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Abstract

Invasive species are a concern worldwide as they can displace native species, reduce 

biodiversity, and disrupt ecological processes. European bird cherry (Prunus padus) 

(EBC) is an invasive ornamental tree that is rapidly spreading and possibly displacing 

native trees along streams in parts of urban Alaska. The objectives of this study were to:

1) map the current distribution of EBC along two Anchorage streams, Campbell and 

Chester creeks, and 2) determine the effects of EBC on selected ecological processes 

linked to stream salmonid food webs. Data from the 2009 and 2010 field seasons showed: 

EBC was widely distributed along Campbell and Chester creeks; EBC leaf litter in 

streams broke down rapidly and supported similar shredder communities to native tree 

species; and EBC foliage supported significantly less terrestrial invertebrate biomass 

relative to native deciduous tree species, and contributed significantly less terrestrial 

invertebrate biomass to streams compared to mixed native vegetation, but riparian EBC 

did not appear to affect the amount of terrestrial invertebrate prey ingested by juvenile 

coho salmon (Oncorhynchus kisutch). Although ecological processes did not seem to be 

dramatically affected by EBC presence, lowered prey abundance as measured in this 

study may have long-term consequences for stream-rearing fishes as EBC continues to 

spread over time.
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Introduction 

Influence of riparian vegetation on stream salmonid food webs

Although accounting for only a small portion of overall landcover, riparian zones 

are important ecologically, acting as dynamic interfaces that link terrestrial and aquatic 

ecosystems (Gregory et al. 1991). Much research has focused on the influence of riparian 

forests in regulating the physical habitats of their associated stream and river systems for 

stream fishes (Wipfli and Baxter 2010). For example, shade from the riparian canopy 

controls the light reaching the stream channel, affecting stream temperature (Gregory et 

al. 1991). Roots of riparian trees stabilize streambanks, regulating terrestrial sediment 

inputs important for spawning and rearing habitats (Bilby and Ward 1991). Fallen trees 

supply woody debris to streams and rivers, which mixes instream flow creating pool 

habitats that act as refugia for rearing juveniles (Bilby and Ward 1991, Tabacchi et al. 

1998). Finally, research has also detailed the importance of riparian vegetation as a 

source of energy for stream organisms supporting salmonid food webs (Gregory et al. 

1991, Wallace et al. 1997, Nakano and Murakami 2001, Baxter et al. 2005).

Small or low-order stream ecosystems are often considered to be energy-limited 

and depend on external or allochthonous inputs of organic matter (e.g. detritus and 

insects) from the adjacent terrestrial ecosystem as primary sources of energy supporting 

salmonid food webs (Vannote et al. 1980, Wallace et al. 1997). Two pathways link 

riparian vegetation to stream salmonids: 1) senesced leaf litter inputs from riparian 

vegetation are processed by aquatic invertebrate detritivores (termed “shredders”), 

supporting entire aquatic invertebrate communities; and 2) terrestrial invertebrates from 

the adjacent riparian vegetation fall directly into the stream. The combination of these 

invertebrate communities compose the primary prey resources for salmonids and other 

stream fishes (Wipfli 1997, Nakano and Murakami 2001, Baxter et al. 2005).

In the first pathway, senesced leaf litter from the riparian vegetation enters the
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stream channel where aquatic bacteria and fungi colonize the leaf surfaces conditioning 

the leaf litter (Vannote et al. 1980, Cummins et al. 1989). Functional feeding groups of 

aquatic invertebrates adapted to feed on detritus, collectively called shredders, then feed 

on the vascular tissue of the conditioned leaf litter (Vannote et al. 1980, Cummins et al. 

1989, Wallace et al. 1997). Vannote et al.‘s (1980) river continuum concept hypothesized 

that low-order streams support high densities of shredders due to large volumes of leaf 

litter inputs from overhanging riparian canopies of deciduous trees (Peterson and 

Cummins 1974, Webster and Benfield 1986). Leaf litter processing by shredders breaks 

down leaf litter inputs into coarse and fine particles of organic matter for other functional 

feeding groups of aquatic invertebrates (Peterson and Cummins 1974, Cummins et al. 

1989, Wallace et al. 1997). As a result, shredders play an important functional role in 

streams, supporting diverse aquatic invertebrate communities which collectively act as 

prey for many upper trophic level consumers including stream fishes (Wallace et al. 1997, 

Gessner and Chauvet 2002, Baxter et al. 2005).

In the second pathway, terrestrial invertebrate communities associated with the 

foliage of the adjacent riparian vegetation fall directly into the stream channel (Wipfli 

1997, Nakano and Murakami 2001, Kawaguchi et al. 2003). These invertebrates fall into 

the stream when searching for food and water or by accidentally dropping in from 

overhanging branches. Low-order streams with dense riparian canopies contribute high 

levels of terrestrial invertebrate biomass to streams (Wipfli 1997, Kawaguchi and Nakano 

2001, Nakano and Murakami 2001, Baxter et al. 2005). Studies have also linked riparian 

canopy cover with stream inputs of terrestrial invertebrates and density in the drift 

(Meehan 1996, Allan et al. 2003, Romero et al. 2005). Terrestrial invertebrate abundance 

peaks in the warmest part of the year with the highest densities occurring spring through 

fall (Nakano and Murakami 2001, Baxter et al. 2005).

While it has been long established that salmonids drift feed on aquatic 

invertebrates (Allan 1978, Johnson and Ringler 1980), Allen’sparadox pointed out that



3

aquatic invertebrate production alone was insufficient to support fish in New Zealand 

streams (Allen 1951). More recent research has highlighted the importance of terrestrial 

invertebrates as a seasonal prey source that might help explain Allen’s paradox (Johnson 

and Ringler 1980, Edwards and Huryn 1995, Wipfli 1997, Nakano and Murakami 2001, 

Kawaguchi and Nakano 2001, Allan et al. 2003, Kawaguchi et al. 2003). While aquatic 

invertebrates are important prey resources year round, salmonid predation on terrestrial 

invertebrates often peaks in the summer and fall (Nakano and Murakami 2001, Baxter et 

al. 2005). Wipfli (1997) reported terrestrial invertebrates composed up to 50% of the 

biomass in the diet for several species of stream salmonids in southeast Alaska. 

Kawaguchi and Nakano (2001) found terrestrial invertebrates composed 53% of prey 

ingested by salmonids in Japan. Some evidence suggests that salmonids may even prey 

selectively on terrestrial invertebrates (Nakano et al. 1999b).

Riparian vegetation type can affect invertebrate prey for stream salmonids

Vegetation type can affect both aquatic and terrestrial invertebrate communities. 

The resource quality hypothesis predicts that invertebrates will feed preferentially on 

plants that are higher-quality resources (Schowalter et al. 1986, Ober and Hayes 2008). 

Resource quality can be a combination of the chemical and physical characteristics of a 

plant species (Ober and Hayes 2008). Leaf chemistry can affect invertebrate herbivory 

through nutrient content and presence of secondary compounds (Cummins et al. 1989, 

Gra9a 2001). Physical characteristics like presence of structural compounds (e.g. lignin), 

leaf thickness and its ability to break down quickly can also affect herbivory by 

invertebrates. Aquatic invertebrate shredders can be influenced by leaf litter quality, 

selectively feeding on higher-quality leaf litter inputs (Gra9a 2001). Leaf litter that breaks 

down quickly in streams provides a readily available food source for shredders and is 

often correlated with high-quality leaf species (Irons et al. 1988, Cummins et al. 1989, 

Motomori et al. 2001). Feeding experiments have documented that nitrogen-rich species
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like alder support higher shredder abundances than other lower-quality species (Irons et 

al. 1988, Motomori et al. 2001).

Terrestrial invertebrate communities in riparian forests can also vary between 

vegetation types, affecting their abundance (Mason and MacDonald 1982, Ober and 

Hayes 2008). Studies in southeast Alaska and in Oregon documented an increased 

abundance of terrestrial invertebrates associated with nitrogen-rich deciduous trees (e.g. 

alder) relative to coniferous trees (Meehan 1996, Wipfli 1997, Allan et al. 2003, Romero 

et al. 2005, Ober and Hayes 2008). This increased abundance of terrestrial invertebrates 

can lead to increased inputs of invertebrates to streams and their density in the drift in 

reaches of higher quality riparian vegetation (Wipfli 1997, Kawaguchi and Nakano 2001, 

Piccolo and Wipfli 2002, Allan et al. 2003, Romero et al. 2005).

As a result, riparian vegetation type can influence the availability of aquatic and 

terrestrial invertebrate prey resources for stream salmonids (Mason and MacDonald 

1982, Wipfli 1997, Allan et al. 2003, Romero et al. 2005). For example, Kawaguchi and 

Nakano (2001) who observed increased trout biomass in forested streams compared to 

grassland streams in Japan. However, few other studies have actually documented an 

effect of vegetation type on the amount of prey ingested by stream fishes (Meehan 1996, 

Wipfli 1997, Kawaguchi and Nakano 2001, Allan et al. 2003, Romero et al. 2005). This 

indicates that an increase in prey resources does not necessarily result in a response by 

fish, suggesting fish may not be tracking resources or might not be food limited 

(Giannico and Healey 1999).

Experimentally altering terrestrial invertebrate resources has illustrated the 

ecological consequences for both terrestrial and aquatic organisms linked through stream- 

riparian food webs. A study by Kawaguchi et al. (2003) indicated that experimentally 

reducing terrestrial inputs to streams decreased the abundance and shifted the distribution 

of rainbow trout. Nakano et al. (1999a) found that reducing stream inputs of terrestrial 

invertebrates increased salmonid predation on aquatic invertebrate herbivores, which led
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to an increase in growth of benthic algae. A related study observed the invasion of non

native rainbow trout (Oncorhynchus mykiss) in Japanese streams competed with Dolly 

Varden charr (Salvelinus malma) for terrestrial invertebrates, forcing Dolly Varden to 

feed more heavily on aquatic invertebrates, decreasing the emergence of adult life stages 

of aquatic invertebrates (Baxter et al. 2004). This decrease in aquatic invertebrate 

emergence impacted riparian predators including spiders and birds (Baxter et al. 2004; 

Nakano and Murakami 2001). These results clearly show that changes in vegetation can 

affect invertebrate prey abundance for salmonids and that reducing the availability of 

invertebrate prey can negatively affect salmonids and other aquatic and terrestrial 

organisms linked through stream-riparian food webs.

Effects of invasive riparian plants on stream food webs

Riparian zones are highly susceptible to the spread of invasive plants (Gregory et 

al. 1991, Hood and Naiman 2000). The combination of flood events that disturb riparian 

soils and extensive habitat connectivity along riparian corridors creates ideal conditions 

for invasive plants to spread (Hood Naiman 2000). As a result, riparian forests often 

contain a higher number of invasive plants than upland habitats (Planty-Tabacchi et al. 

1996, Hood and Naiman 2000). Invasive plants are a concern worldwide because they 

can displace native species, reduce biodiversity and disrupt ecological processes 

(Wilcove et al. 1998, Dukes and Mooney 1999). Invasive plants can grow in dense 

patches, outcompeting nearby native species for resources (e.g. light, water and nutrients) 

(Dangles et al. 2003, Friedman et al. 2005, Lecerf et al. 2007). They can also exhibit 

allelopathic properties, negatively affecting germination and growth of native species 

(Hierro and Callaway 2003). Because riparian zones link terrestrial and aquatic 

ecosystems, the spread of invasive plants in riparian forests can negatively affect stream 

organisms and food webs (Hood and Naiman 2000, Baxter et al. 2005).

One way the spread of invasive plants in riparian forests could affect stream food
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webs is by changing the composition of leaf litter inputs. By displacing native species 

invasive plants can reduce the species richness and overall quality of these leaf litter 

inputs (Hood and Naiman 2000, Dangles et al. 2003, Kennedy and Hobbie 2004, Lecerf 

et al. 2005 and Lecerf et al. 2007, Braatne et al. 2007). As invasive plants spread along 

the streambanks they compete with the native vegetation, often displacing native species. 

This changes the composition of leaf litter entering the stream channel, frequently 

reducing the richness of these allochthonous inputs (Dangles et al. 2003, Lecerf et al.

2007). Peterson and Cummins (1974) described the importance of having a processing 

continuum of resources available for stream consumers. Naeem et al. (1994) describes 

high species richness as essential to the health and function of an ecosystem. Declines in 

the species richness of riparian vegetation can affect the diversity of leaf litter available 

for stream consumers (Dangles et al. 2003, Lecerf et al. 2007).

If an invasive plant differs from native vegetation in leaf litter chemistry, it can 

affect leaf litter processing by aquatic invertebrate shredders (Gra9a 2001). Aquatic 

microorganisms responsible for conditioning leaf litter often are more likely to colonize 

higher-quality species (Irons et al. 1988, Cummins et al. 1989, Lecerf et al. 2007). 

Shredders in turn are more likely to feed on properly conditioned leaf litter (Cummins et 

al. 1989). Three invasive plants, eucalyptus (Eucalyptus spp.), Japanese knotweed 

(Fallopia japonica) and tamarisk (Tamarix spp.), have all been documented to break 

down more slowly than the leaf litter of native riparian plant species, suggesting that they 

are lower-quality food sources for stream consumers (Canhoto and Gra9a 1995, Abelho 

and Gra9a 1996, Bailey et al. 2001, Kennedy and Hobbie 2004, Braatne et al. 2007, 

Lecerf et al. 2007).

However, studies examining the effects of invasive plants on shredder feeding 

activity have documented variable, even conflicting results, sometimes with the same 

species (Canhoto and Gra9a 1995, Abelho and Gra9a 1996, Lacan et al. 2010). Some 

studies have documented declines in shredder abundance, diversity and growth associated
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with invasive plants like Japanese knotweed, eucalyptus, and tamarisk (Canhoto and 

Gra9a 1995, Abelho and Gra9a 1996, Read and Barmuta 1999, Bailey et al. 2001,

Dangles et al. 2003, Lecerf et al. 2005, Lecerf et al. 2007). In contrast, other studies 

found no significant effect of invasive leaf litter on shredders (Sampaio et al. 2001, 

Braatne et al. 2007, Going and Dudley 2008, Moline and Poff 2008, Swan et al. 2008, 

Lacan et al. 2010). One can conclude from the variable results that while in some cases 

leaf litter quality can negatively affect shredder communities, invasive plants can 

sometimes act as a suitable or even superior resource for shredders. Gra9a (2001) 

determined that shredders fed on less-preferred plant species when no other choice is 

available and Cummins et al. (1989) concluded that the condition of leaf litter could be 

more important than the particular species composition.

The spread of invasive plants may also affect terrestrial invertebrates (Mason and 

MacDonald 1982, Ober and Hays 2008). Observational field studies have documented 

declines in terrestrial invertebrate abundance and species richness relative to native 

vegetation with invasive giant reed (Arundo donax) in California (Herrera and Dudley 

2003), Japanese knotweed in Europe (Gerber et al. 2008) and tamarisk in the American 

southwest (Wiesenborn 2005). In addition to documenting declines of terrestrial 

invertebrate abundance, Greenwood et al. (2004) also found that relative to native 

vegetation invasive willow (Salix rubens) reduced stream inputs of terrestrial 

invertebrates to Australian streams.

Few studies have attempted to relate the effects of invasive riparian plants on 

invertebrate communities to stream food webs or to upper trophic level consumers like 

stream fishes. If an invasive plant in riparian forests reduces invertebrate prey abundance, 

then it could negatively affect invertebrate prey resources for stream salmonids, 

potentially affecting salmonid production in streams (Wipfli and Gregovich 2002). A 

study by Glova and Sagar (1994) in New Zealand found streams lined with invasive 

willow supported a higher abundance of invertebrate prey for brown trout than streams
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lined by native vegetation. In contrast, Kennedy et al. (2005) found that the eradication of 

invasive tamarisk increased fish densities in Colorado streams. Considering the 

conflicting results from these two studies, this topic warrants further investigation.

As invasive species continue to spread across landscapes, we need to understand 

their ecological effects. It is difficult to predict which invasive species will be 

problematic, as previous studies have found varying and even conflicting results 

sometimes within the same species (Abelho and Gra9a 1996, Lacan et al. 2010). This is 

especially true in Alaska, where until recently it was assumed invasive plants had little 

impact due to its geographic isolation (Carlson and Shephard 2007). Instead, a recent 

review found that invasive plants are becoming increasingly common around urban 

centers and are spreading into adjacent natural habitats (Carlson and Shephard 2007). In 

spite of this observation, research concerning the ecological effects of invasive species in 

Alaska remains lacking. This is especially true in riparian forests where the spread of 

invasive plants has the potential to affect both terrestrial and aquatic organisms and the 

exchange of resources between the two (Baxter et al. 2005).

In Alaska and around the Pacific Ocean, Pacific salmon (Oncorhynchus spp.) are 

important cultural, economic and ecological resources. Many Pacific salmon populations 

are currently experiencing significant declines and concern has been raised that invasive 

species could be a contributing factor (Baxter et al. 2005, Sanderson et al. 2009). 

Observational and experimental studies are needed to evaluate the ecological effects of 

invasive riparian plants on stream salmonids.

Potential effects of European bird cherry on salmonid food webs

European bird cherry (Prunuspadus) (EBC) is an introduced deciduous tree 

frequently planted in Alaska for its showy floral display (Alaska Natural Heritage 

Program 2006). Birds feed on the cherries and transport the seeds from source trees to
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adjacent natural areas, over time creating wild populations (Alaska Natural Heritage 

Program 2006). Able to tolerate a wide range of climates and habitat types in its native 

Europe, EBC thrives in cold climates and wet soils, making it well suited for riparian 

zones in Alaska (Leather 1996). EBC has spread rapidly in the last ten years, and appears 

to be displacing native trees in riparian forests along streams in parts of urban Alaska 

(Flagstad et al. 2010). EBC is able to form dense, monotypic stands, and is ranked as 

highly invasive (Carlson et al. 2008).

While the rapid spread of EBC has been documented, basic ecological 

information is lacking (Flagstad et al. 2010). Little is known about the current 

distribution of EBC in Alaska, let alone what effect it may have on stream ecosystems, 

stream-riparian forest linkages, and associated ecological processes. This thesis 

investigates the effects of EBC colonization on stream-riparian interactions, natural 

ecological processes and on invertebrate prey resources for stream-rearing salmonids. 

This project is divided into three parts. In the first chapter I document the current 

distribution of EBC along two streams in Anchorage, Alaska: Campbell and Chester 

creeks. In the second chapter I examine the effects of EBC on the ecological processes of 

leaf litter break down and shredder colonization by conducting leaf pack experiments. In 

the third chapter I assess the effects of riparian EBC on terrestrial invertebrate prey 

resources for juvenile coho salmon (Oncorhynchus kisutch).

Collectively, the results of this work provide clues about the extent to which 

invasive riparian plants can affect native species and ecological processes in stream 

ecosystems of Alaska. These findings will ultimately help guide management of EBC by 

land management agencies involved in managing urban watersheds, fisheries, and 

controlling invasive species.

References



10

Abelho, M. and M.A.S. Gra9a. 1996. Effects of eucalyptus afforestation on leaf litter 

dynamics and macroinvertebrate community structure of streams in central 

Portugal. Hydrobiologia 324: 195-204.

Alaska Natural Heritage Program. 2006. Non-Native Species of Alaska: European Bird 

Cherry (Prunuspadus L.). http://akweeds.uaa.alaska.edu.

Allan, J.D. 1978. Trout predation and the size composition of stream drift. Limnology 

and Oceanography 23: 1231-1237.

Allan, J.D., M.S. Wipfli, J.P. Caouette, A. Prussian, and J. Rodgers. 2003. Influence of

streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. 

Canadian Journal of Fisheries and Aquatic Sciences 60: 309-320.

Allen, K.R. 1951. The Horokiwi stream: a study of a trout population. New Zealand 

Department of Fisheries Bulletin 10.

Bailey, J.K., J.A. Schweitzer and T.G. Whitham. 2001. Salt cedar negatively affects 

biodiversity of aquatic macroinvertebrates. Wetlands 21: 442-447.

Baxter, C.V., K.D. Fausch, M. Murakami, and P.L. Chapman. 2004. Fish invasion

restructures stream and forest food webs by interrupting reciprocal prey subsidies. 

Ecology 85: 2656-2663.

Baxter, C.V., K.D. Fausch, and W.C. Saunders. 2005. Tangled webs: Reciprocal flows of 

invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201

220.

Bilby, R. E. and J. W. Ward. 1991. Characteristics and function of large woody debris in 

streams draining old-growth, clear-cut, and second-growth forests in southwestern 

Washington. Canadian Journal of Fisheries & Aquatic Sciences 48: 2499-2508.

Braatne, J.H., S.M.P. Sullivan and E. Chamberlain. 2007. Leaf decomposition and stream 

macroinvertebrate colonization of Japanese knotweed, an invasive plant species. 

International Review of Hydrobiology 92: 656-665.

http://akweeds.uaa.alaska.edu


11

Canhoto, C. and M.A.S. Gra9a. 1995. Food value of introduced eucalypt leaves for a 

Mediterranean stream detritivore -  Tipula lateralis. Freshwater Biology 34: 

209-214.

Carlson, M.L. and M. Shephard. 2007. The spread of invasive exotic plants in Alaska: is

establishment of exotics accelerating? In: Harrington TB, Reichard SH (eds)

Meeting the challenge: invasive plants in Pacific northwestern ecosystems. USDA

Forest Service PNW Research Station, Portland, pp 111-127.

Carlson, M.L., I.V Lapina, M. Shephard, J.S. Conn, R. Densmore, P. Spencer, J. Heys, J. 

Riley, and J. Nielsen. 2008. Invasiveness ranking system for non-native plants of 

Alaska. USDA Forest Service, R10, R10-TP-143, p 218.

Cummins, K.W., M.A. Wilzbach, D.M. Gates, J.B. Perry, and W.B. Taliaferro. 1989. 

Shredders and riparian vegetation: leaf litter that falls into streams influences 

communities of stream invertebrates. BioScience 39: 24-30.

Dangles, O., M. Jonsson, and B. Malmqvist. 2003. The importance of detritivore species 

diversity for maintaining stream ecosystem functioning following the invasion of 

a riparian plant. Biological Invasions 4: 441-446.

Dukes, J.S. and H.A. Mooney. 1999. Does global change increase the success of 

biological invaders? Trends in Ecology and Evolution 14: 135-139.

Edwards, E. D. and A.D. Huryn. 1995. Annual contribution of terrestrial invertebrates to 

a New Zealand trout stream. New Zealand Journal of Marine and Freshwater 

Research 29:467-477.

Flagstad, L.A., H. Cortes-Burns and T.L. Roberts. 2010. Invasive plant inventory and bird 

cherry control trials phase II: bird cherry distribution, demography, and 

reproduction biology along Chester and Campbell Creek trails, Anchorage,

Alaska. Alaska Natural Heritage Program, p. 61.



12

Friedman, J.M., G.T. Auble, P.B. Shafroth, M.L. Scott, M.F. Merigilano, M.D. Preehling 

and E.K. Griffith. 2005. Dominance of non-native riparian trees in western USA. 

Biological Invasions 7: 747-751.

Gerber, E., C. Krebs, C. Murrell, M. Moretti, R. Rocklin and U. Scnaffner. 2008. Exotic 

invasive knotweeds (Fallopia spp) negatively affect native plant and invertebrate 

assemblages in European riparian habitats. Biological Conservation 141: 646-654.

Gessner, M.O. and E. Chauvet. 2002. A case for using litter breakdown to assess 

functional stream integrity. Ecology 12: 498-510.

Giannico, G.R. and M.C. Healey. 1999. Ideal free distribution theory as a tool to examine 

juvenile coho salmon (Oncorhynchus kisutch) habitat choice under different 

conditions of food abundance and cover. Canadian Journal of Fisheries and 

Aquatic Sciences 56: 2362-2373 .

Glova, G. and P. Sagar. 1994. Comparison of fish and macroinvertebrate standing stocks 

in relation to riparian willows (Salix spp.) in three New Zealand streams. New 

Zealand Journal of Marine and Freshwater Research 28: 255-266.

Going, B.M. and T.L. Dudley. 2008. Invasive riparian plant litter alters aquatic insect 

growth. Biological Invasions 10: 1041-1051.

Gra9a, M.A.S. 2001. The role of invertebrates on leaf litter decomposition in streams -  a 

review. International Review of Hydrobiology 86: 383 -  393.

Greenwood, H., D.J. O’Dowd and P. S. Lake. 2004. Willow (Salix rubens) invasion of the 

riparian zone in south-eastern Australia: reduced abundance and altered 

composition of terrestrial arthropods. Diversity and Distributions 10: 485-492.

Gregory, S.V., F.J. Swanson, W.A. McKee, and K.W. Cummins. 1991. An ecosystem 

perspective of riparian zones. BioScience 41: 540-551.

Herrera, A.M. and T.L. Dudley. 2003. Reduction of riparian arthropod abundance and 

diversity as a consequence of giant reed (Arundo donax) invasion. Biological 

Invasions 5: 167-177.



13

Hierro, J.L. and R.M. Callaway. 2003. Allelopathy and exotic plant invasion: from 

molecules and genes to species interactions. Plant and Soil. 256: 29 - 39.

Hood, W.G. and R.J. Naiman. 2000. Vulnerability of riparian zones to exotic vascular 

plants. Plant Ecology 148: 105-114.

Irons, J.G., M.W. Oswood and J.P Bryant. 1988. Consumption of leaf detritus by a stream 

shredder -  influence of tree species and nutrient status. Hydrobiologia 160: 53-61.

Johnson, J.H. and N.H. Ringler. 1980. Diets of juvenile coho salmon (Oncorhynchus 

kisutch) and steelhead trout (Salmo gairdneri) relative to prey availability. 

Canadian Journal of Zoology 58: 553-558.

Kawaguchi, Y and S. Nakano. 2001. Contribution of terrestrial invertebrates to the 

annual resource budget for salmonids in forest and grassland reaches of a 

headwater stream. Freshwater Biology 43: 303-316.

Kawaguchi, Y, Y. Taniguchi, and S. Nakano. 2003. Terrestrial invertebrate inputs

determine the local abundance of stream fishes in a forested stream. Ecology 84: 

701-708.

Kennedy, T.A. and S.E. Hobbie. 2004. Saltcedar (Tamarix ramosissima) invasion alters 

organic matter dynamics in a desert stream. Freshwater Biology 49: 65-76.

Kennedy, T.A., J.C. Finlay, and S.E. Hobbie. 2005. Eradication of invasive Tamarix 

ramosissima along a desert stream increases native fish density. Ecological 

Applications. 15: 2072 -  2083.

Lacan, I., V.H. Resh, and J.R. McBride. 2010. Similar breakdown rates and benthic

macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in 

Californian streams. Freshwater Biology 55: 739-752.

Leather, S.R. 1996. Prunus padus L. Journal of Ecology 84: 125-132.

Lecerf, A., M. Dobson, C.K. Dang and E. Chauvet. 2005. Riparian plant species loss 

alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146: 

432-442.



14

Lecerf, A., D. Patfield, A. Boiche, M.P. Riipinen, E. Chauvet, and M. Dobson. 2007.

Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia 

japonica). Canadian Journal of Fisheries and Aquatic Sciences 64: 1273-1283.

Mason, C.F. and S.M. MacDonald, 1982. The input of terrestrial invertebrates from tree 

canopies to a stream. Freshwater Biology 4: 305 -311.

Meehan, W.R. 1996. Influence of riparian canopy on macroinvertebrate composition 

and food habits of juvenile salmonids in several Oregon streams. Res. Pap. 

PNW-RP-496. Portland, OR: U.S. Department of Agriculture, Forest Service, 

Pacific Northwest Research Station. 14 p.

Moline, A.B. and N.L. Poff. 2008. Growth of an invertebrate shredder on native

(Populus) and non-native (Tamarix, Elaeagnus) leaf litter. Freshwater Biology 53: 

1012-1020.

Motomori, K., H. Mitsuhashi, and S. Nakano. 2001. Influence of leaf litter quality on the 

colonization and consumption of stream invertebrate shredders. Ecological 

Research 16: 173-182.

Naeem, S., L. J. Thompson, S. P. Lawler, J. H. Lawton and R. M. Woodfin. 1994.

Declining biodiversity can alter the performance of ecosystems. Nature 368:734

736.

Nakano, S., H. Miyasaka, and N. Kuhara. 1999a. Terrestrial-aquatic linkages: riparian 

arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 

2435-2441.

Nakano, S., Y. Kawaguchi, Y. Taniguchi, H. Miyasaka, Y. Shibata, H. Urabe, and N.

Kuhara. 1999b. Selective foraging on terrestrial invertebrates by rainbow trout in 

forested headwater stream in northern Japan. Ecological Research 14: 351-360.

Nakano, S. and M. Murakami. 2001. Dynamic interdependence between terrestrial and 

aquatic food webs. Proceedings in National Academy of Sciences 98: 166-170.



15

Ober, H.K. and J.P. Hayes. 2008. Influence of forest riparian vegetation on abundance 

and biomass of nocturnal flying insects. Forest Ecology and Management 256: 

1124-1132.

Peterson, R.C. and K.W. Cummins. 1974. Processing in a woodland stream. Freshwater 

Biology 4: 345-368.

Piccolo, J.J. and M.S. Wipfli. 2002. Does red alder (Alnus rubra) in upland riparian

forests elevate macroinvertebrate and detritus export to downstream habitats in 

southeastern Alaska? Canadian Journal of Fisheries and Aquatic Sciences 59: 

503-513.

Planty-Tabacchi, A.M., E. Tabacchi, R.J. Naiman, C. Deferrari, and H. Decamps. 1996. 

Invasibility of species-rich communities in riparian zones. Conservation Biology 

10: 598-607.

Read, M.G. and L.A. Barmuta. 1999. Comparisons of benthic communities adjacent to 

riparian native eucalypt and introduced willow vegetation. Freshwater Biology 

42: 359-374.

Romero, N., R.E. Gresswell and J.L. Li. 2005. Changing patterns in coastal cutthroat 

trout (Oncorhynchus clarki clarki) diet and prey in a gradient of deciduous 

canopies. Canadian Journal of Fisheries and Aquatic Sciences 62: 1797-1807.

Sampaio, A., R. Cortes and C. Leao. 2001. Invertebrate and microbial colonization in

native and exotic leaf litter species in a mountain stream. International Review of 

Hydrobiology 86: 527-540.

Sanderson, B.L., K.A. Barnas and A.M. Rub. 2009. Nonindigenous species of the Pacific 

Northwest: An overlooked risk for endangered salmon? BioScience 59: 245 -256.

Schowalter, T.D., W.W. Hargrove, and D.A. Crossley Jr. 1986. Herbivory in forested 

ecosystems. Annual Review of Entomology 31: 177-196.



16

Swan, C.M., B. Healey and D.C. Richardson. 2008. The role of native riparian tree

species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf 

litter in an urban stream. Ecoscience 15: 27-35.

Tabacchi, E., D. L. Correll, R. Hauer, G. Pinay, A.M. Planty-Tabacchi, and R. C.

Wissmar. 1998. Development, maintenance and role of riparian vegetation in the 

river landscape. Freshwater Biology 40: 497-516.

Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The 

river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 

130-137.

Wallace, J.B., S.L. Eggert, J.L. Meyer, and J.R. Webster. 1997. Multiple trophic levels of 

a forest stream linked to terrestrial litter inputs. Science 277: 102-104.

Webster, J.R. and E.F. Benfield. 1986. Vascular plant breakdown in freshwater 

ecosystems. Annual Review of Ecology and Systematics 17: 567-594.

Wiesenborn, W.D. 2005. Biomass of arthropod trophic levels on Tamarix ramosissima 

(Tamaricaceae) branches. Environmental Entomology 34: 656-663.

Wilcove, D.S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos. 1998. Quantifying 

threats to imperiled species in the United States. Bioscience 48: 607-615.

Wipfli, M.S. 1997. Terrestrial invertebrates as salmonid prey and nitrogen sources in

streams: contrasting old-growth and young-growth riparian forests in southeastern 

Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences 54: 1259-1269.

Wipfli, M.S. and D.P. Gregovich. 2002. Export of invertebrates and detritus from fishless 

headwater streams in southeastern Alaska: implications for downstream salmonid 

production. Freshwater Biology 47: 957-969.

Wipfli, M.S. and C.V. Baxter. 2010. Linking ecosystems, food webs, and fish production: 

Subsidies in salmonid watersheds. Fisheries 35: 373-387.



17

Chapter 1

The abundance and distribution of invasive Prunus spp. in riparian forests along

streams in Anchorage, Alaska1

Abstract

Invasive species are a concern worldwide because they are able to displace native species 

and reduce biodiversity. European bird cherry (Prunus padus) is a non-native ornamental 

tree that is spreading rapidly and possibly displacing native trees in riparian forests along 

streams in parts of urban Alaska. Yet there has been little effort to map its distribution and 

understand its ecological effects. We surveyed riparian vegetation along streams in two 

watersheds in Anchorage, Alaska, Campbell and Chester creeks, where P  padus has 

colonized and appears to be spreading. Our surveys found P  padus to be widespread 

along these streams occurring in 40% of plots along Campbell Creek and 55% of plots 

along Chester Creek. P  padus was abundant within the ground cover as seedlings, in the 

understory as saplings, and occurred as mature trees within forest canopies. Distribution 

maps show riparian forests closer to the city center contained more mature plants while 

mostly younger plants composed habitats further upstream. We also documented a second 

species of ornamental cherry (Prunus virginiana) growing along these streams. 

Collectively, these data will help guide management of invasive Prunus species in Alaska 

by providing a baseline inventory as they continue to spread over time.
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1 Roon, D.A., M.S. Wipfli, T.L. Wurtz and A. Prakash. The abundance and distribution of 
invasive Prunus spp. in riparian forests along streams in Anchorage, Alaska. Prepared for 
submission to Biological Invasions.
Introduction

The spread of invasive plant species is a concern worldwide because they can 

cause serious ecological effects - displacing native species, reducing biodiversity, and 

disrupting ecological processes (Hood and Naiman 2000, Sher et al. 2002, Friedman et al. 

2005, Ringold et al. 2008). Riparian zones can support a higher percentage of invasive 

plants than upland habitats due to the combined effects of flood events that disturb 

riparian soils and landscape connectivity linking populations along riparian corridors 

(Planty-Tabacchi et al. 1996, Hood and Naiman 2000). As a result, invasive plants in 

riparian forests are spreading in many locations throughout the world, with notable 

invasions of tamarisk (Tamarix spp.) in the western United States; eucalyptus (Eucalyptus 

spp.) and knotweeds (Fallopia spp.) in Europe; and willows (Salix spp.) in Australia 

(Hood and Naiman 2000, Sher et al. 2002, Friedman et al. 2005, Ringold et al. 2008). 

Alaskan habitats have been considered to be relatively unaffected by invasive species due 

to the state’s geographic isolation. However, recent research has documented invasive 

plants are spreading from urban centers in Alaska into adjacent natural habitats (Carlson 

and Shephard 2007).

European bird cherry (Prunuspadus) is a non-native deciduous tree that is 

spreading rapidly and possibly displacing native trees in riparian forests along streams in 

parts of urban Alaska (Flagstad et al. 2010). Able to tolerate a wide range of climates and 

habitat types in its native Europe, P  padus thrives in cold climates and wet soils, making 

it well suited for riparian zones in Alaska (Leather 1996). Also known as Mayday tree 

and choke cherry, it is frequently planted in Alaska as an ornamental species for its showy 

floral display (Alaska Natural Heritage Program 2006). Birds feed on the cherries and
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disperse the seeds from source trees to adjacent natural areas, creating wild populations 

over time (Alaska Natural Heritage Program 2006). P  padus has spread rapidly in the last 

10 years, and appears to be displacing native trees in riparian forests along streams in 

parts of urban Alaska (Flagstad et al. 2010). P  padus is able to form dense, monotypic 

stands, and among invasive plant species in Alaska it is ranked as ‘highly 

invasive’ (Carlson et al. 2008).While the rapid spread of P  padus in riparian forests has 

been observed, the distribution has not been documented in Alaska.

The objectives of this study were to document the distribution and abundance of 

P  padus along two streams located within the Municipality of Anchorage, Campbell and 

Chester creeks, where this plant is well established, and appears to be spreading. These 

data will provide baseline information for land managers to document its current 

population and understand its future spread.

Study Site

This study focused on two Anchorage streams, Campbell and Chester creeks. 

Chester Creek is a smaller, more urbanized watershed, covering 78 km2 while Campbell 

Creek is larger, less urbanized watershed covering 202 km2 (Ourso and Frenzel 2003). 

Located in the southcentral part of Alaska (61° 10’ N, 149° 45’ W), Anchorage is 

characterized by a coastal climate considered to be a transitional zone between boreal and 

temperate rainforest biomes (Milner and Oswood 2000). Originating in the Chugach 

Mountains, these streams flow west through the urbanized lowlands of the Anchorage 

bowl before ultimately reaching the saltwater of Cook Inlet. Greenbelt corridors of 

municipal parkland parallel the lower portions of both streams, keeping the riparian zones 

largely intact as they flow through Alaska’s largest city (Ourso and Frenzel 2003). Both 

streams support wild populations of Pacific salmon (Oncorhynchus spp.) that provide 

valuable recreational fisheries for local residents.
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Riparian vegetation is composed of mixed coniferous and deciduous forests 

dominated by spruce (Picea spp.), black cottonwood (Populus trichocarpa), paper birch 

(Betula neoalaskana), alder (Alnus spp.), and willow (Salix spp.). EBC is widespread 

along the lower, urbanized portions of these watersheds, completely displacing native 

riparian vegetation in places (Flagstad et al. 2010).

Methods

To determine the distribution of P  padus along Campbell and Chester creeks, we 

surveyed riparian vegetation following the methods outlined by the Alaska Natural 

Heritage Program (Flagstad et al. 2010). Starting at the mouth of each creek, riparian 

vegetation was surveyed systematically every 200 m. We established 5 x 5 m plots (25 

m2) on both banks of the stream channel at 133 locations on Chester Creek (n = 265 total 

plots) in 2009 and 171 locations on Campbell Creek (n = 342 total plots) in 2010. Within 

each plot, all woody tree species were identified, number of stems counted and percent 

cover estimated. All the vegetation data were averaged to calculate mean abundance -  by 

percent cover and stem count. The surveys focused on the lower, urbanized portions of 

the watersheds where P  padus was predicted to be more abundant and continued 

upstream. While the riparian vegetation was intact along the majority of these creeks, we 

were unable to conduct the surveys in some locations because the streamside vegetation 

was absent due to urbanization.

P  padus occurrence and maturity in riparian forests were categorized by the 

following succession levels (Flagstad et al. 2010) as:

0: Completely native. No P. padus present.

1: Native dominant. At least one P  padus seedling present; seedlings comprising 

up to 10% of the understory; P  padus absent from the canopy.
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2: Native less dominant. P  padus comprising 10 to 25% of understory; less than 

10% P. padus in the canopy.

3: Mixed native-Prunus. P. padus comprising 25 to 50% of understory; P. padus 

comprising 10 to 25% of the canopy.

4  Prunus dominant. P. padus dominating understory (25-75%); many P. padus 

(25-50%) comprising the canopy.

5: Prunus monoculture. P. padus dominates the understory (> 75%) and canopy (> 

50%).

GPS coordinates of each survey location were loaded into ArcGIS to map the 

spatial distribution of riparian P  padus along the study streams.

Results

Our surveys found P  padus to be widespread, occurring in 55% of the plots along 

Chester Creek and 40% of the plots along Campbell Creek (Table 1.3). P. padus appeared 

to be very abundant in the understory of riparian forests of both streams. Along Chester 

Creek, P. padus was the most abundant understory species by percent cover and stem 

count, covering a mean of 11.4% of the plot and a mean of 78.4 stems per plot (Table 

1.1). P  padus was the third most abundant understory species by percent cover after alder 

and willow, accounting for a mean of 2.9% cover, along Campbell Creek. However, P. 

padus was the most abundant species by stem count, with a mean of 16.8 stems per plot 

(Table 1.2). A similar pattern of P  padus dominance in the understory appeared when the 

plot succession levels were considered. Plots where the P. padus infestation was limited 

primarily to the understory (Levels 1 and 2) accounted for 41.5% of plots along Chester 

Creek and 33.9% of plots along Campbell Creek (Table 1.3).
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Native riparian tree species dominated the canopy of riparian forests along both 

creeks. Alaska paper birch and cottonwood dominated the canopy of plots along Chester 

Creek, while alder, spruce and birch dominated the canopy of plots along Campbell 

Creek (Tables 1.1 & 1.2). P  padus accounted for 9.3% and 3.4% of the canopy cover of 

plots along Chester Creek and Campbell Creek, respectively (Tables 1.1 & 1.2). 

Succession levels showed P. padus populations were present in the canopy, but occurred 

less frequently than in the understory (Levels 3 and 4), only composing 12.8% of plots 

surveyed along Chester Creek and 4.7% of plots along Campbell Creek. Although rare, 

we observed dense monotypic stands of P  padus (Level 5), where native trees were 

locally displaced. These occurred in 12 plots (4.5%) along Chester Creek and 5 plots (1.5 

%) along Campbell Creek (Table 1.3).

Distribution maps show a semicontinuous distribution of P  padus along the lower 

portions of the Campbell and Chester creek watersheds that becomes more sporadic 

heading upstream (Fig. 1.1). P  padus was more frequent in the urbanized extent of the 

watershed and occurred less often in the less urbanized habitats. Maps also showed that P  

padus infestations were successionally more mature in the more urbanized portion of the 

watershed, and if present, occurred in earlier successional stages further upstream, away 

from the urban center (Fig. 1.1).

Our surveys documented a second species of ornamental cherry, Prunus 

virginiana, also known as Canadian red cherry or chokecherry, growing along these 

streams. Much less common than P. padus, we observed P. virginiana in a total of 35 

plots (13.2%) along Chester Creek and 6 plots (2%) along Campbell Creek (Table 1.4). 

Most abundant in the understory, P  virginiana accounted for 0.3% cover and 0.7 stems of 

the understory per plot along Chester Creek and less than 0.1% cover and 0.1 stems of the 

understory per plot along Campbell Creek (Tables 1.1 & 1.2). P  virginiana was 

distributed more sporadically than P  padus, occurring almost exclusively in the 

urbanized portion of both watersheds (Fig. 1.2).
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Discussion

Our surveys documented P. padus to be widespread along Campbell and Chester 

creeks. Percent cover, stem count, and succession level data show the current population 

of P  padus was mostly limited to the understory of riparian forests, composed of 

seedlings and saplings. Riparian forest canopies appeared to be dominated largely by a 

mix of native spruce, alder, birch, and cottonwood -  with P. padus present, but occurring 

less frequently. However, in a few areas we found P. padus had sufficient time to locally 

displace native species, forming a dense monotypic stand. These patterns suggest that 

while the current population of P  padus is young, occurring mostly in the understory, 

stands are maturing and occupying the canopies in places, and could completely displace 

native species over time.

Two factors should be considered in understanding how the community 

composition of these riparian forests may change over time. First, our stem count data 

show that Ppadus seedlings outnumbered native seedlings dramatically, supporting a 

mean of 16.8 seedlings per plot along Campbell Creek and 78.4 seedlings per plot along 

Chester Creek. Not only could P. padus displace native species as it matures and moves 

into the canopy of riparian forests, but it could also reduce the recruitment of native 

seedlings. Nothing is known about the competitive mechanisms that are responsible for 

this pattern, but many invasive species harbor strong secondary compounds used to 

outcompete native species (Hierro and Callaway 2003). Known to produce cyanogenic 

glycosides, allelopathy could explain P  padus ’ ability to outcompete native species and 

decrease recruitment of native seedlings (Leather 1996, Hierro and Callaway 2003).

Second, the dominant native riparian plant species in coastal Alaska, thin-leaf 

alder (Alnus tenuifolia), has been decreasing in cover across southcentral Alaska from the 

combined effects of a canker and introduced insect pests responsible for defoliating the
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branches (Ruess et al. 2009). Important ecologically as a nitrogen fixer, a decrease in 

riparian alder cover could open up niches along stream banks, facilitating the germination 

and establishment of P. padus (Orlikowska et al. 2004). A shift from alder to P. padus 

could have ecological consequences, possibly affecting nutrient content and cycling of 

stream and riparian ecosystems (Orlikowska et al. 2004). Research has already 

documented some ecological consequences associated with riparian P. padus, finding that 

it may be negatively affecting invertebrate prey communities for stream-rearing 

salmonids in these watersheds (see Chapter 3). The ecological effects highlighted by this 

study could be accentuated if P  padus continues to spread these watersheds.

Our distribution maps show that the current population of P  padus is mostly 

within the residential and urbanized extent of the Campbell and Chester creek 

watersheds. Not only did it occur more frequently in these areas, but these populations 

appeared to be older, characterized by higher succession classes in these areas. P. padus 

also appears to be moving into the more pristine upstream portion of both watersheds. 

Populations in these locations were younger and most frequently characterized by 

seedlings. This pattern is highlighted by differences between watersheds. We documented 

P. padus to be more abundant in the more urbanized, Chester Creek watershed than the 

more pristine, Campbell Creek watershed. We also observed that the second species of 

ornamental cherry, P. virginiana, occurred entirely within the urban extent of each 

watershed and was more abundant along Chester Creek than Campbell Creek. Over time, 

P. virginiana may follow a pattern similar to P. padus, spreading beyond the urbanized 

extent and become established into more pristine areas.

Several mechanisms of spread that are potentially at work could explain the 

current distribution and help predict the future spread of P  padus in these watersheds. 

First, land use is an important factor, with P. padus occurring more frequently in areas 

that have been disturbed through urbanization and residential development. Residential 

areas appear to support the highest abundance and maturity P. padus populations,
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especially evident in the more-urbanized Chester Creek watershed. This could be because 

wild populations have established directly from trees planted in yards adjacent to stream 

channels, or indirectly established from birds feeding on fruits and defecating seeds along 

streams. Birds are thought to be the primary vector responsible for dispersing cherries. 

The spread of a second species of ornamental cherry (P virginiana) along these streams 

further suggests that birds are a likely vector responsible and could spread other non

native fruit-bearing trees (Gosper and Vivian-Smith 2009). Finally, the streams 

themselves could be acting as a vector, carrying the buoyant cherries downstream where 

they eventually could wash up on shore, and germinate. It is difficult to say which 

dispersal mechanisms are most important, or how and if they interact, but they are all 

likely play a role in the spread of Prunus species. Based on the patterns of dispersal, areas 

susceptible to future spread include the upper reaches of these watersheds, other 

watersheds adjacent to the Municipality of Anchorage and others major urban or 

residential areas of Alaska.

In conclusion, we found the current invasion of P. padus along Campbell and 

Chester creeks was mostly in the understory of riparian forests located within the 

urbanized portions of these watersheds. We observed P  padus increasing in canopies, 

capable of locally displacing native species and spreading into less disturbed habitats. P  

virginiana, a second species of ornamental cherry, also appears to be spreading along 

these streams, potentially following a similar trajectory but at an earlier successional 

stage. These data support the observation made by Carlson and Shephard (2007) that like 

other invasive plants in Alaska, while the current distribution of invasive Prunus species 

is largely limited to the urbanized portions of these watersheds, they are beginning to 

spread into adjacent natural habitats. These data in addition to complementary studies 

assessing the ecological effects associated with invasive Prunus species (Chapters 2 & 3) 

will help guide management of invasive Prunus species in Alaska by providing a baseline 

inventory as they continue to spread over time.
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Table 1.1. Vegetation data from Chester Creek plots. Mean understory, canopy and total 
percent cover and stem count values for invasive Prunus spp. and native tree species in 
plots that were surveyed along the more urbanized Chester Creek in 2009 (n = 265).

Species
Understory 
%  Cover Count

Canopy 
% Cover Count

Total 
% Cover Count

Picea spp. 1.4 1.4 7.3 1.3 8.7 2.7
Alnus spp. 1.9 2.1 6.7 1.1 8.6 3.2
Betula neoalaskana 0.9 1.5 24.8 2.0 25.7 3.5
Populus trichocarpa 1.0 2.6 21.5 1.6 22.5 4.3
Salix spp. 5.5 3.6 3.0 0.4 8.5 4.0
Total native species 10.7 11.263.3 6.4 74.0 17.6

Prunus padus 11.4 78.4 9.3 0.7 20.7 79.1
Prunus virginiana 0.3 0.7 0.0 0.0 0.3 0.7
Total Prunus species 11.7 79.1 9.3 0.7 21.0 79.8



30

Table 1.2. Vegetation data from Campbell Creek plots. Mean understory, canopy and 
total percent cover and stem count values for invasive Prunus spp. and native tree species 
in plots that were surveyed along the less urbanized Campbell Creek in 2010 (n = 342).

Species
Understory 
% Cover Count

Canopy 
% Cover Count

Total
% Cover Count

Picea spp. 0.8 0.8 11.8 1.2 12.5 2.0
Alnus spp. 3.6 5.1 18.4 1.9 22.1 7.0
Betula neoalaskana 1.1 3.9 11.2 0.3 12.2 4.3
Populus trichocarpa 0.4 4.6 5.9 0.1 6.3 4.7
Salix spp. 5.5 1.0 0.7 <0.1 6.1 1.0
Total native species 11.4 15.4 48.0 3.6 49.4 19.0

Prunus padus 2.9 16.8 3.4 1.0 6.3 17.8
Prunus virginiana <0.1 <0.1 <0.1 0.0 <0.1 <0.1
Total Prunus species 3.0 16.9 3.5 1.0 6.4 17.9
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Table 1.3. Prunus succession levels along Chester and Campbell creeks. The total 
number of plots that were surveyed per succession level for Prunus padus and Prunus 
virginiana in the more urbanized Chester Creek and less urbanized Campbell Creek.

Species Watershed
Succession Level 
0 1 2 3 4 5 Total

Prunus padus
Chester Creek 109 74 36 22 12 12 265
Campbell Creek 205 96 20 9 7 5 342

Prunus virginiana
Chester Creek 230 33 2 0 0 0 265
Campbell Creek 336 6 0 0 0 0 342
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Fig. 1.1. Distribution of Prunus padus along Chester and Campbell creeks.
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Fig. 1.2. Distribution of Prunus virginiana along Chester and Campbell creeks.
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Chapter 2

Leaf litter processing is similar between native plants and invasive European bird

cherry in urban Alaskan streams1

SUMMARY

1. Invasive species are a concern worldwide because they can displace native species, 

reduce biodiversity and disrupt ecological processes. Because riparian zones link 

terrestrial and aquatic ecosystems, the spread of invasive plants in riparian forests could 

affect stream-riparian interactions, stream food webs and ecosystem function.

2. European bird cherry (Prunuspadus) (EBC) is an invasive ornamental tree that is 

spreading rapidly and possibly displacing native riparian trees along streams in parts of 

urban Alaska.

3. To determine how riparian EBC affects leaf litter processing by aquatic invertebrate 

shredders, we conducted leaf pack experiments in two Anchorage, Alaska streams - 

Campbell and Chester creeks. The first experiment contrasted invasive EBC with three 

native tree species -  thin-leaf alder (Alnus tenuifolia), paper birch (Betula neoalaskana) 

and black cottonwood (Populus trichocarpa) - at a single site in Chester Creek, while the 

second experiment contrasted EBC with native alder at four sites in Campbell and 

Chester creeks.

4. In 2009, EBC leaf litter broke down significantly faster than that of the three native 

species. In 2010, while EBC leaf litter broke down significantly faster than alder in two
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locations in Chester Creek, EBC leaf litter broke down at a similar rate to alder in two 

locations in Campbell Creek.

5. EBC leaf litter supported similar aquatic invertebrate shredder communities compared 

to the leaf litter of native species in both experiments. Shredders did not differ

1 Roon, D.A., M.S. Wipfli, and T.L.Wurtz. Leaf litter processing is similar between native 
plants and invasive European bird cherry in urban Alaskan streams. Prepared for 
submission to Freshwater Biology.
significantly by abundance or biomass, were similar in community structure and grew at 

similar levels between EBC and native species. Collectively, these results indicated that 

shredders utilized EBC leaf litter as a food source similarly to that of the native plant 

species.

6. While the spread of EBC in riparian forests may change the composition of leaf litter 

inputs into Alaska streams, our data show that leaf litter processing by aquatic 

invertebrate shredders was functionally similar between native plants and invasive EBC, 

not disrupting this ecological process in these streams.

Introduction

The spread of invasive plant species are a concern worldwide because they can displace 

native species, reduce biodiversity and disrupt ecological processes (Blossey, 1999; Mack 

et a l, 2000; Dukes & Mooney, 2004). Riparian zones can support a higher percentage of 

invasive plants than upland habitats due to the combined effects of flood events that 

disturb riparian soils and landscape connectivity linking populations along riparian 

corridors (Planty-Tabacchi et al., 1996; Hood & Naiman, 2000). As a result, invasive 

plants in riparian forests are spreading in many locations, with notable invasions of 

Russian olive (Elaeagnus angustifolia) and tamarisk (Tamarix spp.) in the western United 

States; eucalyptus (Eucalyptus spp.) and knotweeds (Fallopia spp.) in Europe; and
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willows (Salix spp.) in Australia (Abelho & Graqa, 1996; Blossey, 1999; Royer et a l, 

1999; Sher et a l, 2002; Friedman et a l, 2005; Lecerf et a l, 2007). Because riparian 

zones link terrestrial and aquatic ecosystems, the spread of invasive plants in riparian 

forests could affect stream organisms, food webs and ecosystem function (Gregory et a l, 

1991; Hood & Naiman, 2000; Gessner & Chauvet, 2002).

One pathway through which invasive riparian plants can affect stream ecosystems 

is by changing the composition of allochthonous leaf litter inputs to streams. Low-order 

streams often rely on leaf litter inputs as basal energetic resources (Vannote et a l, 1980; 

Webster & Benfield, 1986; Wallace et a l, 1997). Aquatic invertebrate shredders feed on 

leaf litter inputs and process them into smaller fragments for other functional feeding 

groups (Vannote et al., 1980; Cummins et al., 1989; Wallace et al., 1997). If an invasive 

plant differs in quality from native species, for example through lower nutrient content, 

increased leaf toughness or presence of secondary plant compounds, it may affect 

shredder feeding activity and litter processing (Irons et a l, 1988; Cummins et a l, 1989; 

Abelho & Graqa, 1996; Motomori et a l, 2001). Previous studies have documented that 

invasive species in riparian zones can affect shredder biodiversity, abundance, 

community structure and growth (Abelho & Graqa, 1996; Bailey et a l, 2001; Dangles et 

a l, 2003; Lecerf et al., 2007; Going & Dudley, 2008; Moline & Poff, 2008).

Because shredders process leaf litter inputs for other functional feeding groups of 

aquatic invertebrates, they have an important functional role in streams supporting upper 

trophic level consumers like stream fishes (Wallace et a l, 1997; Baxter et a l, 2005). If 

invasive species negatively affect shredder communities, effects could be expressed 

through multiple trophic levels, and disrupt ecological processes and functional integrity 

of streams (Cummins et al., 1989; Gessner & Chauvet, 2002; Baxter et al., 2005).

European bird cherry (Prunus padus) (EBC) is a non-native ornamental tree 

frequently planted in Alaska for its showy floral display (Alaska Natural Heritage 

Program, 2006). Birds feed on the cherries and disperse the seeds from source trees to
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adjacent natural areas, creating wild populations over time (Alaska Natural Heritage 

Program, 2006). Able to tolerate a wide range of climates and habitat types in its native 

Europe, EBC thrives in cold climates and wet soils, making it well suited for riparian 

zones in Alaska (Leather, 1996). EBC has spread rapidly in the last 10 years in Alaska, 

and appears to be displacing native trees in riparian forests along streams in parts of 

urban Alaska (Flagstad et al., 2010). EBC is able to form dense, monotypic stands and 

among invasive plant species in Alaska is ranked as “highly invasive” (Carlson et a l, 

2008).

At the same time, the dominant riparian tree species, thin-leaf alder (Alnus 

tenuifolia), appears to be decreasing across southcentral Alaska due to the combined 

effects of a canker and invasive insect pests that defoliate it (Ruess et a l, 2009). As a 

nitrogen fixer, alder is an important source of nitrogen for riparian and stream ecosystems 

(Helfield & Naiman, 2002) and is a desirable food source for aquatic invertebrate 

shredders (Irons et al., 1988; Motomori et al., 2001). This shift in riparian vegetation 

from alder to EBC could have dramatic effects on stream food webs by changing the 

composition and quality of leaf litter inputs entering streams where this tree has 

colonized.

To determine if EBC affects leaf litter processing by aquatic invertebrate 

shredders in Alaska streams, the objectives of this study were to: 1) contrast leaf litter 

breakdown rates between EBC and native plants in selected urban Alaska streams, and 2) 

compare shredder communities associated with EBC leaf litter and that of native tree 

species. Based on previous studies looking at Prunus leaf litter, we hypothesized that 

EBC would break down faster than native species (Collen, 1994; Grubbs & Cummins, 

1994). We also hypothesized that because EBC is a novel resource in these streams and 

may differ in leaf quality, EBC would support fewer aquatic invertebrate shredders than 

native plants. These data will help us understand how EBC leaf litter is processed in 

streams relative to native plant species and to what extent aquatic invertebrate shredders
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utilize EBC leaf litter as a food source, and will provide insight into whether riparian 

EBC can disrupt certain ecological processes important in stream ecosystems.

Methods

Study area

This study focused on two streams in the Municipality of Anchorage, Campbell and 

Chester creeks, where EBC is abundant (Chapter 1). Located in the southcentral part of 

the state, Anchorage, Alaska is characterized by a coastal climate considered to be a 

transitional zone between boreal and temperate rainforest biomes (Milner & Oswood, 

2000). Originating in the Chugach Mountains, these streams flow west through the 

urbanized lowlands of the Anchorage bowl before ultimately reaching the saltwater of 

Cook Inlet. Greenbelt corridors of municipal parkland parallel the lower portions of both 

streams, keeping the riparian zones largely intact as they flow through the city (Fig. 2.1) 

(Ourso & Frenzel, 2003). Chester Creek is a second-order stream covering 78 km2 and 

Campbell Creek is a fourth-order stream covering 158 km2 (Fig. 2.1). Riparian vegetation 

is composed of mixed coniferous and deciduous forests dominated by spruce (Picea 

spp.), black cottonwood (Populus trichocarpa), paper birch (Betula neoalaskana), alder 

(Alnus spp.), and willow. EBC is widespread along the lower, urbanized portions of these 

watersheds, completely displacing native riparian vegetation in places (Flagstad et a l, 

2010).

Study site characteristics

We measured selected physical habitat and stream chemistry parameters to characterize 

and describe the study sites. Total canopy cover and canopy composition were measured 

with a handheld densiometer. Discharge was calculated using monthly flow 

measurements taken at each study site with a flow meter (Flo-Mate 2000, Marsh-
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McBirney Inc., Hach, CO). Stream pH and conductivity were taken monthly with a 

Hanna combination meter® (Hanna Instruments, Woonsocket, RI). Stream temperature 

was measured hourly with StowAway Tidbit Temperature data loggers® (Onset Computer 

Corporation, Pocasset, MA) to calculate mean temperature and total degree days 

accumulated throughout the experiments.

Leaf pack experiments

We conducted leaf pack experiments to determine EBC leaf litter processing rates relative 

to leaf litter of native riparian tree species, following the procedure outlined by Benfield 

(1996). The autumn before the experiment, senesced leaf litter was collected after 

abscission, air dried and stored in paper bags in dark rooms. Shortly before the 

experiments commenced, we dried the leaves at 60 °C for 24 hours. We constructed leaf 

packs from 10 mm mesh bags (20 x 20 cm) filled with 4 g of senesced leaf litter from a 

single species. Leaf packs were deployed randomly in a riffle habitat of stream and 

tethered to the streambed. At each removal date, we removed random sets of leaf packs, 

stored them in Ziploc® bags and refrigerated them until processed in the lab. To quantify 

leaf mass loss due to handling, an extra set of “handling loss” packs followed this 

procedure but were not left in the stream over time.

We set up two complementary leaf pack experiments with slightly different 

designs. In 2009, to determine how EBC leaf litter compared to the leaf litter of the 

dominant native species, we deployed leaf packs of four species -  EBC and three native 

species including thin-leaf alder, paper birch, and black cottonwood - in the Chester 

Creek “urbanized” site where EBC dominated the riparian forest canopy. Five replicate 

leaf packs of all four species were removed at four dates (after 2, 22, 43 and 63 days) for 

a total of 80 leaf packs. In 2010, leaf pack experiments were conducted in four locations. 

We did this to determine if patterns in 2009 were repeated at the different locations 

subject to different habitat conditions, such as possible differences in thermal and flow
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regimes, aquatic invertebrate communities, and degrees of urbanization. Leaf packs of 

EBC and native alder were deployed in four sites using the same site from 2009 in 

Chester Creek and three new sites - an additional site in Chester Creek and two in 

Campbell Creek. We deployed leaf packs in a downstream “urbanized” reach and 

upstream “reference” reach of each stream. Three replicate packs of two species were 

removed over four dates (after 2, 12, 27, 54 days) at four sites for a total of 96 packs.

Laboratory procedures

Once removed from the stream, leaf packs were processed immediately in the lab. Leaves 

were rinsed with water over a 250 pm sieve to remove sediment and aquatic 

invertebrates. Leaves were then dried in a drying oven for 24 hr at 60°C and ashed at 

550°C to calculate ash free dry mass (AFDM). AFDM was subtracted from the AFDM of 

the handling loss packs to calculate percent mass loss over time.

All sediment and aquatic invertebrates collected in the 250 pm sieve were stored 

in 90% ethanol in Whirlpaks® (Nasco, Fort Atkinson, WI) until later processed in the lab. 

While other functional feeding groups of aquatic invertebrates colonized the leaf packs, 

we focused exclusively on shredding taxa (Merritt & Cummins, 1996). Aquatic 

invertebrate shredders were identified to family, enumerated and their length measured to 

estimate biomass using published length-weight regressions (Benke et al., 1999).

Statistical analysis

To compare the rate of leaf litter breakdown between EBC and native riparian plants, we 

used an ANCOVA model where leaf species and time were used to predict breakdown 

rate. Leaf litter breakdown rates were determined using an exponential decay model: Wt = 

W0 e-kt, where W0 is the initial AFDM (g), Wt is the final AFDM (g) at time t, and k  is the 

decay coefficient (Peterson & Cummins, 1974; Benfield, 1996). We then solved for the 

breakdown rate (k) where k  is equal to the slope coefficient of the line when comparing
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the natural log of % AFDM remaining over time. In 2009, we compared EBC to three 

native species at one site and in 2010 we compared EBC to alder at four sites. To account 

for differences in stream temperature between sites, we compared breakdown rates by 

day (number of days in stream) and by degree day (accumulated temperature above 0 °C 

during the experiment).

To compare differences in aquatic invertebrate shredders associated with EBC and 

native riparian plants, in 2009 we used a repeated measures ANOVA where leaf species 

and time were used to predict shredder abundance (number) and biomass. However, in 

2010, to account for differences between sites and streams we used a repeated measures 

ANOVA modified with a nested design, where leaf packs were nested within sites and 

sites were nested within streams. Shredder abundance and biomass data violated 

assumptions of equal variance and normality so we applied a log (x +1) transformation. 

We compared the community structure of aquatic invertebrate shredders by mean 

abundance and biomass between EBC and native riparian plant species using a nonmetric 

multidimensional scaling (NMDS) ordination. To compare invertebrate growth with 

different leaf species (EBC vs. native), we made proxy observations measuring the 

percent change in shredder length (mm) of each taxa over the duration of each leaf pack 

experiment. All data were analyzed with the statistical program R (R Development Core 

Team, version 2.10.1).

Results

Study site characteristics

All sites with the exception of the Campbell Creek urbanized site were small streams less 

than 6 m in width, 1 m3 s-1 discharge and greater than 50% canopy cover. EBC was 

present in the canopy at three of the four study sites, being most abundant at the two 

urbanized sites along Campbell Creek and Chester Creek (Table 2.1). Study sites varied 

substantially by stream temperature, with the downstream, urbanized sites averaging a



42

higher temperature and accumulating more degree days than the reference sites further 

upstream in both Campbell and Chester creeks (Tables 2.1 & 2.2).

Leaf litter breakdown

Leaf pack experiments showed that EBC and some native species leaf litter broke down 

at slightly different rates. In 2009, all four species broke down quickly in the Chester 

Creek urbanized site, losing over 50% of their initial mass within the first 23 days and 

90% of their mass after 43 days of being placed in the stream (Fig. 2.2). When comparing 

breakdown rates (k) by day, there was a significant effect of leaf species and date 

(ANCOVA; leaf species: F4,95 = 134.3, P  < 0.001; date: F4,95 = 134.3, P  < 0.001). EBC 

leaf litter broke down significantly faster than all native species, including alder (P = 

0.045), birch (P = 0.005) and cottonwood (P < 0.001) (Table 2.2). A similar pattern was 

seen when comparing breakdown rates (k) by degree day (ANCOVA; leaf species: F4,95 = 

137.3, P  < 0.001; date: F495 = 137.3, P  < 0.001). EBC broke down significantly faster 

than all native species, including alder (P = 0.044), birch (P = 0.005) and cottonwood (P 

< 0.001) (Table 2.2).

In 2010, EBC leaf litter broke down faster than alder in all four sites in Campbell 

and Chester creeks (Fig. 2.3). When comparing breakdown rates k  by day, EBC leaf litter 

broke down more quickly, ranging between 0.0377 to 0.0772 k  day-1, compared to alder, 

which ranged from 0.0267 and 0.0569 k  day-1 (Table 2.2). Both alder and EBC leaf litter 

broke down fastest at the Chester Creek urbanized site (k day-1), which had the highest 

average stream temperature and accumulated the most degree days. While the slowest 

breakdown rate (k day-1) for alder leaf litter occurred at the site with the coolest 

temperatures, it did not for EBC. EBC leaf litter (0.0036 - 0.0081 k  degree day-1) also 

broke down faster than alder (0.0027 - 0.0044 k  degree day-1) when comparing 

breakdown rates by degree days (Table 2.2).
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While time (by day or degree days) had a significant effect across all sites, there 

was no consistent effect of leaf litter species. EBC broke down significantly faster than 

alder by both day and degree days in the Chester Creek urbanized site (ANCOVA; day: 

F2,27 = 91.2, P  = 0.015; degree day: F2,27 = 95.5, P  = 0.014) and the Chester Creek 

reference site (ANCOVA; day: F 2,27 = 83.1, P  = 0.008; degree day: F 2,27 = 81.7, P  =

0.009) (Table 2.2). While EBC also broke down faster than alder in both sites in 

Campbell Creek, the differences were not significant in the urbanized site (ANCOVA; 

day: F 2,27 = 133.7, P  = 0.089; degree day: F 2,27 = 118.8, P  = 0.106) or the reference site 

(ANCOVA; day: F2,2i = 59.8, P  = 0.102; degree day: F2,2i = 54.7, P  = 0.114) (Table 2.2).

Aquatic invertebrate shredders

Aquatic invertebrate shredders were abundant in Campbell and Chester creeks, 

colonizing both EBC and native leaf litter. In 2009, limnephilid caddisflies (which 

included a combination of Ecclisocosmoecus spp., Ecclisomyia spp., Hesperophylax spp., 

Onocosmoecus spp. and Psychoglypha spp.) were the most abundant taxa accounting for 

more than 66% of shredder abundance and 90% of shredder biomass for all litter types 

except cottonwood (Table 2.3). Nemourid stoneflies (Zapada spp.) were the most 

abundant shredder by number associated with cottonwood leaf litter, accounting for 63% 

while only comprising between 23 - 32% of other litter types by number and less than 5% 

by biomass (Table 2.3). Tipulid craneflies (Tipula spp.) were also present but rare, only 

occurring on alder and birch litter (Table 2.3). In 2010, limnephilid caddisflies again were 

the dominant shredder taxa by number and biomass for alder and EBC at all sites except 

the Campbell Creek reference site where nemourid stoneflies dominated (Table 2.3). 

Tipulid craneflies colonized both EBC and alder leaf litter in 2010 but did not account for 

much biomass (Table 2.3).

In 2009, alder and birch leaf litter supported the highest numbers of shredders and 

while shredder abundance varied significantly by date, there was no significant difference
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between EBC and native species or species x date interaction (repeated measures 

ANOVA; leaf species: F 3,64 = 0.9, P  = 0.439; date: F 3,64 = 20.1, P  < 0.001; species x date 

interaction: F 9,64 = 0.8, P  = 0.597) (Fig. 2.4a). Shredder biomass did not differ 

significantly between EBC and native species (repeated measures ANOVA; species: F3,64 

= 0.6, P  = 0.641) or by date (F3,64 = 1.8, P  = 0.179) (Fig. 2.4b). Alder supported the 

highest overall biomass of shredders throughout the experiment, but this difference was 

not significantly greater than EBC (P = 0.731). Nor did shredder biomass differ 

significantly between EBC and birch (P = 0.932) or cottonwood (P = 0.638) (Fig. 2.4b).

In 2010, overall shredder abundance varied significantly by stream, date, sites 

nested within stream, but not by leaf species nested within site (nested repeated measures 

ANOVA: stream: F 173 = 17.1, P  < 0.001; date: F 3,73 = 25.5, P  < 0.001; sites nested within 

stream: F 2,73 = 8.4, P  < 0.001, leaf species nested within sites: F 4,73 = 2.3, P  = 0.064 (Fig. 

2.5a). Shredder abundance on alder leaf litter deployed in the Chester Creek was higher 

and marginally significant relative to EBC (P = 0.057) (Fig. 2.5a). Otherwise, shredder 

abundance did not differ significantly by leaf species at the remaining sites (Chester 

Creek reference P  = 0.522; Campbell Creek urbanized P  = 0.176; Campbell Creek 

reference P  = 0.272) (Fig. 2.5a). Shredder biomass varied significantly by date, sites 

nested within stream, but not by stream or leaf species nested within site (nested repeated 

measures ANOVA: date: F 3,73 = 22.6, P  < 0.001; sites nested within stream: F 2,73 = 22.3,

P  < 0.001; stream: F1,73 = 0.3, P =0.567; or leaf species nested within site: F4,73 =1.2, P  = 

0.299) (Fig. 2.5b). Shredder biomass did not differ significantly between leaf species at 

sites in Campbell Creek (urbanized site P  = 0.296; reference site P  = 0.141) or in Chester 

Creek (urbanized site P  = 0.459; reference site P  = 0.342) (Fig. 2.5b).

Shredder community structure did not appear to differ between EBC and native 

riparian tree species. NMDS ordination plots showed no clear differences between EBC 

and native leaf species for shredder abundance or biomass (Fig. 2.6). Instead, shredder 

communities grouped more closely by stream and site than by species.
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Shredder growth did not show any clear patterns between years or among leaf 

litter species (Table 2.4). In 2009, limnephilid caddisflies grew in length by 46% on birch 

and by 85% on cottonwood leaf litter but decreased in size by 23% on alder and 21% on 

EBC. Nemourid stoneflies grew on all leaf litter species with the greatest growth 

occurring with EBC leaf litter (43%) (Table 2.4). Tipulid craneflies only occurred on 

alder and birch leaf litter at one removal date so we were unable to calculate growth. In 

2010, both limnephilid caddisflies (43% vs. 16%) and nemourid stoneflies (41% vs. 37%) 

grew more on EBC leaf litter than alder while tipulid craneflies grew more on alder than 

EBC (66% vs. 10%) (Table 2.4).

Discussion

We found EBC leaf litter broke down quickly in Anchorage streams. In 2009, EBC leaf 

litter broke down significantly faster than all native species (alder, birch and cottonwood) 

when deployed in the Chester Creek urbanized site. In 2010, while EBC leaf litter broke 

down significantly faster in the two sites in Chester Creek, the differences were not 

significant in the Campbell Creek sites. It is unclear why the streams differed in statistical 

significance, but it could be due to the increased flow in Campbell Creek, a fourth order 

stream. Because leaf litter breakdown is a combination of physical and biological 

processes, the increased flow may have heightened the physical abrasion that the leaf 

litter of both species was subjected to, possibly muting the biological factors responsible 

for the differences in breakdown rates seen in Chester Creek (Peterson & Cummins,

1974; Webster & Benfield, 1986).

These results partially support our hypothesis that EBC leaf litter would break 

down more quickly than the leaf litter of native species. Studies by Cummins et al.

(1989) and Grubbs and Cummins (1994) also documented Prunus leaf litter to break 

down quickly in streams and categorized Prunus species as ‘fast’ decomposers. A study
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by Collen (1994) found EBC leaf litter broke down faster than alder and birch leaves in 

Scottish streams. However, our results conflict with other studies examining leaf litter 

breakdown of invasive species in streams. These studies found that in some cases 

differences in leaf litter quality can negatively affect the microbial colonization and 

conditioning of leaf litter (Webster & Benfield, 1986; Graqa, 2001; Lecerf et al., 2007). 

This resulted in slower breakdown rates relative to native species with invasive plants 

like eucalyptus, Japanese knotweed, and tamarisk (Abelho & Graqa, 1996; Sampaio et 

al., 2001; Kennedy & Hobbie, 2004; Braatne et al., 2007; Lecerf et al., 2007; Going & 

Dudley, 2008).

In our study, EBC leaf litter broke down at a similar or faster rate than native 

species at all sites in both experiments. Although it is likely that EBC differed from 

native species in leaf chemistry, we observed no decrease in leaf litter breakdown rate. In 

this case, it could be that the physical structure of the leaf litter was more influential than 

leaf chemistry causing the thin EBC leaves to fragment more quickly than the thicker 

native species (Peterson & Cummins 1974; Webster & Benfield, 1986). As a result, we 

observed patterns more similar to the other Prunus studies than the studies examining 

other invasive species.

Aquatic invertebrate shredders utilized EBC leaf litter, colonizing leaf packs 

deployed in Campbell and Chester creeks. Conflicting with our hypothesis, EBC leaf 

litter appeared to support similar shredder communities relative to native species. We 

observed that shredders in EBC leaf packs did not differ significantly by abundance or 

biomass compared to the leaf packs of native species of leaf litter. A NMDS ordination 

found that shredder community structure was more likely to differ by site and stream than 

it was by leaf litter species (EBC vs. native). Finally, all shredder taxa, including 

limnephilid caddisflies, nemourid stoneflies and tipulid craneflies, grew on EBC leaf 

litter and sometimes were more than on the leaf litter of native species. Although 

limnephilid caddisflies feeding on EBC leaf litter actually decreased in size in 2009, this
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could be due to a decrease in food availability at the last removal date or the colonization 

by smaller instars of shredders rather than an indication of nutritional quality.

Collectively, these data indicate that aquatic invertebrate shredders utilized EBC leaf 

litter as a food source in these streams.

While our results conflict with our hypothesis that shredders would be less likely 

to utilize EBC leaf litter inputs than native species, they are supported by previous 

studies. Grubbs and Cummins (1994) found that shredders in midwestern streams were 

abundant in Prunus serotina leaf packs. Another study found shredders colonized Prunus 

padus leaf litter at equal levels to alder and birch leaf litter in Scottish streams (Collen, 

1994). One limiting factor to these studies is they consider shredder utilization of Prunus 

leaf litter in native habitats (Thompson & Townsend, 2003). However, our results are also 

supported by an experiment conducted in Anchorage streams finding no significant 

differences in survival or growth of Psychoglypha caddisflies when fed EBC leaf litter 

compared to mixed native/EBC leaf litter and exclusively native (alder and birch) leaf 

litter (Merrigan, 2011). These data complement our findings suggesting that shredders 

can survive and grow on EBC leaf litter at similar levels to the leaf litter of native 

species. It is still unknown whether, if given a choice, shredders would feed preferentially 

on EBC leaf litter. This question could be addressed via feeding bioassays.

Many studies have cited concerns that differences in leaf chemistry of invasive 

plant species can negatively affect leaf litter processing by shredders (Abelho & Gra9a, 

1996; Sampaio et a l, 2001; Braatne et a l, 2007; Lecerf et a l, 2007; Going & Dudley,

2008). While we did not analyze leaf chemistry in our study, we can still make 

conclusions about the suitability of EBC as a food source by looking at the functional 

response of shredders. In contrast to these studies, our data showed shredders fed on EBC 

leaf litter at similar levels to native species suggesting that any potential difference in leaf 

chemistry did not appear to have any significant effect on shredder communities. The 

rapid breakdown rate of EBC resulted in leaf litter that conditioned quickly in streams
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and provided a readily available food source for stream shredders. Our results align with 

the observations from Cummins et al. (1989) that shredders were less concerned with 

individual species of leaf litter than the state of leaf litter conditioning (Graqa, 2001; 

Sampaio et a l, 2001; Braatne et al., 2007; Lacan et al., 2010).

Although we detected no substantial ecological effects of EBC in these streams, 

the spread of EBC in riparian forests could have other ecological consequences we did 

not evaluate. The shift from native trees to EBC in riparian forests may alter the timing of 

leaf litter inputs entering streams. We observed EBC held onto its leaves later than other 

deciduous trees, delaying when leaf litter inputs enter the stream channel (Roon, personal 

observation). In addition to the delayed timing of inputs, the rapid breakdown of EBC 

leaf litter entering the stream at a single time could result in a pulse of resources that 

disappears quickly. Moline & Poff (2008) highlighted leaf litter retention as a concern 

with tamarisk in Colorado streams. If the phenology of leaf litter inputs does not match 

shredder life histories, a ‘trophic mismatch’ could result that reduces shredder abundance 

and affect litter processing in streams lined by riparian EBC (Strayer, 2010).

As EBC continues to spread in Alaska’s riparian forests, it may also homogenize 

the diversity of leaf litter inputs available to shredders. Especially in streams lined by 

mixed deciduous forests, such as those of coastal Alaska, shredders receive a wide range 

of leaf litter inputs that enter the stream channel at different times and break down at 

different rates, providing shredders with what Peterson & Cummins (1974) referred to as 

a ‘processing continuum’ of resources. This ‘processing continuum’ of leaf litter inputs 

for shredders can be altered by the homogenization of these inputs (Peterson & Cummins, 

1974). A study by Jonsson et al. (2001) found that shredder diversity in boreal streams 

was important for leaf litter processing. This supports the hypothesis made by Dangles et 

al. (2003) that invasive plants (in this case Japanese knotweed) can reduce the diversity 

of shredders and the shredders ability to process leaf litter in streams. Because shredders 

support other functional feeding groups of aquatic invertebrates, which collectively act as
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major prey sources for upper trophic level consumers, including stream fishes, the loss in 

shredder diversity could have detrimental effects on the functional integrity of streams 

(Cummins et a l, 1989; Gessner & Chauvet, 2002; Baxter et a l, 2005).

The shift in riparian vegetation from alder to EBC could have dramatic effects on 

stream food webs. Alder is an important source of nitrogen for stream and riparian 

ecosystems (Helfield & Naiman, 2002). Much research in Alaska has documented the 

value of alder for stream productivity, nutrient cycling and as a preferred food source for 

shredders and other aquatic invertebrates (Irons et a l, 1988; Piccolo & Wipfli, 2002; 

Orlikowska et a l, 2004). Thus, the loss of alder and spread of EBC in riparian forests 

could have perpetuating direct and indirect ecological effects in streams by decreasing the 

amount of nitrogen available for nutrient cycling or by changing the composition of leaf 

litter inputs in entering Alaskan streams (Lecerf et a l, 2005; Strayer, 2010)

As invasive species continue to spread across landscapes, it is important to 

understand the ecological interactions and effects in their new environs (Strayer, 2010). 

This is especially true in riparian forests where the spread of invasive plants has the 

potential to affect both terrestrial and aquatic organisms, as well as the exchange of 

resources between the two (Baxter et a l, 2005). It is difficult to predict which invasive 

species will be problematic, as previous studies have found varying and even conflicting 

results sometimes within the same species (Abelho & Gra9a, 1996; Lacan et a l, 2010). 

Our study found that the spread of EBC in riparian forests does not appear to be markedly 

disrupting the ecological processes of leaf litter breakdown and aquatic invertebrate 

shredder colonization in these urban Alaska study streams. These results suggest that with 

respect to leaf litter processing by shredders, EBC appears to be functionally similar to 

native species. Collectively, these results provide clues about the extent to which invasive 

riparian plants can affect native species and ecological processes in stream ecosystems of 

Alaska.
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Table 2.1. Study site characteristics of leaf pack experiments in Campbell and Chester 
creeks.

Parameter

Stream and Site 
Chester Creek 
(urbanized) (reference)

Campbell Creek 
(urbanized) (reference)

GPS Location N: 61.19284 N: 61.20366 N: 61.14754 N: 61.16865
W: -149.83014 W: -149.79013 W: -149.89041 W: -149.7634

Elevation (m) 60 71 12 98
Canopy Cover (%) 92.5 89.6 37.8 74.0
Canopy Composition B>EBC>A>S S>A>B>EBC A>B>EBC>S A>B>C>S
Stream Width (m) 3.6 2.8 11.5 5.7
Discharge (m3 s-1) 0.55 0.11 2.43 0.72
Stream Temp (°C) 12.4 6.2 10.1 8.7
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pH 7.9 7.5 8.0 7.6
Conductivity (^Scm -1) 236 273 116 148
Canopy composition species include A= Alder, B= Birch, C= Cottonwood, EBC= 
European bird cherry, S= Spruce.

Table 2.2. Breakdown rates (k) of EBC and native leaf litter. Breakdown rates (k) were 
calculated per day and per degree day for both leaf pack experiments in Chester and 
Campbell creeks.
Stream Degree Leaf k  (day) r2 P-value k  (degree r2 P-value
Site Days Species vs. EBC* day) vs. EBC*
2009
Chester 854 Alder 0.0691 0.92 0.046 0.0052 0.92 0.044
-urbanized Birch 0.0650 0.87 0.005 0.0048 0.87 0.005

Cottonwood 0.0495 0.82 <0.001 0.0037 0.83 <0.001
EBC 0.0821 0.86 0.0061 0.86
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2010
Chester 672 Alder 0.0569 0.90 0.015 0.0044 0.91 0.014
-urbanized EBC 0.0772 0.88 0.0060 0.89

Chester 333 Alder 0.0267 0.93 0.008 0.0042 0.93 0.009
-reference EBC 0.0512 0.94 0.0081 0.94

Campbell 545 Alder 0.0287 0.97 0.089 0.0027 0.96 0.106
-urbanized EBC 0.0377 0.90 0.0036 0.89

Campbell 470 Alder 0.0395 0.86 0.102 0.0044 0.85 0.114
-reference EBC 0.0665 0.87 0.0073 0.85
* Numbers in bold indicate that the differences between native species and EBC are 
statistically significant (P < 0.05).

Table 2.3. Shredder composition associated with EBC and native leaf litter. The percent 
composition of shredder taxa by count and biomass (mg) present in leaf packs for leaf 
pack experiments in 2009 and 2010.

Shredder Taxa
Stream Leaf Limnephilidae Nemouridae Tipulidae
Site Species Count Mass Count Mass Count Mass
2009
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Chester Alder 66.1 98.0 32.2 1.0 1.7 1.0
-urbanized Birch 69.4 91.9 29.1 1.5 1.5 6.6

Cottonwood 36.7 95.9 63.3 4.1 0.0 0.0

2010
EBC 77.0 99.1 23.0 0.9 0.0 0.0

Chester Alder 76.2 97.1 23.2 2.8 0.6 0.1
-urbanized EBC 73.0 95.4 22.5 2.6 4.5 2.0

Chester Alder 94.9 98.1 1.3 0.1 3.8 1.8
-reference EBC 98.6 99.8 0.0 0.0 1.4 0.2

Campbell Alder 72.0 94.8 24.6 2.7 3.4 2.5
-urbanized EBC 67.0 88.5 16.9 2.4 16.1 9.1

Campbell Alder 12.3 63.1 85.6 35.4 2.1 1.5
-reference EBC 8.2 39.5 90.2 59.3 1.6 1.2

Table 2.4. Shredder growth associated with EBC and native leaf litter. Growth was 
calculated by the percent change in length (mm) over the duration of each leaf pack 
experiment for each shredder taxa for both 2009 and 2010 leaf pack experiments.

Shredder Growth
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Leaf Species Limnephilidae Nemouridae Tipulidae
2009
Alder -23.4 39.8 0.0
Birch 45.7 36.7 0.0
Cottonwood 85.0 37.8 -
EBC -20.6 42.9 -

2010
Alder 15.5 36.7 65.7
EBC 42.7 41.2 10.2
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Fig. 2.1. Map of leaf pack study sites in Campbell and Chester creeks.
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Fig. 2.2. Breakdown of EBC and native leaf litter in Chester Creek in 2009. Percent of 
ash free dry mass that was remaining over time for EBC and native alder birch and
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cottonwood leaf packs deployed in the Chester Creek urbanized site in 2009. Error bars 
represent standard errors.
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Fig. 2.3. (a-d) Breakdown of EBC and alder leaf litter in Campbell and Chester creeks in 
2010. Percent of ash free dry mass that was remaining over time for EBC and native alder 
leaf packs deployed in a) Chester Creek urbanized site, b) Chester Creek reference site, c) 
Campbell Creek urbanized site, and d) Campbell Creek reference site in 2010. Error bars 
represent standard errors.
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A ld e r  B irc h  C o tto n w o o d  E B C

A ld e r  B irc h  C o tto n w o o d  E B C

L e a f  l it te r  s p e c ie s
Fig. 2.4. (a-b) Abundance and biomass of aquatic
invertebrate shredders in 2009. Mean abundance (a) and biomass (b) of shredders that 
were associated with EBC and native alder, birch and cottonwood leaf packs in the 
Chester Creek urbanized site in 2009. Error bars represent standard errors.
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Fig. 2.5. (a-b) Abundance and biomass of aquatic invertebrate shredders in 2010. Mean 
abundance (a) and biomass (b) of shredders that were associated with EBC and native
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L e a f  s p e c ie s  

A  A ld e r  .
_  .  _ Fig. 2.6. (a-b)

O D , r c n  shredders.
V  C o t t o n w o o d  
•  E B C

Error bars ®  / ~ | \
represent standard errors.

• A  • •Community structure of aquatic invertebrate 
NMDS ordination plots comparing shredder 
community structure between EBC and native leaf 
species from both leaf pack experiments by (a) 
mean abundance and (b) mean biomass.

Chapter 3
£Invasive European bird cherry disrupts w  stream-

riparian linkages: influence on terrestrial invertebrate prey subsidies 

for juvenile coho salmon1

V
Abstract

EuropeanT)ixdcherry(Pn/7H/s£a6^^

spreading and - possibly displacing native riparian trees along •  (b) 
streams in parts of urban Alaska. The spread of EBC may affect stream-riparian 

linkages, including terrestrial prey subsidies to stream consumers. To examine whether 

riparian EBC is \  affecting terrestrial invertebrate prey abundance and subsidies 

for stream salmonids, we sampled terrestrial invertebrates on the foliage of riparian
A

tree branches, their inputs into streams collected by floating pan traps, and

consumption by juvenile coho salmon (Oncorhynchus kisutch) in two

Anchorage, Alaska streams, Campbell and Chester creeks. Foliage on EBC

branches supported a significantly lower biomass of terrestrial invertebrates than

the native deciduous , ‘ . trees thin-leaf alder (Alnus tenuifolia) and paper birch

(Betula neoalaskana), but a significantly greater biomass than spruce (Picea spp.).

EBC contributed significantly lower inputs of terrestrial invertebrate
 ___________________________________

biomass to streams than mixed native vegetation in both Campbell
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and Chester creeks. We did not detect significantly different amounts of ingested 

terrestrial invertebrates by fish between EBC and native tree patches along streams. 

Community structure and overlap of terrestrial invertebrates varied between years, not 

showing any clear negative effect of EBC on prey resources for fish. Although EBC is 

affecting the abundance and availability of terrestrial invertebrates, we did not detect a 

direct effect on prey resources consumed by juvenile coho salmon in these streams. 

Lowered prey abundance as measured in this study may have long-term consequences for 

stream salmonids as EBC continues to spread along streams over time.

1 Roon, D.A., M.S. Wipfli, T.L. Wurtz and A.L. Blanchard. Invasive European bird cherry 
disrupts stream-riparian linkages: influence on terrestrial invertebrate prey subsidies for 
juvenile coho salmon. Prepared for submission to Canadian Journal for Fisheries and 
Aquatic Sciences.

Introduction

Invasive plant species are a concern worldwide because they can displace native 

species, reduce biodiversity and disrupt ecological processes (Wilcove et al. 1998; Dukes 

and Mooney 2004). Invasive plants can grow in dense patches, outcompeting nearby 

native species for resources (e.g. light, water and nutrients) (Friedman et al. 2005; 

Kennedy et al. 2005). They can also exhibit allelopathic properties, negatively affecting 

germination and growth of native species (Hierro and Callaway 2003). As a result, 

invasive plants are spreading in many locations across the world (Sher et al. 2002; Dukes 

and Mooney 2004; Friedman et al. 2005; Ringold et al. 2008)

Riparian zones are highly susceptible to the spread of invasive plants (Gregory et 

al. 1991; Hood and Naiman 2000). The combination of flood events that disturb riparian 

soils and extensive habitat connectivity create ideal conditions for invasive plants to 

spread (Hood and Naiman 2000). As a result, riparian forests often contain a higher 

number of invasive plants than upland habitats (Planty-Tabacchi et al. 1996; Hood and
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Naiman 2000). Because riparian zones link terrestrial and aquatic ecosystems, the spread 

of invasive plants in riparian forests can affect stream organisms and food webs (Gregory 

et al.1991; Hood and Naiman 2000; Baxter et al. 2005).

One pathway through which riparian zones link terrestrial and aquatic ecosystems 

is through the inputs of terrestrial invertebrates for aquatic consumers. Drift-feeding 

fishes like stream salmonids feed on aquatic invertebrates drifting through the water 

column, but also rely on terrestrial invertebrates as seasonal prey resources (Wipfli 1997; 

Nakano and Murakami 2001; Allan et al. 2003). Previous studies have documented the 

importance of terrestrial invertebrates as prey for stream salmonids in many locations 

including SE Alaska (Wipfli 1997; Allan et al. 2003), the Pacific Northwest (Romero et 

al. 2005), Japan (Nakano and Murakami 2001; Kawaguchi et al. 2003), the Kamchatka 

Peninsula, Russia (Eberle and Stanford 2010) and to a lesser extent in New Zealand 

(Edwards and Huryn 1995). Nakano et al. (1999b) determined that rainbow trout 

selectively fed on terrestrial invertebrates at elevated levels relative to their availability 

drifting in Japanese streams. Another Japanese study found that experimentally reducing 

inputs of terrestrial invertebrates affected salmonid abundance and distribution in streams 

(Kawaguchi et al. 2003).

The abundance of terrestrial invertebrate communities can vary widely between 

vegetation types (Mason and MacDonald 1982). The ‘resource quality hypothesis’ 

predicts that terrestrial invertebrate herbivores are more likely to feed on vegetation types 

that are higher in nutrient content and lack secondary compounds (Schowalter et al. 1986; 

Ober and Hays 2008). As a result, the spread of invasive plants in riparian forests can 

affect terrestrial invertebrate communities if their tissues differ in quality from native 

species (Mason and MacDonald 1982; Ober and Hays 2008). Observational field studies 

have documented declines in terrestrial invertebrate abundance and species richness 

relative to native vegetation with invasive willows in Australia (Greenwood et al. 2004), 

giant reed in California (Herrera and Dudley 2003), Japanese knotweed in Europe
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(Gerber et al. 2008) and tamarisk in the American southwest (Wiesenborn 2005). While 

the Greenwood et al. (2004) study documented that invasive willow reduced stream 

inputs of terrestrial invertebrates, little research has addressed the effects of invasive 

riparian plants on terrestrial invertebrate communities to stream food webs or to upper 

trophic level consumers like stream fishes. A study by Glova and Sagar (1994) in New 

Zealand found streams lined with invasive willow supported a higher abundance of 

invertebrate prey for brown trout than streams lined by native vegetation. In contrast, 

Kennedy et al. (2005) found that the eradication of invasive tamarisk increased fish 

densities in Colorado streams. Considering the limited scope and conflicting results of 

these two studies, this topic warrants further investigation.

European bird cherry (Prunuspadus) (EBC) is an ornamental tree frequently 

planted in Alaska for its showy floral display, outside of its native range (Alaska Natural 

Heritage Program 2006). Birds feed on the cherries and transport the seeds from source 

trees to adjacent natural areas creating wild populations over time (Alaska Natural 

Heritage Program 2006). Able to tolerate a wide range of climates and habitat types in its 

native Europe, EBC thrives in cold climates and wet soils, making it well suited for 

riparian zones in Alaska (Leather 1996). EBC has spread rapidly in the last 10 years, and 

appears to be displacing native trees in riparian forests along streams in parts of urban 

Alaska (Flagstad et al. 2010). EBC is able to form dense, monotypic stands, and is ranked 

as ‘highly invasive’ (Carlson et al. 2008).

At the same time, the dominant riparian tree species, thin-leaf alder (Alnus 

tenuifolia), appears to be decreasing across southcentral Alaska due to the combined 

effects of a canker and invasive insect pests (Ruess et al. 2009). Known to be a nitrogen 

fixer, riparian alder is thought to act as an important source of nitrogen for riparian and 

stream ecosystems (Helfield and Naiman 2002). Alder-dominated forests in headwater 

streams also contributed elevated levels of invertebrates to streams compared to conifer 

forests. These inputs supported stream salmonids occupying habitats further downstream
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(Piccolo and Wipfli 2002; Wipfli and Gregovich 2002; Wipfli and Musslewhite 2004). 

Similarly a shift in riparian vegetation from alder to EBC could have dramatic effects on 

stream food webs. Given that terrestrial invertebrates are important prey resources for 

stream salmonids, the spread of EBC in riparian forests could negatively affect salmonid 

production in Alaskan streams.

The objective of this study was to examine if riparian EBC is affecting terrestrial 

invertebrate prey resources for juvenile coho salmon (Oncorhynchus kisutch) in 

Campbell and Chester creeks in Anchorage, Alaska. We hypothesized that EBC 

negatively affects 1) abundance of terrestrial invertebrates on riparian plants, 2) flow of 

terrestrial invertebrate prey subsidies to streams, and 3) ingestion of terrestrial 

invertebrates by stream salmonids. Demonstrating that EBC negatively affects energy 

flow to streams and predation rates by fishes will aid land management agencies in their 

invasive species control programs and with managing riparian forests in urban Alaska.

Methods 

Study sites

This study focused on two Anchorage streams, Campbell and Chester creeks, with 

sampling taking place May-September, in 2009 and 2010. Chester Creek is a second- 

order stream with a watershed covering 78 km2 and Campbell Creek is a fourth-order 

stream covering 202 km2. Located in the southcentral part of the state (61°10’N, 

149°45’W), Anchorage is characterized by a coastal climate considered to be a 

transitional zone between boreal and temperate rainforest biomes (Milner and Oswood
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2000). Originating in the Chugach Mountains, these streams flow west through the 

urbanized lowlands of the Anchorage bowl before ultimately reaching the saltwater of 

Cook Inlet (Figure 3.1). Greenbelt corridors of municipal parkland parallel the lower 

portions of both streams, keeping the riparian zones largely intact as they flow through 

Alaska’s largest city (Ourso and Frenzel 2003). Native riparian vegetation is composed of 

mixed deciduous and coniferous forests dominated by spruce (Picea spp.), alder (Alnus 

spp.), paper birch (Betula neoalaskana), cottonwood (Populus trichocarpa), and willow. 

EBC is widespread along the lower, urbanized portions of these watersheds, completely 

displacing native riparian vegetation in places (Chapter 1). Both streams support wild 

populations of rearing and spawning Pacific salmon (Oncorhynchus spp.).

Sampling occurred in two sites delineated by riparian vegetation type: a ~150-m 

reach dominated by EBC and a second ~150-m reach approximately 200 m upstream 

dominated by native riparian trees, in and along both creeks.

Site characterization

We surveyed riparian canopy cover and composition overhanging the stream 

channel by measuring total canopy cover, % EBC and canopy composition with a 

handheld densiometer at 15-m intervals throughout each study site and averaged together. 

Stream width was measured at 15 m intervals throughout each study site and averaged 

together. Discharge was calculated using monthly flow measurements taken with a flow 

meter (Flo-Mate 2000, Marsh-McBirney Inc., Hach, CO). Stream temperature, pH and 

conductivity were measured monthly with a Hanna combination meter® to characterize 

in-stream conditions (Hanna Instruments, Woonsocket, RI).

Terrestrial invertebrates associated with riparian trees

To compare terrestrial invertebrate communities associated with EBC relative to 

native riparian trees, we sampled terrestrial invertebrates present on the foliage of



71

riparian tree branches, following the methods outlined by Allan et al. (2003). To do this, 

we clipped a branch of a single tree species growing within 1 m of the stream channel 

and 1 m above the ground into a plastic garbage bag containing insecticide (pyrethrin 

strip), being careful not to disturb insects present. This was repeated for EBC and three 

native species common in the riparian zones of these streams: thin-leaf alder, paper birch 

and spruce. Three replicate samples were collected from each species in two locations 

from each stream over four monthly intervals during the summer for a total sample size 

of 204 in 2009 and 192 in 2010. All invertebrates found on branches were stored in vials 

filled with 70% ethanol and later identified to family, enumerated and their length 

measured to estimate biomass using published length weight regressions (Sample et al. 

1993, Sabo et al. 2002). While adult life stages of aquatically derived taxa were also 

found, we focused exclusively on taxa that we could confidently identify as terrestrially 

derived. This excluded many individuals in the order Diptera. All foliage was removed 

from the stem and dried at 60 °C for 24 hours to measure leaf dry mass. Total invertebrate 

biomass was divided per gram of leaf mass to standardize terrestrial invertebrate mass 

between samples.

Stream inputs of terrestrial invertebrates

We used floating pan traps to compare stream inputs of terrestrial invertebrates 

between reaches lined by EBC and native vegetation. We set out pan traps constructed of 

plastic dishpans (~1000 cm2 surface area) supported by a foam square that floated on the 

stream surface and was tethered to the streambank, following the methods described by 

Wipfli (1997) and Allan et al. (2003). Dishpans were filled with ~ 5L stream water and 

small amount of dish soap to break the water tension, ensuring that insects would not 

escape. Four to five replicate pan traps were placed underneath patches of EBC or of 

mixed native vegetation for three days in both Campbell and Chester creeks. Contents for 

each pan were sieved through at 250 um mesh and were stored in Whirl-paks® (Nasco,
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Fort Atkinson, WI) and filled with 90% ethanol to be processed later in the lab. This was 

repeated monthly throughout the summer for a total sample size of 68 in 2010. In the lab, 

invertebrates were identified to family, enumerated and length measured to estimate 

biomass using published length weight regressions (Sample et al. 1993, Sabo et al. 2002). 

While we found adult life stages of aquatically derived taxa, we focused on taxa we could 

identify as terrestrially derived.

Juvenile coho salmon ingestion of terrestrial invertebrates

We collected diet samples from juvenile coho salmon to determine whether 

riparian EBC affected prey intake of terrestrial invertebrates by stream salmonids relative 

to fish in streams lined by native riparian trees. Juvenile coho salmon (fork length 60 -  

120 mm) were captured with minnow traps placed in pool habitats and baited with 

salmon roe following the methods outlined by Wipfli (1997) and Allan et al. (2003). At 

each site, fish were anaesthetized with MS-222® (Argent Chemical Laboratories Inc., 

Redmond, WA), mass and fork length measured, and then the stomach contents flushed 

from the fish with a soft-tipped 10 ml plastic syringe filled with water. Stomach contents 

were stored in Whirl-paks® and filled with 95% ethanol. All fish were returned to the 

same location where they were originally caught after the anesthetic wore off completely. 

Fifteen fish were caught in each site (one lined by EBC and one lined by native riparian 

trees) in both Campbell Creek and Chester Creek. This sampling was repeated monthly 

for a total sample size of 240 fish in 2009 and 189 fish in 2010. To help ensure 

invertebrates in coho diets were a reflection of the invertebrates simultaneously occurring 

in the environment, we sampled fish diet within 1 to 2 days and in the same sites as the 

branch and pan trap sampling. Samples were later processed in the lab, where 

invertebrates were identified to family, enumerated and measured to estimate biomass 

using published length weight regressions (Sample et al. 1993, Sabo et al. 2002). As
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mentioned before, we focused exclusively on taxa that we could identify as terrestrially 

derived.

Statistical analysis

We compared the biomass of terrestrial invertebrates between EBC and native 

riparian trees using a repeated measures ANOVA where vegetation type (EBC vs. native) 

and date were used as predictor variables. To account for differences between streams, we 

used a nested design, where sites (EBC vs. native) were nested within streams and 

samples were nested within site. This model was used to compare the biomass of 

terrestrial invertebrates associated with riparian tree branches, their inputs into streams 

and consumption by juvenile coho salmon. Because biomass data did not initially meet 

assumptions of normality or equal variance, we applied a log (x + 1) transformation. 

While figures show pre-transformed data, all statistical analysis used transformed data. 

ANOVAs were run using PROC-MIXED in SAS (SAS Institute Inc., version 9.2).

To test whether EBC affected the composition of terrestrial invertebrate 

communities, we compared the terrestrial invertebrate community structure present on 

riparian branches, their inputs into streams, and consumption by juvenile coho salmon.

We ran a cluster analysis and a nonmetric multidimensional scaling (NMDS) ordination 

on a Bray-Curtis similarity matrix using percent composition by biomass to look for 

groupings among these categories. We overlayed circles on the NMDS ordination plots to 

reflect natural groupings present in cluster analysis. We quantified overlap with a percent 

similarity index (PSI %) using the model PSI = 1 -  0.5*£ |pi - qi| where pi and qi are the 

proportion of prey category i in groups p  and q to compare if terrestrial invertebrates 

associated with different vegetation types (EBC vs. native) influenced coho diet 

differently. The PSI values range from 0 (no overlap) to 1 (complete overlap) (Hurlbert 

1978). Community analyses were run in R (R Development Core Team, version 2.10.1).
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Results 

Site characteristics

Study sites were lined by a mix of EBC and native trees, primarily spruce, alder 

and birch. Riparian canopy cover over the stream channel ranged between 21 and 54% of 

study reaches, with higher canopy cover in EBC sites than native sites (Table 3.1).

Chester Creek sites were narrower in stream width, lower in stream discharge, and 

slightly higher in stream temperature and conductivity than Campbell Creek sites (Table 

3.1). Juvenile coho salmon caught in Chester Creek were slightly larger by fork length 

and mass than in Campbell Creek (Table 3.1).

Terrestrial invertebrates associated with riparian trees

Terrestrial invertebrates were abundant on all species of riparian trees sampled 

throughout the summer. Thirteen orders of terrestrial invertebrates were identified on 

riparian tree branch samples. Wasps (Hymenoptera), true bugs (Homoptera), spiders 

(Arachnida) and moths (Lepidoptera) were the most common taxa by biomass (Tables 3.2 

& 3.3). Taxa in the sawfly family Tenthredinidae (Hymenoptera) were the most abundant 

family for native deciduous trees (Tables 3.2 & 3.3). Sawflies were abundant on alder 

branches, accounting for 53% of the biomass in 2009 and 63 % in 2010. Sawflies were 

also abundant on birch branches, accounting for 13% in 2009 and 33% of the biomass in 

2010. EBC branches supported mostly spiders, true bugs including aphids and hoppers, 

and adult wasps (Tables 3.2 & 3.3). Spruce branches supported mostly spiders and adult 

wasps (Tables 3.2 & 3.3).

Terrestrial invertebrate biomass varied by tree species and by date in 2009 and 

2010. In 2009, while terrestrial invertebrate biomass did not vary between streams (F1437 

= 0.23, P  = 0.630) or by sites nested within stream (F1437 = 1.04, P  = 0.309), there was a 

significant effect of vegetation type nested within site (F6,137 = 27.23, P  < 0.001), an
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effect of date (F7437 = 3.27, P  = 0.003) and a vegetation type x date interaction (F51,137 = 

2.74, P  < 0.001). Patterns were similar in 2010, where terrestrial invertebrate biomass did 

not vary between streams (F1428 = 1.39, P  = 0.240), date (F6,128 = 1.08, P  = 0.376), or site 

nested within stream (F1428 = 3.33, P  = 0.071), but there was a significant effect of 

vegetation type nested within site (F6,128 = 21.96, P  < 0.001) and a vegetation type x date 

interaction (F48,128 = 2.15, P  < 0.001). Native deciduous trees, alder and birch, supported 

significantly more biomass than EBC in 2009 and 2010 (P < 0.001 for both species in 

both years) while EBC supported a significantly higher biomass than spruce in 2009 and 

2010 (P < 0.001 for both years). Alder supported the highest mean biomass of all species 

sampled, supporting an average terrestrial invertebrate biomass of 3.6 m gg-1 leaf mass in

2009 and 3.4 m g g '1 leaf mass in 2010 (Figure 3.2). Birch supported the second highest 

mean biomass of terrestrial invertebrates with an average of 3.1 m gg-1 leaf mass in 2009 

and 2.9 m gg-1 leaf mass (Figure 3.2). EBC supported less biomass compared to the 

native deciduous trees, with 0.5 m gg-1 leaf mass in 2009 and 0.8 m gg-1 leaf mass in

2010 (Figure 3.2). Spruce, the only conifer we sampled, supported the lowest biomass of 

terrestrial invertebrates with an average biomass of 0.2 m gg-1 leaf mass in 2009 and 0.3 

m gg-1 leaf mass in 2010 (Figure 3.2).

Stream inputs of terrestrial invertebrates

Data from floating pan traps showed that riparian vegetation contributed 

terrestrial invertebrates to streams all summer long. Fifteen orders of terrestrial 

invertebrates were identified in pan trap samples with wasps, flies (Diptera) and spiders 

being the most abundant taxa by biomass (Table 3.3). Spiders, centipedes (Chilopoda), 

beetles (Coleoptera) and psocopterans (Psocoptera) were more abundant in the Campbell 

Creek, while Chester Creek pan traps collected more flies and true bugs (Table 3.3). EBC 

sites supported fewer moths and wasps than native sites in both streams. Sawfly larvae 

(Tenthredinidae) were the most abundant taxa in mixed native sites, accounting for 45%
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of total biomass at Campbell Creek and 35% of total biomass at Chester Creek (Table

3.3).

Biomass of terrestrial invertebrates inputs collected by pan traps did not vary 

significantly by stream (F1,52 = 1.06, P  = 0.309) or by site x date interaction (F6,52 = 2.09, 

P  = 0.070), but did vary significantly by site (EBC vs. native) nested within stream (F2,52 

= 5.65, P  = 0.006) and by date (F6,52 = 4.21, P  = 0.002). Pan traps located under riparian 

EBC collected significantly lower biomass of terrestrial invertebrates than pan traps 

placed underneath mixed native vegetation. This pattern was observed on both Campbell 

Creek (P < 0.001) and Chester Creek (P < 0.001) (Figure 3.3). EBC pan traps collected a 

mean biomass of 11.2 m gm -2day-1 in Campbell Creek and 12.0 m gm -2day-1 in Chester 

Creek while mixed native pan traps collected a mean biomass of 26.7 m gm -2day-1 in 

Campbell Creek and 35.5 m gm -2day-1 in Chester Creek (Figure 3.3).

Juvenile coho salmon ingestion of terrestrial invertebrates

Terrestrial invertebrates composed an important component of juvenile coho 

salmon diet. Terrestrial invertebrates accounted for 19 -  30% of overall biomass of coho 

diet in 2009 and 27 -  40 % of coho diet in 2010 (Figure 3.4). In 2009, coho fed primarily 

on adult wasps, beetles, spiders and slugs (Gastropoda) (Table 3.2). In 2010, terrestrial 

slugs were by far the most abundant taxa by biomass, composing 48% to 73% of the 

terrestrial invertebrate biomass consumed by coho salmon in these streams (Table 3.3).

No clear differences between vegetation types were detected in the amount of 

terrestrial invertebrate biomass ingested by juvenile coho salmon. In 2009, there were no 

significant effects of stream (F1,224 = 4.90, P  = 0.270), sites nested within stream (EBC 

vs. native) (F2224 = 1.25, P  = 0.289), date (F6,224 = 2.59, P  = 0.443), or site x date 

interaction (F6,224 = 0.99, P  = 0.433). In 2009, coho in Campbell Creek consumed a 

higher biomass of terrestrial invertebrates in the EBC site (6.7 m gfish-1) than in the 

native site (3.8 m gfish-1) but this difference was not significant (P = 0.101) (Figure 3.5).
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In Chester Creek, coho ingested a similar biomass of terrestrial invertebrates between the 

EBC site (2.2 m gfish-1) and the native site (2.5 m gfish-1) with no significant effect of 

site (P = 0.131) (Figure 3.5). In 2010, coho consumed more terrestrial invertebrate 

biomass than in the previous year, but again we did not detect an effect of EBC on the 

biomass consumed by coho. In Campbell Creek we observed the reverse of 2009, where 

coho consumed a higher biomass of terrestrial invertebrates in the native site (8.0 

m gfish-1) compared to the EBC site (6.4 m gfish-1) while in Chester Creek coho 

consumed slightly more biomass in the EBC site (8.6 mg-fish-1) than the native site (5.6 

mg-fish-1) (Figure 3.5), although these differences were not statistically significant. 

Similar to 2009, in 2010 terrestrial invertebrate biomass in coho diet did not vary 

significantly by stream (F1475 = 0.15, P  = 0.698), site nested within stream (F2475 = 0.51, 

P  = 0.600), or by site x date interaction (F5 , 115  = 0.76, P  = 0.576), but did vary 

significantly by date (F5475 = 7.74, P  < 0.001).

Community structure and overlap between prey availability and coho diet

The composition of terrestrial invertebrate communities varied between the 2009 

and 2010 field seasons influencing their community structure and overlap. In 2009, both 

the cluster analysis and NMDS ordination found the terrestrial invertebrate communities 

present in coho diets were more similar between watersheds (Campbell vs. Chester) than 

vegetation type (EBC vs. native) (Figure 3.6). Communities associated with spruce 

branches appeared to link closely with coho diet in Campbell Creek sites, while birch and 

EBC branches linked more closely with coho diet in Chester Creek sites and alder 

appeared to be offset from the rest (Figure 3.6). In 2010, the cluster analysis and NMDS 

ordination plots show greater separation than in 2009. Terrestrial invertebrate 

communities associated with native riparian tree branches (alder, birch and spruce) were 

closely related to the invertebrate communities collected by pan traps in mixed native 

sites for both Campbell and Chester creeks (Figure 3.7). Terrestrial invertebrates
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associated with EBC branches were closely related to the invertebrates collected by pan 

traps in EBC sites for both Campbell Creek and Chester Creek. However, invertebrates 

consumed by juvenile coho salmon were offset from invertebrates associated with 

branches and pan traps of both EBC and native vegetation types (Figure 3.7). Again, 

invertebrates present in coho diet for both streams appeared to be more closely related by 

stream than by vegetation type (Figure 3.7).

Overlap of terrestrial invertebrate communities calculated by percent similarity 

index (PSI) values supported the patterns observed in the cluster analysis and NMDS 

ordination. Overall, terrestrial invertebrate communities were more similar between 

branches and coho diet for both EBC and native vegetation in 2009 than in 2010 (Table

3.4). In 2009, terrestrial invertebrate overlap between branches and coho diet was greater 

with native branches than EBC in Campbell Creek (72% mixed native vs. 50% EBC) but 

smaller in Chester Creek (46% mixed native vs. 57% EBC) (Table 3.4). Overlap 

decreased in 2010, with terrestrial invertebrates on EBC branches having greater overlap 

with coho diet by 37% in Campbell Creek and 32% in Chester Creek, more so than native 

branches and pan traps in both streams (Table 3.4).

Discussion

This study showed that terrestrial invertebrates are an important prey source for 

juvenile coho salmon, linking riparian forests to stream consumers. In Campbell and 

Chester creeks, we found riparian EBC negatively affected the abundance of terrestrial 

invertebrates, supporting a significantly lower biomass on the foliage of riparian tree 

branches compared to native deciduous trees alder and birch. All deciduous species 

sampled (EBC and native) supported a higher biomass than spruce. These patterns were 

nearly identical during the 2009 and 2010 field seasons. Our data align with previous 

studies finding that different plant species support varying levels of invertebrate 

abundance, with deciduous species generally supporting a higher biomass than conifers
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(Mason and MacDonald 1982; Wipfli 1997; Allan et al. 2003). In 2010, we documented 

that patches of riparian EBC contributed a significantly lower biomass of terrestrial 

invertebrate inputs to streams than patches of mixed native vegetation in both Campbell 

and Chester creeks. These results support our hypothesis that EBC negatively affects 

terrestrial invertebrate abundance and are supported by other studies finding that invasive 

riparian plants negatively affected terrestrial invertebrate abundance and inputs to streams 

(Herrera and Dudley 2003; Greenwood et al. 2004; Gerber et al. 2008).

While we documented that riparian EBC negatively affected the availability of 

terrestrial invertebrates, EBC did not appear to affect prey intake of terrestrial 

invertebrates by juvenile coho salmon. Terrestrial invertebrates composed a substantial 

component of juvenile coho salmon diet in our study streams, accounting for 20-30% in 

2009 and 30-40% in 2010, although patterns suggest that EBC did not negatively affect 

the proportion of terrestrial invertebrates in coho diet. Coho also consumed a higher mean 

biomass of terrestrial invertebrates in 2010 than in 2009. However, no clear pattern 

existed between riparian vegetation type (EBC vs. native) and the biomass of terrestrial 

invertebrates consumed by juvenile coho salmon. The fact that patterns differed between 

streams and years further indicates that riparian EBC did not have a strong influence on 

prey intake by these stream fishes.

While these results do not support the hypothesis that riparian EBC affects prey 

intake by fish, but similar patterns have been documented by several other studies. In 

southeast Alaska, while terrestrial invertebrate abundance on branches and inputs to 

streams were higher on deciduous trees than conifers, there were no significant 

differences in terrestrial invertebrate consumption by several species of salmonids 

between younger alder-dominated deciduous forests and old growth conifer forests 

(Wipfli 1997; Allan et al. 2003). Romero et al. (2005) observed similar patterns in coastal 

Oregon streams where riparian vegetation types supported different abundance levels of 

terrestrial invertebrates, but cutthroat trout diet did not vary in streams lined by different
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riparian canopies. Finally, Kawaguchi and Nakano (2001) also documented that prey 

intake by rainbow trout did not differ between forested and grassland reaches of stream in 

Japan.

There may be several explanations for why we detected no effect of riparian EBC 

on terrestrial prey ingested by coho salmon in this study. One, coho salmon are drift- 

feeders and may have relied more on terrestrial invertebrates drifting downstream 

through our sampling sites than local inputs from the adjacent riparian vegetation 

(Johnson and Ringler 1980). Thus, even though coho salmon were sampled in a reach of 

stream lined by EBC, coho were more likely feeding on a mix of prey composed by a 

combination of local inputs and what drifted into a site. In addition to this mixing within 

the stream channel, prey mixing could have also occurred in the terrestrial environment 

via wind or insect dispersal further obscuring the effect of riparian EBC on terrestrial 

prey for fish. Allan et al. (2003) highlighted prey mixing as a potential reason why they 

were unable to document an effect of riparian vegetation on salmonids in southeast 

Alaska.

Studies by Piccolo and Wipfli (2002), Wipfli and Gregovich (2002) and Wipfli 

and Musslewhite (2004) found that headwater streams provide a source of invertebrates 

for downstream consumers. If coho were indeed relying on upstream subsidies of prey 

drifting downstream, it suggests that riparian vegetation further upstream could be their 

primary source of prey. Thus, while we sampled sites that were dominated by EBC, there 

still could be enough native vegetation in the upper reaches of these systems contributing 

a greater amount of terrestrial invertebrates and therefore not disrupting broader 

terrestrial prey resources for fish. Also, taking into account that EBC is currently 

distributed in the lower, downstream portions of each of these watersheds, it is unlikely 

that EBC is disrupting the upstream subsidies of terrestrial prey. However, EBC could be 

problematic if it continues to spread further upstream towards the headwaters of these 

watersheds.
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Second, fish may be receiving prey from sources other than riparian trees. Our 

sampling methods focused exclusively on terrestrial invertebrates associated with riparian 

trees and did not sample invertebrates present on other vegetation types including shrubs, 

forbs or grasses, or the forest litter and soil. Previous studies have documented that 

grasses and deciduous shrubs were important sources of invertebrates to streams 

(Kawaguchi and Nakano 2001; Allan et al. 2003). In our study, we observed that 

terrestrial slugs (Gastropoda) accounted for the majority (48% to 73%) of the biomass 

consumed by juvenile coho salmon in 2010. However, slugs were largely absent from our 

branch and pan trap samples. This could be because slugs often inhabited lower habitats 

including lower-growing understory (Roon personal observation).

Another contributing factor could be that there were no natural barriers blocking 

movement of fish between EBC and native study sites in our streams. Coho could be 

feeding in habitats of higher resources and just happened to be present while we were 

sampling at a given site. Coho could also be moving between sites and although we 

sampled fish in the EBC site, we do not know whether the diet was truly representative of 

the prey available in that site.

We also conducted community analyses to see if EBC differed in community 

structure or overlapped less with coho diet relative to native trees. Cluster analysis and 

NMDS ordination techniques revealed that terrestrial invertebrate communities shifted in 

structure between years. In 2009, terrestrial invertebrate communities were more similar 

in structure between riparian vegetation and coho diet with no clear effect of EBC (Figure 

3.6). However in 2010, we observed greater divergence in the structure of terrestrial 

invertebrate communities. Terrestrial invertebrates associated with native branches 

grouped more closely with pan traps in native sites, EBC branches grouped closely with 

pan traps in EBC sites and coho diets grouped separately (Figure 3.7). The fact that 

terrestrial invertebrate communities associated with EBC differed in composition from 

native branches in 2010 suggests that EBC may be negatively affecting terrestrial
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invertebrate communities, but these effects did not appear to influence terrestrial 

invertebrates present in coho diets.

Overlap between vegetation type and coho diet quantified by PSI values support 

the patterns observed in cluster analysis and NMDS ordinations. In 2009, PSI values 

ranged between 32 and 72% while in 2010 overlap was substantially lower ranging 

between 15 and 36%. Terrestrial invertebrates associated with EBC overlapped with coho 

diet less than native vegetation in Campbell Creek in 2009, but patterns show EBC 

overlapped with coho diet at similar levels or more than the native vegetation in other 

sites and other years. As a result, PSI values did not show any clear negative effect of 

EBC on coho diet relative to native vegetation in our study.

Our data showed differences in terrestrial invertebrate community structure and 

overlap with coho diet between years. These differences in terrestrial invertebrate 

community composition between years could be due to annual climatic variation that 

shifted a few key taxa (Schowalter et al. 1986; Danks 1992; Progar and Schowalter 

2002). In 2009, the summer was warmer and drier (May -  September 2009: 16.6 °C mean 

air temperature, 17.2 cm of precipitation, National Weather Service, Anchorage, AK). 

Aphids were abundant on all deciduous tree species (EBC and native), which in turn also 

increased the abundance of parasitoid wasps feeding on aphids. As a result, juvenile coho 

salmon fed on an increased abundance of adult wasps, overlapping more with 

communities on riparian branches. In 2010, the summer was cooler and wetter (May -  

September 2010: 15.5 °C mean air temperature, 22.7 cm of precipitation, National 

Weather Service, Anchorage, AK). As a result, we observed decreases in aphid and 

parasitoid wasp abundance. We also observed increases in sawfly larvae abundance on 

native branches and pan traps and increases in terrestrial slugs in coho salmon diet. These 

shifts could have accounted for greater separation in community structure and decreases 

in overlap between invertebrates associated with riparian vegetation and coho diet.
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While riparian EBC does not appear to be currently affecting terrestrial prey 

abundance ingested by juvenile coho salmon, there is concern that as EBC spreads 

throughout the drainage it could reduce the inputs of terrestrial invertebrates into streams 

and affect their availability as prey for fish at a much broader spatial scale. As mentioned 

earlier, terrestrial invertebrates accounted for a substantial portion of coho salmon diet in 

our study, comprising 20-30% of their diet in 2009 and 30 -  40 % of their diet in 2010. 

Over time, the spread of EBC could remove this component of their diet and could have a 

variety of ecological consequences. Research by Kawaguchi et al. (2003) indicated that 

experimentally reducing terrestrial inputs to streams decreased the abundance and 

distribution of rainbow trout. While we did not measure these population level metrics 

between our study sites, reducing terrestrial prey may have similar effects on coho 

salmon in these streams.

The reduction of terrestrial invertebrate inputs to streams could also force coho to 

feed more heavily on aquatic invertebrates, affecting stream invertebrate communities. It 

is unknown if aquatic invertebrate production in these streams is high enough to support 

an increase in predation by 40%. A study by Nakano et al. (1999a) found that reducing 

stream inputs of terrestrial invertebrates increased salmonid predation on aquatic 

invertebrate herbivores increasing the growth of benthic algae. A related study observed 

that the invasion of non-native rainbow trout in Japanese streams competed with Dolly 

Varden charr for terrestrial invertebrates, forcing Dolly Varden to feed more heavily on 

aquatic invertebrates and decreasing the emergence of adult life stages of aquatic 

invertebrates (Baxter et al. 2004). This decrease in aquatic invertebrate emergence 

impacted riparian predators including spiders and birds (Baxter et al. 2004; Nakano and 

Murakami 2001). It is unknown what repercussions may occur with the future spread of 

EBC, but these studies suggest that it could impact both aquatic and terrestrial organisms 

linked through stream-riparian food webs (Baxter et al. 2005).
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The further spread of EBC could impact coho salmon to a greater degree if it 

interacts with other ecosystem stressors inherent in these systems (Fausch et al. 2010). 

Other potential factors could include the simultaneous loss of native alder due to a canker 

and defoliation by the invasive green alder sawfly (Monsomapulveratum) (Ruess et al. 

2009). Not only is alder an important food source for terrestrial invertebrate prey 

communities as documented by this study and others (e.g. Allan et al. 2003), riparian 

alder is an important source of nitrogen for stream ecosystems (Helfield and Naiman 

2002). This loss of riparian alder could decrease ecosystem productivity of these streams. 

Degradation of stream habitat through urbanization could also interact with the 

previously mentioned factors, accentuating the potential effects of EBC on salmonid food 

webs (Baxter et al. 2005; Fausch et al. 2010).

In Alaska and throughout the Pacific Ocean, Pacific salmon (Oncorhynchus spp.) 

are important cultural, economic and ecological resources. Many Pacific salmon 

populations are currently experiencing significant population declines, and concern has 

been raised that invasive species could be a contributing factor (Baxter et al. 2005, 

Sanderson et al. 2009). Our results suggest that riparian EBC may be disrupting 

ecological processes between linked stream-riparian ecosystems by reducing the 

abundance of terrestrial invertebrate prey resources and their inputs into streams relative 

to native riparian trees. While we did not detect an effect of riparian EBC on prey intake 

by juvenile coho salmon, lowered prey abundance as measured in this study may have 

long-term consequences for stream salmonids as EBC continues to spread over time.
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Table 3.1. Characteristics of EBC and native vegetation study sites in Campbell and 
Chester creeks.

Campbell Creek Chester Creek
Parameter EBC Site Native Site EBC Site Native Site
Elevation (m) 27 29 35 36
Reach Length (m) 139 143 166 162
Stream Width (m) 9.6 9.6 4.7 3.8
Discharge (m3 s-1) 2.7 2.5 0.6 0.5
Stream Temperature (°C) 9.3 9.4 11.6 11.9
pH 7.9 8.0 7.7 7.6
Conductivity (uS cm '1) 118 122 256 258
Dissolved Oxygen (m gL-1) 10.4 10.6 11.4 11.4
Canopy Cover (%) 30.7 21.4 53.9 26.5
EBC Cover (%) 77.6 9.2 88.1 5.8
Canopy Composition* E>S>A>B S>A>B>E E>S>B>A S>B>A>E
Fish fork length (mm) 81.5 79.8 83.3 88.3
Fish mass (g) 6.2 6.6 7.3 8.4
* Canopy composition abbreviations include: Alder (A), Birch (B), European bird cherry 
(E), and Spruce (S).
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Table 3.2. Terrestrial invertebrate community composition in 2009. The percent 
composition by biomass (mg) of terrestrial invertebrate communities that were associated 
with the foliage of riparian tree branches and consumed by juvenile coho salmon in 
Campbell and Chester creeks.

Branch

Taxon Alder Birch EBC Spru
Acari 0.1 0.3 0.2 0.8
Arachnida 2.3 7.4 10.6 39.5
Coleoptera 6.1 0.8 3.7 6.8
Collembola 0.1 0.1 0.5 1.8
Diptera 0.5 0.2 0.7 0.6
Gastropoda 0 0 0 0
Hemiptera 1.9 1.9 0 5.1
Homoptera 19.6 18.0 19.1 6.3
Hymenoptera 65.3 66.8 45.2 34.6
Lepidoptera 3.3 2.8 14.2 1.4
Neuroptera 0 1.0 0.6 0
Oligochaeta 0 0 0 0
Psocoptera 0.5 0.3 3.3 3.0
Thysanoptera 0.3 0.4 1.9 0.1

Fish Diet
Campbell Chester
EBC Native EBC Native

0.1 0.2 0.9 0.6
16.5 14.8 8.2 3.1
7.6 9.5 25.4 22.3
0.4 0.6 2.3 1.2
8.1 3.1 7.3 6.0

21.0 14.0 0 6.9
0.4 0 1.1 0
3.7 4.0 10.9 14.3

34.5 48.5 36.7 42.3
6.5 0.7 1.1 1.9
0 0 0 0
0 0 0 0
1.2 4.5 5.7 1.4
0 0.1 0.4 0



Table 3.3. Terrestrial invertebrate community composition in 2010. The percent 
composition by biomass (mg) of terrestrial invertebrate communities that were associated 
with the foliage of riparian tree branches, stream inputs collected by floating pan traps 
and consumed by juvenile coho salmon in Campbell and Chester creeks.

Branch Pan Trap
Fish Diet

Campbell Chester
Campbell Chester

Taxon
EBC

Alder
Native

Birch EBC
EBC

Spruce
Native

EBC Native EBC Nati

Acari 0.1 0.1 0.2 0.1 0.1 0.1 0.6 0
0.1 0.1 0.3 0.4

Arachnida 8.4 7.5 32.8 30.4 27.6 10.8 5.1 0.3
6.1 7.1 3.0 5.0

Archaeognatha 0 0 0 0 0 0 0.8 0
0 0 0 0

Chilopoda 0 0 0 0 16.8 0 0 0
2.1 0 0 0

Coleoptera 0.7 0.3 0.2 0.3 16.1 9.8 0 0
12.9 4.4 1.0 0.5

Collembola 0.3 0.3 2.4 1.8 1.1 0.3 1.6 0.5
0.1 0.4 1.1 0.3

Diptera 2.1 0.9 13.3 3.1 6.0 2.3 13.4 28.1
13.2 4.1 8.0 13.3

Gastropoda 0 0.5 10.8 0 0 0 0 0
48.4 56.3 72.6 66.7

Hemiptera 0.5 0.5 1.6 2.0 0.5 1.0 4.4 13.2
0 0 0.1 0.7

Homoptera 15.1 13.4 13.3 2.2 5.9 7.1 11.6 10.8
4.0 10.4 6.5 6.3

Hymenoptera 63.7 66.6 13.1 48.4 17.7 44.9 54.4 34.7
11.6 12.4 5.1 1.9

Lepidoptera 7.4 8.3 7.7 1.0 1.1 11.8 3.3 11.1
1.0 4.1 1.0 2.0

Neuroptera 0.2 0.1 0.9 1.0 1.1 1.8 0 0
0 0 0.8 0.4

Oligochaeta 0 0 0 0 0 0 0.6 0
0 0 0 0

Psocoptera 1.4 1.4 2.4 9.5 5.5 10.0 2.9 1.1
0.4 0.6 0.3 1.4

88



Thysanoptera 0.1 0.1 1.3 0.2 0.5 0.1 1.3 0.2
0.1 0.1 0.4 1.1

88
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Table 3.4. Overlap of terrestrial invertebrate communities. The percent similarity index 
(% PSI) values of terrestrial invertebrates quantified between riparian vegetation type and 
coho diet in Campbell and Chester creeks in 2009 and 2010.________________________
Year Stream Comparison % PSI
2009 Campbell EBC Branches vs. EBC Fish Diet 

Native Branches vs. Native Fish Diet
49.8
72.3

Chester EBC Branches vs. EBC Fish Diet 
Native Branches vs. Native Fish Diet

56.7
45.6

2010 Campbell EBC Branches vs. EBC Fish Diet 
Native Branches vs. Native Fish Diet

36.6
23.2

Chester EBC Branches vs. EBC Fish Diet 
Native Branches vs. Native Fish Diet

32.2
19.5

Campbell EBC Pan Traps vs. EBC Fish Diet 
Native Pan Traps vs. Native Fish Diet

32.3
17.7

Chester EBC Pan Traps vs. EBC Fish Diets 
Native Pan Traps vs. Native Fish Diet

19.0
20.2



90

Figure 3.1. Map of EBC and native vegetation study sites in Campbell and Chester 
creeks.
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Figure 3.2. Terrestrial invertebrate biomass associated with foliage of riparian tree 
branches. Mean terrestrial invertebrate mass per gram of leaf matter that was associated 
with two native deciduous tree species (alder and birch), deciduous EBC and native 
conifer (spruce) in a) 2009 and b) 2010. Error bars represent standard errors.



In
ve

rt
eb

ra
te

 
m

as
s 

(m
g*

m
 

*2
*d

ay
 

*1
)

93



94

Figure 3.3. Stream inputs of terrestrial invertebrate biomass. Mean stream inputs of 
terrestrial invertebrate biomass that were captured in floating pan traps underneath EBC 
and mixed native vegetation in Campbell and Chester creeks in 2010. Error bars represent 
standard errors.
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Figure 3.4. Proportion of coho diet comprised by terrestrial invertebrates. The mean 
proportion of coho diet comprised by terrestrial invertebrates by biomass in Campbell 
and Chester creeks in a) 2009 and b) 2010. Error bars represent standard errors.
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Figure 3.5. Terrestrial invertebrate biomass ingested by juvenile coho salmon. The mean 
biomass of invertebrates that were consumed in sites lined by EBC and native vegetation 
in Campbell and Chester creeks in a) 2009 and b) 2010. Error bars represent standard 
errors.
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Figure 3.6. Community structure of terrestrial invertebrates in 2009. Communities that 
were associated with riparian tree branches and fish diet. (a) cluster analysis and (b) 
NMDS ordination. Abbreviation codes: CAM = Campbell Creek, CHE = Chester Creek, 
EBC = EBC Site, NTV = Native Site.
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Figure 3.7. Community structure of terrestrial invertebrates in 2010. Communities that 
were associated with riparian tree branches, pan traps and fish diet. (a) cluster analysis 
and (b) NMDS ordination. Abbreviation codes: CAM = Campbell Creek, CHE = Chester 
Creek, EBC = EBC Site, NTV = Native Site.
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Conclusion

Our studies contributed substantial new information concerning the ecological 

effects associated with the spread of European bird cherry in riparian forests along 

streams in Anchorage, Alaska.

In Chapter 1 we documented the distribution, local abundance and maturity of 

wild Prunus populations along Campbell and Chester creeks. Our surveys along these 

streams revealed that like Carlson and Shephard (2007) observed, the current populations 

of both Prunus padus and Prunus virginiana were distributed primarily within the urban 

extents of these watersheds. However, our results indicate that invasive Prunus can 

spread into natural habitats and locally displace native species. Combined with the high 

density of seedlings and its ability to access new habitats through dispersal by birds, our 

data suggest that Prunus could transform riparian forests and potentially reduce the 

biodiversity of these communities. Our distribution maps will provide essential baseline 

data for land managers as Prunus species continue to spread over time.

Data from our vegetation surveys suggest a few patterns that could help predict 

other watersheds susceptible to the spread of EBC. As mentioned before, while the 

current distribution of EBC appears to be largely limited to the urban extent of Campbell 

and Chester creeks, we also found it growing in adjacent natural habitats indicating that it 

is not dependent on disturbed habitats. This implies that not only could EBC continue to 

spread into the natural habitats of these watersheds, it could also spread into adjacent 

watersheds. The fact that EBC can locally displace native vegetation suggests that if left 

alone EBC could transform riparian forests in the wild areas of Alaska. Once it 

establishes itself in an adjacent watershed, mature trees could act as stepping-stones 

further expanding its distribution. How far EBC is able to spread will ultimately depend 

on how far birds are able to carry the seeds. Future research should address the species 

composition and behavior of birds feeding on and responsible for spreading EBC. This
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will be an important piece of the puzzle to better understand the future spread of EBC in 

Alaska.

Our next two studies examined whether riparian EBC is disrupting ecological 

processes linked to salmonid food webs. In Chapter 2 we conducted leaf pack 

experiments comparing EBC to native species in leaf litter processing by aquatic 

invertebrate shredders. In both experiments we observed that EBC broke down faster or 

at a similar rate to native alder, birch and cottonwood leaf litter. We also documented 

EBC leaf litter supported similar shredder communities, not differing significantly in 

abundance, biomass, community structure or growth. Our results suggest that EBC is 

functionally similar to native species of leaf litter and does not appear to be disrupting 

leaf litter processing by shredders in these streams. These results align with other studies 

looking at the effects of invasive leaf litter inputs in streams, finding that while an 

invasive riparian plant may change the composition of leaf litter inputs to streams, native 

shredders were able to utilize those resources (Lacan et al. 2010).

In Chapter 3 we evaluated if EBC affected terrestrial invertebrate prey resources 

for juvenile coho salmon. EBC foliage supported a significantly lower biomass of 

terrestrial invertebrates on riparian tree branches compared to native deciduous trees, 

alder and birch. EBC also contributed a significantly lower biomass of terrestrial 

invertebrates to streams compared to mixed native vegetation. However, while we 

documented that EBC disrupted the availability of terrestrial prey, we were unable to 

document an effect of riparian EBC on the amount of terrestrial invertebrate prey 

consumed by juvenile coho salmon. Community analyses did not show any clear negative 

effect of EBC on prey resources for fish, not differing in community structure or 

overlapping less with coho diet than native vegetation. While we were unable to 

document any effect on terrestrial prey consumed by juvenile coho, lower prey 

abundance measured by this study could affect fish as EBC spreads through these 

watersheds.
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From the results of these two studies, the ecological effects associated with EBC 

in these watersheds appear to be mixed; they do not appear to be drastically disrupting 

salmonid food webs. The fact that EBC supported similar shredder communities to native 

species suggests that EBC is not disrupting leaf litter processing in streams and is not 

negatively affecting food supplies for other functional feeding groups of aquatic 

invertebrates. We observed that EBC disrupted the abundance and stream subsidies of 

terrestrial invertebrate prey, but were unable to detect an effect on coho salmon in these 

streams. If EBC continues to spread and further disrupts terrestrial invertebrate subsidies 

for stream fishes, it could cause coho to feed more heavily on aquatic taxa. It is unknown 

if aquatic invertebrate production is high enough in these systems to support this 

increased predation. Other studies investigating the effects of reductions in terrestrial 

invertebrate prey resources have documented consequences on both terrestrial and 

aquatic organisms linked through stream-riparian food webs including, decreases in 

emerging adult aquatic invertebrates, riparian spiders and riparian birds (Nakano et al. 

1999, Kawaguchi et al. 2003, Baxter et al. 2004). The future spread of EBC could have 

similar effects on stream-riparian linkages connected to salmonid food webs.

The limited impacts associated with EBC could be a function of the current 

distribution of EBC in these watersheds. EBC is largely distributed in the downstream 

portions of these watersheds, while the upstream portions remain largely dominated by 

native vegetation. If the headwaters act as sources of invertebrate prey for salmonids 

further downstream (Piccolo and Wipfli 2002) it might explain why we did not observe 

an effect of EBC on these stream fishes. If EBC continues to spread into the headwaters 

of these watersheds and displaces the native vegetation, it could disrupt terrestrial 

invertebrate prey resources to a greater degree, negatively affecting salmonid production 

in these streams.

While we did not observe strong negative effects there could be other ecological 

consequences associated with EBC that we did not study. The simultaneous dieback of
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native thin-leaf alder (Alnus tenuifolia), could accentuate the possible impacts associated 

with EBC highlighted in this thesis. Riparian alder is important for stream and riparian 

ecosystems as a source of nitrogen (Helfield and Naiman 2002) and as a preferred food 

source for both aquatic and terrestrial invertebrates (Irons et al. 1988, Allan et al. 2003), 

supporting salmonids further downstream (Piccolo and Wipfli 2002). In this case, the loss 

of native alder could be more detrimental to salmonid food webs than the spread of EBC 

(Lecerf et al. 2005). Future research should investigate the effects associated with the loss 

of riparian alder on stream food webs and watershed productivity.

Invasive species are a concern worldwide because they can displace native 

species, reduce biodiversity and disrupt ecological processes. In Alaska and around the 

Pacific Ocean, Pacific salmon are important cultural, economic, and ecological resources. 

Concern has been raised that invasive species could be a factor responsible for their 

decline (Baxter et al. 2005, Sanderson et al. 2009). In spite of this concern, few studies 

have attempted to relate the effects of invasive riparian plants on stream salmonids. Our 

data provide clues about the extent to which invasive riparian plants can affect native 

species and ecological processes in stream ecosystems and salmonid food webs in 

Alaska. These findings will also help guide the management of EBC by municipal, state 

and federal land management agencies involved in managing urban watersheds, fisheries 

and controlling invasive species. While the patterns documented in this thesis are mixed 

and do not show EBC to be dramatically disrupting salmonid food webs, our results 

suggest that EBC has the potential to do so if it continues to spread over time.
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