Technology or Incentives? Bycatch Avoidance in the BSAI Groundfish Fishery

Matthew Reimer

University of Alaska Anchorage
Joshua Abbott
Arizona State University

Jim Wilen

University of California Davis

6
UAA Institute of Social and Economic Research
University of Alaska Anchorage

Rights-based Management in Multi-species

 FisheriesAdditional complexity: catch-quota balancing
Ex ante examinations: weak targeting potential
\Longrightarrow challenges for rights-based management Squires (1987), Pascoe (2007, 20I0)

Ex post examinations: stronger targeting potential than previously thought Sanchiricho (2006), Branch (2008)

Rights-based Management in Multi-species

 FisheriesHypothesis:

Conventional models of fishery production reflect more about the incentives for substitutability than the technological possibilities of cross-species substitution.

Ability to target confounded with incentive to target.

Conventional Production Function:

catch $=F($ labor, capital, duration $)$

BSAI Non-Pollock Groundfish Fishery

Did rights-based management induce bycatch avoidance?

The Bering Sea Groundfish Fishery

Pre-Amendment 80 (prior to 2008):

- Target species TACs allocated as common property over multiple "sub-seasons"
- TAC for PSC (e.g. halibut) allocated to target species fisheries
- Target fisheries typically closed due to binding PSC TAC

The Bering Sea Groundfish Fishery

 Pre-Amendment 80 (prior to 2008):- Target species TACs allocated as common property over multiple "sub-seasons"
- TAC for PSC (e.g. halibut) allocated to target species fisheries
- Target fisheries typically closed due to binding PSC TAC Post-Amendment 80 (2008 and after):
- Target species and PSC allocations vested directly into cooperatives or limited access fishery
- Initially one cooperative formed: 16 vessels, 7 companies

Yellowfin Sole	Atka Mackerel	Cod	Rock Sole	Flathead Sole	llock	Other

Change in Fishing Practices

Abbott et al. (20I3) found:

- large scale movements out of halibut-rich areas
- finer scale movements after hauls with a large proportion of halibut
- less fishing at night when halibut bycatch is more prevalent

Changes in Bycatch Intensity

Changes in Bycatch Intensity

- Pre-A80 - Post-A80

Reduced Form Fishery Production Function

A Hyperbolic Distance Function Approach

Transformation Function: $\quad T(x, y, b)=0$

$$
x=\text { inputs } \quad y=\text { good outputs } \quad b=\text { bad outputs }
$$

Reduced Form Fishery Production Function

A Hyperbolic Distance Function Approach

Transformation Function: $\quad T(x, y, b)=0$

$$
x=\text { inputs } \quad y=\text { good outputs } \quad b=\text { bad outputs }
$$

Hyperbolic Output Distance Function:

$$
\begin{aligned}
& D^{H}(x, y, b)=\min _{\theta}\{\theta>0: T(x, y / \theta, b \theta) \leq 0\} \\
& 0<D^{H}(x, y, b) \leq 1
\end{aligned}
$$

Reduced Form Fishery Production Function
Hyperbolic Distance Function: Identification

$$
D^{H}(x, y, b)=\min _{\theta}\{\theta>0: T(x, y / \theta, b \theta) \leq 0\}
$$

Reduced Form Fishery Production Function

Hyperbolic Distance Function: Identification

$$
D^{H}(x, y, b)=\min _{\theta}\{\theta>0: T(x, y / \theta, b \theta) \leq 0\}
$$

Distance is latent, so.....

$$
\begin{gathered}
y=y^{*} e^{v-u} \text { and } \quad b=b^{*} e^{u-v} \text { where } D^{H}\left(x, y^{*}, b^{*}\right)=1 \\
\Longrightarrow D^{H}\left(x, y e^{u-v}, b e^{v-u}\right)=1 \\
\Longrightarrow D^{H}(x, y, b)=e^{v-u}
\end{gathered}
$$

since $D^{H}(x, y, b)$ is almost homogeneous of degrees $1,1,-1,1$

Reduced Form Fishery Production Function

Hyperbolic Distance Function: Identification

$$
D^{H}(x, y, b)=\min _{\theta}\{\theta>0: T(x, y / \theta, b \theta) \leq 0\}
$$

Distance is latent, so.....

$$
\begin{gathered}
y=y^{*} e^{v-u} \text { and } \quad b=b^{*} e^{u-v} \text { where } D^{H}\left(x, y^{*}, b^{*}\right)=1 \\
\Longrightarrow D^{H}\left(x, y e^{u-v}, b e^{v-u}\right)=1 \\
\Longrightarrow D^{H}(x, y, b)=e^{v-u}
\end{gathered}
$$

since $D^{H}(x, y, b)$ is almost homogeneous of degrees $1,1,-1,1$

$$
v \sim N\left(0, \sigma_{v}\right) \quad u \sim \Gamma\left(1, \sigma_{u}\right)
$$

Reduced Form Fishery Production Function

A Hyperbolic Distance Function Approach

$$
\begin{aligned}
\ln D_{i t s}^{H}\left(\mathbf{x}_{i t s}, \mathbf{y}_{i t s}, \mathbf{b}_{i t s}\right) & =\alpha_{o}^{i s}+\alpha_{\mathbf{x}}^{s \prime} \ln \mathbf{x}_{i t s}+\alpha_{\mathbf{y}}^{s \prime} \ln \mathbf{y}_{i t s}+\alpha_{\mathbf{b}}^{s \prime} \ln \mathbf{b}_{i t s} \\
& +\frac{1}{2} \ln \mathbf{x}_{i t s}^{\prime} \mathbf{A}_{\mathbf{x x}}^{s} \ln \mathbf{x}_{i t s}+\frac{1}{2} \ln \mathbf{y}_{i t s}^{\prime} \mathbf{A}_{\mathbf{y} \mathbf{y}}^{s} \ln \mathbf{y}_{i t s}+\frac{1}{2} \ln \mathbf{b}_{i t s}^{\prime} \mathbf{A}_{\mathbf{b} \mathbf{b}}^{s} \ln \mathbf{b}_{i t s} \\
& +\ln \mathbf{y}_{i t s}^{\prime} \mathbf{A}_{\mathbf{y b}}^{s} \ln \mathbf{b}_{i t s}+\ln \mathbf{x}_{i t s}^{\prime} \mathbf{A}_{\mathbf{x} \mathbf{y}}^{s} \ln \mathbf{y}_{i t s}+\ln \mathbf{x}_{i t s}^{\prime} \mathbf{A}_{\mathbf{x b}}^{s} \ln \mathbf{b}_{i t s} \\
& =\varepsilon_{i t s}=v_{i t s}-u_{i t s}
\end{aligned}
$$

$x=$ Fishing Time, Vessel Length
$i=$ Individual
$y=$ Rock Sole, Yellowfin Sole, Cod, Other $\quad t=$ Day of season
$b=$ Halibut
Reform-induced "technological" change left latent

Stochastic Production Function

 Measures of Substitution$$
y=\text { rock sole } \quad b=\text { halibut }
$$

Marginal Rate of Transformation: $\quad M R T_{b y}=\frac{\partial y}{\partial b}=-\frac{\partial D(\cdot) / \partial b}{\partial D(\cdot) / \partial y}$
Larger MRT implies a greater shadow value of halibut reduction.

Transformation Elasticity:

$$
s u b s_{b y}=\frac{\partial \ln y}{\partial \ln b}=-\frac{\partial \ln D(\cdot) / \partial \ln b}{\partial \ln D(\cdot) / \partial \ln y}
$$

Smaller elasticity implies greater potential to substitute rock sole for halibut reduction.

Marginal Rate of Transformation

Relative Substitutability

Frontiers: Rock sole-Halibut Space

Frontiers: Rock sole-Halibut Space

Conclusion

Targeting "ability" in prior to A80 primarily determined by lack of incentives to avoid halibut bycatch

- Ex ante predictions likely reflect far more about incentives for substitutability than technological possibilities for substitutability
- Need to understand what the relevant margins of production are, which are fishery and context specific

Acknowledgements

References

Abbott, J. K., Haynie, A. C., and Reimer, M. N. (2013). "Hidden Flexibility: Institutions, Incentives and the Margins of Selectivity in Fishing." Working Paper, 1-40.

Branch, T., and Hilborn, R. (2008). "Matching Catches to Quotas in a Multispecies Trawl Fishery: Targeting and Avoidance Behavior Under Individual Transferable Quotas." Canadian Journal of Fisheries and Aquatic Sciences, 65(7), 1435-1446.
Pascoe, S., Koundouri, P., and Bjørndal, T. (2007). "Estimating Targeting Ability in MultiSpecies Fisheries: a Primal Multi-Output Distance Function Approach." Land Economics, 83(3), 382-397.

Pascoe, S., Punt, A., and Dichmont, C. (2010). "Targeting Ability and Output Controls in Australia's Multi-Species Northern Prawn Fishery." European Review of Agricultural Economics, 37(3), 313-334.

Sanchirico, J. N., Holland, D. S., Quigley, K., and Fina, M. (2006). "Catch-Quota Balancing in Multispecies Individual Fishing Quotas." Marine Policy, 30(6), 767-785.

Squires, D. (1987). "Public Regulation and the Structure of Production in Multiproduct Industries: an Application to the New England Otter Trawl Industry." The Rand Journal of Economics, 232-247.

