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Abstract

Transient spatiotemporal dynamics exists in an electrically coupled Morris-Lecar neuronal 

ring network, a theoretical model of an axo-axonic gap junction network. The lifetime of 

spatiotemporal chaos was found to grow exponentially with network size. Transient dy

namics regularly collapses from a chaotic state to either the resting potential or a traveling 

pulse, indicating the existence of a chaotic saddle. For special conditions, a  chaotic attrac

tor can arise in the Morris-Lecar network to which transient chaos can collapse. The short

term outcome of a Morris-Lecar ring network is determined as a function of perturbation 

configuration. Perturbing small clusters of nearby neurons in the network consistently in

duced chaos on a resting network. Perturbation on a chaotic network can induce collapse 

in the network, but transient chaos becomes more resistant to collapse by perturbation 

when greater external current is applied.
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Chapter 1 

Introduction

In 1999, the case was made for nonlinear dynamics in the neurosciences when Hugh Wil

son published a (now out-of-print) textbook called Spikes, Decisions, and Action that explic

itly emphasized the usefulness of nonlinear dynamics in understanding neural behavior[1]. 

In 2001, it was noted in Elsevier's Current Opinion in Neurobiology that nonlinear mathemat

ical methods had crept into the field of neuroscience without much explicit acknowledge

ment despite having become pervasive in the field[2]. The language and behavior of many 

classes of dynamical systems are well-equipped to describe the majority of signaling be

havior in neurons[3][1]. This seemingly esoteric field of study was named neurodynamics 

and eventually absorbed into the broader field of theoretical neuroscience[4], also known 

as mathematical neuroscience[5] or computational neuroscience[6]. Today, theoretical neu

roscience institutes around the world are made up of mathematics, physics, computer sci

ence, electrical engineering, and neurobiology departments. Interdisciplinary teams work 

together to model and predict the behavior of neural systems.

Of particular interest in the nonlinear sciences is the relevance of transient dynamics to 

coupled neural systems. Significant transient behavior in neurons can occur on time scales 

from milliseconds to minutes and it is these transients that are thought to encode impor

tant information about stimuli in the environment[7]. This paper will briefly introduce the 

fundamental spiking mechanisms of the neuron and illustrate how complex, unpredictable 

behavior can emerge from a network of such diffusively-coupled neural elements. In par

ticular, this paper will detail how a special case of chaos, transient spatiotemporal chaos, 

can collapse to produce both steady state and traveling wave solutions; a  result demon

strated in few systems.

1.1 The Physics of Neurons

The physics of a neuron can, for many cases, be reduced to the interactions of three basic 

components: ions, a semipermeable membrane that separates concentrations of ions, and 

voltage-gated channels that allow passage of the ions across the membrane (Figure 1.1). 

More complex models may incur additional considerations, such as molecular network 

interactions and ligand-gated channels, but such accessions will be neglected here.
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Semi permeable  
m em brane

Cytosol Extracellular fluid

Figure 1.1. A semipermeable membrane separates two compartments of differing ion con
centrations. Sodium (Na+), Chlorine (Cl- ), Potassium (K+), and arbitrary proteins (M- ) 
maintain a membrane potential. Channels in the membrane allow passage of Na+ and 
K+[8].

Neural circuits behave in a fundamentally different manner than traditional electronic 

circuits so the conceptual machinery required to understand neural spiking will be devel

oped from a static condition. Consider an aqueous solution of a single species of ion in a  

container separated by a membrane partition. Two forces dominate interactions between 

the compartments. They are the electromagnetic force and the concentration gradient, the 

so-called driving force of diffusion. While the concentration gradient is not a mechanical 

force, it is helpful to think of the problem in terms of a force balance between diffusion 

and the electrodynamics. This concept was developed into a mathematical framework by 

Walther Hermann Nernst in the late 19th century in what has become known as the Nernst 

equation[9][10]:

En = RTln(Q). (1.1)

En is the potential across the membrane, R is the universal gas constant, T the tempera

ture, z the charge of the ion, F is the Faraday constant, and Q is the concentration gradient,
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expressed as a ratio of concentrations between the two partitions. For a single ion species,

q = j ^ , (1.2)
[c]c

where [c]C is the concentration in the cell, and [c]E is the concentration in the extra

cellular space. Notice that when the two partitions have the same concentration, Q = 1, 

giving En = 0. As ions are pumped from one membrane partition into the other and offset 

the concentration gradient, a  nonzero electric potential is generated across the membrane. 

With the opening of an ion channel, the ions can flood back down the concentration gradi

ent, generating a current. The currents generated in this fashion are the main component 

of the function of the neural compartment, but there is an additional caveat that makes 

neurons more dynamic: the system contains more than one ion species. Imagine now that 

the partitions have two ion species at different concentrations across the compartments. 

The general form of Equation 1.1 is retained, but for two ion species

Q = P1[C+]E + P2[c-]c
Q P1[c+]C + P2[c- ]E' ( . '

This expression is known as the Goldman-Hodgkin-Katz equation. P1 gives the per

meability of the channel for a positive ion, [c+]c the concentration of a positive ion in the 

cellular space (cytosol), [c+]e  the concentration of a positive ion in the extracellular space, 

P2 the permeability of a negative ion and [c- ]c and [c- ]e  the concentrations of a nega

tive ion in the cytosol and extracellular space, respectively. The numerator of Equation

1.3 includes the sum of all positive charges from the extracellular space with the sum of 

all negative charges inside the cell, while the denominator sums the positive charges in 

the extracellular space and the negative charges from the cytosol. Each concentration is 

weighted by the permeability of the ion channel, which has a positive value for the open 

gate and equals zero when the gate is closed. Each of the ion species has a different Nernst 

potential (defined by Equation 1.1). Consider an open gate for the ion species with a higher 

Nernst potential. As it seeks equilibrium, the membrane potential spikes upward; the re

sulting higher membrane potential activates the second channel just as the first is reaching
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the end of its time course. The first channel enters a refractory period where it cannot 

be excited by membrane potential. Meanwhile, the gate is open for the species with the 

lower Nernst potential, driving the membrane potential back downwards. As the sec

ond channel deactivates, the membrane returns to its resting potential, i.e., the effective 

resting potential determined by the collective concentrations of both ions, as described by 

Equation 1.3. The preceding series of events describes an action potential. As the neuron 

continues to fire, the concentration gradients are being slowly depleted. Biological systems 

have an internal pump that is constantly working to separate the charges so that the con

centration gradients can be maintained. The channel gates, the pump, and the membrane 

can be described as electrical components in a circuit diagram (Figure 1.2) with the mem

brane acting as a capacitor, Cm, the pump acting as a current source, Ip, and the channel 

gates acting as non-ohmic conducting elements with conductance gn and Nernst potential, 

En. Since real biological membranes are not perfect insulators, a general leak term, g i,  is 

added with Nernst potential Ei to represent a total effective leak through closed channels 

and the membrane itself.

Extracellular Medium

T

I
Intracellular Medium

Figure 1.2. Circuit model for ion conduction with C the membrane capacitance, En the 
Nernst potential of the active channels, gn the effective conductance of the active channels, 
El, the turn-around voltage for the leak channel, g i  the leak conductance, and Iapp, the 
current of the ion pump.
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Modeling a population of channels as they undergo gating over a distribution of times 

is not a trivial exercise. Spiking neuron models do not represent this process mechanisti

cally, but rely on a set of empirically determined activation curves. These curves give the 

time course of channel population gating over time, mathematically represented by sig

moidal step functions such as the hyperbolic tangent function, tanh(x). The first activation 

curves were determined in the 1950's by Alan Lloyd Hodgkin and Andrew Huxley[11]. 

Electrophysiology probes of the time were too large to get reliable readings from mam

malian neurons, but the giant squid that were being caught off the east coast of the United 

States had axons large enough for the intracellular recordings that would eventually lead 

to a deeper understanding of neuronal discharge. Hodgkin and Huxley were the first to 

discover that it was a variety of ion species making up the action potential. They did so 

using channel blockers to separate an ion species' contribution to the total current. The 

dominant species in the dynamics of the mammalian neural system are Na+ and K+, with 

a Nernst potential of around 50mV and -70m V , respectively. A protein called sodium- 

potassium adenosine triphospate pump (Na+ /  K +-ATPase) acts as the pump that main

tains charge separation between the inside and the outside of the cell. Despite being de

veloped from a squid axon, this general model applies to human and mammalian neurons 

and the four-dimensional Hodgkin-Huxley model is still the standard neuron model for in

vestigating physiologically relevant questions about the nervous system. There are other 

ion currents in the neuron such as Ca2+ and Cl-  in addition to several subspecies of Na+ 

and K+ channels. As a result, many complicated permutations of the Hodgkin-Huxley 

model have been developed to describe particular examples of neural ensembles in nature, 

but the Hodgkin-Huxley model is not the only physiologically relevant neuron model.

In 1981, Catherine Morris and Harold Lecar developed the Morris-Lecar model based on 

the experimentally observed behavior of the barnacle giant muscle fiber[12]. The muscle 

fiber's primary currents are due to K+ and Ca2+ (instead of Na+) and the activation for the 

Ca2+ is considered instantaneous, thus no extra differential equation is required to describe 

population activation. Instead, it is a direct function of the membrane potential, V. This 

reduces the system two just two differential equations. One of them describes the change 

in membrane potential, the other describes the activation of the K+ current. The derivation 

of the system begins with Kirchoff's current law for a circuit in the presence of an external
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current, Iapp. Explicitly, for an isopotential patch of membrane on the axon,

CV + Ica + Ik = Iapp, (1.4)

where C is the capacitance per area of the membrane and V is the change in membrane 

potential over time. The calcium current, Ica and the potassium current Ik are mediated 

by voltage sensitive gates; externally applied currents are represented by Iavp. Currents 

are given relative to area, relating to the isopotential patch of membrane across which the 

membrane potential is considered. A particular ion species such as Ca2+ can be specified 

by its channel's maximum conductance per area (gca), its Nernst potential (Vca), and the 

activation curve, mss(V), determined by Morris and Lecar,

Ica = mss(V)gCa(V -  Vca)' (1.5)

The activation curve is

V V1
mss(V) = (1 + tanh( ———  )) /2 , (1.6)

V2

with V1, the shift constant and V2, the slope constant, fit to best match empirical data. 

The potassium current has associated with it an additional dimension to better represent 

the time-course of the channel population's gating response. Thus,

Ik = ngK(V -  Vk), (1.7)

where n is the fraction of open gates for the entire channel population, gK is the max

imum conductance per area of the potassium channel, and Vk is the Nernst potential for

potassium.
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. nss(V) -  n
n = ----------—

Tn(V)
(1.8)

V -  V3
nss(V) = (1 + tanh( ———  ))/2 

V 4
(1.9)

V -  V3
Tn(V) = ^cosh( 2V4 ), (1.10)

where nss is the activation curve for K+, Tn models the delay in the K+ current, V3 and 

V4 are the shift and slope (respectively) of the activation curves, and  ̂ is the reciprocal 

of the time constant associated with the delay function. Adding the leak current, I i,  the 

Morris-Lecar neuron model is given by

The Morris-Lecar model is a  two-dimensional neuron model that can describe a wide 

variety of excitatory and oscillatory behavior.

1.2 Transient spatiotemporal chaos

Chaos has no universally accepted definition, according to Strogatz (1996), who gives the 

formal definition:

"Chaos is aperiodic long-term behavior in a deterministic system that exhibits 

sensitive dependence on initial conditions."[13]

That is, the system must display long-term behavior that fits no consistent pattern, 

the system must only have one future trajectory for each point in phase space, and initial 

conditions that start arbitrarily close to each other diverge exponentially as the system 

evolves in time (Figure 1.3). The sensitivity to initial conditions can be quantified by the

Lyapunov exponent, X:

CV  = Iapp -  mssgCa(V -  VCa) -  ngK(V -  VK) -  Ii
nss -  n 

n = --------- '
Tn

(1.11)

(1.12)
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X = lim -  ln
t—̂  tdo——0

d(t)
do

(1.13)

the logarithm of the distance, d(t), between two trajectories that started a distance, d0, in 

state space, normalized by the time span, t, over which the trajectories evolved. The Lya

punov exponent is defined as d0 approaches zero and as t approaches infinity. Bounded, 

nonlinear systems with a positive Lyapunov exponent are considered chaotic. Linear sys

tems are excluded, as they can have a positive Lyapunov exponent without demonstrating 

the irregular long-term patterns that characterize chaos.

X

Figure 1.3. Exponential sensitivity to initial conditions. Two trajectories (black stars) begin 
arbitrarily close to each other but diverge exponentially in phase space (black lines).

Transient chaos is a class of chaos whereby deterministic systems exhibit chaotic be

haviour for a finite time period before collapsing to an attractor, such as a steady state or 

limit cycle. Attractors are invariant sets in a  bound system that attract an open set of initial 

conditions[13]. Trajectories experiencing transient chaos can be found in the neighborhood 

of an invariant set, called a chaotic saddle[14]. Transient chaos is opposed to asymptotic chaos, 

in which trajectories exist on the chaotic attractor and system collapse never occurs. A typ

ical example of asymptotic chaos exists in some regions of parameter space in the Lorenz
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system [15]. The chaotic attractor has only stable manifolds, while the chaotic saddle has 

both stable and unstable manifolds. In physical systems, transient chaos is typically a con

sequence of chaotic saddles[14]. A simple example for which transient chaos exists is the 

tent map (Figure 1.4):

xn+1 =
Hxn for 0 < x < 2

^(1 -  xn) for 1 < x < 1 .
(1.14)

x

1.2

1

0.8

c  0.6

0.4

0.2

0

c_ _____________________________
/ — <

\

.t
/

/ \

A
*

x
s-

1 1
0 0.2 0.4 0.6 0.£

X

1.2

1

0

0 0.2 0.4 0.6 0.8
X

Figure 1.4. Trajectories of the tent map with ^ = 2.5 for a) n=0, b) n=1, c) n=2, d) n=3. 
Trajectories (blue line) escape when xn+1 > 1 (dashed black line). The range of xn contains 
continuous intervals of escape (thick lines) for each n. xn+1 = xn (sloped solid black line) 
shows the iteration step.

X Xn n
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The tent map is non-invertible; for each state, xn, there are two preimages, xn-1. For 

2  > 2, trajectories can escape the unit interval i = [0,1] when xn+1 > 1. For initial conditions

x0 G A0 = (1-, 1 - 1-), the trajectory immediately escapes the interval (Figure 1.4a). The initial2 2
conditions x0 G A1 = (22, 2 -  22) U (1 -  1 + 22, 1 -  22) require one more iteration to escape the 

interval, i (Figure 1.4b). Similarly, the endpoints of each interval in A1 have two preimages, 

giving four intervals that make up A2 (Figure 1.4c). Initial conditions starting on A2 escape 

in two iterations, and so on. Taking, the length of A0 to be L(A0) = 2- 2 and generalizing 

this process, for the number of iterations required to escape, m , there exists 2m intervals 

of size t(A 0) ■ (2)m that together make up the region of escape, Am. With this in mind the 

length, t e, of this escape region is given by

< x /  ry  \  m
te = t(A 0) I  -  . (1.15)

m=0 v 2 /

This expression evaluates to t e = 1, equal to the length of the interval the tent map 

is defined on. The remaining points define the invariant manifold of length zero called 

the Cantor set (Figure 1.5). In the tent map, this collection of points defines the chaotic 

repeller, an analogy to the chaotic saddle for non-invertible maps. This result implies that 

the chance of a randomly selected initial condition starting on the invariant manifold is 

zero.

-----------------------------------------------------------------------------------------------------------------------------------------------------  [0 ,i ]
------------------------------------------------------- -------------------------------------------------------  m=0
---------------------- ---------------------- ---------------------- ----------------------  m=1
  --------  --------  --------  --------  --------  --------  --------  m=2
 -------- ------------------- -------------  -------- -------------------------------- -------------m=3
  --------  --------  --------  --------  --------  --------  -------- m=4
..........................  ..........................  ..........................  ..........................  m=5
..........................  ..........................  ..........................  ..........................  m=6
..........................   ■■ .......................m=7

m=8

Figure 1.5. The cantor set. Successive removal of Am from the interval [0,1] in the tent map 
for the integers 0 < m <  8 with 2  = 2.5 .

A dynamical system can be extended spatially by coupling multiple dynamical ele

ments (such as neurons) together. If the dynamics of the coupled system displays sensi
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tivity to initial conditions (X > 0) the behavior is called spatiotemporal chaos. Mechanisms 

have been proposed for spatiotemporal chaos[16][17][18], but transient spatiotemporal chaos 

is a  relatively recent discovery. The collapse process of such large ensembles of cou

pled elements remains obscured by their high dimensionality, but noise[19] and nonlocal 

coupling[20] can influence the time-course of transient chaos. Because the transient behav

ior in spatiotemporal systems can exist for long periods of time, it is sometimes difficult 

to determine whether chaotic dynamics is asymptotic or transient[21], but methods for 

determining the differences between the two classes of chaos are under development[22].

In the biological sciences, spatiotemporal chaos has found applications in cellular 

automation[23], slime mold chemotaxis[24], infected plankton[25], and other population 

models[26][27][28]. Spatiotemporal chaos has also been demonstrated in several neuron 

models[29][30][31] and applications to information processing[32][33] may give insights 

into how cognitive processes correlate with neural system dynamics. The existence of 

transient spatiotemporal chaos in biological systems is unexplored.

Neurons are often modeled as excitable systems, for which there is a threshold. For 

subthreshold perturbations, the system returns immediately to the steady-state attractor 

until acted on by another perturbation. Perturbations that surpass the threshold cause the 

system to undergo an excitation cycle before returning to the steady-state attractor.

A typical class of spatiotemporal systems that host transient spatiotemporal chaos 

are reaction-diffusion systems[14][34][35][36] in which excitable elements are coupled spa

tially through a diffusion term. A network of diffusively-coupled neurons represents 

electrically-coupled networks in the nervous system called gap-junction networks. The role 

of these electrical synapses in neural computation have long been under-appreciated[37]. 

In electrical signaling aspects, gap junctions were thought to serve little more functional

ity than synchronization in electrical signaling[38], but evidence is growing that demon

strates a more significant role for gap junctions, such as enhancing the dynamic range 

of retinal neurons[39] and the generation of bursting oscillatory behavior[40]. Axo-axonic 

gap-junctions have unique anti-dromic properties that, experiments suggest, lend to the 

excitability of inhibitory GABA neurons in the hippocampus[41]. They've also been found 

to allow for faster interneuron spike propagation that participates in neural networks in

dependent of the afferent flow of chemical synapses. This unique functionality is hypoth
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esized to explain memory consolidation in the hippocampus where axo-axonic gap junc

tions are present[42]. The dynamical properties of such a diffusively-coupled network of 

axons will be explored with the goal of contributing to the computational aspects of gap 

junctions in nature as well as to the general understanding of the mechanisms involved in 

the collapse of transient spatiotemporal chaos.

1.3 Synopsis

Chapter 2 presents the spatially extended Morris-Lecar neuron system, the parameter re

gion of interest, and its biological relevance.

Chapter 3 demonstrates the existence of transient spatiotemporal chaos in the Morris- 

Lecar network with lifetimes that increase exponentially as a function of network size. The 

system dynamics can collapse onto three types of attractors after long periods of transient 

chaos including a global steady-state attractor, a pulse-state attractor, or a chaotic attractor.

In Chapter 4, transient behavior is studied as a function of initial condition to develop 

an understanding of the typical perturbation required to induce chaos in the Morris-Lecar 

network.

Chapter 5 explores how perturbations facilitate the collapse of spatiotemporal chaos in 

the Morris-Lecar network.

Chapter 6 provides general conclusions and an outview. Possible applications to neu

robiology and the nonlinear sciences are discussed, and future research on the diffusively- 

coupled Morris-Lecar network is proposed.
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Chapter 2 

Model

The Morris-Lecar neuron model is similar to the four-dimensional Hodgkin Huxley neu

ron model, but has only two dimensions which describe the membrane potential, V, and 

calcium channel population state, n . The model displays both Type 1 (integrator) and 

Type II (resonator) neural behaviors, depending on selected parameters. Here, a Type I pa

rameter regime is employed. A feedback-coupled ring network topology is implemented 

with each node representing a Morris-Lecar neuron, an empirically determined ion cur

rent model of the barnacle giant muscle fiber[12].The ith neuron in the spatially extended 

Morris-Lecar system is described by

1
Vi = C  [Iapp -  f  (Vi, ni)] + D[ Vi+1 + Vi-1 -  2 V/]

. = ni -  nss(Vi)
Hi = Tn(V-)

(2 .1)

(2 .2)

with

f  (Vi, ni) = II + Ica + Ik (2.3)

and

Il = gL(V -  Vl)

ICa = gCamss(V -  Vca) 

Ik = gKn(V -  Vk).

(2.4)

(2.5)

(2 .6)

The activation curves are defined by their steady state sensitivity to voltage,
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1 V V1
mss = 2 (1 + tanh[ - ^ ] )  (2.7)

1 V V3
nss = 2 (1 + tanh[ (2 .8)

1
Tn = 7  urV-V3i . (2.9)9  cosh[ - -- f ]

These expressions describe the leak, calcium, and potassium currents, Il, Ica, and Ik as 

well as the activation curves, mss and nss, and the potassium delay function, Tn. The param

eters for this paper include the coupling constant, D = 0 .052S/(pF ■ cm2), chosen for its rich 

dynamics, as well as the experimentally-determined parameters[12] for each Morris-Lecar 

neuron in the network: membrane capacitance, C = 20uF/ cm2, the maximum conductance 

of the potassium channel, gK = 8uS/cm2, the maximum conductance of the Ca2+ channel, 

gCa = 4uS/cm 2, the leak conductance, gL = 2uS/cm2, the Nernst potential of the K+ current, 

Vk = - 80mV, the Nernst potential of the Ca2+ current, V a  = 120mV, the Nernst poten

tial of the leak current, Vi = - 60mV and time constant, 9  = ^ Hz. Fitting constants for the

hyperbolic functions include V1 = - 1.2mV, V2 = 18mV, V3 = 14.95mV, and V4 = 17.4mV.

For the parameter range of interest, linear stability analysis reveals three equilibrium 

points in the system to be a stable fixed point, a  saddle point, and an unstable focus (Fig

ure 2.1). A typical excitation cycle (dashed line) passes around the unstable focus and 

returns to the global steady state. The applied current acts as the bifurcation parameter, 

Iapp G [28.1,38]mA/cm2. In this parameter range, the Morris-Lecar system experiences a 

saddle-node bifurcation when Iapp & 38.8mA/cm2, giving rise to a stable limit cycle (Fig

ure 2.2). Near Iapp = 42mA/cm2, a subcritical Hopf bifurcation arises as the unstable focus 

becomes stable and an unstable limit cycle is born. An in-depth bifurcation analysis was 

performed by Tsumoto[43] in which several bifurcation parameters were selected. The 

Morris-Lecar neuron behaves as an excitable system for applied currents below the saddle- 

node bifurcation. As the applied current exceeds the bifurcation point, a  stable limit cycle 

is born leading to persistent oscillatory behavior. In the coupled ring system, an applied 

current of Iapp > 28.1mA/cm2 is required for excitability to propagate beyond the first ex

cited neuron if all other neurons are initially at their resting potential.
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Figure 2.1. Phase diagram of the Morris-Lecar system. The membrane potential, V, is 
plotted against the fraction of K+ channels open, n, for an isopotential patch of membrane. 
Linear stability analysis reveals a stable node (round dot), a saddle node (triangle), and an 
unstable focus (star). A typical trajectory makes an excitation around the unstable focus 
(dashed line). The bifurcation parameter is IavP = 32mA/cm2, within the excitable regime of 
the Morris-Lecar system.
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Figure 2.2. Bifurcation diagram for the membrane potential, V, as a function of bifurcation 
parameter, Iapp. In the parameter range of interest, a saddle-node bifurcation occurs as the 
stable node (solid line) and saddle point (triangles) collide (I & 38.9mA/cm2), accompanied 
by the birth of a stable limit cycle (circle-line) about the remaining unstable focus (dots). 
The limit cycle is represented by the extrema of V. When Iapp & 41mA/cm2, the unstable 
focus (dots) becomes stable (dashed line), leading to a subcritical Hopf bifuraction with an 
unstable limit cycle (pluses).
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Chapter 3 

Transient spatiotemporal chaos

Complex spatiotemporal dynamics were investigated in the electrically coupled Morris- 

Lecar network in the range 28.1mA/cm2 < Iapp < 38mA/cm2 with a coupling strength of 

D = 0.05/j S/(jjF  ■ cm2). Irregular spatiotemporal patterning exhibits different characteris

tics across the range of the bifurcation parameter. For 28.1mA/cm2 < Iapp < 28.3mA/cm2, 

pulse solutions do not exist and the direction of wave excitation can reverse, presum

ably as a result of instabilities at the trailing end of a wave pulse (Figure 3.1a). When 

Iapp >  28.3mA/cm2, the network emits pulse trains (Figure 3.1b). The network becomes 

dominated by activity for Iapp > 32mA/cm2 as more current is injected into the system 

(Figure 3.1c). Spatiotemporal structures continue to develop for higher currents (Figure

3.1, c and d). In this regime, local oscillatory events (white beads) can develop and in

teract over time, causing local collapse events (white triangular structures) that end in 

another bead of oscillatory events, a behavior indicative of computational roles for gap 

junction networks. Subtle, persistent ripple-like structures resemble neural bursting be

havior where the network is active (darker color) and trajectories spiral away from the 

unstable focus. Phase plots for these three cases, for Iapp = 38mA/cm2, are given in Figure

3.2. For Iapp < 28.1mA/cm2 the network is not excitable despite individual neurons being 

excitable. As the applied current is increased above 38m A/cm 2, the birth of a limit cycle 

in individual neurons gives rise to persistent oscillations in the network. Adjusting the 

coupling constant, D, of the network can alter the range of applied current over which 

transient chaotic dynamics exist, increasing the range with increased D . Changes in the 

coupling constant can also have an effect on the qualitative appearance of spatiotemporal 

structures during spatiotemporal chaos.

The network is initiated with most of the neurons at the resting potential. A random set 

of input neurons are selected and perturbed to a membrane potential of — 10mV, sufficient to 

excite the neuron around the unstable focus (Figure 2.1). For Iapp < 30mA/cm2, a larger set 

of input neurons is required to induce complex spatiotemporal dynamics with sufficient 

probability. As Iapp approaches the saddle-node bifurcation, the number of input neurons 

required to induce chaos is reduced to one.

After short-term transients have settled, convergence to a positive maximum Lyapunov
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Figure 3.1. Complex spatiotemporal dynamics in the Morris-Lecar ring network for an 
applied current of a) 28.1mA/cm2, b) 28.5mA/cm2, c) 32mA/cm2, and d) 38mA/cm2. Colors 
indicate when the membrane potential, V, is at rest potential (white) or exhibiting burst
like activity (black) near the focus. All neurons in the 50-neuron network are initially 
at the resting potential with the exception of 10 randomly selected input neurons set to 
(V, n) = (—10mV, 0).

exponent is measured, using methods developed by Giancarlo Benettin[44]. The Lya

punov exponent grows with network size, converging near a network size of 500 neu

rons (Figure 3.3a). An increase in the bifurcation parameter, however, reduces the Lya

punov exponent (Figure 3.3b) as the patterns become more oscillatory (Figure 3.6d). For 

Iapp £ [28.1,28.5]mA/cm2, chaos is short-lived (Figure 3.3b).

After a period of transient spatiotemporal chaos, the dynamics typically collapses to 

either the steady state (Figure 3.4a) or a pulse solution (Figure 3.4b). With the exception of 

some uncommon cases near Iapp = 38mA/cm2, all sets of initial conditions will eventually 

result in a collapse to either one of these two attractors.

As the individual neurons of an ensemble become closer to each other in their projected 

phase state, they approach a homogenous state. When all neurons in the network have a 

membrane potential anywhere below their firing threshold at the same moment, the dy

namics of the network collapses to the rest state. The degree of homogenity in the network
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Figure 3.2. Typical trajectories for individual neurons in the network. Three basic dynam
ics are classified from Figure 3.1d: oscillations (blue line) from neuron i = 30, burst-like 
behavior (red dashed line) from neuron i = 22, and a neuron in between these two (black 
dotted line). Inset: a closer look at the unstable focus, where trajectories spiral away.

is measured with Kuramoto's order parameter[45] by taking the unstable focus (Figure 

2 .1) to be the origin of the coordinate frame and transforming trajectories from cartesian 

coordinates, (V, n), to polar coordinates, (p, ^). As a function of the phase, ^, the mean field 

is defined

where N  is the size of the network, and §i the phase of neuron i. Z is a complex num

ber with phasor notation RejQ. Synchronization measures in this paper rely only on the 

amplitude of the order parameter, R e [0,1]. When the network is completely homoge

nous, all neurons share the same phase, and R = 1. As the phase of individual neurons 

diverge from each other, R ^  0. During chaotic behavior in the Morris-Lecar network, the 

order parameter approaches R = 1 several times before collapsing (Figure 3.5b), indicating
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Figure 3.3. a) A positive maximum Lyapunov exponent, X, was calculated as a function of 
network size, N  equals 100 (triangles), 500 (solid line), 1000 (circles), and 2000 (pluses). b) 
A positive maximum Lyapunov exponent is measured for varying applied current, Iapp, of 
28.5mA/cm2 (triangles), 30mA/cm2 (solid line), 35mA/cm2 (circles), and 38mA/cm2 (pluses). 
The Lyapunov exponent is measured with a sampling rate of $t = 0.1 ms using an initial 
distance, d0 = 0.01 m V between initial conditions.

a spontaneous and unpredictable collapse.

The lifetime of chaotic behavior preceding a collapse grows exponentially with net

work size (Figure 3.6a) as is typical of transient chaos in reaction-diffusion systems [35,36]. 

Whether the final state after collapse was a pulse solution or steady-state solution has no 

significant relationship with how long the network remained active. The distribution of 

lifetimes for pulse and steady-state collapse do not differ significantly from each other in 

mean or standard deviation (Figure 3.6a,b). The probability of a collapse to the pulse state, 

pp, increases with network size. For all network sizes, the probability of a pulse solution, 

pp, as a function of applied current consists of an early peak at Iapp = 28.5mA/cm2 and a 

later peak at Iapp = 35mA/cm2 (Figure 3.6c).

Near Iapp = 38mA/cm2, an asymptotic attractor appears in the Morris-Lecar system. In 

the bifurcation diagram of a single Morris-Lecar neuron, the parameter is near the saddle- 

node bifurcation where the limit cycle is born (Figure 2.2). When the system collapses 

from the transient chaotic state to an asymptotic chaotic state, the Lyapunov exponent 

drops dramatically from X «  0.021 to X «  0.006. The short time Lyapunov exponent shifts
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Figure 3.4. Collapse of Chaos. Spatiotemporal dynamics of membrane potential, V, during 
collapse for two different initial conditions in a 50-neuron network with Iavv = 30mA/cm2. 
The network collapses to the a) steady-state and a b) pulse solution. Refer to Figure 3.1 for 
technical details.

from an irregular temporal pattern to rhythmic one (Figure 3.7a).

The asymptotic chaotic spacetime structures exhibit small isolated clusters of neurons 

with a temporal rhythm that appears regular and periodic by eye, but has a positive Lya

punov exponent. An arbitrarily small perturbation on the network will dislodge the dy

namics from the chaotic attractor, leading to transient chaos (Figure 3.8). The asymptotic 

chaos state is most common in networks of size, N  = 20M (where M  is in an integer) in 

which 2M oscillating clusters develop at a distance of ten neurons. Burst-like activity dom

inates the rest of the network. The same result can be achieved by taking a network of size 

N  = 20M at rest and perturbing every 20th neuron in the ring network; for example, a 

20-neuron network would require only a single neuron excited for which two oscillating 

neuron clusters develop, one at the perturbation point and one where the left and right 

traveling waves meet at the other side of the network from the input neuron. Asymptotic 

chaos can exist for other network sizes, but rarely occurred in random trials.

In the given bifurcation parameter range, the Morris-Lecar network demonstrates tran

sient spatiotemporal chaos that can collapse to two attractor states, the steady-state and 

the pulse state. For larger applied currents, near the saddle-node bifurcation, a chaotic
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Figure 3.5. Order parameter. a) Spatiotemporal collapse in a 40-neuron network with 
Iapp = 28.3mA/cm2. Refer to Figure 3.1 for technical details. b) The order parameter, R, for 
the spatiotemporal dynamics in a).

attractor arises in the system. For special initial conditions, and for approximately 10% of 

lifetime trials for network size N  = 20,40, trajectories collapse from the chaotic saddle to 

the chaotic attractor. The collapse of transient spatiotemporal chaos is not predicted by 

the order parameter, but statistics demonstrate an exponential increase in the lifetime of 

transient chaos with network size and applied current.



23

Figure 3.6. Lifetime analysis. a) Exponential growth in the average lifetime of transient 
chaos, T, as a function of network size, N  for Iapp = 30mA/cm2. b) Exponential growth in T 
as a function of applied current, Iapp for N  = 30mA/cm2. c) Percent of lifetimes that collapsed 
to a pulse state, Pp, as a function of Iapp for N  = 20,30,50, and 60 (ascending). Missing points 
at Iapp = 38mA/cm2 due to long computing times and trouble distinguishing asymptotic 
chaos from transient chaos in an efficient, algorithmic matter. Statistics gathered from 100 
trials on a 100-neuron network initiated with 0.8N neurons in the rest state and 0.2N input 
neurons at (V, n) = (—10mV,0). All cases collapsed to either the steady-state (blue bars) 
or the pulse solution (red bars) with the exception of I  = 38mA/cm2 in which «  10% of 
solutions ended in an asymptotic chaotic state.
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Figure 3.7. Asymptotic chaos. a) The collapse of transient spatiotemporal chaos to a chaotic 
attractor for Iapp = 38mA/cm2 and N  = 20. Refer to Figure 3.1 for technical details. b) The 
short-time Lyapunov exponent of the collapsing dynamics, X, over time, t. The short
time Lyapunov constant is measured in the same way as the long-term Lyapunov ex
ponent (details in Figure 3.3) but every 10ms are calculated independently of preceding 
Lyapunov measurements. c) The Lyapunov exponent of the asymptotic chaotic state at 
Iapp = 38mA/cm2 for a variety of network sizes. Sample time for measurements (8t = 0.1ms) 
are significantly smaller than the time required for the dynamics to transition to the neigh
borhood of the chaotic saddle.
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X

Figure 3.8. a) Perturbations on the chaotic attractor induce transient chaos for Iapp = 
38mA/cm2. Refer to Figure 3.1 for technical details. b) The Lyapunov exponent begins to 
climb away from X = 0.007 (blue dashed line). c) Spatiotemporal dynamics around 104ms 
after the perturbation. d) Lyapunov exponent converging on X = 0.021 (red dashed line) 
for the network perturbed in a). See Figure 3.3 for technical details about Lyapunov calcu
lation.
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Chapter 4 

Perturbations on a network at rest

It has been stressed through both experiment and theory in recent years that the emphasis 

for a dynamical systems approach to brain function must be broadened to include not just 

the attractor states, but the transient states of biological neural networks [46, 47, 48]. In 

particular, it has become desirable to understand the nature of the transient states that 

connect attractors[7]. As demonstrated in Section 3, the path from transient chaos to an 

attractor is deterministic and requires no external perturbation. However, nervous systems 

are often subject to external stimuli which can dislodge the network from its attractors, 

giving the system a path back to the transient state.

With this in mind, we investigate how the strength and spatial distribution of a per

turbation affects the network's transient path. Three network states are considered: the 

steady-state attractor, a pulse state attractor, and a chaotic state. The network is initialized 

on the steady-state attractor and a perturbation is introduced. After a finite time period, 

L, the network's state is measured. The information is recorded in a basin-like plot that 

demonstrates the relationship between perturbations and the instantaneous state of the 

network. The time period and measurement process are designed such that trajectories 

perturbed from the steady-state attractor go immediately to the pulse-state are recorded 

as pulse-state, while trajectories that fall immediately back to the steady-state attractor are 

recorded as steady-state. If a trajectory develops spatiotemporal chaos before collapsing to 

the steady-state within the measurement period, L, it is marked as chaotic state. The pur

pose of this study is to understand the pathway from the steady-state attractor to chaos 

through perturbation.

For a network of 100 neurons, the phase space is 200-dimensional with two dimensions 

for each of the 100 neurons. Thus, an abstraction is used to represent all 100 initial neuron 

states in the two rudimentary dimensions, V and n of a single neuron. A single neuron 

is selected as the input neuron and set to each discrete point in the phase portrait. The 

network then evolves deterministically for L = 1000ms when the state of the network is 

determined. The instantaneous network state (INS) is represented by a colored pixel at the 

phase point of the input neuron (Figure 4.1). The basin-like plot shows for which config

uration of input neurons the network dynamics reached the neighborhood of the chaotic
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saddle. For most cases, the network returned immediately to the steady-state where it was 

initially perturbed from. There is, however, a region of excitability for which the network 

dynamics become caught in the region of the chaotic saddle or the pulse-state attractor. 

States that get caught immediately on the pulse-state attractor without exhibiting tran

sient chaos are recorded as pulse states (Figure 4.2). If trajectories reach the neighborhood 

of the chaotic saddle before collapsing onto the pulse state, they are reported as a chaotic 

state in the basin-like plots.

Figure 4.1. Instantaneous network state for a single input neuron in the Morris-Lecar 
system with Iapp = 35mA/cm2 for a 100-neuron network. Phase portrait of the mem
brane potential, V, against the channel occupancy state, n. Each discrete point, (V, n) 
describes a set of initial conditions. The instantaneous state of the network, L = 1000ms 
later, is represented by the color of the pixel at each point, (V , n) with a resolution of 
(AV, An) = (2.0mV, 0.01).The dark grey represents a steady state, black and light grey rep
resent a chaotic and a pulse state respectively.

When a single neuron in a resting network is perturbed (Figure 4.3, d = 0), the network 

dynamics can escape the steady-state attractor for perturbations in the region ^  > 0 and
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Figure 4.2. Bypassing transient chaos. Spatiotemporal dynamics for a 100-neuron network. 
A network at the resting potential is perturbed by a set of randomly-selected input neurons 
leading immediately to a pulse solution. See Figure 3.1 for details

ddt >  0. For low Iapp, this region is small, running parallel to the V-nullcline; the majority 

of trajectories in this region make a transition directly to the pulse state. For medium 

applied currents, it becomes more likely that the perturbation will lead trajectories into the 

region of the chaotic saddle. For higher Iapp, pulse states become more prevalent. Though 

the boundaries between state regions appear to be simple, a finer sampling of the phase 

space at these borders reveals more complicated structures at finer scales, appearing as 

striatal layers parallell to the boundary. Structure boundaries appear to lie perpendicular 

to a typical trajectory of a single excited neuron in phase space (dotted line in Figure 2.1). 

Transforming the Morris-Lecar system to polar coordinates (r, 0) and placing the focus at 

the origin, boundary transitions occur more as a function of 0 than r. Treatments of the 

Morris-Lecar system with only a 0 dependency have been successful at modeling features 

such as parabolic bursting[49].

The single input study demonstrates how a single input neuron can, with sufficient 

perturbation, drive the network into another state. For a given neural network in the brain 

there could be several simultaneous perturbations acting on the network from various



29

o

CM

CD

Figure 4.3. Two input neurons. Instantaneous network states as a function of the distance 
between input neurons, d, and the applied current, Iavp. For technical details about individ
ual axes, see Figure 4.1. Initial condition scheme: d = 0 represents a single input neuron in 
a network of neurons at the resting potential. For 1 > d > 7, two input neurons are selected 
at the appropriate phase point, separated spatially by d.

environmental stimuli. To develop this idea, a second input neuron is added to aid in 

understanding interference between two synchronous stimuli. Both neurons are perturbed 

to the same point in phase space but separated spatially in the network by a distance of d 

neurons for 1 < d < 6. As d approaches 6, the emergent structures in the basin-like plots 

begin to mimic the single-input result (d = 0).

Averaging over all d, larger applied currents provide more paths to the chaotic state 

than lower applied currents. For the majority of perturbations with low IavP, the system 

returns quickly to the steady-state attractor, but for d = 2, in which the perturbations are 

more likely to result in transient chaos across the whole range of applied current. For low
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Iapp and d = 2, the basin-like structures are complicated and scattered with the majority of 

perturbations kicking the network into the pulse state. For Iapp > 30mA/cm2, structures 

continue to grow and develop branches as Iapp is increased. Within these growing struc

tures of INSs that do not immediately reach the steady-state, pulse states becomes more 

typical than the chaotic state. Ignoring steady-state results, initial conditions with longer 

distances and larger applied currents tend to lead to a pulse-state outcome, while shorter 

distances with a large applied current tend to result in a chaotic state.

The third and final study on the network at rest utilizes three input neurons for the ini

tial conditions (Figures 4.4, 4.5, and 4.6). For each Iapp, the location of three input neurons 

can be represented by their two nearest distances in the ring network. For small distances 

in a large ring network, the distances are interchangeable as they always remain well be

low half of the total network size. Thus, for any pair of distances, the relatively smaller 

distance, ds, is interchangeable with the relatively larger distance, di. (di, ds) = (2 , 1) results 

in the same dynamics as (di,ds) = (1 ,2).

In many aspects, results from the two-input study can inform the three-input study. 

For instance, at low Iapp, structures resulting from d = 2 in the two-input study correspond 

to ds = 2 in the three kicker study. For any given di, the shape of the basin-like structures do 

not vary significantly as long as ds = 2 (Figure 4.4). However, some configurations produce 

new structures not available in the two-input study, such as (di, ds) = (2 , 1) and (di,ds) = (6 ,3). 

For a medium current, the two-input study is similarly preserved; this is particularly clear 

for di = 7. As di ^  1, new structures begin to emerge from the interference between input 

neurons. The shorter distance, ds, tends to determine the overall shape of the basin-like 

structures with di making small alterations to the structure. For instance, when ds = 3, in

creasing di changes the ratio of chaotic states to pulse states, but the structure representing 

steady states experiences no significant change (Figure 4.5). Similar observations hold for 

Iapp = 35. For all currents, in the cases di <  3, structures change unpredictably as a result of 

the spatial interference at small distances.

The study on the network at rest gives insight into the perturbation characteristics that 

lead the system dynamics away from the attractor, giving some indication of the strength 

of the attractor. When the perturbation is distributed in space (multiple input neurons) 

smaller spatial distances (ds <  2) have a higher chance of inducing transient chaos.
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Figure 4.4. Three input neurons, Iapp = 28.5mA/cm2. Basin-like plots with three input neu
rons for an applied current of 28.5mA/cm2 with varying distances, di and ds. See Figure 4.1
for more details.
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Figure 4.5. Three input neurons, Iapp = 28.5mA/cm2. Basin-like plots with three input neu
rons for an applied current of 32mA/cm2 with varying distances, di and ds. See Figure 4.1
for more details.



33

Figure 4.6. Three input neurons, Iapp = 28.5mA/cm2. Basin-like plots with three input neu
rons for an applied current of 35mA/cm2 with varying distances, di and ds. See Figure 4.1
for more details.
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Chapter 5

Perturbations on a network in the neighborhood of the chaotic saddle

The Morris-Lecar system can undergo long-lived transients prior to collapse. As discussed 

in Chapter 3, the average lifetime of such transients increases with the applied current, 

Iapp, but predicting when collapse occurs remains obscured by the complexity of high

dimensional interactions. Long periods of spatiotemporal chaos, followed by a collapse 

to an attractor with with negative Lyapunov exponent, indicate the existence of a chaotic 

saddle. In an effort to understand the robustness of network dynamics, perturbations 

are introduced to the network while it is in a transient chaotic state, presumably in the 

neighborhood of the chaotic saddle.

Ten transient chaotic states are chosen for each value of applied current, such that in 

the absence of perturbation, the network dynamics would continue in a state of transient 

chaos for at least 1000ms. For each chaotic state, P neurons in a 100-neuron network are 

randomly selected to provide synchronous input to the network. The input neurons are 

simultaneously set to each position in a projected, two-dimensional phase space and the 

network evolves deterministically for 1000ms before being measured.

In a 100-neuron network, P is equivalent to the percentage of the network perturbed. 

For P = 0, there are no perturbations, and the network remains in the chaotic state for the 

duration of the sample time. For low P and high applied current, the chaotic state results 

from the majority of perturbations in the two-dimensional phase space (Figure 5.1). For 

P £  [33,66], the phase space becomes disjected and intricate structures emerge as multiple 

states are measured across the projected phase space. In this medium perturbation regime, 

low currents sometimes result in the familiar structure from Iapp = 28.5,ds = 2 in the network 

at rest (Figure 4.4); particularly, (Iapp,P) = (28.3mA, 33). With increasing current at medium 

perturbation, causing collapse with a perturbation becomes increasing difficult, especially 

for perturbations near the unstable focus. As the fraction of perturbation neurons is in

creased further, collapse become inevitable, with the exception of a small region parallel 

to the V — nullcline, between the saddle-node and the unstable focus ((Iapp, P) = (30mA, 90)). 

For higher currents, the focus itself continues to be a region where perturbations do not 

promote the collapse of spatiotemporal chaos ((Iapp, P) = (38mA, 90)).

A statistical analysis is compiled from the basin plots, taking the average occurence
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Figure 5.1. Perturbations near the chaotic saddle. Examples of instantaneous network state 
maps as a function of the applied current, Iapp and the number of perturbing neurons, P. 
Ten randomly selected perturbation sets are delivered to ten randomly selected chaotic 
sets. Of these 100 trials, for each value of Iapp and P, one randomly-selected example is 
shown. For details on each network state map, see 4.1

of each of the three instantaneous states as a function of Iapp and P . From this data, the 

probability of a perturbation-induced collapse, pc is defined as the average fraction of tri

als for which trajectories reached the steady-state or the pulse state within 1000ms of the 

perturbation. Increasing the applied current generally reduced the probabiliy of a collapse 

response to perturbations, but as P approaches 100, pc ^  1 (Figure 5.2a). At lower cur

rents, such as Iapp = 28.5mA/cm2, pc  has a distributed result as a function of P. Higher 

currents demonstrate threshold behavior in which network dynamics resist collapse un

less a minimum P is provided. The probability of a collapse to pulse state, pP, is similarly 

calculated over Iapp and P . The probability of collapse to a pulse state holds no significant
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relationship with applied current (Figure 5.2b). However, a larger number of synchronized 

perturbations are less likely to cause a collapse to the pulse state.
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Figure 5.2. Instantaneous network statistics. a) The probability of a perturbation-induced 
collapse, pc, and b) The probability of a collapse to the pulse state, pp, as a function of 
applied current, Iapp, and number of perturbed neurons, P, with P=10,30,50, and 90 (offset 
to the right). For (Iapp,P) = (35mA/cm2, 10), pP is undefined since pc = 0. Statistics compiled 
from network state maps. See Figure 5.1 for technical details.

The collapse of transient chaos to a pulse state indicates the existence of a homoclinic 

orbit. The trajectory of a single neuron in a network in the pulse-state was projected onto 

the two-dimensional phase space of a single neuron (Figure 5.3, pulse state). Pulse-state 

trajectories pass through the stable fixed point with each excitation cycle. A neuron in a 

network in the chaotic state demonstrates the full range of behavior described in Chapter 

3 (Figure 3.2). As the applied current is increased, trajectories caught in the neighborhood 

of the unstable focus tend to make larger orbits near the focus, despite its eigenvalue ap

proaching zero (Figure 5.3, chaotic state).

Perturbations lying along the V-nullcline (Figure 2.1) where ddn < 0 almost never cause 

a collapse in the network dynamics in the time-scale of measurement (1000ms). This is par

ticularly evident for a large number of perturbing neurons (P > 90) in which this region 

of phasespace, along with a region around the focus, remain chaotic through the mea

surement period. The region of excitation ( >  0 and ddn > 0) that before induced chaos
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Figure 5.3. Homoclinic and chaotic orbits. Typical trajectories for a single neuron in 
the coupled network in the pulse state (above) and the chaotic state (below) for Iapp = 
28.5mA/cm2,32mA/cm2, and 35mA/cm2. Nullclines are plotted as lines with the unstable 
focus (asterisk), saddle point (triangle) and stable point (filled circle) at their intersections.

in the network at rest (Chapter 4) now has a tendency to collapse a chaotic network to 

the steady-state (such as in Figure 5.1, P = 66 ,I  = 28.3mA/cm2,28.5mAcm2, and 32mA/cm2). 

These basin-like plots provide a map for facilitating the collapse of transient spatiotem- 

poral chaos in a ring network of Morris-Lecar neurons, but may also give insights into 

general control mechanisms for coupled excitable systems.
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Chapter 6 

Conclusions

Transient spatiotemporal chaos was found in the diffusively coupled Morris-Lecar ring 

network with three available attractors: the steady-state, the pulse solution and, in special 

cases of applied current, the chaotic attractor. Trajectories escaping the neighborhood of 

the chaotic saddle deterministically reach the attractors with no external perturbation. Dis

lodging the dynamics from the attractor states requires superthreshold perturbations for 

a network on the steady-state or a pulse attractor, but the trajectories are easily dislodged 

from the chaotic attractor with arbitrarily small perturbations (Figure 6.1).

The lifetime of transient chaotic behavior increases exponentially with the size of the 

network as well as the applied current. Statistical and graphical analysis of initial con

ditions demonstrate consistent regions of excitability for which chaos can be induced in 

a network at rest. Similar analysis reveals for which perturbations an early collapse of 

spatiotemporal chaos to an attractor can be facilitated.

Figure 6.1. A generalized state map for the Morris-Lecar ring network. The dynamics of 
the system can reach all three attractors deterministically from the transient chaotic state. 
From the steady state or the pulse-state, a significant perturbation is required to induce 
transient chaos, while arbitrarily small perturbations on the chaotic attractor can induce 
transient chaos. The chaotic attractor becomes available when Iapp = 38. Paths between the 
attractors are not shown.
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C om putation al roles o f  gap  junctions in neural netw ork

Axo-axonic gap junctions connect nearby axons in nervous tissue, allowing molecular and 

electrical signaling to propagate between neuronal axons in the absence of dendritic in

put. In the mammalian brain, axo-axonic gap junction networks in the hippocampus are 

hypothesized to be associated with memory consolidation. Due to their fast transmission 

speed, they are able to quickly synchronize networks and have been indicated in spon

taneous and self-sustained synchronous oscillations. Axo-axonic gap junction networks 

have a unique mechanism for signaling, as they allow signals to travel antidromically (up 

the axon) or laterally to parallel neurons, allowing for signal processing to occur inde

pendent of synaptic input[42]. This has implications for the capibility of axo-axonic gap 

junctions to participate significantly in neural computations in the brain beyond their tra

ditionally accepted role in synchronization[38]. The existence of spatiotemporal chaos in 

the Morris-Lecar ring network demonstrates that holding synaptic input and environmen

tal conditions constant in a network of electrically coupled axons can lead to complex 

transient behavior.

M achine Learning

The phase space of the Morris-Lecar neural network demonstrates distinct regions of net

work excitability to a chaotic state as well as regions of transition between attractor states. 

The ability to induce, as well as facilitate the collapse of, transient chaos allows for such 

a network to be integrated as a layer in a learning network in which the axon layer can 

act as an input or hidden layer, receiving stimuli. For example, consider each Morris- 

Lecar neuron in the ring-network as an inhibitory or excitatory neuron, determined by its 

synaptic output to a motor pool (Figure 6.2). Information about the environment enters the 

network via input neurons, as well as through feedback connections from the network's 

output. Using a genetic algorithm, the network can be tuned to respond appropriately to 

environmental stimuli to produce a functional control system.
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Figure 6.2. Machine learning network. An input signal is delivered to the electrically 
coupled (blue lines) Morris-Lecar ring network. Morris-Lecar neurons can be excitatory 
(green) or inhibitory (red) and synaptic outputs can be modeled to produce and output 
signal that can excite (green lines) or inhibit (red lines) downstream, as well as provide 
feedback to the network input.

Boundary conditions in the nervous system

In natural gap junction networks, boundary conditions are regularly controlled by inter

nal cell processes. Gap junctions can be opened, closed, and rectified in response to the 

appropriate signaling mechanisms between neighboring cells. For sufficiently large ring 

networks, or when no-flux boundary conditions are applied to the Morris-Lecar system, 

oscillations drift quickly across the network, converging with and diverging from neigh

boring oscillating clusters. For small, bound ring networks (N <  500), where sensitivity 

to initial conditions is dependent on network size, boundaries created by the opening and 

closing of gap junctions could have functionally relevant results.

The asymptotic chaotic state is a result of a very specific set of boundary conditions. 

Perturbations on a Morris-Lecar network experiencing asymptotic chaos lead trajectories 

quickly to the neighborhood of the chaotic saddle, initiating complex transient dynamics 

before terminating on one of the three attractors in the system. Linking the resulting at

tractor state to a particular gating configuration could be a way to implement algorithmic 

sequences in network dynamics.
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6.1 Outview

The presented complexity of a diffusively-coupled Morris-Lecar network opens the door 

to further possible studies. The parameter region above the saddle-node bifurcation where 

a stable limit cycle exists exhibits rich oscillatory dynamics. Modification of the coupling 

constant influences the pervasiveness and speed of traveling pulse solutions. Changes 

to both parameters result in spatiotemporal structures that appear qualitatively different 

than those in the excitable regime. An understanding of how the coupling constant and 

applied current affect global network properties beyond the regions explored here could 

aid in controlling network dynamics.

Similarly, the scope of the instantaneous network states investigated here can be ex

panded to include finer sampling, more initial conditions, and longer time-scales. Prelim

inary results show that information is generated with finer sampling of the phase space, 

causing boundaries between basin-like structures to become ill-defined and fractal-like. Of 

the possible configurations of initial condition available, very few have been investigated 

here. Since the basin-like plots are defined for finite time and include non-attractor states, 

these structures will change with time, until all trajectories reach a steady-state and a true 

basin of attraction can be defined. A time-lapse perspective of the basin-like plots could 

give insights into collapse processes.

The addition of a synaptic coupling term to the ring network can have dramatic effects 

on network outcome. Synaptic coupling can be either inhibitory or excitatory, allowing 

for a fixed input that can influence network outcome. Through feedback connections, 

inhibitory and excitatory signals can be used to modulate the degree of activity in the 

network, keeping target neurons below (or above) threshold when the controlling neu

ron is active. Synaptic coupling in the nervous system can facilitate more robust network 

responses.

Manipulations to network topology can give insight into how control systems in the 

nervous system use gap junction gating to influence network behavior. A sufficiently large 

neural network could, hypothetically, use gating to partition subnetworks into functional 

compartments, directing signal propagation on the fly. Gap junction gating in the nervous 

system can be triggered by neurotransmitters as well as functionally diverse free-radical 

gasses like nitrogen oxide.
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