beesley and Karttunen 2003:48). The expres
sion [[V C V] / SymbolsTolgnore] creates a language where zero or more strings defined in SymbolsTolgnore

may occur at the beginning or end or anywhere in the middle of the language defined by [V C V], in effect
ignoring any instances of SymbolsTolgnore within the pattern of interest. The effect of the ignore operator
on an automaton is illustrated below; Figure 3.21 shows the basic pattern, which is modified in Figure 3.22
to ignore SymbolsTolgnore. The expression which recognizes the pattern of interest (here represented as
Pattern), followed by the rule trigger (represented as Trigger), ignoring SymbolsTolgnore within the pattern,
is [[Pattern / SymbolsTolgnore] Trigger].

F igure 3.21: Automaton without ignore operator, illustrating the expression [VCV]

SymbolsTolgnore SymbolsTolgnore SymbolsTolgnore SymbolsTolgnore

F igure 3.22: Automaton with ignore operator, illustrating the expression [[VCV] / SymbolsTolgnore]

We now have an expression that can match entire strings not containing a particular rule trigger, as
well as an expression that can match the rule trigger and preceding pattern. This second expression is
incomplete, since we must match an entire string and not just the substring containing the pattern and
the trigger. There is a temptation to complete the expression by allowing any symbols on either side of the

100

pattern-and-trigger expression: [?* [Pattern / SymbolsTolgnore] Trigger ?*].13 However, this will incorrectly
allow strings in which the rule trigger appears twice, but only once following a substring that matches the
pattern in guestion. To prevent this, we may be temped to bracket the pattern-and-trigger expression with
zero or more instances of symbols which are not the rule trigger: [[\Trigger]* [Pattern / SymbolsTolgnore]

Trigger [\Trigger]*]. Unfortunately, this pattern will incorrectly disallow all strings containing more than
one instance of the rule trigger. The correct solution is to allow strings built up of any combination of the
following two types of substrings:

• substrings matching the relevant pattern (ignoring any intervening non-letter symbols) followed
immediately by the rule trigger

• single-symbol substrings which are not the rule trigger
This approach unifies the pattern for strings not containing the rule trigger and strings containing the

rule trigger and the appropriate conditioning environment. The rule trigger may appear in the string any
number of times (including zero), but the preceding environment must match the appropriate pattern each
time. The final expression, repeated from Figure 3.20, is [[Pattern / SymbolsTolgnore] Trigger | \Trigger]* (the
pipe symbol (|) is the union operator).

If a formative has allomorphs whose conditioning environments are mutually exclusive, it is possible
to designate one conditioning environment as the environment that applies when all others do not. This
is done using the special condition code ?Otherwise, and can be useful when a conditioning environment
would be unusually complex to specify. ?Otherwise was used with the indicative present intransitive endings
shown in Figure 3.15 on page 90. Three mood marker allomorphs are defined for this paradigm: -tu-, which
attaches to consonant-final stems; -u-, which attaches to stems ending in the postbase -mmi- 'also'; and -ru-,
which attaches to vowel-final stems except those ending in the postbase -mmi-. The regular expression for
stems ending in vowels but not ending in -mmi- would be very difficult to write by hand, but it can be built
automatically from expressions representing the "opposite" of the expressions matching consonant-final
and -mmf-final stems.

Expressions "opposite" of the one in Figure 3.20 are built on the model shown in Figure 3.23. It's
important to note that even though this expression may compute the opposite language of the consonant-
final condition, Trigger here refers to the rule trigger for the ?Otherwise condition (that is, vowel-final stems
not ending in -mmi-), not the consonant-final condition. The goal in calculating an expression for the
?Otherwise condition is to disallow strings containing the trigger for this condition when preceded by a
substring that matches one of the other allomorphs' conditions. The regular expression defining a filter for
the ?Otherwise condition is created by intersecting the "opposite" expressions for all of the other conditions
that pertain to the formative in guestion. In the case of the indicative present intransitive mood marker,
it is the intersection of the opposite expression for consonant-final stems and the opposite expression for
stems ending in -mmi-. This expression will match any string that does not contain the rule trigger for
vowel-final stems not ending in -mmi-, as well as any string in which this trigger is preceded by a substring
that is neither consonant-final nor -mmf-final.

The dollar sign is the xfst containment operator (Beesley and Karttunen 2003:48). The expression
[$[[Pattern / SymbolsTolgnore] Trigger]] describes the set of all possible strings that contain the rule trigger

13The shorthand notation $[[Pattern / SymbolsTolgnore] Trigger] denotes exactly the same language.

101

~[$[[Pattern / SymbolsTolgnore] Trigger]]

F igure 3.23: Regular expression for the "opposite" of the language expressed in Figure 3.20

preceded by a substring matching the pattern (possibly with one or more intervening non-letter symbols).
The tilde is the xfst language complement operator (Beesley and Karttunen 2003:47); it computes the set
of all strings not in the language of its operand. In this case, it computes the set of all strings that do not
contain a substring matching [[Pattern / SymbolsTolgnore] Trigger].

There exists at least one allomorph which attaches only to stems containing a particular number of
syllables: the imperative intransitive singular suffix -in that triggers gemination (see 24) attaches only to
stems of the form (C)VCV The filter for this condition must take into account every symbol from the rule
trigger to the left edge of the string, and for obvious reasons, this particular rule trigger can occur no more
than once in any given word; for these reasons, a different expression model is reguired than the one used
for most conditions. The expression for this condition is [[[(C) VCV] / SymbolsTolgnore] Trigger \Trigger* |

\Trigger*]. It will match strings that follow one of two patterns:
• an optional consonant (denoted by parentheses) followed by a vowel, a consonant, and a vowel (with

optional intervening non-letter symbols), followed by the appropriate rule trigger, followed by zero
or more symbols which are not the rule trigger

• zero or more symbols, none of which is the rule trigger corresponding to this rule
The opposite pattern of this one is ~[[[(C) VCV] / SymbolsTolgnore] Trigger], which matches any string

not containing an optional consonant (denoted by parentheses) followed by a vowel, a consonant, and a
vowel (with optional intervening non-letter symbols), followed by the appropriate rule trigger (again, note
that this refers to the trigger for the ?Otherwise condition, not the (C)VCV rule trigger), followed by zero
or more symbols which are not the rule trigger.

3.3.2 Syntax

The file consists of three sections, XFST, Tel, and Patterns, each of which begins with the keyword SEC
TION followed by a space and the name of the section. SECTION XFST is intended for definitions of character
sets and patterns, written in xfst. These are not strictly necessary, but can be guite helpful for two rea
sons. First, they allow regular expressions, which can sometimes be hard to read, to be associated with
meaningful names; these names can be used in subseguent expressions in place of the code they repre
sent, making those expressions easier to read. Second, some patterns are used by more than one filter
expression, and defining these patterns eliminates some redundancy.

The contents of SECTION XFST are given in Figure 3.24 on the following page. The first definition,
SymbolsTolgnore, defines a language consisting of all single symbols other than those which represent
graphemes in the Inupiag transducer (the definition of Graphemes, as well as definitions for Consonant and
Vowel, are found in the file data/ipk_xfst.txt; see Section 3.8.2.2 on page 117). This definition is used in all
of the filter expressions. Other definitions include StemFinalC, defining stem-final consonants (/k/, strong
or weak /q/, and /t/ [palatalized or otherwise]); KQ, defining back consonants (/k/ and strong or weak /q/);

102

Strong, defining strong consonants (see page 6); 3Syll, which recognizes stems three or more syllables
long (defined as a vowel, followed by more than one consecutive occurrence of the following pattern: one
to three non-vowels followed by one or two vowels); CVCV, definining a pattern for stems consisting of
an optional initial consonant, a vowel, another consonant, and another vowel (the pattern limits the first
consonant to the set of attested Inupiag stem-initial consonants; see pages 25- 26); and KQnotVV, defining
a pattern for stems ending in a back consonant which is not preceded by a two-vowel cluster.

SECTION XFST

define SymbolsTolgnore \Graphemes;
define StemFinalC [k | AnyQ 11];
define KQ [k | AnyQ];
define Strong [k | q];
define 3Syll [Vowel [[\Vowel]~l,3 Vowel~l,2]~>1];
define CVCV [([p | m | t | n | s | y | k | q]) Vowel Consonant Vowel];
define KQnotVV [Wowel Vowel KQ];

F igure 3.24: Contents of the xfst section of the filter definition file

SECTION Tel contains procedures defined in the Tel programming language (see page 67 and page 84).
These procedures generate xfst code and may be called from SECTION Patterns. Most of the definitions
in SECTION Patterns will follow a single model, as discussed in Section 3.3.1 on pages 98- 101, and the
purpose of SECTION Tel is to make it possible to define code that will generate the redundant parts of the
pattern definitions automatically so that they need not be specified by hand each time that model is used.
The contents of SECTION Tel are given in Figure 3.25 on the following page. Procedure Positive creates an
xfst expression applying the model shown in Figure 3.20 on page 98 to the pattern given in its argument.
Procedure Negative creates an xfst expression applying the opposite model, shown in Figure 3.23 on the
preceding page, to the pattern given in its argument. Procedure PositiveNolgnoring does no ignoring, in
stead simply matching a string consisting of substrings not containing the rule trigger and/or substrings
containing the rule trigger immediately preceded by the specified pattern. The corresponding procedure
NegativeNolgnoring similarly does no ignoring, matching strings for which no substring consists of the
specified pattern followed by the rule trigger. These "no ignoring" procedures are used when the filter
applies to a specific morpheme, such as -mmi- 'also' which causes intransitive indicative present endings
to lose their initial consonant. For such filters, it is desirable to ignore special symbols before and after
the morpheme, but not inside it. For this reason, the task of specifying where and what to ignore is left
to the person specifying the pattern. The implementation of the -mmi- filter (among others) is given in
Figure 3.26 on page 104.

The actual conditioning environment pattern definitions are contained in SECTION Patterns. A pattern
definition contains three required elements: the pattern name (which by convention begins with a question
mark), an xfst expression defining the pattern, and an xfst expression defining the opposite of the pattern
(this is used to compute ?Otherwise condition patterns; see pages 100- 101). The required elements may
optionally be followed by a comment, beginning with an exclamation point. Blank lines and lines consisting

103

SECTION Tel

proc Positive {pattern} {
return [list [string map [list %p $pattern] {[[% p / SymbolsTolgnore] %s | \%s]*}]]

}
proc Negative {pattern} {

return [list [string map [list %p $pattern] {~ [$[[%p / SymbolsTolgnore] %s]]}]]
}
proc PositiveNolgnoring {pattern} {

return [list [string map [list %p $pattern] {[[% p] %s | \%s]*}]]

}
proc NegativeNolgnoring {pattern} {

return [list [string map [list %p $pattern] {~ [$[[%p] %s]]}]]

}

F ig u r e 3.25: Contents of the Tel section of the filter definition file

solely of comments are also permitted in SECTION Patterns.
Procedures defined in SECTION Tel may be used to generate patterns. These procedures are invoked

by surrounding the procedure and its argument in sguare brackets; if the argument contains spaces, it
must be enclosed in curly braces. It is also possible to specify a pattern in xfst directly; in that case, the
pattern should be surrounded by curly braces. The pattern should include the string %s in place of the
pattern name (which is a rule trigger); each instance of %s will be replaced with the pattern name when
the pattern definition file is processed. The Tel procedures Positive and Negative insert %s automatically
into the expressions they generate.

Pattern expressions may also refer to variables defined in SECTION XFST.
Example entries from SECTION Patterns are given in Figure 3.26 on the following page. ?C matches stems

with stem-final consonants; the pattern is defined using the Tel procedures Positive and Negative, to which
is passed the xfst variable StemFinalC which describes all legal stem-final consonants. ?VkAnyQ is similar to
?C except that the expression passed to Positive and Negative is slightly more complex; it is the disjunction
of the xfst variables Vowel and KQ (in other words, this pattern will match stems whose final segment
satisfies either Vowel or KQ). ?VthenVthenC, which matches stems ending in two vowels and a consonant,
and ?notVthenVthenC, which matches stems not ending in two vowels and a consonant, are patterns in
direct opposition to each other,14 and their definitions are identical except that for ?notVthenVthenC the
calls to Positive and Negative are swapped. ?2SyllablesV matches stems of the form (C)VCV As discussed on
page 101, because this pattern matches a whole stem rather than just the end of the stem, the usual model
is not appropriate; conseguently, the pattern is defined directly in xfst rather than being generated by Tel
procedures. ?mml matches a stem ending in the suffix -mm?- 'also'. It is defined with the help of the "no

14One may wonder why it was necessary to define ?notVthenVthenC, rather than use the ?Otherwise mechanism. The reason is
that the postbase -aluk is listed in MacLean (n.d.a) with three allomorphs which are not entirely mutually exclusive: -aluk attaches
to stems not ending in W C ; -aaluk attaches to stems ending in W C ; and -gaaluk attaches to stems whose absolutive singular form
ends in (n) (this suffix deletes the (n)). Because stems whose absolutive singular form ends in (n) may be suffixed either by -aluk or
by -gaaluk, it is impossible to use ?Otherwise in this case.

104

ignoring" procedures because the pattern contains a morpheme boundary, which is problematic for the
"ignoring" procedures, and because there should not be any intervening non-alphabetic symbols within
the string mmi . Instead, the ignoring of non-alphabetic symbols is explicitly specified in the pattern at
the points where it is appropriate—immediately before and after the letters that make up the morpheme.
To ensure that irrelevant symbols are only ignored at these points, the Kleene star (*) is used rather than
the ignoring operator (/).

SECTION Patterns

?C [Positive StemFinalC] [Positive StemFinalC]
! matches any legal stem-final consonant (excluding n)

?VkAnyQ [Positive {[Vowel | KQ]}] [Negative {[Vowel | KQ]}]
! matches any stem-final vowel (including n) or stem-final k or q (weak or strong)

?VthenVthenC [Positive {[[Vowel]~2 StemFinalC]}] [Negative {[[Vowel]~2 StemFinalC]}]
! matches stems ending in two vowels and a consonant

?notVthenVthenC [Negative {[[Vowel]~2 StemFinalC]}] [Positive {[[Vowel]~2 StemFinalC]}]
! matches stems ending in two vowels and a consonant

?2SyllablesV {[CVCV / SymbolsTolgnore] %s\%s* | \%s*} {~ [[CVCV / SymbolsTolgnore] % s]}
! matches stems of the form (C)VCV-

?mml [PositiveNolgnoring {% > SymbolsTolgnore* m m i SymbolsTolgnore* }]
[NegativeNolgnoring {% > SymbolsTolgnore* m m i SymbolsTolgnore* }]
! matches the postbase -mmi-, after which an intransitive indicative present ending loses its initial consonant

F ig u r e 3.26: Example entries from the Patterns section of the filter definition file

3.4 Formative Class Declarations

As discussed in Section 3.1, files in lexc are organized in terms of formative classes (called lexicons
in lexc parlance); a class is named, then its members are enumerated (see Section 2.3.2 on pages 51- 53).
In that framework, epsilon continuations (see page 68) are created as class members which are empty
strings.

In the Inupiaq transducer, the lexicon is fundamentally organized in terms of stems, postbases, inflec
tional suffixes, and enclitics rather than in terms of formative classes (for rationale, see pages 58- 59 and
pages 69- 70), so another mechanism is needed to declare formative classes and epsilon continuations.

Although formatives in our lexicon are not organized in terms of formative classes, each formative def
inition includes a reference to the class to which it belongs. One possible approach to declaring formative
classes would be simply to create any classes that are referred to. This is similar to the way variables
are created in dynamic languages such as Python and Tel. The danger with this approach is that typo
graphic errors would go undetected; if a class name were spelled correctly in one place but incorrectly

105

elsewhere, two distinct classes would be created, and this fact would not be brought to anyone's attention.
Alternatively, classes could be explicitly declared; then, when a class was referred to which had not been
previously declared, a warning could be issued and the error found and corrected.

As for epsilon continuations, it is theoretically possible to declare them within formative data files as
empty-string formatives, in a manner analogous to the way they are defined in lexc; but as was pointed out
in Section 3.1, epsilon continuations are not formatives, and it would be inelegant at best to treat them
as formatives. They are more appropriately viewed as properties of formative classes than as members of
those classes. Given that epsilon continuations are distinct entities from formatives, it would make sense
to have a mechanism for defining epsilon continuations which is distinct from the mechanism for defining
formatives; and as they are to be treated as properties of formative classes, it would make sense for epsilon
continuations to be defined in conjunction with the definitions of the classes to which they belong.

So, the desiderata for declaring formative classes and epsilon continuations are:
• Reguire explicit declaration of formative classes
• Define epsilon continuations in a fundamentally different way than one defines formatives
• Ensure that formative class declarations and epsilon continuation definitions are handled within a

single framework
Formative class declarations and epsilon continuation definitions are found in the file data/classes.txt.

The syntax is simple. Each formative class declaration occupies a single line and begins with a colon,
followed immediately by the name of the class, which must not contain spaces, and another colon. If
the class has no epsilon continuations, the second colon is followed by a hyphen; otherwise, the epsilon
continuations are listed, one per line, on the following lines. An epsilon continuation is simply the name
of the formative class which is continued to, with no colons or other characters (whitespace characters
before and/or after the class name are allowed). Blank lines are permitted, and non-blank lines may consist
of or end with comments, which begin with an exclamation point and extend to the end of the line.

Example formative class declarations and epsilon continuation definitions are given in Figure 3.27 on
the following page. The class Root includes (in fact, consists entirely of) an epsilon continuation to the
class Stem, which has no epsilon continuations. The class Noun Suffixes has epsilon continuations to the
classes NominalPostbases, containing all noun-attaching postbases, and Nounlnflection, containing all noun
inflections; noun stems continuing to this class can then be suffixed with either a nominal postbase or a
nominal inflectional ending. Neither NominalPostbases nor Nounlnflection has epsilon continuations. Class
EncliticsOrEnd has epsilon continuations to the classes Enclitics and Reduced (containing reduced forms; see
pages 34- 36), as well as to the end-of-word class, #. Enclitics and Reduced have no epsilon continuations.

3.5 Declaration of Multicharacter Symbols

As described in Section 2.3.1 on pages 50- 51, the fundamental unit of a finite-state machine is the
symbol, and while by default single characters are treated as individual symbols, it is sometimes convenient
for a symbol to be made up of several characters. In lexc (and therefore in the formats used in the Inupiag
transducer's lexicon), entries are tokenized by the computer rather than by the morphologist, and thus
the tokenizing algorithm needs a list of all the multicharacter symbols in the lexicon.

106

:Root:
Stem

:Stem:-

:NounSuffixes:
NominalPostbases
Nounlnflection

:NominalPostbases:-

:Nounlnflection:-

:EncliticsOrEnd:
Enclitics
Reduced
#

:Enclitics:-

:Reduced:-

F ig u r e 3.27: Examples of formative class declarations and epsilon continuation definitions

The Inupiaq transducer uses a large number of multicharacter symbols, which can be divided into two
classes: automatically generated symbols and manually specified symbols. The automatically generated
multicharacter symbols are used as rule triggers for allomorph filtering (see Section 3.3 on pages 97
98); the process which automatically generates these symbols (see Section 3.7.5 on pages 113- 114) also
produces a list of these symbols for the tokenizer. However, for the manually specified symbols (examples
are given below), there is no process which automatically generates a listing; instead, this listing must be
made by hand. The file data/multichar_symbols.txt exists for this purpose.

The format of this file is very simple: one multicharacter symbol per line; blank lines and comments
(which begin with an exclamation point) are also permitted. Although comments are optional, if used
judiciously they add significant value to the multicharacter symbol list, by allowing the list to become the
primary source of documentation on the symbols used.

Figure 3.28 on the next page gives example entries from multichar_symbols.txt. Three types of multi
character symbol are present in the list: flag diacritics, which begin and end with the sign; grammar tags
(plus the +Guess tag, marking stems as guesses not necessarily listed in the lexicon), which begin with the
+ sign; and rule triggers, which consist entirely of capital letters. As the comments in the figure describe
each multicharacter symbol, no additional commentary will be given here.

107

! for guessers
GUESSNOUNSTEM ! dummy for noun guesser
GUESSIVERBSTEM ! dummy for intransitive verb guesser
GUESSTVERBSTEM ! dummy for transitive verb guesser
+Guess ! distinguishes a guess from a known stem

! Morphophonological processes
ABSDUAL ! the form of the absolute dual (and other suffixes

! identical in form to the absolutive dual) is conditioned on the phonology of
! the final syllable in the stem; the rules for this are defined in the XFST file

OPTGEM ! optional gemination, conditioned by many inflectional morphemes
GEM ! obligatory (when possible) gemination, conditioned by many inflectional

! morphemes
HISTORICCONSONANT ! indicates that the preceding consonant was historically

! present, but has no phonetic realization unless geminated
HISTORICSTOP ! indicates that the preceding fricative was a stop in

! proto-Eskimo (these go back to stops when they geminate, e.g.
! amaguq 'wolf' -> amaqquk 'two wolves')

! Combination patterns (see the abridged dictionary, p. xi)
PLUS ! pattern represented in the dictionary by the plus sign
MINUS ! pattern represented in the dictionary by the minus sign
COLON ! pattern represented in the dictionary by the colon
DIVISION ! pattern represented in the dictionary by the division sign
PLUSOVERMINUS ! pattern represented in the dictionary by the plus-over-minus sign
MINUSOVERPLUS ! pattern represented in the dictionary by the minus-over-plus sign

! Flag diacritics
P.VALENCE.INTR ! set valence to intransitive
P.VALENCE.TR ! set valence to transitive
R.VALENCE.INTR ! require intransitive
R.VALENCE.TR ! require transitive
C.VALENCE ! clear valence
U.NUMBER.SG ! set number to singular
U.NUMBER.DU ! set number to dual
U.NUMBER.PL ! set number to plural

! Grammar tags
+V ! verb

+lnd ! indicative mood
+Prs ! "present"
+ P s t! "past"

+ ln t ! interrogative
+ C ontl ! contemporative 1

+Real ! realized
+Unreal ! unrealized

+ O p t! optative

F i g u r e 3.28: Examples of m ulticharacter symbol declarations

108

3.6 Conversion of Lexical Data to XML

As an intermediate step during the conversion of the transducer's lexical data from the bespoke formats
in which the data is entered to the XFST formats from which it can be compiled into a transducer, an
XML-based representation of the lexicon is produced. While this can be justified on many grounds, not
the least of which is Kenneth Beesley's endorsement of XML-encoded lexical data (see Beesley 2004a,
c, 2003), the motivation for this arguably unnecessary step is historical. The original intended purpose
of the Inupiag transducer was to provide lexical analysis for a machine translation system. As machine
translation systems and lexical transducers both reguire a lexicon, it made sense for the lexicon to exist in
an easily exchangeable format, a bill which XML fits very nicely. My original intention was to enter data
as guickly as possible, convert this data to XML once and for all, and use the XML representation as the
base lexical data for both morphological analysis and machine translation. However, the task of data entry
seemed never to end, and I found I preferred to edit the original data files rather than to add to an XML
representation of the data. Gradually, the focus of the project shifted away from machine translation, and
it is unclear at present whether anyone will have any use for the XML representation of the lexicon, but
since the machinery is already in place to generate it (and then to use it as the basis for generating the
lexc representation of the lexicon), there is no compelling reason to remove it.

Although I hope that an XML-encoded version of the transducer's lexical data may be useful for other
applications, no special accommodations have been made for any application beyond the Inupiag transdu
cer. The XML representation of the data includes the contents of the files stems.txt, postbases.txt, inflec-
tions.txt, enclitics.txt, patterns.txt, classes.txt, and multichar_symbols.txt (all in the data directory). The
file data/inflections.txt is converted by the Tel script generate_inflections.tcl; the other files are converted
by the Tel script lexicon_to_xml.tcl.

3.6.1 Structure of the Resulting XML Document

Figure 3.29 on the following page gives a schematic of the structure of the XML-encoded lexicon.
Element names are in bold; to the right of these is a number in parentheses, indicating how many elements
of this type may be present in the document. If the element has attributes, their names (in italics) and
data types (in small caps) are listed to the right of the element name and number. Question marks at the
beginning and end of an attribute name indicate that the attribute is optional; the guestion marks are not
part of the attribute name. Allowable children of a given element are listed below the parent element
and indented one level; thus, a lexicon element may have the following child elements: multicharSymbols,

conditions, conditionXFST, class, and morpheme.

The root element of the document is named lexicon; this element has one child element named mul

ticharSymbols, one child element named conditions, one child element named conditionXFST, one or more
child elements named class, and one or more child elements named morpheme. The lexicon element has
no attributes.

The elements multicharSymbols, conditions, and conditionXFST are reguired nodes which serve as par
ents for optional nodes multicharSymbol, condition, and xfstlnstruction, respectively. Each multicharSymbol

element contains a single multicharacter symbol in its sym b o l attribute. Each condition element contains

109

lexicon (1)
multicharSymbols (1)

multicharSymbol (0+)
conditions (1)

condition (0+)
conditionXFST (1)

xfstlnstruction (0+)
class (1+)

epsilon (0+)
morpheme (1+)

belongsto (1+)
continuation (1+)
variant (1+)

sym bol s t r i n g

name s t r i n g pattern s t r i n g oppositepattern s t r i n g

code STRING
name u n iq u e ID
class CLASSNAME
abstractform s t r i n g ?gloss? s t r i n g
class CLASS NAME
class CLASS NAME
condition c o n d i t i o n n am e surfaceform s t r i n g

?strict? 0 | 1

F i g u r e 3.29: Schematic of the structure of the XML file containing the lexicon

a conditioning pattern name (in the nam e attribute), the xfst expression implementing that pattern (in
the pa t te rn attribute), and the xfst expression implementing the opposite pattern (in the o p p o s i tep a t te rn
attribute). Each xfstlnstruction element contains one line of xfst code from SECTION XFST of patterns.txt
(see pages 101- 102).

Formative classes are listed in the nam e attribute of class elements. Formative classes with epsilon
continuations have epsilon child elements; the name of the continuation class is given in the class attribute.

Formatives are listed in morpheme elements. These have one obligatory attribute, abstractform , which
contains the underlying form of the formative. They also have an optional attribute, gloss, which may
contain an English-language gloss for the formative. (It's important to note that the presence of a gloss
attribute may not necessarily indicate the presence of a gloss, as this attribute's value may be an empty
string.) Each morpheme must have at least one child element of each of the following types: belongsto,
indicating in its class attribute a formative class to which the formative belongs; continuation, indicating
(again, in its class attribute) a continuation class for the formative; and variant, indicating a "surface"
representation of the formative (possibly an allomorph) as it was given in the formative data file where it
was defined (in the originalform attribute) and as it will be passed to lexc (in the surfaceform attribute),
the pattern name which conditions this particular surface form (in the condition, and, optionally, whether
or not the form is a "standard" (i.e., non-innovative, non-archaic) form (in the s tr ic t attribute). At present,
the s tr ic t attribute is used only for inflectional endings (see page 92), and is ignored at all further stages in
the compilation of the lexicon. While the concept behind it deserves to be developed further, I consider it a
mistake to have limited it to a (somewhat artificial) strict/non-strict dichotomy and to inflectional endings
only. For that reason, some future version of the transducer will probably do away with the s tr ic t attribute.

Some readers may have noticed that there is an assymetry between the multicharSymbol, condition, and
xfstlnstruction elements on the one hand, and the class and morpheme elements on the other. The former
occur under an umbrella node whose child nodes are all of one type, whereas the latter are direct children
of the root node. There is no real justification for this assymetry, but as has no detrimental conseguences
to users of the file, it will be left as is.

110

3.6.2 Modifications Made to Data During Conversion to XML

The processes which convert the lexical data to XML also make a number of changes to the "raw" data
from the source files to prepare it to be formatted as lexc/xfst code:

• Conditioning patterns defined with the help of Tel procedures are converted to pure xfst, although
they still contain the special symbol %s (see Section 3.3.2 on pages 101- 104)

• Duplicate stems are identified and removed from the lexicon (at present, postbases and enclitics are
not checked for duplicates)

• "Prefixes" specified in the inflectional ending file are attached to the suffixes with which they belong
(see pages 88- 92)

• For each formative belonging to a class that imposes specific long-distance dependency restrictions,
an appropriate flag diacritic is appended or prepended to the formative string (see pages 70- 71,
77- 78, and 86- 87)

• Formative representation is converted from "MacLean orthography" (see page 70) to a slightly dif
ferent format used within the transducer

Most of these changes need no further explanation, but the transducer-internal orthographic conven
tions deserve to be elaborated on. As with Langgard and Trosterud's transducer, the character (e) is
used to represent "weak" i (/i/), while the character (i) is reserved for "strong" i (/i/), and the character (1)
(U+013E) continues to be used in place of (1). Additionally, the character (q) (U+024B) is used to repre
sent "strong q" (/q/), and the character (e) is used to represent an "invariant" !H, that is, one whose vowel
quality does not change in a vowel cluster (this is necessary for postbases -anik- 'previously, already' and
-aqsi- 'about to; beginning to', which preserve the default surface quality of a preceding /i/; see page 12).
For all phonemes other than those just mentioned, the graphemes of the standard orthography are used.

Additionally, the characters which denote suffix attachment patterns (see Table 3.3 and discussion on
pages 79- 80) are replaced with multicharacter rule trigger symbols. Most of the suffix attachment symbols
used in the lexical data files have a special meaning in xfst; replacing them with otherwise meaningless
multicharacter symbols protects against the possibility of accidentally entering the characters in a rule as
xfst operators rather than literal symbols. The mapping between the symbols used in the lexical data files
and the xfst/lexc files is shown in Table 3.5 on the following page.

3.7 Conversion of XML Data to XFST Formats

The final step in the production of the Inupiaq transducer's lexicon is conversion from XML into lexc
(for the lexical data) and xfst (for the filtering code used for handling allomorphy). This is carried out by
xml_to_lexc.tcl, which is located in the scripts directory. In order to perform the conversion, this script
must address the issue of formatives belonging to and/or continuing to more than one class, since a given
entry in a lexc LEXICON can only belong to that class and can only continue to one class. Also, the script
must generate xfst expressions for "otherwise" conditions (see pages 100- 101).

I l l

Table 3.5: Suffix attachm ent symbols in the lexical data flies and in xfst/lexc flies

In lex icon data files In x fst/lexc files
- MINUS
+ PLUS
+- PLUSOVERMINUS
-+ MINUSOVERPLUS
I DIVISION
: COLON
= EQUAL
~ TILDE

3.7.1 Resolution of Membership in More Than One Class

Some inflectional suffixes in the Inupiaq transducer are declared to belong to more than one formative
class, but in lexc a formative can only belong to one LEXICON at a time. Of course, there is no prohibition
against putting identical copies of a formative into multiple LEXICONS, but this is discouraged (see Beesley
and Karttunen 2003:243-245); it would be preferable to list any given formative exactly once, if only for
the sake of elegance. In the case of formatives with membership in more than one class, this can be
accomplished with epsilon continuations. A number of solutions are possible; the one I adopt is illustrated
in Figure 3.30. Formatives with membership in more than one class (in the figure, suffix 3 and suffix 4,
which belong to both Class A and Class B) are removed from the classes to which they belong, and placed
in a new class (in the figure, this is Class C). Epsilon continuations are then added to each of the classes
to which they originally belonged; in this way, the members of the new class are in effect members of their
former classes as well, but they are only listed once in the file.

Class A Class B Class C
s Class C £ Class C suffix 3 ...
suffix 1 ... suffix 4 ...
suffix 2 ...

F igure 3.30: Treatm ent of formatives with multiple class m emberships in the Inupiaq transducer data model (left of
the arrow) and in the lexc data model (right of the arrow)

As Class B in Figure 3.30 is entirely subsumed by Class A, a more optimal conversion to lexc would

112

be to leave suffix 3 and suffix 4 in Class B and include an epsilon continuation from Class A to Class B;
this solution is illustrated in Figure 3.31. As it turns out, for all formatives in the Inupiaq transducer's
lexicon which belong to two classes, one of the two classes is a proper subset of the other, and thus a
Figure 3.31-style solution would have more elegantly described the lexicon. However, the two solutions
are functionally equivalent, and the two lexc representations will compile to identical transducers, so I see
no compelling need to switch from the solution currently in place to the more concise one.

Class A Class B
s Class B suffix 3 ...
suffix 1 ... suffix 4 ...
suffix 2 ...

F igure 3 .31: A more optimal lexc treatm ent of the formatives in Figure 3 .30

3.7.2 Resolution of Continuation to More Than One Class

The case of formatives which continue to more than one class is similar to that of formatives which
belong to more than one class: lexc provides no direct support for these cases, but they can be mod
eled with the help of epsilon continuations and additional formative classes. For formatives with multiple
continuations, the conversion into lexc is accomplished via the following algorithm:

1. Let F equal the set of formatives which continue to more than one formative class.
2. Let C equal the set of unique sets of formative classes such that for any set c in C there exists at

least one formative f in F which continues to each class in c and to no other classes.
3. For each c in C:

a) create a new formative class n consisting entirely of epsilon continuations to each class in c;
b) let Fc equal the subset of F such that each f in Fc continues to each class in c and to no other

classes;
c) for each f in Fc:

i. remove all continuations;
ii. create a single continuation to n.

A simple, hypothetical input to this algorithm and the corresponding output are shown in Figure 3.32
on the next page. In this example, F = {suffix 1, suffix 2}; C = {{Class B, Class C}}; for the case of c =
{Class B, Class C}, n = {Class D} and Fc = {suffix 1, suffix 2}. In other words, suffix 1 and suffix 2 both
continue to the same set of classes: Class B and Class C. A new class, Class D, is created and populated
with epsilon continuations to Classes B and C; suffix 1 and suffix 2 are then made to continue to Class D.

3.7.3 Resolution of "Otherwise" Conditions

In the lexical files of the Inupiaq transducer, all productive allomorphs of a morpheme are specified to
gether, along with codes denoting the phonological environment which conditions each allomorph. Among

113

Class D
£ Class B
£ Class C

F i g u r e 3.32: Treatm ent of formatives with multiple continuations in the Inupiaq transducer data model (left of the
solid arrow; dotted arrows rep resen t continuations) and in the lexc data model (right of the solid arrow)

other things, this makes it possible to specify "otherwise" as one of the phonological environment codes,
indicating that this allomorph is to be used when the preceding environment does not match any of the
conditions specified for the other allomorphs. xfst, however, has no concept of "otherwise," and therefore
the exact parameters of all such conditions must be expressed in a self-contained manner.

As discussed in Section 3.3, for each allomorph conditioning environment specified in data/patterns.txt,
two expressions are defined: the main expression, which accepts strings containing the environment
in question, and a 'complement' expression which accepts strings not containing the environment (see
pages 102- 104). The purpose of the second definition is to facilitate computation of "otherwise" condi
tions. For a set of allomorphs with non-"otherwise" conditions, the corresponding "otherwise" condition
can be expressed as the intersection of the complement expressions of all conditions in the set. This is a
trivial operation in xfst.

3.7.4 Outputting the Lexicon in lexc Format

Having carried out the steps outlined in Sections 3.7.1 and 3.7.2, the modified lexicon now complies
with the limitations of lexc, specifically in that each formative belongs to only one class and continues to
only one class. As such it can be expressed in lexc format.

The process of generating lexc output is quite simple. The output begins with a comment, which
lexc will ignore, indicating the name of the script that generated the file and the date and time when
it was generated. Next, a list of multicharacter symbols is given (see pages 50- 51). Finally, for each
formative class in the lexicon, the name of the class is given and each member of the class (including
epsilon continuations) is listed along with its continuation class.

3.7.5 Outputting Allomorph Conditioning Environment Data in xfst Format

After exporting the formatives in lexc format, the final step in the conversion of the Inupiaq lexicon into
XFST formats is to output allomorph conditioning environment data. This file, ipk_condition_xfst.txt, con
tains the contents of SECTION XFST from the file data/patterns.txt (see pages 101- 102), the definition of
an xfst variable named ConditionSymbols (which lists the names of each rule trigger symbol), and the def
initions of each conditioning environment filter. Following these, a variable named LexiconCheckConditions
is defined; it is a cascade of variables composed together, beginning with a variable named Lexicon, fol
lowed by each variable containing a conditioning environment filter definition, and terminated by the rule

Class A
suffix 1 Class D
suffix 2 Class D

114

[ConditionSymbols -> 0], which deletes all rule triggers associated with conditioning environments. Finally,
the variable Lexicon is redefined to the value of LexiconCheckConditions. The use of the variable Lexicon and
variables like LexiconCheckConditions is explained in Section 3.8.1 on pages 114- 116.

3.8 Morphophonological Rules

The main purpose of the morphophonological (or more correctly, morphographemic) rules in this
project is to transform the data contained in the lexicon into a mapping between, on one hand, strings
of morphemes in some citation or "underlying" form, and on the other hand, surface forms of Inupiag
words. The lexicon, as it exists just before rules are applied to it, is a transducer whose upper and lower
languages are in intermediate states relative to the eventual upper and lower languages of the finished
transducer. These intermediate upper and lower languages are both abstract. The upper language con
tains grammar tags for inflectional morphemes, while the lower language contains actual alphabetic forms
of these morphemes. Both upper and lower languages contain extralinguistic symbols such as morpheme
boundary markers, rule triggers, and flag diacritics. Both use a non-standard orthography (see page 110).
On both sides, rule triggers will need to be removed and spellings brought into conformance with stan
dard Inupiag conventions. Additionally, on the lower side, entries containing allomorphs in disallowed
environments will need to be filtered out of the transducer; a number of morphophonological changes will
need to be made to produce the appropriate surface forms; and non-alphabetic symbols such as morpheme
boundaries will need to be removed. All of these changes will be brought about by morphographemic rules
composed together with the lexicon.

A secondary purpose of the rules in the Inupiag transducer is to define the set of phonotactically pos
sible noun and verb stems. In the event that a word cannot be fully analyzed according to the data in
the lexicon, possible stems can be generated from these rules, and the remainder of the word analyzed
according to the postbases, inflectional endings, and enclitics in the lexicon.

Unlike the lexicon, the morphophonological rules are not encoded in a format specific to this project;
they are written directly in xfst. Readers unfamiliar with xfst may wish to consult Appendix A on pages 168
170 to better understand the regular expressions and other xfst code in this section.

3.8.1 Architecture and Idioms

There are several possible ways to structure an xfst file, depending on one's goals and personal pref
erences. The architecture of the morphophonological rule file for the Inupiag transducer has evolved
dramatically over the course of its development. Initially, I adopted a format very similar to the one used
by Langgard and Trosterud: a section of symbol class definitions, followed by a section of rules, followed
by a cascade in which the rules are composed into a single transducer. But because my transducer shifts
more of the descriptive burden onto the rule component than does theirs, I found this structure suboptimal
for my needs in two respects.

First, as the rules became more numerous (and compile time increased accordingly), it became increas
ingly important to have feedback from XFST not only after the transducer was compiled, but throughout
the compilation process. When XFST evaluates a rule file, it displays information on the results of each
command as soon as that command is executed. Composing all the rules together via a single cascade

115

(in other words, a single xfst command) prevents any feedback until the entire composition process is
complete.

Second, when debugging one's xfst rules, it is often useful to examine the output of a transducer
composed of the lexicon and all the following rules up to a certain point. If the complete transducer was
built using a single rule cascade, then creating a transducer with only some of the rules reguires that
another rule cascade, containing only the rules up to the point of interest, be written and executed. This
reguires XFST to repeat work that it has previously performed: in compiling a transducer built from a
lexicon composed with rules 0...n, XFST must necessarily build every transducer consisting of the lexicon
composed with rules 0 . . . n - m , 0 < m < n (as well as compiling the transducer consisting of the lexicon
alone).

To address these shortcomings, I have adopted an architecture where the final transducer is built up in
pieces, with a trail of "crumbs" containing the intermediate transducers compiled along the way. Related
commands are grouped together (for example, all commands defining assimilation). Groups which define
rules end in a pair of variable definitions. The first defines a "crumb" variable containing the existing
transducer composed with the new rules; the contents of these variables can easily be loaded into XFST
for debugging, saving users from having to re-compose the part of the transducer they wish to examine.
The second command in the pair redefines the variable Lexicon to contain the same transducer as the
crumb variable just defined. In this way, Lexicon becomes a relative point of reference, while the crumb
variables are absolute points of reference. The definitions of the crumb variables take advantage of this
fact, composing new material to the value of Lexicon rather than to the value of the previous crumb variable.
Because rules are added relative to the current state of the transducer, re-ordering them is simply a matter
of cutting and pasting the group of commands into the appropriate place; no changes need be made to the
code which performs the composition.15

Three other idioms are used regularly throughout the rules. The first is the definition of "convenience"
variables, which do not contain rules but rather patterns (such as the structure of a permissible consonant
cluster) or classes of symbols (such as the set of voiced consonants) which make rules easier to write and
read. A set of convenience definitions with widespread application is provided at the beginning of the
file, and other convenience definitions with more limited scope are defined with the groups of commands
where they are used.

The second idiom, which unfortunately tends to obfuscate the rules somewhat, is "ignoring." Previously
discussed in Section 3.3.1 on pages 98- 101, an ignoring expression takes the form [A/ B] and results in
a pattern such that zero or more instances of pattern B may occur at any point within or on either edge
of pattern A. This is useful for dealing with rule triggers, morpheme boundary markers, and other special
symbols which are peppered throughout the lexicon. Rules generally operate on alphabetic symbols, and
while a given rule may be sensitive to one special symbol, all other non-alphabetic symbols which may
be present will be irrelevant. Yet the rule must account for the presence of those irrelevant symbols or
it will fail.16 As the number of rule triggers and other special symbols increases, so does the difficulty

15This could alternatively been accomplished by pushing each crumb onto the xfst stack (see Appendix A) and popping it back off
in place of referring to Lexicon in each rule definition. The choice between these two approaches is a matter of taste.

16Flag diacritics are particularly insidious; they occur all over the lexicon, rules are never sensitive to them, and they are normally
invisible to users interacting with XFST. Bugs due to rules not taking the presence of flag diacritics into account are maddeningly
hard to find. Because they are so much trouble, I prefer to filter them completely out of the transducer rather than trying to anticipate

116

of anticipating which triggers might occur where, in which order, within a rule. Rather than target each
symbol individually, one might define a variable containing an inclusive disjunction of all such symbols,
and invoke this disjunction, followed by a Kleene star, at points in a rule where these symbols might occur
(in other words, one could indicate that at specified places within a rule, zero or more rule triggers may
be present). But even then, it is easy to forget to mark a point where non-alphabetic symbols might occur,
and such an omission would be hard to identify. Ignoring represents the ultimate lazy/safe approach to
irrelevant symbols. Rather than specify points where irrelevant symbols may occur (and risk missing points
here and there), ignoring specifies that irrelevant symbols might occur anywhere in the expression.

The specification of symbols to ignore also deserves a brief explanation. Rather than explicitly list the
set of symbols which are irrelevant for a given rule, I calculate the term complement (represented in xfst by
a backslash \) of the set of symbols which are relevant for that rule. Alphabetic symbols are almost always
relevant—they bear on whether most rules should fire or not. For many rules, a particular rule trigger or
a morpheme boundary may also be relevant. The term complement of the set of relevant symbols is the
set of all single symbols not in the set of relevant symbols—in other words, the set of irrelevant symbols.
Defining the set by complementation rather than by explicit enumeration also reduces the likelihood of
having to rewrite a number of rules in the event that a new non-alphabetic symbol is introduced into the
lexicon.

The third idiom might be called "filtration through complementation." It is used less freguently than
the other two idioms but freguently enough to deserve a brief mention. It involves expressions of the form
~$A where A is a subexpression describing a regular language. The dollar sign is the containment operator;
it takes a subexpression as its operand and describes a language17 where every member string contains
at least one substring which is defined by the subexpression. The tilde is the language complementation
operator; it takes as its operand a subexpression defining a regular language (not a regular relation) and
defines the regular language which is the complement of the language described by its operand. In other
words, it defines a language that contains no string in the operand's language and every string not in the
operand's language. When composed "below" a transducer, an expression of the form ~$A filters out any
strings in the lower language which contain a substring defined by A, as well as any strings in the upper
language which exist in a one-to-one relationship with lower-language strings which the expression has
filtered out. When composed "above" a transducer, an expression of that form filters out strings in the
upper language, as well as any strings in the lower language which exist in a one-to-one relationship with
them.

3.8.2 The Rules

3.8.2.1 Loading the Lexicon; Eliminating Flag Diacritics

The rule code begins as shown in Figure 3.33 on the next page. The lexicon, as prepared by the script
xml_to_lexc.tcl (see Section 3.7 on pages 110- 114), is loaded onto the top of the XFST stack. The lexicon is
then restructured using the eliminate dag command so that the restrictions that had been imposed by the
their presence as I do with all other special symbols. See Section 3.8.2.1 on pages 116- 117.

17The containment operator can also describe regular relations, but as the Inupiag transducer never uses it for that purpose I
have omitted it from the discussion.

117

flag diacritic mechanism are instead imposed by the structure of the transducer itself. This is a relatively
expensive operation, causing the transducer to more than double in size, which must inevitably slow down
all subseguent steps in the compilation process. The payoff is the peace of mind that comes from knowing
that subseguent rules need not take the presence of these symbols—which are normally invisible during
interactive XFST sessions—into account.

read lexc ipk_lexc.txt
eliminate flag VALENCE
eliminate flag NUMBER
define LexiconNoFlags;
define Lexicon LexiconNoFlags;

F i g u r e 3.33: Code to load the lexicon and elim inate flag diacritics

When the lexicon has been restructured, it is popped off the XFST stack using the command define
LexiconNoFlags, the first crumb variable definition in the file. Finally, the variable Lexicon is assigned its
initial value.

3.8.2.2 Global Convenience Definitions

In this section, shown in Figure 3.34 on the following page, a number of symbol classes are defined for
use in subseguent rules. Because xfst's variable mechanism allows an expression to be associated with a
meaningful name, convenience definitions help make other expressions more readable, and because the
same definition can be invoked multiple times, variables also make it easier to write expressions.

Many of the classes defined constitute graphemic eguivalents of phonological natural classes. Others
are classes of non-alphabetic symbols. The class Graphemes will be used to create expressions of symbols
for rules to ignore (see preceding page). All but one class is defined through logical disjunction (also called
union). ConsonantCluster is defined through subtraction (also called set-theoretic difference or relative
complement), together with ignoring; it defines the set of strings consisting of two substrings from the
Consonant class, but excluding the strings (kh), (gh), and (sr), which are digraphs and therefore single
consonants, despite the fact that (h), (k), (g), (r), and (s) are members of the Consonant class by themselves.

118

define Vowel [a | e | e | i | u]; ! i = strong i; e = weak i; e = weak i which does not become a when followed by another vowel
define AnyQ [q | q]; ! using q to represent strong Q
define Stop [p 111 c h | k | AnyQ];
define VoicelessFricative [l | r | s | s r | k h | q h | h];
define VoicedFricative [v | I | I | y | r | g | g];
define Nasal [m | n | n | g[;
define VoicedConsonant [VoicedFricative | Nasal];
define VoicedPhoneme [VoicedConsonant | Vowel];
define Consonant [VoicedConsonant | VoicelessFricative | Stop];
define Graphemes [a | b | c | d | e | e | f | g | g | h | i | j | k | l | t | l

| l ' | m | n | n | Q | o | p | q | q | r | s | t | u | v | w | x | y | z] ;
define ConsonantCluster [[Consonant Consonant] - [k h | q h | s r]] / \Graphemes;

define WordBoundary [% < | .#.];
define MorphemeBoundary [%> | WordBoundary];
define MorphemeBoundary2 [MorphemeBoundary | %|];

define CombinationPattern [WEAKENI | PLUS | MINUS | COLON | DIVISION |
PLUSOVERMINUS | MINUSOVERPLUS | EQUAL | TILDE | UVULARIZE | VELARIZE |
PROTECTWEAKI | LENGTHENV];

define DeleteOnTop [NONSTEM | OPTNSTEM | HISTORICCONSONANT | HISTORICSTOP | YTCH
| REGRESSIVEPALATALIZATION | CombinationPattern];

F i g u r e 3.34: G lobal c o n v en ien ce defin itions

3.8.2.3 Limiting Word Length

The first rule in the file, given in Figure 3.35 on the following page, imposes some sane upper limits
on the length of words that may be recognized by the transducer. The primary reason for including this
rule was to simplify development. XFST can print random words from the upper or lower language of a
transducer, but this feature is only helpful if words are reasonably short. However, the restrictions imposed
by this rule seem reasonable and few if any real-world Inupiaq words will exceed them. These restrictions
are:

• words must contain fewer than eight within-word morpheme boundaries, effectively limiting words
to a maximum of eight within-word morphemes (an initial morpheme plus a morpheme following
each boundary)

• words must contain fewer than three word-enclitic boundaries, effectively limiting words to a max
imum of two enclitics (one after each boundary)

• words must contain fewer than three word-reduced-form boundaries, effectively limiting words to a
maximum of two suffixed reduced forms

• words must contain fewer than eight total boundaries of any kind, effectively limiting words to a
maximum of eight total morphemes

Ignoring and complementation are used to disregard any non-boundary characters.
Similarly to the elimination of flag diacritics, this rule imposes considerable size and performance

penalties, particularly in its cumulative effects on the rest of the compilation process. For some possible
applications of the transducer, the benefits of this rule may not justify the drawbacks. The limitations of

119

define LimitWordLength [
[% > / \% > P < 8 .0.
[% < / \ % < r< 3 .0.
[%| / \%|]~<3 .0.
[[%> | %< | %|] / \[%> | %< | %|]]~<8];

define LexiconLimitedWordLength [Lexicon .o. LimitWordLength]
define Lexicon LexiconLimitedWordLength;

F i g u r e 3.35: C ode to lim it w ord len gth

human cognition tend to naturally restrict word length, so if the transducer is to be used in an application
where it will only process authentic, human-generated Inupiag words, it may make sense to compile the
transducer without this rule.

3.8.2.4 Eliminating Capital Letters from the Lexicon

The code in this section ensures that the lexicon contains no capital letters, in order to make the trans
ducer simpler to use. In Figure 3.36, the code has been truncated. It should contain two subexpressions
for each letter of the alphabet: a left replacement subexpression composed above the lexicon, and a right
replacement subexpression composed below it. The left replacement subexpressions remove capital let
ters from the upper language, and the right replacement subexpressions have the same effect on the lower
language.

define LexiconNoCaps [
[a < - A] .o .

[b < - B] .o.

[z < - Z] . o .

Lexicon .o.
[A -> a] .o.
[B -> b] .0.

[Z->z]] ;
define Lexicon LexiconNoCaps;

F i g u r e 3.36: C ode to lim it w ord len gth

3.8.2.5 Defining Stem Guessers

The code in this section defines two rules for guessing stems (see Section 2.3.7 on pages 59- 60), one
for nouns and one for verbs, and inserts this code into the transducer. The rules are based on Inupiag
phonotactic constraints (see Section 2.1.3 on pages 25- 27); because of this, they will probably fail on
words of foreign origin, but are likely to produce higher-guality guesses for words of Inupiag origin which,

120

for whatever reason, are not in the lexicon of the non-guessing transducer.18
The first step involves defining a series of convenience variables, each one addressing a different aspect

of Inupiag stem phonotactics. These definitions are given in Figure 3.37 below. The most complex aspect
of the rules is defining possible stem-medial consonant groups; there is also a simple definition of allowable
stem-initial consonants and an even simpler definition of legal vowel groups (one /'i/ vowel or one or two
"prime" vowels). All of these definitions are consolidated in the variable StemWithoutFinalConsonant, which
is defined as an optional initial consonant, followed by a vowel group, followed by zero or more consonant
group/vowel group pairs. Finally, three filters are defined: EnforcePalatalRestrictions eliminates guesses
where III is followed by a non-palatalized consonant or where /'i/ is followed by a palatalized consonant;
EnforceWordlnitialDistribution throws out guesses beginning with /ti/, /ni/, or /si/; and EnforceQDistribution

removes guesses ending in /iq/ or /VCVi(V2)q/ where Vi and 2 are vowels other than /!/. Each of the filters
use the "filtration through complementation" idiom described on page 116.

define InitialConsonant [{ [p | m | t | n | s | y | k | q])] ; ! parentheses are included because initial consonants are optional
define StopCluster [p p | p t | p k | p q | t t | t p | t k | t q | t c h | k k | k p | k t | q q | q p | q t] ;
define VoicelessFricativeCluster [v t | v r | v s | v s r | v k | v q | t t | t h | r h | M ' | s k |

s s | s t | k s | p s | q s | r s | k s r | q s r | t s r | k l | k r | q l | q l '] ;
define VoicedFricativeCluster [v v | v l | v l | v y | v r | v g | v g | l v | l l | l y | l r | l g |

l g | ! v | ! ! | ! y | l r | ! g | ! g | y v | y l | y ! | y r | y g | y g | r v | r l | r ! | r y | r r |
r g | r g | g v | g l | g ! | g y | g r | g g | g v | g l | g ! | g y | g r | g g] ;

define NasalCluster [g m | g n | g n | g m | g n | g n | m m | m n | m n | m i] | m l | m ! | m g | m g |
n m | n n | n g | n l | n g | n g | n m | n n | n g | n l | n g | n g | g m | g n | g g | g l | g l | g g] ;

define LegalConsonantCluster [StopCluster | VoicelessFricativeCluster | VoicedFricativeCluster | NasalCluster];
define StemMedialConsonantComponent [Consonant | LegalConsonantClusters];
define VowelComponent [[a | i | u]~ {1 ,2 } | e];
define StemWithoutFinalConsonant [InitialConsonant VowelComponent

[StemMedialConsonantComponent VowelComponent]*];
define EnforcePalatalRestrictions ~$[i (Consonant) [I 111 n] | i t Vowel | [Vowel - i] (Consonant) [n | I | I']];
define EnforceWordlnitiallDistribution ~$[.#. [[t | n] i | s e]];
define EnforceQDistribution ~$[e q | Vowel Consonant [Vowel - e]~ { l ,2 } q];

F i g u r e 3.37: Convenience definitions for guessing stems

Next, the actual guessing rules are defined, as shown in Figure 3.38 on the following page. The two
rules are nearly identical; the only differences are the specific consonants allowed to occur stem-finally,
and the fact that noun stems are filtered for illegal occurrences of "strong" and "weak" (q), a distinction
which applies only to nouns.

With the rules defined, the final step is to insert them into the lexicon. The command push Lexicon puts
the contents of the transducer onto the XFST stack so that this can happen. Three placeholder symbols
are defined in the lexicon: GUESSNOUNSTEM is listed as a noun stem, GUESSIVERBSTEM is listed as an
intransitive verb stem, and GUESSTVERBSTEM is listed as a transitive verb stem. The commands beginning

18Should there arise some compelling reason to recognize words for which these guessers fail, one could create a transducer built
on an unscrupulous guessing rule which simply accepts any string ending in what might be an Inupiaq inflectional suffix (including a
zero morph). Words which fail the standard transducer and the phonotactics-based guesser could then be passed to this "transducer
of last resort" for a final attempt at analysis.

121

define PossibleNounStem [
[StemWithoutFinalConsonant ([k | q | q | n | n]) "+Guess":0] .0.
EnforcePalatalRestrictions .0.
EnforceWordlnitiallDistribution .0.
EnforceQDistribution];

define PossibleVerbStem [
[StemWithoutFinalConsonant ([k | q 11]) "+Guess":0] .0.
EnforcePalatalRestrictions .0.
EnforceWordlnitiallDistribution];

F i g u r e 3.38: Rules for guessing noun and verb stems based on Inupiaq phonotactics

with substitute defined ... replace these symbols with the guessing patterns defined in PossibleNounStem
and PossibleVerbStem. The continuations associated with the placeholder symbols are now associated with
the guessing patterns. The modified transducer is popped back off the stack and stored in a new crumb
variable (define LexiconWithGuessing), whose contents are then copied into Lexicon.

! replacing the special symbols with guesser content
push Lexicon
substitute defined PossibleNounStem for GUESSNOUNSTEM
substitute defined PossibleVerbStem for GUESSIVERBSTEM
substitute defined PossibleVerbStem for GUESSTVERBSTEM
define LexiconWithGuessing
define Lexicon LexiconWithGuessing;

F i g u r e 3.39: Code to insert the stem -guessing rules into the transducer

3.8.2.6 Filters for Irregular Inflected Forms

Occasionally, a noun stem will have a dual or plural form which cannot be correctly generated by
the transducer's rules. For example, MacLean (n.d.a) gives the plural of tuva aq 'hunter' as tuviggat,
whereas the transducer would generate *tuvaat. To remedy this situation, the stem is specified in the
file data/stems.txt as tuvaaqlRREGULARPLURAL n, and two additional entries (one each for absolutive and
relative case) describe the plural form: tuviggat> + N+Abs+PI:tuviggat * and tuviggat> + N+Rel+PI:tuviggat *
The rule shown in Figure 3.40 on the next page then filters the incorrect plural out of the transducer. The
same process can be applied to stems whose dual forms the transducer cannot generate; the multicharacter
symbol IRREGULARDUAL is appended to the stem in the file data/stems.txt, and separate entries are made
for the actual dual form (one entry each for absolutive and relative cases).

The filters in this section use the "filtration through complementation" idiom described on page 116.
The "ignoring" operator is not used because there is only one point in each filter where irrelevant symbols
might intervene: directly after the first symbol. Instead of ignoring, a combination of term complementa
tion (a backslash) and Kleene closure (an asterisk) are used.

122

define IrregularMorphologyFilter [IRREGULARDUAL | IRREGULARPLURAL]; ! convenience definition
define IrregularDualFilter [~$[IRREGULARDUAL \[IRREGULARDUAL | %>]* %> " + N" ["+Abs" | " + Rel"] " + Du"]];
define IrregularPluralFilter [~$[IRREGULARPLURAL \[IRREGULARPLURAL | %>]* %> " + N" ["+Abs" | " + Rel"] " + PI "]];
define LexiconlrregularMorphology [

0 < - IrregularMorphologyFilter .0.
IrregularDualFilter .0.
IrregularPluralFilter .0.
Lexicon .0.
IrregularMorphologyFilter-> 0];

define Lexicon LexiconlrregularMorphology;

F i g u r e 3.40: Code to filter out unattested "regular” dual or plural mem bers of a paradigm

The composition cascade is more complicated for these filters than for most of the other rules in the
transducer. The cascade is bracketed on either end with expressions deleting the multicharacter symbols
IRREGULARDUAL and IRREGULARPLURAL from the upper and lower languages. Between these expressions,
the two filters are composed “above” the transducer because the filters are sensitive to grammar tags,
which are only present in the transducer's upper language.

3.8.2.7 Reducing Two Consecutive Boundary Markers to One

When a morphological word ending in a zero morph is followed by an enclitic or reduced form, the
representation of that word in the lower language of the lexicon will contain two consecutive boundary
markers with no symbols in between. For the sake of simplicity, the rule shown in Figure 3.41 gets rid of
the first of these boundary markers.

define ReduceDoubleBoundary [%> -> 0 || _ [% < | %|]];
define LexiconNoDoubleBoundary [Lexicon .0. ReduceDoubleBoundary];
define Lexicon LexiconNoDoubleBoundary;

F i g u r e 3.41: Code to fix strings of two consecutive boundary m arkers

3.8.2.8 Changing Noun-Stem-Final -n to -ti

At this point in the file, definition of morphographemic rules begins in earnest. The first rule deals
with the alternation of [n] and /ti/ at the end of noun stems (see Section 2.1.2.7 on pages 22- 23). Stems
susceptible to this alternation are listed in the stem file with a final (n), despite the fact that [n] is only
a surface form. Given that every occurrence of noun-stem-final surface [n] corresponds to an underlying
/ti/, while not every underlying /ti/ at the end of a noun stem can correspond to surface [n], I found it
easier to mark applicable stems by including (n) rather than (ti) in their definitions, and then to apply a
rule converting this (n) to (ti) where appropriate, than to list stems as ending in (ti) plus a rule trigger and
apply a rule converting these instances of (ti) to (n). As an added bonus, using (n) directly in stem listings

123

also made data entry easier, since all of the lexical sources for this project use the absolutive singular form
as the citation form for nouns.

The definition of the rule is shown in Figure 3.42. Two rule triggers are relevant for this rule: OPTNSTEM
indicates that, if the preceding stem exhibits the /ti/-[n] alternation, the surface realization of the stem in
this particular word may end in either (n) or (ti); NONSTEM indicates that, if the preceding stem exhibits the
/ti/-[n] alternation, the surface realization of the stem in this particular word must end in (n). The expres
sion defined as OptionalNStem, when composed with Lexicon, will take the lower language of Lexicon and
replace each string containing the symbol OPTNSTEM with two strings, one where this symbol is replaced
with the symbol NONSTEM, and another where this symbol is simply deleted.

define OptionalNStem [OPTNSTEM -> [NONSTEM | 0]];
define NSteml [n -> t e, n -> s e || _ [%> \NONSTEM] / [\[Graphemes | %> | NONSTEM]]];

! n becomes ti when followed by a (regular) morpheme boundary and the
! following morpheme doesn't prevent this change

define NStem2 [n (->) t e, n (->) s e || _ [[% < | %|] \NONSTEM] / [\[Graphemes | %< | %| | NONSTEM]]];
! n optionally becomes ti when followed by an enclitic or reduced form
! boundary and the following morpheme doesn't prevent this change

define NStem3 [NONSTEM -> 0];
define LexiconNStem [Lexicon .o. OptionalNStem .o. NSteml .o. NStem2 .o. NStem3];
define Lexicon LexiconNStem;

F i g u r e 3.42: C ode d efin ing th e /ti/-[n] a lternation

NSteml, composed under Lexicon and OptionalNStem, will replace all instances of (n) in the transducer's
previous lower language with (te) (recall that (e) represents HI within the transducer) and all instances of
(n) with (se) when either string is followed by a morpheme boundary and a symbol other than NONSTEM,
ignoring symbols other than alphabetic symbols, interword boundary markers, and NONSTEM. NStem2 will
optionally replace (n) and (n) in the transducer's previous lower language with (te) and (se), respectively,
when either of these strings is followed by an enclitic or reduced-word boundary and a symbol other than
NONSTEM (again, ignoring irrelevant symbols). Finally, NStem3, composed to the bottom of the transducer,
creates a new lower language which is identical to the previous one except that it does not contain the
symbol NONSTEM.

3.8.2.9 Forming the Absolutive Dual

As was discussed previously, the practice I have adopted regarding allomorphy is to divide the labor
between the lexicon and the rules. Allomorphic variants and their conditioning environments are speci
fied in the lexicon (see page 80 and pages 87- 92), and controls to ensure that stems and allomorphs are
appropriately paired are defined with rules (specifically, conditioning environment filters; see Section 3.3
on pages 96- 104). However, the absolutive dual is not handled in this way; in the lexicon, it is represented
only by the multicharacter symbol ABSDUAL, and the realization of this symbol is accomplished using rules.
The main reason for implementing the absolutive dual within the rules is that it forms the basis for a num
ber of other dual suffixes, including all of the other unpossessed dual case endings and several possessive

124

ones. Implementing the absolutive dual as a rule and rule trigger makes possible morpheme specifications
such as ABSDUAL/nik (the modalis dual ending) and ABSDUAL+kpin (one form of the relative dual with 2nd
person singular possessor ending). If the absolutive dual were implemented in the same way as other
inflectional morphemes, then each morpheme that is based on it would either have to include in its specifi
cation a duplication of all the absolutive dual allomorphs, or else be implemented using a continuation from
the absolutive dual—a strategy that would be incompatible with the framework for specifying inflectional
endings described in Section 3.2.3.2.

The form of the absolutive dual ending is -k in all cases, but depending on the form of the stem, a
number of other changes to the stem may also occur. These are given in Table 3.6. Notable among these
changes is that /a/, HI, and /u/ undergo lengthening when they occur as the final vowel in a stem of the
form -VCCVCi where Ci is Ik/ or /q/. The absolutive dual is one of very few Inupiaq suffixes which trigger
vowel lengthening.

Table 3.6: E ffects o f th e ab so lu tive dual en d in g on th e p r eced in g stem ; data from M acLean (1 9 8 6 u :7 7 -7 8)

The contents of Table 3.6 are expressed as rules in Figure 3.43 on the next page. They begin with
a convenience definition, AbsDuallgnore, establishing the symbols which subsequent definitions will ig
nore. AbsolutiveDualVowel handles vowel-final stems (including stems whose absolutive singular form
ends in -n or -n), replacing the ABSDUAL symbol with a trigger for optional gemination19 followed by
(k). AbsolutiveDualCCVStrongC handles vowel lengthening for cases -VCCVik and -VCCViq. Finally, the
operation AbsolutiveDualConsonant arranges for gemination to occur (if applicable) and for the stem-final
consonant to be deleted (see page 133) and appends (k) to the stem.

3.8.2.10 Handling Optional Gemination and Stems with "Historic Consonants"

This rule, which I call "pre-gemination," groups together two operations related to gemination, but
which must be evaluated before the gemination rule. The first operation handles the OPTGEM symbol by

19Note that there is no harm in GEM or OPTGEM following stems where gemination is not possible, such as stems ending in
VCCV or VCW; the gemination rule takes the stem form into account (see Section 3.8.2.10 on pages 124- 126 and Section 3.8.2.14
on pages 129- 130).

Stem form
-vccv -w
-vcv
- w c
-VCCVq
-VCVq
-VCVjk, -VCViq
-VCCVjk, -VCCViq

Changes caused by absolutive dual
no changes
optional gemination of C
deletion of final consonant
deletion of /q/
deletion of /q/, gemination of C
deletion of final consonant; if Vi is /!/, it becomes [a]
deletion of final consonant; lengthening of Vi if it is
not /!/; changing of III to [a]

125

define AbsDuallgnore [\[Graphemes | ABSDUAL]];
define AbsolutiveDualVowel [ABSDUAL -> OPTGEM k || Vowel / AbsDuallgnore _];
define AbsolutiveDualCCVStrongC [a -> a a, i -> i i, u -> u u, e -> a ||

ConsonantCluster _ [[k | q] ABSDUAL] / AbsDuallgnore];
define AbsolutiveDualConsonant [ABSDUAL -> GEM MINUS k];
define LexiconAbsolutiveDual [

Lexicon .0.
AbsolutiveDualVowel .0.
AbsolutiveDualCCVStrongC .0.
AbsolutiveDualConsonant];

define Lexicon LexiconAbsolutiveDual;

F i g u r e 3.43: Code for forming the absolutive dual

replacing each string containing this symbol with two strings, one of which contains the GEM symbol in its
place, the other of which simply deletes the symbol.

The second operation deals with the HISTORICCONSONANT symbol, which signifies the presence of a
consonant in the preceding stem which is realized only when the stem is followed directly by a suffix which
triggers gemination (see example (23) and discussion on pages 17- 18). Stems with "historic consonants,"
such as k u ruk 'river' are entered in data/stems.txt with the historic consonant in place and followed by
the HISTORICCONSONANT symbol, for example, kurukHISTORICCONSONANT. KeepHistoricConsonant, shown in
Figure 3.44, retains a historic consonant if the stem where it is found is followed by the GEM sign, signifying
that gemination will occur; this rule also deletes the HISTORICCONSONANT symbol in that case. Any strings
which still contain the HISTORICCONSONANT symbol after the application of KeepHistoricConsonant must
therefore not contain the necessary environment for the historic consonant to manifest itself in the surface
form, so RemoveHistoricConsonant deletes this consonant (the HISTORICCONSONANT symbol in these strings
is removed by the code [HISTORICCONSONANT -> 0] in the cascade that follows).

define OptionalGemination [OPTGEM -> [GEM | 0]];
define KeepHistoricConsonant [HISTORICCONSONANT -> 0 || Consonant Vowel (Consonant) _ GEM /

[\[Graphemes | GEM]]];
define RemoveHistoricConsonant [Consonant -> 0 || _ [Vowel (Consonant) HISTORICCONSONANT] /

[\[Graphemes | HISTORICCONSONANT]]];
define LexiconPreGemination [

Lexicon .0.
OptionalGemination .0.
KeepHistoricConsonant .0.
RemoveHistoricConsonant .0.
[HISTORICCONSONANT-> 0]];

define Lexicon LexiconPreGemination;

F i g u r e 3.44: Code for handling optional gemination and "historic" consonants

The reason for separating these operations (the handling of OPTGEM in particular) from the gemination
rule has to do with the allomorph conditioning environment filters. Gemination should not be applied until

126

after these filters, but the operation to resolve HISTORICCONSONANT must be completed before the filters
are applied, since the outcome of this operation affects the shape of the stem (and therefore, potentially,
whether a filter will accept or reject that stem). The resolution of HISTORICCONSONANT depends in turn
upon the resolution of the OPTGEM symbol. Thus, OPTGEM and then HISTORICCONSONANT are handled here,
in that order; then, the conditioning environment filters are applied (see Section 3.8.2.11); and finally,
somewhat later, gemination is applied (see Section 3.8.2.14 on pages 129- 130).

3.8.2.11 Applying Conditioning Environment Filters

At this point in the rules file, the allomorph conditioning environment filters are applied to the trans
ducer. As was discussed in Section 3.3, allomorph conditioning filters are xfst code which eliminates from
the transducer any strings containing an allomorph suffixed to a stem whose form it is not compatible
with. The code is generated by xml_to_lexc.tcl (see Section 3.7.5 on pages 113- 114) and is loaded by the
command source ipk_condition_xfst.txt. The conditioning environment filter code contains instructions to
compose the filters below the transducer and to redefine the variable Lexicon (see page 115).

3.8.2.12 Deriving Demonstrative Stems

Demonstrative adverbs and pronouns differ from other entries in the transducer in that they are entered
as full words in citation form rather than as stems (see pages 74- 75). For demonstrative adverbs, this is
the "interjectional" form (the form with no case ending); for demonstrative pronouns, it is the absolutive
singular form. The biggest disadvantage to listing demonstratives as full words is the inelegance and
redundancy of having to list two forms which can be derived more or less predictably from a single root.
Happily, this drawback is offset by two key advantages: first, a demonstrative in citation form is more easily
recognized than an abstract demonstrative stem, so using citation forms should make the transducer more
user-friendly; and second, for both demonstrative adverbs and demonstrative pronouns, the citation forms
are the most exceptional members of their respective paradigms, and listing them directly in the lexicon
relieves me of the burden of writing two sets of rules, one for citation forms and one for all other forms.

In order to generate non-citation forms, however, the citation forms must be reduced to some kind of
stem. Table 3.7 on the following page20 illustrates several forms of nine example demonstratives, including
the adverbial and pronominal "stems" which the rules described in this section will derive. These differ
from the demonstrative "roots" given by MacLean (1986h:47-48), as well as the "relative stems" given in
MacLean (n.d.h:ch. 24) for deriving obligue forms of demonstrative pronouns. They are simply greatest
common denominators21 of the non-citation forms of each demonstrative pronoun or adverb, which will be
followed by the endings shown in Figure 3.18 on page 95.

3.8.2.12.1 D em onstrative A dverb S t e m s For demonstrative adverbs, identifying the "stem" involves re
moving the final vowel of the citation form as well as zero, one, or two consonants, depending on the
consonants. The demonstrative adverb stem-deriving rule is shown in Figure 3.45 on page 128. This

20Data for this table was drawn from MacLean [1986b:47-48, 122-125], MacLean [n.d.b:ch. 24], and Seiler [2005:461], The
"stem" columns are based on analyses by J. Eliot DeGolia and myself.

21For demonstrative pronouns, that's not entirely true; non-singular demonstrative pronoun endings delete the final consonant
of these "stems."

127

T a b le 3.7: Examples of dem onstratives with adverbial and pronominal citation forms and "stems"

Adverbial Pronominal
Root Definition Inter). Loc. Via. Stem Abs.Sg. Abs.Pl. Rel.Sg. Stem
kig- out there nearby,

restricted
kigga kiani kiuna k i kigha kikkua kiktum a

kiksruma
kigruma

ki'kt

ik- over there; across
there; restricted

ikka ikani ikuuna ik igna ikkua iktuma
iksruma
igruma

ikt

im- there,
aforementioned (in
past)

imma imani imuuna im imna ipkua iptuma
ivsruma
ivruma

ipt

akim- across there: not
visible

agma agmani agmuuna agm akimna akipkua akiptuma
akivsruma
akivruma

akipt

un- down there: near or
on sea, down the
coast: near exit:
extended

unna unani unuuna un unna utkua uttuma
utsruma
urruma

utt

mar- here: extended marra maani mauna ma manna matkua,
makkua,
makua

mattuma
matsruma
marruma

m att

qav- in there: up the coast,
to the east: extended

qavva qavani qavuuna qav qamna qapkua qaptuma
qavsruma
qavruma

qapt

uv- here: restricted uvva uvani uvuuna uv una ukua uuma u
tat+ uv there, near listener,

away from speaker:
restricted

tavra,
tarva

tavrani,
tarvani

tavruna,
tarvuna

tavr,
tarv

rule is triggered by a morpheme boundary followed by the multicharacter symbol DASTEM, which begins
all non-citation demonstrative adverb endings (see Figure 3.18 on page 95). DaStemTavra is specific to
the demonstrative adverb tavra /tarva 'there (close to listener but not speaker)', deleting the final vowel.
DaStemGGA handles all demonstrative adverbs ending in (gga), deleting all three symbols. DaStemHMA
applies to demonstrative adverbs ending in gma and gma and deletes only the final vowel. All other demon
strative adverbs except for marra are handled by DaStemDefault, which deletes the final vowel and a single
preceding consonant. M arra gets its own rule, DaStemRRA, which is written differently from the surround
ing rules. The "stem" of marra is (ma), but if this rule were only to delete the substring (rra), that would
leave the string ma>DASTEM, which would be changed to >DASTEM by DaStemDefault—something which
obviously should not happen. To prevent this unwanted outcome, DaStemRRA deletes not only the non-stem
part of the citation form, but also the rule trigger DASTEM. Because the rule trigger is on the other side of a
morpheme boundary, the rule also deletes the morpheme boundary but then restores it (-> %>). An alter
native approach would have been to write DaStemRRA following the same pattern as the other operations
and then to compose it below DaStemDefault.

The DeleteExtraVowel operation is provided to fix the vialis forms of demonstrative adverbs in cases
where the "stem" ends in a vowel (for example, qigga [stem <qi>], marra [stem (ma)]). Without this rule,
which deletes the first vowel of the demonstrative adverbial vialis ending, these demonstratives would

128

define DaStemTavra [a -> 0 || t a [v r | r v] _ MorphemeBoundary DASTEM];
define DaStemRRA [r r a MorphemeBoundary DASTEM -> %>];
define DaStemGGA [g g a -> 0 || _ MorphemeBoundary DASTEM];
define DaSternQMA [a -> 0 || [q | g] m _ MorphemeBoundary DASTEM];
define DaStemDefault [[v | k | m | n | n] a - > 0 | | _ MorphemeBoundary DASTEM];
define DeleteExtraVowel [

[Vowel -> 0 || Vowel MorphemeBoundary DELETEEXTRAVOWEL_]];
define LexiconDaStem [

Lexicon .o.
DaStemTavra .o.
DaStemRRA .0.
DaStemGGA .0.
DaSternQMA .0.
DaStemDefault .o.
[DASTEM -> 0] .0.
DeleteExtraVowel .o.
[DELETEEXTRAVOWEL-> 0]];

define Lexicon LexiconDaStem;

F i g u r e 3.45: Code for deriving stem s from dem onstrative adverbs

be generated with illegal three-vowel clusters (e.g., *qiuuna, *mauuna). The DeleteExtraVowel operation
is triggered by the symbol DELETEEXTRAVOWEL, which is included in the definition of the demonstrative
adverb vialis ending (see Figure 3.45).

The cascade which adds the demonstrative adverb stem-deriving rule to the transducer deletes the
symbols DASTEM and DELETEEXTRAVOWEL.

3 . 8 . 2 . 1 2 . 2 D e m o n s t r a t iv e P r o n o u n S t e m s Demonstrative pronoun stems are derived via the following
steps: the final /na/ is deleted; if the stem contains III, this is changed to [i/ (to prevent a following It/ from
palatalizing to [s], giving forms like *kiksuma or *ipsuma); and the last non-deleted consonant (if any) is
obstruentized and appended with It/ (in the case of una 'this', there are no non-deleted consonants and It/ is
not appended, resulting in the stem (u». These steps are implemented in the operations DpStemRemoveNA,
DpStemSoftenStrongl, and DpStemObstruentize in Figure 3 . 4 6 on the next page. Operations DpStemOptVoice
and DpStemOptSpirantize generate variant forms of singular non-absolutive demonstrative pronouns where
the stem consonants are voiced or affricated (see relative singular forms in Table 3 .7 on the preceding
page). The right-hand context for these operations is MorphemeBoundary DPSTEM \MINUS, exploiting the
fact that singular demonstrative pronoun endings do not delete the final consonant of the stem, while all
other endings do; this ensures that voiced and spirantized variants are only generated for singular forms.

As usual, the cascade contains code to remove the rule trigger symbol DPSTEM.

3 . 8 . 2 . 1 3 "Weakening" III Due to a Following Postbase

The initial It/ of postbase -tualuk or -tuaq 'the only ' is exempt from palatalization. This is handled
in the transducer by "weakening" a preceding III to HI when the rule trigger WEAKENI is present. The code
for this rule is given in Figure 3.47 on the next page.

129

define DpStemRemoveNA [[n | n] a - > 0 | | _ MorphemeBoundary DPSTEM];
define DpStemSoftenStrongl [i -> e || _ (Consonant) MorphemeBoundary DPSTEM];
define DpStemObstruentize [m -> p t, n -> 11, g -> k 11| _ MorphemeBoundary DPSTEM];
define DpStemOptVoice [11 (->) r r, k t (->) g r . p t (->) v r || _ MorphemeBoundary DPSTEM \MINUS];
define DpStemOptSpirantize [11 (->) t s r, k t (->) k s r . p t (->) v s r || _ MorphemeBoundary DPSTEM \MINUS];
define LexiconDpStem [

Lexicon .0.
DpStemRemoveNA .0.
DpStemSoftenStrongl .0.
DpStemObstruentize .0.
DpStemOptVoice .0.
DpStemOptSpirantize .0.
[DPSTEM -> 0]];

define Lexicon LexiconDpStem;

F i g u r e 3.46: Code for deriving stems from dem onstrative pronouns

define Weakenl [i -> e || _(Consonant) WEAKENI /\[Graphemes | WEAKENI]];
define LexiconWeakenl [Lexicon .0. Weakenl .0. [WEAKENI -> 0]];
define Lexicon LexiconWeakenl;

F i g u r e 3.47: Code for deriving stems from dem onstrative pronouns

3.8.2.14 Gemination

The rule discussed in this section implements gemination, which was discussed in Section 2.1.2.5 on
pages 16- 18. This rule is triggered by the symbol GEM, which is included directly in the definition of
allomorphs which reguire gemination, and inserted by the "pre-gemination" rule into strings containing
allomorphs which allow but do not reguire gemination (see Section 3.8.2.10 on pages 124- 126). In addition
to the presence of the GEM symbol, stems must be of the form -VCV(C) in order for gemination to occur.

One of the side-effects of gemination is that when /!/ follows the consonant to be geminated, it becomes
[a] (see pages 12- 14). In the rule shown in Figure 3.48 on the following page, this is accomplished by the
operation WeaklToA, which changes (e) to (a) in contexts where gemination will occur.

Gemination is also responsible for the obstruentizing of certain instances of 1^1, Its/, and /j/ and the
surfacing of "historic consonants" (see examples (22) and (23) on page 18 and discussion on pages 17- 18).
"Historic consonants" were taken care of by the "pre-gemination" rule described in Section 3.8.2.10 on
pages 124- 126. The obstruentizing of 1^1 Ixl is handled by the operation GeminateHistoricStops, which is
triggered by the symbol HISTORICSTOP, while the gemination of /j/ to /tf/ is accomplished via the operation
GeminateYTCH which is sensitive to the symbol YTCH. In retrospect, GeminateHistoricStops and GeminateYTCH

could have been collapsed into a single rule with a single rule trigger, but I believe the fact that the two
operations stem from separate historical changes justifies the current implementation.

The convenience definition GeminationRightContext specifies what must follow a consonant (including
which symbols may be ignored) in order for that consonant to undergo gemination. This code could have
been included directly in the rule GeminateOthers (which was originally a series of rules, one for each

130

define WeaklToA [e -> a || Vowel Consonant_ [(Consonant) GEM] / [\[Graphemes | GEM]]];
define GeminateHistoricStop [g -> k k, g -> q q || Vowel _ [Vowel (Consonant) HISTORICSTOP GEM]

/ [\[Graphemes | GEM | HISTORICSTOP]]];
define GeminateYTCH [y -> t c h || Vowel _ [Vowel (Consonant) YTCH GEM] / [\[Graphemes | GEM | YTCH]]];
define GeminationRightContext [Vowel (Consonant) GEM] / [\[Graphemes | GEM]]; ! convenience definition
define GeminateOthers [p -> p p, t -> 11, k -> k k, AnyQ -> q q, v -> v v, I -> I I, I -> I I, y -> y y, r -> r r,

m -> m m, n -> n n, n -> n n, q -> q q, s -> t c h, g -> g g, g -> g g
|| Vowel _ GeminationRightContext];

define LexiconGemination [
Lexicon .o.
WeaklToA .0.
GeminateHistoricStop .o.
[HISTORICSTOP -> 0] .0.
GeminateYTCH .o.
[YTCH -> 0] .0.
GeminateOthers .o.
[GEM -> 0]];

define Lexicon LexiconGemination;

F igure 3.48: C ode to im p lem en t gem in ation

consonant to be geminated), but I find that keeping the two separated makes each easier to read.
With previous rules having handled all unusual cases of gemination, the operation G em inateO thers

takes care of all regular gemination. The cascade that follows deletes rule trigger symbols HISTORICSTOP,

YTCH, and GEM.

3.8.2.15 Velarization of Stem-Final /q/

Enclitics which begin with /k/, such as = kiaq 'I wonder; I think' and =kii 'because', cause a preceding
/q/ to become [k]. The code to accomplish this is shown in Figure 3.49. In its current implementation,
the rule is sensitive to the trigger symbol VELARIZE, which is specified as the first symbol for all enclitics
beginning with (k); however, as the transducer does not contain any enclitics which are exceptions to this
rule, it may make sense to rewrite the rule to be sensitive to an enclitic boundary and an enclitic-initial (k)
instead.

define LexiconVelarize [
Lexicon .o.
[A n yQ -> [0 | k] || _ VELARIZE / [\[Graphemes | VELARIZE]]] .0.
[VELARIZE -> 0]];

define Lexicon LexiconVelarize;

F igure 3.49: C ode to im p lem en t ve lariza tion o f stem -final /q /

131

Some speakers uvularize the initial consonant of the enclitic = g g u u q 'it is said' when the word to which
it is attached ends in /q/:

Ex. (68) a. p u k ta a g g u u q u n a
p u k ta a q = g g u u q = u n a
iceberg.ABS.SG=it.is.said=this
'The iceberg, it is said ...' (Nageak 1975:25)

b. ik ig g a a q p a q a q s im a ru a g g u u q
ik ig gaa t-qpa k-qaq-s im a-ruaq= gg uuq
platform.cache-big-to.have-it.is.now.known-ind.pst.3sg=it.is.said
'He did have a big platform cache, it is said' (Ahvakana 1973:18)

The rule implementing this change is very simple, as can be seen in Figure 3.50. It is triggered by the
symbol UVULARIZE and a uvular preceding the enclitic. As = g g u u q is the only formative in the lexicon to
contain the rule trigger, it is the only formative to be affected by this rule.

define LexiconUvularize [
Lexicon .o.
[g -> g || [[AnyQ | g] UVULARIZE] / [\[Graphemes | UVULARIZE]] _] .0.
[UVULARIZE -> 0]];

define Lexicon LexiconUvularize;

F i g u r e 3.50: C ode to im p lem en t uvu larization o f en clitic-in itia l /g /

3.8.2.16 Uvularization of Enclitic-Initial 1̂ 1

3.8.2.17 Vowel Lengthening

Vowel lengthening is a rare phenomenon in Inupiaq. I am aware of only three suffixes which trigger it:
the absolutive dual (see Section 3.8.2.9 on pages 123- 124), the "vocative possessive" suffix -Vg 'my dear
 , and the postbase -Vq- 'to say ; to be or play '. Vowel lengthening triggered by the absolutive
dual was handled previously. The rule shown in Figure 3.51 on the following page handles the other two
cases. It is triggered by the symbol LENGTHENV and only applies when the preceding stem ends in -CV(C).
LengthenVDeleteConsonant deletes any stem final consonant; then LengthenV lengthens the stem final vowel
unless it is HI.

3.8.2.18 Handling Allomorphy Shorthand Notations

As discussed on page 80, the Inupiaq transducer borrows from MacLean's Inupiaq reference works
two shorthand notations for common allomorphy patterns. One of these is brackets around an initial
consonant, signifying that that consonant is present when the preceding stem ends in a vowel or It/, and

132

define LengthenVRightContext [LENGTHENV / [\[Graphemes | LENGTHENV]]]; ! convenience definition
define LengthenVDeleteConsonant [Consonant-> 0 || _ LengthenVRightContext];
define LengthenV [a -> a a, i -> i i, u -> u u || Consonant _ LengthenVRightContext];
define LexiconLengthenV [

Lexicon .0.
LengthenVDeleteConsonant .0.
LengthenV .0.
[LENGTHENV-> 0]];

define Lexicon LexiconLengthenV;

Figure 3.51: C ode to len g th en vo w els

absent otherwise. The rule which handles this notation is given in Figure 3.52. It consists of three steps:
if the left bracket is preceded by a vowel or (t), then the left bracket is deleted; any remaining left brackets
are deleted together with whatever symbol follows; and finally, the right bracket is deleted.

define LexiconBrackets [
Lexicon .0.
[%[-> 0 || [Vowel 11] / [\[Graphemes | %[]] _ Consonant %]] .0.
[%[? -> 0] .0.
[%] -> 0]];

define Lexicon LexiconBrackets;

Figure 3.52: C ode for han d ling brack et notation

The other shorthand notation is to stack one consonant over another; this has been implemented in
the transducer by listing the top consonant followed by a double forward slash II followed by the bottom
consonant. This notation indicates that the top or first consonant is to be used following a consonant,
and the bottom consonant is to be used following a vowel. The rule which makes this happen is shown in
Figure 3.53. If the II symbol is preceded by two consonants, then the symbol and the following consonant
are deleted; any II symbols left in the lower language of the transducer are then deleted together with the
preceding consonant.

define LexiconConsonantOverConsonant [
Lexicon .0.
["II" Consonant -> 0 || Consonant Consonant / [\[Graphemes | "//"]] _] .0.
[Consonant"//" -> 0]];

define Lexicon LexiconConsonantOverConsonant;

Figure 3.53: C ode for h an d lin g con son a n t over con son a n t notation

133

Section 2.1.2.6 on pages 18- 22 discussed MacLean's system for coding suffix attachment patterns. This
system is used within the transducer; the symbols used to denote these patterns in the lexical data files
are given in Table 3.3 on page 79, and those used in the xfst/lexc files are given in Table 3.5 on page 111.
This last set of symbols serve as rule triggers for the rules to be discussed in this section, one for each of
the following patterns (named after the symbols used by MacLean): minus, plus, colon, division, plus over
minus, minus over plus, eguals, and tilde.

3.8.2.19.1 Minus Pattern The minus pattern is one of the simplest suffix attachment patterns. It simply
deletes any stem-final consonant. The code for this rule is given in Figure 3.54.

define LexiconMinus [
Lexicon .o.
[Consonant -> 0 || _ MINUS / [\[Graphemes | MINUS]]] .o.
[MINUS-> 0]];

define Lexicon LexiconMinus;

F i g u r e 3.54: C ode im p lem en tin g th e "minus" suffix a ttach m en t pattern

3.8.2.19 Suffix A ttachm ent Patterns

3.8.2.19.2 P lus Pattern Perhaps counterintuitively, the plus pattern is slightly more complex than the
preceding pattern. (Code for this rule is shown in Figure 3.55.) Although theoretically this pattern simply
calls for the suffix to be appended with no deletions to the stem (which reguires no rule at all), the initial
consonant of the suffix will be deleted in cases where the suffix begins with a consonant cluster and attaches
to a consonant-final stem; this is handled by the operation PlusDeleteConsonant. Additionally, a stem-final
consonant will undergo assimilation with the initial segment of the suffix (specifically, a stem-final back
consonant followed by a suffix-initial voiced phoneme will become a voiced fricative; this is accomplished
by PlusFricativizeBackStop). There is some overlap between this assimilation operation and the assimilation
rule (see Section 3.8.2.26 on pages 141- 142); this limited amount of assimilation is included in this rule for
the case where a suffix begins with a vowel, since the assimilation rules deal only with consonant clusters.

define PlusDeleteConsonant [Consonant -> 0 || [Consonant PLUS] / [\[Graphemes | PLUS]] _ Consonant];
define PlusFricativizeBackStop [k -> g, AnyQ -> g || _ [PLUS VoicedPhoneme] / [\[Graphemes | PLUS]]];
define LexiconPlus [

Lexicon .o.
PlusDeleteConsonant .o.
PlusFricativizeBackStop .o.
[PLUS -> 0]];

define Lexicon LexiconPlus;

F i g u r e 3.55: Code implementing the "plus" suffix attachment pattern

134

3.8.2.19.3 C olon Pattern This complicated pattern is described in Table 2.4 on page 19. To recapitu
late, this rule changes the stem in one of four ways, depending on the form of the stem:

• for stems ending in -VCiC, HI is deleted and the second consonant assimilates to agree with the first
in terms of voicing, continuancy, and optionally, nasality

• for stems ending in -VCCiC, two outcomes are possible: either the final consonant becomes a voiced
fricative, or HI is treated as HI and the -VC pattern below applies

• for stems ending in -VC, where V is not HI, the final consonant is deleted
• for stems ending in -V the stem is attached directly (stem-final HI becomes [a]; potential three-vowel

clusters are broken up by I^D
The implementation of this rule, given in Figure 3.56, consists of five steps (plus convenience definition

ColonlgnoreSymbols), all triggered by the symbol COLON. ColonOptStrengthenE optionally changes (e) (rep
resenting HI) to (i) (representing HI) in the preceding stem if it ends in -CCiC. ColonDeleteFinalConsonant
deletes the stem-final consonant if it is preceded by a vowel other than /i//(e). ColonDeleteWeakl deletes
fi//{e) in stems ending in -VCiC. ColonOptNasalizeK optionally changes stem-final (k) to (g) following a nasal.
ColonFricativizeBackStop changes stem-final (k) to (g) and (g) to (g) following a voiced phoneme. The oper
ations which may pertain to each of the four stem patterns are listed in Table 3.8 on the following page.

define ColonlgnoreSymbols \[Graphemes | COLON]; ! convenience definition
define ColonOptStrengthenE [[e | e] (->) i || ConsonantCluster _ [Consonant COLON] / ColonlgnoreSymbols];
define ColonDeleteFinalConsonant [Consonant -> 0 || [Vowel - [e | e]] _ COLON / ColonlgnoreSymbols];
define ColonDeleteWeakl [[e | e] -> 0 || Vowel Consonant _ [Consonant COLON] / ColonlgnoreSymbols];
define ColonOptNasalizeK [k (->) g || Vowel Nasal _ COLON / ColonlgnoreSymbols];
define ColonFricativizeBackStop [k -> g, AnyQ -> g || VoicedPhoneme _ COLON / ColonlgnoreSymbols];
define LexiconColon [

Lexicon .o.
ColonOptStrengthenE .o.
ColonDeleteFinalConsonant .o.
ColonDeleteWeakl .o.
ColonOptNasalizeK .o.
ColonFricativizeBackStop .o.
[COLON -> 0]];

define Lexicon LexiconColon;

F i g u r e 3.56: C ode im p lem en tin g th e "colon" suffix a ttach m en t pattern

3.8.2.19.4 D iv is io n P a t t e r n The division pattern deletes stem-final /q / . The code is given in Figure 3.57
on the next page (recall that (g) represents / q / within the transducer and that (q) represents /q /) . It is
sensitive to the symbol DIVISION.

3.8.2.19.5 P l u s O v e r M in u s P a t t e r n This pattern deletes a stem-final back consonant; it will also delete
the initial consonant of the suffix if necessary to prevent a three-consonant cluster. Figure 3.58 on
the following page contains the code which implements this rule. This rule is triggered by the symbol
PLUSOVERMINUS.

135

T a b le 3.8: S tem p attern s and th e "colon" ru le op eration s w h ich m ay affect th em

Pattern Operations which may apply
-VCiC ColonDeleteWeakl, ColonOptNasalizeK, ColonFricativizeBackStop
-VCCiC ColonOptStrengthenE (in which case the operations on the next row

apply instead of the other operations on this row),
ColonFricativizeBackStop

-VC (V * fil) ColonDeleteFinalConsonant
-V not affected by any "colon" rule operation

define LexiconDivision [
Lexicon .0.
1 9 _> 0 || _ DIVISION / [\[Graphemes | DIVISION]]] .0.
[DIVISION -> 0]];

define Lexicon LexiconDivision;

F i g u r e 3.57: C ode im p lem en tin g th e "division" suffix a ttach m en t pattern

define LexiconPlusOverMinus [
Lexicon .0.
[[k | AnyQ] -> 0 || _ PLUSOVERMINUS / [\[Graphemes | PLUSOVERMINUS]]] .0.
[Consonant -> 0 || [Consonant PLUSOVERMINUS] / [\[Graphemes | PLUSOVERMINUS]] _ Consonant] .0.
[PLUSOVERMINUS -> 0]];

define Lexicon LexiconPlusOverMinus;

F i g u r e 3.58: C ode im p lem en tin g th e "plus over m inus" suffix a ttach m en t p attern

3.8.2.19.6 Minus Over Plus Pattern Minus over plus deletes a stem-final /t/. The code for this rule is
shown in Figure 3.59. The rule trigger for this rule is MINUSOVERPLUS.

define LexiconMinusOverPlus [
Lexicon .0.
[t -> 0 || _ MINUSOVERPLUS / [\[Graphemes | MINUSOVERPLUS]]] .0.
[MINUSOVERPLUS-> 0]];

define Lexicon LexiconMinusOverPlus;

F i g u r e 3.59: C ode im p lem en tin g th e "minus over plus" suffix a ttach m en t p attern

3.8.2.19.7 Equals Pattern This pattern and the tilde pattern are less common patterns, attested mostly
in postbases which today are marginally productive at best. It's probably for this reason that they receive

136

less thorough treatments than the patterns discussed above. At present, only three allomorphs in the
transducer are specified with the equals pattern (definitions from MacLean n.d.a):

• -ilaq(-) 'one without, area which lacks ; one who is not ; to be or do without '
• -iq'i- (variant of -liqi-) 'having to do with hunting, preparing, repairing, cleaning, associating, messing

around with '
• -uraq 'a smaller version of a ; a diminutive ; immediate vicinity o f '
MacLean (n.d.a) does not specify any conditioning environments for the "equals" variants of -ilaq(-)

and -liqi-, but she does indicate that the productivity of -ilaq(-) is limited, and she notes in the definition of
-liqi- that "the meaning of the long form -liqi- differs somewhat from the meaning of the short form '=Iqi-
; the words containing the short form are more specific, often lexicalized." The variant of -uraq which
exhibits the equals pattern is restricted to stems ending in -WC, but MacLean gives no indication that the
productivity of this allomorph is limited.

MacLean (1986h:102) describes the equals pattern as follows: "the equals sign ...is used to indicate
that both the semi-final vowel and the final consonant are deleted before the addition of the postbase."

Figure 3.60 details the implementation of the equals pattern. The rule trigger for this rule is the
symbol EQUAL. The first operation in the rule is a filter to disallow the equals pattern from operating on
monosyllabic consonant-final stems. This represents a bit of speculation on my part, but it prevents the
transducer from generating a number of very unlikely candidate words. After filtering, the rule deletes
the final vowel and consonant of the stem,22 and finally the EQUAL symbol.

define LexiconEqual [
Lexicon .0.
[~[[.#. (Consonant) Vowel (Vowel) Consonant EQUAL ?*] / [\[Graphemes | EQUAL]]]] .0.
[Vowel Consonant -> 0 || _ EQUAL / [\[Graphemes | EQUAL]]] .0.
[EQ UAL-> 0]];

define Lexicon LexiconEqual;

F i g u r e 3.60: C ode im p lem en tin g th e "equals" suffix a ttach m en t pattern

3 . 8 . 2 . 1 9 . 8 T il d e P a t t e r n This obscurest of patterns involves deletion of stem-final HI and, if the suffix
begins with HI, regressive palatalization of a preceding It/ to [s] (see MacLean 1 9 8 6 h : 1 0 5) . Few if any
productive postbases exhibit this pattern; the Inupiaq transducer lexicon currently includes only one: -
qsraq- 'to continue to ; to experience ' The rule is based as much on examples from the definition
of this morpheme in MacLean (n.d.a) as from any description of the pattern itself; several of these examples
are reproduced in (6 9) and (7 0) below. Since the tilde pattern applies only to stems ending in HI (Edna
MacLean, personal communication, 2 0 October 2 0 0 9) , only examples with /i/-final stems are given.

22This means the stem must end in a consonant to be affected by this rule; for vowel-final stems consisting of more than one
syllable, this rule will be equivalent to the plus pattern rule. This may be wrong; it may well be possible that with vowel-final stems,
the final vowel is deleted, or it may be the case that allomorphs exhibiting this pattern should not be allowed after a vowel-final stem.

137

Ex. (69) a. anm iksraq tuq
anmigi'-qsraq-tuq
feel.onself.more.capable.than-continue.to-iND.PRS.3sG
'he is acting superior'Ip ig iksraqtu q
pigigi'-qsraq-tuq
worry.about-experience-iND.PRS.3sG
'she is worrying about someone's safety'

\|rEx. (70) a. agliqsraqtu q
agligi'-qsraq-tuq
shun.due.to.taboo-continue.to-iND.PRS.3sG
'he is avoiding someone who has a disease'
anniqsraqtuq
annigi-qsraq-tuq
refuse.to.share-continue.to-ind.prs.3sg
'she is not willing to share for fear that it might be damaged'

These examples suggest that if an allomorph exhibiting the tilde pattern begins with a consonant clus
ter, the first consonant of the allomorph is deleted, and, as is generally true with consonant clusters in
Inupiag, the first consonant assimilates to agree with the second following the rules described in 2 .I.2 .I.

The implementation of the tilde pattern is reproduced in Figure 3.61 on the next page. Like the eguals
pattern, it begins with some filters; the first prevents tilde-pattern allomorphs from following stems that
do not end in [i/, while the second prevents such allomorphs from following monosyllabic stems. Next,
HI ((e) or (e» is deleted if the following symbol is TILDE. If this results in a cluster of three (or more)
consonants, the first consonant following the TILDE symbol is deleted (I'm not sure what should happen
if the suffix begins with two consonants and the stem ends in two consonants and /!/). Next, (g) and (g)
are changed to (g) and (k), respectively, if the consonant after the TILDE symbol is a voiceless fricative.
Two comments about this operation: first, it was written specifically with -qsraq- in mind, and should
additional tilde-pattern formatives be added to the lexicon, additional assimilation rules might need to
be added; second, one might one might argue that this operation belongs in the assimilation rule, but
because underlying consonant clusters such as (gsr) are uncommon, I have elected to put the operation
in the only rule where I believe such clusters can possibly arise. The final step in this rule is to replace
the symbol TILDE with REGRESSIVEPALATALIZATION so that the regressive palatalization rule (see Section
3.8.2.20 below) will fire if applicable. This operation also serves to remove the symbol TILDE from the lower
language of the transducer.

3.8.2.20 Regressive Palatalization

Certain postbases trigger regressive palatalization—the changing of a preceding It/ to [s] when the
postbase begins with HI and has caused the deletion of a vowel and possibly a consonant between the It/
and the III. At present, the only formative in the Inupiag transducer specified as triggering regressive

138

define LexiconTilde [
Lexicon .0.
[~$[[[Graphemes - [e | e]] TILDE] / [\Graphemes | TILDE]]] .0. ! disallow pattern with stems that don't end in weak i
[~[[.#. (Consonant) [e | e] TILDE ?*] / [\[Graphemes | TILDE]]]] .0. ! disallow pattern with stems that are too short
[[e | e] -> 0 || _TILDE / [\[Graphemes | TILDE]]] .0.
[Consonant -> 0 || [Consonant TILDE] / [\[Graphemes | TILDE]] _ Consonant] .0.
[g -> q, g -> k || _ [TILDE VoicelessFricative] / [\[Graphemes | TILDE]]] .0.
[TILDE -> REGRESSIVEPALATALIZATION]];

define Lexicon LexiconTilde;

F i g u r e 3.61: C ode im p lem en tin g th e "tilde" suffix a ttach m en t pattern

palatalization is -iqi- (variant of -liqi'-) ‘having to do with hunting, preparing, repairing, cleaning, asso
ciating, messing around w ith MacLean (1986h:105) and MacLean (n.d.a) lead me to believe that
allomorphs which combine with the tilde pattern and begin with /if also trigger regressive palatalization,
and therefore I have written the trigger for this rule into the tilde pattern rule (see pages 136- 137).

Regressive palatalization is handled by the rule shown in Figure 3.62. It is triggered by the symbol
REGRESSIVEPALATALIZATION and simply changes (t) to (s) when followed by the rule trigger and (i), then
removes the rule trigger from the lower language of the transducer.

define LexiconRegressivePalatalization [
Lexicon .0.
[t -> s || _ [REGRESSIVEPALATALIZATION i] / [\[Graphemes | REGRESSIVEPALATALIZATION]]] .0.
[REGRESSIVEPALATALIZATION -> 0]];

define Lexicon LexiconRegressivePalatalization;

F i g u r e 3.62: C ode im p lem en tin g th e "tilde" suffix a ttach m en t pattern

3.8.2.21 Preventing fil from Becoming [a]

When postbase -anik- 'to have previously, already' attaches to a stem ending in fil, the HI does not
become [a] but remains [i] (MacLean n.d.a). This is accomplished in the transducer by the rule trigger
PROTECTWEAKI in conjunction with the rule given in Figure 3.63. This rule simply changes (e) to (e) when
followed by PROTECTWEAKI, since only unaccented (e) is modified by the rule which prevents fil in vowel
clusters (see Section 3.8.2.27 on page 142).

define LexiconProtectWeakl [
Lexicon .0.
[e -> e || _ PROTECTWEAKI / [\[Graphemes | PROTECTWEAKI]]] .0.
[PROTECTWEAKI -> 0]];

define Lexicon LexiconProtectWeakl;

F i g u r e 3.63: Code to prevent HI from becoming [a]

139

Inupiaq does not allow clusters of more than two vowels (see pages 14- 16 and Section 2.1.3.2 on
page 25). When such clusters would be created by possessive noun endings, they are broken up by /g/; in
other cases, they are broken up by /-$/. In the transducer, this is handled by the rule shown in Figure 3.64.
This rule replaces (a), (i), or (u) with (ga), (gi), and (gu), respectively, when preceded by either a word
boundary and two vowels or a consonant and two vowels. The specification of a preceding consonant or
word boundary is probably an unnecessary precaution (it would ensure that four-vowel clusters are dealt
with appropriately, but I do not believe that four-vowel clusters are possible, even underlyingly).

define LexiconFixThreeVowelClusters [
Lexicon .o.
[a -> g a, i -> g i, u -> g u || [Consonant | .#.] [Vowel Vowel] /\Graphemes_]];

define Lexicon LexiconFixThreeVowelClusters;

F i g u r e 3.64: Code to break up three-vowel clusters

Originally, this rule used the xfst mechanism for true epenthesis, as shown in Figure 3.65. This oper
ation was simpler but unfortunately did not work. It ignores non-alphabetic symbols in both the left and
right contexts, and if such a symbol (in practice the most common such symbol was a morpheme boundary
marker) was present between the second and third vowels of a three-vowel cluster, the expression shown
in Figure 3.65 triggers double epenthesis: once to the left of the non-alphabetic symbol, and again to the
right of it. Rewriting the rule as shown in Figure 3.64 ensured that the (g) was consistently inserted only
to the right of any intervening non-alphabetic symbols, because the vowel which the (g) "replaces" is on
the right of those symbols.

[[..] -> g || [Consonant | .#.] [Vowel Vowel] / \Graphemes _ Vowel / \Graphemes]

F i g u r e 3.65: Older code to break up three-vowel clusters (flawed)

3.8.2.22 Breaking Up Three-Vowel Clusters

3.8.2.23 Optional Deletion of Laterals in Contemporative 1 Endings

The contemporative 1 is a dependent verb mood expressing the manner, means, rationale, or cause of
the state or event expressed in the matrix clause (MacLean 1986h:l). It has two aspects, termed "real
ized" and "unrealized." With the exception of the first person singular ending, contemporative 1 endings
preceded by a back consonant have two variant forms. For endings in the realized aspect, one of these
forms begins with -iu; the other begins with -u and triggers voiceless fricativization of the preceding con
sonant. For endings in the unrealized aspect, one of these forms begins with -lu, and the other begins
with -u and triggers voiced fricativization of the preceding consonant. Rather than specify two separate

140

allomorphs for each of these endings, I have opted to specify a single form for each ending, tagged with
the rule trigger OPTDELETELATERAL, and to create the rule given in Figure 3.66. This rule has one opera
tion for the realized aspect endings and another for the unrealized aspect endings. Bear in mind that the
suffix attachment pattern rules have left their mark on the transducer at this point (see Section 3.8.2.19
on pages 133- 137), and conseguently, back consonants preceding the unrealized aspect endings will have
been assimilated to (g) and (g). The context of the second operation takes this into account.

define LexiconOptionalLateralDeletion [
Lexicon .o.
[1 (->) h || [k | AnyQ] /\Graphemes_ OPTDELETELATERAL/ [\[Graphemes | OPTDELETELATERAL]]] .0.
[I (->) 0 || [g | g]/\Graphem es_ OPTDELETELATERAL/[\[Graphemes | OPTDELETELATERAL]]] .0.
[OPTDELETELATERAL -> 0]];

define Lexicon LexiconOptionalLateralDeletion;

F i g u r e 3.66: Code to optionally delete laterals in certain contem porative 1 endings

3.8.2.24 Palatalization

Palatalization, discussed in Section 2.1.2.2 on pages 9- 11, is triggered by III and affects phonemically
alveolar consonants in the following consonant group (that is, a single consonant or a consonant cluster).
Figure 3.67 shows how this process is implemented in the transducer. In its current implementation,
palatalization is treated as optional. This is because many speakers, particularly younger ones, palatalize
inconsistently or not at all (Lawrence Kaplan, personal communication, September 10, 2008). For words
in the development corpus used for this project (see Section 4.1 on page 146), roughly 0.5% of all types
and about 0.3% of all tokens are not recognized if palatalization is mandatory; it must be borne in mind,
however, that some or all of these may be typographical or performance errors rather than evidence of gen
uine language change. Treating palatalization as optional is not an optimal solution, particularly because
it will generate many forms that would not be appropriate in situations where prescriptivism is called for.
In the future, this might be addressed by creating separate "prescriptive" and "descriptive" (or at least
permissive) versions of the transducer.

define PalatalizeLtN [I (->) |, 1 (->) I', n (->) n || [i (Consonant)] /\Graphemes _];
define OptPalatalizeT [t (->) c h || i / \Graphemes _ WordBoundary / \Graphemes];
define PalatalizeTtoS [t (->) s || [i (Consonant)] / \Graphemes _ Vowel / \Graphemes];
define LexiconPalatalization [

Lexicon .o.
PalatalizeLtN .o.
OptPalatalizeT .o.
PalatalizeTtoS];

define Lexicon LexiconPalatalization;

F i g u r e 3.67: Code to (optionally) palatalize alveolar consonants following HI

141

Aside from its being optional, the im plem entation of palatalization is quite straightforw ard. The op
eration PalatalizeLtN palatalizes (1), (1), and (n). OptPalatalizeT, which would be optional even if the o ther
operations w ere not, changes (t) to (ch) w hen it is p receded by III and is the last phonem e in the morphosyn-
tactic word (note tha t the ru le is sensitive to a word boundary, which m eans tha t w ord/enclitic boundary
m arking m ust be re ta ined in the tran sdu cer's low er language a t until this ru le has been com posed with
the transducer). PalatalizeTtoS takes care of assibilation, changing (t) to (s) in the context /i(C)_V/. Absent
from the rule is the case of It/ a t the beginning of a consonant cluster; this is because the re is no graphem ic
change in this case, even though the re is a phonetic change.

3.8.2.25 Removing M orphem e Boundaries

At this point, all ru les which are sensitive to any type of m orphem e boundary have been added to the
transducer; the ru le shown in F igure 3.68 rem oves them.

define LexiconRemoveBoundaries [
Lexicon .o.
[MorphemeBoundary2 -> 0]];

define Lexicon LexiconRemoveBoundaries;

F igu re 3.68: Code to remove morpheme boundary symbols from the lower language of the transducer

3.8.2.26 Consonant Assimilation

Regressive consonant assim ilation was discussed in Section 2.1.2.1 on pages 7- 8 . This phenom enon
is probably best described in reference to distinctive features, as w ith Kaplan's ru le given in Figure 2.2
on page 8 . Unfortunately, the tran sdu ce r is im plem ented in term s of graphem es ra th e r than features, and
indeed for m ost rules a feature-based im plem entation would probably be overkill. For this rule, then, we
are left to generate a long list of "underlying" consonant clusters and the changes they m ust undergo to
comply with the requirem ents of assim ilation. This can be seen in Figure 3.69 on the following p ag e . Not
all conceivable com binations of Inupiaq consonants have been listed in this rule, only those com binations
which I believe may arise from the concatenation of m orphem es and the subsequent ru les which may op
erate on those consonants. I also have not listed consonant clusters which already satisfy assim ilation
constraints. Some of the m ore unusual underlying clusters which may in theory arise due to the applica
tion of the equals or tilde pa tte rns (see pages 135- 137) have also been omitted; I would p refer for these
to be added to the equals or tilde rules directly as needed. Some o ther cases of assim ilation have been
handled by previous rules: both the plus p a tte rn (see pages 133- 134) and the colon p a tte rn (see page 134)
change stem-final back stops to voiceless fricatives w hen the following phonem e is voiced. These opera
tions overlap w ith this rule w hen the suffix begins with a consonant, bu t are included for cases w here the
suffix begins with a vowel. Finally, two operations which are not reg ressive assim ilation have been throw n
into this ru le for w ant of a b e tte r location; these change underlying (ty) and (ts) to surface (tch). The (ts) ^

142

(tch) operation includes an unusual righ t context: [Graphemes - r] / Ignore. This is to prevent the sequence
(tsr) from becom ing (tchr).

define Ignore \Graphemes; ! convenience definition
define LexiconAssimilation [

Lexicon .0.
[AnyQ -> g || _ [Nasal | I | I] / Ignore] .0.
[[k | g] (->) q || _ Nasal / Ignore] .0.
[k -> g || _ [Nasal | I | I] / Ignore] .0.
[t -> n || _ n / Ignore] .0.
[t -> n || _ Nasal / Ignore] .0.
[t -> I || _ I / Ignore] .0.
[t -> t || _ t / Ignore] .0.
[t -> | || _ | / Ignore] .0.
[t -> r || _ I' / Ignore] .0.
[t -> r || _ r / Ignore] .0.
[t -> r || _ v/ Ignore] .0.
[t -> r || _ g / Ignore] .0.
[t -> y || i / Ignore _ g / Ignore] .0. ! may need to revisit this rule
[c h (->) I || _ I / Ignore] .0. ! would only apply before enclitics
[m (->) v || _ I / Ignore] .0.
[n (->) I || _ I / Ignore] .0.
[p -> v || _ [VoicelessFricative | VoicedFricative] / Ignore] .0.
[y -> c h || t / Ignore _] .0. ! not properly assimilation
[s -> c h || t / Ignore _ [Graphemes - r] / Ignore]]; ! not properly assimilation; \r necessary to prevent sr -> chr

define Lexicon LexiconAssimilation;

F igu re 3.69: Code implementing consonant assimilation

A good argum ent can be m ade for ordering assim ilation above palatalization, and some readers may
w onder why I have not done so. I pu t palatalization first mainly for historic reasons. Part of the palatal
ization rule is sensitive to the boundaries of a syntactic word, w hereas the assim ilation rule is not. Before
I discovered the ignore operator, being able to rem ove irrelevant charac ters from the low er language of
the lexicon m eant tha t my rules could be considerably simpler. So, I ordered palatalization first, followed
by the rem oval of m orphem e boundaries from the low er language, followed by assim ilation. Although the
historical reasons for this ordering no longer apply, the ordering persists. In (partial) consequence of this
ordering, the assim ilation rule has to list separa te palatalized and alveolar reflexes of the sam e underlying
phonem e.

3.8.2.27 Changing fil to [a] a t the Beginning of Vowel Clusters

As discussed pages 11- 12, fH a t the beginning of a vowel c luster is realized as [a]. The handful of
exceptions to this rule are handled in the transducer by represen ting the invariant fH as (e) (see dicsussion
on transducer orthography, page 110, and ru le to prevent HI from becom ing [a] on pages 138- 139). The
im plem entation of the rule, shown in Figure 3.70 on the next page, simply replaces any (e) with (a) when
the following symbol is a vowel.

143

define LexiconLowerWeakl [
Lexicon .0.
[e -> a || _ Vowel]];

define Lexicon LexiconLowerWeakl;

F igu re 3.70: Code to change / 1/ to [a] at the beginning of vowel clusters

3.8.2.28 Standardizing Lower-Language Orthography

At this point, all th a t rem ains is to clean up the upper and lower languages of the transducer and to
save the resulting files. This rule simply changes the tran sdu ce r 's low er language so th a t any instances of
(e) and (e) becom e (i) and any instances of (q) becom e (q). The code is given in Figure 3.71.

define LexiconLowerStandardOrthography [
Lexicon .0.
[[e | e] -> i] .0.
[q - > q 11;

define Lexicon LexiconLowerStandardOrthography;

F igu re 3.71: Code to convert lower-language to standard Inupiaq orthography

3.8.2.29 Converting Upper-Language Forms to a S tandard Form at

Figure 3.72 shows the definitions of two ru les to convert the tran sdu cer's upper language into a s tan
dard form at. The first rule, StandardTopSide, will be used in creating a traditional lexical transducer, while
the second rule GuessTopSide, will be used in creating a stem -guessing tran sdu ce r (see Section 2.3.7 on
pages 59- 60 and Section 3.8.2.5 below).

define StandardTopSide [
["+Pro" <- "+N" || .#. s u MorphemeBoundary \"+V"* _] .0. ! treat "su" as a pronoun, not a noun
[i < - e] .0.
[i <- e] .0.
[q <- q] .0.
[0 < - DeleteOnTop] .0.
[0 < - GEM] .0.
[0 < - OPTGEM] .0.
[0 < - Consonant || _ Vowel (Consonant) HISTORICCONSONANT]];

define GuessTopSide [
[0 <- DeleteOnTop] .0.
[0 < - Consonant || _ Vowel (Consonant) HISTORICCONSONANT]];

F i g u r e 3.72: Code to standardize the transducer's upper language

144

All of the code in GuessTopSide is also found in StandardTopSide: the deletion of "historic" consonants
(see exam ple (23) and discussion on pages 17- 18)23 and a num ber of non-alphabetic symbols (DeleteOnTop).
StandardTopSide m akes a num ber of additional changes, converting the symbols for HI and /q/ to standard
orthographic forms (i) and (g), respectively; deleting rule triggers for m andatory and optional gemination;
and changing the tag +N to +Pro following the stem su - 'w hat' (su- is listed in the lexicon as a noun stem
because it can take nominal suffixes, bu t this ru le changes the gram m atical tag th a t appears with it to +Pro
because of its pronom inal sem antics). These additional changes bring upper-language strings in line with
standard Inupiag orthography and o ther conventions. However, for an analysis involving a guessed stem,
it may be helpful to know tha t the guess contained a "strong" (g) or tha t a suffix in the hypothesized word
can trigger gem ination, so these details are p reserved on the analysis side.

Unlike m ost of the rules, the definitions of the top-side rules do not contain composition w ith the rest
of the transducer; this is because the re are two of them and only one will apply to each version of the
transducer (guessing or non-guessing).

3.8.2.30 Saving the Compiled T ransducers

The final step is to compose the cu rren t s ta te of the tran sdu ce r with each of the upper-language cleanup
rules described in Section 3.8.2.29, toge ther w ith filters to either disallow guessing or to disallow p rede
fined stems, and to save the resulting compiled transducers in XFST binary form at. Figure 3.73 contains
the code to accom plish this.

read regex [GuessTopSide .o. $"+Guess" .o. Lexicon];
save stack ipk_guesser.fst
pop

define Top [StandardTopSide .o. ~$["+Guess"]];
read regex [Top .o. Lexicon];
save stack ipk.fst

F ig u re 3.73: Code to finalize the upper languages and save the guessing and non-guessing transducers

The guessing transducer is defined first; the filter $"+Guess" ensures th a t only stem s generated by the
guessing ru les will be included in this transducer. The comm and read regex pushes the new transducer
onto the XFST stack as soon as compilation is complete, and then the comm and save stack saves it under
the filename ipk_guesser.fst. The comm and pop clears this transducer off the stack so tha t it is not re-saved
during the subseguent operation.

Before finishing and saving the non-guessing transducer, a convenience variable, Top, is defined; this
is to facilitate debugging, as any of the previously defined crum b variables can be com posed below this
variable to crea te a transducer with a standard upper language and an in term ediate low er language. The
filter ~$["+Guess"] rem oves all "guessed" stem s from the transducer. After this definition, the non-guessing

23In its current implementation, the guesser does not generate stems with historic consonants, but this functionality could be
added in the future.

145

transducer is compiled and saved under the filename ipk.fst. The non-guessing tran sdu ce r rem ains on the
stack so th a t developers can in teract with it if they so desire. To in te rac t w ith the guessing transducer,
one need only en te r load ipk guesser.fst a t the XFST com m and prompt.

146

Chapter 4 Evaluation

The transducer was evaluated for coverage and accuracy in recognizing Inupiag words. Evaluation data
cam e from a small corpus of texts in the N orth Slope dialect; this corpus is described in Section 4 .1 .
Evaluation procedures are described in Section 4 .2 , and resu lts are given in Section 4 .3 .

4.1 Corpus of N orth Slope Dialect Texts

In order to facilitate the developm ent of the Inupiag transducer as well as fu ture projects, Lori Levin
of Carnegie Mellon University arranged for students Ida Mayer, J. Eliot DeGolia, Sai Venkateswaran, Paul
Lundblad, and Shinjae Yoo to type a se t of texts w ritten in the N orth Slope dialect and published by or in
conjunction with the Alaska Native Language Center. The following texts w ere included:

• A q u ih u y u k by H enry N ashaknik (1973)
• A ta a ta lu g iik = G randchild w ith G ra n d fa th er by Vincent N ageak (1975)
• A va qq an am Q u liaq tuaq taq ik: I. Q u pqug ia q II. Ih u q u llig a u ra t = I. T he T en -L egg ed Polar B ea r II.

D w a rves by Floyd Ahvakana (1975)
• Iq ia sua q A v iq q a q = T he L a zy M o u se by Elsie M ather (1973)
• Je n n ie -m Ih u u g ig n iq a F a irbanks-m i = J e n n ie 's L ife in F a irbanks by Ingrid H erreid (n .d .)
• M a lg u k Q u liaq tuak: A ahaa llig lu P iayaaqillu / A q iq p a k tu a q A v iq q a q = Two S to ries: T he Old S q u a w

and I ts D u ck lin g s / T he L arg e L e m m in g by Harold Kaveolook (1974)
• N o r th S lo p e In u p ia q D ia logues: S u p p le m e n t to N o r th S lo p e In u p ia q G ram m ar: F irs t Year by Edna

Ahgeak M acLean (1985)
• Q u liaq tu a t M u m ia ksra t: I lisa q tu a n u n S a v a a k sr ia t by Edna Ahgeak M aclean (1986c)
• S a v a k tu g u t su li P iu ra a q tu g u t = We W ork a nd We P lay by M arie N. B lanchett and M artha Teeluk

(1973)
• Taiguallaruqa = I Can R ea d by M artha Teeluk and M arie B lanchett (1973)
• T ik ig a g m ig g u u q = In P oin t H o pe , A la ska by Floyd Ahvakana (1973)
An autom atic count indicates th a t the corpus contains 9647 tokens rep resen ting 5662 unigue types.1

The contents of Kaveolook (1974) (about 250 tokens) w ere used for developm ent; the rem aining texts w ere
split autom atically into sentences by Shinjae Yoo, and the sentences w ere random ly divided into develop
m ent and tes t da tase ts of approxim ately egual sizes. The te s t da tase t was se t aside for the developm ent of
a "gold standard" se t of m orphological analyses, and I was not allowed to see it.2 From the developm ent
da tase t I reserved 500 random ly-selected tokens, rep resen ting 448 unigue types, to be used for evaluation
in this thesis. The rem ainder of the developm ent da tase t (4406 tokens, 2887 types) constitu ted the set
of Inupiag words I was allowed to see and use to improve the perform ance of the tran sdu ce r throughout
developm ent.

1Tokens were counted with Tel 8 .6b l.2 using the command regexp -all {[[:a lpha:]-]+ } [string tolower $corpuscontents] (where $cor-
puscontents contains the complete text of the corpus). This pattern recognizes all consecutive, maximally long strings of alphabetic
characters and/or hyphens. Types were also counted with Tel, using the command llength [Isort-unique [regexp-inline-all {[[:a lpha:]-]+ }
[string tolower $corpuscontents],

2Because the source documents contained testing data, I was also not allowed to view those documents.

147

As m entioned above, 500 tokens w ere se t aside for evaluating the transducer. A total of 433 unique
types w ere p resen t in this data. These w ere sen t through the transducer using the XFST lookup utility
(see Beesley 2004b) invoked with the lookup-strategy scrip t given in Figure 4 .1 . This scrip t instructs
lookup to a ttem pt lookup using the non-guessing transducer first, and if this fails, to try the stem -guessing
transducer. The tran sdu ce r which recognized a given word could propose one or several parses, bu t the
lookup-strategy scrip t th a t was used precluded the possibility tha t both the guessing and non-guessing
transducers propose parses for the sam e type; in o ther words, if a word was parsed by the non-guessing
transducer, no guesses w ere proposed for th a t word, and vice-versa. The presence or absence of the tag
+Guess in a parse indicated w hether the word was handled by the non-guessing transducer or the stem-
guessing tran sdu ce r (see page 106). A handful of types w ere not recognized by eithe r transducer; these
w ere clearly identified in the output of the lookup utility.

nonguessing ipk.fst
guessing ipk_guesser.fst

nonguessing
guessing

F igu re 4.1: Lookup-strategy script used for evaluating the transducer

The 500 tokens w ere divided into th ree categories, depending on w hether they w ere recognized by the
non-guessing transducer, the stem -guessing transducer, or neither; the num ber of tokens in each category
was taken as a m easurem ent of recognition. Accuracy was assessed using random sam ples of each of these
categories: 100 tokens recognized by the non-guessing transducer, 50 "guessed" tokens, and all tokens
rejected by both transducers. Evaluation procedures w ere slightly different for each category:

• Recognized tokens: Lawrence Kaplan ra ted each parse as co rrec t or spurious. In cases w here several
possibly correct parses w ere proposed for a single token, he also distinguished likely parses from
less likely ones. For tokens w here all parses w ere incorrect, he provided a correct morphological
analysis.

• 50 guessed tokens: Lawrence Kaplan, in consultation with UAF Inupiaq instructo r and native speaker
Ronald Brower, provided a m orphological analysis of each token; these analyses w ere checked
against the tran sdu cer's guesses. The reason for using a different approach for guessed tokens
than for recognized ones was the sheer num ber of guesses proposed by the transducer. In prelim
inary te s ts using the developm ent dataset, the non-guessing tran sdu ce r genera ted an average of
2.9 parses p er recognized type; in contrast, the stem -guessing transducer proposed an average of
49.7 parses per guessed word. It seem ed less burdensom e to ask the hum an ra te r to genera te a few
correct parses for these types than to w ade through dozens of incorrect ones.

• Unrecognized tokens: I exam ined each to determ ine why it was not recognized. For words which
appeared to be legitim ate Inupiaq words, Lawrence Kaplan provided a m orphological analysis, in

4.2 Evaluation Procedures

148

4.3 Results

4.3.1 Recognition

Recognition results, not taking accuracy into account, are given in Table 4 .1 . The m ajority of te s t words
w ere recognized by the non-guessing transducer, and m ost of the rem aining words w ere tackled by the
guesser. It's in teresting to note tha t the type-to-token ratios for unrecognized and guessed words are 1:1,
w hereas the ratio for the recognized words is closer to 5:6. In o ther words, all types occurring twice or
m ore in the te s t data w ere recognized by the non-guessing transducer. This fact tentatively suggests tha t
the m ore common a word is, the g rea te r the likelihood tha t the transducer will recognize it (two caveats:
first, unfortunately, the ability to recognize common words is w orth less for a language like Inupiag, w here
very few words can be considered "common", than in a morphologically poor language like English; second,
the small size of the corpus and the small num ber of texts used to crea te it probably skew the type-token
ratio, artificially inflating the freguency of words central to the them e of each text).

Table 4.1: Recognition results, not taking accuracy into account

consultation with Ronald Brower.

Category # Tokens % Tokens # Types % Types
Recognized words 406 81.2% 339 78.3%
Guessed words 84 16.8% 84 19.4%
Unrecognized words 10 2.0% 10 2.3%

Table 4.2 on the next page gives statistics re la ted to the num ber of unigue parses genera ted by the
transducer. The first row gives statistics relating to the non-guessing transducer, for the types it was able
to parse. The second row gives sta tistics for the parses genera ted by the stem -guessing transducer for
types which it was able to parse and which the non-guessing transducer was unable to parse. To provide a
b e tte r understanding of the guesser's perform ance, two additional rows are given. The first contains the
resu lts of applying the stem -guessing tran sdu ce r to the se t of words th a t w ere successfully recognized by
the non-guessing tran sdu ce r (the guesser was unable to recognize five words from tha t set). The second
contains the guesse r's resu lts w hen given as input the union of the first two sets of w ords (minus the five
words it could not recognize).

It's unsurprising tha t the non-guessing tran sdu ce r would genera te few er parses p e r type than the
guessing transducer; the form er is forced to choose from am ong the stem s it knows, while the la tte r is free
to im agine th a t any phonotactically co rrec t string may be the stem, as long as it can provide an accounting
(likely or otherw ise) for the re s t of the string. W hat is rem arkable is the m agnitude of the difference
betw een the num ber of parses proposed by each transducer. It's also in teresting th a t the guesser proposed
few er parses on average for words which the non-guessing transducer succeeded in recognizing. This
difference may be explained in p a rt by differences in the average length of types in the recognized se t (9.7
characters) vs. the guessed se t (14.2 characters), as the re is a m odest correlation betw een type length

149

Table 4.2: Parses pe r word, by category
Category T otal# Min. parses Max. parses Avg. parses St. dev. parses

parses per type per type per type per type
Recognized words 912 1 35 2.69 3.17
Guessed words 4,194 2 450 49.93 81.67
Recognized words as if

guessed (5 types
unrecognized)

9,925 1 362 29.72 42.92

All guessable words as
if guessed

14,119 1 450 33.78 53.52

and the corresponding num ber of guesses proposed by the transducer (Pearson's correlation = 0.473).
This relationship is rep resen ted in Figure 4 .2 . It's apparen t from this figure tha t the num bers in Table 4.2
are skewed upw ard by a handful of outliers which, for w hatever reason, cause the guesser to generate
hundreds of parses.

N um ber of guesses

Figure 4.2: Guesser results: num ber of guesses plotted against word length in characters

150

4.3.2 Accuracy of Parses Not Involving Guessing

4.3.2.1 C haracteristics of the Sample to Be Analyzed

The 100 recognized tokens in the sam ple rep resen ted 98 distinct types. Two types corresponded to
two tokens each: uvva 'h e re ' and a q a yu q tiq 'first born; som eone's elder'. The first is certainly a common
word in Inupiag, bu t the second m ust be orders of m agnitude less common, and its double occurrence in
a sam ple of 100 words highlights the fact tha t a corpus as small as the one from which these words w ere
taken m ust be som ew hat unbalanced.

Table 4.3 contains parse statistics for all the recognized types in the te s t data as well as for the subset
tha t will be used to assess the tran sdu cer's accuracy. A com parison of the two rows serves as a rough
m easurem ent of the represen ta tiveness of the sample. Figure 4.3 gives a visual rep resen ta tion of the data
behind these statistics. The m ean num ber of parses p e r type for the analysis subset is close to tha t for all
recognized words, though the subset's standard deviation is a b it lower. As can be seen in the figure, the
curve of the subset follows a trajectory sim ilar to tha t of the la rg er set, w ith m inor bu t notable exceptions
a t th ree and ten parses per type; also, only one outlier (out of eight) in the 11-35 parses-per-type range
was sampled.

Table 4.3: Comparison of parse statistics: all recognized words vs. subset to be analyzed for accuracy
Category Total # Min. parses Max. parses Avg. parses St. dev. parses

parses per type per type per type per type
All recognized words 912 1 35 2.69 3.17
Subset to be analyzed 238 1 16 2.43 2.59

150

asft

CD
^3

100

50

All recognized words
Analysis set

10 15 20 25 30 35
Number of parses

0
0 5

Figure 4.3: Parses per recognized type: all recognized words vs. subset to be analyzed for accuracy

151

4.3.2.2 Results

Only in the case of one of the 98 analyzed types did the transducer fail to propose a single correct
parse. The failed type was ta im m a u g a n ig li 'le t it be like tha t'; the cause of this failure will be exam ined in
Section 4 .3 .3 .

Of the 238 parses, 76 (31.93%) w ere judged incorrect, while ano ther six (2.52%) w ere considered
highly unlikely. Of the incorrect parses, 44 (57.89%) w ere caused by a small se t of entries in the noun
inflection file which w ere incorrectly listed as possessive. A nother 14 incorrect parses (18.42%) occurred
because the tran sdu ce r incorrectly identified a (u) as the postbase -u- 'to be; to b e ing'; for example,
in u q a g u u ru t was incorrectly parsed as shown in exam ple (71.a); the co rrec t analysis, which the transducer
also produced, is given in (71.b).

Ex. (71) a. *inu qaq-suk-u -ru t
*have.visitors-want.to-be.Ving-iND.3PL
*'they are w anting to have visitors'

b. in uq aq -su u -ru t
have.visitors-already-iND.3PL
'they already have visitors'

The 18 rem aining incorrect parses (23.68%) consist of strings of m orphem es which are sem antically
implausible. For example, na lugaak was incorrectly parsed as in exam ple (72.a), as well as being correctly
parsed as in (72.b); k iisa im m a triggered two incorrect parses, as seen in exam ples (73.a) and (73.b), as
well as the correct parse given in exam ple (73.c).

Ex. (72) a. *naluk-tagaaq-k
*toss-thing.used.for-abs.du
*'a couple of tossing things'

b. nalu -kaak
be.ignorant.of/be.uninformed.about-iND.PRS.3Du>3sGO
'the two of them are ignoran t of/uninformed about h im /her/it'

Ex. (73) a. *kii= ta im m a
*see.there= then
*'see there! then '

b. *kii-ta= im m a
*clench.teeth-oPT.lPL=the.aforem entioned.one
* 'le t's all clench our tee th the aforem entioned one'

c. k iisa im m a
finally
'finally!'

The parses incorrectly identified as possessive should be easy enough to eliminate, since they resu lt

152

from m istakes in the lexicon. The o ther incorrect parses are h a rd er to deal with, since the ir incorrectness
comes from sem antic considerations, which are beyond the scope of the transducer. Some common faulty
parses m ight be filtered out of the lexicon; for example, the dubious m orphem e sequence *-suk-u-, which
appears in (71.a) on the preceding page and eight o ther incorrect parses, could be prohibited. But such fil
tering m ust be done with care so as to prevent legitim ate m orphem e com binations from being accidentally
rem oved from the lexicon.

At present, it seem s necessary to accept the possibility th a t a few nonsensical analyses may be proposed
for any given word. Hum an users of the transducer will need to be aw are of this fact, and any software
which relied on the tran sdu ce r for m orphological analysis would need a way to rank parses in term s of
likelihood. Although one would hope tha t both hum ans and softw are using the transducer would take
context into account w hen evaluating parses, the re is a simple, context-free heuristic which m ight point
them in the right direction: g rav itate tow ard the parses w ith the few est m orphem e boundaries. While not
infallible, this heuristic is generally correct, in p a rt because it favors analyses with lexicalized com pounds
over analyses containing the constituent parts of these com pounds (e.g., inup iaq ra th e r than inuk-p iaq) and
in p a rt because it d isprefers analyses containing short form atives like the postbase -u- which, com pared
to longer form atives, are m ore likely to appear in incorrect analyses.

I m easured the accuracy of this heuristic using Dr. Kaplan's judgm ents of the 238 recognized parses.
Recall th a t Dr. Kaplan ra ted each parse as incorrect, unlikely, possible, or likely. In the case of nine types
(twelve tokens) w here Dr. Kaplan ranked two parses as possible, and the parses w ere identical except
tha t one contained a lexicalized com pound w here the o ther contained the parts of this compound as sep
a ra te m orphem es, the parse with the lexicalized compound was given precedence over its counterpart.
(Admittedly, this m odification to the parse rankings biases the resu lts in favor of the heuristic, bu t given
the equivalence or near-equivalence of the pairs of parses affected by these modifications, it should not be
terrib ly controversial.) In none of these cases did such a change in precedence cause a particu lar parse
to outrank parses implying a substantively different analysis. The 44 parses caused by inflectional entries
incorrectly listed as possessive w ere excluded from the analysis, since the m istake which caused them to
be genera ted is easily rectified. All o ther incorrect parses w ere included in this analysis.

The resu lts of this analysis are shown in Table 4.4 on the following p ag e . The resu lts look a b it more
prom ising than perhaps they really are, since for 56 of the 82 types w here the heuristic succeeded, the
transducer provided only one parse to choose from. The fact tha t the heuristic failed partly or completely
in 16.33% of all evaluated cases should caution transducer users against relying solely on it to identify
correct parses; still, the resu lts suggest th a t considering the num ber of m orphem e boundaries can be an
effective s tra tegy in evaluating transducer output, when used alongside o ther considerations.

4.3.3 Analysis of Failures of the Non-Guessing T ransducer

This section will exam ine 61 types and the factors tha t prevented the non-guessing tran sdu ce r from
proposing correct analyses for them . The types are draw n from the data sets selected for analysis, as
follows: the one type from the recognized words for which no correct analysis was proposed; all 50
guessed types; and all 10 types rejected by both the guessing and non-guessing transducers. For each
of these types, Lawrence Kaplan, in consultation with UAF Inupiaq instructo r and native speaker Ronald

153

T able 4.4: R esu lt o f autom atically s e le c tin g p a rses w ith fe w e s t m orph em e b ou ndaries
Outcome Types
All likely p a rses se lec te d ; no oth er p a rses s e le c te d 82
All likely p a rses p lus on e or m ore le s s likely or in correct p a rses 9
S om e (not all) lik ely p a rses se lec ted ; no le s s likely or in correct p a rses s e le c te d 4
Only on e o f tw o likely p a rses se lec te d ; on e in correct p a rse s e le c te d 1
L ess likely p arse se lec ted ; likely p arse n ot s e le c te d 1
N o co rrect p arses; in correct p arse s e le c te d 1

Brower, a ttem pted to propose a correct m orphological analysis. I checked the tran sdu cer's lexicon and
rules against each of these analyses and found a total of 73 causes of failure. M ost types failed because
of a single factor; in th irteen cases, the re w ere two factors preventing a type from being recognized. The
causes of failure are given in Table 4 .5 ; these are discussed in g rea te r detail in the following subsections.
Bear in mind tha t because of the sam pling m ethods used to g a the r the words analyzed here, the num bers
in this section are not necessarily proportional to eithe r the te s t data se t or the se t of words not recognized
by the non-guessing transducer; the m ost th a t can be said is th a t strong trends in the data below are likely
to hold for the entire se t of te s t data (for example, the re will be m ore failures due to postbases missing
from the lexicon than due to stem s missing from the lexicon).

T able 4.5: C au ses o f n o n -g u e ssin g tran sd u cer fa ilure
Cause of failure Total Misrecognized Guessed Unrecognized
P ostb ase n ot in lex ico n 19 19
Typo 13 10 3
P h on olog ica l ru le in a d eg u a te 5 5
S tem n ot in lex ico n 5 4 1
U nusua l in flection a l m orph ophonology 5 5
E n glish stem 4 4
P h on olog ica l ru le m iss in g 3 3
P ostb ase in a d eg u a te ly sp ecified 3 3
S tem variant n ot in lex icon 3 3
Inflectional en d in g in a d eg u a te ly sp ecified 2 2
M orphotactics in ad egu ate 2 1 1
P ostb ase allom orph n ot in lex icon 2 1 1
R ed u ced form n ot in lex icon 2 1 1
S tem in correctly sp ecified 2 2
E n clitic n o t in lex ico n 1 1
F law in p o stb a se file lon g d istan ce d ep en d en cy log ic 1 1
S tem n ot sp ec ified as tran sitive 1 1

4.3.3.1 Stem -Related Failures

Fifteen failures (20.55%) had to do with stems. Four stem s w ere English {C hristina, c la im , m in in g , and
tape). Five Inupiag stem s w ere missing from the lexicon; am ong these, one was the cheer yai-ai!, and the

154

other th ree w ere nam es of people. These sorts of failures w ere expected. The fifth m issing stem, s ivun n ig i-
'be determ ined ', was not the sort of stem tha t was expected to be missing, although it is also not listed in
M acLean (n .d .a).

Three o ther stem failure categories w ere also not expected. Three unrecognized stem s w ere variants
of stem s which are found in the lexicon: naigli- is a varian t form of naikli- 'becom e shorter', and ta sam a
and ta un a are variants of dem onstratives ta sa m m a 'down th e re ' and ta un na 'th a t down the re '. One stem
was not recognized because the lexicon does not list it as a transitive verb; one stem was incorrectly listed
as ending in /q/ w hen it actually ends in /q/; and one stem , th a t of duale tan tum noun ka m ik iu u k 'pan ts ',
was specified with a singular stem which, while theoretically possible, is rare ly if ever used in reality.

4.3.3.2 Postbase-Related Failures

Issues re la ted to postbases constitu ted 34.25% of all failures (25 in all). In fact, the num ber one cause
of failure was postbases missing from the lexicon. Of the 16 absen t postbases, nine are listed in MacLean
(n .d .a) as "limited" (which I had in terp re ted to m ean unproductive); the o ther seven are not listed in the
dictionary. Two postbases occur m ore than once in the guessed words: -si- (which can m ean 'becom e' or
which can act as a detransitivizer) occurs th ree tim es, and -uti- (which may indicate tha t the action denoted
by the stem is done along with or for the benefit of another, or tha t multiple agents perform the action for
or to each other) occurs twice.

O ther problem s with postbases included:
• p o s tb a se in a d eq u a te ly sp ec ified : two instances of the postbase -aqsi- 'be about to, be going t o ;

continue t o ' w ere p receded by fil realized as [i], suggesting tha t this postbase is (or can be) an
exception to the ru le fil -> [a] I V (see pages 11- 12). A type containing postbase -Igisaq- 'which is
being or has b e e n ed again ' was not recognized in p a rt because this postbase appears to require
special endings.

• p o s tb a se a llom orph n o t in lex icon: postbase -suga- 'd o n 't you rem em ber t h a t ; to unexpectedly,
su rp ris ing ly ' appeared as -uga- following a /q/; this suggests tha t (at least for some speakers)
this postbase follows the sam e allom orphy p a tte rn as -suk- 'w ant to ', nam ely tha t the initial consonant
is dropped w hen the preceding segm ent is /k/ or /q/. Postbase -lit- 'to provide with a ' appeared
as -it- w ith the equals p a tte rn (see pages 135- 136) and gem ination of the preceding consonant. This
allom orph was not in the lexicon or listed in the dictionary.

• fla w in p o s tb a se file long d is ta n c e d e p e n d e n c y logic: a ru le in the LongDistanceDependencies section
of the postbase file contained a bug. The purpose of the rule is to clear valence restrictions for
deverbal postbases. The rule identifies these as belonging to a certain class of category codes and
having a continuation class not in a certain se t of classes. The se t of classes did not include a handful
of classes designed to re s tric t the allowable moods tha t could co-occur with certain postbases. Post
base -taaq-/-laaq- 'going so far as t o ' requ ires conditional, consequential, or contem porative I
mood endings, and because these classes w eren 't listed in the rule, the postbase was filtered out of
the lexicon.

155

4.3.3.3 Inflection-Related Failures

Seven failures (9.59%) had to do with inflection. Five of these are from m orphophonological results
not p red icted by the tran sdu cer's rules (or by the ru les described in M acLean's g ram m ar books), bu t
which are not necessarily incorrect. One such word is n u k a tch ia 'h is/her younger sibling', w here the root
is n u k a tch ia q and one would have expected n u ka tch ia q a in the a b s . s g .3 s g P form. A nother is tuva aq an n i
'h is/her companion, p artn er', w here the expected form would be tuvaaqa tin i. Both of these are older
forms, and while it's possible to guess a t the ru les responsible for them , m ore research would be reguired
to determ ine the limits of those rules before they could be added to the tran sdu ce r w ith any degree of
confidence.

Two o ther inflection-related failures stem from inflectional endings specified in such a way tha t some
variants are not recognized. For example, the word a qa yu q a a q ig n u n 'to h is/her p aren ts ' was rejected
because the t r m . d u . 3 s g P ending was specified as -q iqnu n ra th e r than -q ignun . Because the transducer's
assim ilation rules will optionally change (g) to (g) before a nasal, specifying the ending with a (g) would
have allowed either varian t of the ending to be recognized.

4.3.3.4 Enclitic-Related Failures

Three failures come from enclitics m issing from the lexicon; two of these (su/i 'and furtherm ore; also;
still in p rog ress ' and ki 'come on; go ahead ') are reduced forms, and a third {ami) appears to be ju s t an
enclitic.

4.3.3.5 Failures Due to Phonological and M orphotactic Rules

Four failures stem from the rule which changes underlying /!/ to [a] w hen ano ther vowel follows. In each
case, /!/ occurs to the left of an enclitic (or reduced-form) boundary. For example, the word qaq a liu ku a k
'since long ago', which contains enclitic =H and reduced dem onstrative p ronoun uku a k , was not recognized
because the tran sdu ce r expected *qaqa\aukuaq . The rule needs to be modified so th a t it only operates
within syntactic words.

A nother failure resu lted from an oversight in the palatalization and assim ilation rules, which e rro
neously change /t/ to [n] (ra ther than [n]) in the environm ent / i / N (where N rep resen ts a nasal conso
nant). If the palatalization ru les w ere ordered low er in the cascade than the assim ilation rules, this erro r
would not have occurred.

Three o ther failures w ere due in p a rt to the absence of rules. The word ka v iu g ia q sig a ig n a 'he/she
becam e envious of the o ther ones' consists of ka v iu g ia q sig a a and cliticized dem onstrative pronoun igna;
the tran sdu ce r currently lacks a rule th a t would delete the second vowel of a word-final vowel c luster when
the word is followed by a vowel-initial enclitic or reduced form. Words n a tig in iq qa m i and tu v va m u n are
conservative forms which illustra te a rule not currently im plem ented in the transducer w here obligue case
endings optionally trigger gemination.

Two failures are attribu tab le to overly restrictive m orphotactic constraints. In both cases, the stem is
a dem onstrative and is followed by a postbase which is currently listed in the lexicon as attaching (only)
to noun stems.

156

4.3.3.6 Failures Due to Typographic Errors

Thirteen failures (17.81%) w ere due a t least in p a rt to typos in the data; some of these w ere introduced
in the typing of the corpus, bu t several are p resen t in the source texts.

4.3.3.7 Dealing with Causes of Failure

Some of the failures reflect flaws in the transducer which are easily fixed. O thers are due to bad input
and need not be addressed. Still o thers reflect a gray area w here attem pting to repa ir the failure could
lead to unintended conseguences; for example, adding unproductive or m arginally productive postbases
to the lexicon or adding rules to accom m odate an archaic inflection p a tte rn may increase the num ber
of incorrect parses genera ted by the transducer. Following is a category-by-category analysis of w hat I
believe should be done to address failures, and how m any failures are addressable.

4.3.3.7.1 P o s t b a s e s N o t i n L e x i c o n The norm al m ethod for adding postbases to the lexicon allows them
to combine freely with a num ber of stems. This may not be appropria te for the postbases identified in
this e rro r analysis, if some or all of them are indeed lim ited in productivity. On the o ther hand, adding
postbases in a way th a t significantly res tric ts the ir ability to combine with stem s increases the complexity
(and freguently, the m em ory reguirem ents) of the lexicon. One reasonably cautious approach to dealing
w ith these missing postbases involves creating th ree transducers: the first would contain only postbases
believed to be productive, the second would contain all known postbases, and the third would have the
ability to guess postbases. The transducers would be given cascading priority in an XFST lookup scrip t
like the one shown in Figure 4.1 on page 147. This would prevent less-productive postbases from adding
noise to the parses of m ore straightforw ard words, bu t still m ake those postbases available as p a rt of the
tran sdu cer's second line of a ttack should the m ore restric ted lexicon prove insufficient. This approach is
described in m ore detail on page 160.

4 . 3 . 3 . 7 . 2 T y p o s Since these reflect issues external to the transducer, nothing need be done (or can be
d o ne)ab o u t them.

4.3.3.7.3 I n a d e q u a t e P h o n o l o g i c a l R u l e s There are only two rules concerned, and the re is no reaso n n o t
to fix them. This would resolve five failures, although these fixes alone would only enable the transducer
to recognize two of those five types (among the o ther th ree types, one contained a typo, one contained the
postbase -si-, and one had a stem -postbase com bination not allowed by cu rren t m orphotactic constraints).

4.3.3.7.4 S t e m s N o t in L e x i c o n Three of these are nam es and ano ther is a cheer; while adding these
to the lexicon would probably not do g rea t harm , it's guestionable w hether they really belong there. The
case for adding s ivu nn ig i- 'be determ ined ' is m ore clear-cut.

4 .3.3.7.5 U n u s u a l I n f l e c t i o n a l M o r p h o p h o n o l o g y Because these words are unusual, it's not clear w hat
should be done to deal with them . More research needs to be done to determ ine the extent to which the
patte rns exhibited by these words can be generalized to the re s t of the lexicon.

157

4.3.3.7.6 E n g l i s h S t e m s None of the stem s in this category are likely to be frequent enough to m erit
inclusion in the transducer; however, a t some point in the fu ture it m ight be w orth developing a transducer
capable of guessing foreign stem s, mostly for the purpose of identifying inflectional endings and determ in
ing gram m atical categories, which could facilitate syntactic analysis and lem m atization of surrounding
words.

4.3.3.7.7 M is s in g P h o n o l o g i c a l R u l e s These should not be difficult to fix, bu t caution should be taken
to ensure th a t im plem enting this rule doesn 't cause anything else to break. Each additional phonological
rule increases the size of the transducer and the tim e and resources required to compile it, bu t the lim ited
scope of these ru les should constrain these increases to m odest levels.

4 . 3 . 3 . 7 . 8 I n a d e q u a t e l y S p e c i f i e d P o s t b a s e s It should not be difficult to determ ine if postbase -aqsi- al
ways preserves the underlying quality of preceding /!/, and, if th a t is the case, to change the lexicon entry
accordingly. Identifying the se t of endings tha t can follow postbase -lgisaq- will be a m ore difficult task.

4.3.3.7.9 S te m V a r i a n t s N o t in L e x ic o n As long as these variants are accepted by the Inupiaq-speaking
community, it should be no trouble to add them to the lexicon, thus resolving th ree failures.

4.3.3.7.10 I n a d e q u a t e l y S p e c i f i e d I n f l e c t i o n a l E n d in g s These are ano ther simple fix.

4 .3 . 3 . 7 . 1 1 I n a d e q u a t e M o r p h o t a c t i c s Resolving these failures should not be particularly difficult, al
though the com binatorial limits of dem onstratives and the postbases in question should be determ ined
first.

4.3.3.7.12 P o s t b a s e A l l o m o r p h s N o t in L e x ic o n One of these {-[s]uga-] belongs in the m ain non-guessing
transducer and is easy to fix; the o ther (-it-, from -lit-) is an allom orph of a postbase m arked as 'lim ited'
in the dictionary, and could be added to the second-priority tran sdu ce r with the o ther less-productive
postbases.

4.3.3.7.13 R e d u c e d F o r m s N o t in L e x i c o n Adding reduced forms of su li and ki should be straigh tfor
ward.

4 .3.3.7.14 I n c o r r e c t l y S p e c i f i e d S t e m s One of these (tuvaq 'landlocked ice') can be fixed by changing
Iq l to Iql. Fixing the o ther (ka m ik tu u k 'pan ts ') will requ ire a fundam ental change to the trea tm en t of
dualia tan tum and pluralia tantum , since this e rro r dem onstrated an e rro r in my understanding of these
phenom ena. (A less likely possibility is th a t the word was incorrectly transcribed; however, k a m ik tu u q ik
is entirely plausible. I assum e the erro r is on my p art and not on the p a rt of the transcriber.)

4.3.3.7.15 E n c l i t i c N o t in L e x ic o n If this enclitic (=ami) is productive, then it should be added to the
lexicon, which should not be difficult. Adding this enclitic may lead to m ore false parses, however.

158

4.3.3.7.16 F law in P o st b a se F il e L o n g D is t a n c e D e p e n d e n c y L o g ic T here 's no reason not to fix this,
which should be simple.

4.3.3.7.17 S t e m N o t S p e c if ie d as T r a n sitiv e This is easily changed, and the fact th a t it occurred in the
corpus as a transitive is sufficient evidence to justify editing the entry.

4.3.3.7.18 S u m m a ry In all, 25 failures (34.25%) are easily resolved. A nother 21 (28.77%) are unresolv-
able (typos) or unlikely to be resolved (English stem s, stem s not in lexicon [with the exception of s ivun n ig i-
]). For the 19 failures due to unrecognized postbases and the one failure due to an unrecognized allom orph
of a "limited" postbase (27.40% of all failures), I have proposed a course of action which seem s prom ising
bu t which rem ains to be tested . For the rem aining seven failures (9.59%), m ore research needs to be done
to determ ine how or w hether to modify the transducer.

With a few notable exceptions (such as the rule incorrectly changing fil to [a] across an enclitic bound
ary), m ost of the factors causing recognition failure applied to only one or two words in the analysis set.
For example, although many of the failures w ere due to postbases missing from the lexicon, m ost of the
fifteen missing postbases only accounted for one failure each. This fact illustra tes the effect of Zipf's law
on transducer developm ent: a small handful of rules and lexicon en tries account for a relatively large
num ber of words, bu t the rem aining words reguire a m uch la rger se t of ru les and lexicon entries, each
of which applies to only a few less-freguent words. Viewed in a slightly different light, developm ent of a
lexical transducer is subject to the law of dim inishing returns: as the num ber of rules and lexicon entries
increases, the additional gains from adding ano ther rule or lexicon entry tend to becom e progressively
fewer.

4.3.4 Accuracy of Parses Involving Guessing

4.3.4.1 C haracteristics of the sam ple to be analyzed

There w ere no duplicate tokens am ong the guessed words in the te s t data, so the 50 tokens selected
for analysis rep resen t 50 distinct types. These tokens account for nearly 60% of all recognized types, and
so should give a very accurate p icture of the guessing tran sdu cer's ability to parse words m issed by the
non-guessing transducer.

Table 4.6 on the following page contains parse sta tistics for all guessed types in the te s t data se t and
for the subset to be analyzed in this section. The num bers are guite similar, and although the analysis
sam ple does not include the outlier with the m ost parses, it does include slightly m ore parses p e r type
on average than the en tire se t of guessed types. Figure 4.4 on the next page displays the distribution
of parses per type for all guessed words and for the subset to be analyzed. The sam ple appears to be a
reasonable approxim ation of the se t from which it was taken. The graph has a strikingly jagged guality
to it, due in p a rt to the small num ber of tokens in the sam ple and in p a rt to the large num ber of average
parses per type. Because no single num ber of parses per type accounts for m ore than seven types, any
difference from one data point to the next appears as a steep slope.

159

T able 4.6: Comparison of parse statistics: all guessed words vs. subset to be analyzed for accuracy
Category Total# Min. parses

per type
2
2

Max. parses
per type

450
328

Avg. parses
per type

49.93
54.94

St. dev. parses
per type

81.67
82.91

parses
All guessed words 4,194
Subset to be analyzed 2,747

All guessed words
Analysis set

lui i i i i i i hi n i i ii
0 50 100 150 200 250 300 350 400 450

Number of parses

F igu re 4.4: Parses per guessed type: all guessed words vs. subset to be analyzed for accuracy

4.3.4.2 Results

Given the inform ation in Section 4.3 .3 , it should come as no surprise tha t the guesser produced ra th e r
dismal results. Its job, after all, is to p red ict stem s tha t are missing from the lexicon, and while it succeeds
for the m ost p a rt in perform ing tha t task, it tu rns out tha t m ost of the non-guessing tran sdu cer's failures
have nothing to do with missing stems. Only seven of the fifty words in the analysis sam ple w eren 't
recognized by the non-guessing transducer due to stem -related issues alone. Two of these, dem onstratives
ta un a and ta sam a , w eren 't correctly analyzed by the guesser because it is program m ed to guess only noun
and verb stem s (in theory, these are the only open categories in the Inupiag lexicon). The o ther five (proper
nam es A a la gu m [stem A alaak] and A im a g lu [stem A im aq], common noun k a m ik iu u g ik [stem ka m ik iuu k]
and verbs na ig livlug ich [whose stem is a varian t of naikii-] and u inn iga i [whose stem , uit-, was specified
in the tran sdu cer's lexicon as intransitive only]) w ere correctly analyzed, however. Additionally, for two
w ords which w ere passed over by the non-guessing tran sdu ce r because they contained -aqsi- p receded by
!H, the guesser proposed analyses which w ere co rrec t in every respec t except tha t this Hi was given as III
(the guesser's analyses, unlike the non-guessing transducer's, d istinguish betw een strong and weak III and
Iql). If these are counted as correct analyses, a grand total of seven types out of fifty (14%) w ere correctly
analyzed by the guessing transducer. The stem guesser's design prevents it from correctly analyzing any
word containing an unknown postbase, inflectional ending, or enclitic, nor is the tran sdu ce r p repared
to handle words with typos or unusual m orphophonological patte rns. It goes w ithout saying tha t not
anticipating the m agnitude of these lim itations rep resen t a m onum ental failure on my part.

All is not guite lost, however. In some applications, an incom plete analysis is still useful. For example,
in syntactic analysis, a com plete m orphological analysis of each word is often not needed; a w ord 's g ram
m atical category and inflectional inform ation often suffice. W hen it comes to identifying this information,

160

the guesser perform s som ew hat better. For 32 of the 50 types (64%), it was able to supply the correct
inflectional information.

Unfortunately, every correct or partially correct parse proposed by the guesser is buried in a haystack
of spurious parses of varying degrees of badness. A num ber of factors contribute to this situation:

• Inupiag 's word-final phonotactics are fairly restrictive, and the unpossessed absolutive and relative
endings are phonologically simple, so nearly every word will be analyzed as an absolutive or relative
noun (possibly among o ther analyses).

• There is considerable syncretism am ong Inupiag inflectional endings; this m eans that, for example,
any word ending in (t) will be analyzed as an absolutive dual noun and a relative dual noun (possibly
am ong o ther analyses).

• In the cu rren t transducer, the multiplicative effect of the legitim ate syncretism described above
on the num ber of parses is exacerbated by the inflectional ending en tries incorrectly specified as
possessive (see page 151).

• The guesser distinguishes strong and weak HI and /q/; for each (i) or (g) in the input, a t least two
parses will likely be generated (although this depends on w hether the phonem e appears in an inflec
tional ending, a postbase or enclitic recognized by the transducer, or elsewhere).

• Optional rules (m ost notably, palatalization) resu lt in two parses for every segm ent tha t could be
affected by the rule.

• If the tran sdu ce r recognizes a postbase which can delete segm ents from the preceding stem , and if
the re is any chance th a t such deletion has occurred, the transducer will propose a guess for each
segm ent tha t could have been deleted.

• If a word contains, say, a stem which the transducer can guess plus a postbase and an inflection
which the transducer recognizes, the tran sdu ce r will also propose a se t of parses treating the stem
and postbase as a single stem followed by the inflection, and a se t of parses w ith the stem, postbase,
and inflection as a single (nominal) stem.

These factors conspire in a com binatorial fashion to produce a massive num ber of parses for all bu t the
m ost simple inputs, which renders the guessing tran sdu ce r (at least in its cu rren t sta te) nearly useless.
However, I believe the notion of a guessing transducer as a fallback for a purely lexical tran sducer still has
m erit, and steps could be taken to m ake an Inupiag guesser both m ore accurate and m ore useful.

The e rro r analysis in Section 4.3.3 dem onstrated the need to consider not only unknown stem s bu t
also unknown and unproductive postbases. Instead of a tw o-tiered strategy (recognition, then guessing),
a three- or four-tiered strategy m ight be useful. The first reso rt would be a non-guessing tran sdu ce r like
the cu rren t one. If this failed, the next step would be to use ano ther non-guessing transducer containing
the "limited" postbases in addition to the productive ones. Next, if needed, a phonotactically-aw are tran s
ducer capable of guessing both stem s and postbases could be used. Finally, as a possible last resort, one
could apply an indiscrim inate guesser designed to accept everything and attem pt to recognize inflectional
information, perhaps taking into account possible errors in the input.

The transducer a t the third tie r in this h ierarchy would resem ble the cu rren t guessing transducer,
w ith some im portant differences. As noted above, it should be able to guess a t postbases as well as stems,
though it should probably be prevented from m aking both kinds of guesses for any given input, or from

161

guessing m ore than one m orphem e p er word. The num ber of parses per word could be reduced by fix
ing the incorrect possessive endings, elim inating distinctions betw een strong and weak segm ents, and
constraining palatalization-related variation in the upper language: while the guesse r's low er language
should include words w here palatalization has been applied incom pletely or not a t all, the upper (analysis)
language is arguably m ore useful the m ore prescriptive it is.

Even with these changes, the tran sdu ce r is likely to produce m ore parses than m ost people will find
helpful. Two things could be done about this. First, a heuristic sim ilar to the one p resen ted for parses of
recognized words (though alm ost certainly m ore complex) could be developed to identify guesses which
are m ore likely to be accurate. This m ight take into account the total num ber of m orphem es, the length of
guessed m orphem es, and/or the com parative rank of proposed inflectional endings within a h ierarchy of
likelihood (for example, if one word is parsed both as a verb in the indicative p resen t 3rd person dual and
as a noun in the absolutive dual, the verbal in terp re ta tion is m ost likely to be correct, though of course
o ther factors would have to be considered).

Second, softw are could be developed to distill a se t of guesses in order to m ake it easier for the u se r to
sift through the possibilities.3 The softw are would take a se t of guesses and display a m enu containing each
of the unigue m orphem es from those guesses. W hen the u se r selected one or m ore of these m orphem es,
the se t of guesses containing those m orphem es would be displayed. This would provide a simple way for
the u se r to filter out obviously bad parses and to form ulate and te s t hypotheses involving m ore prom ising
morphem es.

3I put together a program with the basic functionality described here to help me evaluate the accuracy of the guessing transdu
cer's output. It was extremely useful for that task, but it is not ready for prime time yet; the interface is rather crude, and at present,
the program only accepts input from the database where I have stored the results of the transducer evaluation. These deficiencies
could be remedied with a few hours' effort.

162

Chapter 5 Conclusion

5.1 Contributions and Limitations

This thesis has outlined the design and developm ent of a lexical tran sdu ce r for N orth Slope Inupiaq
and evaluated its ability to analyze the m orphology of a variety of words taken from published texts in
tha t dialect. The im plem entation of the transducer incorporates a num ber of innovations to facilitate
developm ent of both the lexicon and the m orphographem ic rules, and to allow both to be specified in a
m ore natural way. Specifically:

• A se t of unique, language-specific form ats was crea ted for specifying stems, postbases, inflectional
endings, enclitics, form ative classes (including epsilon continuations), conditioning environm ents
for allom orphs, and m u lticharacter symbols. These form ats, taken as a whole, effectively modify the
LEXC language 's implicit lexical model in a way tha t allows the properties of Inupiaq to be specified
m ore naturally and directly.

- Form atives are grouped by type (stem, postbase, inflectional ending, enclitic) ra th e r than by
a m ixture of phonological and m orphological criteria, as is common (and often necessary) in
lexicons specified in pure LEXC. This m ore n atural grouping allows straightforw ard data en
try from Inupiaq dictionaries, which is fu rther facilitated by adopting Edna M acLean's ortho
graphic conventions for these files.

- Irregular, phonologically conditioned allom orphy is common in Inupiaq, and these form ats al
low all allom orphs of a m orphem e to be specified together, with a common upper-language
representation , form ative class, and continuation class or classes.

- Inflectional endings are specified in two-dim ensional paradigm s ra th e r than in one-dim ensional
form ative classes, m aking this data easier to enter, read, and maintain.

- Reduced (cliticized) forms of stem s can be specified in the stem 's entry, and will inherit the
stem 's gram m ar tags.

- Conceptually, form atives can belong to and/or continue to m ore than one form ative class. This
is useful w hen dealing with stem s and postbases whose inflectional possibilities are lim ited to
endings belonging to a particu lar subcategory (say, possessive nominal endings).

- Epsilon continuations are trea ted as properties of form ative classes ra th e r than p roper m em
bers of those classes.

- Long-distance dependency restrictions are defined on the level of the form ative class ra th e r
than on the level of individual form atives, and all long distance dependencies for a given for
m ative type (stem, postbase, or inflectional ending) are grouped together, m aking them easier
to manage.

• The "trail of crum bs" idiom was devised for the m orphographem ic ru le file. This idiom can be consid
ered an extension of w hat m ight be called the one-variable-per-rule idiom (for an exam ple of this, see
the second Southern Portuguese Pronunciation exam ple in Beesley and K arttunen [2003:471-473]).
W here one-variable-per-rule defines a variable for each rule, w ith a rule cascade a t the end of the file,
the trail-of-crumbs idiom in teg rates the cascade into the rule definitions so th a t each rule is added

163

to the transducer as it is defined, leaving a "crumb" a t each step in the compilation process which
contains the s ta te of the transducer a t tha t point. While it's possible th a t o thers have conceived of
this idiom before, I have not seen it described or used elsew here. Among its advantages:

- It allows XFST to provide feedback a t each step in the com pilation process, m aking it possible
to gauge the tim e and m em ory reguired to add each ru le to the transducer and to m easure the
im pact of each rule on the size of the transducer.

- The crum bs m ake it easier to pinpoint the origin of errors; users can apply the sam e input
to m ultiple crum bs and easily identify the point a t which the ou tput deviates from w hat is
expected.

- The idiom 's s truc tu re couples the definition of a ru le to its position in the cascade. This means,
am ong o ther things, tha t moving a ru le 's definition relative to o ther definitions autom atically
changes the o rder in which it is added to the transducer. At first blush, having the location
of a definition autom atically linked to its position in the cascade may not seem like a big deal,
bu t it is useful both w hen developing rules and w hen consulting the file later. A rule m ust
take into account the s ta te of w hichever of the tran sdu cer's languages it will modify. Most
rules are composed "below" an existing transducer, modifying its low er language, so listing
each rule definition directly after the rule which m ost recently affected the lower language
m akes it easier to keep the cu rren t s ta te of tha t language straight, and if one needs to be
rem inded of changes m ade by earlier rules, the en tire evolution of the low er language can
be traced simply by looking a t each ru le in order. In transducers w here rule definitions are
separa ted from the rule cascade, rules are often developed in this order, bu t if ru les are la ter
reo rdered in the cascade, e ither rule definitions m ust be reo rdered to m atch (in which case
a single rule reordering necessita tes m ovem ents in two separa te parts of the code) or there
m ust be a m ism atch betw een the cascade and the o rder of the ru le definitions (which can make
the file h a rd er to read, which in tu rn can m ake it m ore difficult to add or modify rules in the
future, since determ ining the s ta te of the tran sdu cer's languages a t a given point in the cascade
reguires tha t the rules be review ed in a non-linear order).

The transducer described here actually consists of two transducers. The first, which takes precedence
over the o ther in analyzing words, relies on its lexicon to genera te analyses. The second is able to guess
stem s which conform to N orth Slope Inupiag phonotactic constraints. In testing, the non-guessing tran s
ducer was able to recognize 81.2% of all te s t tokens and 78.3% of all te s t types, and of the 100 recognized
tokens analyzed, a co rrec t analysis was generated in 99 cases. The guessing transducer fared consider
ably worse; although it was able to propose analyses for 89.4% of the words m issed by the non-guessing
transducer, an exam ination of parses for 50 of these words revealed th a t m ost of the guesses w ere incor
rect. Only for 14% of the exam ined words was the guesse r able to propose a com pletely accura te parse,
although in 64% of cases it was able to propose a t least one parse with the correct inflectional information.
An analysis of types which w ere not recognized by the non-guessing tran sdu ce r revealed a num ber of areas
w here the transducer can be improved. I proposed shifting from a tw o-transducer strategy (non-guessing
and guessing) to a three- or four-transducer strategy. The first transducer would be sim ilar to the cu rren t
non-guessing transducer. The second transducer would have a lexicon containing less productive post
bases. The third transducer would be able to guess not only unknown stem s bu t also unknown postbases.

164

A possible fourth transducer would accept all input and give h ighest priority to attem pting to recognize
gram m atical category and inflectional information, perhaps taking into account the possibility of typos or
o ther e rro rs in the input. I hypothesize th a t this approach will be able to accurately handle many of the
issues tha t caused words not to be correctly recognized by the cu rren t transducer.

The transducer contains few m echanism s to prevent stem s and postbases from combining in sem anti
cally im probable ways, and this situation is not likely to improve in the n ea r future. Users of the transducer
will need to b ear this lim itation in mind. The tran sdu ce r cannot, and is not intended to, replace hum an
judgm ent. However, the transducer can still be a useful tool, both on its own and as a com ponent in o ther
software.

5.2 Possible Im provem ents to the Im plem entation of the T ransducer

5.2.1 Specification of Inflection

While I believe the tran sdu ce r 's cu rren t form at for specifying inflection rep resen ts a trem endous im
provem ent over the traditional, one-dim ensional form ative class listing, it was still less-than-ideal for some
aspects of Inupiag inflection, particularly because in many cases the endings had to be rearranged from
the o rder in which they w ere given in M acLean's gram m ar books. It would be nice to have the flexibility
to indicate not only the gram m ar tags belonging to each axis, bu t also the o rder in which those gram m ar
tags should combine. A nother thing tha t would be useful would be to replace the rigid two-dim ensionality
of the model with a flexible dimensionality. This would improve the description of possessive noun endings
and transitive verb endings, both of which are p resently contorted into a pseudo-three-dim ensional format.

5.2.2 A Preprocessor for xfst

While xfst is a powerful language, it is not necessarily a perfec t one. In one FAQ, Lauri K arttunen char
acterizes the xfst in te rp re te r as "a carefree, hedonistic in te rp re te r th a t lives for the mom ent. It greedily
in te rp re ts each regu lar expression as it is parsed, based on the s ta te of the symbol table a t th a t very mo
m ent."1 That greedy in terp re ta tion based on the symbol table becom es a freguent source of frustration
during rule developm ent. Three issues in particu lar kept cropping up:

1. If a rule fails to anticipate the presence a flag diacritic or o ther m ulticharacter symbol, strings
containing those symbols will not be handled correctly by the transducer. Particularly with flag
diacritics, this kind of bug is very hard to pinpoint, because xfst normally renders flag diacritics
invisible to the end user.

2. If an xfst variable nam e or flag diacritic contains a typo, xfst simply in te rp re ts it as a new m ulti
ch arac ter symbol. These errors are easier to identify than the flag diacritic errors ju s t m entioned,
because sooner or la te r the funny symbol appears in the xfst output, bu t it may take a while to realize
tha t the symbol is appearing and to identify its origin.

3. Failure to pu t w hitespace betw een two or m ore consecutive symbols in a rule causes xfst to in te rp re t
the symbols as a single m u lticharacter symbol. Although symbols are separa ted by w hitespace in

1http://www.stanford.edu/~laurik/fsmbook/faq/forward-reference.html

http://www.stanford.edu/~laurik/fsmbook/faq/forward-reference.html

165

xfst rules, they are not separa ted in xfst output; this m akes errors of this sort m ore insidious than the
typo errors described above. It's easy to see tha t th e re 's an unw anted m ulticharacter symbol Vowl

in a word like nauVowlruq; it's impossible to see tha t the re 's an unw anted m ulticharacter symbol ch

in a word like inuich. The presence of such symbols can be detected by exam ining the transducer's
alphabet, bu t usually, nothing in the ou tput of a bug like this would suggest to the developer the
need to exam ine the alphabet.

Simple aw areness of these th ree types of issues can go a long way tow ard finding and resolving them,
bu t I would p refer to have a way for them to be called to my atten tion as soon as xfst encounters them in
my rules. Unfortunately, xfst's "hedonistic" sem antics m ake this impossible. The first issue can be worked
around using ignoring and the elim ination of flag diacritics, techniques which I have used to full advantage.
The rem aining issues are m ore difficult to deal with in xfst, and likely impossible to catch automatically.

However, it should be possible to develop a p reprocesso r which could take an xfst file and the m ulti
ch arac te r symbol declaration file and identify any places w ithin an xfst regu lar expression w here two or
m ore non-syntactic symbols are strung toge ther unexpectedly (m eaning not in a variable definition earlier
in the xfst file and not anyw here in the m ulticharacter symbol file). The developer could then be im m edi
ately alerted both of an e rro r 's existence and its precise location, instead of being left to discover a problem
hours or even days la te r and having only a vague idea regard ing w hat code m ight be faulty.

5.2.3 Separate Permissive and Prescriptive T ransducers

Antonsen e t al. (2009:12) describe a se t of lexical transducers used for com puter-based language teach
ing activities for Sami. Among the goals m otivating the ir softw are design w ere maximally to leran t recog
nition of studen t input, and prescrip tive generation of output. To m ake this possible, they generate two
separate versions of the ir transducer, one for recognition, the o ther for generation. Many of the same
issues th a t m otivated this tw o-pronged approach for Sami also apply to Inupiaq. The transducer described
in this thesis does a good job of being perm issive, bu t a prescriptive version could be crea ted by enforcing
palatalization and o ther phenom ena trea ted as optional and by m arking particu lar inflectional endings as
standard and rem oving others from the prescriptive tran sdu cer's lexicon.

5.3 Possible Applications of the T ransducer

5.3.1 Com puter-Assisted Language Learning

Plans are underw ay to develop dynamic language lessons in which the Inupiaq tran sdu ce r generates
m aterial for the language studen t to respond to and then parses the response. A prescrip tive version of the
transducer would be ideal for helping students p ractice applying m orphophonological ru les and producing
appropria te inflectional endings for different situations. The lack of com puterized tools for syntactic and
sem antic analysis and discourse m anagem ent m ake it m ore challenging to use the transducer for more
comm unicative tasks, bu t with some ingenuity and some sensible restric tions on the possible range of
input and output (such as the use of controlled vocabularies), it should be possible to use the transducer
in in teresting ways tha t prom ote m ore n atural comm unication.

One activity currently under developm ent will p resen t a dynamically genera ted family tree and prom pt

166

the u ser to describe various relationships. Inupiaq kinship term inology m akes finer distinctions in m ost
cases than English kinship term inology does, and this activity will provide valuable practice both with the
term inology and with the gram m atical constructs commonly used in conjunction with th a t terminology:
num bers, possessive endings, the postbase -qaq- 'have', indicative and interrogative verb endings, and the
modalis case (which is applied to num bers w hen expressing how many of som ething one has).

David Adamson, a g raduate studen t a t C arnegie Mellon University, is investigating the use of the tran s
ducer as the lexical com ponent of a Scrabble-style gam e intended for language learners.

5.3.2 Enhanced Dictionary Interface

Poser (2002) and Maxwell and Poser (2004) m ake a strong case for using m orphological analysis to
facilitate dictionary lookup for languages with complex morphology, including A thabascan and Semitic
languages. Thankfully, users of Inupiaq dictionaries are spared m any of the headaches th a t accom pany
compilation and use of dictionaries for those languages. However, for non-native speakers, the task of
identifying and looking up the com ponents of a long Inupiaq word can still be daunting and time-consuming.
The Inupiaq transducer can help with the word analysis, bu t it would be an even m ore powerful tool
if coupled with an electronic dictionary. The u se r would en te r a word, and definitions for each stem,
postbase, and enclitic in each of the proposed parses would appear, possibly along with an explanation of
the m eaning conveyed by the w ord 's inflectional ending. The u se r could quickly scan these and determ ine
which m ade the m ost sense in the w ord's context.

For fu ture lexicographic projects, this d ictionary -transducer relationship could be taken even further,
with the two being developed in tandem . The dictionary would provide the tran sdu cer's lexicon, and the
transducer, coupled with a corpus sim ilar to the one used for this project, could provide detailed, ongoing
feedback to the lexicographer on the coverage and accuracy of the cu rren t dictionary entries. It could
also be used to identify possible exam ples to include in entries. There is considerable overlap betw een the
process of compiling an adequately descriptive dictionary and the process of creating an accurate lexical
transducer, and developing both products toge ther would provide a num ber of benefits to each.

5.3.3 Spell-Checker

The low er language of a lexical tran sducer can be viewed as a giant list of words. This happens to
be ju s t w hat is needed for a basic spell checker (Beesley and K arttunen 2003:451). In order to propose
corrections, one also needs a way to m ap strings missing from this list onto the m ost sim ilar ones in the list
(Beesley and K arttunen 2003:451-453). The m ore or less accepted way to crea te this m apping is to build a
so-called "Levenshtein autom aton," which m atches input to any known words w ithin a p redeterm ined edit
d istance (also called Levenshtein distance or Levenshtein-D am erau distance); Schulz and Mihov (2002)
describe the process in detail (see also Pirinen and Linden 2010). In tegrating a Levenshtein autom aton
into one's favorite word processor is less well docum ented, bu t Per Langgard and Trond T rosterud have
successfully crea ted a West G reenlandic spell-checker for M icrosoft Word.

With a token recognition ra te p resently n ear 80%, it's w orth asking w hether the cu rren t Inupiaq tran s
ducer is ready to be m ade into a spell-checker (or conversely, if users will w ant every fifth word in the ir
docum ents underlined in squiggly red). A nother factor to consider is the lack of sem antic controls in the

167

transducer, which allow it to accept untold num bers of phonologically co rrec t bu t m eaningless strings of
m orphem es as valid. I m ust adm it tha t in general, I dislike spell-checkers, particularly w hen they flag
w ords which I know are correct. However, for beginning students of Inupiag, who are less likely to use
long, difficult words and m ore likely to m ake m istakes, the benefits of such a tool may well outweigh the
potential disadvantages.

5.3.3.1 O ther Possible Applications

Shinjae Yoo has done some work on Inupiag optical ch arac ter recognition (OCR) (Yoo 2008) and has
expressed in te re st in using the Inupiag transducer to improve OCR accuracy. The transducer could also
be used as the foundation for softw are designed to perform h igher levels of linguistic analysis, such as
lem m atization, part-of-speech tagging, syntactic analysis, and sem antic analysis. Such tools, combined
with a la rger body of Inupiag texts, could crea te in teresting possibilities for corpus-based studies of the
language.

As was m entioned in the introduction to this thesis, m orphological analysis is fundam ental to a num ber
of applications, and beneficial for many others (Beesley 2004c; Sarasola 2000). The availability of a lexical
transducer for Inupiag opens the door to a num ber of in teresting possibilities. I have tried to design
it in such a way and to w rite this thesis in sufficient detail th a t o thers could improve and enlarge the
tran sdu cer's coverage, even w ithout having an in-depth knowledge of com puter program m ing. For those
in terested in simply using the transducer, e ither by itself or as a com ponent in o ther software, it can be
trea ted as a black box and used as docum ented in Appendices B and C. If used with a p roper understanding
of its abilities and lim itations, it has the potential to simplify a num ber of tasks and to m ake m any more
possible.

168

Appendix A
Basics of xfst

I do not intend to provide a com plete reference for xfst here, bu t I do hope to provide enough inform ation
tha t a linguist with no experience in regu lar expressions can understand the ru les and o ther xfst code
described in this docum ent. For m ore inform ation on the xfst language, consult Beesley and K arttunen
(2003).

A .l The xfst Stack

An im portant concept in xfst is th a t of "The Stack" (as Beesley and K arttunen [2003] re fe r to it). The
xfst stack is a last-in, first-out data s truc tu re for storing finite-state autom ata and transducers. Finite-state
m achines can be "pushed" onto (that is, piled onto the top of) or "popped" off (that is, draw n from the top
of) the stack. The FSM at the top of the stack is the FSM against which strings may be evaluated.

A.2 Commands and Comments

xfst code consists of comm ands and hum an-readable com m ents. Com ments (which xfst ignores) begin
w ith an exclamation point ! and extend to the end of the line.

Commands consist of a keyword and a se t num ber of argum ents. The Inupiag transducer xfst code
uses the following commands:

source loads and evaluates a file of xfst code, which may define variables and/or m anipulate the xfst
stack. It takes one argum ent, the nam e of the file to be loaded.

read lexc loads a file of lexc code, compiles the FSM described by th a t code, and pushes th a t FSM
onto the stack. It takes one argum ent, the nam e of the file to be loaded.

read regex compiles an xfst regu lar expression and pushes the resulting FSM onto the xfst stack. It
takes one argum ent, an xfst expression (see A.3 on pages 169- 170).

save stack crea tes a binary file containing the cu rren t contents of the xfst stack. It takes one argum ent,
the nam e of the file to be crea ted or overw ritten.

define sets or rese ts variables. It has two forms. The first form reguires two argum ents: a variable
nam e and an expression (see A.3 on pages 169- 170). The variable will then store the FSM denoted by the
expression. The second form reguires ju s t one argum ent, a variable name. This form pops the top FSM
off the stack and stores it in the variable.

eliminate flag converts the FSM on top of the xfst stack to an eguivalent FSM not containing a p a r
ticular flag diacritic (see 2.3.5 on pages 55- 58). It takes one argum ent, the nam e of the diacritic to be
rem oved from the FSM.

push pushes an FSM contained in a variable onto the xfst stack. It takes one argum ent, a variable
name.

pop pops the topm ost FSM off the xfst stack.
substitute defined replaces a symbol in the FSM on top of the xfst stack with an FSM defined in a

variable. It takes th ree argum ents: the nam e of the variable containing the FSM tha t will replace the

169

symbol, the keyword "for," and the symbol to be replaced.

A.3 Regular Expressions in xfst

R egular expressions are m ade up of symbols, variables, operators, and o ther syntactic charac ters (such
as sguare b rackets and spaces).

[Square brackets] group tog e th er regu lar expression code m uch like paren theses group m athem ati
cal operations in algebraic notation.

Space is m andatory betw een two distinct symbols, betw een two variable nam es, and betw een a symbol
and a variable nam e. Thus, the expressions [string] and [s t r i n g] describe d istinct FSAs; the first m atches
a single, m ulticharacter symbol (or the contents of a variable nam ed "string," if such a variable exists),
while the second m atches a sequence of six sing le-character symbols. Space is optional elsew here; for
example, the expressions [s t r i n g] and [s t r i n g] are equivalent.

Many non-alphabetic charac ters have special m eaning in xfst. To use these charac ters as symbols (or
to use them within m ulti-character symbols) requires special syntax. A percent sign % before a charac ter
indicates th a t the charac te r should be in terp re ted literally ra th e r than as an xfst operato r or syntactic char
acter. Double quotes "" around a string indicate th a t the entire string should be trea ted as a single sym
bol, with any special charac ters inside the quotes trea ted literally. The expressions [%P.VALENCE.INTR%]
and ["@P.VALENCE.INTR"] are equivalent.

The question mark ? is a w ildcard rep resen ting any symbol.
The string .# . denotes the left or right edge of a word.
Zero 0 denotes an em pty string. This is useful only in expressions denoting relations (in cases w here

a p a tte rn on one side of the relation corresponds to an em pty string on the o ther side).
The dollar sign $ denotes the language of all strings containing substrings m atching the subexpression

to its right. The expression $[c a t] describes the language of all strings containing the substring (cat),
including (catfish), (catch), (concatenate), and (gbrm gcatxsptw), am ong infinitely m any others.

The tilde ~ is the language com plem ent operator. It denotes the language of all strings not which do
not belong to the language defined by the subexpression to its right. For example, the expression [c a t]
defines a language containing an infinite num ber of strings, including (horse), (dog), and (catfish), bu t not
(cat). The expression $[c a t] defines a language containing an infinite num ber of strings, none of which
contain the substring (cat).

The backslash \ is the term com plem ent operator. It denotes the se t of single symbols not m atched
by the subexpression to its right. The expression m atches any single symbol except (m).

The forward slash / is the ignoring operator. It indicates tha t the expression to its right be m atched
any num ber of tim es a t any point within the expression to its left. Ignoring is discussed in Section 3.3.1
on pages 98- 101.

The asterisk *, called the Kleene s ta r1 in the field of regu lar expressions, indicates th a t the preceding
subexpression should be m atched zero or m ore tim es. The p a tte rn ~ < n indicates th a t the preceding
subexpression should be m atched zero to n-1 tim es. The p a tte rn ~{m,n} indicates th a t the preceding

1Named after American mathematician Stephen C. Kleene, considered the inventor of regular expressions, who pronounced his
last name /'kleini:/.

170

subexpression should be m atched m to n tim es. Parentheses () around a subexpression indicate tha t the
subexpression may optionally be m atched (in o ther words, should be m atched eithe r zero tim es or once).

The pipe ch arac te r | is the union or disjunction operator, and can be thought of as corresponding to
the conjunction 'o r'; for example, the expression [x | y] m atches eithe r the ch arac ter (x) or the charac ter
<y>-

The hyphen or minus sign - is the subtraction operator. It calculates the se t d ifference (also called the
relative com plem ent) of two subexpressions denoting languages; in o ther words, it describes a language
containing all m em bers of the first language which are not also m em bers of the second language.

The string .o. is the com position operator. This operato r defines relations such th a t the upper-side lan
guage of the expression to the left of the operator is m apped onto the lower-side language of the expression
to the right of the operator. Composition is explained in g rea te r detail on page 4 3 .

The string -> is the left rep lacem ent operator. It takes two subexpressions as operands, one on each
side of the operator, and defines a relation such th a t each string in the upper language is m apped onto
an identical string in the lower language, except in the case of an upper-language string containing a sub
string m atched by the left subexpression; such a string is m apped onto the se t of strings which are identical
to the upper-language string except th a t the m atched substring is replaced w ith a substring defined by the
right subexpression. For example, the expression [e -> i] defines a relation w here every (e) in the upper
language corresponds to an (i) in the lower language. It's im portant to note tha t the constra in t im posed by
the left rep lacem ent opera to r is directional: in the exam ple above, (i) in the low er language corresponds
not only to (e) in the upper language, bu t also to (i) in the upper language. The righ t rep lacem ent operator
<- constrains relations in the opposite direction. Parentheses around a rep lacem ent opera to r m ake re
placem ent optional. Replacem ent operations can be conditioned on a particu lar surrounding environm ent
using the context sep ara to r || followed by a subexpression denoting the preceding environm ent, an un
derscore _, and a subexpression denoting the following environm ent. E ither environm ent subexpression
may be omitted. The expression [n -> n || i _] is an exam ple of conditional replacem ent; it specifies a re
lation w here strings in the upper language which contain (in) correspond to identical strings in the lower
language except with (in) in place of (in). All o ther strings in the upper language, including strings which
contain (n) word-initially or following any symbol o ther than (i), correspond to identical strings in the lower
language. It is possible to specify tha t m ultiple rep lacem ent operations should happen in the sam e context.
This is done by listing all rep lacem ent operations before the context separator; for example, [n -> n, I -> .1,
1 -> I' || i _] specifies th ree m appings th a t should take place following the symbol (i). Finally, it is possible
to specify a relation with m ultiple rep lacem ent operations, each sensitive to a different conditioning envi
ronm ent; this is done by pu tting a double comma „ betw een each replacem ent operation expression. For
example, the expression [k - > g | | _ l , , k - > ̂ | | _ n] specifies th a t (k) in the upper language correspond to
(g) in the low er language w hen followed by (1), and to (g) in the low er language w hen followed by (n).

171

Appendix B
Grammar Tags Used in the Inupiaq Transducer

Inflectional endings in the transducer are rep resen ted with strings of "gram m ar tags"—special m ultichar
ac te r symbols beginning with a plus sign and indicating some gram m atical property of the inflectional
ending, such as syntactic category, mood, or case. This appendix is divided into two parts: a glossary of
tags and a g ram m ar specifying w hat com binations of tags are possible.

B .l Glossary of G ram m ar Tags

Note tha t "reflexive" here m eans "coreferent with the subject of the m atrix verb." Endings labeled
"reflexive" below are never used to com m unicate th a t the sam e person or entity is both subject and d irect
object of the sam e transitive verb. To express this idea in Inupiaq, the transitive verb is inflected with an
intransitive ending.

+ lD u 1st person dual subject, possessor, or refe ren t
+ 1DuO 1st person dual d irect object
+ 1P1 1st person plural subject, possessor, or referen t
+ 1P10 1st person plural d irect object
+ lS g 1st person singular
+ lSgO 1st person singular d irect object
+2Du 2nd person dual subject, possessor, or refe ren t
+2DuO 2nd person dual d irect object
+2P1 2nd person plural subject, possessor, or refe ren t
+2P10 2nd person plural d irect object
+2Sg 2nd person singular subject, possessor, or referen t
+2SgO 2nd person singular d irect object
+ 3Du 3rd person dual subject, possessor, or referen t
+ 3DuO 3rd person dual d irect object
+ 3P1 3rd person plural subject, possessor, or referen t
+ 3P10 3rd person plural d irect object
+ 3RDu 3rd person reflexive dual subject, possessor, or refe ren t
+3RDuO 3rd person reflexive dual d irect object
+ 3RP1 3rd person reflexive p lural subject, possessor, or refe ren t
+ 3RP10 3rd person reflexive p lural d irect object
+ 3RSg 3rd person reflexive singular subject, possessor, or referen t
+3RSgO 3rd person reflexive singular d irect object
+ 3Sg 3rd person singular subject, possessor, or refe ren t
+ 3SgO 3rd person singular d irect object
+Abl ablative case
+Abs absolutive case

172

+Adv adverb (gram m atical category)
+Cond conditional mood (alternatively, conseguential-conditional mood, unrealized

aspect)
+Conj conjunction (gram m atical category)
+Conseg conseguential mood (alternatively, conseguential-conditional mood, realized

aspect)
+C ontl contem porative 1 mood
+Cont2 contem porative 2 mood
+ContNeg contem porative negative mood
+Dem dem onstrative (gram m atical category)
+Du dual num ber
+G erund gerundive form
+Imp im perative mood
+Im pNeg im perative negative mood
+Ind indicative mood
+Int interrogative mood
+Interj interjection (gram m atical category)
+Kiis "kiisaimmaa" mood
+Loc locative case
+Mod modalis case
+N noun (gram m atical category)
+Opt optative mood
+Part participial form
+P1 plural num ber
+Pro pronoun (gram m atical category)
+Prs "p resen t tense"
+Pst "past tense"
+Real realized aspect
+Rel relative case
+Sg singular num ber
+ Sim sim ilaris case
+ Sim ull sim ultaneitive 1 mood
+ Simul2 sim ultaneitive 2 mood
+ Simul3 sim ultaneitive 3 mood
+Trm term inalis case
+U nreal unrealized aspect
+V verb (gram m atical category)
+Via vialis case
+Voc vocative "case"

173

B.2 Allowable G ram m ar Tag String Combinations

B.2.1 Verbs

B.2.1.1 Indicative Mood

The tags in the last colum n are d irect objects and should be om itted for intransitive verbs. Note
tha t seguences of the form +1*+1*0 or +2*+2*0 (transitive verbs w ith a 1st or 2nd person subject [any
num ber] and an object of the sam e gram m atical person [any num ber]) are illegal.

+V +Ind +Prs
+Pst

+ lS g (+ lS gO \
+ lD u + 1DuO
+ 1P1 + 1P10
+2Sg +2SgO
+2Du +2DuO
+2P1 +2P10
+ 3Sg + 3SgO
+ 3Du + 3DuO
+ 3P1 \ +3P10 /

B.2.1.2 Interrogative Mood

The sam e subject/object restrictions apply to interrogative verbs as to indicatives.

+ lS g (+ lS gO \
+ lD u + 1DuO
+ 1P1 + 1P10
+2Sg + 2SgO
+2Du + 2DuO
+2P1 + 2P10
+ 3Sg + 3SgO
+ 3Du + 3DuO
+ 3P1 \ +3P10 /

B.2.1.3 Contem porative Moods

Note tha t subjects are not reflected in the conjugation of contem porative transitive verbs.

174

+V +C ontl
+Cont2

+Real
+U nreal

+ lS g
+ lD u
+ 1P1
+2Sg
+2Du
+2P1
+ 3Sg
+ 3Du
+ 3P1
+ lSgO
+ 1DuO
+ 1P10
+2SgO
+2DuO
+2P10
+ 3SgO
+ 3DuO
+ 3P10

B.2.1.4 Optative Mood

In the transducer I distinguish betw een the optative mood, used for 1st and 3rd person subjects, and
the im perative mood, used for 2nd person subjects. Same subject/object restrictions apply to optative
transitives as apply to indicative transitives.

+V +Opt

+ lS g
+ lD u
+ 1P1
+ 3Sg
+ 3Du
+ 3P1

(+ lS gO \
+ 1DuO
+ 1P10
+2SgO
+2DuO
+2P10
+ 3SgO
+ 3DuO

\ +3P10)

175

B.2.1.5 Im perative Mood

+V +Imp
+2Sg
+2Du
+2P1

/ + lS gO N
+ 1DuO
+ 1P10
+ 3SgO
+ 3DuO

y +3P10 j

B.2.1.6 Negative Contem porative Mood

The intransitive negative contem porative serves as the negative of the intransitive optative-im perative.
The transitive negative contem porative serves as the negative for transitive im peratives only. The negative
of transitive optatives is form ed by using the postbase ± qit-.

+V +ContNeg

+V +ContNeg

+ lS g
+ lD u
+ 1P1
+2Sg
+2Du
+2P1
+ 3Sg
+ 3Du
+ 3P1

(+ lS gO ^
+ 1DuO
+ 1P10

+2Sg +2SgO
+2Du +2DuO
+2P1 +2P10

+ 3SgO
+ 3DuO

\ +3P10)

B.2.1.7 C onseguential and Conditional Moods

The sam e subject/object restric tions apply to conseguential and conditional transitives as apply to
indicative transitives, bu t note the p resence of 3rd person reflexive forms.

176

+V +Conseq
+Cond

+ lS g / + lS gO \
+ lD u + 1DuO
+ 1P1 + 1P10
+ 2Sg +2SgO
+ 2Du +2DuO
+ 2P1 +2P10
+ 3Sg + 3SgO
+ 3Du + 3DuO
+ 3P1 + 3P10
+ 3RSg +3RSgO
+ 3RDu +3RDuO
+ 3RP1 v +3RP10 j

B.2.2 Nouns

The tags in the last column are possessors and are optional.

\

+N

(+ lS g
+ lD u

+Abs + 1P1
+Rel +2Sg
+Mod +2Du+ Sg+Loc +2P1+ Du+Trm + 3Sg+ P1+Abl + 3Du
+Via + 3P1
+ Sim + 3RSg

+ 3RDu
v +3RP1 /

A special se t of tags are used for the "vocative" ending -Vg 'my d e a r .
this trea tm en t is debatable.

+N +Voc +Sg + lS g

B.2.3 Pronouns

B.2.3.1 Personal Pronouns

W hether it really deserves

Personal pronouns are the only words in the tran sdu ce r whose upper-language rep resen ta tion consists
entirely of g ram m ar tags.

177

+ lS g
+ lD u
+ 1P1 +Abs
+ 2Sg +Rel
+ 2Du +Mod
+ 2P1 +Loc + Sg

+ 3Sg +Trm +Du

+ 3Du +Abl +P1

+ 3P1 +Via
+ 3RSg + Sim
+ 3RDu
+ 3RP1

B.2.3.2 Kina, Kisu

Pronouns kin a 'who' and k isu 'which one' have no gram m atical person tag.

+Abs
+ Rel
+ Mod+ Sg + Loc+ Du +Trm+ P1 +Abl
+Via
+ Sim

B.2.3.3 Su-

su - 'w hat' may be inflected verbally or (pro)nominally. W hen used as a verb, its inflection is rep resen ted
w ith verbal tags, as outlined above. W hen used as a pronoun, its inflection is rep resen ted using the tags
shown below.

178

su +Pro

(+ lS g
+ lD u

+Abs + 1P1
+ Rel +2Sg
+ Mod +2Du+ Sg+ Loc +2P1+Du+Trm + 3Sg+P1+Abl + 3Du
+Via + 3P1
+ Sim + 3RSg

+ 3RDu
v +3RP1

B.2.3.4 Kisi-; Iluqaq-, Tamaq-

kisi- 'X alone' and iluqaq- and tam aq- 'all of X' do not fit the ergative p a tte rn of m ost Inupiaq nominals.
Instead, 1st and 2nd person forms may be used as subjects of transitive and intransitive verbs as well as
d irect objects of transitive verbs; 3rd person non-reflexive forms may serve as d irect objects of transitive
verbs; and 3rd person reflexive forms serve as subjects of intransitive and transitive verbs (MacLean
n .d .b :ch. 21). Because of this unusual patte rn , these pronouns are not m arked for case when they act as
core argum ents of a verb. The only oblique cases for which these pronouns may be inflected are ablative
and term inalis (M acLean n .d .b :ch. 21).

kisi
iluqaq
tam aq

+Pro

+ lS g
+ lD u
+ 1P1
+2Sg
+2Du
+2P1
+ 3Sg
+ 3Du
+ 3P1
+ 3RSg
+ 3RDu
+ 3RP1

+Abl
+Trm

179

B.2.4.1 Dem onstrative Adverbs

/ +Loc N
+Via
+Abl

y +Trm j

B.2.4 D em onstratives

+Dem +Adv

B.2.4.2 Dem onstrative Pronouns

+Abs
+ Rel
+ Mod
+ Loc
+Trm
+Abl
+Via
+ Sim

B.2.5 Adverbs, Conjunctions, Interjections

+Dem +Pro
+Sg
+Du
+P1

Adverbs, conjunctions, and interjections are not paradigm atic; they are m arked with a single g ram
m atical category tag which, unlike the o ther gram m ar tags used in the transducer, does not correspond
to any inflectional ending.

+Adv
+Conj
+Interj

180

Appendix C
Files, Dependencies, Build Process, and Use of the Transducer

This appendix docum ents the files associated with the transducer, the dependencies which m ust be satis
fied in o rder to build the transducer, the steps tha t m ust be taken to build the transducer, and two ways
to use the transducer once it is built.

C .l Files

The root directory of the tran sdu ce r contains four subdirectories: scripts, data, in term ediate , and xfst.
The contents of these d irectories are as follows:

scripts/
run.tcl Tel scrip t to convert data files to lexc and xfst form ats (calls

generate_inflection.tcl, lexicon_to_xml.tcl, and xml_to_lexc.tcl)
generateinflection.tcl Tel scrip t to convert data/inflections.txt to XML form at (see Section

3.6 on pages 108- 110)
Tel scrip t to convert rem aining lexical data to XML form at (see
Section 3.6 on pages 108- 110)
Tel scrip t to convert XML-formatted lexicon to lexc and xfst form ats
(see Section 3.7 on pages 110- 114)

stem data for lexicon (see Section 3.2.1 on pages 70- 77)
postbase data for lexicon (see Section 3.2.2 on pages 77- 83)
inflectional data for lexicon (see Section 3.2.3 on pages 83- 95)
enclitic data for lexicon (see Section 3.2.4 on pages 95- 96)
form ative class declarations, including definitions of epsilon
continuations (see Section 3.4 on pages 104- 105)

multichar_symbols.txt declarations of m u lticharacter symbols (see Section 3.5 on
pages 105- 106)

patterns.txt definitions of allom orph conditioning environm ents (see Section 3.3
on pages 96- 104)

intermediate/
in flections.xm l inflectional endings in XML form at; generated by

generateinflection.tcl
lexicon.xm l lexicon in XML form at; genera ted by lexicontoxm l.tcl

le xicontoxm l.tc l

xm lto le xc .tc l

data/

stems.txt

postbases.txt

inflections.txt

enclitics.txt

classes.txt

xfst/

181

ipk .fst
ip k g u e s se r .fs t

ipk_lexc.txt
ipk_condition_xfst.txt

ipk_xfst.txt m orphographem ic ru les and instructions to build the tran sdu ce r (see
Section 3.8 114- 145)
lexicon in lexc form at; genera ted by xml_to_lexc.txt
allom orph conditioning environm ent filters; genera ted by
xml_to_lexc.txt
non-guessing transducer; genera ted by ipk_xfst.txt
guessing transducer; genera ted by ipk_xfst.txt

C.2 Dependencies

The following softw are is regu ired to build the transducer:
• Tel 8.5 or g rea te r (http://w w w .tcl.tk/); note: the Tk library is not reguired
• tDOM 0.8.2 or g rea te r (http://wiki.tcl.tk/tDOM)
• struc t::se t 2.2.3 or g rea te r (http://tcllib .sourceforge.net/doc/struct_set.h tm l)
• XFST 2.14.1 or g rea te r (http://www.fsm book.com)

Tel may be obtained in a num ber of ways. For purposes of building the Inupiag transducer, I recom m end
one of the following:

• Many Linux distributions include Tel in the ir softw are repositories; consult your d istribution 's doc
um entation for m ore details.

• ActiveState Corporation provides a convenient Tel d istribution called ActiveTcl; see http://www.
activestate.com /activetcl (look for the "Free Community Edition").

• Evolane d istributes a "batteries-included" Tel distribution called eTcl, which can be downloaded at
http://w w w .evolane.com /softw are/etcl/.

In addition to installing Tel, you should m ake sure tha t the directory containing the Tel binaries (usually
called bin, e.g., etcl/bin, ActiveTcl-8.5/bin) is listed in your PATH environm ent variable.

C.2.2 tDOM, struc t::se t

tDOM is a Tel extension used for creating, parsing, and modifying XML docum ents using the Document
Object Model. Its prim ary authors are Jochen Lower and Rolf Ade; Zoran Vasiljevic has also m ade notable
contributions.

struc t::se t is a Tel extension for perform ing set-theoretic operations. It is p a rt of the tcllib collection
of Tel extensions. s truc t::se t was w ritten by A ndreas Kupries.

How one obtains these packages depends upon the Tel distribution being used. eTcl comes with tDOM
and tcllib, so eTcl users don 't need to do anything. Linux users may be able to download tDOM and tcllib
using the ir d istribution 's softw are repository. ActiveTcl users can get these from the "Teapot" repository
by typing the following a t the com m and line (may reguire adm inistrator privileges):

teacup install tdom 0.8.3
teacup install struct::set 2.2.3

C.2.1 Tel

http://www.tcl.tk/
http://wiki.tcl.tk/tDOM
http://tcllib.sourceforge.net/doc/struct_set.html
http://www.fsmbook.com
http://www.activestate.com/activetcl
http://www.activestate.com/activetcl
http://www.evolane.com/software/etcl/

182

At the tim e of writing, XFST is available for non-com m ercial use a t http://www.fsmbook.com, subject
to term s which m ust be ag reed to as p a rt of the download process. The transducer was compiled using
xfst version 2.12.12 and lexc version 3.7.9 (both w ith libcfsm-2.17.9).

As w ith Tel, ensure tha t the directory containing the xfst executables is listed in your PATH environm ent
variable.

C.3 Build Process

The build process is carried out in two parts: running run.tcl and running ipk_xfst.txt. Both p arts are
accom plished on the com m and line.

S t e p 1 Ensure tha t the transducer files are saved in a location w here you have w rite access, such as your
hard drive or a USB flash drive.

S t e p 2 Gain access to your comm and line. On Windows, this is done by going to the S tart M enu and
selecting All Program s, then Accessories, then Command Prom pt. On OS X, open the Applications folder,
open Utilities, and open Terminal. I assum e tha t Linux and Unix users know how to access the comm and
line. All rem aining steps will take place on the com m and line.

S t e p 3 Use the cd com m and to change directories to the scripts/ directory. For example, if you are using
Windows and the tran sdu ce r files are located in C:\inupiaqtransducer\, you would type

C:

cd C:\inupiaqtransducer\scripts

If you are using OS X, and the tran sdu ce r files are in /Users/Alice/inupiaqtransducer/, you would type
cd /Users/Alice/inupiaqtransducer/scripts

S t e p 4 Invoke the scrip t ru n .tc l by typing < nam e ofTcl executable> ru n .tc l . The nam e of the Tel executable
will probably be som ething like t c l s h , t c l s h 8 5 , t c l s h 8 .5 , or e tc l . If in doubt, look in the b in directory of your
Tel distribution. The scrip t r u n .tc l should com plete in under a minute.

S t e p 5 Change the working directory to the xfst directory. On Windows, this is done by typing
cd ..\xfst

On OS X, Linux, and Unix, it is done by typing
cd ../xfst

S t e p 6 Invoke the xfst scrip t ipk_xfst.txt by one of the m ethods outlined below. Ju st do one or the other,
not both. R egardless of the option chosen, this step will take a long time, perhaps as long as ten minutes.

C.2.3 XFST

http://www.fsmbook.com

183

O p t i o n 6A If you ju s t w ant to build the transducer binaries and don 't w ant to in te rac t w ith the transducer
afterw ard, type

xfst -f ipk_xfst.txt

O p t i o n 6B Alternatively, if you w ant to in te rac t w ith the transducer following compilation, type xfst at
the comm and prom pt; then, a t the XFST prom pt, type

source ipk_xfst.txt

See the following section for instructions on in teracting with the transducer.

C.4 Using the Compiled T ransducer

There are a t least two ways to use the transducer: from within XFST, or with the lookup utility which comes
with XFST.

C.4.1 Within XFST

If you ju s t compiled the transducer and used Option 6B for Step 6, the non-guessing transducer will already
be on top of the XFST stack; jum p to Step 5 below. Otherwise, begin with Step 1.

S t e p 1 Gain acess to your com m and line as outlined in Step 2 of the build instructions.

S t e p 2 Use the cd com m and to change directories to the scripts/ directory. For example, if you are using
Windows and the tran sdu ce r files are located in C:\inupiaqtransducer\, you would type

C:

cd C:\inupiaqtransducer\scripts

If you are using OS X, and the tran sdu ce r files are in /Users/Alice/inupiaqtransducer/, you would type
cd /Users/Alice/inupiaqtransducer/scripts

S t e p 3 Run xfst. Type xfst a t the comm and prompt.

S t e p 4 Load the non-guessing transducer by typing
load ipk.fst

Alternatively, if you wish to in te rac t with the guessing tran sdu ce r instead, skip this step and go to Step 5.

S t e p 5 If you w ant to in te rac t w ith the guessing tran sdu ce r ra th e r than the non-guessing transducer,
type

load ipk_guesser.txt

At this point, you can in te rac t with the transducer in a num ber of ways. Since the re is no inheren t order
tha t need be followed for these steps, I will nam e them ra th e r than num ber them.

184

A n a ly z in g a s i n g l e w o r d Type a p p ly u p <word> or simply u p <word>. For example, to analyze the word
na ku u ru g a , type

up nakuuruqa

S y n t h e s i z i n g a s i n g l e w o r d Type apply down < m orphem e string> or simply down < m orphem e string>. For
example, to synthesize a word from the string uqauti>rraqsi>+V+lnd+Prs+3Sg+3PIO, type

down uqauti>rraqsi>+V+lnd+Prs+3Sg+3PIO

A n a ly z in g o r s y n t h e s i z i n g s e v e r a l w o r d s Type apply up or up to en te r analysis mode, or apply down or
down to en te r synthesis mode. The prom pt will change to a g reater-than sign. You may now en te r Inupiaq
w ords (in analysis mode) or m orphem e strings (in synthesis mode) directly a t the prom pt. W hen you are
done and wish to exit the special mode, type

END;

E x i t i n g XFST To quit the program , type
exit

C.4.2 Using the lookup Utility

The lookup utility is a powerful tool for analyzing several words in a single batch. Much m ore could be
said about this tool than I will say here; for m ore inform ation, consult Beesley and K arttunen (2003) and
http://www.fsm book.com .

S t e p 1 To use this tool, you will need to p rep are a file containing the words to be analyzed, with one word
p er line. The m ost convenient place to save this file is probably in the xfst/ directory, bu t you can save it
w herever you like.

S t e p 2 Gain acess to your com m and line as outlined in Step 2 of the build instructions.

S t e p 3 Change the working directory to the xfst directory w ithin the transducer files. For example, if you
are using Windows and the tran sdu ce r files are stored in C:\inupiaqtransducer\, you would type

c:

cd c:\inupiaqtransducer\xfst

If you are using OS X and the transducer files are stored in /Users/Alice/inupiaqtransducer/, you would type
cd /Users/Alice/inupiaqtransducer/xfst

S t e p 4 The way you invoke lookup depends on w hat you w ant to do with it, bu t also with the operating
system you are using. An exam ple of a basic call to lookup m ight look som ething like this:

<words.txt lookup ipk.fst -dags L:LTT -utf8

http://www.fsmbook.com

185

Here, the input file (containing one word p er line) is words.txt, which is located in the xfst/ directory. The
transducer to be applied is ipk.fst, the non-guessing transducer. Results are displayed directly on screen.
On Windows, this could also be accom plished like this:

type words.txt | lookup ipk.fst -dags L:LTT -utf8

The Unix/Linux/OS X version of this is
cat words.txt | lookup ipk.fst -dags L:LTT -utf8

The cat/type m ethod has the advantage tha t you are not likely to type a g reater-than sign ra th e r than a
less-than sign (an accidental g reater-than sign would delete your input file).
To save the resu lt to a file (say, lookupoutput.txt), you would type:

<words.txt lookup ipk.fst -dags L:LTT -utf8 >lookupoutput.txt

(As with the previous example, you can replace the less-than sign with a call to type or cat [depending on
your operating system] plus a pipe following the input file name.)
It is also possible to do complex lookups involving m ore than one transducer. Instructions on how to
perform the lookups can be specified in a "lookup strategy script." To attem p t an analysis of a word by
first looking in the lexical transducer, then in the guessing transducer, one could use a scrip t like the
following:

nonguessing ipk.fst

guessing ipkguesser.fst

nonguessing

guessing

Assuming the data above w ere stored in the file lookupscript.txt in the xfst/ directory, you could use this
scrip t by typing

<words.txt lookup -f lookupscript.txt -dags L:LTT -utf8

To save the resu lts to a file (say, lookupoutput.txt), you would type
<words.txt lookup -f lookupscript.txt -dags L:LTT -utf8

186

Bibliography

All URLs w ere valid as of April 6, 2011.

Aduriz, Itziar, Inaki Alegria, Jose M ari Arriola, Xabier Artola, A rantza Diaz de Ilarraza, N erea Ezeiza,
Koldo Gojenola, and M ontserrat Maritxalar. 1995. Different issues in the design of a lem m atizer/tagger
for Basgue. In Mike A rm strong and Evelyne Tzoukerm ann, editors, P ro ceed in g s o f th e EAC L-SIG D AT
W orksh op 'F rom te x t to tags: is su e s in m u ltilin g u a l te x t an a lys is ', M arch 27 , D ublin , Ire land .
http://arxiv.org/abs/cm p-lg/9503020

Aho, Alfred V and Jeffrey D. Ullman. 1995. F o u nd a tion s o f C o m p u te r S c ien ce : C E d ition . Com puter Science
Press, New York, New York.

Ahvakana, Floyd. 1973. T ik ig a g m ig g u u q = In P oin t H o p e , A la ska Alaska Native Language Center,
Fairbanks, Alaska.

Ahvakana, Floyd. 1975. A va qq a na m Q u liaq tuaq tag ik: I. Q u p qu g ia q II. Ih u q u llig a u ra t = I. T he T en -L egged
P olar B ea r II. D w arves. Alaska Native Language Center, Fairbanks, Alaska.

Alegria, Inaki, Xabier Artola, Kepa Sarasola, and Miriam Urkia. 1996. Autom atic m orphological analy
sis of Basgue. L ite ra ry a n d L in g u is tic C o m p u tin g , ll(4):1 9 3 -2 03 . A pre-publication version is avail
able online: http://citeseerx .ist.psu .edu/view doc/dow nload?doi=10.1 .1 .50.2375& rep=repl& type=pdf.
The p resen t work refers to the pubished version.

Anderson, S tephen R. 1988. M orphology as a parsing problem . In Karen Wallace, editor, M o rp h o lo g y as a
C o m pu ta tio na l P rob lem , UCLA Occasional Papers 7: Working Papers in Morphology. UCLA D epartm ent
of Linguistics, Los Angeles, California.

Antonsen, Lene, Saara Huhm arniem i, and Trond T rosterud. 2009. In teractive pedagogical program s based
on constra in t grammar. In Kristiina Jokinen and Eckhard Bick, editors, P ro ceed in g s o f th e 17 th N o rd ic
C o n feren ce o f C o m pu ta tio na l L in g u is tic s NO D ALID A 20 0 9 , pages 10-17. Tartu University Library, Tartu,
Estonia.
http://hdl.handle.net/10062/9546

Atkins, B. T. S. 1996. Bilingual dictionaries: Past, p resen t and future. In M artin Gellerstam , Je rk er Jarborg,
Sven-Goran M alm gren, Kerstin Noren, Lena Rogstrom, and C atarina Rojder Papmehl, editors, P ro ceed
in gs o f th e E U R A L E X 1 9 9 6 In te rn a tio n a l C on gress (E U R A LE X '96), A u g u s t 1 3 -1 8 , G o teborg , S w ed e n ,
pages 515-546. University of G othenburg D epartm ent of Swedish, Goteborg, Sweden.

Beesley, Kenneth R. 1998. Constraining separa ted m orphotactic dependencies in finite-state gram m ars. In
Lauri K arttunen and Kemal Oflazer, editors, P ro ceed in g s o f th e In te rn a tio n a l W o rksho p on F in ite S ta te
M e th o d s in N a tu ra l L a n g u a g e P ro cess ing , J u n e 3 0 -Ju ly 1, A n ka ra , T u rkey , pages 118-127.
http://www.aclweb.org/anthology-new/W /W 98/W 98- 1312.pdf

Beesley, Kenneth R. 2003. F inite-state m orphological analysis and generation for Aymara. In P ro ceed in g s
o f th e W o rksh op on F in ite S ta te M e th o d s in N a tu ra l L a n g u a g e P ro cess ing , 1 0 th C o n feren ce o f th e E u ro
pea n C h a p te r o f th e A sso c ia tio n fo r C o m p u ta tio na l L in g u is tic s (EACL 10), A pril 1 3 -1 4 2 0 0 3 , B u d a p es t,
H u ng ary , pages 19-26.
http://w w w .cl.cam .ac.uk/~ar283/eacl03/w orkshops03/W 03-w 9_eacl03beesley.local.pdf

Beesley, Kenneth R. 2004a. D ow ntranslation of XML dictionaries to lexc LEXICONS: Third draft. Published
online: http://w w w .stanford.edu/~laurik/fsm book/clarifications/xm ldow ntrans.htm l.

http://arxiv.org/abs/cmp-lg/9503020
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.2375&rep=rep1&type=pdf
http://hdl.handle.net/10062/9546
http://www.aclweb.org/anthology-new/W/W98/W98-1312.pdf
http://www.cl.cam.ac.uk/~ar283/eacl03/workshops03/W03-w9_eacl03beesley.local.pdf
http://www.stanford.edu/~laurik/fsmbook/clarifications/xmldowntrans.html

187

Beesley, Kenneth R. 2004b. The lookup utility and lookup-strategy scripts. Published online: http://www.
stanford.edu/~laurik/fsm book/clarifications/lookup.htm l.

Beesley, Kenneth R. 2004c. M orphological analysis and generation: A first step in natura l language pro
cessing. In Julie Carson-Berndsen, editor, F irs t S te p s in L a n g u a g e D o cu m en ta tio n fo r M in o r ity L a n
gu a g es: C o m pu ta tio na l L in g u is tic Tools fo r M orphology, L ex icon and C orpus C om pila tion , P ro ceed in g s
o f th e SALTM IL W orksho p a t LR E C 2 0 0 4 , M a y 2 4 , L isb on , P ortugal, pages 1-8.
h ttp ://gandalf.aksis.uib.no/non/lrec2004/w s/w s2.pdf#page=7

Beesley, Kenneth R. and Lauri Karttunen. 2003. F in ite S ta te M orp ho lo gy. CSLI, Stanford, California.
Bescherelle. 1995. C o m p le te G uide to C on jug a ting 120 00 F rench Verbs. Hatier, Paris, France.
Bills, Aric, Lori S. Levin, Lawrence D. Kaplan, and Edna Ahgeak M acLean. 2010. F inite-state m orphology

for Inupiag. In Kepa Sarasola, Francis M. Tyers, and Mikel L. Forcada, editors, 7th SaLTM iL W orkshop
on C rea tion a n d U se o f B asic L ex ica l R e so u rc e s fo r L ess -R e so u rc ed L a n g u a g es , LR E C 2 0 1 0 , Valletta ,
M alta , 23 M a y 2 0 1 0 , pages 19-26.
http://siuc01.si.ehu.es/~jipsagak/SA LTM IL2010_Proceedings.pdf

Black, Alan W., Joke van de Plassche, and Briony Williams. 1991. Analysis of unknown words through
m orphological decomposition. In P ro ceed in g s o f th e F ifth C o n feren ce o f th e E u rop ea n C h a p te r o f th e
A sso c ia tio n fo r C o m p u ta tion a l L in g u is tic s (EACL 1991), A p ril 9 -1 1 , B erlin , G erm any, pages 101-106.
M organ Kaufmann, San Francisco, California.
http://www.aclweb.Org/anthology-new/E/E91/E91-1018.pdf

Blanchett, M arie N. and M artha Teeluk. 1973. S a v a k tu g u t su li P iu ra a q tu g u t = We W ork a nd W e Play.
Alaska Native Language Center, Fairbanks, Alaska.

Bosch, Sonja E. and L aurette Pretorius. 2003. Building a com putational m orphological analyzer/generator
for Zulu using Xerox Finite-State Tools. In P ro ceed in g s o f th e W o rksh op on F in ite S ta te M e th o d s in
N a tu ra l L a n g u a g e P ro cess in g , 10 th C o n feren ce o f th e E u rop ea n C h a p te r o f th e A sso c ia tio n fo r C o m p u
ta tion a l L in g u is tic s (EACL 10), A pril 1 3 -1 4 2 0 0 3 , B u d a p es t, H un ga ry , pages 27-34.
http://w w w .cl.cam .ac.uk/~ar283/eacl03/w orkshops03/W 03-w 9_eacl03bosch.local.pdf

Carlberger, Johan, Hercules Dalianis, M artin Hassel, and Ola Knutsson. 2001. Improving precision in
inform ation retrieval for Swedish using stemm ing. Technical Report IPLab-194, TRITA-NA-P0116, KTH
D epartm ent of Num erical Analysis and Com puting Science, Stockholm, Sweden.
ftp://ftp.nada.kth.se/IPLab/TechReports/IPLab-194.pdf

Chomsky, Noam. 1956. Three models for the description of language. IR E T ra nsa c tio n s on In fo rm a tio n
T heory , 2(3):113-124.
http ://w w w .chom sky.info/articles/195609-.pdf

Church, Kenneth W. 2005. The DDI approach to morphology. In Antti Arppe, Lauri Carlson, K rister Linden,
Jussi Piitulainen, M ickael Suominen, M artti Vainio, H anna W esterlund, and Anssi Yli-Jyra, editors, In
q u ir ies in to W ords, C o n stra in ts and C o n tex ts . F e s tsc h r ift fo r K im m o K o sken n iem i on h is 60 th B irthday.,
pages 25-34. CSLI, Stanford, California.

Compton, Richard and B. Elan Dresher. 2008. Palatalization and 's trong ' /i/ across Inuit dialects. In Susie
Jones, editor, A c te s du C ong res d e TACL 2 0 0 8 = 2 0 0 8 CLA C o n feren ce P ro ceed in g s , M a y 3 1 -Ju n e 2,
V ancouver, B.C.
http://hom es.chass.utoronto.ca/~cla-acl/actes2008/CLA 2008_Com pton_D resher.pdf

Cornillac, Guy. 2000. Le m ot en m orceaux : le cas de la langue inuit. In Nicole Tersis and Michele
Therrien, editors, L es la n g u es e s k a le o u te s : S ib e rie , A la ska , C anada, G roenland, pages 171-181. CNRS,
Paris, France.

http://www.stanford.edu/~laurik/fsmbook/clarifications/lookup.html
http://www.stanford.edu/~laurik/fsmbook/clarifications/lookup.html
http://gandalf.aksis.uib.no/non/lrec2004/ws/ws2.pdf%23page=7
http://siuc01.si.ehu.es/~jipsagak/SALTMIL2010_Proceedings.pdf
http://www.aclweb.org/anthology-new/E/E91/E91-1018.pdf
http://www.cl.cam.ac.uk/~ar283/eacl03/workshops03/W03-w9_eacl03bosch.local.pdf
ftp://ftp.nada.kth.se/IPLab/TechReports/IPLab-194.pdf
http://www.chomsky.info/articles/195609--.pdf
http://homes.chass.utoronto.ca/~cla-acl/actes2008/CLA2008_Compton_Dresher.pdf

188

de Reuse, Willem J. 1988. The m orphology/sem antics interface: An autolexical trea tm en t of Eskimo verbal
affix order. In Lynn MacLeod, Gary Larson, and Diane Brentari, editors, P apers fro m th e 2 4 th A n nu a l
R eg ion a l M e e tin g o f th e C hicago L in g u is tic S o c ie ty (CLS 24). P art One: T he G enera l S e ss io n , pages
112-125.

de Reuse, Willem J. 1992. The role of internal syntax in the historical m orphology of Eskimo. In M ark
Aronoff, editor, M o rp h o lo g y N o w , pages 163-178. SUNY Press, Albany, New York.

Denny, J. Peter. 1982. Sem antics of the Inuktitut (Eskimo) spatial deictics. In te rn a tio n a l Jo u rn a l o f A m erica n
L in g u is tic s , 48(4):359-384.

Dorais, Louis-Jacgues. 1990. In u it U q a usiq a tig iit = In u it L a n g u a g e s a nd D ia lects. Arctic College—N unatta
Campus, Igaluit, Nunavut.

Ekmekgioglu, F. Quna and Pe ter Willett. 2000. Effectiveness of stem m ing for Turkish text retrieval. P ro
gram , 34(2):195-200.
http://citeseerx .ist.psu .edu/view doc/dow nload?doi=10.1 .1 .96.2951& rep=repl& type=pdf

Fortescue, Michael. 1980. Affix ordering in West G reenlandic derivational processes. In te rn a tio n a l Jo urn a l
o f A m erica n L in g u istic s , 46(4):259-278.

Fortescue, Michael. 2004. West G reenlandic (Eskimo). In G eert Booij, Christian Lehmann, Joachim Mug-
dan, and Stavros Skopeteas, editors, M orpho logy: an In tern a tio n a l H a n d b o o k on In flec tio n and W ord-
F orm ation , volume 2, pages 1389-1399. W alter de Gruyter, Berlin, Germ any and New York, New York.

Galvez, Carm en and Felix de Moya-Anegon. 2006. An evaluation of conflation accuracy using finite-state
transducers. Jo urn a l o f D o cu m en ta tio n , 62(3):328-349.
http://w w w .ugr.es/~cgalvez/G alvez-JD ocum entation-l.pdf

Galvez, Carmen, Felix de Moya-Anegon, and Victor H. Solana. 2005. Term conflation m ethods in inform a
tion retrieval. Jo u rn a l o f D o cu m en ta tio n , 61(4):520-547.
http://w w w .ugr.es/~cgalvez/G alvez-JD ocum entation-2.pdf

Grimley-Evans, Edmund, George Anton Kiraz, and Stephen G. Pulman. 1996. Compiling a partition-based
two-level formalism. In COLING 199 6 , 16 th In te rn a tio n a l C o n feren ce on C o m pu ta tio na l L in g u istic s ,
P ro ceed in g s o f th e C o n feren ce , A u g u s t 5 -9 , 19 9 6 , C o pen ha gen , D enm a rk , pages 454-459. C enter for
Sprogteknologi, Copenhagen, Denmark.
http://www.aclweb.Org/anthology-new/C/C96/C96-1077.pdf

Harm an, Donna. 1991. How effective is suffixing? Jo u rn a l o f th e A m erica n S o c ie ty fo r In fo rm a tio n Sc ien ce ,
42(1):7-15.
http://citeseerx .ist.psu .edu/view doc/dow nload?doi=10.1 .1 .104.9828& rep=repl& type=pdf

H erreid, Ingrid, n.d. J e n n ie -m In u u g ig n ig a F a irbanks-m i = J e n n ie 's L ife in F airbanks. Alaska Native Lan
guage Center, Fairbanks, Alaska.
http://w w w .uaf.edu/anla/collections/search/files/IN (S)N982H 1982/Jennie-m .pdf

Hull, David and Gregory G refenstette. 1996. A detailed analysis of English stem m ing algorithm s. Technical
Report 1996-023, Rank Xerox R esearch Centre.
http://citeseerx .ist.psu .edu/view doc/dow nload?doi=10.1 .1 .21.3856& rep=repl& type=pdf

Hussain, Sara. 2004. F in ite -S ta te M orpho lo g ica l A n a ly ze r fo r U rdu. M aster's thesis, National University
of Com puter and Em erging Sciences (Pakistan).
http://w w w .crulp.org/publication/theses/2004/fs_m orphological_analyzer_for_urdu.pdf

Jacobson, Steven A. 1984. Y up 'ik E sk im o D ic tionary. Alaska Native Language Center, Fairbanks, Alaska.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.2951&rep=rep1&type=pdf
http://www.ugr.es/~cgalvez/Galvez-JDocumentation-1.pdf
http://www.ugr.es/~cgalvez/Galvez-JDocumentation-2.pdf
http://www.aclweb.org/anthology-new/C/C96/C96-1077.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9828&rep=rep1&type=pdf
http://www.uaf.edu/anla/collections/search/files/IN(S)N982H1982/Jennie-m.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.3856&rep=rep1&type=pdf
http://www.crulp.org/publication/theses/2004/fs_morphological_analyzer_for_urdu.pdf

189

Johnson, C. Douglas. 1972. F orm al A sp e c ts o f P hono logica l D escrip tion . Mouton, The Hague, N etherlands.
Published version of Johnson 's 1970 doctoral d issertation.

Johnson, C hristopher R. and Charles J. Fillmore. 2000. The Fram eN et tag se t for fram e-sem antic and syn
tactic coding of predicate-argum ent structure. In P ro ceed in g s o f th e 1 s t M e e tin g o f th e N o r th A m erica n
C h a p te r o f th e A sso c ia tio n fo r C o m p u ta tion a l L in g u is tic s (AN LP-NAACL 2 0 0 0), A pril 2 9 -M a y 4 , S e a ttle ,
W ash ing ton , pages 56-62. M organ Kaufmann, San Francisco, California.
h ttp ://fram enet.icsi.berkeley.edu/papers/crj_cjf2000.pdf

Kaplan, Lawrence D. 1981a. N o r th S lo p e Inu p ia q L ite ra c y M anual. Alaska Native Language Center, Fair
banks, Alaska.
http://www.uaf.edu/anla/collections/search/files/IN(N)974K1981/North_Slope_Literacy_1981.pdf

Kaplan, Lawrence D. 1981b. On Yupik-Inupiag correspondences for i: A case of Inupiag innovation. In u it
S tu d ie s , 5(Special Issue):81-90.

Kaplan, Lawrence D. 1981c. P hono log ica l I s su e s in N o r th A la ska n Inup ia q . N um ber 6 in R esearch Papers.
Alaska Native Language Center, Fairbanks, Alaska. Published version of Kaplan's 1979 doctoral d isser
tation.
http://w w w .eric.ed.gov/ERICW ebPortal/contentdelivery/servlet/ERICServlet?accno=ED 398760

Kaplan, Lawrence D. 1982. Consonant alternation in Inupiag Eskimo. In te rn a tio n a l Jo urn a l o f A m erica n
L in g u is tic s , 48(4):385-393.

Kaplan, Lawrence D. 1990. The language of the Alaskan Inuit. In Dirmid R. F. Collis, editor, A rc tic L a n
gu a g es: A n A w a ken in g , pages 131-158. UNESCO, Paris, France.
http://unesdoc.unesco.org/im ages/0008/000861/086162e.pdf

Kaplan, Lawrence D. 2000. LInupiag et les contacts linguistigues en Alaska. In Nicole Tersis and Michele
Therrien, editors, L es la n g u es e s k a le o u te s : S ib e rie , A la ska , C anada, G roenland, pages 91-108. CNRS,
Paris, France.

Kaplan, Ronald M. and M artin Kay. 1994. Regular models of phonological rule system s. C om pu ta tiona l
L in g u is tic s , 20(3):331-378.
http://www.aclweb.Org/anthology-new/J/J94/J94-3001.pdf

Karlsson, Fred. 1999. F innish: A n E ssen tia l G ram m ar. Routledge, London, England.
Karttunen, Lauri. 1994. Constructing lexical transducers. In C O L IN G 1 9 9 4 ,15 th In te rn a tio n a l C o n feren ce

on C o m pu ta tio na l L in g u is tic s , A u g u s t 5 -9 , K yoto, Ja p an , volume 1, pages 406-411.
http://acl.ldc.upenn.edu/C /C 94/C 94-1066.pdf

Karttunen, Lauri. 1997. The replace operator. In Em m anuel Roche and Yves Schabes, editors, F in ite -S ta te
L a n g u a g e P ro cess ing , pages 117-147. MIT Press, Cambridge, M assachusetts.

Karttunen, Lauri and Kenneth R. Beesley. 1992. Two-level rule compiler. Technical Report ISTL-92-2, Xerox
Palo Alto R esearch Center, Palo Alto, California.
http://w w w .cis.upenn.edu/~cis639/docs/tw olc.htm l

Karttunen, Lauri and Kenneth R. Beesley. 2005. Twenty-five years of finite-state morphology. In Antti
Arppe, Lauri Carlson, Krister Linden, Jussi Piitulainen, Mickael Suominen, M artti Vainio, H anna West-
erlund, and Anssi Yli-Jyra, editors, In q u ir ie s in to W ords, C o n stra in ts a nd C o n tex ts . F e s tsc h r ift fo r K im m o
K o sken n iem i on h is 6 0 th B irthday., pages 71-83. CSLI, Stanford, California.

http://framenet.icsi.berkeley.edu/papers/crj_cjf2000.pdf
http://www.uaf.edu/anla/collections/search/files/IN(N)974K1981/North_Slope_Literacy_1981.pdf
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED398760
http://unesdoc.unesco.org/images/0008/000861/086162e.pdf
http://www.aclweb.org/anthology-new/J/J94/J94-3001.pdf
http://acl.ldc.upenn.edu/C/C94/C94-1066.pdf
http://www.cis.upenn.edu/~cis639/docs/twolc.html

190

Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology with composition.
In COLING 199 2 , 14 th In tern a tio n a l C o n feren ce on C o m pu ta tion a l L in g u is tic s , A u g u s t 2 3 -2 8 , N a n te s ,
F rance, pages 141-148.
http://acl.ldc.upenn.edu/C /C 92/C 92-1025.pdf

Kaveolook, Harold. 1974. M a lg u k Q uliaq tuak: A ahaa llig lu P iayaagillu / A g iq p a k tu a q A vig g a q = Two S to
ries: T he O ld S q u a w a nd I ts D u c k lin g s /T h e L a rge L em m in g . Alaska Native Language Center, Fairbanks,
Alaska.

Kettunen, Kimmo, Tuomas Kunttu, and Kalervo Jarvelin. 2005. To stem or lem m atize a highly inflec
tional language in a probabalistic IR environm ent? Jo u rn a l o f D o cu m en ta tio n , 61(4):476-496. A p re
publication d raft is available online: http://www.info.uta.fi/tutkim us/fire/archive/kettunen_et_al_full_
version_2005.pdf. The p resen t work refers to the published version.

Khaltar, Badam-Osor and Atsushi Fujii. 2008. A lem m atization m ethod for m odern M ongolian and its ap
plication to inform ation retrieval. In P ro ceed in g s o f th e T h ird In tern a tio n a l J o in t C o n feren ce on N a tu ra l
L a n g u a g e P ro cess in g (IJCNLP 2 0 0 8), Ja n u a ry 7-12 , H yd era b a d , India.
http://www.aclweb.Org/anthology-new/I/I08/I08-1000.pdf

Kiraz, George Anton. 2000. M ultitiered nonlinear m orphology using m ultitape finite autom ata: A case
study on Syriac and Arabic. C o m pu ta tion a l L in g u istic s , 26(1):77-105.
http://w w w .m itpressjournals.org/doi/pdf/10.1162/089120100561647

Kiraz, George Anton. 2001. C o m pu ta tio na l N o n lin e a r M orpho lo gy: W ith E m p h a sis on S e m itic L a n g ua ges.
Cam bridge University Press, Cambridge, England and New York, New York.

Korenius, Tuomo, Jorm a Laurikkala, Kalervo Jarvelin, and M artti Juhola. 2004. Stem ming and lem m atiza
tion in the clustering of Finnish tex t docum ents. In P ro ceed in g s o f th e A C M T h ir tee n th C o n feren ce on
In fo rm a tio n a nd K n o w led g e M a n a g e m e n t (CIK M ’04), N o v e m b e r 8 -1 3 , W ash ing to n , D.C.
http://www.info.uta.fi/tutkimus/fire/archive/KLJJ-CIKM 04.pdf

Kornai, Andras. 1999. Extended finite s ta te models of language. In Andras Kornai, editor, E x te n d e d F in ite
S ta te M o d e ls o f L an g u a g e , Studies in N atural Language Processing, pages 1-5. Cam bridge University
Press, Cambridge, England and New York, New York.

Koskenniemi, Kimmo. 1983. Tw o-L evel M orpho logy: A G eneral C o m p u ta tion a l M o de l fo r W ord-Form
R eco g n itio n an d P roduction . Ph.D. d issertation, University of Helsinki.
http://www.ling.helsinki.fi/~koskenni/doc/Two-LevelM orphology.pdf

Koskenniemi, Kimmo. 1996. F inite-state morphology and inform ation retrieval. In Andras Kornai, editor,
P ro ceed in g s o f th e E C A I 96 W orksho p on E x te n d e d F in ite S ta te M o d e ls o f L an g u a g e , A u g u s t 1 1 -1 2 ,
B u d a p e s t, H u nga ry , pages 42-45. NJSZT, Budapest, Hungary.
http://kornai.com /EFS/OnlineSupportM aterial/ECAI/kosk.pdf

Krauss, Michael E. 2007. Native languages of Alaska. In Osahito Miyaoka, Osamu Sakiyama, and
M ichael E. Krauss, editors, V anish ing Voices o f th e Pacific R im , pages 406-417. Oxford University Press,
New York, New York and Oxford, England.

Krovetz, Robert. 1993. Viewing morphology as an inference process. In Robert Korfhage, Edie M. Ras
m ussen, and Peter Willett, editors, P ro ceed in g s o f th e 16 th A n n u a l In te rn a tio n a l A C M -SIG IR C o n feren ce
on R esea rch and D e v e lo p m e n t in In fo rm a tio n R etr ieva l, J u n e 2 7 -Ju ly 1, P ittsb u rg h , P ennsylvan ia , pages
191-202. Association for Com puting Machinery, New York, New York.
ftp ://ftp .cs.um ass.edu/pub/techrept/techreport/1993/U M -C S-1993-036.ps

http://acl.ldc.upenn.edu/C/C92/C92-1025.pdf
http://www.info.uta.fi/tutkimus/fire/archive/kettunen_et_al_full_version_2005.pdf
http://www.info.uta.fi/tutkimus/fire/archive/kettunen_et_al_full_version_2005.pdf
http://www.aclweb.org/anthology-new/I/I08/I08-1000.pdf
http://www.mitpressjournals.org/doi/pdf/10.1162/089120100561647
http://www.info.uta.fi/tutkimus/fire/archive/KLJJ-CIKM04.pdf
http://www.ling.helsinki.fi/~koskenni/doc/Two-LevelMorphology.pdf
http://kornai.com/EFS/OnlineSupportMaterial/ECAI/kosk.pdf
ftp://ftp.cs.umass.edu/pub/techrept/techreport/1993/UM-CS-1993-036.ps

191

Langgard, Per and Trond T rosterud. n.d. In u p ia q p a rse r p ro jec t. Com puter software. The project hom e
page is h ttp://giellatekno.uit.no/ipk.htm l. Source code is available for online brow sing or anonymous
Subversion check-out from https://victorio .uit.no/langtech/trunk/st/ipk/.

Leslau, Wolf. 1995. R e fe re n c e G ra m m ar o f A m h a ric . H arrassow itz, W iesbaden, Germany.
Lowe, Ronald. 1996. G ram m atical sketches: Inuktitut. In ja c g u e s M aurais, editor, Q u eb ec 's A borig ina l

L an gu ag es: H istory, P lanning , a nd D e ve lo p m en t, pages 240-232. M ultilingual M atters, Philadelphia,
Pennsylvania.

Lowe, Ronald. 2000. System atigue du m ot inuit. In Nicole Tersis and M ichele Therrien, editors, L es
la n g u es e s k a le o u te s : S ib e rie , A la ska , C anada, G roenland, pages 149-170. CNRS, Paris, France.

MacLean, Edna Ahgeak. 1981. Ihu p ia llu Tangillu U qalugisa Ilagich = A b r id g e d In u p ia q a n d E ng lish D ic
tionary . Alaska Native Language Center, Fairbanks, Alaska.

MacLean, Edna Ahgeak. 1985. N o r th S lo p e In u p ia q D ia logues: S u p p le m e n t to N o r th S lo p e In u p ia q G ram
m ar: F irs t Year. Alaska Native Language Center, Fairbanks, Alaska.

MacLean, Edna Ahgeak. 1986a. N o r th S lo p e In u p ia q G ram m ar: F irs t Year. 3rd edition. Alaska Native
Language Center, Fairbanks, Alaska.

MacLean, Edna Ahgeak. 1986b. N o r th S lo p e In u p ia q G ram m ar: S e co n d Year (P relim inary E d ition fo r
S tu d e n t Use Only). Alaska Native Language Center, Fairbanks, Alaska.

MacLean, Edna Ahgeak. 1986c. Q u liaq tua t M u m ia ksra t: I lisa q tu a n u n S a va a ksr ia t. Alaska Native Lan
guage Center, Fairbanks, Alaska.

MacLean, Edna Ahgeak. n.d.a. N o r th S lo p e In u p ia q D ictionary. Unpublished m anuscrip t (July 14, 2009
revision).

MacLean, Edna Ahgeak. n.d.b. N o r th S lo p e In u p ia q G ram m ar: T hird Year. Unpublished m anuscript.
M anning, C hristopher D. and Hinrich Schutze. 1999. F o un d a tio ns o f S ta tis tica l N a tu ra l L a n g u a g e P ro

c e ss in g . MIT Press, Cambridge, M assachusetts.
Mather, Elsie. 1973. Iq ia su a q A v iq q a q = T he L a zy M ou se . Alaska Native Language Center, Fairbanks,

Alaska.
M atousek, J in and Jaroslav Nesetril. 2009. In v ita tio n to D iscre te M a th e m a tic s . 2nd edition. Oxford Uni

versity Press, New York, New York and Oxford, England.
Maxwell, M ichael and William Poser. 2004. M orphological interfaces to dictionaries. In Michael Zock and

Patrick Saint Dizier, editors, COLING 2 0 0 4 ,2 0 th In te rn a tio n a l C o n feren ce on C o m pu ta tio na l L in g u istic s ,
P ro ceed in g s o f th e W o rksh op on E n h a n c in g a nd U sing E lec tro n ic D ic tionaries , pages 65-68.

Mithun, M arianne. 2000. Valency-changing derivation in C entral Alaskan Yup'ik. In R. M. W. Dixon and
Alexandra Y. Aikhenvald, editors, C hang ing Valency: C ase S tu d ie s in T ran sitiv ity , pages 84-114. Cam
bridge University Press, Cambridge, England and New York, New York.

Miyaoka, Osahito. 2000. M orphologie verbale en yupik alaskien central. In Nicole Tersis and Michele
Therrien, editors, L es la n g u es e s k a le o u te s : S ib e rie , A la ska , C anada, G roenland, pages 225-248. CNRS,
Paris, France.

Mohri, Mehryar. 1997. On the use of seguential transducers in n atural language processing. In Emm anuel
Roche and Yves Schabes, editors, F in ite -S ta te L a n g u a g e P ro cess ing , pages 355-382. MIT Press, Cam
bridge, M assachusetts.

http://giellatekno.uit.no/ipk.html
https://victorio.uit.no/langtech/trunk/st/ipk/

192

Nageak, Vincent. 1975. A ta a ta lu g iik = G randchild w ith G rand fa ther. Alaska Native Language Center,
Fairbanks, Alaska.

Nashaknik, Henry. 1973. A g u lh u y u k . Alaska Native Language Center, Fairbanks, Alaska.
O usterhout, John K. and Ken Jones. 2009. Tel a n d th e Tk Toolkit. 2nd edition. Addison-Wesley, Reading,

M assachusetts.
Pirinen, Tommi A. and K rister Linden. 2010. F inite-state spell-checking with w eighted language and erro r

m odels—building and evaluating spell-checkers with w ikipedia as corpus. In Kepa Sarasola, Francis M.
Tyers, and Mikel L. Forcada, editors, 7th SaLTM iL W o rksh op on C reation and Use o f B asic Lexica l
R e so u rc e s fo r L ess -R e so u rc ed L a n g u a g es , LR E C 2 0 1 0 , V alletta , M alta , 2 3 M a y 2 0 1 0 , pages 13-18.
http://siuc01.si.ehu.es/~jipsagak/SA LTM IL2010_Proceedings.pdf

Pirkola, Ari. 2001. M orphological typology of languages for IR. Jo u rn a l o f D o cu m en ta tio n , 57(3):330-348.
A pre-publication d raft is available: w w w .info.uta.fi/tutkim us/fire/archive/m orphological_typology.pdf.
The p resen t work refers to the published version.

Porter, M artin F. 1980. An algorithm for suffix stripping. P rogram , 14(3):130-137.
Poser, William. 2002. Making A thabaskan dictionaries usable. In Siri G. Tuttle and Gary Holton, editors,

P ro ceed in g s o f th e A th a b a sca n L a n g u a g e s C o n feren ce , pages 136-147. Alaska Native Language Center,
Fairbanks, Alaska.
http://billposer.org/Papers/m akath .pdf

Roark, Brian and Richard Sproat. 2007. C o m pu ta tio na l A p p ro a c h es to M o rp h o lo g y and S y n ta x . Oxford
University Press, New York, New York and Oxford, England.

Roche, Emm anuel and Yves Schabes. 1997. Introduction. In Emm anuel Roche and Yves Schabes, editors,
F in ite -S ta te L a n g u a g e P ro cess ing , pages 1-66. MIT Press, Cambridge, M assachusetts.

Ruessink, H erbert. 1989. Two-level form alisms. W orking P apers in N a tu ra l L a n g u a g e P ro cess ing ,
K a th o lieke U n ivers ite it L eu ven , S tic h tin g T aa ltechn o log ie U trech t, 5.

Sarasola, Kepa. 2000. S trategic priorities for the developm ent of language technology in m inority lan
guages. In P ro ceed in g s o f th e S e c o n d In te rn a tio n a l C o n feren ce on L a n g u a g e R e so u rc e s an d E va lu a
tion (LR E C -2000), M a y 3 1 -Ju n e 2 , A th e n s , G reece. European Language Resources Association, Paris,
France.
http://ixa.si.ehu.es/Ixa/A rgitalpenak/Artikuluak/1000911718/publikoak/00LRECSarasola.ps

Savoy, Jacgues. 1999. A stem m ing procedure and stopword list for general French corpora. Jo urn a l o f
th e A m erica n S o c ie ty fo r In fo rm a tio n S c ien ce , 50(10):944-952. A pre-publication draft is available:
http://m em bers.unine.ch/jacgues.savoy/Papers/FR Jasis.pdf. The p resen t work references the published
version.

Schulz, Klaus U. and Stoyan Mihov. 2002. Fast string correction with Levenshtein-autom ata. In te rn a tio n a l
Jo u rn a l on D o cu m en t A n a ys is and R eco g n itio n , 5 (l):67-85.

Seiler, Wolf A. 1997. Valence and affix ordering in Inupiatun. In SIL E lec tro n ic W orking P apers 1997-002 .
Sum m er Institu te of Linguistics.
http://www.sil.org/silewp/1997/002/SILEW P1997-002.htm l

Seiler, Wolf A. 2005. In u p ia tu n E sk im o D ic tionary. NANA Regional Corporation, Kotzebue, Alaska.

http://siuc01.si.ehu.es/~jipsagak/SALTMIL2010_Proceedings.pdf
http://www.info.uta.fi/tutkimus/fire/archive/morphological_typology.pdf
http://billposer.org/Papers/makath.pdf
http://ixa.si.ehu.es/Ixa/Argitalpenak/Artikuluak/1000911718/publikoak/00LRECSarasola.ps
http://members.unine.ch/jacques.savoy/Papers/FRJasis.pdf
http://www.sil.org/silewp/1997/002/SILEWP1997-002.html

193

Sever, Hayri and Yiltan Bitirim. 2003. Findstem : Analysis and evaluation of a Turkish stem m ing algo
rithm . In S tr in g P ro cess in g a nd In fo rm a tio n R e tr ieva l, volume 2857 of L e c tu re N o te s in C o m p u te r
S c ien ce , pages 238-251. Springer, Berlin and H eidelberg, Germany. A pre-publication d raft is available
online: http://citeseerx .ist.psu .edu/view doc/dow nload?doi=10.1 .1 .115.2511& rep=repl& type=pdf. The
p resen t work refers to the published version.

Smith, Lawrence R. 1980. Some categories and processes of Labrador Inu ttu t word form ation. In te rn a
tiona l Jo urn a l o f A m erica n L in g u istic s , 46(4):279-288.

Sproat, Richard. 1992. M o rp h o lo g y a n d C o m p u ters. MIT Press, Cambridge, M assachusetts.
Taff, Alice, Lorna Rozelle, Taehong Cho, Peter Ladefoged, Moses Dirks, and Jacob Wegelin. 2001. Phonetic

struc tu res of Aleut. Jo u rn a l o f P h on e tics , 29:231-271.
http://tcho.hanyang.ac.kr/papers/Taff_Rozelle_Cho_LadefogedJPhon_2001_rfm .pdf

Teeluk, M artha and M arie N. Blanchett. 1973. T aiguallaruga = I Can R ead . Alaska Native Language Center,
Fairbanks, Alaska.

Tersis, Nicole and M ichele Therrien. 2000. Introduction. In Nicole Tersis and M ichele Therrien, editors,
L e s la n g u es e s k a le o u te s : S ib e rie , A la ska , C anada, G roenland , pages 15-29. CNRS, Paris, France.

Ui D honnchadha, Elaine. 2003. Finite-state morphology and Irish. In P ro ceed in g s o f th e W o rksh op on
F in ite S ta te M e th o d s in N a tu ra l L a n g u a g e P ro cess in g , 10 th C o n feren ce o f th e E u ro pea n C h a p te r o f
th e A sso c ia tio n fo r C o m p u ta tion a l L in g u is tic s (EACL 10), A pril 1 3 -1 4 20 0 3 , B u d a p es t, H u ng ary , pages
43-49.
http://w w w .cl.cam .ac.uk/~ar283/eacl03/w orkshops03/W 03-w 9_eacl03dhonnchadha.local.pdf

Webster, Donald H. and Wilfried Zibell. 1970. Ih u p ia t E sk im o D ic tionary. Sum m er Institu te of Linguistics,
Fairbanks, Alaska. Digitized by Alaskool.org: http://w w w .alaskool.org/language/dictionaries/inupiag/
defau lt.h tm . The p resen t work refe rs to the electronic version.

Woodbury, Anthony C. 2002. The word in Cup'ik. In R. M. W. Dixon and Alexandra Y. Aikhenvald, editors,
W ord: A cro ss-lin g u istic typ o logy , pages 79-99. Cam bridge University Press, Cambridge, England and
New York, New York.

Yoo, Shinjae. 2008. A sm art OCR for Inupiag. Final p resen tation of graduate-level sem ester project in
language and inform ation technologies a t Carnegie Mellon University.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.2511&rep=rep1&type=pdf
http://tcho.hanyang.ac.kr/papers/Taff_Rozelle_Cho_Ladefoged_JPhon_2001_rfm.pdf
http://www.cl.cam.ac.uk/~ar283/eacl03/workshops03/W03-w9_eacl03dhonnchadha.local.pdf
http://www.alaskool.org/language/dictionaries/inupiaq/default.htm
http://www.alaskool.org/language/dictionaries/inupiaq/default.htm

