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[11 Inmostmodels of glacial erosion, glacier sliding velocity is hypothesized to control rates
of bedrock erosion. If this hypothesis is correct, then the elevation difference between
hanging and trunk valley floors, the hang height, should be dictated by the relative sliding
velocities of the glaciers that occupied these valleys. By considering sliding velocity to

be proportional to balance velocity and using mass continuity, hang height is expressed in
terms of glacier catchment areas, slopes, and widths, which can be estimated for past
glaciers from the morphology of glacial valleys. These parameters were estimated for
46 hanging valleys and their trunk valleys in three adjacent regions of Jasper National
Park. The variability in valley morphology can account for 55—85% of the hang height
variability if erosion rate scales with balance velocity raised to a power of 1/3. This
correspondence is in spite of spatial variations in glaciation duration, snow accumulation
rates, and other variables that likely affected hang heights but cannot be readily estimated

and so are not included in our formulation. Thus it appears that balance velocity, and
by extension, sliding velocity if the two are proportional, may be a reasonable control

variable for assessing erosion rate.

Citation: Amundson, J. M., and N. R. Iverson (2006), Testing a glacial erosion rule using hang heights of hanging valleys, Jasper
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1. Introduction

[2] During the last decade, interest in glacial erosion has
intensified due to its likely effect on uplift in orogenic
belts, weathering rates, and atmospheric CO, [Hallet et al.,
1996; Jaeger et al., 2001]. Addressing these problems and
longstanding problems of glacial landscape evolution
requires erosion models that can be applied over large
areas (e.g., orogens) for long periods (10°-10° yr).
Obstacles to testing such models include poorly known
initial conditions and mass balance inputs and geological
heterogeneity that is difficult to characterize. Nevertheless,
several illustrative numerical models have been constructed
[Oerlemans, 1984; Harbor, 1992; Braun et al., 1999;
MacGregor et al., 2000], and some characteristic land-
forms have been generated, including U-shaped valleys
and overdeepenings in longitudinal valley profiles. Recent
additional insights have been provided by an analytical
model for the development of longitudinal valley profiles
[Anderson et al., 2006].

[3] Central to these models is an erosion rule that relates
erosion rate to glaciological variables. In most models,
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erosion rate is assumed to be a function of sliding velocity
[e.g., Oerlemans, 1984; Harbor, 1992; Braun et al., 1999;
MacGregor et al., 2000] or ice discharge [Anderson et al.,
2006]; measurements of surface velocity and sediment
discharge from Bench Glacier, Alaska, support this assump-
tion [Rithimaki et al., 2005]. This also agrees with the
leading model of glacial abrasion [Hallet, 1979], in which
sliding velocity governs both the flux of abrasive particles
across the bed and particle-bed contact forces. Whether
rates of quarrying, the process by which ice fractures the
bed and dislodges rock fragments, also depend primarily on
sliding velocity is less clear. Mechanical models assume that
quarrying rates are limited by rates of crack growth in the
bed, which are thought to be accelerated by water-filled
cavities down glacier from bedrock bumps [Iverson, 1991;
Hallet, 1996]. As these cavities grow, normal stresses where
ice contacts the bed increase, promoting crack growth.
Cavity size depends on sliding velocity but also on effective
pressure: the difference between the ice overburden pressure
and water pressure in cavities [Walder, 1986; Hallet, 1996].
Besides affecting cavity size, cavity water pressure also
controls the fluid pressure within cracks in the rock,
potentially influencing crack growth rates [[verson, 1991].
Also, water pressure fluctuations are likely to be important
because they maximize both ice-rock stresses and pore
pressure gradients within bedrock [Iverson, 1991; Hallet,
1996].

[4] Given the mechanical complexity of quarrying, as
well as arguments and observations that it is volumetrically

F01020 1 of 8



F01020

more important than abrasion [Jahns, 1943; Boulton, 1979;
Drewry, 1986; Iverson, 2002; Loso et al., 2004], can
simple velocity-based erosion rules adequately characterize
erosion rates and generate glacial landscapes? Using a
numerical model that incorporated a velocity-based erosion
rule, MacGregor et al. [2000] were able to produce
hanging valleys, which form because tributary glaciers
erode rock more slowly than trunk glaciers. In their study,
hang height, the difference in elevation between the floors
of hanging and trunk valleys, depended on the relative
discharges of tributary and trunk glaciers and increased
with distance down the trunk valley for hanging glaciers
with similar ice fluxes. We make a similar assumption: that
erosion rate depends on balance velocity, and by exten-
sion, sliding velocity. However, rather than modeling the
erosion of glacial valleys on that basis, we test the
assumption empirically by studying hanging valleys in
Jasper National Park, Alberta. By using valley morphology
as an indicator of balance velocity and assuming that
sliding velocity is proportional to balance velocity, we test
whether observed hang heights can be explained by an
erosion rule in which long-term erosion rates depend on
sliding velocity.

2. Rationale

[s] We seek an empirical means of testing whether an
erosion rule based only on sliding velocity is applicable
over the long periods required for erosion of valleys. Using
a velocity-based erosion rule, together with mass continuity
and the approximation for the basal shear stress of a valley
glacier, a relationship is obtained for the hang height in
terms of the plan view areas, widths, and slopes of a
tributary glacier and adjacent trunk glacier. The relationship
is tested by estimating these parameters from the morphol-
ogies of hanging and trunk valleys as determined from
topographic maps.

[6] Our formulation, by necessity, neglects the spatial
variability of a number of factors that likely affect the
variability of hang heights, but are poorly known during
glaciation. The most important of these factors follow.

[7] 1. Glaciers wax and wane during valley erosion; the
timing and duration of glaciation varies among valleys in a
given region. Although most erosion may occur during
glacial maximums, the chronology of glacier occupation
in a particular region is seldom known well enough to
constrain this issue, particularly since valley erosion usually
extends over more than one glacial cycle.

[8] 2. Proportions of basal motion and internal ice defor-
mation vary among glaciers and depend on a number of
factors, including bed type, water discharge at the bed and
associated effective pressure, and ice temperature. For
modern wet-based valley glaciers, ratios of basal motion
to surface velocity are highly variable, ranging from 0.1 to
0.9 [Paterson, 1994, p. 135], although within a particular
region there is typically less variability.

[o] 3. Erosion due to nonglacial processes, such as fluvial
incision and mass wasting, varies spatially and occurs
during periods when all or part of the landscape is ice free.

[10] 4. Dynamic coupling at the confluences of tributary
and trunk glaciers gives rise to longitudinal stress gradients,
which differ from one confluence to another.
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[11] 5. Snow accumulation rates vary in a given region
and can differ considerably between adjacent catchments.

[12] 6. Resistance to erosion depends on bedrock lithol-
ogy and structure. These can be estimated from maps, but a
meaningful way to quantify resistance to erosion that
considers rock strength and hardness, joint orientation and
density, and other properties is unclear.

[13] 7. Basal shear stresses vary among glaciers, although
the nonlinearity of the flow law of ice suppresses that
variability; for glaciers on hard beds, basal shear stresses
typically range from 50—150 kPa [Paterson, 1994, p. 242].

[14] These factors may strongly influence hang height
variability. Our neglect of the variability of any one of them
does not constitute an assumption or approximation but an
acknowledgment that its variability during glacial cycles
cannot readily be estimated. By neglecting these factors in
the following formulation, we test the hypothesis that the
effect of their variability on hang heights is small compared
to the effects of glacier areas, widths, and slopes. These
latter variables can be estimated from maps and may be
first-order controls on ice flux, balance velocity, and sliding
velocity. Thus this hypothesis is worth pursuing, despite the
necessity of neglecting the variability of some factors that
cannot be estimated.

3. Formulation

[15] If sliding velocity dictates erosion rate, the hang
height of a hanging valley will reflect the difference in
sliding velocity between a trunk and tributary glacier.
Consider an erosion rule of the form

e=CU", (1)

where e is the erosion rate (thickness of rock eroded per unit
time), C is a constant that depends inversely on the erosion
resistance of bedrock, U, is the basal sliding velocity, and
n is a constant. The erosion rule presented in equation (1)
is intended to express long-term erosion rates; in this
study, U, indicates the temporally averaged sliding
velocity at the glacier centerline. Integer values of n
ranging from 1 to 4 are often assumed in models [e.g.,
Harbor, 1992; MacGregor et al., 2000]. Following the
nomenclature of MacGregor et al. [2000], the hang height,
H, is defined as the elevation difference between hanging
and trunk valley floors. If hanging and trunk valleys have
the same values of C and have been eroded for the same
duration, 7, then from equation (1)

H = CT(U;, = Uy), (2)

where Uy, and U, are the sliding speeds near the
confluences of glaciers that occupied the trunk and hanging
valleys, respectively. With equation (2), we assume that
tributary and trunk river valleys that preceded glaciation
were graded to each other. Ultimately, we wish to express
sliding velocity as a function of glacier geometry. One
approach is to let the sliding velocity be some fraction, \, of
the balance velocity, which can be expressed in terms of
glacier geometry:

Aa
v="4
hw’

3)
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where U is the balance velocity, 4 is the accumulation area,
a is the mean accumulation rate of ice over that area, 4 is
the centerline ice thickness, and w is the depth-averaged
width. Equation (3) applies to the accumulation zone of a
glacier only and assumes that glacier flow is in balance.
Substituting equation (3) into equation (2) yields

H = CT(@\)" Kﬁ)— (%H . ()

Of the variables in equation (4), H, A, and w can be
estimated from topographic maps, and we will neglect the
variability of C, T, a, and X\ (see section 2). Although ice
thickness, 4, strongly influences glacier velocity and is
highly variable spatially, it is not easily measured from
maps (see section 4). A better approach is to use valley
morphology to estimate glacier surface slope; estimated
slopes can be tested by measuring glacier length and
comparing the length-slope relationship to the well-known
inverse relationship for modern glaciers [Clarke, 1991].
Hang height is affected by glacier slope through its effect
on basal shear stress:

Tp = Spghsin a, (5)

where T, is the basal shear stress of a valley glacier at its
centerline, S is a shape factor between 0.5 and 1.0 that
accounts for the shape of the transverse valley profile, p is the
ice density, g is gravitational acceleration, and « is the glacier
surface slope [Paterson, 1994, p. 268]. Rearranging
equation (5) and inserting it into equation (4) gives

H=0C0, (6)
where
Spgan\"
C = CT(—pga ) (7)
Th
and
v (A, sin u,) 7(Ah sin och> . (8)
Wi Wh

C, is not a constant because some of the variables in
equation (7) will differ among glaciers. Without a means
of estimating that variability for past glaciers, however,
we treat C; as a constant and thereby test the hypothesis
that its variability is small relative to the variability of W.

[16] We now have a relationship between hang height and
valley morphology that can be tested with measurements
from topographic maps. If the form of the erosion rule
(equation (1)) is correct and the variability of C; is small
relative to that of W for tributary and trunk glaciers of a
particular region, then H and ¥ will be linearly correlated.
Moreover, if areas, slopes, and widths of glaciers are
known, n can be constrained by adjusting its value to
optimize the closeness of the correlation between H and W.

[17] By treating balance velocity as a proxy for sliding
velocity, we are exploring the relationship between erosion
rate and ice flux. One motivation for this approach is that
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balance velocity is relatively easy to compute, making it a
favorable input parameter for an erosion model. An alterna-
tive approach is to substitute a sliding rule into equation (2).
Although that would introduce a minimum of two more
parameters with unknown variability, it yields a relationship
very similar in form to equations (6)—(8) (see Appendix A).

[18] Ideally, equation (8) would be applied precisely at
confluences, where hangs develop. However, longitudinal
stress gradients arising there due to trunk-tributary interac-
tion would violate the simple relation for basal shear stress
in our formulation (equation (5)) [Paterson, 1994, p. 268].
Because of the neglect of these stress gradients, equation (8)
applies to regions sufficiently far upstream from confluences
to be outside the zone of dynamic trunk-tributary interaction.
We thus adopt the viewpoint that hang height reflects primar-
ily the independent dynamics of a trunk glacier and its
tributary, rather than their dynamic interaction at the conflu-
ence. This approximation is necessary because longitudinal
stress gradients cannot be readily estimated at the confluences
of past glaciers.

[19] An important ramification of this approximation is
that it ensures the formulation for W is not circularly biased
toward correlation with hang height. U depends on the

quantity (ﬁ) — (hf‘—‘ih) (see equation (4)), and thus tends
to be proportional to the difference in thickness between
trunk and tributary glaciers, 4, — h;,. The observation that
the surfaces of tributary glaciers are commonly graded to
the surfaces of trunk glaciers implies that 4, — A, equals the
hang height, which would appear to bias correlations of
hang height with W. However, the grading of the surfaces of
tributaries with their trunk glaciers reflects their dynamic
interaction at confluences and the associated development
of longitudinal stress gradients; without these local stress
gradients, 4, — h;, would not equal hang height. Thus,
because ¥ is formulated to depend on the independent
fluxes of ice emerging from trunk and tributary catchments,
there is no requirement that /2, — &, equals hang height and
hence no circularity in the formulation of W.

4. Settings and Methods

[20] This study focused on hanging valleys feeding the
Athabasca and Sunwapta River valleys in southern Jasper
National Park, Alberta, Canada (Figure 1). The valleys now
occupied by these rivers were widened and deepened
through multiple glacier advances. During periods of
the Wisconsin glaciation, ice inundated this part of the
Canadian Rockies and coalesced with the Laurentide ice
sheet on the plains to the northeast [ Yorath and Gadd, 1995].
Some erosion also likely occurred during previous glaci-
ations. The strong U-shaped geometry of most valleys in
this region suggests that during the recent past fluvial
incision and mass wasting were minor processes of erosion
compared to glacial erosion. Furthermore, reconstructions
of the Cordilleran and Laurentide ice sheets [e.g., Hughes,
1998, chap. 9] suggest that glaciers that occupied valleys
in this region (at an elevation of 1000—3000 m) may have
been entirely in the accumulation zone for much of the
Wisconsin glaciation, which is consistent with the appli-
cation of equation (3).

[21] We studied hanging valleys associated with
three major trunk-valley segments: the Sunwapta River
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Figure 1. Study area in western Alberta, Canada. Catch-
ments of hanging valleys are represented by small polygons
within the three trunk valley basins.

(Sunwapta), the Athabasca River upstream from its conflu-
ence with the Sunwapta River (Athabasca upstream), and
the Athabasca River between this confluence and the town
of Jasper (Athabasca downstream) (Figure 1). 46 hanging
valleys were considered. Of these, 22 feed the Sunwapta
segment, 15 feed the Athabasca upstream segment, and
9 feed the Athabasca downstream segment.

[22] Although the bedrock lithology in this area is highly
variable, the geologic setting is relatively well suited for this
study. Trunk valleys lie approximately parallel to the strikes
of thrust faults. Tilted Precambrian and early Paleozoic
strata (dominantly carbonates, quartzite, shale, and slate)
strike roughly parallel to these faults [Yorath and Gadd,
1995], minimizing lithologic variability along the lengths of
the trunk-valley segments. For the same reason, hanging
valleys generally cut across the strike of rock strata. Thus,
although a given hanging valley is cut into multiple rock
units with different resistances to erosion, hanging valleys
feeding one side of a trunk valley tend to cut through similar
sequences of rock strata. Of course, trunk valleys may be
eroded in strata with overall resistances to erosion that are
different from the strata of hanging valleys. However, given
that trunk valleys lie parallel to the strike of strata, differ-
ences in erosion resistance between hanging valleys and the
trunk valley of a given catchment will tend to be uniform
and thus not affect the strength of correlations between hang
height and W.

[23] Hanging valleys feeding only the southwestern sides
of trunk-valley segments were studied (Figure 1). Because
strata tend to dip moderately to the southwest, the south-
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western slopes of trunk valleys are generally steeper, with
more pronounced hanging valleys than northeastern slopes.

[24] Our hypothesis, as expressed by equations (6)—(8), is
that if balance velocity controlled erosion rate and the
spatial variability of C; was not too large, then hang heights
should be related to the areas, slopes and widths of tributary
and trunk glaciers, as given by (equation (8)). These
variables were estimated using GIS software to make
measurements from ten 1:50,000 digital topographic maps
[Natural Resources Canada, 1994a, 1994b, 1994c, 1994d,
1994e, 19941, 1994g, 1994h, 19941, 1994].

[25] To determine hang heights of hanging valleys, the
top and bottom of hangs were defined. Hang tops were
taken as the elevation of the point of maximum convexity in
the longitudinal profile of the hanging valley near its mouth.
Hang bases were taken as the elevation where the stream
from the hanging valley joined that of the trunk valley. If no
stream drained the hanging valley, the mean azimuth of the
axis of the hanging valley was extrapolated to where it
intersected the trunk-valley river, and the elevation of that
point was used. Although alluvium mantles valley floors in
some areas, its thickness is usually poorly known, so hang
heights were not adjusted to account for this alluvium.

[26] Glacier areas upstream from confluences were esti-
mated by measuring catchment areas defined by topographic
divides. Because of steep valley walls, catchment arcas
reasonably approximate areas of former glaciers. There was
uncertainty demarcating some valley mouths, but uncertain-
ties were small relative to total catchment areas.

[27] We chose to approximate glacier slope by measuring
the mean slope of the valley floor because trimlines,
moraines, and other geomorphic features commonly used
to infer slope reflect recent, discrete glacial episodes rather
than the much longer period over which hanging valleys
likely formed. Our elevation and length measurements
needed to calculate mean bed slope extended from the
lowest point on drainage divides (saddles) to valley mouths.
This method probably overestimated glacier slope but pro-
vided an internally consistent approximation. An inverse
relationship between lengths and slopes of modern glaciers
[e.g., Clarke, 1991], determined from the World Glacier
Inventory data set [National Snow and Ice Data Center,
2003], predicted slopes similar to those inferred from our
measurements, with a root mean square error of 1.9° (see
Figure 2). The length-slope relationship is particularly strong
for long glaciers; the observation that our surface slope
estimates closely match the regression from the World
Glacier Inventory data set (Figure 2b) provides support for
our slope estimates.

[28] The depth-averaged widths of former tributary and
trunk glaciers were estimated just up glacier from their former
confluences. Surface width was estimated by using the point
of maximum convexity at the edges of transverse valley
profiles to approximate the former position of lateral margins.
Depth-averaged width is proportional to surface width; for
example, for the common case of a parabolic profile [e.g.,
Harbor and Wheeler, 1992] depth-averaged width is two
thirds the surface width. By incorporating the constant of
proportionality into C,, we use the surface width in our
calculations. Although actual time-averaged glacier widths
likely deviated from estimated values, our rough estimation
procedure is preferable to treating width as a constant.
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Figure 2. (a) Power law relationship between glacier

slope, o, and length, L, is determined from the World
Glacier Inventory North American data set [after Clarke,
1991]. (b) Regression line in Figure 2a superimposed on
data from this study.

[20] Glacier thickness, which we have eliminated from
our formulation in favor of using glacier slope, is more
difficult to estimate from maps than surface width, and
unlike estimates of slope, thickness estimates cannot be
tested with data from modern glaciers. The point of max-
imum valley wall convexity could be used to estimate the
elevation of the ice surface near confluences, but owing to
steep valley walls, estimates of elevation are more sensitive
to errors in assigning the point of maximum convexity than
are estimates of ice margin position. More importantly, there
is no empirical relationship between glacier thickness and
length for modern glaciers that can be used to evaluate the
accuracy of thickness estimates. In contrast, the length-slope
relationship for modern glaciers [Clarke, 1991] provides
independent support for our estimates of slope (Figure 2).

5. Results

[30] Our estimation of the areas, slopes, and widths of
former glaciers allow hang height to be correlated with W

0.7

05F

03}

0.1

0 05 1 15 2 25 3

Figure 3. Coefficients of determination (+%) for n ranging
from 10™* to 3. rax> = 0.60 at n = 1/3.
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(equation (6)). The value of the sliding velocity exponent in
the erosion rule, n (equation (1)), is needed to calculate ¥
but is poorly known. We therefore searched for the value of
n that optimized the coefficient of determination () for a
linear least squares regression of H on ¥ (Figure 3). The
maximum coefficient of determination (rﬁmX = 0.60) was
found when n ~ 1/3.

[31] In Figure 4, hang height is plotted as a function of ¥
using n = 1/3. Figure 4a illustrates this relationship for all
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Figure 4. Hang height as a function of W with n = 1/3 for all
hanging valleys (Figure 4a) and for those of each region
(Figures 4b—4d). (a) Standard errors of the slope of the
regression line and of the hang height at ¥ =0 are 7.0 m"” and
49 m, respectively. The F statistic is 65.0; the probability of no
association between hang height and is less than 0.0001
[Snedecor and Cochran, 1980, p. 181]. (b) Standard errors are
5.1 m'” and 36 m. The F statistic is 112.7; the probability
of no association is less than 0.0001. (¢) Standard errors are
14.4 m'? and 90 m. The F statistic is 22.7; the probability of
no association is 0.0004. (d) Standard errors are 21.2 m"” and
164 m. The F statistic is 8.5; the probability of no association
18 0.0225. The curved lines indicate 95% confidence intervals
of the regressions.
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hanging valleys in the study area. 60% of the variance in
hang height (#* = 0.60) can be attributed to its regression
on ¥ [Snedecor and Cochran, 1980, p. 181]. Furthermore,
plots of the residuals indicate that there is no systematic
variability in C; nor systematic measurement error as a
function of either ¥ or distance down the trunk valley
(Figure 5). The linear regression does not satisfy the
criterion that as W approaches zero, the hang height
approaches zero: at ¥ = 0 the regression yields a hang
height of 128 m + 49 m. However, the correlation does not
weaken significantly when the regression is forced through
the origin (#* = 0.53).

[32] Figures 4b—4d show hang height as a function of
U for each of the three regions. The variable ¥ can
account for most of the variance of hang height in the
Sunwapta region (* = 0.85) (Figure 4b), with somewhat
weaker correlations in the two Athabasca regions (2 =
0.64, ©* = 0.55) (Figures 4c and 4d). The slopes of the
regression lines, which equal C; (equation (6)), differ by
less than 26%.

[33] Our formulation for ¥ (equation (8)) can be further
evaluated by systematically incorporating various combina-
tions of the variables 4, o, and w, into the constant C; and
comparing the resultant values of W with hang height.
Values of #* are consistently reduced if the measured
variability of one or more of these variables is omitted from
the formulation of W (Table 1), indicating that each param-
eter is important in our analysis.

6. Discussion

[34] Hang height, and therefore erosion rate, is correlated
with W, which is derived from the difference in balance
velocity between a trunk and tributary glacier. Our results
indicate that W accounts for 55—85% of the variability in
hang height. The remaining variability can be attributed to
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spatial variations in bedrock geology, ice accumulation
rates, glaciation duration, and other parameters contained
in Cy, and to errors in our estimates of glacier area, slope
and width. Some of the remaining variability may also
reflect too simple an erosion rule. Our results indicate that
W accounts for most of the hang height variability with an
erosion rule in which balance velocity is raised to a power
of 1/3, rather than to a higher integer value commonly
assumed in models [e.g., Harbor, 1992; MacGregor et al.,
2000]. If sliding velocity is proportional to balance velocity,
then this exponent agrees with one of the few laboratory
studies of sliding and rock erosion by temperate ice [Budd et
al., 1979]. However, the significance of this agreement is
uncertain; erosional processes in those experiments, which
were conducted over periods of hours with bed roughness
elements of wavelength less than 10 mm, may have been
quite different from those that operate beneath glaciers over
much larger time and length scales.

[35] The disparate »> values for the three regions
(Figures 4b—4d) cannot be adequately explained with the
data at hand. Either the errors in estimating glacier area,
width, and slope or the variability of C; differed among
regions. There is no obvious reason why measurement errors
would have been higher in some regions than in others. The
value of C depends on C, T, S, a, \ and T, and among these
variables, only erosion resistance (C) and shape factor (S) can
be estimated from maps. The variability of these factors is not
obviously different for the three regions. The smaller /* values
in the two Athabasca regions may, in part, reflect the smaller
number of hanging valleys in those regions. The similar
slopes of the regressions (Figure 4) indicate that mean values
of Cy were similar for the three regions, despite differences in
the apparent variability of C;.

[36] Our empirical results are consistent with the model-
ing results of MacGregor et al. [2000]. They predicted, as a
direct result of erosion rate scaling with sliding velocity, an
increase in hang height with distance down the trunk valley
for tributary glaciers of similar discharge and an inverse
relationship between hang height and the ratio of tributary
to trunk glacier discharge. Although we cannot measure ice
discharge from maps, we can treat the ratio 4812 as a
discharge proxy, Q. If we consider the catchment with the
most hanging valleys (Sunwapta), calculate the discharge
proxy for each hanging valley, O, and group the data on
that basis, we indeed observe an increase in hang height
with distance down the trunk valley (Figure 6a). Further-
more, if hang height is plotted as a function of Q,/Q,, where
0, is the discharge proxy for trunk valleys (Figure 6b),
there is a clear inverse relationship similar to that of
MacGregor et al. [2000, Figure 4]. Although neither
study conclusively indicates that erosion rate is controlled

Table 1. Highest Coefficients of Determination (+*) From Least
Squares Regression of Hy on V¥, Using n = 1/3 and Moving
Additional Parameters From ¥ (Equation (8)) to C; (Equation (7))

Parameters included in C,; 2

0.46
0.52
0.22
0.32
0.26
0.25

fpphzo
Y
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Figure 6. (a) Hang height as a function of distance down
the Sunwapta trunk valley. The data are separated into two
groups defined by the discharge proxy of each hanging
valley, Q). Solid circles indicate Q) < 1000 m, and open
circles indicate 1000 m < 95, <2000 m. Remaining hanging
valleys with values outside these ranges were not considered.
(b) Hang height as a function of relative discharge proxy.

by sliding velocity, the agreement between the studies is
suggestive and encouraging.

[37] The influence of velocity on bedrock erosion rate
implied by our data and assumed by MacGregor et al.
[2000] should be reconciled with knowledge of quarrying.
The rate of crack growth in the bed, which is thought to
limit quarrying rates, may be controlled by sliding speed
through its effect on sizes of cavities downstream from
bumps on the bed [e.g., Hallet, 1996]. In addition, sliding
speed is commonly correlated to basal water pressure
[Hooke, 2005], which likely affects the water pressure in
bedrock cracks and thereby affects crack growth rates
[fverson, 1991]. Alternatively, quarrying rates may be
limited not by rates of crack growth but by the dislodgement
rate of sufficiently fractured bedrock. In some geologic
settings, cracks associated with bedding planes, foliations,
joints, and other planes of weakness that precede glaciation
may leave little requirement for crack extension in the bed,
such that the dislodgement rate of fracture-bound blocks
limits the quarrying rate. Dislodgement rate may depend on
sliding velocity through its effect on the bed-parallel drag
on loosened rock fragments and its correlation to basal
water pressure, which reduces frictional resistance to bed-
rock dislodgement [/verson, 1991]. Our study cannot re-
solve these issues but highlights the need for better data
regarding the mechanics of quarrying.

7. Conclusions

[38] Variability of balance velocity, as indicated by valley
morphology, accounts for 60% of the total variability in
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hang height and for 55—85% of the hang height variability
if the three catchments of the study area are considered
separately. Remaining variability of hang height can be
reasonably attributed to spatial variations in snow accumu-
lation rate, glaciation duration, nonglacial erosional pro-
cesses and other factors that could not be included in our
analysis. Assuming that sliding velocity is a constant
fraction of balance velocity, hang height variability is
accounted for most fully if erosion rates are proportional
to sliding velocity raised to a power of about 1/3. These
results provide tentative support for velocity-based erosion
rules used to model glacial erosion over large time and
length scales.

Appendix A: Sliding Rule Approach

[39] Instead of simply considering sliding velocity to be a
fraction of balance velocity, a sliding rule can be substituted
into equation (2). Laboratory and field studies indicate that
over various length scales, sliding speed, Uy, should depend
on the basal shear stress, T,, and effective pressure, N,
which is the difference between ice overburden and pore
water pressure. The sliding rule is typically expressed as

)
U, = km, (A1)
where &, p, and ¢ are empirically determined constants.
Values proposed for p and ¢ range from 1 to 3 and from 0
to 2, respectively [Paterson, 1994, p. 153]. The precise
form of this equation and the values of the “constants” are
debated. For example, lken and Truffer [1997] observed
very different surface velocities during different years on
Findelengletscher, Switzerland, although basal shear stres-
ses and water pressures were similar. They argued that
equation (Al) is incorrect, unless k is replaced with a
function that depends on water pressure as well as the
connectivity of the subglacial drainage system. Without
knowledge of the temporal or spatial variability of water
pressure, we set mean sliding velocity proportional to the
basal shear stress at the glacier centerline:
U, = kb, (A2)
where k is a function that depends on bed roughness,
water pressure, drainage system connectivity, and other
factors. Inserting the relationship for basal shear stress
(equation (5)) into equation (A2) gives
Uy, = k(Spghsin a)’. (A3)
Isolating ice thickness in the continuity equation
(equation (3)) and substituting the result into equation (A3)
yields

U (A4)

U - H(Spgiml sin (x>p'
If, as before, the sliding velocity is considered to be some
fraction, X\, of the balance velocity, then

e\
U, = {H(M) } _ (A5)

w
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We now isolate variables in equation (AS5) that both vary
appreciably among glaciers in a particular region and can be
estimated from the geometry of glacial valleys, and insert the
result into equation (2) to obtain equations analogous to
equations (6)—(8):

H= G, (A6)
where
Cy = CTRT(\Spga)™s (A7)
and
Arsina,\ ™ [Aysinoy\ T
+p +p
v, — ( fsmu,) B ( i smoa;,) (A8)
Wy wp

As with C; of equation (7), C, is not a constant because some
of the variables in equation (A7) will differ among glaciers.
However, by considering C, to be a constant, we test the
hypothesis that its variability is small relative to W,.

[40] Like equation (6), equation (A6) is a relationship
between hang height and valley morphology that can be
tested with our measurements from topographic maps.
Equation (A6) is the same as equation (6), except that the
erosion rule exponent in equation (8), n, has been replaced
with - "” . Our analysis with the first approach 1nd1cates that the
correlatlon between H and ¥, is optimized if {2 - =1/3,son=
(2/3,1/2,4/9) forp=(1, 2, 3). Thus, like the first approach this
one indicates n < 1.0, regardless of which of the common
integer values of the sliding rule exponent, p, is chosen.

[41] Acknowledgments. The glaciology group at the University of
Alaska Fairbanks provided constructive feedback. Comments from R. S.
Anderson, B. Hallet, B. Hubbard, J. Tomkin, and S. Tulaczyk improved the
manuscript.
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