
A TEST OF LOCAL ADAPTATION IN SEASONALLY SEPARATE 

SUBPOPULATIONS OF PINK SALMON (ONCORHYNCHUS GORBUSCHA)

RECOMMENDED:

APPROVED:

By

Christopher V. Manhard

Chair

Dr. Milo Adkison

Chair, Graduate Program in FisheriesDivision

Dr. Michael Castellini,

Dean of the School of Fisheriesjrnd Ocean SciencesiV- fCM ^________________
7 S

Dr. John C. Eichelberger, Dean of the Graduate School

itma /r2c/-2-____________
J—f  t f  < '

Date

Gharrett, Advisory Committee



A TEST OF LOCAL ADAPTATION IN SEASONALLY SEPARATE

SUBPOPULATIONS OF PINK SALMON (ONCORHYNCHUS GORBUSCHA)

A

THESIS

Presented to the Faculty 

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements 

for the Degree of

MASTER OF SCIENCE

By

Christopher V. Manhard, B.S. 

Fairbanks, Alaska

December 2012



iii

Abstract

Differences in fitness related traits were observed between first generation (F 1 ) 

hybrid and control lines of temporally distinct subpopulations of pink salmon 

(Oncorhynchus gorbuscha). The lines were cultured in a common freshwater 

environment, released to sea together, and collected at their natal stream as adults. Early- 

and late-run pink salmon, which are partially genetically isolated by the time at which 

they return to Auke Creek in Southeast Alaska to spawn, were crossed to create Fi and F2 

hybrid groups in the even- and odd-year brood lines. Marine survival of controls 

exceeded that of F 1 hybrids of the even-year brood line, whereas no difference in marine 

survival between those experimental groups was detected in the odd-year brood line. First 

generation hybrids expressed intermediate time of return relative to controls in both 

brood lines. Second generation hybrids exhibited similar embryonic development rates to 

controls in both brood lines. These results demonstrate that removal of a genetic barrier 

as fine as that which occurs within a brood line and location can disrupt local adaptation 

in a population of pink salmon, which may cause outbreeding depression in hybrids and 

may potentially reduce the overall biodiversity and productivity of the population.
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Introduction

Pacific salmon are characterized by a propensity to home to their natal stream, a 

trait that has enabled many genetically distinct populations of salmonids to arise through 

adaptation to local environments (Carvalho 1993). Local adaptation, a process in which 

natural selection increases the frequency of traits that confer a survival or reproductive 

advantage in a local environment, is well documented in salmonid populations separated 

by large geographic distances (Taylor 1991). Hatchery salmon propagation, which has 

been widely used to rehabilitate wild stocks and enhance fisheries, can create 

opportunities for non-native genetic material to intogress into wild populations. There is 

concern that introgression of genetic material from hatchery fish into wild populations 

will cause the wide variety of locally adapted stocks to be replaced by a smaller number 

of relatively homogenous ones, thereby reducing diversity that is a crucial buffer against 

inexorable environmental changes (Waples 1991). Interbreeding between genetically 

divergent stocks can also reduce fitness in hybrids, a phenomenon known as outbreeding 

depression (Gharrett and Smoker 1991; Edmands 1999; Gilk et al. 2004).

Outbreeding depression manifests through two different mechanisms that can 

occur independently or jointly. Interbreeding between populations from different local 

environments can produce hybrids that are maladapted to either of the parental 

environments. Accordingly, hybrids could suffer a loss of fitness through disruption of 

interactions between genes and environment (Edmands 2007). This mechanism for 

outbreeding depression (termed “extrinsic” or “ecological”) acts on first and subsequent
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generations (Lynch 1991) and may involve underdominance, genotype-by-environment 

interactions, or epistatic interactions (Edmands 1999). Alternatively, outbreeding 

depression can act through the disruption of co-adapted gene complexes. Complexes of 

alleles at epistatic loci can arise through joint selection for multiple loci during local 

adaptation and random drift (Lynch 1991). Populations may evolve different epistatic 

gene complexes under similar selection pressures because random drift participates in 

determining the genetic material that is available for co-adaptation (Lenski and Travisano 

1994) and because favorable allele combinations are maintained by natural selection. 

Hybridization can disrupt favorable interactions between alleles at different loci, leading 

to a loss of fitness. This mechanism for outbreeding depression (termed “intrinsic” or 

“epistatic”) typically does not manifest itself until the second generation or later (Emlen 

1991) because epistatic gene complexes are maintained in the gamete contributed by each 

parent. In fact, first generation hybrids may exhibit heterosis as a result of masking of 

deleterious recessive alleles in heterozygotes (Lynch 1991). However, independent 

segregation and recombination in subsequent generations can separate gene complexes. 

Some epistatic gene complexes may be comprised of tightly linked loci that could take 

many generations to disrupt (Edmands 1999).

Prior research on pink salmon has examined outbreeding depression by removing 

large temporal and spatial barriers between populations. One such barrier, a consequence 

of the two-year life cycle to which pink salmon rigidly adhere (Davidson 1934; Bilton 

and Ricker 1965; Turner and Bilton 1968), has enabled two genetically isolated brood 

lines to arise; one brood line returns to spawn in even years and the other returns in odd
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years. In separate studies of two generations of hybrids between the even- and odd-year 

brood lines, reduced survival was observed in F2  hybrids only, which indicated that 

outbreeding depression had manifested primarily through the intrinsic mechanism 

(Gharrett and Smoker 1991; Gharrett et al. 1999). Similarly, more pronounced 

outbreeding depressive effects were observed in the second generation of hybridization 

between pink salmon from Auke Creek and spatially distant (~1000 km) Pillar Creek 

(Gilk et al. 2004). These studies demonstrated that large spatial and temporal barriers 

have enabled populations of pink salmon to diverge, most likely through local adaptation, 

and that removal of such barriers can have detrimental effects on overall fitness. More 

recent research has focused on the effects of hybridization on embryonic development. A 

study on embryonic development in hybrids between the even- and odd-year brood lines 

detected no difference in timing to completion of epiboly (an adaptive trait) between 

controls and F2 hybrids, but did reveal significant variation among families of female 

parents (Wang et al. 2006). A pronounced dam effect, coupled with a non-significant sire 

effect, indicated that maternal effects or additive effects can occur before expression of 

the paternal genome during development. In addition, embryonic development time 

(measured by the number of accumulated temperature days elapsed when 50%  of 

embryos were hatched in an incubator compartment) was examined in first- and second- 

generation hybrids between Pillar and Auke Creek pink salmon. Comparisons between F2 

crosses and backcrosses suggested that a model which incorporated both extrinsic and 

intrinsic outbreeding depression effects best explained differences in development time 

that were observed in that study (Wang et al. 2007).
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Previous research on Auke Creek pink salmon evaluated the consequences of 

removing a gene flow barrier between populations that are completely temporally or 

spatially isolated. However, there is a dearth of studies that have examined the effects of 

disrupting fine-scale temporal or spatial structure. This study addressed that gap in our 

understanding by evaluating the effects of hybridizing seasonally distinct spawning 

segments that return to Auke Creek in the same year. Within the even- and odd-year 

brood lines, time of return for spawning pink salmon follows a bimodal distribution; 

“early” spawners generally enter Auke Creek in peak volumes between mid and late 

August, while “late” spawners generally peak between early and mid September. The 

median return times for the two groups are offset by about 20 days, although the length of 

separation varies inter-annually with rainfall patterns and stream temperatures (Taylor 

2008). The early- and late-spawning segments are partially isolated genetically and 

probably adapted to different local environments (Gharrett et al. 2001; Echave 2010). The 

partitioning of the pink salmon run is likely the result of adaptation to limited spawning 

substrate (Smoker et al. 1998).

The short separation between the two spawning segments provides a unique 

opportunity to investigate local adaptation operating at a fine scale of temporal 

divergence. Evidence of local adaptation can be inferred by changes (relative to controls) 

in hybrids between early- and late-run pink salmon in three fitness-related attributes: 

marine survival, embryonic development rate, and time of return. Marine survival, the 

proportion of released fry that return as adults to spawn, is a direct indicator of fitness. 

Observations of indirect measures of fitness, such as time of return and embryonic
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development rate, can reveal deleterious shifts in life history attributes. Time of return 

(McGregor et al. 1998; Smoker et al. 1998) and embryonic development rate (Goddard 

1995; Hebert et al. 1998; Echave 20 10 ) have a genetic basis in Auke Creek pink salmon; 

consequently, hybrids may express either different means or increased variance of these 

traits relative to the parental types. The rationale is that, although the early- and late- 

spawning segments share the same stream, seasonal changes in Auke Creek during the 

spawning season produce different environmental regimes for the two groups; 

accordingly, the two spawning segments have likely developed distinct life history 

strategies (i.e. time of return, development rate) as a consequence of adaptation to 

different local environments. Hybridization has the potential to perturb the genetic 

architecture of these life history traits, thereby disrupting local adaptation and causing 

outbreeding depression. In this sense local adaptation and outbreeding depression are 

closely associated; local adaptation creates genetic divergence between populations, 

which potentiates outbreeding depression in hybrids.

Our objective was to test whether local adaptation has structured the early- and 

late-spawning segmentation of the population by evaluating the effects of hybridizing 

these seasonally distinct subpopulations of pink salmon. The primary questions addressed 

were: (1 ) Does extrinsic outbreeding depression result in reduced marine survival of F 1 

hybrids? (2 ) Does extrinsic outbreeding depression cause phenotypic changes in time of 

return of F 1 hybrids? and (3 ) Does outbreeding depression (extrinsic or intrinsic) cause 

phenotypic changes in embryonic development rate of F2 hybrids? Differences in survival 

or fitness-related traits between hybrids and controls are indicative of outbreeding
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depression and suggest that early- and late-run pink salmon are genetically distinct 

groups that have diverged through local adaptation. We repeated this experiment in both 

the even- and odd-year brood lines.
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Methods

Field Methods

Auke Creek, Alaska is a short (350  m ) and steep (20  m ) outlet of Auke Lake that 

drains into Auke Bay and serves as a spawning ground and migratory corridor for pink 

salmon. Located at the mouth of the creek and at the head of tidewater is a permanent 

weir and salmon hatchery, which is operated by the U.S. National Marine Fisheries 

Service. Early- and late-run pink salmon were collected at the weir and artificially 

spawned at the hatchery in the summers of 2005 and 2006 (Echave 20 10 ) to create F 1 

hybrid and control lines (Table 1), which were propagated into the F2 generation (Table 

2 ) by artificially spawning returning F 1 progeny in 2007 and 2008. We used 

cryopreserved semen collected four years prior (2001, 20 02 ) from late-run fish to 

produce late-male by early-female hybrids and late-male by late-female controls in each 

brood year. We used semen collected from early-run fish to produce early-male by early- 

female controls in each brood year; semen from those males was also cryopreserved to 

produce early-male by late-female hybrids in brood year 2005. We were unsuccessful in 

cryopreserving semen from early-run males in 2006 and produced no early-male by late- 

female hybrids that year. Consequently, we did not release late-run controls in brood year 

2006.

The F 1 mating scheme, a blocked incomplete-factorial design, was intended for 

analysis of F 1 embryonic development (Echave 2010). We produced 20 blocks of F 1 

families for both spawning segments in 2005, and another 20 blocks for the early-
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spawning segment in 2006. Each block consisted of two early- and two late-run females 

crossed with each of two early- and two late-run males, and each full-sib cross was 

equally divided between two randomly selected compartments within FALTM 

(Marisource, Milton, W A) vertical incubation trays. Control and hybrid embryos were 

incubated at the Auke Creek hatchery in ambient temperature water that was pumped 

from the creek and treated twice a week with dilute formalin (1:6000 in static water) for 1 

hour to inhibit growth of fungus and bacteria. Daily observations of incubation 

temperature and hatching status enabled us to estimate average development time in each 

compartment by the accumulation of temperature days (ATUs) on the date of mid-hatch 

(50%  or more eggs hatched).

Developing fry were incubated until they were ~5% yolk by weight, and then 

each fish was anesthetized by immersion in an aqueous M S-222 (Tricaine 

Methanesulfonate) solution (100  mg/liter) for approximately 3 minutes. Anesthetized fish 

were immediately marked with an experiment-identifying adipose fin excision and 

opposing pelvic fin excisions to distinguish controls from hybrids. Controls and hybrids 

were concurrently released into Auke Creek in April, at the peak of natural pink salmon 

emigration. Returning adult pink salmon were collected at Auke Creek weir and 

examined for the absence of an adipose or pelvic fin to determine if  they belonged to one 

of our experimental lines. Marked fish were tagged with numbered Floy™ (Floy Tag 

Inc., Seattle, W A) tags, and a randomly selected sample of those fish was held in pens to 

be used as broodstock. Fish that were not chosen as broodstock were euthanized by
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cranial concussion followed by exsanguination. Tissue samples were obtained from each 

marked fish by clipping the axillary process at the base of the remaining pelvic fin.
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Table 1 - First generation (F 1) crosses in each of two brood lines observed in these 

experiments. Parental run types are abbreviated Early (E ) and Late (L).

Dam

2005 Sire 2006 Sire

E L E L

2005 E EE EL

L LE LL

2006 E EE EL

Table 2 - Second generation (F 2 )  crosses in each of two brood lines observed in these 

experiments. Parental run types are abbreviated Early (E ) and Late (L).

Dam

2007 Sire 2008 Sire

EE EL LE LL EE EL

2007 EE EEEE

EL ELEL ELLE

LE LEEL LELE
LL LLLL

2008 EE EEEE

EL ELEL
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Laboratory Methods

Tissue samples from F 1 parents were stored in numbered vials of preservative 

solution (Seutin et al. 1991) and refrigerated at -22 °C. We isolated total genomic DNA 

with DNeasy Blood and Tissue kits (QIAGEN, Inc., Valencia, CA). Five microsatellite 

loci (Ots1 [Banks et al. 1999]; Ots208 [Greig et al. 2003]; Ogo1a [Olsen et al. 1998]; 

Oki10 [Smith et al. 1998]; and One109 [Olsen et al. 2 0 0 0 ]) were chosen to unequivocally 

assign parental pairs to progeny (Table A1). Polymerase chain reaction (PCR) was used 

to amplify microsatellite loci. The PCR reaction mixtures (Table A 2) were 10 qL 

volumes: 1 x PCR buffer (50  mM KCl, 10 mM Tris-HCl at pH 9.0); 1.5-3 mM MgCl2; 

0.125-0.2 mM each deoxynucleotide triphospate (dNTP); 0.3-0.5 qM each forward and 

reverse primer (Integrated DNA Technologies, Inc., Coralville, IA); 0.01-0.05 qM 

labeled primer (Eurofins MWG Operon, Huntsville, AL); approximately 1 unit of generic 

Taq polymerase; and 50-100 ng DNA. The general amplification profile (Table A 1) was 

1 cycle at 95°C for 3 min; 30-40 cycles at 95°C for 30 s, 49-59°C for 30 s, and 72°C for 

45 s; and 1 cycle at 72°C for 5 min. After amplification, PCR products were denatured by 

adding an equal volume of stop buffer (95%  formamide, 0.1%  Bromophenol Blue) and 

heating for 3 minutes at 95°C. Target fragments were separated by loading approximately 

1 qL of PCR product into polyacrylamide denaturing gels containing 6%  of a PAGE- 

PLUS™ 40%  concentrate (AMRESCO Inc., Solon, OH), 8 M Urea, and 5X TBE (445 

mM Tris-Borate and 10 mM EDTA, pH 8.0), in a reaction catalyzed by ammonium 

persulfate and TEMED (N,N,N’,N’-tetramethylethylenediamine). Electrophoresis was
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performed in LI-COR automated sequencers (4 3 0 0 TM DNA Analysis System, LI-COR, 

Inc., Lincoln, NE) in 1X TBE buffer, with running conditions 1,500 V, 40 W, 40 mA, 

and 45°C plate temperature. Allele sizes were scored by using Saga (Ver. 3.2.1, LI-COR) 

software to compare allele band patterns with LI-COR IRD700™  or IRD800TM standard 

ladders (Lincoln, NE).

Statistical Methods

We used microsatellite genotype information to assign parental pairs to returning 

adults with PROBMAX (Version 1.2; Danzmann 1997), which uses exclusion analysis 

based on known parental mating combinations. The type of cross for each returning adult 

fish was determined from parentage information.

Marine survival, the proportion of released experimental fry that returned to 

Auke Creek as adults, was our primary indicator of outbreeding depression. Analysis of 

log-linear models of marine survival was performed in SYSTAT (Version 11; SYSTAT 

Software Inc.), which enabled us to estimate interactions between survival and two 

explanatory variables: type of cross and spawning date. We used R software (Version 

2.12.2; R Foundation 20 11 ) to examine power curves for tests of homogeneity of 

survival.

We documented the date of collection at the Auke Creek weir of all returning F 1 

experimental pink salmon and examined temporal patterns of return by analysis of those 

dates. Analysis of variance of time of return was performed with restricted maximum 

likelihood (REM L) for mixed models (PROC MIXED; SAS Version 9.2, SAS Institute
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Inc., Cary, NC), which is more robust than standard analysis of variance for datasets that 

include both fixed and random effects, unbalanced data, and departures from normality 

(Littell et al. 1996). Additionally, REML provides better estimation properties than 

maximum likelihood (M L) because it accounts for the loss of degrees of freedom in 

estimating the mean, and it yields unbiased estimates of variance parameters (Smyth and 

Verbyla 1996). In REML analyses, variances are estimated directly and likelihood is 

maximized by removing fixed effects from the model and testing them separately. The 

significance of each random effect was estimated with a log-likelihood ratio test between 

a full model and a model without the effect of interest (Littell et al. 1996). The analysis 

was performed separately for the early- and late-spawning segments in order to avoid 

confounding the effects of run and type of cross. The return data were comprised of 

incomplete and non-equivalent blocks, which precluded reliable estimation of a block 

effect or of sire by dam interaction. Consequently, those terms were not included in our 

linear model. The linear model that describes all pertinent random and fixed effects on 

time of return within a brood year (2005 or 20 06 ) and run (early or late) was:

yijki = D- + Ci + Dj + Sik + £ijki

where yyki is the dependent variable (Julian days elapsed on return date). The overall 

population mean is q, C  is the fixed effect of the ith cross (hybrid or control), Dj is the 

random effect of the j th dam, Sik is the random effect of the kth sire within the ith cross, and 

Sijki is the residual random error associated with the j th dam and kth sire within the ith cross.
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We defined development time in F2 progeny as ATUs at mid-hatch. Analysis of 

variance of development time was performed with a mixed model procedure that was 

similar to that used for time of return, and the analysis was performed separately for the 

early and late runs. Sparse returns of F 1 progeny resulted in an unbalanced F2 mating 

design with incomplete and non-equivalent blocks. Consequently, our F2 development 

data did not provide a basis for reliably estimating a block effect or a sire by dam 

interaction, and those terms were excluded from the model. The F2 mating design was 

carried out over the course of several spawning dates in each brood year. To account for 

discrepancies in incubation temperature regimes, spawning date was incorporated as a 

fixed effect. The linear model that describes all pertinent random and fixed effects on 

development time within a brood year (2007 or 20 08 ) and run (early or late) was:

y,jkim = u + Ti + Cj + Dijk + s ifl + sijkIm

where yijkim is the dependent variable (ATUs at mid-hatch). The overall population mean 

is u, Ti is the fixed effect of the ith spawning date, Cj is the fixed effect of the j th cross 

(hybrid or control), Dijk is the random effect of the kth dam within the ith spawning date 

and j th cross, Sji is the random effect of the Ith sire within the ith spawning date and j th 

cross, and £jkim is the residual random error associated with the kth dam and Ith sire within 

the ith spawning date and j th cross.
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Results

Marine survival

We captured 176 marked pink salmon at Auke Creek hatchery in 2007 and 

genotyped each fish at five microsatellite loci. Based on parentage analysis, 169 F 1 

progeny (96% ) were conclusively linked to parental pairs from 2005, and 7 fish did not 

appear to belong to our experiment. Type of cross was determined for each experimental 

fish, and all line designations (control, hybrid) were concordant with documented pelvic 

fin clips. The total recovery of 169 returned adults from 44,728 released fry corresponded 

to a total marine survival of 0.38%  (Table 3), less than 1/10 of the survival (4 .47% ) 

observed in wild pink salmon from this brood year. Marine survival was 0.12%  lower in 

hybrids than in controls and 0.20%  lower in late- than in early-run fish. Log-linear 

analysis of marine survival (Table 4 ) revealed interaction between survival and run time 

(P  = 0.001), survival and type of cross (P  = 0.042), and a three-way interaction between 

survival, run time, and type of cross (P  = 0.046).

In 2008, we recovered 122 marked fish at Auke Creek hatchery. Parentage 

analysis conclusively linked 112 F 1 progeny (92% ) to parental pairs from 2006 and 

excluded 10 fish from our experiment. All line designations were concordant with 

documented pelvic fin clips. The total recovery of 112 returned adults from 35,159 

released fry corresponded to a marine survival of 0.32% , less than 1/10 of the survival 

(3 .83% ) observed in wild pink salmon from this brood year. Marine survival was 0.05%
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lower in hybrids than in controls, but log-linear analysis (Table 4 ) did not reveal a 

significant interaction between survival and type of cross (P  = 0.465).

Time of return

Data from 169 returned F 1 adults of broodyear 2005 (Table A 3) were used in the 

REML analysis of 2007 time of return (Table 5). Early-run controls returned 3.8 days 

before early-run hybrids on average, and late-run controls returned 3.7 days after late-run 

hybrids (Figure 1). Type of cross significantly influenced time of return for both the early 

(P  = 0 .013) and late experiment (P  = 0.002). Neither dam nor sire effects significantly 

affected time of return.

The REML analysis of 2008 time of return (Table 5) was conducted with return 

data from 112 returned F 1 adults of broodyear 2006 (Table A3). Early-run controls 

returned 9.4 days before early-run hybrids on average. Type of cross (P  < 0 .001) and sire 

(P  = 0 .002) significantly influenced time of return. There was no significant dam effect.

Embryonic development

Mid-hatch data from 64 F2 families of broodyear 2007 (Table A 4) were used in 

the REML analysis of embryonic development time (Table 6). Early-run controls 

accumulated approximately 1.2 more ATUs at mid-hatch than early-run hybrids, and late- 

run controls accumulated 2.3 fewer ATUs than late-run hybrids. Spawning date 

moderately influenced ATUs at mid-hatch in both experiments (P  < 0.11). Type of cross 

did not significantly affect ATUs at mid-hatch in either the early (P  = 0 .444) or late (P  = 

0 .135) experiment. Time (ATUs) to mid-hatch had a significant dam effect in both the
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early (P  < 10-6) and late experiment (P  = 0.004), whereas a moderate sire effect (P  = 

0 .090) was observed in the late experiment only.

Mid-hatch data from 67 F2 families (Table A 4) were used for the REML analysis 

of development time in brood year 2008 (Table 6). Early-run controls accumulated 

approximately 12 more ATUs at mid-hatch than early-run hybrids. We observed 

significant effects of spawning date (P  = 0.008), dam (P  < 10-6), and sire (P  < 10-5) on 

ATU’s at mid-hatch. Type of cross did not significantly affect ATU’s at mid-hatch.
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Table 3 -  Numbers released and return proportions by brood year, cross, and run in two 

brood years of pink salmon outbred over one generation. Returning odd- and even-year 

progeny were collected at Auke Creek weir in 2007 and 2008 respectively.

Cross Run

Broodyear 2005 Broodyear 2006

Released
Returned

proportion Released
Returned

proportion

Control Early 12,517 0.0060 25,294 0.0033

Late 12,084 0.0026 0

Hybrid Early 13,047 0.0033 9,865 0.0028

Late 7,080 0.0028 0

Table 4 -  Log-linear analysis of first generation marine survival in two brood years of 

outbred pink salmon.

Broodyear 2005 Broodyear 2006

Interaction term X2 D f P X2 df P

Survival * Cross 4.146 1 0.042 0.530 1 0.465

Survival * Run 11.538 1 0.001

Survival * Cross * Run 3.972 1 0.046
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Figure 1 - Cumulative return proportions of F 1 progeny from each experimental line that 

returned to Auke Creek. Experimental fish from broodyears 2005 and 2006 returned to 

Auke Creek in 2007 and 2008 respectively. Date of return was measured by Julian day. 

Julian day 230 is near August 1st.
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Table 5 -  Significance values of factors that affect time of return of first generation 

outbred pink salmon in the early and late experiments of broodyear 2005 and in the early 

experiment of broodyear 2006. Factors include cross (C), dam (D), and sire (S). Analyses 

were conducted with restricted maximum likelihood (REM L) for mixed models (PROC 
MIXED) in SAS (version 9.2).

Source of variation

Brood (Run)

2005 (Early) 2005 (Late) 2006 (Early)

Cross (C )a 0.013 0.002 <0.001

Dam (D ) 0.376 0.061 0.376

Sire (S) 0.201 0.376 0.002

aFixed effects

Table 6 -  Significance values of factors that affect embryonic development time of 

second generation outbred pink salmon in the early and late experiments examined in 

2007 and in the early experiment examined in 2008. Factors include spawning date (T), 

cross (C), dam (D ), and sire (S). Analyses were conducted with restricted maximum 

likelihood (REM L) for mixed models (PROC MIXED) in SAS (version 9.2).

Source of variation

Brood (Run)

2007 (Early) 2007 (Late) 2008 (Early)

Spawning date (T )a 0.108 0.061 0.008
Cross (C )a 0.444 0.135 0.568

Dam (D ) <10-6 0.004 <10-6

Sire (S) 0.327 0.090 <10-5

aFixed effects
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Discussion

Local adaptation is an important driver of genetic divergence between 

populations, which in turn enables outbreeding depression to manifest in hybrids. Hence, 

we might expect that outbreeding depression can serve as an indicator of local adaptation. 

We looked for evidence of local adaptation in early- and late-run pink salmon by 

examining hybrids between the two groups for outbreeding depressive effects. To 

accomplish this, we evaluated marine survival as a direct indicator of outbreeding 

depression, and we looked for phenotypic shifts of two fitness related traits: embryonic 

development time and time of return. Since these traits are likely optimized for different 

environmental regimes encountered by early- and late-spawning pink salmon, 

perturbations of them could decrease fitness in hybrids.

Marine survival of even-broodyear F 1 hybrids between early- and late-run pink 

salmon was similar to controls. This result is similar to those of previous studies, in 

which marine survival of controls did not differ from F 1 hybrids between even- and odd- 

year pink salmon (Gharrett and Smoker 1991; Gharrett et al. 1999) and F 1 hybrids 

between spatially isolated populations of even-broodyear pink salmon (Gilk et al. 2004). 

The power of this test, however, was low (0.11). An F 1 hybrid marine survival of 0.21% , 

approximately 3/4 of that observed, would be required for this test to attain a power of 

0.5.

In contrast to the even-year brood line, marine survival of F 1 hybrids was 

significantly lower than controls in the odd-year brood line. This result is similar to the 

reduced survival that was observed in odd-broodyear F 1 hybrids between spatially
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isolated pink salmon (Gilk et al. 20 04 ) and suggests that extrinsic outbreeding depression 

may influence marine survival.

We observed reduced survival of experimental fish relative to wild fish, which 

was consistent with hatchery and marking effects observed in prior experiments at Auke 

Creek (Lane et al. 1990). Various aspects of the culturing process might adversely impact 

developing fry and consequently reduce survival in the marine environment. In addition, 

the comparatively benign hatchery environment may favor survival to emigration of 

many embryos that would have perished in the harsher natural environment. Upon 

introduction to the natural environment during emigration, many of these fry likely 

succumb to mortality. Hence, delayed mortality may reduce marine survival. To account 

for this, controls and hybrids were reared under identical incubation conditions and 

released at the same time, which gave each fish an equal opportunity to prepare for the 

marine environment. Therefore, we would expect that any discrepancies in return rates 

between controls and hybrids are the result of differential performance in the marine 

environment.

We tested for disruption of local adaptation that could cause outbreeding 

depression in hybrid F 1 pink salmon by estimating genetic influences on time of return. 

Despite having low statistical power, we observed differences of time of return between 

controls and hybrids in each run within both brood lines. The return distribution pattern 

for each type of cross was consistent with our initial expectations based on local 

adaptation of time of return: hybrids returned to Auke Creek later than controls in the 

early experiment of both brood lines, and hybrids returned earlier than controls in the late
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experiment of the odd-year brood line. Our results demonstrate intermediate phenotypic 

expression of time of return in hybrid pink salmon relative to controls and indicate that 

there is a strong genetic basis for this trait. While a phenotypic shift in time of return does 

not directly demonstrate outbreeding depression, it does suggest that hybridization can 

reduce spawning success. The reason for this is that timing of egg deposition is critical to 

maximizing offspring survival during embryonic development. This is particularly 

relevant for embryos of early-spawning pink salmon, which are vulnerable to disturbance 

by subsequent spawning activity. Embryos that complete epiboly, a developmental 

process in which the germ ring closes over the yolk plug (Ballard 1973), gain heightened 

resistance to mechanical agitation. Accordingly, offspring that complete epiboly are more 

likely to survive redd superimposition by late-spawning adults (Smoker et al. 1998). The 

influence of late-run genetic material could delay egg deposition in hybrid pink salmon; 

consequently, hybrid embryos might be more prone to mortality from superimposition by 

late-spawning adults.

Our results confirm that there is a genetic basis for time of return, which explains 

why gene flow is restricted between the early- and late-spawning segments. Previous 

research has yielded insight into the notion that the early and late subpopulations are 

partially isolated genetically. Lane et al. (1 9 9 0 ) conducted a study in which a genetic 

marker was bred into the late-run subpopulation of the odd-year brood line in 1979 and 

1981. Between 1983 and 1989, the allele frequencies of the marker were monitored in the 

early- and late-spawning segments (Gharrett et al. 2001). Introgression of the marker into 

the early-run subpopulation was minimal, which suggested that gene flow was restricted
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between the two spawning segments and that fine-scale temporal structure existed within 

brood lines. Temporal structure enhances the productivity of each brood line by 

maximizing the number of offspring that can be produced from limited spawning 

substrate (Smoker et al. 1998). Hence, it is likely that erosion of the temporal barrier that 

separates the early- and late-spawning segments would cause decreased productivity of 

Auke Creek pink salmon.

Embryonic development rate is an important life history trait, which has a genetic 

basis in Auke Creek pink salmon (Goddard 1995; Hebert et al. 1998). Embryonic 

development exhibits phenotypic plasticity in salmonids, and warmer incubation 

temperatures typically accelerate development (Murray and McPhail 1988). Early-run 

fish arriving at Auke Creek in late August experience warmer stream conditions than 

late-run fish arriving in September. However, the offset in fry emergence between the 

two groups suggests that early- and late-run pink salmon develop at similar rates despite 

incubating in different temperature regimes (Joyce 1986). It is likely that, through 

adaptation to different local regimes, a compensatory mechanism has evolved that 

enables both groups to emerge concurrently with favorable estuarine conditions each 

spring. Accordingly, we might expect to observe extrinsic effects on development rate in 

F 1 hybrids.

The analysis of embryonic development time (measured by ATU’s at mid-hatch) 

of F 1 hybrids between early- and late-run pink salmon yielded contrasting results between 

the even- and odd-year brood lines (Echave 2010). In the odd-year brood line, hybrids 

developed slower than early controls. This result was surprising because Hebert (1998 )
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observed that late-run pink salmon from Auke Creek developed faster than early-run fish, 

irrespective of incubation temperature regime; hence, we would expect a hybrid embryo 

to develop faster than an early-control embryo because of the influence of late-run 

genetic material. In the even-year brood line, early hybrids developed faster than early 

controls, which was consistent with a phenotypic expression intermediate to the parental 

types as predicted by Hebert’s results. In addition, late hybrids from the odd-year brood 

line, which developed more slowly than late controls, expressed an intermediate 

phenotype. Echave (2 0 1 0 ) proposed that the unexpected results of the early component of 

odd-year experiment may have been influenced by unusual creek temperatures during the 

summer of 2005, which were among the warmest on record. One important consequence 

of warm creek temperatures in 2005 was that weir passage of the earliest arriving pink 

salmon was delayed; therefore, early-run broodstock were not collected until 22 August, 

after more than 50%  of the pink salmon run had already passed through the weir. Hence, 

it is possible that early-run broodstock from 2005 were unusually mixed with late-run 

individuals, whose genetic contribution could have hastened embryonic development of 

the early controls. Although the results were mixed, there was evidence of intermediate 

expression of development time in F 1 hybrids, which suggests that differences in 

embryonic development rate between early- and late-run pink salmon have arisen through 

adaptation to local environmental regimes. Additionally, development time was strongly 

influenced by sire and dam effects in each of the F 1 experiments, which indicates that 

additive genetic effects are significant contributors to variation of embryonic 

development rate.
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We compared embryonic development time between controls and hybrid F2  pink 

salmon to look for evidence of local adaptation. Whereas shifts in development time can 

be attributed to extrinsic effects in F 1 hybrids, both extrinsic and intrinsic effects could 

contribute to shifts in development time in F2 hybrids. Neither the even- nor the odd-year 

analyses indicated that embryonic development time differed between controls and 

hybrids. However, the F2 mating design complicated the interpretation of the 

development analysis. Spawning of the F2 crosses occurred on three different dates in 

each brood year. Developing embryos were incubated in ambient temperature water that 

was pumped from Auke Creek; consequently, incubation temperature regimes differed 

for fish that were spawned on different dates. The analyses of development time showed 

that spawning date was moderately influential for the odd-year experiment and strongly 

influential for the even-year experiment. However, our experimental design does not 

enable us to accurately partition the variation in development time between spawning 

date and type of cross. The analysis revealed strong dam effects on development time for 

each of the F2  experiments and moderate to strong sire effects for two out of three F2 

experiments, which reinforces the idea that additive genetic effects contribute to variation 

of development rate.

Conclusion

A long-term series of water temperature data and biological observations 

collected at Auke Creek indicated that a general warming trend (0.03°C yr-1) is affecting 

the pink salmon population. Earlier migration times for spawning adults and elevated
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incubation temperatures are causing fry to emigrate earlier (Taylor 2008; Kovach et al. 

2012). The abundance of phytoplankton, which is limited by incident light and typically 

peaks in early April, is tightly linked to the survival of juvenile pink salmon (Ziemann et 

al. 1990). Prior to the primary plankton bloom, environmental conditions in Auke Bay are 

characterized by cooler waters and limited prey availability (Coyle and Paul 1990), both 

of which can constrain growth and reduce survival of early emigrating fry. Early 

emigrating juveniles may benefit from reduced size-selective predation by growing in the 

estuarine environment prior to the rapid increase of near-shore predators that typically 

occurs in May. However, an adaptive advantage of reduced size-selective predation is 

likely constrained by longer exposure to predators, poorer growth in early spring, and 

reduced survival to adulthood (Mortensen 2000). Consequently, a continued trend toward 

earlier migration could result in reduced average fitness of emigrating juveniles and an 

overall decline in the productivity of Auke Creek pink salmon. Local adaptation, by 

altering life history traits such as embryonic development rate and time of return, can 

adjust emigration times to optimal environmental conditions. Spawning segregation 

increases genetic diversity, which entails higher adaptability to changing local regimes. 

The findings of our study suggest that hybridization has the capacity to erode the 

temporal barrier separating the early- and late-runs, thereby hindering the ability of pink 

salmon to sustain productivity in a changing climate.

The Pacific Decadal Oscillation (PDO), a pattern of marine climate variability 

that shifts polarity on an inter-decadal time scale, is associated with Alaskan salmon 

production cycles. In particular, pink salmon are influenced by marine climate variability
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during the early ocean phase of their life cycles. Environmental changes related to the 

PDO likely influence productivity in near-shore environments through a “bottom-up” 

model, in which phytoplankton and zooplankton abundances fluctuate with marine 

conditions, and the ramifications of these lower trophic level fluctuations spread upward 

to top-level predators such as salmon (Hare and Francis 1995). Stream-flow variations 

are also linked to the PDO and influence the survival of emigrating juvenile salmon. It is 

probable that fluctuations in near-shore plankton abundance and stream-flow variations 

jointly influence the productivity of pink salmon. Research indicates that marked changes 

in salmon production regimes in the North Pacific have accompanied shifts in the polarity 

of the PDO (Mantua et al. 1997). Alaskan salmon stocks are currently abundant, but 

productivity may decline with the next climatic shift (Hare and Francis 1995), which will 

increase reliance on hatchery supplementation of wild stocks. Hence, the coming decades 

will likely bring an increase in the introgression of non-native genetic material into local 

wild populations. Understanding the influence of hybridization on local adaptation should 

be of paramount importance to the future management of Alaska’s salmon resources.

This study demonstrated that seasonally separate subpopulations can adapt to 

unique local environments, thereby creating sufficient genetic divergence to potentiate 

outbreeding depression in hybrids. The implications emphasize the importance of fine- 

scale population structure to overall fitness, which make it unique to the Auke Creek 

hybridization experiments. Fine-scale structure is often impossible to resolve without 

genetic analyses, yet failure to maintain it could be detrimental to the biodiversity and 

productivity of wild salmon populations. Our observations suggest that prudent
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management of wild salmon stocks should be conducted not only with regard for genetic 

structure that arises from isolation of populations by great distance or time, but also fine- 

scale genetic structure that can occur within streams and brood lines.
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Appendix

Table A1 - Microsatellite information and PCR conditions for microsatellite loci.

PCR profile: 3 min. 95 C°, x cycles (1 min. 95 C°, 1 min. TA, 1 min. 72 C°), 5 min. 72 C°

Locus Ta Cycles Accession #

Ogo1a 59 30 A F007827

Ots1 49 35 A F107029

Oki10 55 40 A F055435

One109 55 35 A F574525

Ots208 50 35 G 68-A F393187

Table A2 - Specific PCR reagent quantities used for each of five microsatellite loci. 

Volumes are given in pL per sample.

Locus

Reagent Ogo1a Ots1 Oki10 One109 Ots208

Purified H2O 5.14 5.40 5.14 5.50 5.40

10x PCR Buffer 1.00 1.00 1.00 1.00 1.00

25 mM MgCl2 0.60 0.75 0.60 0.60 0.75

dNTP's 0.80 0.50 0.80 0.50 0.50

10 uM F 0.36 0.40 0.36 0.30 0.40

10 uM R 0.40 0.40 0.40 0.40 0.40

1 uM L 0.40 0.25 0.40 0.10 0.25

Taq Polymerase 0.10 0.10 0.10 0.10 0.10



Table A3 - Time of return to Auke Creek of F 1 progeny from brood years 2005 and 2006. Parental sample numbers and type of

cross are listed for each fish. Spawning was carried out on several different dates during brood year 2005.

2007 F 1Time of Return 2008 F 1Time of Return

Spawned Cross Sire Dam Returned Spawned Cross Sire Dam Returned

8/27/05 EF x LM 4002 5601 8/26/07 8/12/06 EF x EM 5552 5501 8/3/08
8/27/05 EF x LM 4002 5601 9/5/2007 8/12/06 EF x EM 5552 5501 8/11/08

8/27/05 EF x LM 4002 5601 9/6/2007 8/12/06 EF x EM 5556 5506 8/1/08

8/27/05 EF x LM 4002 5601 8/26/07 8/12/06 EF x EM 5556 5506 8/11/08

9/9/05 LF x LM 4002 5801 9/7/2007 8/12/06 EF x EM 5558 5507 8/3/08

9/9/05 LF x LM 4002 5801 9/14/2007 8/12/06 EF x EM 5558 5507 8/6/08

8/27/05 EF x LM 4003 5603 8/30/2007 8/12/06 EF x EM 5558 5508 7/31/08

8/27/05 EF x LM 4003 5603 9/6/2007 8/12/06 EF x EM 5558 5508 8/1/08

8/27/05 EF x LM 4004 5603 9/5/2007 8/12/06 EF x EM 5558 5508 8/4/08

8/27/05 EF x LM 4004 5604 9/5/2007 8/12/06 EF x EM 5559 5509 8/11/08

9/9/05 LF x LM 4004 5804 9/6/2007 8/12/06 EF x EM 5559 5510 8/11/08

9/9/05 LF x LM 4004 5804 9/7/2007 8/12/06 EF x EM 5559 5510 8/12/08

8/27/05 EF x LM 4006 5606 8/26/07 8/12/06 EF x EM 5559 5510 8/14/08

8/27/05 EF x LM 4006 5606 8/26/07 8/12/06 EF x EM 5559 5510 8/17/08

9/9/05 LF x LM 4006 5806 9/1/2007 8/12/06 EF x EM 5560 5509 8/8/08

8/27/05 EF x LM 4007 5608 9/5/2007 8/12/06 EF x EM 5560 5509 8/9/08

9/9/05 LF x LM 4008 5807 9/15/2007 8/12/06 EF x EM 5560 5510 8/13/08

9/9/05 LF x LM 4008 5808 9/8/2007 8/12/06 EF x EM 5560 5510 8/14/08

9/9/05 LF x LM 4008 5808 9/15/2007 8/12/06 EF x EM 5562 5512 8/15/08

8/27/05 EF x LM 4010 5610 8/28/07 8/12/06 EF x EM 5563 5514 7/20/08

9/9/05 LF x LM 4010 5809 9/7/2007 8/12/06 EF x EM 5564 5513 8/4/08

9/9/05 LF x LM 4010 5810 9/5/2007 8/12/06 EF x EM 5564 5513 8/11/08

9/9/05 LF x LM 4010 5810 9/5/2007 8/12/06 EF x EM 5564 5513 8/11/08

9/9/05 LF x LM 4010 5810 9/5/2007 8/12/06 EF x EM 5564 5513 8/12/08

3
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Table A3 (Continued)

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

9/9/05 L F x L M 4010 5810 9/6/2007
8/27/05 E F x L M 4011 5611 9/1/2007

8/27/05 E F x L M 4011 5611 9/5/2007

8/27/05 E F x L M 4011 5611 9/6/2007

8/27/05 E F x L M 4011 5612 9/3/2007

8/27/05 E F x L M 4011 5612 9/6/2007

8/27/05 E F x L M 4012 5611 9/4/2007

8/27/05 E F x L M 4012 5611 9/4/2007

8/27/05 E F x L M 4014 5614 8/25/07

8/27/05 E F x L M 4014 5614 8/30/2007

8/27/05 E F x L M 4014 5614 9/7/2007

9/9/05 L F x L M 4014 5813 9/6/2007

9/9/05 L F x L M 4014 5813 9/8/2007

9/9/05 L F x L M 4014 5813 9/10/2007

9/9/05 L F x L M 4014 5813 9/10/2007

9/9/05 L F x L M 4014 5814 8/30/2007

9/9/05 L F x L M 4015 5815 9/9/2007

9/9/05 L F x L M 4016 5815 9/5/2007

9/9/05 L F x L M 4016 5816 9/15/2007

8/27/05 E F x L M 4017 5618 9/6/2007

9/9/05 L F x L M 4019 5820 9/6/2007

8/27/05 E F x L M 4020 5620 8/9/07

8/27/05 E F x L M 4020 5620 8/26/07

8/27/05 E F x L M 4021 5621 9/9/2007

9/9/05 L F x L M 4022 5822 9/10/2007



2008 Fi Time of Return

Spawned Cross Sire Dam Returned

8/12/06 E F x E M 5564 5514 8/22/08
8/12/06 E F x E M 5566 5516 8/1/08

8/12/06 E F x E M 5567 5517 8/8/08

8/12/06 E F x E M 5567 5518 7/30/08

8/12/06 E F x E M 5568 5517 7/31/08

8/12/06 E F x E M 5568 5517 8/17/08

8/12/06 E F x E M 5568 5517 8/18/08

8/12/06 E F x E M 5568 5518 8/2/08

8/12/06 E F x E M 5568 5518 8/10/08

8/12/06 E F x E M 5568 5518 8/13/08

8/12/06 E F x E M 5571 5521 8/6/08

8/12/06 E F x E M 5571 5521 8/14/08

8/12/06 E F x E M 5571 5521 8/18/08

8/12/06 E F x E M 5571 5522 8/12/08

8/12/06 E F x E M 5571 5522 8/13/08

8/12/06 E F x E M 5571 5522 8/13/08

8/12/06 E F x E M 5571 5522 8/18/08

8/12/06 E F x E M 5572 5521 8/13/08

8/12/06 E F x E M 5572 5522 8/11/08

8/12/06 E F x E M 5572 5522 8/13/08

8/12/06 E F x E M 5574 5523 8/8/08

8/12/06 E F x E M 5574 5524 8/3/08

8/12/06 E F x E M 5574 5524 8/9/08

8/12/06 E F x E M 5574 5524 8/10/08

8/12/06 E F x E M 5574 5524 8/13/08



Table A3 (Continued)

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

9/9/05 L F x L M 4023 5823 9/6/2007
8/27/05 EF x LM 4024 5623 9/6/2007

8/27/05 EF x LM 4024 5624 9/5/2007

8/27/05 EF x LM 4024 5624 9/6/2007

8/27/05 EF x LM 4027 5628 8/12/07

8/27/05 EF x LM 4027 5628 9/2/2007

9/9/05 L F x L M 4027 5828 9/6/2007

8/27/05 EF x LM 4028 5627 9/5/2007

9/9/05 L F x L M 4028 5828 9/6/2007

8/27/05 EF x LM 4029 5629 9/6/2007

8/27/05 EF x LM 4030 5629 9/6/2007

9/9/05 L F x L M 4030 5829 9/6/2007

9/9/05 L F x L M 4030 5830 9/15/2007

8/27/05 EF x LM 4031 5631 8/26/07

8/27/05 EF x LM 4032 5632 8/27/07

9/9/05 L F x L M 4032 5832 9/6/2007

8/27/05 EF x LM 4036 5635 8/25/07

8/27/05 EF x LM 4036 5635 9/4/2007

8/27/05 EF x LM 4037 5637 9/11/2007

9/9/05 L F x L M 4037 5838 9/3/2007

8/27/05 EF x LM 4038 5637 9/4/2007

8/27/05 EF x LM 4038 5637 9/6/2007

8/27/05 EF x LM 4038 5638 9/6/2007

8/27/05 EF x LM 4039 5640 8/25/07

9/9/05 L F x L M 4039 5839 9/6/2007



2008 Fi Time of Return

Spawned Cross Sire Dam Returned

8/12/06 E F x E M 5575 5525 8/10/08
8/12/06 E F x E M 5575 5525 8/10/08

8/12/06 E F x E M 5575 5525 8/10/08

8/12/06 E F x E M 5575 5525 8/13/08

8/12/06 E F x E M 5576 5525 8/1/08

8/12/06 E F x E M 5576 5525 8/3/08

8/12/06 E F x E M 5576 5525 8/4/08

8/12/06 E F x E M 5576 5525 8/11/08

8/12/06 E F x E M 5576 5525 8/15/08

8/12/06 E F x E M 5576 5526 8/1/08

8/12/06 E F x E M 5577 5528 8/11/08

8/12/06 E F x E M 5579 5530 8/10/08

8/12/06 E F x E M 5580 5530 8/11/08

8/12/06 E F x E M 5580 5530 8/18/08

8/12/06 E F x E M 5581 5531 8/1/08

8/12/06 E F x E M 5581 5531 8/11/08

8/12/06 E F x E M 5581 5531 8/13/08

8/12/06 E F x E M 5581 5531 8/13/08

8/12/06 E F x E M 5581 5532 8/11/08

8/12/06 E F x E M 5581 5532 8/14/08

8/12/06 E F x E M 5582 5531 8/10/08

8/12/06 E F x E M 5582 5532 8/10/08

8/12/06 E F x E M 5584 5533 8/10/08

8/12/06 E F x E M 5584 5533 8/11/08

8/12/06 E F x E M 5584 5534 8/16/08



Table A3 (Continued)

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

9/9/05 L F x L M 4040 5840 9/10/2007
9/9/05 L F x E M 5651 5801 8/28/07

9/9/05 L F x E M 5651 5801 9/6/2007

9/9/05 L F x E M 5651 5802 9/5/2007

9/9/05 L F x E M 5651 5802 9/6/2007

8/27/05 EF x EM 5652 5601 8/28/07

9/9/05 L F x E M 5652 5802 9/5/2007

8/27/05 EF x EM 5653 5604 9/6/2007

8/27/05 EF x EM 5654 5603 8/25/07

8/27/05 EF x EM 5654 5604 8/26/07

8/27/05 EF x EM 5655 5606 8/26/07

8/27/05 EF x EM 5655 5606 8/31/2007

9/9/05 L F x E M 5655 5805 8/31/2007

9/9/05 L F x E M 5655 5805 9/6/2007

9/9/05 L F x E M 5655 5805 9/6/2007

8/27/05 EF x EM 5656 5606 8/28/07

8/27/05 EF x EM 5656 5606 8/31/2007

9/9/05 L F x E M 5656 5806 8/29/2007

9/9/05 L F x E M 5656 5806 9/2/2007

9/9/05 L F x E M 5656 5806 9/5/2007

8/27/05 EF x EM 5657 5608 8/26/07

8/27/05 EF x EM 5657 5608 8/30/2007

9/9/05 L F x E M 5658 5807 9/5/2007

8/27/05 EF x EM 5659 5610 8/25/07

8/27/05 EF x EM 5659 5610 8/26/07



2008 Fi Time of Return

Spawned Cross Sire Dam Returned

8/12/06 E F x E M 5585 5535 8/1/08
8/12/06 E F x E M 5585 5536 8/1/08

8/12/06 E F x E M 5586 5535 8/11/08

8/12/06 E F x E M 5586 5535 8/13/08

8/12/06 E F x E M 5586 5536 7/30/08

8/12/06 E F x E M 5588 5537 8/3/08

8/12/06 E F x E M 5589 5539 8/13/08

8/12/06 E F x E M 5589 5540 8/3/08

8/12/06 E F x E M 5590 5539 8/11/08

8/12/06 E F x E M 5590 5539 8/14/08

8/12/06 E F x L M 5705 5505 8/16/08

8/12/06 E F x L M 5710 5510 8/19/08

8/12/06 E F x L M 5714 5514 8/12/08

8/12/06 E F x L M 5714 5514 8/13/08

8/12/06 E F x L M 5714 5514 8/24/08

8/12/06 E F x L M 5714 5514 8/24/08

8/12/06 E F x L M 5715 5515 8/11/08

8/12/06 E F x L M 5718 5517 8/13/08

8/12/06 E F x L M 5718 5518 8/10/08

8/12/06 E F x L M 5722 5521 8/14/08

8/12/06 E F x L M 5726 5525 8/26/08

8/12/06 E F x L M 5729 5529 8/24/08

8/12/06 E F x L M 5731 5532 8/17/08

8/12/06 E F x L M 5731 5532 8/23/08

8/12/06 E F x L M 5732 5531 8/26/08



Table A3 (Continued)

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

8/27/05 E F x E M 5659 5610 8/27/07
8/27/05 E F x E M 5659 5610 9/6/2007

9/9/05 L F x E M 5659 5810 9/3/2007

8/27/05 E F x E M 5660 5609 8/9/07

8/27/05 E F x E M 5660 5609 8/26/07

8/27/05 E F x E M 5660 5610 8/26/07

8/27/05 E F x E M 5660 5610 8/27/07

9/9/05 L F x E M 5660 5809 9/4/2007

9/9/05 L F x E M 5660 5809 9/5/2007

9/9/05 L F x E M 5660 5809 9/9/2007

9/9/05 L F x E M 5660 5810 9/6/2007
8/27/05 E F x E M 5662 5611 8/11/07

8/27/05 E F x E M 5662 5611 8/26/07 |

8/27/05 E F x E M 5663 5613 8/26/07
8/27/05 E F x E M 5663 5614 8/27/07

9/9/05 L F x E M 5663 5813 9/6/2007

8/27/05 E F x E M 5664 5614 8/9/07

8/27/05 E F x E M 5664 5614 8/26/07

9/9/05 L F x E M 5664 5814 8/28/07

8/27/05 E F x E M 5665 5615 9/5/2007

9/9/05 L F x E M 5665 5816 9/6/2007

8/27/05 E F x E M 5666 5615 8/28/07

8/27/05 E F x E M 5666 5616 9/11/2007

8/27/05 E F x E M 5667 5617 8/12/07

8/27/05 E F x E M 5667 5617 8/27/07



pp00oo(N

Time of Return

Spawned Cross Sire Dam Returned

8/12/06 EF x LM 5733 5534 8/27/08
8/12/06 EF x LM 5735 5535 8/14/08

8/12/06 EF x LM 5735 5535 8/26/08

8/12/06 EF x LM 5736 5535 8/28/08

8/12/06 EF x LM 5736 5535 8/28/08

8/12/06 EF x LM 5736 5536 8/22/08

8/12/06 EF x LM 5740 5539 8/12/08

8/12/06 EF x LM 5740 5539 8/13/08

8/12/06 EF x LM 5740 5539 8/14/08

8/12/06 EF x LM 5740 5540 8/9/08

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

8/27/05 EF x EM 5667 5618 8/25/07
8/27/05 EF x EM 5667 5618 8/27/07

8/27/05 EF x EM 5667 5618 8/30/2007

8/27/05 EF x EM 5667 5618 8/31/2007

8/27/05 EF x EM 5668 5617 9/1/2007

8/27/05 EF x EM 5668 5617 9/2/2007

8/27/05 EF x EM 5668 5618 8/26/07

8/27/05 EF x EM 5669 5619 8/9/07

8/27/05 EF x EM 5669 5620 8/26/07

8/27/05 EF x EM 5670 5620 8/25/07

8/27/05 EF x EM 5670 5620 8/25/07

8/27/05 EF x EM 5671 5621 8/27/07



Table A3 (Continued)

2007 Fi Time of Return

Spawned Cross Sire Dam Returned

8/27/05 E F x E M 5672 5621 9/1/2007
8/27/05 E F x E M 5673 5623 8/26/07

8/27/05 E F x E M 5674 5624 9/6/2007

8/27/05 E F x E M 5676 5625 8/25/07

8/27/05 E F x E M 5676 5625 9/5/2007

8/27/05 E F x E M 5676 5626 8/26/07

8/27/05 E F x E M 5677 5628 8/25/07

8/27/05 E F x E M 5677 5628 9/5/2007

8/27/05 E F x E M 5678 5627 9/2/2007

8/27/05 E F x E M 5678 5628 8/25/07

8/27/05 E F x E M 5678 5628 8/27/07

8/27/05 E F x E M 5678 5628 8/27/07

8/27/05 E F x E M 5680 5629 9/5/2007

8/27/05 E F x E M 5680 5629 9/5/2007

8/27/05 E F x E M 5681 5632 8/26/07

8/27/05 E F x E M 5681 5632 9/3/2007

8/27/05 E F x E M 5681 5632 9/6/2007



2007 Fi Time of Return

Spawned Cross Sire Dam Returned

8/27/05 E F x E M 5682 5631 8/29/2007
8/27/05 E F x E M 5682 5632 8/26/07

8/27/05 E F x E M 5682 5632 9/5/2007

8/27/05 E F x E M 5685 5635 8/28/07

8/27/05 E F x E M 5685 5635 9/6/2007

8/27/05 E F x E M 5685 5636 8/27/07

8/27/05 E F x E M 5685 5636 8/29/2007

8/27/05 E F x E M 5685 5636 9/12/2007

8/27/05 E F x E M 5686 5635 8/27/07

8/27/05 E F x E M 5686 5635 9/5/2007

8/27/05 E F x E M 5686 5636 8/26/07

8/27/05 E F x E M 5686 5636 8/27/07

8/27/05 E F x E M 5688 5637 9/5/2007

8/27/05 E F x E M 5689 5640 8/27/07

8/27/05 E F x E M 5690 5640 8/26/07

8/27/05 E F x E M 5690 5640 9/3/2007

4^
U>



Table A4 - Development rate, measured by accumulated temperature units (ATU’s) at mid-hatch, of F2 progeny from brood 

years 2007 and 2008. Parental sample numbers and type of cross are listed for each fish. Spawning was carried out on several 

different dates during each brood year.

2007 F2 Embryonic Development 2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU Spawned Cross Sire Dam ATU

9/4 EF x EM 6102 5901 549.4 8/20 EF x EM 5327 5420 617.7
9/4 EF x EM 6102 5901 559.9 8/20 EF x EM 5327 5426 633.7
9/4 EF x EM 6102 5902 549.4 8/20 EF x EM 5327 5426 633.7
9/4 EF x EM 6102 5902 549.4 8/20 EF x EM 5327 5430 625.7
9/4 EF x EM 6103 5903 552.9 8/20 EF x EM 5327 5430 617.7
9/4 EF x EM 6103 5903 549.4 8/20 EF x EM 5327 5434 621.7
9/4 EF x EM 6103 5904 549.4 8/20 EF x EM 5327 5434 617.7
9/4 EF x EM 6103 5904 552.9 8/20 EF x EM 5327 5437 609.7
9/4 EF x EM 6104 5903 546 8/20 EF x EM 5327 5439 617.7
9/4 EF x EM 6104 5903 546 8/20 EF x EM 5327 5439 617.7
9/4 EF x EM 6104 5904 546 8/20 EF x EM 5327 5441 613.7
9/4 EF x EM 6104 5904 546 8/20 EF x EM 5327 5441 617.7
9/4 EF x EM 6105 5905 556.4 8/20 EF x EM 5329 5420 609.7
9/4 EF x EM 6105 5905 552.9 8/20 EF x EM 5329 5420 613.7
9/4 EF x EM 6105 5906 549.4 8/20 EF x EM 5329 5425 613.7
9/4 EF x EM 6105 5906 552.9 8/20 EF x EM 5329 5425 617.7
9/4 EF x EM 6106 5905 549.4 8/20 EF x EM 5329 5431 617.7
9/4 EF x EM 6106 5905 549.4 8/20 EF x EM 5329 5431 621.7
9/4 EF x EM 6106 5906 552.9 8/20 EF x EM 5329 5432 621.7
9/4 EF x EM 6106 5906 552.9 8/20 EF x EM 5329 5432 617.7
9/4 EF x EM 6107 5907 546 8/20 EF x EM 5329 5443 621.7
9/4 EF x EM 6107 5907 552.9 8/20 EF x EM 5329 5443 621.7
9/4 EF x EM 6107 5908 542.4 8/20 EF x EM 5329 6222 625.7
9/4 EF x EM 6107 5908 542.4 8/20 EF x EM 5329 6222 617.7
9/4 EF x EM 6109 5909 549.4 8/20 EF x EM 5330 5420 613.7
9/4 EF x EM 6109 5909 542.4 8/20 EF x EM 5330 5420 609.7

4
4



Table A4 (continued)

2007 F2  Embryonic Development 

Spawned Cross Sire Dam ATU

9/4 E F x E M 6109 5910 546
9/4 E F x E M 6109 5910 549.4
9/4 E F x E M 6110 5909 549.4
9/4 E F x E M 6110 5909 549.4
9/4 E F x E M 6110 5910 549.4
9/4 E F x E M 6110 5910 546

9/10 E F x E M 6111 5911 541.3
9/10 E F x E M 6111 5911 544.9
9/10 E F x E M 6113 5914 548.5
9/10 E F x E M 6113 5914 552.1
9/10 E F x E M 6114 5914 548.5
9/10 E F x E M 6114 5914 555.6
9/10 E F x E M 6115 5915 544.9
9/10 E F x E M 6115 5915 544.9
9/10 E F x E M 6116 5915 537.8
9/10 E F x E M 6116 5915 544.9
9/10 E F x E M 6117 5917 537.8
9/10 E F x E M 6117 5917 541.3
9/10 E F x E M 6117 5918 555.6
9/10 E F x E M 6117 5918 552.1
9/10 E F x L M 6205 6005 534.5
9/10 E F x L M 6205 6005 537.8
9/10 E F x L M 6205 6006 548.5
9/10 E F x L M 6205 6006 552.1
9/10 E F x L M 6205 6007 552.1
9/10 E F x L M 6205 6007 544.9
9/10 E F x L M 6207 6008 548.5
9/10 E F x L M 6207 6008 548.5



2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/20 E F x E M 5330 5425 621.7
8/20 E F x E M 5330 5425 617.7
8/20 E F x E M 5330 5431 617.7
8/20 E F x E M 5330 5431 617.7
8/20 E F x E M 5330 5432 621.7
8/20 E F x E M 5330 5432 621.7
8/20 E F x E M 5330 5443 621.7
8/20 E F x E M 5330 6222 625.7
8/20 E F x E M 5330 6222 621.7
8/20 E F x E M 5331 5426 637.7
8/20 E F x E M 5331 5426 641.7
8/20 E F x E M 5331 5430 621.7
8/20 E F x E M 5331 5430 617.7
8/20 E F x E M 5331 5434 625.7
8/20 E F x E M 5331 5434 617.7
8/20 E F x E M 5331 5437 621.7
8/20 E F x E M 5331 5437 621.7
8/20 E F x E M 5331 5439 625.7
8/20 E F x E M 5331 5439 621.7
8/20 E F x E M 5331 5441 617.7
8/20 E F x E M 5331 5441 605.7
8/20 E F x E M 5332 5416 617.7
8/20 E F x E M 5332 5416 613.7
8/20 E F x E M 5332 5418 617.7
8/20 E F x E M 5332 5418 621.7
8/20 E F x E M 5332 5421 613.7
8/20 E F x E M 5332 5421 609.7
8/20 E F x E M 5332 5423 617.7



Table A4 (continued)

2007 F2 Embryonic Development 

Spawned Cross Sire Dam ATU

9/10 EF x LM 6207 6009 552.1
9/10 EF x LM 6207 6009 548.5
9/10 EF x LM 6207 6010 559.2
9/10 EF x LM 6207 6010 555.6
9/10 EF x LM 6208 6008 555.6
9/10 EF x LM 6208 6008 544.9
9/10 EF x LM 6212 6014 552.1
9/10 EF x LM 6212 6014 548.5
9/10 EF x LM 6212 6015 548.5
9/10 EF x LM 6212 6015 552.1
9/10 EF x LM 6213 6008 534.5
9/10 EF x LM 6213 6008 559.2
9/10 EF x LM 6213 6017 537.8
9/10 EF x LM 6213 6017 537.8
9/10 EF x LM 6214 6008 541.3
9/10 EF x LM 6214 6008 548.5
9/10 L F x E M 6209 6011 548.5
9/10 L F x E M 6209 6011 548.5
9/10 L F x E M 6209 6012 544.9
9/10 L F x E M 6209 6012 548.5
9/10 L F x E M 6211 6016 548.5
9/10 L F x E M 6211 6016 552.1
9/10 L F x L M 6111 5912 548.5
9/10 L F x L M 6111 5912 548.5
9/10 L F x L M 6112 5912 552.1
9/10 L F x L M 6112 5912 552.1
9/10 L F x L M 6119 5919 544.9
9/10 L F x L M 6119 5919 537.8



2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/20 E F x E M 5332 5423 617.7
8/20 E F x E M 5332 5424 625.7
8/20 E F x E M 5332 5424 625.7
8/20 E F x E M 5332 5440 617.7
8/20 E F x E M 5332 5440 613.7
8/20 E F x E M 5333 5416 625.7
8/20 E F x E M 5333 5416 617.7
8/20 E F x E M 5333 5418 621.7
8/20 E F x E M 5333 5418 617.7
8/20 E F x E M 5333 5421 617.7
8/20 E F x E M 5333 5421 613.7
8/20 E F x E M 5333 5423 621.7
8/20 E F x E M 5333 5423 617.7
8/20 E F x E M 5333 5424 617.7
8/20 E F x E M 5333 5424 625.7
8/20 E F x E M 5333 5440 621.7
8/20 E F x E M 5333 5440 617.7
8/20 E F x E M 5334 5435 617.7
8/20 E F x E M 5334 5435 617.7
8/20 E F x E M 5334 5436 609.7
8/20 E F x E M 5334 5436 605.7
8/20 E F x E M 5334 5438 609.7
8/20 E F x E M 5334 5438 605.7
8/20 E F x E M 5334 5442 609.7
8/20 E F x E M 5334 5442 609.7
8/20 E F x E M 5334 5443 609.7
8/20 E F x E M 5334 5443 609.7
8/20 E F x E M 5334 5444 609.7



Table A4 (continued)

2007 F2  Embryonic Development

Spawned Cross Sire Dam ATU

9/15 E F x L M 6217 6020 541.2
9/15 E F x L M 6217 6020 537.7
9/15 L F x E M 6216 6021 551.6
9/15 L F x E M 6216 6021 551.6
9/15 L F x L M 6120 5920 520.1
9/15 L F x L M 6120 5920 541.2
9/15 L F x L M 6120 5921 551.6
9/15 L F x L M 6120 5921 534.2
9/15 L F x L M 6122 5924 534.2
9/15 L F x L M 6122 5924 541.2
9/22 L F x L M 6125 5929 527
9/22 L F x L M 6125 5929 527

2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/20 E F x E M 5334 5444 609.7
8/20 E F x E M 5334 5445 613.7
8/20 E F x E M 5334 5445 609.7
8/20 E F x E M 6039 5435 617.7
8/20 E F x E M 6039 5435 621.7
8/20 E F x E M 6039 5436 617.7
8/20 E F x E M 6039 5436 609.7

8/20 E F x E M 6039 5438 617.7
8/20 E F x E M 6039 5438 621.7
8/20 E F x E M 6039 5442 617.7
8/20 E F x E M 6039 5442 609.7
8/20 E F x E M 6039 5443 617.7
8/20 E F x E M 6039 5443 609.7



2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/20 EF x EM 6039 5444 617.7
8/20 EF x EM 6039 5444 617.7
8/20 EF x EM 6039 5445 617.7
8/20 EF x EM 6039 5445 617.7
8/20 EF x LM 5103 5204 617.7
8/20 EF x LM 5103 5204 621.7
8/20 EF x LM 5103 5204 621.7
8/20 EF x LM 5103 5205 617.7
8/20 EF x LM 5104 5204 617.7
8/20 EF x LM 5104 5204 617.7
8/20 EF x LM 5104 5205 613.7
8/20 EF x LM 5104 5205 609.7

8/20 EF x LM 5105 5204 617.7
8/20 EF x LM 5105 5204 617.7

8/20 EF x LM 5105 5205 617.7

8/20 EF x LM 5105 5205 617.7
8/20 EF x LM 5107 5204 617.7
8/20 EF x LM 5107 5205 613.7
8/20 EF x LM 5107 5205 609.7
8/20 EF x LM 5107 5205 617.7
8/20 EF x LM 5108 5204 617.7
8/20 EF x LM 5108 5204 613.7

8/20 EF x LM 5108 5205 609.7
8/20 EF x LM 5108 5205 613.7
8/25 EF x LM 5109 5207 597.8
8/25 EF x LM 5109 5207 601.8
8/25 E F x L M 5109 5209 593.8
8/25 EF x LM 5109 5209 597.8



Table A4 (continued)

2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/29 E F x L M 5109 5208 606.4
8/29 E F x L M 5109 5208 602.9
8/29 E F x L M 5109 5210 594.9
8/29 E F x L M 5109 5210 590.9
8/29 E F x L M 5109 5213 590.9
8/29 E F x L M 5109 5213 582.9
8/29 E F x L M 5109 5214 606.4
8/29 E F x L M 5109 5214 602.9
8/29 E F x L M 5111 5208 606.4
8/29 E F x L M 5111 5208 606.4
8/29 E F x L M 5111 5210 602.9
8/29 E F x L M 5111 5210 602.9



2008 F2  Embryonic Development

Spawned Cross Sire Dam ATU

8/29 E F x L M 5111 5213 598.9
8/29 E F x L M 5111 5213 590.9
8/29 E F x L M 5111 5214 602.9
8/29 E F x L M 5111 5214 602.9
8/20 E F x L M 5104 5205 609.7
8/20 E F x L M 5105 5204 617.7
8/20 E F x L M 5105 5204 617.7
8/20 E F x L M 5105 5205 617.7
8/20 E F x L M 5105 5205 617.7
8/20 E F x L M 5107 5204 617.7
8/20 E F x L M 5107 5205 613.7
8/20 E F x L M 5107 5205 609.7
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