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ABSTRACT 

 Innovation in the electric sector has the potential to drive job growth, decrease 
environmental impacts, reduce rate payer costs, and increase reliability and resiliency. 
However, the traditional electric system was built to deliver a controlled flow of energy 
from a centralized location with maximum reliability and minimum cost. As both 
customer expectations and generation technologies change, new avenues for grid 
innovation are being explored. Residential customers, commercial and industrial clients, 
and electric utilities must all find a way to balance goals for decarbonization and social 
justice with maintaining a least cost, reliable power grid. Grounded in Geel’s energy 
system transition framework, this dissertation explores how each of these three 
stakeholder groups is navigating the transition to renewables. 

The first study tests the idea that residential customers will be more inclined to 
change their behavior when altruistically contributing to a greater goal. Renewed 
Darwinian theory was explored to question the exclusive use of financial incentives in 
demand response programs. A difference in differences approach was designed to test the 
impact of the Burlington Electric Department’s Defeat the Peak program on residential 
energy use where the incentive was a group donation to a local charity. Results suggest 
utility savings of over $12 in energy supply costs for every $1 they invested in the 
program. 

Financial levers, however, can be quite effective in influencing electricity 
demand, and may result in cost-shifting from high to low demand consumers. The second 
study focused on rate design for commercial and industrial customers through an analysis 
of the utility demand charge. Under the current system, most small commercial and 
residential customers do not receive a strong direct price signal to invest in storage, load 
shifting, or renewables. Larger commercial and industrial customers exercise some 
measure of control over their loads to reduce demand charges, but with only modest 
benefit or value to the system as a whole. The system costs are then redistributed to all 
customer classes, potentially falling disproportionately on low demand customers. To 
investigate, a regression analysis was conducted with cost and market characteristics 
from 447 US electric utilities. Results suggest that demand charges predict a significant 
degree of variability in residential pricing, confirming suspected cost shifting. 
Redesigning the demand charge could open up new markets for renewable energy 
entrepreneurs and lower grid costs and customer rates, supporting goals of 
decarbonization while also achieving reliable least-cost power. 

In the third study, an iterative approach was employed to understand why some 
utilities lean into the energy system transition while others take a more conservative stance. 
A database of 170 US electric utilities was constructed including a qualitative assessment of 
Integrated Resource Plans for renewability orientation. Institutional resource-based theory 
was utilized to take a striated approach to understanding firm heterogeneity, identifying 
factors at the individual manager level, firm level, and external environment that can 
influence a utility’s energy supply characteristics. Independent variables in a simultaneous 
regression analysis included CEO gender and tenure at the individual level, ownership 
structure and firm age at the firm level, and the impact of policies and state rurality at the 
inter-firm level. Results indicate that a significant amount of a utility’s commitment to the 
renewable energy transition can be predicted based on these firm characteristics. 
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Chapter 1 

Innovation in the Energy System Transition 

The decarbonization of the United States energy system will deeply impact social 

justice goals, the pace and severity of climate change, and the ability of the American 

economy to compete on the world stage. In its current manifestation, the US electric grid 

represents a narrative of centralization where a small number of people control a small 

number of generators that provide affordable and reliable electricity to the American 

public. Unfortunately, the power produced through this fossil-fuel intensive system is 

only affordable in the short term. The long term ramifications of fossil fuel extraction, 

transportation, and consumption are only beginning to make themselves clear. Amidst a 

backdrop of increasingly frequent severe weather events, widespread droughts, and rising 

sea levels, the time for rapidly changing the energy system is long past due (IPCC, 2018). 

As the social, environmental, and economic costs of unconstrained pollution becomes 

increasingly severe, pressure on the existing system has intensified. 

The necessary energy system transformation presents a dramatic opportunity to 

mitigate the environmental impact of our energy choices as well as restructure the 

decision-making authority that currently directs energy siting, generation, distribution, 

and ultimate end uses. Community organizers are navigating new paths forward that 

empower and include a far broader range of groups and individuals in energy-related 

decisions (Burke et al., 2017). The historical theme of centralization is becoming 
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disrupted as more stakeholders take control of their energy generation and consumption, 

forcing themselves into a marketplace that was once the sole purview of established 

generation utility executives and corporations (Stephens et al., 2015). Priorities for the 

electric grid are also shifting from short-term financial benefits to long-term social, 

environmental, and economic benefits. 

Despite this shift in priorities, the energy system transition is not occurring 

quickly enough. The Intergovernmental Panel on Climate Change (IPCC) released a 

special 2018 report to address growing concerns over catastrophic climate change if 

greenhouse gas (GHG) emissions are not drastically and immediately curtailed (IPCC, 

2018). The actions of the United States in particular, the largest greenhouse gas emitter in 

history, are critically important in achieving significant reductions in GHG emissions. 

The United States produces 21% of the world’s carbon dioxide emissions, and 98% of 

those emissions are attributed to energy consumption (Attari et al., 2010). Severe weather 

events and changing seasonal weather patterns are already disrupting food systems and 

destroying critical infrastructure, compounding pressures that can result in the 

displacement of large populations and widespread human migration (Black et al., 2011; 

Farbotko and Lazrus, 2012; Farbotko and McGregor, 2010; McGregor, 1994). As the 

social and environmental costs of the existing energy system continue to compound, it is 

critically important to examine drivers of change that could bring about a more 

sustainable, socially just, and economically viable power infrastructure. 

In response to these global challenges, new technologies to generate, store, and 

control energy consumption are emerging and motivating an empowered and engaged 

citizenry. In the US alone, between 2006 and 2017, solar experienced an annual growth 
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rate of 54% and an increasing amount of this new electricity generation is owned by non-

utility generators (Schittekatte et al., 2018; SEIA, 2018; Van der Kam et al., 2018). 

However, despite this growth, only 35 billion kWh of energy was produced from small-

scale solar (less than one MW of electricity generating capacity) in 2019, less than one 

percent of all energy generated in the US that year (US EIA, 2020). In total, renewable 

energy (including solar, wind, hydro, biomass, and geothermal) was responsible for 17% 

of US energy generation in 2019 (US EIA, 2020). Notably 38% of the renewable energy 

total is from large hydropower, a centralized generation technique with significant 

environmental challenges that limit its further expansion (Liu et al., 2013; Xingang et al., 

2012; Zia et al., 2011). If decentralized, distributed renewable generation is to become 

possible, new supporting technologies and services need to be developed and 

implemented. In order for the existing fossil-fuel regime to be displaced, viable 

alternatives must exist. A key question that emerges, then, is what will it take to develop 

these renewable technologies and provide for much more significant market penetration? 

This dissertation focuses on renewable energy entrepreneurship as a central 

feature to technology investment, development, and expansion. The approach of this 

research is to examine one or more key themes of the renewable energy system transition 

in each of three studies, recognizing the dual importance of achieving both social and 

technical goals for the grid. Through this dissertation, the following three interdependent 

questions are addressed: 

1. Can pro-social engagement strategies effectively motivate residential customers in 

the energy system transition? 
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2. Can the existing commercial and industrial demand charge rate structure support a 

decentralized grid without limiting innovation or unfairly allocating costs to 

residential customers? 

3. Why are some utilities leaning into the renewable energy transition while others 

follow a more conservative approach? 

1.1 Sociotechnical Transitions 

There is a wealth of literature on the diffusion of technology and on the 

sociotechnical transitions that transformative innovation can engender. For instance, 

Markard et al. (2012) refer to four key approaches in the literature for understanding how 

sustainability transitions occur: strategic niche management, technology innovation 

systems, transition management, and Geels’ multi-level perspective. Strategic niche 

management seeks to understand why some new ideas flourish and grow within niches 

while others fade into obscurity (Smith and Raven, 2012). The focus on niche level new 

technology is also a defining characteristic of technology innovation systems for the 

purpose of identifying drivers and barriers to innovation and providing policy 

recommendations (Markard et al., 2012). Researchers who apply this framework employ 

concepts like economic competence, clustering of resources, and institutional 

infrastructure in order to understand how new technologies develop and gain acceptance 

(Carlsson and Stankiewicz, 1991). 

The transitions management literature has its roots in complex systems theory, 

and conceptualizing management as an adaptive and evolutionary process (Markard et 

al., 2012). In this framework, governments must take an iterative and reflexive approach 
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to support sustainability transitions to help avoid path lock-in and support regime changes 

(Kemp and Loorbach, 2006). Finally, the classic multi-level perspective introduced by 

Geels is perhaps the most popular. It divides the socio-economic environment into three 

levels: niche, regime, and landscape. The interplay of dynamics between and within these 

levels informs the pace and promise of sociotechnical change (Geels, 2005). 

These frameworks all offer a different perspective into the complex world of 

sociotechnical change. They differ primarily in terms of the audiences for whom their 

work is addressed and their focus on technology, government, social institutions, and the 

interplay between them. Frank Geels (2005) approach has emerged as one of the most 

prominent transition frameworks and was thus selected as the model upon which to base 

this dissertation. 

1.2 Today’s Energy System Transition 

Energy systems worldwide are currently transitioning to a new regime as the 

nature of key industry resources changes and social movements and policy changes 

destabilize established organizational fields. In the US, new grid priorities like 

decarbonization require systemic changes that threaten the business model and existing 

revenue streams for electric utilities (Woolf et al., 2014). This type of seismic shift that 

involves both behavioral and technological adaptation has been studied extensively. 

Geel’s multi-level perspective (Figure 1.1) organizes the types of changes that are 

occurring into three different levels and helps guide a discussion of the complex factors at 

work in the energy system transition. 
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Figure 1.1. Themes in the energy system transition (Geels, 2005). 

The first level of Geels’ framework is the protected niche where new innovations 

can develop and eventually challenge and replace the existing sociotechnical regime 

(Geels, 2005). The protective space of a niche is critical because path-breaking 

innovations are unable to compete within the selection environments of existing 

sociotechnical regimes (Smith and Raven, 2012). In the case of the energy industry, 

innovations like solar and storage need to be protected in order to overcome technical 

challenges and achieve sufficient economies of scale to compete with embedded 

centralized generation (Adil and Ko, 2016). Niche construction can be understood 

through three perspectives on environmental construction, including coevolution, 

cognitive, and political action (Luksha, 2008). 
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In the coevolution perspective, evolving entities and their environments are 

mutually shaped by one another in the niche state. An organization will change its 

environment and environmental conditions will shape the development of the 

organization. Alternatively, the cognitive perspective is rooted in phenomenology, or 

perhaps even solipsism, and claims that an organization’s environment is invented by the 

organization itself. This perspective can be taken to extremes, denying the existence of an 

external environment and thus the assumption that an organization would need to adapt 

based on external factors. The final perspective is one of resource dependence and 

political action, where struggles for power shape the conditions of an organizations 

existence (Luksha, 2008). What all of these niche-level approaches have in common is 

the shared belief that new transformative technologies must develop in protected spaces 

in order to succeed. In the energy industry, electric utilities are often the only customers 

that can test new technologies. The willingness of an electric utility to support the 

development of niche technologies is thus critically important to the pace and, ultimately, 

the success of the energy system transition. 

The next level in the multi-level perspective is regime, where existing 

stakeholders and policies face pressure from both the niche level and from broader 

sociocultural trends. Electric distribution utilities represent one of the primary 

stakeholders in the existing regime as they face pressure to incorporate niche-level 

innovations while also responding to broader, societal level changes. This type of 

pressure on the regime is referred to in the institutional entrepreneurship literature as 

disintermediation, or creative destruction, and occurs as the result of an institutional shift 

(Ritchie and Brindley, 2000). An institutional shift is the moment when an industry’s 
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existing rules for competition are changed as a consequence of new regulatory 

frameworks, technology standards, or business models (Bohnsack et al., 2016). In the 

energy industry, all three of these elements are changing as a result of the increased 

prioritization of grid decarbonization. 

In the traditional business model, electric utilities receive a guaranteed rate of 

return on their investments in energy infrastructure, drastically reducing the financial 

risks of investing in traditional energy generation and transmission technologies. Niche 

level innovations and the trend of customer ownership of generation resources is 

disrupting that revenue model. Distributed generation systems like peaking plants, micro-

generation and combined heat and power are giving customers an enhanced ability to 

generate and control their own energy, putting pressure on the existing electric utility 

business model by curtailing a previously reliable revenue stream (Carley, 2009). The 

‘used and useful’ clause makes investment in niche level technologies extremely risky, as 

utilities need to prove that the economic value is higher than the accounting cost in order 

to pass through the cost (Brunekreeft and McDaniel, 2005). If a utility supports a niche 

level testing project and the savings do not materialize, the utilities will not be 

reimbursed for their investment. Not all electric utilities are willing to risk their rates of 

return on a new renewable technology or to support their customers as they invest in 

generation infrastructure that diverts utility revenue streams. Nevertheless, some utilities 

are leaning into this new entrepreneurial landscape and actively working to support niche 

technologies and services. 

The third level of Geels’ multi-level perspective describes the sociocultural trends 

that push the existing regime to change. In the energy industry, social concern for the 
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environment can influence utility perspectives and actions in different ways. The 

literature on social entrepreneurship emphasizes the importance of social movements and 

collective action in the successful formation of new institutions. Social movements are 

particularly important in situations where normal incentives are inadequate to create 

public goods, or when market mechanisms are inadequate to reduce negative externalities 

like pollution (Rao et al., 2000). In these situations, market mechanisms are inadequate to 

effect necessary changes in the sociocultural regime and the organization of social actors 

around a common cause can be deeply impactful. 

Social movements can catalyze institutional entrepreneurship in three key ways: 

motivating entrepreneurs, creating market opportunities, and providing supporting 

infrastructure (Tolbert et al., 2011). Social movements motivate entrepreneurs by 

influencing the cultural conversation and creating new value paradigms. By labeling certain 

fields as virtuous, aspiring entrepreneurs can be inspired to take risks outside of purely 

financial considerations. While this might not be the explicit intention of a social 

movement, the mere act of changing the underlying value of certain activities can be 

extremely impactful. For example, one entrepreneur in the wind industry was challenged 

by his daughter to “do something in his life as worthwhile as developing renewable energy 

sources” (Asmus, 2001), as cited in (Tolbert et al., 2011). Another effect of social 

movements is the creation of new market opportunities. Demand for products that are 

sustainable and efficient are driven by the value set espoused by various social 

organizations. By persuading individuals that their purchasing decisions can be aligned 

with social values, the market dynamics can shift and a new group of products and services 

can emerge that often benefit from premium pricing allowances by consumers (Lee, 2009). 
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Infrastructure is another driving force in Geels’ sociocultural level. In the US 

energy system, infrastructure is decaying and in need of massive investment (Adil and 

Ko, 2016). Blackouts are increasingly frequent, raising concerns related to security and 

public welfare (Dedrick et al., 2015). Events like the California Camp Fire that 

contributed to a major investor owned utility, Pacific Gas and Electric, declaring 

bankruptcy are forecasted to become increasingly commonplace (Sullivan et al., 2019). 

Physical changes in the environment are also putting pressure on the existing power 

regime. 

Electric utilities and other regime actors are facing pressure to change from 

multiple angles and Geels’ multi-level perspective adds structure to the complex 

dynamics underlying the energy system transition. Niche innovations are becoming cost 

competitive with existing fossil fuel technologies, but the distributed nature of generation 

and risks related to the used-and-useful clause make these innovations difficult to 

reconcile with the existing utility business model. At the sociocultural level, aging 

infrastructure and increased demand for decarbonization are further threatening the 

established stakeholders in the power industry. As the supply and demand characteristics 

of the electricity marketplace evolve, stakeholders need to make complex decisions about 

resource acquisition, social engagement, and niche innovation. 

1.3 Levers of Change in the Energy System Transition 

The remainder of this dissertation explores elements of social and technical 

innovation in the energy system transition. In the first paper, social innovation is 

investigated through inter-disciplinary research on altruistic behavior, weaving together 
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insights from evolutionary economics, renewed Darwinian theory and behavioral 

economics. The pro-social engagement strategies that emerge from the literature are 

tested and quantified in a difference-in-differences model. The second paper 

acknowledges the critical nature of financial incentives, particularly for commercial and 

industrial customers. A deep dive into the demand charge rate structure raises questions 

about the ability of existing rate structures to fairly allocate costs in a decentralized grid. 

The final paper analyzes the variability in environmental consciousness between 

distribution utilities. By applying theories from entrepreneurial orientation and the 

institutional resource-based perspective we developed a rating system to assess the 

entrepreneurial orientation and environmental consciousness of US electric utilities. The 

following places the body of work within the larger context of market opportunities and 

challenges to be overcome as the grid evolves into something new. 

1.3.1 Defeat the Peak: Non-financial Strategies for Stakeholder Engagement 

A successful energy system transition will go beyond substituting renewable 

technologies for fossil fuels. Social decentralization is a key piece of this sociotechnical 

transition, and in order for this to occur a more diverse set of stakeholders needs to be 

invited to participate in decisions related to energy siting and distribution. The literature 

on behavioral economics, evolutionary economics, and renewed Darwinian theory 

presents new paradigms for human behavior that could be leveraged to create deeper and 

more effective engagement strategies (Lawrence and Nohria, 2002a; Thaler and Sunstein, 

1999). This analysis found that the nature of that invitation is critical, and that pro-social 

appeals to residential customers can be at least as effective as financial incentives. By 
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analyzing the impact of a demand response program in Burlington, Vermont over the 

summer of 2017 we were able to demonstrate a high rate of return on a pro-social 

program. Our difference-in-differences model provided a measurement template for 

utilities considering new approaches for actively managing their peaks and collaborating 

more closely with their customers. 

1.3.2 Rate Design for Social, Economic and Environmental Success 

Rate structures that were designed over a century ago are perpetuating a 

centralized electric system based on fossil fuels. The demand charge rate structure 

provides little financial incentive for small commercial and industrial customers to invest 

in load shifting technologies, assuring that the demand for distributed storage and 

generation technologies remains weak. The economics literature and ratemaking best 

practices from influential thinkers like (Bonbright et al., 1961) provide a background 

story for demand charges, detailing how and why they evolved to help utilities recover 

costs related to demand. The demand charge rate structure has persevered for a century 

despite the changing needs of grid operators and customers. The context of the late 19th 

century is considerably different from today’s reality as generation increasingly fluctuates 

with weather and consumers ask for more complicated services from the grid such as 

charging for electric vehicles or the ability to sell solar energy. 

This research tested the hypothesis that this rate structure is unfairly allocating 

system costs to residential customers. The demand charge was designed to incentivize a 

flat load profile and provides financial incentive for limiting variability in demand from 

commercial and industrial customers. As the cost of energy becomes increasingly 



13 

weather dependent, we questioned the real system value of a flat load that does not 

respond to dynamic changes in the available supply of electricity. A regression analysis 

testing the impact of demand charges on utility pricing structure provides evidence of 

cost shifting onto residential customers. This research further suggested that demand 

charge rate structures may be limiting the market for new customer-level load shaping 

technologies. Weak pricing signals that do not reward aligning energy use with available 

supply will in turn weaken demand for renewable energy technologies like storage and 

distributed generation. By updating the demand charge rate structure and creating a 

pricing scheme that aligns utility pricing with costs, new markets for aggregators and 

renewable energy entrepreneurs could emerge. A review of alternative options for 

updating the demand charge provides a list of potential pathways forward for regulators, 

utilities, and renewable energy entrepreneurs as they work to reduce system costs. 

1.3.3 Drivers of Environmental Signaling in Electric Utilities 

At the heart of the US energy system are almost 3,000 electric distribution 

utilities providing power to businesses and households (US EIA, 2019). They choose 

what type of power to purchase on the wholesale market or to generate themselves, 

maintain the wires and poles of their system, and engage directly with residential, 

commercial, and industrial customers. These utilities are the gatekeepers of the US 

electric system. Their willingness to participate in niche-level pilot programs is a key 

constraint in testing and diffusing innovative smart grid technologies. Some utilities are 

very proactive and have emerged as outspoken advocates of renewable energy while 

others have actively resisted efforts to decarbonize their fuel supply (Cardwell, 2017; 
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Pyper, 2016). State regulators and policy makers have explored various strategies to 

support utility transitions to renewables, from requiring a percentage of fuel to come 

through renewables (Renewable Portfolio Standards) to opening up the market to 

competition so that utilities have to compete for clients (deregulation). Variability in 

utility positioning remains pervasive, however, and no clear consensus has emerged 

around how best to support utility decarbonization efforts. 

Institutional resource-based theory posits that firm performance can be influenced 

by characteristics of the firm leader, the firm itself, and inter-firm factors that impact a 

group of firms (Oliver, 1997). The literature on entrepreneurial orientation further 

suggests that factors like firm size, market dynamism, and firm age can all impact the 

entrepreneurial orientation (EO) of a firm, defined as the level of innovation, 

proactiveness, and risk-taking behavior (Rauch et al., 2009). By measuring the 

entrepreneurial orientation of 170 electric utilities through a text-based analysis of their 

Integrated Resource Plans (IRPs) we were able to construct a database that ranked all of 

the utilities in the data set according to the level of entrepreneurial orientation. Our 

results revealed a significant correlation between firm EO and two firm performance 

metrics: percentage of power from renewables in the fuel mix and renewability 

orientation as expressed in the IRP planning documents. In addition, we were able to 

measure the effects of factors like state rurality, deregulation, gender of the manager, and 

renewable portfolio standards. These findings will enable regulators and policy makers to 

find new ways to support innovation among distribution utilities. By creating conditions 

where utilities are more likely to lean into the transition, niche protective spaces and 

renewable generation can proliferate. 
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Chapter 2 

Defeat the Peak: Behavioral Insights for Electricity Demand 

Response Program Design1 

Abstract 

Electric utilities and regulators primarily rely on rate design strategies and 

economic incentives to achieve customer load malleability at the residential level. 

However, demand-side management strategies are broadening to incorporate new 

motivational cues based on pro-social impulses to reduce negative environmental impact 

and contribute meaningfully to local communities. This evolving relationship between 

residential customers and utilities is explored to better understand the potential for load 

malleability achieved through non-economic incentive structures and rate design. 

Following a review of interdisciplinary perspectives on pro-social behavior and utility 

demand-side management strategies, we analyze the impact of a pro-social demand 

response program on the energy use of over 16,000 households served by a municipally 

owned electric utility in Burlington, Vermont, USA. Results indicate that the program 

achieved a 13.5% decrease in energy use during the peak annual event in August 2018 with 

a return on investment of 11 to 1 for the distribution utility. This study builds on the work 

of other researchers studying individual energy behavior change and supports the argument 

that pro-social incentives can improve the effectiveness of demand response programs. 

                                                 
1  
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2.1 Introduction 

The structure, timing, and ownership of electricity supply has changed 

fundamentally in recent years. As solar and wind installations become increasingly 

common, the decentralized nature of new electricity supply presents new challenges to 

grid operators. Where energy used to flow mainly from large, centralized generation 

facilities to consumers, power lines are now bi-directional, channelling energy produced 

at customer sites back onto the grid. Further, utility scale renewable energy installations 

are growing in number, creating a power supply that is weather dependent and thus more 

difficult to predict. Although growth in United States renewable energy capacity has 

recently slowed, renewable energy generation has doubled since 2008 and represented 

17.6% of total electricity generation in (US Energy Information Administration, 2019). 

This capacity is on par with global renewable penetration, which represented more than 

26% of global electricity generation in 2018 with 70% of new installed capacity in 2017 

coming from renewable sources (REN21, 2018, 2019). 

Base load from coal, oil, and natural gas fired plants have been historically 

reliable, allowing utilities to plan ahead and ensure that even the highest levels of demand 

can consistently be met. As load reliability erodes as a result of the shift from fossil fuel-

based energy sources to renewable generation, electric utilities are feeling new pressures 

to actively manage and control energy demand, especially given the growth in public and 

private renewable energy targets and greenhouse gas commitments (Federal Energy 
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Regulatory Committee, 2018; World Economic Forum, 2017). Thirty states in the US 

have passed Renewable Portfolio Standards (RPS) mandating renewable electricity load 

shares, while an additional eight states have passed voluntary renewable energy standards 

(National Conference of State Legislatures, 2019). While most state targets require 

between 10 and 45 percent of utility load to come from renewable energy, seven states 

have targets of 50 percent or more (National Conference of State Legislatures, 2019). As 

renewable energy production increases both globally and nationally, utilities are seeking 

ways to balance their supply and demand. 

This changing energy landscape is leading to many new interventions to help 

match fluctuating demand and supply. Direct control and interruptible/curtailable demand 

response programs (Albadi and El-Saadany, 2008), new battery storage technology and 

load control devices that stagger power flow to large household appliances 

(Hadjipaschalis et al., 2009; Ruiz et al., 2009), and financial incentives through energy 

efficiency programs (Albadi and El-Saadany, 2008; Arimura et al., 2012; Gillingham et 

al., 2009) are all ways that utilities are attempting to better control consumer demands 

under increasingly weather-dependent characteristics of emerging generation 

technologies. Utilities are especially motivated to reduce energy demand during costly 

peak periods, particularly short ‘peak events’ used by grid regulators to lock-in future 

prices from wholesale markets. In the United States, the amount of energy used during 

peak events is what determines capacity costs for utilities and comprises about 25% of a 

utility’s total wholesale costs (Direct Energy, 2019; Linares, 2018). 

The primary mechanism for managing both ongoing and peak-based demand has 

been rate design strategies to send market-based signals to customers. These programs 
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include classical demand response programs such as direct control and interruptible 

curtailable programs, as well as price-based programs like time of use, critical peak 

pricing, and real time pricing (Albadi and El-Saadany, 2008). However, in a recent study 

that analyzed 15 years of demand side management (DSM) programming, demand side 

management programs were estimated to have only produced on average a 0.9 percent 

savings in electricity consumption, with an average cost to utilities of 5 cents per 

kilowatt-hour (kWh) saved when calculated with a 5 percent discount on future savings 

(Arimura et al., 2012). The reason for this limited uptake has been analyzed extensively, 

with market and behavioral failures at the root of the limited impact of existing 

programming efforts (Gillingham et al., 2009; Shogren and Taylor, 2008; Wood et al., 

2014). 

In contrast to traditional economic incentives, there is mounting evidence that 

customers respond to non-economic motivations to change energy demand. For example, 

growing research in behavioral economics has demonstrated significant influence of non-

financial, pro-social impulses in consumer decision-making (Ariely, 2008; Gintis, 2000; 

Kahneman and Egan, 2011; Thaler and Sunstein, 2009). Research in the energy industry 

has incorporated such findings into programmatic design, exploiting pro-social 

behavioral impulses to increase program effectiveness (Benartzi et al., 2017; Johnson et 

al., 2017; van der Werff et al., 2019). For example, OPower created a program where 

electric bills included local neighborhood energy demand comparisons. By leveraging 

findings on descriptive social norms, loss language, and neighbor comparison they 

designed a demand management intervention resulting in a 2 to 4% reduction in overall 

consumer energy use (Cuddy et al., 2010; Laskey and Kavazovic, 2011). 
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To explore the potential for utilizing pro-social behavior to manage peak 

electricity demand, we analyze the Defeat the Peak demand response program developed 

by the Burlington Electric Department (BED), a municipal electric utility in the city of 

Burlington, Vermont in the Northeastern USA. The paper begins with an overview of 

utility cost structures related to customer demand. A discussion of the various approaches 

to managing energy demand highlights research on pro-social demand response 

programming. Next, the Defeat the Peak program and statistical tests are described in 

more detail, including an assessment of return on investment. The results of this analysis 

are then contextualized within similar studies conducted in the energy industry and the 

context of the larger energy system transition, suggesting broader implications that pro-

social incentives might have for electric load management and the successful 

incorporation of renewable energy resources into the grid. 

2.2 Background 

Demand side management is critically important for energy security and 

managing the complexities of a grid where generation is increasingly weather dependent. 

While historical approaches have been more focused on the wholesale segment of the 

industry, increasing attention is being paid to retail electricity rates (Kim and 

Shcherbakova, 2011; Vandenbergh, 2005). In the energy industry, household energy 

behavior is divided into two categories: efficiency and curtailment behavior (Abrahamse 

et al., 2005; Gardner and Stern, 2008). Efficiency behaviors are primarily concerned with 

influencing one-time purchasing behaviors, such as the decision to weatherize a home or 

purchase an energy efficient appliance (Asensio and Delmas, 2015; Brown and Vergragt, 
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2016; Cuddy et al., 2010; Dietz et al., 2009; Orland et al., 2014). Curtailment behavior, 

on the other hand, is more concerned with enabling short-term, repetitive actions in 

response to an active need from the utility (Kim and Shcherbakova, 2011). 

Interdisciplinary research indicates that demand side management can best be achieved 

through a combination of correcting market failures, providing information and suitable 

incentives, and motivating collective action (Breukers et al., 2011). An improved 

understanding of how to more effectively shape energy load at the residential level is 

critical for driving systemic change in the electric grid. 

Utilities are highly incentivized to shape customer load, particularly during the 

peak hour of the year: the annual peak. The benefits of demand response programming 

for electric utilities include improved system reliability (Albadi and El-Saadany, 2008; 

Siano, 2014; Wang et al., 2017), control of price volatility and electricity prices (Albadi 

and El-Saadany, 2008), and avoided capacity costs (Woolf et al., 2013). Electric utility 

cost structures are complex, and utility managers employ multiple strategies for reducing 

costs (Baskette et al., 2006; Busch and Eto, 1996; Herter, 2007). This paper focuses on 

the annual peak which is used to calculate capacity costs for the following year. The 

annual peak is one of the thirteen peak hours throughout the year (one each month and 

one annual hour) where the amount of load required by a distribution utility is used to 

calculate their costs for the upcoming year via the forward capacity market 

(Energywatch, 2017; James, 2013). The annual hour is particularly impactful on a 

utility’s bottom line because it represents the utility’s demand during the highest demand 

day of the year, a load level that will determine how much new energy infrastructure 

needs to be built. Based on what the utility uses during a peak period, they are required to 
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pay a capacity cost to ensure that that same amount of peak energy is available to them 

the following year, cushioned by a reserve margin. Capacity costs represent an industry 

average of 25% of a utility’s total wholesale market expense, and that number is on the 

rise (Linares, 2018). The annual peak hour is used to calculate a significant part of the 

utility’s capacity costs, so curtailing energy use during this single hour can dramatically 

impact a distribution utility’s bottom line. 

Historically, there have been two main types of demand response programs: 

price-based and incentive-based programs (Albadi and El-Saadany, 2008). Price-based 

programs discourage customers from using energy at specific times when overall high 

energy is predicted. These pricing mechanisms include time of use, critical peak pricing, 

and extreme day pricing. Incentive-based programs can either be classical, where 

customers receive participation payments or bill discounts, or market-based where 

customers are retroactively compensated for participation based on their level of 

engagement. However, there is a growing body of research on non-economic strategies 

that could complement existing rate design initiatives and build ‘deeper’ interactions 

between utilities and their customers by appealing to pro-social behavior. Growing 

attention is being paid to these alternative incentive programs, although a need for more 

quantitative empirical evidence of their efficacy has been expressed (Johnson et al., 

2017). 

For example, Breukers et al. [31] assessed demand side management strategies 

using a multidisciplinary approach, comparing perspectives from alternative disciplines 

in order to develop a sociotechnical approach to demand side management. Their work 

emphasizes that there is both an individual and social level of change that need to occur, 
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and that these take place on different time scales (Breukers et al., 2011). In a similar vein, 

we have reviewed literature from multiple disciplines to better understand why pro-social 

demand response programming might be successful, finding great promise in research 

from behavioral economics, evolutionary economics, and renewed Darwinian theory. 

In the demand side management literature, behavioral economics in general, and 

nudge theory in particular, is the most dominant theoretical framework used to design 

pro-social incentive programs, as described in a broad review of energy programming 

based on behavioral economic theories (Benartzi et al., 2017). Nudge theory 

differentiates between two different systems in which people process information. 

System 1 describes fast, automatic responses that are highly susceptible to environmental 

cues [17]. System 2 is slow and reflective, and takes long-term goals more seriously into 

consideration. A nudge leverages System 1 thinking and people’s tendency to accept 

defaults passively without dramatically changing economic incentives or forbidding any 

options (Benartzi et al., 2017). Most discussions in the literature on pro-social demand 

response programs are rooted in nudge theory, thus implying that System 1 thinking 

underlies responses to pro-social incentives. 

The nudge approach has been applied multiple times in the demand side 

management literature with some surprising and promising results. A key study by 

Asensio and Delmas (Asensio and Delmas, 2015) investigated pro-social behavior in the 

electricity marketplace by telling one group of participants that reducing their energy 

consumption could reduce pollutants, cancer, and childhood asthma. By framing their 

energy use or conservation as a decision that would impact the public good, they created 

a pro-social incentive to curtail energy consumption (Asensio and Delmas, 2015). A 
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second group was given detailed information about the financial burden of their 

electricity consumption, as well as data on how they compared to the top 10% of energy 

efficient homes in their housing complex. They observed that participants who received 

health-based messaging reduced their consumption by 8.2% on average, whereas 

participants in the financial group showed no significant energy conservation and actually 

increased their energy consumption by an average of 3.8%. By changing the underlying 

context of energy conservation to be more about helping others than about making 

money, this pro-social nudge effectively influenced energy conservation. 

Evolutionary economists argue that deviations from rational thinking are not 

mere anomalies to be corrected, as behavioral economics would suggest, but instead 

are indications of an extremely complex and individualized decision-making structure 

influenced by social factors like culture, environment, and institutions (Gowdy, 

2008). This body of research also questions the universal applicability of financial 

incentives, finding evidence of the crowding-out effect of money, which suggests that 

financial remuneration can actually deter cooperative behavior (Bénabou and Tirole, 

2006; Gowdy, 2008; Vohs et al., 2006). Thus, programs studied under the umbrella of 

nudge theory could also be viewed as an application of evolutionary economic 

thinking. The theoretical frameworks developed in this heterodox approach are rooted 

more in evolutionary biology than orthodox economics, and differ from behavioral 

economics in that they do not agree that human behavior is based on the desire to be 

rational in the classic economic sense (Gintis, 2000). By applying theories such as 

evolution by natural selection to understanding the nature of cooperation, a significant 

body of research on pro-social impulses has been developed. 
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Cooperative behavior falls under the jurisdiction of altruism, a concept that has 

received a great deal of attention in the literature and can be understood, from an 

evolutionary perspective, as a behavior that decreases the fitness of an individual while 

increasing the fitness of the social group (Simon, 1993). Researchers have found 

regularities in their research on altruism, noting, for example, that a perceived lack of 

fairness, described as inequity aversion and often manifested through the presence of 

free-riders, deters cooperative behavior (Fehr and Schmidt, 2006; Huber et al., 2018). 

The drivers of altruistic behaviors are still being hotly debated, as models like kin 

selection theory, reciprocal altruism theory, and competitive altruism suggest 

evolutionary benefits to possessing altruistic traits (Hardy and Van Vugt, 2006). These 

models share the assumption that altruism can only exist when the actor receives some 

type of evolutionary benefit, and that each individual will have a unique constellation of 

motives (Khalil, 2004; Lehmann and Keller, 2006). The context changes somewhat when 

long-term, existential threats, such as climate change are under discussion and all actors 

can benefit from engaging in strategies like energy conservation (Blasch and Ohndorf, 

2015). 

The core theories of Charles Darwin are also at the center of renewed Darwinian 

theory. Specifically, renewed Darwinian theory (RD theory) envisions human motivation 

as a set of four primary drives: the drive to acquire, to bond, to comprehend, and to defend 

(Lawrence and Nohria, 2002b). Traditional financial incentives target the drive to acquire 

and accumulate more buying power. The drive to bond is associated with emotions like 

fairness, loyalty, compassion, empathy, and belonging (Lawrence and Nohria, 2002b). Pro-

social incentive programs could be said to appeal to the drive to bond. The drive to 
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comprehend is concerned with curiosity and wonder, and has been observed in a demand 

side management context as the power of novelty. For example, research on the power of 

in-home devices to reduce energy demand reveals high usage during an initial period of 

“intrigue,” but that use declines once the information becomes less novel, an effect referred 

to as the “fallback effect” (Buchanan et al., 2015; Foulds et al., 2017). Lastly, the drive to 

defend is reactionary and more primal, and relates to impulses around loss aversion 

(Kahneman and Egan, 2011). Renewed Darwinian theory takes a different perspective to 

human motivation, suggesting a universal motivational framework that would account for 

altruistic behavior. 

The core tension between prioritizing social versus individual goals sets 

evolutionary economics and renewed Darwinian theory apart from behavioral 

economics. These models also differ in the simplicity, or universality, of human 

motivation. While RD theory and behavioral economics believe that all individuals share 

the same goal or set of goals, evolutionary economics takes the perspective that complex 

social structures like institutions and cultural norms all contribute in different ways to an 

individual’s motivational landscape. Thus, while these models do share elements in 

common, they also differ considerably. Figure 2.1 situates these approaches along axes 

of social versus individual considerations, and simple/universal versus 

complex/individualistic. On the horizontal axis, individualistic means that each 

individual has their own unique constellations of needs and desires. The opposite end of 

the spectrum is a basic set of one to four universal needs that everyone has in common. 

On the vertical axis, individual refers to self-serving, whereas social refers to a greater 

emphasis on being part of the community.  
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Game design theory is included in the following table as well. Game designers 

create games that fulfil individual needs but acknowledge that people have different 

types of needs (Yee, 2006). For example, studies have shown that men are more 

interested in competition than women (Niederle and Vesterlund, 2011). In each game 

there is usually a limited number of game design elements designed to satisfy a certain 

type of individual's personal needs and desires. In this way, players are more concerned 

with satisfying personal desires for fun and entertainment but each player has a unique 

constellation of game design elements that appeal most to them. 

 

Figure 2.1. Drivers of altruistic behavior. 

The following research builds on this framework to investigate a particular 

application of pro-social incentives for demand side management. By incorporating 

perspectives from behavioral economics, RD theory, and evolutionary economics, a more 

diverse array of causal mechanisms can be considered when discussing the results of this 

experiment. Specifically, this study seeks evidence to support the claim that pro-social 
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incentives can improve consumer participation in demand side management. The next 

section describes the study and an assessment of its efficacy using a difference-in-

differences approach. 

2.3 Defeat the Peak study 

This study assessed the impact of a pro-social demand response program 

conducted by the Burlington Electric Department in the summer of 2018. The Burlington 

Electric Department (BED) is a municipal utility that serves Burlington, Vermont, a city 

of about 42,000 people in the Northeastern United States. As a public power utility, BED 

is not-for-profit and owned by local taxpayers. They are only responsible for electricity 

distribution in the city of Burlington, Vermont and their community ownership structure 

informs their strategic direction “to serve the energy needs of our customers in a safe, 

reliable, affordable, and socially responsible manner” (Burlington Electric Department, 

2018). BED expressed their commitment to social responsibility by becoming the first 

city in the United States to be powered by 100% renewable energy in 2015 (Peters, 

2015). In recent years they have continued to prioritize social responsibility by investing 

in comprehensive efficiency programs (Seyler, 2017), accelerator programs to assist 

renewable energy entrepreneurs (Nottermann, 2019), and leadership in a net-zero 

greenhouse gas campaign among US mayors (Thurston, 2018). 

In line with their mission, BED designed an innovative demand response program 

called “Defeat the Peak”. The program included two separate initiatives: one targeting 

large commercial accounts and a second exclusively targeting residential customers. The 

purpose of the residential program was to signal their customers to make a short-term, 



32 

active choice to curtail their energy consumption in their homes during time periods that 

might represent the regional annual peak. If the utility could successfully predict the day 

when the annual peak occurred, a decision that is made by the regional transmission 

utility retroactively after summer ends, then they could save significantly on their 

capacity costs. Therefore, during the summer of 2018 the Burlington Electric Department 

identified six peak events through their Defeat the Peak program and asked consumers to 

curtail energy use during specific time periods. Only one of those energy curtailment 

efforts, which occurred on the annual peak on August 29th, actually had the potential to 

create significant savings for the utility. 

Distribution utility cost structures depend heavily upon how much energy they 

use during the annual peak: the one hour of the year that determines ongoing capacity 

costs from the regional transmission utility. The annual peak represents the hour with the 

highest overall level of energy consumption, regionally, in a year. Burlington is part of 

New England Independent System Operators (ISO-NE), a regional transmission 

organization that charges for electricity based on distribution utility load during the peak 

hour of the year across all of their member states, including Connecticut, Rhode Island, 

Massachusetts, Vermont, New Hampshire, and most of Maine. Therefore, while ISO-

NE’s peak hour may not represent a particularly hot day in Vermont, if there is heat wave 

in Boston and Connecticut the regional peak might still occur. This makes it difficult for 

the utility to predict when the annual peak hour will be and to convince consumers that a 

peak event is forthcoming if the weather in their towns isn’t uncharacteristically hot. 

Participants in Defeat the Peak included all 16,149 grid-connected households 

without solar or battery installations in Burlington, Vermont. Data was collected from 
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advanced metering infrastructure in 15-minute intervals on days when anticipated peak 

events occurred, as well as on non-peak control days. Energy consumption levels for the time 

periods studied were averaged to get a single point estimate for each household. The average 

energy consumption was also calculated for the time period of identical length immediately 

preceding the treatment period. Our research analyzed how the average energy consumption 

(the dependent variable) changed as a result of program activation (the independent variable). 

BED hired GameTheory, Co., a company specializing in applied games, to assist 

in the development of the demand response program. The program was designed to 

inspire the community to work together to achieve the larger goal of helping the most 

vulnerable populations in the city through donations to local charities. Every time that the 

utility anticipated a spike in energy consumption that could represent the annual 

maximum load, they signaled to customers a Defeat the Peak demand response event. 

The peak events, summarized in Table 2.1, lasted between two and four hours and 

coincided with the hours that residents were typically returning from typical nine to five 

workdays. 

Unlike typical financially motivated programs, the incentive to reduce electricity 

consumption during an anticipated peak event was a $1,000 donation from the 

municipally-owned utility to a local charity. A notice went out to customers the day 

before the event with information about the hours that they needed to limit their energy 

use to benefit a selected charity. The program was designed to elicit feelings of inclusion, 

collaboration, and altruism. Six peak events were analyzed for all households during the 

summer of 2018 using a difference-in-difference approach, comparing experimental days 

with program messaging against similar control days without messaging. 
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Table 2.1. Defeat the Peak event schedule. 

Day of Week Date Treatment Time Temperature (℉) 

Monday 

Tuesday 

Monday 

Tuesday 

Tuesday 

Wednesday 

07/02/2018 

07/03/2018 

08/06/2018 

08/07/2018 

08/28/2018 

08/29/2018 

4-7 pm 

4-7 pm 

4-6 pm 

3-6 pm 

3-7 pm 

3-6 pm 

88.5 

83.0 

85.5 

78.0 

83.0 

83.5 

 

Marketing and awareness building for this program was conducted exclusively 

via free channels. The program was announced on BED’s Twitter feed, press releases, 

Front Porch Forum2, Facebook, and BED website. Residents were also invited to sign up 

for e-mail notifications of Defeat the Peak events, the primary means of outreach. There 

were six notification emails sent out over the course of the program and two emails 

informing participants of the program results. The percentage of emails that customers 

opened (open rate), as well as the percentage of emails where recipients actively clicked 

on the link within the email (click rate), were higher than the industry standard, with an 

average of 57.25% and 21.13%, respectively, across the six events. According to 

Hubspot, utilities are part of the business and industrial companies sector with an average 

open rate of 41% (Brudner, 2018). Mailchimp, another industry leader in marketing 

strategy, scanned hundreds of millions of emails sent through their popular email 

marketing service and concluded that the average open rate for business and finance 

companies was 20.47% and the average click rate was 2.59%. However, Figure 2.2 does 

                                                 
2 Front Porch Forum (frontporchforum.com) is a free online community-building platform where residents 

from towns can communicate with one another through a shared daily newsletter. 
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point to variability and possible deterioration of the program over the course of the 

summer. 

 

Figure 2.2. Above average open and click rates deteriorated over time. 

2.4 Data analysis 

We conducted an analysis of variance with a linear model in a two-way repeated 

measure in order to compare energy consumption before and during the treatment period 

on a Defeat the Peak Day and with a control day. There are thus four different groups that 

were measured for each Defeat the Peak (DTP) event. The treatment period was defined 

by the utility, and there were six different events over the course of the summer.  

A difference-in-differences (DID) model allows researchers to measure the 

impact of a treatment without the time and expense of a formal study with a randomized 

control group. In a DID model, researchers compare the average change over time during 
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both a treatment day and a control day. By comparing the slopes of the observed changes 

it is possible to measure the impact of a treatment. 

A key concern with difference-in-differences models is the question of whether or 

not the observed difference in means is due entirely to the policy change (Wooldridge, 

2003). To try and isolate the impact of the DTP program, control variables considered for 

this experiment included temperature, precipitation, whether or not the University of 

Vermont (UVM) was in session, and if the day in question was a weekday or a weekend. 

All of the days selected for measurement were weekdays, including both the days when 

the Defeat the Peak event occurred and those selected for controls, and had similar levels 

of temperature and precipitation. Since the energy use in Burlington increases by over 

10% when UVM is in session, we also made sure that trials were only conducted between 

days where the UVM student population was either present or absent for both days. 

In order to measure the relative impact of the program on Burlington’s electricity 

demand, we needed to create a baseline to show how average energy use changes when 

people return home from work and there is no demand response program activated. This 

data represented our counterfactual. The value of a difference-in-differences model 

hinges on the compatibility of the treatment group to the control group, so this was a 

critical step (Oosterbeek et al., 2010). We took multiple approaches to constructing 

counterfactuals for each experiment. We first controlled for day of the week and 

precipitation to ensure that any day we chose would be comparable to the day where the 

program was activated. We then selected the day from the same week that had either the 

most similar temperature or fell on the same weekday. This strategy provided multiple 

comparison groups in order to allow for more checks on the hypothesis (Meyer, 1995). 
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Selection of control days was a critical component of the research. Based on 

conversations with BED we chose to prioritize proximity to the treatment day, as 

Burlington customers tend to increase their air conditioner usage as the summer 

progresses (and they become increasingly impatient with the heat). Day of the week was 

also an important component. Therefore most of our studies compared the treatment day 

with the day exactly a week before and in four of the tests precipitation levels for the 

control days was extremely similar or identical to precipitation for treatment days. We 

added two additional "random hot day" tests (4 and 6) to make sure that the difference in 

behavior was not attributable to behavior that occurs on hot days. Since peak energy 

events tend to occur on the hottest days of the summer, there was often a difference in 

baseline energy use between the Defeat the Peak day and the control day. To account for 

the potential scenario where energy behavior is simply different on hotter days, random 

hot weekdays that were not Defeat the Peak event days were used as controls in 

subsequent trials. Other considerations that proved challenging included accounting for 

vacation days. Two Defeat the Peak events occurred during the week of the July 4 

holiday, so some energy use behaviors may have been affected by vacation-based 

scheduling abnormalities. 

The difference-in-differences model allowed us to compare how energy use 

changed during days when Defeat the Peak treatments were active to days when there 

was no Defeat the Peak event. We compared energy usage in time period 1 (the hours 

before the Defeat the Peak event) to time period 2 (the hours during the Defeat the Peak 

event) for both the treatment day and a control day. While there was no Defeat the Peak 

event during the control day, we compared the same two time periods. Household 
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electricity consumption (Y) was therefore analyzed with a repeated measures model 

using the following ANOVA linear mixed model: 

����  =  	 +  �� + �� +  ���� +  ���  (1) 

where i = 1, 2 (experiment vs. control day), j = 1 to 16,149 (households), and k = 

1, 2 (time period before vs. during DTP event). The µ is the overall usage mean, averaged 

over all households for both days and time periods, α is the effect of the day, γ is the 

effect of the time period, α*γ is the interaction effect, and ε is the random error. We were 

most interested in the interaction effect because it tested whether the difference between 

time periods one and two was the same on both days. 

2.5 Results and Discussion 

2.5.1 Paired T-Tests 

Six tests were performed to understand if Burlington city residents increased their 

energy consumption to a lesser degree on days when a Defeat the Peak event was called 

as compared to the control days (see Table 2.2). The control days were selected based on 

their proximity to the event day, the day of the week, the level of precipitation, the 

temperature, and whether or not the University of Vermont was in session. Energy loads 

can differ significantly across days of the week, particularly when comparing weekdays 

to weekends (Parker, 2003). Further, energy consumption patterns change over the course 

of the summer as well, with consumers more likely to use air conditioners at the end of 

the summer (Lamont, 2018). As a result of these trends, we felt that it was more 

appropriate to select a single control day that shared the most characteristics possible 

with the treatment day instead of comparing to an average baseline. 
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In this analysis the null hypothesis, that the Defeat the Peak program would not 

significantly effect energy consumption during peak events, was rejected five out of 

six times. The percentage increase in energy consumption when Burlington city 

residents returned home was significantly lower in 83.33% of the testing done. This 

evidence supports the conclusion that the Defeat the Peak program did significantly 

change energy behavior. While the average temperatures on the control and 

experimental days were not always similar, energy usage between the two time periods 

increased more on the control days (as a percentage increase) than on the experimental 

days. 

Table 2.2. Six tests analyzing impact of the Defeat the Peak demand response program. 
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1 Treatment 

Control 

Monday 

Monday 

07/02 

06/25 

.04 

.03 

88.5° 

63.0° 

4-7 pm 

 

3.00 

1.33 

3.29 

1.55 

0.284 

0.220 

9.67% 

16.50% 

p < 

0.0001 

2 Treatment 

Control 

Tuesday 

Tuesday 

07/03 

06/26 

0 

0 

83.0° 

63.0° 

4-7 pm 

 

2.82 

1.31 

3.14 

1.56 

0.314 

0.250 

11.13% 

19.08% 

p < 

0.0001 

3 Treatment 

Control 

Monday 

Monday 

08/06 

07/30 

0 

0 

85.5° 

72.0° 

4-6 pm 

 

1.80 

1.28 

1.95 

1.45 

0.155 

0.163 

8.61% 

12.73% 

p = 

0.41 

4 Treatment 

Control 

Tuesday 

Wednesday 

08/07 

08/22 

0.69 

0 

78.0° 

72.5° 

3-6 pm 

 

2.28 

2.06 

2.38 

2.28 

0.099 

0.223 

4.34% 

10.83% 

p < 

0.0001 

5 Treatment 

Control 

Wednesday 

Wednesday 

08/29 

09/05 

.02 

0 

83.5° 

78.5° 

3-6 pm 

 

2.53 

2.10 

2.84 

2.64 

0.303 

0.535 

11.98% 

25.48% 

p < 

0.0001 

6 

 

Treatment 

Control 

Tuesday 

Tuesday 

08/07 

07/17 

.69 

.01 

78.0° 

81.0° 

3-6 pm 

 

2.28 

2.30 

2.38 

2.51 

0.099 

0.206 

4.34% 

8.96% 

p < 

0.0001 
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Figure 2.3 illustrates the pairing of the July 17th control day with the August 7th 

treatment day. The flatter slopes that characterize the change in average energy 

consumption before and during the peak treatment is indicative of the type of change in 

energy behavior that is observed in successful demand response programming. There are 

three ways in which users typically respond to peak events: curtail usage during the peak, 

shifting use of major appliances like the washing machine and dishwasher to other times, 

or pre-heating or pre-cooling a room before the event (Wu et al., 2012). Therefore, users 

may use more energy before an event in order to pre-cool a room, an action that would 

make the average level of energy consumption used before the event relatively higher 

than it would have been otherwise. The increase in consumption during the event time 

period would not be as incrementally significant were these actions taken, thus resulting 

in a flatter demand curve on treatment days than on control days. 
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Figure 2.3. Sample result from Defeat the Peak analysis. 

2.5.2 Payback Analysis 

While all six treatments were evaluated, only one of the Defeat the Peak event days 

(Test 5 in Table 2.2) actually resulted in the utility saving money. This is because the annual 

ISO-NE peak electricity hour for 2018 occurred on August 29. The annual cost structure for 

all utilities in ISO-NE, including Burlington Electric, are heavily dependent upon their 

energy consumption during this single hour of the year. In order to compute the actual 

savings derived from the implementation of the Defeat the Peak program in 2018, we 

therefore applied the same methodology to the actual peak hour on August 29th and selected 

the control day that was closest in proximity, precipitation, and weather conditions. There 

was no payback analysis for any day other than the day in which the actual peak occurred 
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(August 29). The other days did not have any impact on utility wholesale costs because 

pricing is determined by that one hour of annual peak. 

The first step in calculating the financial benefit of the program was to identify 

how many kWh were avoided as a result of the Defeat the Peak treatment. The strategy 

for calculating this is based upon the belief that in a counterfactual scenario, where there 

was no Defeat the Peak program, energy use would have increased to the same degree 

that it did on the control day of September 5, 2018 of 25.48%. September 5th was selected 

as the closest in temperature to the experimental day among all days in the weeks 

following and preceding the Defeat the Peak event. If energy consumption on August 29th 

had increased by the same percentage as it did on September 5th, then the average energy 

use for the three-hour period when the program was active would have been 51,270 kWh, 

which is 5,521 more kWh than was actually observed. Thus, the kWh avoided during the 

peak hour on August 29th can be calculated as one third of the average energy consumed 

during the three-hour peak period, or 1,840 kWh. 

To calculate the avoided cost we needed to ascertain the value of the avoided 

1,840 kWh during the peak. The 2018 Forward Capacity Market set the cost of every 

kWh used during the peak period as $7.03 per kWh which is paid monthly over the 

following year. In addition to the charge per kWh, Vermont distribution utilities must pay 

an additional 20% over their actual usage to fulfill their reserve ratio requirements every 

month for the following year. Anticipated line losses are also assessed in a similar way, 

by adding a 3% buffer to the monthly cost. In order to determine the annual savings, we 

first multiplied the avoided kWh (1,840) by $7.03. Next, in order to account for reserve 

ratios and line losses, we multiplied that number by 23% (20% for the reserve ratio 
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requirement plus the 3% line loss buffer). This provided the monthly savings which we 

then annualized in order to find the ultimate annual savings of $191,918, which in 2018 

would have represented 1.1% of their purchased power expense (KPMG LLP, 2019). 

BED estimated the direct cost of the program implementation as $6,000 ($1,000 

donations to six local charities over the course of the program) in addition to indirect costs such as 

employee time for marketing, design, and implementation. In order to estimate the indirect costs 

of employee time, we found that the average salary of a marketing coordinator in the electric 

industry is $54,743 [61]. However, the real cost of an employee includes benefits, recruiting 

expenses, employment taxes, space, and equipment which results in an employee cost estimated 

between 1.2 and 2.7 times the actual salary, depending on the level of equipment and amount of 

space required [62]. Thus, if we conservatively assume that the actual cost of a Marketing 

Coordinator is 2.7 times their salary, then their hourly cost would be about $77. If we assume that 

the Marketing Coordinator spent 40 hours designing the graphics, communication strategy, and 

establishing partnerships with local charities, plus two hours implementing each event, then the 

total indirect costs associated with the Defeat the Peak program would be about $10,000. We can 

then assume that total direct and indirect costs are, roughly, $16,000. By dividing the net benefit 

($191,918 less $16,000) by the total expense, we calculated an ROI of 11 to 1; for every one 

dollar invested in the program, the utility generated eleven dollars in savings. 

In order to contextualize these savings within the academic literature, Table 2.3 

reconstructs an analysis completed by Benartzi et al. [74] with the addition of results 

from this study. This table compares different energy curtailment programs based on both 

nudge theory and more traditional financial incentives. A key difference between these 

programs is in the type of program being measured. Defeat the Peak was a Demand 
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Response program designed to achieve a brief 1-hour energy curtailment. OPower and 

Asensio & Delmas created programs with the more long term goal of energy efficiency, a 

type of program that is more concerned with long term purchasing patterns (i.e. more 

energy efficient refrigerators.) The results recorded for the DTP program measured a 

curtailment-related charge of just a few hours in contrast to a long term change in average 

energy consumed. 

Table 2.3. Comparison of program effectiveness contextualizing analysis from Defeat 

the Peak 2018. (Adapted from Benartzi et al. [74]) 

Article 
Inter-

vention 
Treatment Impact Cost 

Relative 

Effectiveness 

Allcott 

[73] 

 

Nudge Residential users received 

reports comparing their 

energy usage to their 

neighbors as well as energy 

conservation tips 

2% average 

reduction in 

energy usage 

$1 per 

report, 

distributed 

1-4 times/yr 

27.3 kWh 

saved per $1 

spent 

Asensio & 

Delmas 

[27] 

Nudge Consumers received health 

& environmental messaging 

and appliance-level 

feedback on energy use 

8.192% 

decrease in 

energy use 

$3.019 per 

household 

.05 kWh 

saved per $1 

spent 

Ito (Ito, 

2015) 

Financial 

Incentive 

California residents received 

bill discounts if they 

reduced energy 

consumption by 20% 

compared to previous 

summer 

4.2% reduction 

inland; neglig-

ible in coastal 

areas 

$5.09 per 

customer 

3.41 kWh 

saved per $1 

spent 

Arimura et 

al. [9] 

Financial 

Incentive 

& 

Education 

Incentives and education for 

peak management and 

energy efficiency 

 

0.9% decrease 

during pro-

gram; 1.8% 

when including 

future periods 

$10.83 per 

customer 

(on 

average) 

14 kWh saved 

per $1 spent 

Pratt & 

Erickson 

Pro-Social Utilities donated to local 

charities when residential 

users responded in 

aggregate to demand 

response events 

13.5 % decrease 

in energy use 

during peak 

period 

$.031 per 

household 

0.12 kWh 

saved during 

annual peak 

hour per $1 

spent 
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2.5.3 Discussion 

Campaigns to influence individual energy behavior are often viewed with 

skepticism, as critics question the possibility of reaching environmental goals at a 

reasonable cost and level of intrusiveness (Barkenbus, 2010; Vandenbergh, 2005). As a 

result, best practices from existing research are often overlooked during new program 

design (Barkenbus, 2010). The Defeat the Peak program is an example of an individual 

behavior change program that leveraged some important best practices around designing 

the motivational backdrop, but missed other opportunities such as suggesting specific 

energy curtailment strategies. 

The messaging of the Defeat the Peak programming was based around the 

straightforward recommendation that users should use less energy during a peak event 

(BED, 2018). While the results of this paper indicate that consumers were able to 

meaningfully respond to this unspecific request, prior research has shown that consumers 

are frequently unaware of the most effective ways to reduce their overall energy use, and 

tend to over-emphasize the importance of curtailment while under-emphasizing 

efficiency improvements (Attari et al., 2010; Gardner and Stern, 2008). Attari et al [68] 

observed that consumers significantly underestimated the energy embedded in an activity 

or device when the actual use and savings were high. This finding indicates that 

participants may not have realized the impact that their electric dryers or desktop 

computers may have had on their overall energy consumption during the peak. Had the 

Defeat the Peak program incorporated this research finding into their program design, 

they could have added more specific recommendations for responding to the peak such as 
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pre-cooling rooms, shifting the use of large appliances, and sacrificing comfort by 

limiting lighting or hot showers (Wu et al., 2012).  

There are additional ways in which this program could be improved in future 

implementations. Financial payback could likely have been improved by engaging more 

with local businesses, both as a means to communicate with their customers and also to 

get their cooperation in curtailing consumption. In addition, the peak event notifications 

could be better publicized and marketing spend could be used to actively push these 

notifications out to customers. Celebrating successes more openly and obviously would 

further build community and momentum for this program. 

While it could be argued that the residents of Burlington, Vermont are highly 

concerned about the environment and thus might be more capable of effectively 

responding to broad signaling from the utility, the results of Attari et al.’s [68] study shed 

doubt upon that possibility. Their analysis yielded the unexpected finding that users who 

engaged in more energy conserving behavior were less accurate in their comparisons of 

various energy behaviors and devices (Attari et al., 2010). Therefore, the environmental 

culture of Burlington, Vermont may actually have resulted in a decreased ability to 

effectively respond to the utilities’ signaling. By better leveraging the existing studies on 

behavioral interventions, programming such as Defeat the Peak can continue to improve 

and provide further evidence of the importance of behavioral approaches to climate 

change. 

Towards this end, these results answer a call from multiple disciplines to provide 

more empirical, large-scale studies of pro-social incentives effectively motivating energy 

behavior change (Benartzi et al., 2017; Johnson et al., 2017). Despite the lack of clear 
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instructions to consumers on how to curtail energy consumption during the peak event, 

there was a significantly flatter demand curve on five of the six days in which peak 

events were called (see Table 2.2). While the utility’s financial benefits were tied to just 

one of these events, the day of the actual annual peak, the research value of the 

experiment goes much further. This analysis demonstrated that on five separate 

occasions, an entire city was willing to come together and engage in cooperative behavior 

to secure a donation to a local charity. This research provides further evidence that pro-

social incentives can be effective in demand side management programs. 

The question that remains outstanding is why it worked. Behavioral economics, 

evolutionary economics, and renewed Darwinian theory all offer different rationales and 

theoretical frameworks within which these results might be framed and understood. 

While there are multiple examples of nudge theory at work in the demand side 

management literature, there are fewer attempts to contextualize pro-social DSM 

programs within the disciplines of evolutionary economics and renewed Darwinian 

theory. 

Behavioral economists might describe this program as an example of a nudge, 

due to the absence of strong economic incentives and the subtle repositioning of the 

energy curtailment request as relating to the public good rather than to financial gain. 

This study would support the conclusions of Imas et al. [69] that pro-social incentives can 

improve performance and effort provision as long as the stakes are low (Imas, 2014). 

Further, the programmatic design is similar to the health-based energy literacy campaign 

studied by Asensio et al. [27], which was included in Benartzi et al.’s [19] summary of 

nudge-based campaigns. Behavioral economists would frame the decision to conserve 
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energy on a peak day as a decision falling under the purview of System 1, the faster 

system that is more likely to be swayed by subtle environmental cues in its attempt to 

make rational choices. The utility’s messaging thus changed the context of the 

individual’s decision-making and made it easier for them to make a cooperative, pro-

social choice about energy conservation. 

Evolutionary economists might view this research as an important step towards 

applying insights on altruism and cooperation to the context of climate change (Blasch and 

Ohndorf, 2015; Gowdy, 2008). Further, this research framework would be interested in the 

anonymity of the program, as program participation was completely anonymous. 

Anonymous giving is considered to be an interesting area of altruism research because it is 

both the most rare form of donation but also the most respected (Bénabou and Tirole, 

2006). While anonymity may deny participants the chance to gain recognition for their 

good deed, they may still have experienced a ‘warm glow’ of giving; a private utility of 

psychological benefits resulting from altruistic behavior (Andreoni, 1990; Blasch and 

Ohndorf, 2015). Follow-up research could explore this theory through interviews with 

participants structured to deepen our understanding of how organizational identification, 

altruism, and other motives beyond economic gain impacted participants’ decision to 

participate (Simon, 1993). The evolutionary literature would treat this research as an 

extension of the existing literature on altruism, cooperation, and the interaction of culture 

and institutions on human decision-making. 

Renewed Darwinian researchers might interpret the findings of this study as 

evidence of an effective strategy targeting the drive to bond. This drive was developed by 

the founders of RD theory as an attempt to integrate research on belongingness into their 



49 

model of human behavior (Pirson and Lawrence, 2010). Therefore, this study would be 

situated amidst studies on the belongingness hypothesis, where there is an extensive 

literature documenting the existence of a primary drive to create and maintain social 

bonds, as summarized in the review by Baumeister and Leary (Baumeister and Leary, 

1995). 

2.6 Limitations, Outlook, and Future Work 

As utilities are increasingly motivated to make residential loads more malleable, 

researchers from multiple disciplines are investigating ways to improve the effectiveness 

of existing rate design strategies for demand response programming. This analysis adds 

to the growing body of research on energy behavior and demand response programming, 

providing empirical evidence that pro-social incentives can be effective while also 

investigating three perspectives as to why that might be the case. 

The utility achieved savings at a fraction of the expense of other demand response 

programs (see Table 2.3) supporting the finding that programs that use pro-social cues are 

typically inexpensive for utilities to implement relative to price subsidies and can have 

impacts comparable to large changes in price (Allcott, 2011). Similar to other program 

evaluation studies (Allcott, 2011; Thaler and Benartzi, 2004), there are limitations as to 

how broadly these results can be interpreted. While the pro-social incentives in this 

program could be interpreted through the lens of behavioral economics, evolutionary 

economics, and renewed Darwinian theory, a lack of participant interviews or surveys 

makes it difficult to test more granular hypotheses about the specific reasons why this 

program was effective. 
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A deeper conclusion that this research would support is that demand response 

programs do not necessarily need to be “shallow,” as recommended by the World 

Economic Forum (World Economic Forum, 2017). Customers may be willing to actively 

engage with demand response programs with a pro-social benefit to a degree that could 

significantly improve utility cost structures and corollary environmental benefits. While 

there are limits to the degree of change that households may be willing to voluntarily 

consider (Imas, 2014), research suggests that households have the potential to become 

active participants in efforts to curtail emissions (Dubois et al., 2019). 

A more far-reaching hypothesis that emerges from this work is that people are 

compassionate and cooperative. Individuals have the potential to become active, involved 

stakeholders in the energy system transition and repudiate the social and environmental 

injustices embedded in today’s methods of extracting and distributing energy. People 

may do this because they genuinely want to help their communities and be a part of an 

effort greater than themselves. As Victor Frankl (Frankl, 1985), the founder of a sub-

discipline of psychology known as logotherapy, describes: 

What man actually needs is not a tensionless state but rather the striving and 

struggling for some goal worthy of him. What he needs is not the discharge of tension at 

any cost, but the call of a potential meaning waiting to be fulfilled by him. 

The stakes of this transition are high and require the involvement of passionate, 

engaged individuals who are inspired by a new renewable and more socially just future. 

As Frankl suggests, engagement in these efforts could have positive manifestations 

within the individual while also meeting the goals of electric utilities, state renewable 

energy targets, and larger efforts to reduce greenhouse gas emissions. 



51 

References 

[1] US Energy Information Administration, U.S. renewable electricity generation has 

doubled since 2008, 2019. 

[2] REN21, Renewables 2018 Global Status Report, REN21 Secretariat, Paris, 2018. 

[3] REN21, Renewables 2019 Global Status Report, REN21 Secretariat, Paris, 2019. 

[4] Federal Energy Regulatory Committee, 2018 assessment of demand response and 

advanced metering. https://www.ferc.gov/industries/electric/indus-act/demand-

response/dem-res-adv-metering.asp, 2018 (accessed 11 March 2019). 

[5] World Economic Forum, The future of electricity 2017. 

http://www3.weforum.org/docs/WEF_Future_of_Electricity_2017.pdf, 2017 

(accessed 11 March 2019). 

[6] National Conference of State Legislatures, State renewable portfolio standards and 

goals. http://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx, 

2019 (accessed 20 March 2019). 

[7] M.H. Albadi, E. El-Saadany, A summary of demand response in electricity markets, 

Electric Power Systems Research 78 (11) (2008) 1989-1996. 

https://doi.org/10.1016/j.epsr.2008.04.002  

[8] I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy 

storage technologies for electric power applications, Renewable and Sustainable 

Energy Reviews 13 (6-7) (2009) 1513-1522. 

https://doi.org/10.1016/j.rser.2008.09.028  

[9] N. Ruiz, I. Cobelo, J. Oyarzabal, A direct load control model for virtual power plant 

management, IEEE Transactions on Power Systems 24 (2) (2009) 959-966. 

https://doi.org/10.1109/tpwrs.2009.2016607  

[10] K. Gillingham, R.G. Newell, K. Palmer, Energy efficiency economics and policy, 

Annual Review of Resource Economics 1 (1) (2009) 597-620. 

https://doi.org/10.1146/annurev.resource.102308.124234 

[11] T. Arimura, S. Li, R. Newell, K. Palmer, Cost-effectiveness of electricity energy 

efficiency programs, The Energy Journal 33(2) (2012) 63-99. 

https://doi.org/10.3386/w17556  



52 

[12] C.R. Linares, ISO-NE market monitor report: total cost of wholesale electricity 

markets was $9.1bn in 2017. 

https://www.transmissionhub.com/articles/2018/05/iso-ne-market-monitor-

report-total-cost-of-wholesale-electricity-markets-was-9-1bn-in-2017.html, 2018 

(accessed 10 January 2019). 

[13] Direct Energy, Energy pricing 101: breaking down the energy price tag. 

https://business.directenergy.com/understanding-energy-pricing#1, 2019 

(accessed 2 February 2019). 

[14] J.F. Shogren, L.O. Taylor, On behavioral-environmental economics, Review of 

Environmental Economics and Policy 2 (1) (2008) 26-44. 

https://doi.org/10.1093/reep/rem027  

[15] G. Wood, D. van der Horst, R. Day, A.G. Bakaoukas, P. Petridis, S. Liu, L. Jalil, M. 

Gaterell, E. Smithson, J. Barnham, Serious games for energy social science 

research, Technology Analysis and Strategic Management 26 (10) (2014) 1212-

1227. https://doi.org/10.1080/09537325.2014.978277  

[16] D. Kahneman, P. Egan, Thinking, Fast and Slow, Macmillan, New York, 2011. 

[17] D. Ariely, Predictably Irrational, Harper Collins, New York, 2008. 

[18] H. Gintis, Beyond Homo economicus: evidence from experimental economics, 

Ecological Economics 35 (3) (2000) 311-322. ttps://doi.org/10.1016/s0921-

8009(00)00216-0  

[19] R.H. Thaler, C.R. Sunstein, Nudge: Improving Decisions about Health, Wealth, and 

Happiness, Penguin, New York, 2009. 

[20] D. Johnson, E. Horton, R. Mulcahy, M. Foth, Gamification and serious games within 

the domain of domestic energy consumption: a systematic review, Renewable and 

Sustainable Energy Reviews 73 (2017) 249-264. 

https://doi.org/10.1016/j.rser.2017.01.134  

[21] S. Benartzi, J. Beshears, K.L. Milkman, C.R. Sunstein, R.H. Thaler, M. Shankar, W. 

Tucker-Ray, W.J. Congdon, S. Galing, Should governments invest more in 

nudging?, Psychological Science 28 (8) (2017) 1041-1055. 

https://doi.org/10.2139/ssrn.2982109  



53 

[22] E. van der Werff, D. Taufik, L. Venhoeven, Pull the plug: how private commitment 

strategies can strengthen personal norms and promote energy-saving in the 

Netherlands, Energy Research and Social Science 54 (2019) 26-33. 

https://doi.org/10.1016/j.erss.2019.03.002  

[23] A.J. Cuddy, K.T. Doherty, M.W. Bos, OPOWER: increasing energy efficiency 

through normative influence (A), Harvard Business School Case 911-061 (2010). 

[24] A. Laskey, O. Kavazovic, Opower: energy efficiency through behavioral science and 

technology, XRDS: Crossroads, 17 (4) (2011) 47-51. 

https://doi.org/10.1145/1961678.1961687  

[25] J.-H. Kim, A. Shcherbakova, Common failures of demand response, Energy 36 (2) 

(2011) 873-880. https://doi.org/10.1016/j.energy.2010.12.027  

[26] M.P. Vandenbergh, The individual as polluter, Environmental Law Reporter 

(November) (2005) 5-38. 

[27] W. Abrahamse, L. Steg, C. Vlek, T. Rothengatter, A review of intervention studies 

aimed at household energy conservation, Journal of Environmental Psychology 

25 (3) (2005) 273-291. https://doi.org/10.1016/j.jenvp.2005.08.002  

[28] G.T. Gardner, P.C. Stern, The short list: the most effective actions US households 

can take to curb climate change, Environment: science and policy for sustainable 

development 50 (5) (2008) 12-25. https://doi.org/10.3200/envt.50.5.12-25  

[29] O.I. Asensio, M.A. Delmas, Nonprice incentives and energy conservation, 

Proceedings of the National Academy of Sciences 112 (6) (2015) E510-E515. 

https://doi.org/10.1073/pnas.1401880112  

[30] H.S. Brown, P.J. Vergragt, From consumerism to wellbeing: toward a cultural 

transition?, Journal of Cleaner Production 132 (2016) 308-317. 

https://doi.org/10.1016/j.jclepro.2015.04.107  

[31] B. Orland, N. Ram, D. Lang, K. Houser, N. Kling, M. Coccia, Saving energy in an 

office environment: a serious game intervention, Energy and Buildings 74 (2014) 

43-52. https://doi.org/10.1016/j.enbuild.2014.01.036  



54 

[32] T. Dietz, G.T. Gardner, J. Gilligan, P.C. Stern, M.P. Vandenbergh, Household 

actions can provide a behavioral wedge to rapidly reduce US carbon emissions, 

Proceedings of the National Academy of Sciences 106 (44) (2009) 18452-18456. 

https://doi.org/10.1073/pnas.0908738106  

[33] S. Breukers, E. Heiskanen, B. Brohmann, R. Mourik, C. Feenstra, Connecting 

research to practice to improve energy demand-side management (DSM), Energy 

36 (4) (2011) 2176-2185. https://doi.org/10.1016/j.energy.2010.06.027  

[34] P. Siano, Demand response and smart grids: a survey, Renewable and Sustainable 

Energy Reviews 30 (2014) 461-478. https://doi.org/10.1016/j.rser.2013.10.022  

[35] F. Wang, H. Xu, T. Xu, K. Li, M. Shafie-Khah, J.P. Catalão, The values of market-

based demand response on improving power system reliability under extreme 

circumstances, Applied Energy 193 (2017) 220-231. 

https://doi.org/10.1016/j.apenergy.2017.01.103  

[36] T. Woolf, E. Malone, L. Schwartz, J. Shenot, A framework for evaluating the cost-

effectiveness of demand response, U.S. Department of Energy. 

https://emp.lbl.gov/sites/all/files/napdr-cost-effectiveness.pdf , 2013 (accessed 23 

October 2019). 

[37] J.F. Busch, J. Eto, Estimation of avoided costs for electric utility demand-side 

planning, Energy Sources, 18 (4) (1996) 473-499. 

https://doi.org/10.1080/00908319608908783  

[38] C. Baskette, B. Horii, E. Kollman, S. Price, Avoided cost estimation and post-reform 

funding allocation for California’s energy efficiency programs, Energy, 31 (6-7) 

(2006) 1084-1099. ttps://doi.org/10.1016/j.energy.2005.03.009  

[39] K. Herter, Residential implementation of critical-peak pricing of electricity, Energy 

Policy 35 (4) (2007) 2121-2130. https://doi.org/10.1016/j.enpol.2006.06.019  

[40] A. James, Explainer: how capacity markets work. 

https://energynews.us/2013/06/17/midwest/explainer-how-capacity-markets-

work/, 2013 (accessed 4 January 2019). 

[41] Energywatch, Capacity payments: what you need to know, 2017. 

https://energywatch-inc.com/capacity-payments/, 2017 (accessed 23 October 

2019). 



55 

[42] J.M. Gowdy, Behavioral economics and climate change policy, Journal of Economic 

Behavior and Organization 68 (3-4) (2008) 632-644. 

https://doi.org/10.1016/j.jebo.2008.06.011  

[43] K.D. Vohs, N.L. Mead, M.R. Goode, The psychological consequences of money, 

Science 314 (5802) (2006) 1154-1156. https://doi.org/10.1126/science.1132491  

[44] R. Bénabou, J. Tirole, Incentives and prosocial behavior, American Economic 

Review 96 (5) (2006) 1652-1678. https://doi.org/10.1257/aer.96.5.1652  

[45] H.A. Simon, Altruism and economics, American Economic Review 83 (2) (1993) 

156-161. 

[46] R.A. Huber, B. Anderson, T. Bernauer, Can social norm interventions promote 

voluntary pro environmental action?, Environmental Science and Policy 89 

(2018) 231-246. https://doi.org/10.1016/j.envsci.2018.07.016  

[47] E. Fehr, K.M. Schmidt, The economics of fairness, reciprocity and altruism–

experimental evidence and new theories, in: S.-C. Kolm, J.M. Ythier (Eds.), 

Handbook of the Economics of Giving, Altruism and Reciprocity, North Holland 

Publishing Co., Amsterdam, 2006, pp. 615-691. 

[48] C.L. Hardy, M. Van Vugt, Nice guys finish first: the competitive altruism 

hypothesis, Personality and Social Psychology Bulletin 32 (10) (2006) 1402-

1413. https://doi.org/10.1177/0146167206291006  

[49] L. Lehmann, L. Keller, The evolution of cooperation and altruism: a general 

framework and a classification of models, Journal of Evolutionary Biology 19 (5) 

(2006) 1365-1376. https://doi.org/10.1111/j.1420-9101.2006.01119.x  

[50] E.L. Khalil, What is altruism?, Journal of Economic Psychology 25 (1) (2004) 97-

123. https://doi.org/10.1016/s0167-4870(03)00075-8  

[51] J. Blasch, M. Ohndorf, Altruism, moral norms and social approval: Joint 

determinants of individual offset behavior, Ecological Economics 116 (2015) 

251-260. https://doi.org/10.1016/j.ecolecon.2015.04.024  

[52] P.R. Lawrence, N. Nohria, Driven: How Human Nature Shapes Our Choices, 

Jossey-Bass, San Francisco, 2002. 



56 

[53] C. Foulds, R.A.V. Robison, R. Macrorie, Energy monitoring as a practice: 

investigating use of the iMeasure online energy feedback tool, Energy Policy 104 

(2017) 194-202. https://doi.org/10.1016/j.enpol.2017.01.055  

[54] K. Buchanan, R. Russo, B. Anderson, The question of energy reduction: the 

problem(s) with feedback, Energy Policy 77 (2015) 89-96. 

https://doi.org/10.1016/j.enpol.2014.12.008  

[55] Burlington Electric Department, Burlington Electric Department 2018–19 Strategic 

Direction. https://www.burlingtonelectric.com/strategic-direction, 2018 (accessed 

2 January 2019). 

[56] A. Peters, How Burlington, Vermont, became the first city in the U.S. to run on 

100% renewable electricity. https://www.fastcompany.com, 2015 (accessed 23 

October 2019). 

[57] E.M. Seyler, Burlington program helps residents reduce energy use, Seven Days 17 

Sep (2017). https://www.sevendaysvt.com/vermont/burlington-program-helps-

residents-reduce-energy-use/Content?oid=8180525 (accessed 15 April 2019). 

[58] K. Nottermann, Accel-VT accepting applications from energy-friendly 

entrepreneurs, VT Digger 27 Feb (2019). https://vtdigger.org/2019/02/27/accel-

vt-accepting-applications-energy-friendly-entrepreneurs/ (accessed 23 October 

2019). 

[59] J. Thurston, Hurtling toward environmental disaster: new coalition of mayors aims 

to reverse climate change, NBC Boston 3 Dec (2018). 

https://www.nbcboston.com/news/local/Northeast-Mayors-for-Carbon-Pollution-

Pricing-to-Reverse-Climate-Change-501823792.html. 

[60] E. Brudner, Email open rates by industry: see how you stack up. 

https://blog.hubspot.com/sales/average-email-open-rate-benchmark, 2018 

(accessed 15 October 2018). 

[61] J.M. Wooldridge, Cluster-sample methods in applied econometrics, American 

Economic Review 93 (2) (2003) 133-138. 

https://doi.org/10.1257/000282803321946930  

[62] H. Oosterbeek, M. Van Praag, A. Ijsselstein, The impact of entrepreneurship 

education on entrepreneurship skills and motivation, European Economic Review 

54 (3) (2010) 442-454. https://doi.org/10.1016/j.euroecorev.2009.08.002  



57 

[63] B.D. Meyer, Natural and quasi-experiments in economics, Journal of Business and 

Economic Statistics 13 (2) (1995) 151-161. https://doi.org/10.2307/1392369  

[64] D.S. Parker, Research highlights from a large scale residential monitoring study in a 

hot climate, Energy and Buildings 35 (9) (2003) 863-876. 

https://doi.org/10.1016/s0378-7788(02)00244-x  

[65] C. Lamont, Burlington Electric Department Interview, Personal communication 6 

Dec (2018). 

[66] J. Wu, F. Gao, Z. Kang, A multi-agent system for households response to dynamic 

pricing, In: IEEE PES Innovative Smart Grid Technologies: 2012 21-24 May; 

Tianjin, China. 2012 p 1-5. http://doi.org/10.1109/ISGT-Asia.2012.6303204. 

[67] KPMG LLP, Vermont Electric Department Financial Statements and Required 

Supplementary Information. 

https://burlingtonelectric.com/sites/default/files/inline-

files/2018%20BED%20Audited%20Financials.PDF, 2019 (accessed 23 October 

2019). 

[68] K. Ito, Asymmetric incentives in subsidies: Evidence from a large-scale electricity 

rebate program, American Economic Journal: Economic Policy 7(3) (2015) 209-

37. https://doi.org/10.1257/pol.20130397  

[69] J.N. Barkenbus, Eco-driving: An overlooked climate change initiative, Energy 

Policy 38 (2) (2010) 762-769. https://doi.org/10.1016/j.enpol.2009.10.021  

[70] Burlington Electric Department, Defeat the peak. 

https://www.burlingtonelectric.com/peak, 2018 (accessed 2 October 2018). 

[71] S.Z. Attari, M.L. DeKay, C.I. Davidson, W.B. De Bruin, Public perceptions of 

energy consumption and savings, Proceedings of the National Academy of 

Sciences 107 (37) (2010) 16054-16059. https://doi.org/10.1073/pnas.1001509107  

[72] A. Imas, Working for the “warm glow”: on the benefits and limits of prosocial 

incentives, Journal of Public Economics 114 (2014) 14-18. 

https://doi.org/10.1016/j.jpubeco.2013.11.006  

[73] J. Andreoni, Impure altruism and donations to public goods: a theory of warm-glow 

giving, Economic Journal 100 (401) (1990) 464-477. 

https://doi.org/10.2307/2234133  



58 

[74] M.A. Pirson, P.R. Lawrence, Humanism in business: towards a paradigm shift?, 

Journal of Business Ethics 93 (4) (2010) 553-565. 

https://doi.org/10.1007/s10551-009-0239-1  

[75] R.F. Baumeister, M.R. Leary, The need to belong: desire for interpersonal 

attachments as a fundamental human motivation, Psychological Bulletin 117 (3) 

(1995) 497. https://doi.org/10.1037//0033-2909.117.3.497  

[76] H. Allcott, Social norms and energy conservation, Journal of Public Economics 95 

(9-10) (2011) 1082-1095. https://doi.org/10.1016/j.jpubeco.2011.03.003  

[77] R.H. Thaler, S. Benartzi, Save more tomorrow™: using behavioral economics to 

increase employee saving, Journal of Political Economy 112 (S1) (2004) S164-

S187. https://doi.org/10.1086/380085  

[78] G. Dubois, B. Sovacool, C. Aall, M. Nilsson, C. Barbier, A. Herrmann, S. Bruyère, 

C. Andersson, B. Skold, F. Nadaud, F. Dorner, K.R. Moberg, J.P. Ceron, H. 

Fischer, D. Amelung, M. Baltruszewicz, J. Fischer, F. Benevise, V.R. Louis, R. 

Sauerborn, It starts at home? Climate policies targeting household consumption 

and behavioral decisions are key to low-carbon futures, Energy Research and 

Social Science 52 (2019) 144-158. https://doi.org/10.1016/j.erss.2019.02.001  

[79] V.E. Frankl, Man’s search for meaning, Simon and Schuster, New York, 1985. 

 



59 

Chapter 3 

Re-Aligning Electricity Demand Charges to Meet Economic, 

Social, and Environmental Goals 

Abstract 

For over a century the demand charge has been a primary source of revenue for 

utilities to recover their total cost-of-service including fixed, embedded, and overhead 

costs. However, new societal goals for more renewable energy sources, efficiency and 

conservation, and electrification of transportation may require a different type of revenue 

recovery mechanism for utilities that both incentivizes the energy transition and fairly 

allocate costs across customer classes. Under the current system, most small commercial 

and residential customers do not receive a strong direct price signal to invest in storage, 

load shifting, or renewables. Larger commercial and industrial customers exercise some 

measure of control over their loads to reduce demand charges, but with only modest 

benefit or value to the system as a whole. The system costs are then redistributed to all 

customer classes, potentially in way that falls disproportionately on small commercial 

and residential customers. To investigate, we conduct a regression analysis with data 

from 447 electric utilities. Results suggest that demand charges predict a significant 

degree of variability in residential pricing. 

Regulation is complex, even more so in an era of distributed energy 

resources and increasingly competitive markets. Rates are often based on 
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historical costs, but have their most profound impact on future behaviors 

and costs. (Rábago and Valova, 2018). 

3.1 Introduction 

Rábago and Valova’s perspective on the danger of outdated policies highlights 

the risks of failing to refresh or embed dynamism in policies to make them adaptable to 

changes in circumstance. Electric utilities face the unparalleled challenge of matching the 

time of production (generation) to retail delivery 100% of the time to all of their 

customers despite significant fluctuations in demand that occur daily, monthly, and 

annually. Commercial and industrial customers in particular can have extremely 

variable/intermittent peak loads, resulting in demand profiles that require a high level of 

electricity to be made available immediately but only for a short period of time. In order 

to make this possible, utilities need to invest in sufficient grid infrastructure and power 

supply to accommodate these localized and short duration high demand periods (and 

often for low load factor customers).3 Since these periods can be short and unpredictable, 

the fixed costs of extra capacity that is often idle is not offset by marginal revenues from 

occasional increases in electricity sales. This leaves utilities and regulators in a difficult 

position, as raising rates for everyone would result in high load factor (less “peaky”) 

customers subsidizing low load factor (relatively “peaky”) customers. 

Demand charges are already recognized as the primary mechanism by which 

utilities in the United States recover capacity-related costs from commercial and 

industrial customers. It is also the major source of revenue for recovery of embedded 

costs like historic commitments, long lived investments, and other costs of the system 

                                                 
3  The “load factor” pertains to the relationship between peak and average load.  Low load factor 

customers have a high proportion of load, or average load, relative to their peak demand. 
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necessary to recover the full revenue requirement (the total cost-of-service). In contrast to 

regular consumption charges billed at a fixed per unit price ($/kWh), demand charges are 

based on the maximum amount of power (kW) consumed in any given time interval (e.g., 

15 minutes) multiplied by a separate fixed price ($/kW).4 While consumption charges 

capture the actual minute-to-minute use of energy, demand charges try to recuperate 

some of the additional infrastructure costs related to the peak capacity requirements of 

the system, thus keeping the hourly consumption charges down for everyone. Historically 

demand charges have only been applied to industrial and larger commercial consumers,5 

providing an incentive to flatten their demand by spreading it out more evenly over the 

day. These additional charges to commercial and industrial customers typically represent 

between 30 and 70 percent of their total electric bill (McLaren et al., 2017). All else 

being equal, this strong incentive to smooth out loads should reduce system costs, 

reducing the amount of infrastructure a utility needs to build. 

When the vast majority of energy generation came from predictable fossil fuels, 

hydropower, and nuclear sources, it was easy to manipulate and predict energy supply 

costs and set demand charges. However, this strategy is no longer compatible with new 

system technologies, generation profiles, and policy goals. Today’s energy supply is 

becoming less dispatchable and less predictable as weather, rather than operating 

decisions from system control, establish when plants generate electricity. Weather-

dependent generation cannot be easily turned up or down to match customer demand 

making it difficult for utilities to accommodate customers with low load factors. The 

                                                 
4  Customer charges are typically the third component, but represent a comparatively small share of the 

revenue requirement. 
5  Occasionally utilities have a separate demand charge for large residential loads. Three utilities in 

Vermont, for example, have residential demand charges. 
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challenge today is to incentivize customers to flex their loads in response to the 

availability of power on the grid. 

There are three primary customer classes in the United States power system: 

residential, commercial, and industrial customers. Commercial customers accounts for 

more than a third of electricity consumption in the United States and includes 

government facilities and other service-providing businesses that are both public and 

private (United States Environmental Protection Agency, 2020). Industrial customers, on 

the other hand, use electricity for processing, assembling, or producing goods for 

industries like mining, manufacturing, and agriculture and tend to have much higher and 

steadier levels of demand (United States Environmental Protection Agency, 2020) (EIA, 

2017). 

The literature on demand charges has largely focused on cost avoidance strategies 

for commercial and industrial (C&I) customers, noting that there is “no clear indication” 

that demand charge rate structures will be changing in the near future (Zhang and 

Augenbroe, 2018). Yet there are potential pathways that regulators are considering to 

sharpen pricing signals to all customer classes in order to curtail system costs. This 

research fills a gap in the literature by investigating the historic, current, and future 

economic efficiency of the current demand charge structure that predominates the US 

electric grid. A particular focus on the impact of demand charges on different types of 

customers is assessed using a regression analysis. Utilities and regulators seek to ensure 

that customers with a high load factor are not unfairly burdened by low load factor 

customers. Put another way, they seek a fair apportionment of what (Bonbright et al., 

1961) referred to as the residual or “burden” (overhead and embedded costs above direct 
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incremental or marginal costs). However, grid costs are driven increasingly by wholesale 

level costs while industrial customers receive pricing signals that are increasingly 

unaligned with wholesale costs and they responding accordingly. Instead of investing in 

technologies to match weather-dependent energy supply, these customers are changing 

their demand in such a way that lowers their prices but doesn't change utility expenses. 

The utility still has to collect money from somewhere, so we hypothesize that this 

situation may result in higher residential rates. In other words, current demand charges 

may be shifting an unfair cost burden on to residential customers. 

To investigate this potential cost shifting, we compiled the commercial, industrial, 

and residential rates of 447 electric utilities to explore the relationship between the 

percentage of revenue that a utility receives from demand charges and the energy costs 

borne by residential versus C&I customers. If demand charges function as they are 

intended, high demand charges should represent a stronger price signal and drive down 

avoidable components of capacity-related system costs, lowering costs for both affected 

customers and the system as a whole. As the price signals impact load-related demands 

that typically center on customer loads instead of system loads, demand-related drivers of 

apportionment (i.e. the assignment of overhead costs that are not avoidable) are re-spread 

to other customer classes. The question investigated here is whether or not the 

appropriate balance has been achieved. In other words, are demand charges driving down 

capacity-related costs enough to offset the cost burden that is being spread across other 

customer classes? A poor or inefficient price signal misaligned with system costs would 

unfairly share the high capacity burden among all customers. These higher costs may be 
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borne at a higher rate by non-demand charge customers if the basis for allocating capacity 

charges is not well formed. 

We further explore the ability of demand charges to adequately support emerging 

consumer demand profiles and their potential to integrate with new grid technologies. For 

example, as the electric vehicle market expands, investors and regulators alike are 

concerned that demand charges will impact the financial feasibility of vehicle charging 

stations, particularly at low levels of utilization (Muratori et al., 2019; O'Connor and 

Jacobs, 2017; Zhang et al., 2017). Modernizing demand charges could also incentivize a 

new generation of load control technologies and third-party aggregators that seek to 

orchestrate customer loads to match supply. 

The paper begins with an abbreviated history of demand charges in the electric 

utility industry and the principles from economics that are applied in rate design. The cost 

shifting consequences of demand charges are then explored through a regression analysis. 

Potential alternatives to the demand charge are provided to structure the ongoing debate 

of how to best achieve system goals of an affordable, reliable, and decarbonized grid and 

fully leverage emerging grid technology. 

3.2 Background 

Demand charges were first proposed in 1892 by British Engineer John Hopkinson 

in a very different regulatory context than today (Taylor and Schwarz, 1990). Centralized 

utilities were struggling to attract commercial and industrial customers, and independent 

electricity plants comprised over 20% of the marketplace until the 1940s (Neufeld, 1987). 

Utilities had difficulty competing with the multiple advantages that customers could glean 
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from self-generation. For example, when factories produced excess steam as a by-product, 

they could use that steam to generate their own electricity. Self-generation occurs without 

line losses or billing and metering costs which made it difficult for new electric utilities to 

financially compete with the alternative of self-generation (Neufeld, 1987). When an 

industrial plant considered their choices of investing in independent generation or signing 

up with a utility, the biggest cost drivers were the total power they needed to generate 

(fuel costs) and the amount of infrastructure they would need to acquire (maximum load). 

Demand charges were designed to help encourage businesses to shift power 

requirements toward centralized utilities in order to help utilities overcome the pricing 

advantages of independent generation and ultimately achieve economies of scale. In order 

to compete with independent plants, utility rates had to track the costs of their competition 

rather than establish price signals based simply on their own marginal cost of supply 

(Baumol and Bradford, 1970; Neufeld, 1987). This was what Bonbright et al. (1961) 

referred to as value-based rather than cost-based pricing. Demand charges based on a 

customer’s own peak served as a useful pricing mechanism that could help tilt the scales 

toward the centralized utility alternative while also maximizing the margin or net revenue 

contribution. The economies of scale possible for a centralized utility provided early 

electric utilities with a cost advantage. By creating a pricing scheme more aligned with the 

competition than with their costs, they could lure industrial customers away from self-

generation technologies. Relative to a coincident peak framework for demand charges, this 

value-based pricing framework helped play to the comparative advantages of a centralized 

system over an independent system, while also maximizing the contribution to net margins. 
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Demand charges have persevered despite the fact that savings realized through 

economies of scale in generation largely peaked in the 1970s (Pechman, 2016; Rábago and 

Valova, 2018). In the United States, the 1970s were characterized by rate design efforts to 

support the introduction of disruptive technologies and cost uncertainties emerging from 

the oil embargo, safety delays on nuclear construction after Three Mile Island, and natural 

gas shortages (Pechman, 2016). Investments in large-scale utility construction were 

questioned for both political and economic reasons, and efforts towards energy efficiency, 

demand-side management, and distributed energy resources came more into focus. 

While the original rationale for demand charges is no longer as relevant, this rate 

design mechanism still serves an important role for utilities. Utility capital costs are still 

driven in part by the size of a customer’s maximum load, and demand charges are used to 

allocate capital costs in establishing rate recovery. Further, the predictability of the revenue 

stream from demand charges to utilities provides a stable source of revenue. However, as a 

fairly blunt form of price discrimination, the benefits of demand charges during the earlier 

sociotechnical transition from decentralized to centralized electricity may be outweighed 

today by the costs of price distortions (Rábago and Valova, 2018). This is of particular 

concern given the growth of weather-dependent generation that exacerbates misalignment 

between system level costs and price signals based on individual customer loads. 

In the economics literature, the incentive to cost shift due to consumer price 

differentiation is a kind of principal-agent problem, and it has been a recurring theme in 

analyses of market failures in the power industry (Gillingham and Palmer, 2014; 

Grossman and Hart, 1992). While this reasoning is often used to describe inefficiencies at 

the individual level like the landlord-tenant split incentive, it has also been used at the 
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firm level to describe inefficient decisions that emerge from the managerial separation of 

capital and operating costs (Tietenberg, 2009). The incentive for the capital cost group to 

keep costs at a minimum will negatively impact the operating cost team’s ability to 

minimize recurring expenses, resulting in an inefficient use of resources at the firm. The 

principal-agent effect may also be at work through the demand charge as decisions from 

commercial and industrial customers impact residential customers. 

This price distortion could limit demand for energy innovation and contribute to 

curtailment of renewable energy sources. A current example pertinent to utility regulators 

trying to meet state goals to electrify transportation is the case of electric vehicle 

charging. Demand charges are designed to assign costs to high demand customers who 

have spiky demand (i.e., relatively uniform demand with intermittent shorter periods of 

high demand). Electric vehicle (EV) charging stations have the spikiest possible demand, 

as they need to provide high levels of on-demand electricity at any time of day. Since 

traditional demand charges assess costs based on the maximum load that a customer 

demands over the course of a month, EV charging stations will see a prohibitively high 

energy cost that may make it difficult for capital investment to be financially viable 

(Greene et al., 2020; Muratori et al., 2019). Utilities are already experimenting with new 

pricing schemes for charging stations, such as time of use rate structures that could help 

to match charging to the availability of power on the grid (Szinai et al., 2020). 

Electric vehicle deployment is not the only example of changing electric grid 

dynamics that are being impacted by outdated demand charges. New technologies such as 

load-control, battery storage, and self-generation are becoming economically viable for 

customers of all levels of electricity demand. However, there has been limited market 
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penetration for these technologies, in part, because only C&I customers are incentivized 

to capture savings through reduced demand charges6. Industrial customers in particular 

have large energy expenses and thus can make larger investments in grid technologies 

due to shorter payback periods (Park and Lappas, 2017). 

Neither a flatter load, nor a lower load-factor, will effectively manage costs in 

today’s energy marketplace. Even as commercial and industrial customers realize 

savings by smoothing out their load profiles, renewable energy generation is destined 

to be underutilized, or at least not well compensated, as the match between load and 

production fails to be well aligned. The alternative is to shape loads to conform to the 

peaks and valleys of system supply. Loads have the potential to be shaped through 

dynamic pricing, including capacity price-based alternatives to the traditional demand 

charges or through managed charging arrangements. The changing nature of the grid 

begs the question of whether current rate structures should be overhauled with less 

attention to demand flattening and more on real-time demand-supply matching. 

3.3 Methodology 

 This approach compares customer prices at utilities that derive almost none of 

their revenue from demand charges to utilities that rely heavily on demand charges for 

revenue. If costs are assigned to the demand function that are not truly sensitive to actual 

demand then the demand charge would serve to both save costs and shift costs. Where 

avoided costs align with the price signal, there are system savings that rightly flow to the 

                                                 
6  Important exceptions currently exist where the utility offers some measure of managed charging 

services to help avoid system costs, including upstream wholesale capacity-related charges through 
controls on storage systems (batteries and water heaters) or managed charging of electric vehicles. 
Battery storage systems (and potentially EV’s in the future) also offer a household resilience benefit 
that is spurring earlier adoption by residential loads. 
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responsive customers.  But the overhead costs will inevitably be spread between rate 

classes.  When this happens, it follows that customers who do not have an ability to 

realize cost savings through peak management (i.e., those without a demand charge price 

signal) would thus be held accountable for a greater share of these grid expenses. This 

analysis will thus look to see if the degree to which utilities rely on demand charges 

influence the prices their residential customers pay as compared to commercial and 

industrial customers. 

 The analysis explores how the predominant demand charge rate structure in the 

United States is impacting average residential prices as compared to C&I prices. The 

ratio between residential and commercial prices, as well as between residential and 

industrial prices, are both investigated as dependent variables in a series of linear 

regression models, with the fraction of utility revenue received from C&I demand 

charges as the main independent variable of interest.  

Formally, the empirical specification is: 

���������:�(�) =  ß�� ß���� �� + ß!"#$%&'ℎ�)*�&+,�+&%� + ß-�%.��$� + �  (1) 

Where � is the index for a utility and / is the index for customer class. The dependent 

variable, ���������:�(�), is the ratio between residential average prices to commercial and 

industrial average prices within the same utility. The independent variable FRDC is the 

fraction of overall revenue that a utility derives from demand charges for each customer 

class (/) at each utility (�). A positive estimate for α1 implies that a higher demand 

charge leads to higher residential prices relative to other customer classes. Dummy 

variables are incorporated to control for general regional differences in market costs and 
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service (West, Midwest, South, or Northeast)7, and structural differences in utility 

management and ownership (investor owned, municipal, or cooperative).  

 

3.4 Data 

Utility data is drawn for 2017 from two primary sources. Average customer 

prices, utility revenue, utility sales, number of customers by class, ownership structure, 

and location are from form 861 published by the United States Energy Information 

Administration (EIA, 2017). Utility-specific information about maximum demand 

charges is from a data set published in 2017 by the National Renewable Energy 

Laboratory (NREL, 2017). Our sample is restricted to 447 electric distribution utilities 

that provided data to both NREL and EIA in 2017. 

 Table 1 summarizes the average price data by customer class used to derive the 

dependent variables, as well as the fractions of revenue generated by demand charges.  

This analysis shows that, on average, the demand charge represents a larger percentage of 

revenue in industrial customer classes as opposed to commercial customer classes. Figure 

1 shows the distribution of demand charge pricing across the United States. Northeast 

utilities have the highest average demand charges while utilities in the South have the 

lowest.  

Table 3.1. Descriptive Statistics 

Variable Mean Std Dev Min Max 

                                                 
7 The regions were selected based on the United States Census definition of regions Census, U.B.o.t., 1995. 

Statistical Abstract of the United States, 115th edition ed, Washington, DC. 
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Maximum Demand Charge 13.1207 7.2116 1.55 59.06 

FRDC: Commercial 0.3197 0.1629 0.0294 0.907 

FRDC: Industrial 0.4412 0.2512 0.0396 1.3999 

Ratio of Residential Price: Commercial Price 1.1399 0.1632 0.5875 2.0266 

Ratio of Residential Price: Industrial Price 1.5592 0.4075 0.4195 3.3605 

Notes: Number of observations = 447 

 

Figure 3.1. Average maximum demand charge by state. 

The fraction of revenue that a utility derives from demand charges for 

commercial and industrial customer classes is obtained by approximating peak demand 

as twice the average demand of each customer. Since demand charges are simply a 

pricing premium (unique for each utility) multiplied by the number of kW used during 

a customer’s 15 minute period of peak usage, we can find how much commercial 

customers are paying in demand charges. We use this utility level data point to 
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calculate the fraction of revenue at each utility that is driven by the demand charge 

premium that they have set.  

In our empirical specification we compare customer prices at utilities that derive 

almost none of their revenue from demand charges to utilities that rely heavily on demand 

charges for their revenue. This is based on the assumption that if costs are assigned to the 

demand function that are not truly sensitive to actual demand then the demand charge 

would serve to both save costs and shift costs. Where avoided costs align with the price 

signal, there are system savings that rightly flow to the responsive customers. But the 

overhead costs will inevitably be respreads between rate classes. When this happens, it 

follows that customers who do not have an ability to realize cost savings through peak 

management (i.e., those without a demand charge price signal) would thus be held 

accountable for a greater share of these grid expenses. This analysis will thus look to see if 

the degree to which utilities rely on demand charges influence the prices their residential 

customers pay as compared to commercial and industrial customers. 

3.5 Results 

The results of two model specifications with and without dummy variables are 

presented in Table 3.2 for a dependent variable of residential to commercial price ratio, 

and in Table 3.3 for the residential to industrial price ratio.  

Table 3.2. Regression results where the dependent variable is residential: commercial 

prices. 
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Notes: IOU and Rural Coop are dummy variables and are compared to Municipal Utilities. 

* p<.1. ** p<.05. ***p<.01. ****p<.001 

 The regression results in model 1 in Table 3.2 show that the estimated coefficient 

of the fraction of revenue derived from commercial demand charges is positive and 

significantly associated to the ratio of residential prices to commercial prices. This 

suggests that when a utility relies more on demand charges from commercial customers 

for their revenue then their residential customers are likely to pay higher rates relative to 

their commercial customers. When the model controlled for region and ownership 

structure in model 2, the relationship was much stronger, indicating that the location of 

the utility and ownership structure improved the model considerably. The regional 

dummy variables indicated that utilities in the South were likely to have the lowest FRDC 



74 

while utilities in the Northeast had the highest. In our partial tests for significance, each 

of the control variables had significant F Ratios with a significance less than .005. Results 

further indicated that municipal utilities had the lowest FRDC while Investor Owned 

Utilities had the highest. While all of these control variables shifted the y-intercept, they 

did not influence the strength of the relationship between FRDC and residential prices. 

We tested for interaction effects between the independent variable and control variables 

and the results were not significant. In our whole model test the F Ratio was 20.056 with 

a corresponding p-value of less than .0001 so we were able to reject the null hypothesis. 

Table 3.3. Regression results where the dependent variable is the ratio of residential to 

industrial prices. 

 

Notes: IOU and Rural Coop are dummy variables and are compared to Municipal Utilities. 

* p<.1. ** p<.05. ***p<.01. ****p<.001 
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The results for the industrial sector in Table 3.3 reveal an even closer relationship 

than that uncovered in our investigation of the effect of the commercial demand charge.  

In this model the ratio of residential prices to industrial prices was also highly correlated 

to the fraction of revenue that a utility derives from demand charges but resulted in a 

higher F Ratio of 23.191 with an associated p-value of less than .0001.  In our partial tests 

only some of the control variables were significant: location in the Midwest or South and 

an IOU ownership structure. Location in the Northeast and a Cooperative ownership 

structure were not significant, given other terms in the model. The R2 of this model was 

23.36% as opposed to 9.32% for the commercial model. These results suggest that 

industrial demand charges are much more likely to effect residential prices than 

commercial demand charges. 

These results suggest that the more a utility relies on industrial demand charges, 

the higher their residential rates will be relative to their commercial and industrial 

average rates. While demand charges at the commercial level do significantly impact the 

ratio of residential prices to commercial prices (Table 3.2), these results are weaker than 

the relationship observed in Table 3.3. This is counter to the original hypothesis which 

predicted that commercial and industrial demand charges would be equally related to 

residential price variability. 

This result makes sense because industrial customers, on average, have much 

higher levels of demand due to the fact that they manufacture goods (unlike commercial 

customers) (see Table 3.4). Purchasing large quantities of power enables industrial 

customers to achieve economies of scale, and the average industrial customers generates 

considerably more revenue for a utility than the average residential customer. 
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Furthermore, manufacturing companies have predictable loads that can be dramatically 

impacted by a change in process. Investing in energy-efficient equipment or load 

flattening technologies such as battery storage can dramatically shift or flatten their load 

resulting in a quick return on investment. Since industrial customers have higher average 

electric costs they can financially rationalize investment in more expensive grid 

technologies. Industrial customers will also more commonly have dedicated management 

and/or engineering staff capable of providing added rigor to these decisions. Industrial 

customers are thus more capable of responding to utility signals, and the data supports the 

hypothesis that the response of industrial customers to demand charge signals is what is 

ultimately driving the shift of fixed costs onto the residential segment. 

Table 3.4. Distribution of average revenue per customer by customer type (in units of 

1,000). 

Customer Segment Min Max Avg Std Dev 

Residential .7109 3.3076 1.4606 .3568 

Commercial .75 52.4583 5.862 4.458 

Industrial .4 72449.9 808.400 3587.26 

 

Additional conclusions can be drawn from the relationship between the dependent 

variables and the control variables such as region and utility ownership structure. There is 

considerable debate in the literature regarding the impact of utility structure on residential 

prices, with the majority of studies finding that investor owned utilities are correlated 

with higher residential prices (Kwoka Jr, 2005; Meade and Söderberg, 2020). The data in 

our results partially supports these findings but also suggests that cooperative ownership 
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may also result in higher residential rates relative to commercial and industrial customer 

classes. Rural cooperatives need to service large territories with a customer base that is 

not highly concentrated. Infrastructure costs are thus spread out across a smaller pool of 

clients, which could explain why municipal utilities were found to have relatively lower 

rates than rural cooperatives. In Table 3.2 the β for both investor-owned utilities and for 

cooperative distribution utilities was positive, indicating that municipal utilities have 

lower residential prices on average. In the study on industrial rates (Table 3.3), the β‘s for 

both investor ownership and cooperative ownership were positive but only the variable 

for private ownership (IOU) was significant. Consistently, the β‘s for investor-owned 

utilities were higher than the β‘s for cooperatively owned utilities, supporting the existing 

research on the subject but adding the additional information that rural cooperatives may 

also have relatively higher residential rates as compared to municipal utilities. 

The region in which the utility was located was also significantly correlated to the 

relative residential price in many of the results. In both tables, residential prices were 

higher in the Northeast as compared to what utilities charged their commercial and 

industrial customers. 

3.6 New Options for the Demand Charge 

The goal of demand charge reform is to more clearly align utility cost and pricing 

signals in order to reduce overall system costs. This will be all the more important if, as 

the authors believe, lower system costs better position utilities to succeed with 

environmental and social equity goals. Here we evaluate existing research on alternatives 

to the traditional demand charge to assess strengths and weaknesses for grid operators 
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and electricity consumers. Following the example set by (Passey et al., 2017) in their 

critique of the cost-reflectivity of the demand charge, this research specifically analyzes 

the selection of an appropriate tariff structure. While calculating incremental costs of 

service and setting revenue recovery levels appropriately are also important rate design 

priorities, this research does not include these additional elements. Rather the purpose of 

this discussion is to shed light on static and dynamic pricing strategies that recent 

advancements in technology have made possible and summarize alternative options for 

the structure of a new demand charge tariff. Table 3.5 highlights the opportunities and 

challenges for a selection of strategies discussed in turn below. 

Table 3.5. Overview of approaches for improving demand charges. 

Strategy Opportunities Challenges 

Wider 

Implementation of 

Residential 

Demand Charge 

● Align utility costs with customer 

pricing 

● Improve load factors 

● Reduce utility exposure 

● Reduce subsidies for customers with 

high demand 

● Built-in productions for small 

customers 

● Demand response fatigue 

● Potential over-investment in 

infrastructure 

Demand Charge 

Preferential Rate 

● Makes EV charging station business 

model viable 

● Improve ability for states to meet 

GHG policy goals 

● Open EV charging station revenue 

streams to utilities 

● Doesn’t solve demand-related 

inequities for existing customers 

● Risk that utilities may not recover 

costs 

● EV charging station model could 

crumble once term ends 

Reduce/Eliminate 

Demand Charge 

Ratchet 

● Align customer costs more closely 

with system costs 

● Weaken important signals at sub-

system level 
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Strategy Opportunities Challenges 

Divide Demand 

Charges into Sub-

components 

● Align customer costs more closely 

with system costs 

● Enable C&I customers to reduce their 

overall costs 

● Invigorate the energy storage 

marketplace to drive innovation 

● Adds additional complexity 

● Switching costs high for clients 

with sunk costs 

● Utility costs may not all be 

recouped 

Sharpen Time-of-

Use or Time-

Varying Pricing 

● Could serve as a complement to 

existing rate structure, minimizing 

amount of change required 

● Incentive for C&I customers to shift 

load based on real costs 

● Open market to aggregators 

● Smaller customers might have 

difficulty responding to signals 

● Does not address residential 

market 

● Adds complexity to pricing 

scheme 

Enabling 

Aggregators with 

load management 

and dynamic 

pricing 

● Builds on precedent of rate discounts 

for demand side flexibility 

● Take advantage of the proliferation of 

smart connected devices (IoT) 

● Creates a predictable revenue stream 

for aggregators 

● Reduction of system complexity for 

the utilities 

● Ability to inject load or generation at 

different points in the network 

● Utilities lose some control of their 

customer relationships 

● Risk of unethical aggregators 

 

3.6.1 Wider Implementation of the Residential Demand Charge 

There is debate in the literature over the advisability of a residential demand 

charge amidst widespread recognition that consumers are becoming more actively 

involved in the energy system and need to be provided with access points to reduce 

system costs (Brown and Faruqui, 2014; Hledik, 2014; Schittekatte et al., 2018; 

Simshauser, 2016). The benefits of residential demand charges are enumerated by 

Hledik (2014) and include aligning utility costs with customer pricing, improving load 

factors, reducing utility exposure in situations where customers reduce overall 

consumption but not demand, reducing subsidies for consumers with high demand, 
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establishing regulatory precedent, and creating built-in protection for small customers. 

These diverse advantages build a strong argument to support more widespread use of 

residential demand charges. 

In practice, however, there are numerous potential drawbacks that have been 

uncovered through pilot programming. Residential consumers are typically less centered on 

their pursuit of seemingly rational economic outcomes, even when price signals are well 

aligned to produce outcomes that benefit both consumers and the system (Thaler and 

Sunstein, 2009). Pilot programs have revealed that residential customers often respond to 

pricing signals initially, but their response are muted and degrade over time, a condition 

described as demand response fatigue (Kim and Shcherbakova, 2011). There is also the 

concern that residential customers would be too responsive and invest heavily in 

technologies such as batteries before they achieve economies of scale, a result that would 

aggravate the sunk cost recovery problem (Schittekatte et al., 2018). The risk of sending the 

wrong signal to customers or of customers disregarding or overreacting to the new pricing 

scheme could undermine the appeal of a capacity-based structure applied to residential 

customers. 

Ultimately some form of capacity related price signal may be appropriately 

extended to residential customers. For example, a fairly complex rate structure may make 

sense if there is either embedded supporting technology (e.g., onboard or charging 

equipment control of EV charging), or if more complex rates are coupled with either new 

third-party agents that can manage the complexity for customer benefit or the utility 

functioning in that same capacity. 
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3.6.2 Demand Charge Preferential Rate 

Another option to consider is a demand charge preferential rate, which would 

provide relief from traditional demand charges for specific types of customers for a set 

period of time. In this scenario, demand charges would simply be waived in order to 

allow new businesses like EV public charging stations to gain a foothold in the 

marketplace. This would better enable utilities and states to meet policy targets for 

greenhouse gas curtailment while also opening up revenue streams to utilities that want to 

take advantage of the increased demand required by an electrified vehicle fleet. 

This rate structure has the potential to become a key component of a green 

infrastructure development plan. A short-term demand charge relief option could be 

extended to all businesses to help spur electrification of loads like heat and transportation. 

In exchange for curtailing energy use during system peaks, small businesses could avoid 

demand charges as long as they committed to covering their aggregate marginal costs. 

The preferential rate structure could be particularly impactful to businesses that will 

ultimately require greater capacity utilization (i.e., higher load factors) but only expect to 

achieve modest overall levels in their formative years. As a practical matter, this rate 

structure often exists in the form of a uniform energy charge with embedded capacity-

related costs, but with a trigger that requires mandatory participation to a rate with a 

demand charge for customers above a certain energy or demand requirement. 

Despite the transformative potential of demand charge preferential rates, 

challenges still remain. While this option would provide a path forward for new types of 

business models, existing C&I customers would still be limited in their ability to leverage 

new technology to modulate their demand to reduce their prices as well as overall system 
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costs. These businesses may have already invested in technology to flatten their demand, 

so even if they were offered this option they may have embedded or unavoidable 

commitments that center on the old design. Utilities would also be at risk, as these new or 

shifting loads may still be significant cost drivers that challenge the utility’s ability to 

recover the cost-of-service. Lastly, public EV charging stations and other emerging 

business models that could leverage this plan could find themselves in a difficult place 

when their term of preferential rates concluded. Despite the risks associated with this 

path, if designed correctly it might perform, at the very least, as a stopgap measure to 

address the imminent rate structure challenges related to EV charging stations. 

3.6.3 Reduce or Eliminate the Demand Charge Ratchet 

Demand charge ratchets ensure that utilities are able to recoup demand related 

costs from their C&I customers throughout the year, and not just when the client’s 

demand is at its peak. A demand charge ratchet ensures that a customer will typically pay 

50-90% of their maximum annual demand charge every month for the remaining eleven 

months. Since a utility has to build enough infrastructure to support the annual peak 

demand of a customer, this ratcheting system has been a reasonable strategy to entice 

customers to invest in load management and reduce their annual peaks. 

In the current rate environment, however, avoidable system costs are more likely 

to be tied to upstream costs than to a customer’s annual load. These upstream costs can 

be avoided or at least substantially reduced for utilities with effective price signals passed 

to their retail customers. In New England, for example, these costs include wholesale 

market rates designed to recover the embedded and operating costs of the pooled 
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transmission facilities through Regional Network Service charges. Under the existing 

design, these charges disappear at the end of each monthly billing cycle. Also, the 

Forward Capacity Market costs could be more effectively managed, or even avoided, by 

sending retail customers a more targeted, dynamic price signal on an annual basis. The 

majority of capacity-related costs occur at the wholesale and bulk transmission system 

level, not the sub-system level (which includes distribution or sub-transmission costs). 

Thus, ratcheting may make sense for utilities to recover costs at the sub-system level, but 

it is no longer a compelling cost recovery mechanism to recoup wholesale and bulk 

transmission system level costs. Given that sub-system costs are an increasingly minor 

component of a utility’s overall expenses, it makes sense to re-evaluate demand ratchets 

in order to more closely align avoidable utility or system costs with price signals. 

3.6.4 Split Demand Charges into Peak and off-Peak Demand Charges 

Another option is to narrow the timeframe where peak demand prices can apply 

and charge customers based on their marginal system costs via peak demand charges and 

on their marginal sub-system costs based on off-peak demand charges. Many utilities 

apply the same demand charge over all periods of the day and all seasons of the year, 

despite the fact that system costs differ substantially based on fluctuating generation and 

demand. For example, on the utility side, demand-related system costs in New England 

are primarily driven by load that occurs between 5 pm and 10 pm, although the growing 

penetration of solar PV net metering is shifting peaks beyond daylight hours and 

narrowing that time frame to between 7 pm and 10 pm. Therefore, the traditional demand 

charge could sensibly be divided into two sub-demand charges: peak and off-peak. Peak 
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demand periods could be limited to time frames where demand is most likely to trigger 

system-level costs, such as the monthly or annual peak. Lower off-peak demand periods 

could be shifted to times when demand is most likely to impact distribution-level costs. 

By splitting the demand charge into at least two rates, and thus narrowing the associated 

time frames, C&I customers would be able to take advantage of new load-shifting 

technology. 

There is currently little financial incentive for commercial and industrial 

customers to shift their load for short periods of time. However, a more targeted demand 

or capacity-related charge would create a marketplace for storage technology that could 

shift customer demand during system and sub-system peaks. Since the cost of a battery is 

driven by its capacity, relatively inexpensive batteries could then serve as an important 

cost-saving mechanism for C&I customers. By reducing the timeframe associated with 

reformed demand charges, the benefit to the grid and customer could become better 

aligned with priorities related to decarbonization and the proliferation of renewable 

energy technology. If coupled with other reforms for renewable energy compensation, 

emerging renewable energy technology manufacturers could also see great interest in 

their products and services, opening up a new marketplace for storage technology 

virtually overnight. Further, customers could access new pathways to leverage emerging 

technology and ultimately reduce overall system costs. 

3.6.5 Sharpen or Refine Time-Of-Use or Time-Varying Pricing 

Time-of-use and time-varying pricing could complement existing capacity-related 

charges by aligning customer rates with utility expenses. By exposing C&I customers to 



85 

some of the cost signals at the system level, clients could be motivated to manage their 

own loads or sign up with an aggregator who can respond to utility signals for the 

customer and pass along a percentage of the resulting savings. The level of customer 

exposure is a sensitive issue, but if participation was not mandatory then this rate design 

strategy could open the marketplace to aggregators and provide a useful foundation for 

building a more responsive demand landscape. 

Existing research on sharpening time-of-use rate structures exhibits mixed results 

in reducing system costs and finds a pattern of conservation rather than load shifting in 

customer response. Previous research indicates that such pricing typically reduces peak by 

less than five percent (Newsham and Bowker, 2010). Another study on customer behavior 

in a time-of-use rate environment determined that customers were more likely to respond 

to these refined signals with conservation strategies as opposed to load shifting (Miller et 

al., 2017). Thus, if one of the goals of re-envisioning the demand charge is to create a 

more dynamic, responsive customer base then this approach would not be the best fit. 

3.6.6 Enabling Aggregators through Utility Load Management and Dynamic Pricing 

Rate discounts on electricity are an established strategy for utilities to incentivize 

consumers to respond to utility signals. In exchange for demand side flexibility, the 

customer is provided a financial incentive. This type of pricing signal has been leveraged 

to advance goals related to distribution system automation, defined by the Institute of 

Electrical and Electronics Engineers as a system that allows electric utilities to monitor, 

operate, and coordinate the components of their system in real time from remote locations 

(Gupta and Varma, 2005; Muttaqi et al., 2015). 
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For example, interruptible load discounts are offered to ski areas in Vermont and 

other large industrial customers, guaranteeing that the utility can reduce some of their 

system load when system costs are high. Ripple-controlled systems and clock-managed 

services have also been offered to residential and small commercial customers to spur 

demand side curtailment of smart devices like water heaters, washers and dryers, thermal 

loads, and EV charging systems (Roux et al., 2018). Ripple control systems are used 

worldwide and they work by using a high frequency signal to remotely shut off attached 

devices until the signal is disabled. Clock-based water heater systems rely on a more 

distributed time clock that similarly shuts down the load and turns it back on. 

However, the true impact of residential demand side management stems from its 

aggregation (Carreiro et al., 2017). Energy management system aggregators have stepped 

forward to serve as an intermediary between the utility and their rate base. In order for 

this business model to be sustainable, time varying price signals need to be made 

available, at least on an optional basis. This will better align rates with system costs to 

provide a joint and collective benefit to end-users as well as the utility system while 

encouraging the participation (and profit) of new agents. Aggregators can provide 

significant services to a system operator, including the reduction of system complexity 

and integrating distributed energy resources that can precisely inject generation or load 

onto certain points of the network (Faria et al., 2018). 

A major hurdle to the development and deployment of system aggregators is the 

lack of adequate regulatory frameworks (Carreiro et al., 2017). A rate structure that more 

broadly provided incentives for consumers to sign up with aggregators could provide 

significant benefit to grid operators and rate payers alike. By considering a broader, more 
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inclusive rate discount based on flexibility, new marketplaces for energy management 

system aggregators could emerge to help utilities manage their distribution networks 

more effectively. 

3.7 Conclusions 

Neufeld (1987) describes the demand charge as a “modern relic” from a very 

different type of electric grid. Demand charges continue to serve an important role in 

assisting utilities with recovering fixed, embedded and overhead costs necessary to meet 

the utility’s revenue requirements (total cost-of-service), but changes to the system are 

widening the gap between cost containment from load management and the relatively 

undifferentiated utility load profiles that demand charges encourage. As utility costs are 

driven increasingly by forward-looking, avoidable system level cost drivers like capacity 

charges and management of the distribution level costs, sub-system demand at the 

customer level becomes increasingly relevant to a typical utility’s bottom line, and 

ultimately cost containment and lower rates. Timing and flexibility of loads now has a 

much more significant impact on a utility’s costs. 

Our contention is that demand charges in their current form provide little 

incentive to manage loads for system benefit, and may also be hampering diffusion of 

innovative energy technologies (Gillingham and Palmer, 2014). When C&I customers 

make investment decisions based on pricing signals that don’t align with system costs, 

current objectives for achieving greater affordability, reliability and decarbonization are 

undermined.. Our analysis found evidence of a strong relationship between demand 

charges and residential prices. This is to be expected, and might even be the desired 
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result, if demand charges and industry customer responses aligned with avoidable system 

costs. However, given the state of current heavy reliance of fully allocated cost of service 

studies which mix both direct and embedded costs into the same demand buckets, there 

are likely unintended shifts in the attribution of costs to customer classes (Morgan and 

Crandall, 2017). The results of this research indicate that some of this cost shifting may 

have a more significant impact on residential customers than other customer classes. 

The model also included other predictor variables that have been associated with 

an increase in retail rates. While utility region did exhibit some significance in our 

models, the fraction of revenue that a utility received from demand charges was 

consistently more important. Limited results suggest lower rates in the Midwest which 

could be related to the proliferation of inexpensive wind power, but many of the regional 

variables did not prove significant (Quint and Dahlke, 2019). It was thus important to 

control for region but the impact of the demand charge proved more relevant to our 

research into drivers of relative residential prices. 

We also controlled for utility ownership structure in this study. The results we 

recorded supported existing conclusions regarding higher relative prices for consumers 

served by investor-owned utilities (Kwoka Jr, 2005; Meade and Söderberg, 2020). 

However, customers of cooperative utilities also appear to experience pricing premiums 

relative to customers of municipal utilities. Higher prices overall are understandable as 

rural cooperatives need to build more infrastructure in order to serve their widely 

distributed customer base and more costs need to be spread over a smaller number of 

customers. It is particularly important to attribute costs correctly in rural areas, as rural 

residential customers are often extremely vulnerable to fluctuations in electricity prices. 
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In Vermont – the most rural state in the country by census definition – an average rural, 

low-income household can spend up to a fifth of their income on energy, distributed 

across transportation (45%), thermal (35%), and electricity demands (20%) (Sears and 

Lucci, 2019). The increased ratio of residential prices relative to the prices of other 

customer classes, and the sensitivity of this data point to the fraction of revenue that a 

utility receives from demand charges, implies that rural customers may be particularly 

vulnerable to cost shifting from demand charges. 

This analysis is timely in light of existing trends in the power industry. As storage 

technology continues to achieve economies of scale and becomes more affordable, 

industrial customers will continue taking steps to flatten their loads to dramatically lower 

their demand charges. Utilities risk losing significant demand charge revenue when their 

industrial customers adopt new technology. These sub-system savings will not be able to 

offset the more significant costs related to the Forward Capacity Market and Regional 

Network Service. Enabling aggregators with load management and dynamic pricing 

could be the most promising direction of the options included in Table 3.5, but more 

research would need to be done to compare the different strategies and learn what 

approaches other countries are taking to fairly allocate costs amongst their customer 

classes. 

Utilities are also on the threshold of a surge of demand from electric vehicle 

diffusion. Without a clear rate mechanism to incentivize charging vehicles when power is 

abundant and restrict charging when power is limited, utilities will have a difficult time 

harvesting value for lower rates from this new stream of revenue. The proliferation of 
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electric vehicles and the importance of this new technology to mitigate climate change 

makes this an urgent issue. 

One area for future research is the impact of the existing rate structure on 

renewable energy entrepreneurship. Given a limited marketplace for storage systems that 

can shift power for 2 to 4 hours, renewable energy and storage entrepreneurs are not 

seeing the level of demand that could propel their research and design efforts to the next 

level. Aggregators are another group of renewable energy entrepreneurs who can capture 

limited value for either customer or system benefit from the current structure of the 

demand charge. The market signals that would allow them to orchestrate demand for 

utilities are often weak or short-lived, adding high levels of risk and uncertainty to their 

business models. Despite the proliferation of smart devices in the household, residential 

aggregators have yet to harness the potential for flexing demand, a finding attributed to 

the lack of a forward-looking regulatory framework (Carreiro et al., 2017).  

The goal of this analysis was to learn if industrial customer demand charges were 

highly correlated with high residential rates in order to see if demand charges were 

shifting costs onto residential consumers. The possibility exists that industrial customer 

demand charges are shifting costs onto commercial customers as well, as their high 

energy budgets and dedicated technology personnel enable them to invest more in 

behavior that could reduce their demand charge payments. This relationship could be 

explored in future research as well.  

Despite the myriad challenges with the existing demand charge structure, there 

are exciting opportunities for developing a new type of demand charge that is less rigid 

and more effectively aligns customer prices with system costs. As the grid becomes more 
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dynamic and all classes of customers are increasingly capable of engaging with their 

utilities either through self-generation, storage, or smart devices, room will need to be 

made to invite these new stakeholders to participate in the grid. The nature of this 

invitation is critical, and a key element is a clear pricing signal that reflects the true costs 

that utilities pay to provide energy in a grid increasingly powered by renewable energy 

generation. 



92 

Bibliography 

Baumol, W.J., Bradford, D.F., 1970. Optimal departures from marginal cost pricing. The 

American Economic Review 60, 265-283. 

Bonbright, J.C., Danielsen, A.L., Kamerschen, D.R., 1961. Principles of public utility 

rates. Columbia University Press New York. 

Brown, T., Faruqui, A., 2014. Structure of electricity distribution network tariffs: 

recovery of residual costs. Australian Energy Market Commission. 

Carreiro, A.M., Jorge, H.M., Antunes, C.H., 2017. Energy management systems 

aggregators: A literature survey. Renewable and Sustainable Energy Reviews 73, 

1160-1172. 

Census, U.B.o.t., 1995. Statistical Abstract of the United States, 115th edition ed, 

Washington, DC. 

EIA, U.E.I.A., 2017. Electric Sales, Revenue, and Average Price, www.eia.gov. 

Faria, P., Spínola, J., Vale, Z., 2018. Reschedule of distributed energy resources by an 

aggregator for market participation. Energies 11, 713. 

Gillingham, K., Palmer, K., 2014. Bridging the energy efficiency gap: Policy insights 

from economic theory and empirical evidence. Review of Environmental 

Economics and Policy 8, 18-38. 

Greene, D.L., Kontou, E., Borlaug, B., Brooker, A., Muratori, M., 2020. Public charging 

infrastructure for plug-in electric vehicles: What is it worth? Transportation 

Research Part D: Transport and Environment 78, 102182. 

Grossman, S.J., Hart, O.D., 1992. An analysis of the principal-agent problem, 

Foundations of Insurance Economics. Springer, pp. 302-340. 

Gupta, R., Varma, R., 2005. Power distribution automation: present status. Online: 

http://www. acadjournal. com/2005/v15/part1/p1. 

Hledik, R., 2014. Rediscovering residential demand charges. The Electricity Journal 27, 

82-96. 

Howison, S., Coulon, M., 2009. Stochastic behaviour of the electricity bid stack: from 

fundamental drivers to power prices. The Journal of Energy Markets 2, 29-69. 



93 

Kim, J.-H., Shcherbakova, A., 2011. Common failures of demand response. Energy 36, 

873-880. 

Kwoka Jr, J.E., 2005. The comparative advantage of public ownership: Evidence from 

US electric utilities. Canadian Journal of Economics/Revue canadienne 

d’économique 38, 622-640. 

McLaren, J.A., Gagnon, P.J., Mullendore, S., 2017. Identifying Potential Markets for 

Behind-the-Meter Battery Energy Storage: A Survey of US Demand Charges. 

National Renewable Energy Lab.(NREL), Golden, CO (United States). 

Meade, R., Söderberg, M., 2020. Is welfare higher when utilities are owned by customers 

instead of investors? Evidence from electricity distribution in New Zealand. 

Energy Economics, 104700. 

Miller, R., Golab, L., Rosenberg, C., 2017. Modelling weather effects for impact analysis 

of residential time-of-use electricity pricing. Energy Policy 105, 534-546. 

Morgan, P., Crandall, K., 2017. New Uses for an Old Tool: Using Cost of Service Studies 

to Design Rates in Today’s Electric Utility Service World. EQ Res. 

Muratori, M., Kontou, E., Eichman, J., 2019. Electricity rates for electric vehicle direct 

current fast charging in the United States. Renewable and Sustainable Energy 

Reviews 113, 109235. 

Muttaqi, K.M., Aghaei, J., Ganapathy, V., Nezhad, A.E., 2015. Technical challenges for 

electric power industries with implementation of distribution system automation 

in smart grids. Renewable and Sustainable Energy Reviews 46, 129-142. 

Neufeld, J.L., 1987. Price discrimination and the adoption of the electricity demand 

charge. The Journal of Economic History 47, 693-709. 

Newsham, G.R., Bowker, B.G., 2010. The effect of utility time-varying pricing and load 

control strategies on residential summer peak electricity use: a review. Energy 

policy 38, 3289-3296. 

NREL, N.R.E.L., 2017. NREL (National Renewable Energy Laboratory). 2017. 

Maximum Demand Charge Rates for Commercial and Industrial Electricity 

Tariffs in the United States. Golden, CO: National Renewable Energy 

Laboratory., in: Laboratory, N.R.E. (Ed.). National Renewable Energy 

Laboratory, Golden, CO. 



94 

O’Connor, P., Jacobs, M., 2017. Charging Smart: Drivers and Utilities Can Both Benefit 

from Well-Integrated Electric Vehicles and Clean Energy. 

Park, A., Lappas, P., 2017. Evaluating demand charge reduction for commercial-scale 

solar PV coupled with battery storage. Renewable Energy 108, 523-532. 

Passey, R., Haghdadi, N., Bruce, A., MacGill, I., 2017. Designing more cost reflective 

electricity network tariffs with demand charges. Energy Policy 109, 642-649. 

Pechman, C., 2016. Modernizing the Electric Distribution Utility to Support the Clean 

Energy Economy. US Department of Energy, Washington, DC, www. energy. 

gov/sites/prod/files …. 

Quint, D., Dahlke, S., 2019. The impact of wind generation on wholesale electricity 

market prices in the midcontinent independent system operator energy market: An 

empirical investigation. Energy 169, 456-466. 

Rábago, K.R., Valova, R., 2018. Revisiting Bonbright’s principles of public utility rates 

in a DER world. The Electricity Journal 31, 9-13. 

Roux, M., Apperley, M., Booysen, M., 2018. Comfort, peak load and energy: Centralised 

control of water heaters for demand-driven prioritisation. Energy for sustainable 

development 44, 78-86. 

Schittekatte, T., Momber, I., Meeus, L., 2018. Future-proof tariff design: Recovering 

sunk grid costs in a world where consumers are pushing back. Energy economics 

70, 484-498. 

Sears, J., Lucci, K., 2019. Vermont Energy Burden Report, in: Vermont, E. (Ed.). VEIC, 

p. 37. 

Simshauser, P., 2016. Distribution network prices and solar PV: Resolving rate instability 

and wealth transfers through demand tariffs. Energy Economics 54, 108-122. 

Szinai, J.K., Sheppard, C.J., Abhyankar, N., Gopal, A.R., 2020. Reduced grid operating 

costs and renewable energy curtailment with electric vehicle charge management. 

Energy Policy 136, 111051. 

Taylor, T.N., Schwarz, P.M., 1990. The long-run effects of a time-of-use demand charge. 

The Rand Journal of Economics, 431-445. 



95 

Thaler, R.H., Sunstein, C.R., 2009. Nudge: Improving decisions about health, wealth, and 

happiness. Penguin, New York. 

Tietenberg, T., 2009. Reflections—energy efficiency policy: pipe dream or pipeline to 

the future? Review of Environmental Economics and Policy 3, 304-320. 

Zhang, G., Tan, S.T., Wang, G.G., 2017. Real-time smart charging of electric vehicles for 

demand charge reduction at non-residential sites. IEEE Transactions on Smart 

Grid 9, 4027-4037. 

Zhang, Y., Augenbroe, G., 2018. Optimal demand charge reduction for commercial 

buildings through a combination of efficiency and flexibility measures. Applied 

Energy 221, 180-194. 



96 

Chapter 4 

What Drives Renewability Orientation? An Examination of 

Environmental Consciousness in the Power Industry 

Bonnie Pratt 

Abstract 

There is wide variability in how electric distribution utilities approach the energy 

system transition toward more renewables. While some utilities lean into the transition, 

others take a more conservative approach. This analysis measures the impact of state 

level policies, rurality, firm ownership structure, and the gender of the firm manager to 

test hypotheses about which conditions are most likely to support a utility’s commitment 

to renewables. This research is grounded in the institutional resource-based perspective 

and fills a gap in the entrepreneurial orientation literature by addressing innovation in a 

regulated industry. Firm performance in the power industry is measured as the percent of 

renewable energy in a utility’s fuel mix and the commitment to renewables and efficiency 

expressed in planning documents. We use a database of 170 electric utilities in the United 

States and computer-aided text analysis (CATA) to understand which utility 

characteristics were most likely to predict a proactive positioning towards renewables. 

Results indicate that rurality, deregulation, and the entrepreneurial orientation of a utility 

as expressed through their Integrated Resource Plans helps to explain a significant 

amount of variability in the environmental consciousness of distribution utilities. 
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4.1 Introduction 

Why do some electric utilities lean into the transition from fossil fuels to 

renewable energy while others resist change? The power industry is in upheaval as user 

preferences change, generation loses predictability, and the electrification of industries 

like transportation and agriculture are poised to exert pressure on an already stressed 

regime. Firm performance measures have expanded from a singular focus on providing 

reliable, least cost power to now include meeting policy goals for larger renewable energy 

shares. Some utilities are taking a defensive stance and resisting decarbonization, while 

others lean into a future based on a decentralized, decarbonized, and digitized grid. It is 

critical that we achieve greenhouse gas reduction goals in our energy system (Christoff, 

2016) and electric utilities are in a position to either support or hinder those goals. 

This research seeks to uncover what market, firm, or individual factors are most 

likely to influence how a utility approaches renewable energy generation and purchases. 

Utility plans for integrating renewables into their power supply mix are laid out in public 

documents known as Integrated Resource Plans (IRPs). These comprehensive documents 

detail a utility’s current fuel mix and convey their strategy for generating energy in the 

future. The language that the authors use to describe their plans can provide insight into 

their strategic orientation (i.e., (Short et al., 2010)), and reveal how the utility is positioned 

to meet, exceed, or resist the transition to renewable energy. In this paper we introduce 

Renewability Orientation (RO) as a metric to assess a firm’s positioning towards 

renewables in their planning documents. By employing computer-aided text analysis 

(CATA) we were able to quantitatively assess the level of RO for 170 electric utilities in 

the United States. To assess the utility orientation towards renewables and efficiency we 
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created a new CATA dictionary based on the combined glossaries of the American 

Council for an Energy Efficiency Economy (American Council for an Energy-Efficient 

Economy, 2019) and Clean Energy Resource Teams (Clean Energy Resource Teams, 

2019). RO scores were compared to fuel mix data for 148 of the 170 electric utilities in 

our database to objectively assess utility positioning in the energy system transition. 

In this research, several antecedent influences upon the commitment to a strategic 

orientation emphasizing renewability are explored. These antecedent influences are identified 

and categorized based upon institutional theory. In resource-based institutional theory, firm 

heterogeneity results from the way that firms manage their institutional context (Oliver, 

1997). This context consists of both the internal culture of a firm and the external conditions 

within which it operates. The resource decisions that firms make while navigating these 

forces is deeply related to their ability to achieve a sustainable competitive advantage. 

Building on Oliver’s three-level framework, we identify inter-firm level factors that could 

influence a utility’s strategic orientation such as state-level policies and demographics. Firm-

level factors such as firm ownership and age as well as individual-level factors like the tenure 

and gender of the manager are also explored to understand the internal institutional context of 

electric utilities. This theoretical framework scaffolds our analysis of firm heterogeneity. 

Oliver’s three-level framework complements existing research on sociotechnical 

transitions, adding definition and structure to the regime level of Geel's Multi-Level-

Perspective (Geels, 2005). Geels research suggests that sociotechnical transitions occur when 

new innovation arising from the niche level applies pressure to the existing regime while at 

the same time broad trends such as weather events and social activism apply additional 

pressure on the regime. The combined effect of niche and high level sociocultural pressure is 
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that the regime is forced to change and convert to a new normal. Oliver’s research is mainly 

concerned with the performance of businesses and, at the regime level in a sociotechnical 

transition, some businesses are able to adapt to sociotechnical change and be successful while 

others fail. Oliver's schema creates a useful platform for understanding how different factors 

influence the behavior of regime level stakeholders during a sociotechnical transition.  

The study begins with a review of the wide body of literature dedicated to the 

emergence of renewability orientation as a central organizational goal, grounding our 

discussion and description within resource-based institutional theory. In a regulated 

industry, proposed drivers of renewability orientation, such as firm’s entrepreneurial 

orientation (EO), are manifested a bit differently than within private enterprise, and the 

idiosyncrasies of the United States power industry are elaborated upon to explain how 

drivers of renewability thought and action are manifest in an industry with a guaranteed 

rate of return. The data are then analyzed to determine what inter-firm, firm, and individual 

(managerial) level factors are indeed related to RO and the percent of power a utility 

derives from renewables. The paper concludes with a discussion of how these results can 

direct policy makers and utility leadership to catalyze the energy system transition 

4.2 Theoretical and Contextual Background 

The electric power industry is undergoing an institutional shift, defined as the 

moment when an industry’s existing rules for competition are changed as a consequence 

of new regulatory frameworks, technology standards, or business models (Bohnsack et 

al., 2016). In the traditional business model, utilities receive a guaranteed rate of return 

on their investments in energy infrastructure, drastically reducing the financial risks of 
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investing in traditional energy generation and transmission technologies. However, new 

innovations, mounting social pressure to decarbonize, and the trend of customer 

ownership of generation resources are disrupting the certainty of this revenue model 

(Geels et al., 2017; Richter, 2012). As the changing characteristics of the electricity 

marketplace influence decisions about resource acquisition, resource-based institutional 

theory provides a useful framework for organizing the different levels of variables that 

might impact a utility’s willingness to lean into the energy system transition. 

(Oliver, 1997) proposes a resource-based institutional theory with three different levels 

of inquiry that could impact decision-making: individual, firm and inter-firm. At the inter-firm 

level, public and regulatory pressures can have a profound impact on business decisions 

(Engelen et al., 2015; Sarzynski et al., 2012). For electric utilities, state rurality, market 

dynamism and renewable portfolio standards (RPS) can all significantly impact a utility’s 

engagement with the transition to renewables. For example, rural areas have more land 

available for installing renewable energy infrastructure and are thus more likely to derive power 

from renewables (Marsden, 2016). Utilities that operate in states with higher rural populations 

could therefore be expected to derive more power from renewables. Policy decisions such as 

opening up the electric marketplace to competition between utilities and requiring a percentage 

of power to come from renewables could also influence a utility’s commitment to renewables 

(Sarzynski et al., 2012). Firm level variables including size and ownership structure may also 

influence decision-making processes (Chen and Hambrick, 1995; Wales et al., 2011). In the 

power sector, firm age and ownership structure could also impact a utility’s strategy for 

integrating renewables into their power supply mix. While many firms have been established 

for decades in uncontested marketplaces, newer utilities such as Community Choice 
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Aggregators, a type of municipal utility, are emerging in competitive markets and may use 

environmental consciousness as a strategy to attract customers (Jones et al., 2017). Finally, at 

the individual level, factors such as the CEO’s experience in the power industry or gender may 

also play an important role in influencing a utility’s environmental consciousness. In the 

renewables literature, recent studies suggest that women may be more likely to invest in clean 

energy technologies than men when in corporate leadership positions (Allison et al., 2019). 

Each of these levels has the potential to influence a firm’s renewability orientation, 

defined as the percentage of linguistic emphasis upon renewable energy and energy 

efficiency within a utility’s espoused Integrated Resource Plans. Utilities with a higher 

level of renewability orientation will use a higher percentage of words related to 

renewables and efficiency in their planning documents than utilities that are less focused 

on decarbonizing their power supply. In the context of the power industry, a progressive 

utility will lean into the energy system transition, transitioning generation resources away 

from fossil fuels in order to meet or exceed policy-driven goals for decarbonization. RO 

will manifest as a willingness to invest in renewable energy and charging infrastructure, 

support customer investment in distributed storage and solar, fund programming related to 

energy efficiency, and experiment with new technologies. 

In order for the power industry to evolve into a more decarbonized, decentralized 

and digitized system, new technologies must be developed, tested, implemented, and 

ultimately achieve economies of scale. As the sociotechnical transitions literature 

suggests, early versions of transformative innovations need to be cultivated in protective 

niche spaces (Geels, 2005; Smith and Raven, 2012). Electric utilities must see a need for 

change and be willing to push past complacency and embrace an RO. Utilities must also 
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have an appetite for experimentation, as the “used and useful” clause penalizes utilities 

when promising innovations do not add value as predicted (Brunekreeft and McDaniel, 

2005). In the context of the current sociocultural transition, the entrepreneurial 

orientation of an electric utility should therefore predict the level of RO that a utility 

exhibits. This orientation should manifest as both an increased amount of language 

relating to renewables and energy efficiency as well as decarbonization in terms of a 

higher actual percentage of power from wind, solar, geothermal, hydro, and biomass in 

the utility’s power supply mix. In order to capture this behavior, in addition to RO we 

also examine each utility’s percent of power from renewables in its fuel mix. 

In the next section we examine how factors at three levels of analysis are likely to 

lead to an increase in RO. In doing so, we provide insight into the critical institutional 

resource-based factors which drive a utility’s emphasis upon renewability within its 

strategic orientation. 

4.3 Hypothesis Development 

4.3.1 Institutional Resource-Based Theory 

While many studies focus on one specific level of analysis when examining firm 

heterogeneity, Oliver (1997) makes the case that factors at the inter-firm, firm, and 

individual levels are all important to consider, ideally within the same study. Oliver’s 

organizational framework is particularly well-suited to an analysis of renewability in the 

power industry because there are profound differences in the institutional context of 

utilities at each of these three levels. In this research, we select variables at each level 

with the potential to influence renewability orientation and actions. 
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Interfirm Level: In a highly regulated industry like the power industry, policies can 

vary substantively by geographic variables such as the state of operation, which may 

profoundly impact the firm’s strategy. When firm revenue is determined as a guaranteed rate 

of return on investments that meet with regulatory approval, success depends upon the firm’s 

ability to meet regulatory standards, which can vary significantly across states. For example, 

some states require renewables to represent a certain percentage of a utility’s fuel mix while 

others make no such demands. By comparing how state-level regulations strengthen or 

mitigate the environmental consciousness of a utility we can better more fully comprehend 

how the institutional context of a firm’s operating environment impacts their renewability 

orientation. In addition to variations in policy design between states, demographic disparities 

such as the rurality of a state may also impact a utility’s positioning towards renewables. 

Firm Level: Due to the regulated nature of the industry there are discrete differences in 

firm culture and organization across electric utilities. In the power industry, most utilities are 

structured in one of three ways: investor-owned, municipally owned, or cooperative. This 

ownership structure may determine how involved customers are in decisions about their 

electric system. Rural cooperatives and municipal utilities typically serve a single city and 

decisions about siting and fuel mix are informed at least in part by community engagement 

(Stephens et al., 2017). Investor-owned utilities, on the other hand, tend to be much larger and 

potentially more sensitive to investor priorities as they make resource acquisition decisions. 

We wanted to understand how firm ownership structure would influence renewability 

orientation. We were also interested in the link between firm age and institutional conformity. 

Individual Level: The actions of top executives can have a profound impact on the 

trajectory of a firm (Finkelstein et al., 2009). We were interested to see how the gender 
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and tenure of the CEO might influence utility positioning toward renewables. This 

traditionally masculine field is beginning to open up leadership positions to women but 

there are still limited examples of female leadership in the power industry (Cook, 2018). 

Prior research suggests that female led firms are more innovative and likely to champion 

environmental action in the workplace (Allen et al., 2019; Pearl-Martinez and Stephens, 

2016). There is a growing body of literature on the influence of gender on entrepreneurial 

orientation (Goktan and Gupta, 2015; Lim and Envick, 2013; Runyan et al., 2006). We 

were interested to see how gender impacted firm performance as expressed through the 

use of RO and the integration of renewables into a utility’s fuel mix. 

CEO tenure can also impact the level of renewability orientation that a firm 

expresses. Research on family firms has found that after about 15 years, a CEO begins to 

display less entrepreneurial orientation, an effect that occurs at a faster rate in non-family 

firms like electric utilities (Boling et al., 2016). Prior researchers have applied institutional 

theory to suggest that increased exposure to institutional norms will make a CEO more 

likely to exhibit isomorphism and less willing to innovate after a mid-point in their career 

(Hambrick et al., 2004; Hambrick and Fukutomi, 1991). Our data set was uniquely suited 

to test hypotheses about the effect of CEO tenure on a firm’s willingness to innovate. 

Figures 4.1 and 4.2 illustrate how we approached this analysis of heterogeneity in 

the power industry. We selected eight sets of hypotheses across all three of Oliver’s levels 

in order to build our model. This is a classic example of a moderator model where 

predictors, moderators, and predictors crossed with moderators, all comprise discrete 

hypotheses (Baron and Kenny, 1986). Figures 4.1 and 4.2 delineate the ways in which 
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inter-firm, firm, and individual characteristics could influence the amount of power that a 

utility derives from renewables. 

 

Figure 4.1. Conceptual Framework. 

* Renewable Portfolio Standards are only hypothesized to impact percent power from renewables. Firm 

age is only hypothesized to impact renewability orientation. These are the identifying variables for our two 

structural equations. 

4.3.2 Outcome Metrics 

Renewability Orientation: This new metric, Renewability Orientation, makes 

sense within the context of the power industry because firm performance is partially 

defined as the degree to which a company has converted to generation from renewables. 

More entrepreneurial, innovative utilities will prioritize renewable energy generation and 

energy efficiency in their planning efforts. The degree to which utilities discuss 

renewable energy and energy efficiency therefore magnifies the effects illuminated by the 

traditional EO analysis, which is not industry specific. This new dictionary was 

constructed by combining non-generic terms from the glossaries of the American Council 
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for an Energy Efficiency Economy with the glossary from the Clean Energy Resource 

Teams (American Council for an Energy-Efficient Economy, 2019; Clean Energy 

Resource Teams, 2019). 

Renewability orientation is similar to sustainability orientation but different 

enough to merit a separate metric. The five point scale used in research on sustainability 

orientation refers to attitudes towards environmental protection and social responsibility 

(Kuckertz and Wagner, 2010). The renewability orientation metric, on the other hand, is 

more concerned with technology implementation. The goal of the renewability 

orientation metric is to measure the degree to which renewable technologies and services 

are being actively considered in planning documents. 

Percent power from renewables: Most utilities publish their current fuel mix in 

their Integrated Resource Plans. We took this data and used it as a data point to compare 

the percentage of renewable-generated power that each utility had integrated into their 

fuel mix. We were able to find this data for 148 of the 170 electric utilities in our dataset 

by studying IRPs as well as utility websites and press releases. This metric provided a 

second firm performance metric as we were able to assess the degree to which each 

utility had already integrated renewables. Percent power from renewables was thus our 

second dependent variable. 

4.3.3 Inter-Firm Level Factors 

Environmental Dynamism: Market turbulence has been positively associated with 

EO in previous studies but we wanted to see if it was influential in the power industry 

(Engelen et al., 2015). In the power industry there is a recent trend of deregulation where 
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utilities are able to compete for customers for the first time. We thus characterized 

deregulated states as high in market dynamism, as distribution utilities need to compete 

with one another for clients. In regulated states residents have no choice in their 

distribution utility. This variable thus speaks to the impact of customer choice, as 

consumers in deregulated states are able to choose their energy provider whereas local 

monopolies exist in regulated states. In the competitive environment of a deregulated 

state we predicted that utilities would seek to use renewables as a form of competitive 

advantage. As a result, we hypothesized that environmental dynamism would be highly 

correlated with Renewability Orientation and percent power from renewables. 

H1a: Market dynamism will make it more likely for utilities to talk about 

renewables 

H1b: Market dynamism will increase the likelihood that a utility sources energy 

from renewables 

Renewable Portfolio Standards: This state-level policy requires utilities to source 

a certain percentage of their overall fuel mix from renewables. These standards can be 

required, recommended, or non-existent depending on the state where the utility 

functions. Previous studies have found that Renewable Portfolio Standards are effective 

at increasing the percentage of power that a utility derives from solar (Sarzynski et al., 

2012). We predicted that Renewable Portfolio Standards (RPS) would similarly be 

positively correlated to the overall percentage of power that a utility derives from 

renewables. However, we did not believe that this policy would have a direct impact on 

renewability orientation. 
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H2: Renewable Portfolio Standards will increase the likelihood that a utility 

sources energy from renewables 

Rurality: Rurality is important to consider in any study of renewable energy. The 

promise of renewable energy and the reality of its implementation in rural America today 

points to potential equity concerns. Previous literature has found that rural states are more 

likely to derive power from renewables, but that issues like the siting and ownership of 

infrastructure often lead to conflict and resistance from rural communities (Hyland and 

Bertsch, 2018; Marsden, 2016; Naumann and Rudolph, 2020). The benefits that 

renewable deployment could have on rural America are numerous, but recent studies 

suggest that there are flaws in the existing implementation strategy. 

Rural goals such as self-reliance and economic growth could be assisted through the 

increased penetration of renewables. Research has found that rural communities have higher 

levels of social cohesion, trust, and embeddedness which make them particularly well 

positioned to support community renewable energy initiatives and rural social entrepreneurs 

(Morrison and Ramsey, 2019). Renewable energy also has the potential to support rural 

identities like self-reliance and independence by creating options for customers to isolate 

themselves from issues related to the larger grid (Slama, 2004). Further, the development of 

renewables is often considered a key strategy for helping rural communities enliven job 

markets (Späth and Rohracher, 2010). While in theory the proliferation of renewables 

should be welcomed by rural communities, research suggests that the way these projects are 

implemented undermines the social benefits of renewable deployment. 

In practice renewable energy installations are often not delivering on their 

promise. High numbers of permanent, long term jobs are not usually created when large 
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private corporations install wind turbines in rural areas (Bergmann et al., 2008). 

Additional research suggests that the economic promise of a more vibrant economy is 

rarely fulfilled when renewable energy projects are privately owned (Munday et al., 

2011). While wind energy is the most likely to create conflict, bioenergy and 

geothermal have also been problematic (Baumber et al., 2011; Kunze and Hertel, 2017; 

Naumann and Rudolph, 2020). Rural energy transitions are frequently hotly contested, 

so we hypothesized that utilities might in rural states might be less inclined to show 

high levels of support for renewables. In contrast, we also hypothesized that renewables 

would be more prevalent in rural states and thus rurality would be positively correlated 

the percent of power from renewables. The goal of this research question was to 

understand the severity of the rural conflict with the energy system transition. 

H3a: Rural communities will be less likely to talk about renewables 

H3b: Rural utilities will be more likely to source power from renewables 

4.3.4 Firm Level Factors 

Entrepreneurial Orientation. We measured each utility’s proactiveness, 

innovativeness, and risk-taking preferences by analyzing the language that utilities 

included in their IRPs. Previous research has connected entrepreneurial orientation to 

different expressions of firm performance such as profitability and an increase in sales 

(Baker and Sinkula, 2009; Covin et al., 2006; Rauch et al., 2009). EO has also been 

correlated to non-financial performance metrics like forming strategic partnerships, 

keeping talented employees, increasing employee motivation, and creating a positive 

culture (Marino et al., 2002; Zahra, 1993) . Researchers in Information Studies have 
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posited that utilities with a culture of innovation will be more likely to be early adopters 

of renewable energy technologies, although they note that there is limited research to date 

on technology adoption decisions in regulated industries like the power industry (Dedrick 

et al., 2015). This research question explores the relationship between entrepreneurial 

orientation and utility commitment to renewables, hypothesizing that entrepreneurial 

utilities will be more likely to derive energy from renewables and talk about renewables 

in their planning documents. 

H4a: Entrepreneurial orientation should be associated with a focus on 

decarbonization in utility planning documents 

H4b: Entrepreneurial orientation should be associated with the percent of power 

from renewables in a utility’s fuel mix 

Firm Ownership/Size: Certain elements of utility performance, lower costs and 

higher quality, have been associated with public ownership in previous studies (Kwoka 

Jr, 2005; Meade and Söderberg, 2020). There has not been any research yet, however, on 

how utility ownership structure correlates to a utility’s commitment to renewables. There 

are three types of utility ownership structures: IOU’s, municipal utilities, and rural 

electric cooperatives. IOU’s are the only ownership type that is privately owned and far 

larger than the other types of utilities which typically only serve a single town. In 2017, 

168 IOU’s provided power to 72% of U.S. electricity consumers (Energy Information 

Administration, 2019). While rural cooperatives are much smaller they actually serviced 

56% of the land in the United States in 2019 (NRECA, 2019). 

While there is extensive literature on the impact of firm size on entrepreneurial 

orientation (see (Chen and Hambrick, 1995) or (Wales et al., 2011)), the impact of firm 
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ownership structure has received less attention in the literature. In the energy transition 

literature there is a large body of literature on the impact of utility ownership structure 

and firm performance with a focus on the performance metrics of cost and reliability 

(Carley, 2009; Kwoka Jr, 2005; Meade and Söderberg, 2020). This research seeks to 

contribute to this ongoing debate by investigating the connection between ownership 

structures and environmental consciousness. Since privately owned utilities are larger and 

controlled by board members rather than local residents, we hypothesized that they would 

be less likely to risk their profits in order to invest in renewables, despite the 

environmental priorities of their customer base. This prioritization of profits over 

community goals would manifest as both less power from renewables on average and a 

lower frequency of language regarding renewables and efficiency in their IRP’s. 

H5a: Privately owned utilities will be less likely to talk about renewables than 

publicly owned utilities 

H5b: Larger/privately owned firms will be less likely to get power from renewables 

Firm Age: We included data on the year in which each utility was founded in 

order to contribute to the literature on the relationship between firm age and 

entrepreneurial orientation. Prior research has found that older firms are less likely to 

convert entrepreneurial orientation into higher performance metrics (Hult et al., 2003; 

Wales et al., 2011). We predicted that older utilities would be more set in their ways and 

less inclined to talk about renewables and efficiency in their planning documents. We did 

not investigate the link between firm age and fuel mix because generation installations in 

the power industry take an extremely long time to build, so younger firms may not have 
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had sufficient time to signal their environmental consciousness through increasing the 

percent power from renewables. 

H6: Older firms will talk less about renewables 

4.3.5 Individual Level Factors 

CEO Gender: We believed that female leaders would have a higher renewability 

orientation and be more likely to source power from renewables. Identity characteristics 

of CEOs have been found to mitigate the relationship between entrepreneurial orientation 

and performance in previous studies on family business (Miller and Le Breton–Miller, 

2011). Further, research has shown that women are more likely to engage in 

environmental actions and to invest in renewable technologies (Allison et al., 2019; 

Zelezny et al., 2000). However, female leadership in the transition from fossil fuels to 

renewables has not been widely acknowledged or even recognized (Allen et al., 2019). 

We wanted to see if the gender identity of the utility’s manager would impact the firm’s 

renewability orientation. Based on the available literature we hypothesized that utilities 

managed by females would more likely to source power from renewables and discuss 

renewables in their planning documents. 

H7a: Utilities managed by women will be more likely to talk about renewables 

H7b: Utilities managed by women will be more likely to source power from 

renewables 

CEO Tenure: A heightened awareness of institutional norms can create value-

laden choices that reflect norms and traditions more directly than immediate market 

needs (Oliver, 1997). Previous literature has demonstrated that the effect of CEO tenure 
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on entrepreneurial orientation tends to follow an inverted-u shaped curve, and that EO in 

non-family firms tends to decline much more precipitously after about 15 years of 

experience (Boling et al., 2016). Based on the nature of this curve and the high average 

tenure of utility management (mean = 18.2 years), we hypothesized that the length of 

time a manager worked in the power industry would be inversely related to the firm’s 

positioning towards renewables. 

H8a: Managers with more experience in the power industry will be less likely to 

talk about renewables 

H8b: Managers with more experience in the power industry will be less likely to 

source power from renewables 

4.3.6 Moderators 

Rurality and Deregulation: In deregulated states, customer preference is likely to 

have a greater influence on a utility’s action. If a utility needs to compete for customers 

they will pursue strategies designed to appeal to their customers values and priorities. 

Given the problematic implementation of renewables in rural areas to date as detailed 

above, we hypothesized that resistance to renewables would be exacerbated in 

deregulated rural states. 

Prior literature has investigated the connection between deregulation and the 

diversification of fuel mixes in electric utilities and found that deregulation can lead to 

greater consumer choice, particularly when the population served values renewable 

energy (Carley, 2009; Delmas et al., 2007). Rural populations, however, often have 

reason to resist the proliferation of renewables. While some studies provide evidence that 
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dynamism is positively correlated to green innovation (Chan et al., 2016), we believed 

that the story would be different for electric utilities in rural states. We hypothesized that 

deregulated rural states would both talk less about renewables in their planning 

documents and be less likely to source power from renewables. 

H9a: Utilities in deregulated states with rural populations will be less likely to 

signal environmental consciousness in their planning documents. 

H9b: Utilities in deregulated states with rural populations will be less likely to 

source energy from renewables. 

Rurality and Entrepreneurial Orientation: Entrepreneurial orientation has been 

associated with firm performance repeatedly in the literature and so we had reason to 

believe that it would also be correlated to our non-financial performance measures related 

to renewability (Linton and Kask, 2017). If a firm is innovating and leaning into the 

energy system transition, then the availability of land should make it easier for them to 

execute on their goals. In a culture of proactiveness, innovation, and risk taking we would 

expect to provide support for theoretical studies claiming that innovation in the power 

industry is correlated to investment in renewable technology (Dedrick et al., 2015). We 

felt that this relationship would be particularly strong in rural states in light of the 

availability of undeveloped land and previous studies that have found that renewables are 

more likely to be sited in rural areas (Marsden, 2016). We thus hypothesized that rurality 

would amplify the relationship between entrepreneurial orientation and environmental 

consciousness. 

H10a: Entrepreneurial orientation will have a stronger relationship on 

renewability orientation in rural states. 
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H10b: Entrepreneurial orientation will have a stronger relationship to percent 

power from renewables in rural states. 

4.3.7 Simultaneous Equation Estimation 

The literature has established that there are multiple institutional factors that 

influence a firm’s strategic orientation (Ang et al., 2015; Engelen et al., 2015). In the 

context of the power industry, utility’s renewability orientation may influence the utility’s 

percent generation from renewables (fuel supply mix). Simultaneously, the percentage of 

renewables in a utility’s fuel mix may influence their renewability orientation. This 

relationship violates the assumption of strict exogeneity and requires appropriate 

statistical methods. The use of simultaneous regression models are required to 

accommodate the violation of this assumption (Maddala and Lahiri, 2009). We use two-

stage least squares to test for simultaneity of the two dependent variables. 

We hypothesized that firms that talked more about renewables (RO) would have 

more renewables (PfR). Rationally it would make sense that an orientation towards 

renewables would result in more renewables. However, energy infrastructure is expensive 

and takes a long time to build. Our results did not find evidence of this relationship which 

could be, at least in part, attributed to a significant time lag between the decision to invest 

in renewables and ultimately deriving power from them. The second dimension of this 

hypothesis is that firms with more renewables in their portfolio would talk more about 

renewables. In other words, if a utility is walking the walk then they will also talk the 

talk. This was a negative relationship which is interesting and worthy of deeper 

investigation. 
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H11: Both Renewability orientation and percent power from renewables are 

dependent on one another. 

4.4 Methodology 

4.4.1 Sample 

A total of 170 electric utilities were selected for this analysis. These utilities 

were selected after a national search for utility Integrated Rate Plans (IRP’s). Only 

electric distribution utilities were chosen, excluding utilities that only provide 

transmission and generation to utilities and did not directly distribute power to end 

clients. Integrated Rate Plans are only required in certain states, so the selection was 

limited to utilities in states that require IRP’s. Further, some state regulations only 

require Investor-Owned Utilities (IOU’s) to publish Integrated Rate Plans. As a 

result, certain states only had IRP’s from Investor-Owned Utilities. The data 

collection effort thus included all of the electric utilities in the United States where 

IRP’s were found. 

IRP’s were selected as the key criteria for inclusion because they provide a 

unique and powerful level of insight into electric utility planning processes. IRP’s include 

input assumptions for demand and supply for each utility, including the energy 

generation resources they currently hold and those they intend to build (Wright et al., 

2017). These documents go into detail on their strategic plans to implement energy 

efficiency programming and invest in renewable generation. The lengths of the 

documents varied widely, with the word count ranging from 452 words to 170,431 and a 

mean of 20,319 words. They were published by all types of utilities across thirty states 
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(see Table 4.1). By including all available IRPs in this analysis we were able to control 

against selection bias. 

Table 4.1. Utility Characteristics. 

 

4.4.2 Measures and Data Analysis 

We developed the two dependent variables, renewability orientation and percent 

power from renewables, and the independent variable of entrepreneurial orientation by 

analyzing the language and content of these IRPs. Consistent with the procedure outlined 

by (McKenny et al., 2016) and implemented by various EO researchers (Covin and Wales, 

2012; Wales, 2016). A computer-aided text analysis was employed to assess the 

entrepreneurial orientation of each of the utilities in the data set using their IRPs. Each 

Integrated Resource Plan was scored for innovativeness, proactiveness, and risk taking 

(Linton and Kask, 2017; Rauch et al., 2009) and then normalized by word count. This 

yielded an EO score for each utility. The IRP’s were then run through a new dictionary we 

created which we named Renewability Orientation. This list of efficiency and renewable 

terms was matched to each utility IRP in order to measure the relative degree of focus on 

energy efficiency and renewable integration for each utility in our data set. We also 

analyzed the content of the Integrated Resource Plans in order to find the current percent of 

renewables in the utility’s power supply mix, supplementing this dataset with data from 

utility websites and press releases when it was not available in the IRP. It was not possible 
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to find fuel mix data for every utility and the final data set included fuel mix data for 148 of 

the 170 electric utilities in the study. Measurement error is a concern but it was addressed 

by manually coding each of the IRP’s in order to ensure that the word counts were accurate 

in addition to managing transient error by controlling for the year in which the IRP was 

published (McKenny et al., 2016). We also took a proactive approach to managing specific 

factor error in creating the new Renewability Orientation metric because the energy 

transition context of electric utilities required industry-specific terminology. 

Independent variables were continuous, binary, or categorical (recoded into binary 

dummy variables). At the inter-firm level, rurality was a continuous variable obtained from 

the most recent report by the United States Census Bureau (United States Census Bureau, 

2010). Dynamism was a binary variable denoting whether or not a state was deregulated or 

not based on data from Electric Choice (Electric Choice, 2018). Data on state Renewable 

Portfolio Standards was categorical, as states could have no RPS requirements, RPS goals, 

or RPS standards as reported in the DSIRE database (NC Clean Energy Technology Center, 

2018). At the firm level, entrepreneurial orientation was a continuous variable that we built 

internally based on the most recent entrepreneurial orientation CAT scanner word list 

designed for the literature on Management & Entrepreneurship to assess innovativeness, 

proactiveness, and risk-taking (McKenny et al., 2018). The independent variable 

representing ownership structure was constructed using dummy variables for the three main 

ownership types that we wanted to compare: Investor-Owned utilities, Municipal Utilities, 

and Rural Electric Cooperatives based on data from the Energy Information Administration 

(EIA, 2017). There was very high collinearity between firm ownership structure and firm 

size. IOU’s were the largest with an average of 711,149 customers, Municipal utilities were 
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mid-sized with an average of 142,892 customers, and rural coops were much smaller with 

an average customer base of 26,539. We decided to focus on firm ownership instead of firm 

size for this analysis because of the ongoing debate in the power industry around the 

comparative advantages of private ownership structure (for example, see (Penn, 2019)). 

Firm age and gender of the General Manager were assessed by visiting each utility’s 

website. Firm age was recorded as the year that the utility was established and thus was 

represented in the data set as a continuous variable. At the individual level, gender was a 

binary variable and industry experience was a continuous variable. 

Our two dependent variables, percent power from renewables and RO, did not follow 

a normal distribution (p<.0005 in the Shapiro-Wilk W test). We determined that percent 

power from renewables followed an exponential distribution by applying the Kolmogorov’s 

D test for goodness of fit where Prob>D = .1500. Since the p value was not less than .05 we 

accepted the null hypothesis that this variable followed an exponential distribution. 

Renewability Orientation followed a Johnson SI distribution which we confirmed using a 

Shapiro-Wilk W test where Prob<W = .1023, enabling us to accept the null hypothesis that 

the variable follows a Johnson SI distribution. We believed that there would be a relationship 

between discussing renewables in planning documents (RO) and deriving power from 

renewables (percent power from renewables), so we chose to use simultaneous equation 

estimation. Since our data was finite and unbiased the results were also of finite variance and 

unbiased, so using ordinary least squares as part of our simultaneous equation estimation did 

not compromise the validity of our model (Tellinghuisen, 2008). 

This study used ten total variables, based on theories from the energy system 

transition literature and resource-based institutional theory (see Figures 4.2 and 4.3). We 
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applied Oliver’s framework to construct our analysis, first assessing the impact of the 

independent variables at each of the three levels on the dependent variables of 

renewability orientation and percent power from renewables for each utility. Model 1 

included factors at the inter-firm level, model 2 included factors at the firm level, and 

model 3 included factors at the individual management level. Model 4 included variables 

at all three levels, and our final model included interaction effects. We used different 

selections of variables for each of the two dependent variables (see Tables 4.2 and 4.3). 

Table 4.2. Independent variables for renewability orientation. 

 

Table 4.3. Independent variables for percent power from renewables. 

 

Table 4.4. Descriptive statistics. 
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We further established that the independent variables were not colinear (see 

Figure 4.8). The variance inflation factors were all smaller than 3, significantly less than 

the hold criterion of 10, indicating that our results were unlikely to have been influenced 

by multicollinearity (Brettel et al., 2010; Engelen et al., 2015). 

Table 4.5. Correlation Table. 

Variable 1 2 3 4 5 6 7 8 9 10 11 

1. Renewability 

Orientation 

1.0000                     

2. % Power 

from 

Renewables 

0.1799 1.0000                   

3. Market 

Dynamism 

0.1627 0.3706 1.0000                 

4. Rurality -0.2015 -0.0279 -0.4564 1.0000               

5. RPS -0.0204 0.4112 0.4135 -0.1362 1.0000             

6. IOU -0.1173 -0.3950 -0.0409 0.1255 -0.1840 1.0000           

7. Muni -0.0355 0.2491 -0.0665 -0.0063 0.1417 -0.6815 1.0000         

8. 

Entrepreneurial 

Orientation 

0.2920 0.1788 0.1542 -0.2019 0.0700 -0.1405 -0.0865 1.0000       

9. Firm Age 0.2765 0.0317 0.1335 -0.2356 0.1168 -0.2315 -0.1447 0.2572 1.0000     

Variable Mean SD Min Max

Renewability Orientation 0.066 0.06 0 0.47

Percent Power from Renewables 0.311 0.274 0 1

Dynamism 0.341 0.476 0 1

Rurality 25.382 18.826 6.33 66.96

RPS 1.476 0.793 0 2

IOU 0.414 0.494 0 1

Muni 0.396 0.491 0 1

Entrepreneurial Orientation 0.063 0.043 0.006 0.395

FirmAge 86.144 39.903 0 139

CEO Gender 0.168 0.375 0 1

CEO Tenure 18.2 11.02 1 41
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10. CEO Gender -0.0644 0.0934 0.0160 0.1923 0.0332 0.0087 -0.0699 0.0162 -0.0747 1.0000   

11. CEO Tenure -0.0311 -0.1531 -0.0882 -0.0844 -0.2149 -0.1177 0.0483 0.0450 0.1437 -0.0470 1.0000 

 

4.5 Results 

4.5.1 Main Effects: Renewability Orientation H1a – H10a 

We built six models to explain the variability in renewability orientation across 

electric distribution utilities. Based on Oliver’s framework we measured the impact of 

independent variables at each three levels on RO. The first model looked at the impact of 

these inter-firm variables on RO: market dynamism (deregulation of the energy 

marketplace) and percent rurality in the state. The second model looked at the impact of 

ownership type and EO score on RO, and the third model looked at the impact of the 

gender of the firm manager on RO. The fourth model included variables at all three levels 

and the final model included interaction effects. Our final model, Model 6, assesses the 

relationship between the two dependent variables via simultaneous equation estimation. 

Firm age is the identifying variable. We report results using a standardized beta in order 

to compare the variables to one another more easily. 
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Figure 4.2. Results of the multi-regression analysis with renewability orientation (RO) 

as the dependent variable. 

Firm level variables appeared to explain the majority of the variation in utility 

RO. In particular, entrepreneurial orientation was highly correlated to RO which 

supported our hypothesis that entrepreneurial orientation would be correlated to this non-

financial metric of firm performance. Utility ownership structure did not significantly 

alter utility positioning towards renewables, a finding that caused us to reject our 

hypothesis that publicly owned utilities would position themselves more aggressively 

towards a future powered by renewables. A key finding here was the importance of 
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Oliver’s tiered perspective. While there was significance in the model that used only 

variables at the firm level, the model became much stronger when variables at all three 

levels were allowed to interact with one another. Including the simultaneous equation 

estimation in order to incorporate percent power from renewables improved the model by 

2.7% and the additional term was significant and negative.  

Hypothesis testing for the effect of rurality as a moderator of renewability 

orientation followed the protocol implemented by Anderson et al. (2009) and mapped out by 

Baron and Kenny (1986). We wanted to understand how the moderator, rurality, changed 

the effect of the independent variables, deregulation and EO, on the dependent variable RO. 

We hypothesized that the effect would be a gradual, steady change as the moderator 

changes, the most frequently assumed relationship between variables (Baron and Kenny, 

1986). These results caused us to reject our hypothesis that entrepreneurially oriented 

utilities in rural states would be more likely to discuss renewables. Rurality did, however, 

strengthen the negative relationship between market dynamism and renewability orientation. 

When the marketplace is open to competition utilities in rural states are even less likely to 

discuss renewables and efficiency. This negative relationship supports the hypothesis that 

market preferences in rural states run contrary to policy goals for decarbonizing the grid. 

4.5.2 Main Effects: Power from Renewables H1b – H10b 

This analysis was implemented in a similar fashion to the models above, although 

the variables included were not identical. At the inter-firm level (Model 1) we looked at the 

impact of market dynamism, renewable portfolio standards (RPS), and the rurality of the 

state’s population to explain the variability in utility power supply. At the firm level we 
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tested the effects of utility ownership structure and entrepreneurial orientation on the percent 

power from renewables (Model 2). At the individual level we investigated the impact of the 

manager’s gender on the dependent variable (Model 3). Model 4 included variables at all 

three levels and Model 5 included interaction effects. Model 6 is the simultaneous equation 

estimation, and the identifying variable is Renewable Portfolio Standards (RPS). 

 

Figure 4.3. Results of the multi-regression analysis with percent power from 

renewables as the dependent variable. 

In this analysis inter-firm level variables were much more relevant than in the 

analysis of renewability orientation. Deregulation, rurality, and the existence of 
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renewable portfolio standards at the inter-firm level all made it more likely for a utility to 

derive power from renewables. Utility ownership structure predicted more variability in 

this model as well. Investor-owned utilities were significantly less likely to derive power 

from renewables than municipal or rural utilities. As Oliver predicted, the model became 

much stronger when variables across all levels were able to interact in Model 4. Model 5 

was the strongest, however, suggesting that the rurality of a state has a significant impact 

on a utility’s likelihood of deriving power from renewables. The inclusion of RO through 

the simultaneous equation estimation only explained 0.3% more variability and the new 

term was not significant, indicating that the amount of language a utility uses regarding 

renewables and efficiency is not significantly correlated to how much power they derive 

from renewables. 

Rurality strengthened the effects of both entrepreneurial orientation and 

deregulation on percent power from renewables. Taken alone as an independent variable, 

rural states were more likely to derive power from renewables as we had hypothesized. 

Furthermore, utilities with an entrepreneurial mindset were even more likely to derive 

power from renewables if they lived in rural states. However, utilities in deregulated 

states were much less likely to derive power from renewables. This finding pointed to a 

strong interaction effect between rurality and deregulation that was similar to that 

uncovered in the RO analysis: rural utilities that need to compete for customers once 

again appear to be addressing customer preferences that run counter to policy priorities 

for a decarbonized grid. 
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4.5.3 Simultaneous Equation Estimation 

Given the clear connection between talking about renewables and efficiency in 

planning documents and deriving power from renewables, we hypothesized that there 

would be a connection between our two dependent variables. In order to understand how 

renewability orientation was related to percent power from renewables we used 

simultaneous equation estimation. The structural equations are written as follows: 

% 1�#%& 2&�3 �%$%#�45%' =  �"6 + ���7$�3�'3 +  �!�+&�5��7 +  �- �1* +

 �89": +  �;<+$� +  �=>" +  �?  >"@%$A%& +  �B >"C%$+&%  (1) 

�%$%#�4�5��7 "&�%$�����$ =  % 1�#%& 2&�3 �%$%#�45%'D +  ��>" +

 �!��&3 E.% + �- % 1�) �+&�5 +  �89": +  �;<+$� +  �=�%&%.+5��%A +

 �?  >"@%$A%&   (2) 

 We used a simultaneous equation model because we believed that the dependent 

variable Renewability Orientation would affect the dependent variable Percent 

Renewable. When a dependent variable is determined by both independent and dependent 

variables, the parameter identification problem can occur. An accepted method for 

addressing this problem is to satisfy the rank and order conditions using a two stage least 

squares methodology as we did here (Fisher, 1966). Since our linear system included two 

equations we needed to exclude one variable for each equation. To identify the RO 

function the identifying variable was FirmAge and to identify the Percent Renewable 

function the identifying variable was RPS. This satisfied the rank and order conditions. 

Our simultaneous equation estimation revealed that there was no significant relationship 

between Renewability Orientation and actually deriving power from renewables (Percent 
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Power from Renewables). In other words, talking about renewables did not predict an 

increased likelihood to derive power from renewable energy. 

There was significance in the model predicting renewability orientation, however, 

but in a direction counter to our hypothesis. Our simultaneous equation estimation 

predicts that firms that talk more about renewables are significantly less likely to derive 

power from renewables. This could be due to time lags between planning and 

implementation or a reflection of increased efforts by firms lagging behind in the 

converting their generation to renewables. 

4.6 Discussion 

Our study offers multiple contributions to the literature. We extend the study of 

entrepreneurial orientation to a regulated industry, apply Oliver’s resource-based 

institutional theory to the power industry while shedding light on ongoing debates in the 

energy transition literature. Each of these contributions is addressed separately below. 

4.6.1 Contributions to Resource-Based Institutional Theory 

This research fills a gap in the literature on resource-based institutional theory in 

entrepreneurship research. A recent literature review noted an alarming lack of meso-

level studies at the industry level, noting that most research is concerned with the national 

level or the individual/organizational level (Su et al., 2017). By including all electric 

distribution utilities across the United States which filed an IRP, this study leverages a 

data set that provides a true meso-level perspective on drivers of firm heterogeneity. We 

use this data set to explain variation in firm performance using Christine Oliver’s 

resource-based institutional theory. 
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Oliver (1997) created a powerful framework for organizing different drivers of 

firm heterogeneity. She suggested that factors at the inter-firm, firm, and individual level 

were all critical to understanding differences between firms, as were the interactions 

between factors at all three levels. We applied this theory to investigate the drivers of 

environmental consciousness in United States electric distribution utilities. Our results 

indicated that our ability to predict variation in firm performance was strengthened 

considerably by using factors at the inter-firm, firm, and individual levels. In the analysis 

of RO firm level factors were the most predictors of RO (38.5%) whereas inter-firm 

(25.6%) and firm level (18.8%) factors were the primary predictors of percent power 

from renewables. However, allowing for interaction effects and the inclusion of variables 

at multiple levels resulted in the most robust models. 

At the inter-firm level, policies and demographic information had a significant 

effect on a utility’s environmental signaling. Deregulation appeared to be a powerful 

lever to increase the penetration of renewables in utility fuel mixes, as did Renewable 

Portfolio Standards. Rurality was also influential but in a more complex way. Rural 

utilities use more renewable energy than their more urban counterparts but talk about it 

less. Further, there is a strong interaction effect between deregulation and rurality, 

demonstrating a very different trend emerging for utilities in rural states where utilities 

can compete for business. When local constituents can express market preferences in this 

scenario, they appear to actively resist renewable energy. Where rurality and market 

dynamism are both positively and significantly correlated to percent power from 

renewables, the interaction effect of these two variables turns the sign to negative. This 

interaction effect suggests that the way in which energy generation infrastructure is being 
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rolled out in rural communities is problematic and potentially adversely effecting rural 

communities. 

The significance of these results points to a real area of concern in the energy 

system transition. If rural electrification is already greeted by local resistance, how will 

our country meet the ambitious goals set by state and federal governments without 

exacerbating pre-existing social justice issues in rural America? Rural communities have 

some of the highest energy burdens in the country given aging building stock, inefficient 

oil-based heating systems, long commuting distances, and chronic rural poverty. In 

Vermont – the most rural state in the country by census definition – an average rural, 

low-income household can spend up to a fifth of their income on energy, distributed 

across transportation (45%), thermal (35%), and electricity demands (20%) (Sears and 

Lucci, 2019). The price of power is clearly a concern to rural residents, yet this study 

reveals that rural consumers do not appear to want their utilities to provide them with 

renewable energy. Clearly, the financial needs of these customer are not being met 

through the existing renewable deployment strategy and concerns over siting and 

community engagement are widespread (Naumann and Rudolph, 2020). These results 

expose a potential risk that the transition to renewables could be developing in a way that 

harms vulnerable rural populations. 

At the firm level, utility ownership structure, firm age and entrepreneurial 

orientation were significantly correlated to the environmental signaling of utilities. In 

fact, firm level factors alone were important enough to build significant models for both 

of our dependent variables. These models underscored the importance of understanding 

firm characteristics to predict environmental signaling. 
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The individual level of analysis was also important, echoing the findings of 

Finklestein (2004) and Hambrick (1991). While gender did not emerge as a significant 

variable, more data on female utilities could have strengthened the effect and provided a 

better test of the theories espoused by researchers who focus on gender and energy (Allen 

et al., 2019; Pearl-Martinez and Stephens, 2016). CEO tenure did appear to significantly 

impact the percentage of power from renewables, supporting research on the effect of 

CEO tenure on willingness to innovate (Boling et al., 2016). 

The interaction effect between EO and rurality did not emerge as we had 

hypothesized. We had anticipated the entrepreneurial utilities in more rural states would 

move more aggressively to build their renewable energy portfolios. Entrepreneurial 

orientation was positively correlated to both renewability orientation and to percent 

power from renewables and we expected the effect to be particularly strong when these 

two factors overlapped. Our results did not indicate that more entrepreneurial firms in 

rural areas would be particularly aggressive in their environmental signaling. This 

suggests that the negative associations that renewable energy has for rural areas may 

outweigh a utility’s desire to be innovative and proactive. 

The three levels of analysis played different roles in predicting RO and percent 

power from renewables. This research demonstrates that inter-firm level factors can be 

very impactful but regulators need to be wary of interaction effects. Further research 

could expand upon these initial efforts to include many more inter-firm level independent 

variables such as additional policies, AMI diffusion, and demographic characteristics. At 

the firm level it was clear that utility structure does make a difference, and that utilities 

that adopt a more entrepreneurial stance in their IRP's do indeed lean more aggressively 
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into the energy transition. At the individual level we did not have enough utilities with 

female entrepreneurs to achieve significance but there was a clear relationship between 

how long a CEO has been in the utility industry and how entrepreneurial they are willing 

to be, findings that echo other studies on the relationship between CEO tenure and EO. 

Oliver’s framework was an effective tool for organizing and understanding how 

environmental and internal factors can influence firm heterogeneity. We tested 

hypotheses related to each level in order to confirm Oliver’s claim that data from the 

individual, firm, and inter-firm levels was key for obtaining a clear picture of firm 

differentiation. Our results clearly indicated that factors across all levels contributed to 

utility environmental signaling. 

4.6.2 Contributions to Management Research 

Our results contribute to the existing management literature in several ways. 

Previous studies have investigated the barriers that sustainable entrepreneurs in the clean 

energy sector need to overcome in order to be successful, approaching the barriers to 

innovation from a more exploratory perspective (Pinkse and Groot, 2015). This research 

takes a more iterative, results-based approach by investigating which institutional 

contexts are most highly associated with progressive utilities. In the power industry, 

electric utilities are the gatekeepers to new innovation and sustainable entrepreneurs often 

must engage with them in order to test their innovations on the grid. By investigating the 

internal and external factors that impact the renewability orientation of a utility, favorable 

conditions for sustainable entrepreneurs can be identified and replicated. 
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An additional contribution is broadening the reach of entrepreneurial orientation 

research to include regulated industries. The majority of studies on entrepreneurial 

orientation are conducted based on data from private organizations where firms have the 

ability to manipulate prices and can grow and scale the products or services they provide. 

The power industry is fundamentally different because of state regulations, and firm 

performance in distribution utilities is not expressed through variables like firm age, size, 

and profitability. This study finds that entrepreneurial orientation is positively associated 

with firm performance in the regulated power industry, specifically with regards to a 

utility’s commitment to the energy system transition. This suggests that the study of 

entrepreneurial orientation can be useful in studying drivers of environmental 

consciousness in the regulated industries. 

In addition, this research proposes a new variable for assessing firm performance 

in the power industry. Renewability orientation is implemented as a novel solution for 

measuring the frequency of language about renewables and efficiency that occur in utility 

planning documents. Following the same logic underlying the metric for entrepreneurial 

orientation, distribution utilities that spent a higher percentage of their IRP word count 

discussing renewable energy technologies and efficiency strategies are positioning 

themselves as more committed to the transition to renewables. This new rating system 

could be used to compare and contrast individual organization’s commitment to climate 

change mitigation in other regulated public utilities such as water or transportation. 

These results also speak to the effect of utility size and structure on renewability 

orientation. Large, privately owned utilities were significantly less likely to derive power 

from renewables. Previous studies have found that privately owned utilities are more 
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likely to have distributed generation, but also finds that fossil fuels are most prevalent 

fuel for distributed generation infrastructure (Kwoka Jr, 2005). This research build on the 

work of Kwoka (2005) confirming that privately owned utilities are actually less likely to 

source power from renewables. As conversations over energy justice and energy 

democracy become increasingly prevalent in the energy transitions literature, the 

opportunities that cooperative ownership structures can provide for community 

engagement are entering the public narrative. Recently California Mayors submitted a 

petition to turn Pacific Gas & Electric, one of the largest investor owned utilities the 

country, into a cooperative utility (Penn, 2019). These results suggest that cooperative 

ownership structures could increase the likelihood of a firm deriving energy from 

renewables. 

This study also supported key findings that have been uncovered in the literature 

on the effect of firm age on entrepreneurial orientation. This research showed that older 

firms were less likely to talk about renewables and efficiency in their IRP’s as compared 

to newer utilities, supporting existing research on the mitigating impact of firm age on 

ability of a firm to convert entrepreneurial orientation into firm performance (Anderson 

and Eshima, 2013). Younger firms appear to be leaning into the transition to renewables 

more aggressively, a finding that echoes the work of other researchers who have reported 

“learning impediments” in older firms which make it difficult for them to adapt to new 

challenges (Autio et al., 2000). This study furthers the work of these researchers by 

measuring this effect in a regulated industry and connecting it with a non-financial 

performance outcome. 
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The significance of firm age in predicting a utility’s likelihood of deriving power 

from renewables offers additional support to existing studies on the effect of CEO tenure 

on firm performance and willingness to innovate. As anticipated, CEO tenure had a 

significantly negative impact on percent power from renewables. The average tenure of 

CEO’s in our data set was 20 years, five years beyond the mid-point suggested by Boling 

et al (2016). Therefore over half of our data set should be on a trend line of declining 

entrepreneurial orientation. A CEO’s extended exposure to industry norms and selection 

of enduring paradigms earlier in their careers appears to limit their willingness to lean 

into the energy system transition (Hambrick and Fukutomi, 1991). These results support 

the hypothesis that CEO tenure is significantly related to innovation in the power sector, 

suggesting that younger, less experienced top management might be a key to expediting 

the energy system transition. 

This work also points to the utility of the CATA analysis strategy to develop best 

practices for states and regulators as they consider how best to expedite the transition to 

renewable energy. The effectiveness of policy decisions like passing renewable portfolio 

standards or deregulating a state can be assessed based on their ability to influence utility 

thought and action. The relationship between renewable portfolio standards and a 

relatively higher percentage of renewables in a utility fuel mix echoes the findings of 

other researchers and provides quantitative evidence to support enacting renewable 

portfolio standards (Anguelov and Dooley, 2019). Deregulation, on the other hand, is a 

bit more complex. While distribution utilities in deregulated states are more likely to 

source power from renewables this relationship does not hold true in rural states. A 

potential conclusion for policy makers interested in catalyzing the energy system 
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transition would be to strongly support renewable portfolio standards but approach 

deregulation with caution. 

 

4.6.2.1 The Double-Edged Sword of Deregulation 

The global trend of electricity deregulation is fundamentally changing electricity 

marketplaces. In deregulated regions, consumers have the right to buy their power from a 

Retail Electric Providers (REP). REPs compete with utilities through lower prices, 

cleaner energy, and creative billing strategies. They purchase power on the wholesale 

market and leverage the utility’s transmission and distribution system to bring that power 

to consumers. Should a consumer choose to work with a REP their bill will have two 

components: roughly half will pay for infrastructure costs related to distribution and 

transmission while the second half will go directly to the REP (Electric Choice, 2020). 

The push for deregulation stems in large part from consumer frustration with the 

pace of change in the power industry. Utilities are notoriously risk averse with little 

financial incentive to innovate and lean into radical change. A primary argument for 

creating a competitive electric market was the potential to lower costs and lower prices 

for consumers (Dooley, 1998). Analysis of deregulated marketplaces have backed up this 

claim, observing improvements in efficiency and productivity among utilities in a 

deregulated marketplace (Goto et al., 2013; Wang and Mogi, 2017). Deregulation was 

further expected to drive radical innovation in the power industry as market preferences 

for renewables would be expressed in a competitive marketplace (Markard and Truffer, 

2006; Zame et al., 2018). Research has not supported the fulfillment of this objective, 
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however, as R&D efforts in deregulated marketplaces tend to become explicitly tied to 

business needs rather than policy considerations (Dooley, 1998). 

 In this analysis we analyzed the impact of deregulation (market dynamism) on 

utility fuel supply mix and renewability orientation. When the effect of dynamism is 

isolated in our Percent Power from Renewables model it is very negative (-47), indicating 

that dynamism is associated with a much lower percentage of power from renewables. In 

our analysis of renewability orientation the impact of deregulation is only slightly 

positive. These results would suggest that utilities in deregulated market environments 

talk slightly more about renewables but use far less of them in their fuel mix. 

A possible explanation for this finding is the fact that electric utilities are natural 

monopolies (Jamasb and Pollitt, 2008). Electric utilities have high fixed costs and low 

marginal costs and as such they should be public or regulated in order to maximize 

economic efficiency (Farley et al., 2015). In monopolies it does not make sense for fixed 

costs to be duplicated and cooperation is critical to maximizing market efficiency. There 

are risks to creating competitive marketplaces for natural monopolies. Since electricity is 

a basic need and highly price inelastic, small changes in the supply or demand of power 

can result in enormous changes in price that are reminiscent of what happened in 

California in 2001 (Farley et al., 2015). Without regulation, speculators can enter the 

marketplace and manipulate supply in order to increase prices. Regulation or public 

ownership is a way to insulate consumers from this type of risk. 

The diffusion of renewable energy is exacerbating the monopolistic nature of the 

industry, as wind and solar have very high fixed costs but no marginal costs aside from 

infrastructure maintenance. During times of high output when the sun is shining and the 
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wind is blowing, energy is almost non-rival as abundant inexpensive energy is produced 

that cannot be affordably stored.  A profit-maximizing utility would seek to limit output 

in order to maximize profit. In order to maximize the economic surplus, however, the 

price would need to trend towards marginal costs, which are often negligible (Farley et 

al., 2015). This would suggest that an electric utility that was providing least cost power 

to customers and investing aggressively in renewables should actually be losing money in 

order to maximize contribution to the public good. 

There is considerable research on innovation in natural monopolies. Schumpeter 

proposes that large monopolies are capable of the most rigorous innovation because they 

have a steady flow of cash to invest in research and they are insulated from market 

pressures (Schumpeter, 2013). In practice, however, electric utilities often demonstrate 

strong path lock-in (Markard and Truffer, 2006). Research on innovation in the 

deregulated Japanese electric sector offers a more nuanced perspective of how innovation 

is manifested amongst competitive energy suppliers in practice. Wang and Mogi (2017) 

found that patents increased as utilities became increasingly concerned with protecting 

their innovations from their competitors. While this outward increase in innovative 

activity may seem promising at first glance, the containment of promising new 

technologies and best practices through the patent process is the opposite of what should 

be encouraged in a natural monopoly where everyone benefits from a decarbonized, more 

efficient electric grid. There is also a shift towards more short-term R&D in deregulated 

marketplaces (Dooley, 1998). Studies have found that long term research related to new 

ways of envisioning the grid or developing early stage technologies are taking a back seat 

to innovations pertaining to short-term cost reduction strategies (Dooley, 1998; Wang and 
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Mogi, 2017). Innovation is thus accelerating according to metrics like patent filings but 

long term research into clean technologies is decreasing in deregulated marketplaces 

(Dooley, 1998). 

There are potential pathways for alleviating some of these issues. Mandated open 

access to new technologies could drive more long term innovation research and ensure 

that energy suppliers aren’t duplicating their R&D efforts (Farley et al., 2015). 

Government funding of R&D could further promote and support research on renewables 

and clean technology (Wang and Mogi, 2017). Additional research on strategies that 

other countries have employed to bolster renewable energy research would shed light on 

options for moving forward. 

         Deregulation appears to be a double-edged sword. Risk averse utilities 

were not moving quickly enough to transition to renewables or investing aggressively 

enough in innovations to cut costs. Deregulation succeeded in putting new pressure on 

utilities and giving the consumer marketplace a means to express their preferences. 

However, in a monopolistic industry like the power industry, cooperation is critical for 

achieving environmental and economic goals. In a marketplace where revenue is 

uncertain and green technology is hoarded to maximize profits, there is reason to fear that 

innovation may become a more individualistic imperative concerned with the survival of 

the fittest, not the survival of the group. 

4.7 Research Limitations and Future Directions 

These results were limited by the availability of data. Only 33 states require 

distribution utilities to publish integrated resource plans, and some of those states only 
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require Investor Owned utilities to publish these reports (American Wind Energy 

Association, 2020). The data set would have been stronger if more utilities were required 

to publish integrated resource plans. It was also difficult to find current data on utility 

fuel mixes, as this data point often did not exist or was buried in the IRP. It would have 

been interesting to see what percentage of renewables in a utility’s fuel mix were from 

distributed generation as opposed to utility-scale generation but this data was not 

available. Data on how the percentage of renewables changed year over year would have 

strengthened this analysis as well. Additional IRPs and more data on utility fuel mixes 

would have strengthened this paper. 

There was also a scarcity of data on utilities managed by women: only 27 utilities 

in our data set had a female manager. A recent article noted that the role of female 

leadership in the transition from fossil fuels to renewables has not been widely analyzed 

or even recognized (Allen et al., 2019). We had hoped to fill that gap in the literature and 

our data revealed that the average percentage of energy generated from renewables 

among male-led utilities was 29.7% and the average percent of renewables in the supply 

mix for female-led utilities was 36.5%. Due to the small sample size, however, the 

difference between these means was not significant. While the relationship between 

female leadership and renewables wasn’t ultimately conclusive, it was certainly 

suggestive. 

The results of the simultaneous equation estimation were unexpected and could 

be further explored in future analyses. Our results predicted that the more power a utility 

derives from renewables, the less likely they are to talk about renewables and efficiency. 

This could be due to a nonlinear relationship between the two variables, an event that is 
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frequently evidenced in the literature on entrepreneurial orientation (Wales et al., 2013). 

There could also be a temporal element to the relationship between RO and percent 

power from renewables, as utilities with less renewable energy in their fuel mix plan for 

more aggressive installations in the future while utilities who are ahead of the curve on 

renewables deployment see less of a need to address it in their planning documents. 

Talking at length about renewables may occur when a utility is planning to invest in new 

renewables, but generation projects and the transmission lines that connect them to the 

grid can take a very long time to build so their intentions might not materialize in their 

current percentage of power from renewables. Another possibility is that many utilities 

that derive a high percentage of power from renewables may accomplish this by being 

located next to a large amount of cheap hydro-electric power or wind turbines and thus 

may be choosing renewables because they are cheap and readily available rather than 

because they have a strong renewable orientation. More granular data on the fuel mix or 

deconstructing RO into two separate dimensions of efficiency and renewability might 

shed further light on this finding. 

There is also ample opportunity for examining the impact of different policy 

mechanisms, deregulation, utility ownership structure, and rurality on a utility’s 

commitment to renewables. A deeper dive into the rural energy transition could unpack 

the social justice and NIMBY challenges that appear prevalent in rural communities and 

enable regulators to proactively address issues related to how and where renewable 

infrastructure is built. As more states consider deregulation a more focused analysis on 

the impact of a competitive marketplace on renewables could be explored as well. 
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One key finding is that it is going to take multiple strategies to achieve an energy 

system that embodies technical and social ideals. There is no one-size-fits-all solution 

and different areas of the country will respond differently to regulatory imperatives. By 

taking a stakeholder-centric perspective it is possible to target messaging and rate design 

in such a way that creates a collaborative and democratic process. 

In conclusion, this data set provides a new window through which distribution 

utilities can be observed and their commitment to renewables measured against that of 

their peers. The words they use in their planning documents and the percentage of 

renewables that make up their fuel portfolios reveal varying levels of proactiveness as 

each utility balances environmental priorities with customer and shareholder values. As 

federal and state regulators look to design the right mix of policy instruments to increase 

the penetration of renewables, the theory and practice of entrepreneurial orientation can 

make a significant contribution. 
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Chapter 5 

Conclusion 

Novel problems require novel solutions. Both the supply and demand side of the 

electric grid are fundamentally changing. Existing policies like the demand charge are no 

longer suitable to manage an increasingly dynamic grid. Meanwhile new innovations are 

bubbling up from niches, leading to increasingly complex demands from residential 

consumers and supply resources that are less easy to control. As a vision for a 

transformed power grid crystallizes, both utilities and their customers will need to 

redefine their relationships and rethink existing systems. 

Table 5.1. Summary of key findings. 

 

Study Key Finding Next Steps

Defeat the Peak

Pro-social incentives can effectively 

motivate energy behavior change.

Test program with 

different utilities and 

customer classes.

Re-Aligning 

Demand 

Charges

Demand Charges need to change in 

order to support innovation and 

decarbonization.

Collect global examples 

of price allocation 

strategies and compare all 

new options.

Renewability 

Orientation

Inter-firm, firm, and individual 

level factors deeply influence utility 

heterogeneity.

Explore rural resistance to 

renewables and impacts of 

regulatory decisions.
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 This dissertation built on Geel’s Multi-Level Perspective to better understand key 

drivers of the energy system transition.  At the sociocultural level we tested the power of 

pro-social incentives, revealing that appeals to community building and the common 

good can be effective invitations to democratize and amplify collaboration between 

residential consumers and electric utilities. We acknowledged that pro-social messaging 

is only one lever of change and that rate design and regulatory frameworks also play 

critical roles in the pace and success of the energy system transition.  

 The analysis of the demand charge demonstrated that this outdated revenue 

recovery mechanism was sending blunt signals that did not fairly allocate costs based on 

weather-based fluctuations in the price of power or incentivize commercial and industrial 

customers to work with utilities to reduce grid costs. Demand charges, however, are just 

one of many policies and processes that influence how effectively a utility is able to keep 

electric rates affordable while integrating renewables into their power supply.  

 The final chapter of the dissertation took a more sweeping view of many of the 

inter-firm, firm, and CEO-level factors that could influence the transition to renewables. 

This broader analysis looked at the varying experiments that were already being carried 

out in the electricity marketplace, identifying key policies and organizational dynamics 

that are most likely to coincide with renewability orientation in electric utilities. This 

exploratory research set the stage for more targeted analyses of key issues in the energy 

system transition, suggesting for example that the way that renewables are integrated into 

rural areas could be improved. 

 This research identifies multiple inflection points in the niche, regime, and 

landscape levels of Geel’s sociotechnical transition framework. Distributed generation is 
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manifesting as new niche level innovations for load control and storage that are 

increasingly recognized as important tools for achieving decarbonization goals. This 

recognition is causing regulators and utility managers to question their existing business 

models and find room for participants like aggregators to assist with load management. 

The landscape level is exerting further pressure on the status quo, as questions of 

resiliency and reliability loom large in an aging system plagued by increasingly severe 

weather events. Social movements and policy initiatives to increase generation from 

renewables are breaking down the path lock-in evidenced by certain utilities and inspiring 

others to lean into a distributed future. Characteristics of regime level players also play a 

key role in determining the pace and success of the transition. This dissertation supports 

Geel's MLP, finding important drivers of the energy system transition at each of the three 

levels. 

5.1 Engaging with Residential Customers 

Residential customers are being asked to participate in both active measures to 

curtail energy consumption when weather-dependent supply is low in addition to 

gradually decreasing their overall demand by investing in more efficient appliances. The 

traditional customer engagement strategy is purely financial, based on neoclassical 

economic program design. This paper looked beyond neoclassical economics to 

understand what else might motivate residential customers to respond to utility demand 

curtailment requests. The drive to bond and participate meaningfully in the community 

emerged from our literature review as a potentially powerful motivating force (Lawrence 

and Nohria, 2002b). We collaborated with the Burlington Electric Department to measure 
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the impact of a program structured around the drive to bond where the incentive was a 

group donation to a local charity. Our results demonstrated a payback of $11 for every $1 

invested in the program, findings that could help convince more utility managers to 

implement this type of program. Further, this confirmed our hypothesis that pro-social 

incentives can motivate residential customers to change their behaviour. 

This customer engagement study could be greatly expanded upon amidst 

increasing demand for systemic change in power structures in the United States. Asking 

residential customers to postpone their appliance usage is just the tip of the iceberg. If the 

social side of the socio-technical transition succeeds then power structures will need to be 

decentralized and diversified. Residential customers of all backgrounds will need to be 

more engaged with decisions around siting, deployment of distributed energy resources, 

development of micro-grids, and many other power related decisions. Based on our 

research, outreach strategies based on altruism may be more effective at engaging with 

this wider audience than a purely financial strategy. Specific calls to support community 

goals through energy behavior change could mobilize residential clients in a way that is 

necessary to meet the full breadth of goals for the grid. 

Further research could also investigate the impact of altruism-based programming 

for utilities with different characteristics. This study was executed in Burlington, 

Vermont with a municipal utility. Burlington, Vermont residents are highly sympathetic 

to climate-related goals and their utility has already succeeded in making Burlington 

100% renewable (Peters, 2015). It would be interesting to repeat this test in other areas of 

the country and with different types of utilities to understand if the level of engagement is 

impacted by environmental and organizational characteristics. Further, initial testing by 
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the Burlington Electric Department has showed promise for the use of non-financial 

incentives to drive energy behavior change for small to medium sized businesses. Small 

and medium enterprises are notoriously difficult to engage in energy programming (Máša 

et al., 2018). However, they often support their communities by supporting little league 

teams and other local initiatives. If participation in energy programming was positioned 

as a means of community support, small and medium enterprises may be more willing to 

engage (Jurik and Bodine, 2014). 

5.2 Engaging with Commercial and Industrial Customers 

In our second study we investigated rate design strategy for commercial and 

industrial customers. The demand charge which has served for over a century as a 

reliable means of cost recovery for electric utilities is no longer appropriate for a grid 

with weather-based supply. In order for utilities to generate least cost power, commercial 

and industrial customers need to flex their demand to available load. Our regression 

analysis explored a consequence of the current value-based pricing, as Bonbright 

describes it, that was designed to compete with independent generation rather than to 

recover marginal costs (Neufeld, 1987). We hypothesized that the result of utility reliance 

on the demand charge would be the shifting of grid costs onto residential customers. 

Indeed our model showed that residential customers pay a higher average electric rate if 

their utility derives a larger fraction of their revenue from demand charges. By updating 

the demand charge to align price and cost signals more closely, commercial and industrial 

customers could be incentivized to invest in distributed energy resources that lower 

overall grid costs, not just their coincident peaks. Ultimately this research suggested that 
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the current demand charge rate structure cannot fairly and effectively support a weather-

dependent decentralized grid. 

This analysis was just a starting point, however, to a much larger discussion of 

how to update the demand charge. Multiple options exist for embedding more flexibility 

and dynamism into commercial and industrial rates. A modeling effort to understand the 

implications of different rate design mechanisms would be a useful follow-up study. As 

regulators struggle to weigh one option against another, additional data and scenario 

building would lend clarity to the selection process. 

5.3 Engaging with Electric Utilities 

Our third paper focused on utility engagement in the energy system transition. 

While some utilities lean into efforts to decarbonize and decentralize the grid, others take 

a much more conservative approach. We measured these differences by constructing a 

database of 170 electric utilities that had filed public Integrated Resource Plans. Using 

computer-aided text analysis (CATA) we created a novel dictionary, Renewability 

Orientation, to assess the frequency of renewability-related language in this key utility 

planning document. The resulting firm heterogeneity was analyzed through the lens of 

institutional resource-based theory, and factors at the inter-firm, firm, and managerial 

levels were all used to build a model to predict RO (Oliver, 1997). Ultimately we found 

that a constellation of factors will jointly determine how aggressively a utility is willing 

to lean into the energy transition. 

The results of this study provide multiple opportunities for both expansion as well 

as more narrowly focused investigations. Our database includes numerous potential 
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dependent variables, and future studies could revolve around models that predict a 

utility’s entrepreneurial orientation, reliability, or the percent power that they derive from 

non-hydro renewables. Additional independent variables could be analyzed as well, such 

as the background training of the CEO, existence of net metering, state GDP, political 

orientation of the state, and public opinion towards climate change. Before asking new 

questions, however, it would be interesting to explore emergent trends from the model 

that we already created. 

Our model suggests that utilities in rural states are less likely to talk about 

renewables and efficiency in their planning documents. When the state is deregulated and 

utilities need to compete for customers the effect is magnified. At the same time, utilities 

in rural states are more likely to derive power from renewables. This suggests that 

renewable energy infrastructure is being deployed in rural areas but that it is not viewed 

favorably by rural residents or utilities. This tension is critical to explore before increased 

renewable deployment exacerbates this underlying social tension. 

Regulators in rural states need to re-examine the way that renewables are being 

integrated into communities, particularly if they are considering deregulation of utilities. 

Privatization of electric utilities appears to have a negative impact on the energy system 

transition, so regulators could consider converting privately owned utilities into rural 

coops and municipal utilities. Renewable Portfolio Standards are a good way to increase 

the penetration of renewables as well. Lastly, utility leadership needs to open up to some 

diversity. Over 80% of the utilities in my sample were run by men with an average of 18 

years of experience in the power industry. This is not a group that is going to shake things 
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up, and a regulatory push for newer and more diverse leaders could be positively 

impactful as well. 

5.4 Future of Renewable Energy Innovation 

The complexity of repurposing the grid to achieve social, environmental, and 

economic goals is significant. Innovation is at the center of this shift, pushing renewable 

technologies further than ever before, but it is hard to know if it is happening quickly 

enough. An aging infrastructure, heightened awareness of cybersecurity risks, and higher 

frequency of extreme weather events can create anxiety and fear amidst a population that 

depends on reliable energy for almost every part of their daily lives. 

But amidst these harbingers of doom are seeds of hope. They emerge from 

entrepreneurs whose commitment to climate change mitigation motivates them to take 

huge risks to create load balancing solutions. It is visible in residential consumers as they 

rally together to curtail energy loads during peak events in order to support their 

community non-profits. Hope can be seen in regulators and policy makers who set 

ambitious goals for the reduction of greenhouse gases and work closely with utilities to 

question complex and longstanding policies in order to build a system that can handle 

new challenges. When seen in the context of these actions it is possible to believe that 

there is hope for an energy system transition that creates meaningful and positive change 

for both the social and technical elements of the power system. 
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Appendix A: Word List for Renewability Orientation 

Achievable Potential; Acid Rain; Additionality; Advanced Metering 

Infrastructure; Advanced Rate Design; American Recovery and Reinvestment Act of 

2009; Behavior-Based Programs; Blower Door; Coincidental Peak Factor; Combined 

Heat and Power; Comprehensive Home Energy Audits; Critical Peak Pricing; 

Decoupling; Demand Response; Demand-Side Management; Distributed Energy 

Resource; Distributed Generation; Distributed Power; Emerging Technology; Energy 

Conservation; Energy Efficiency Measure; Energy Efficiency Potential; Energy 

Efficiency Resource Standard; Feebate; Flexible Fuel Vehicle; Fuel Cell Vehicle; Global 

Warming; Green Building; Greenhouse Gas; Heat Pump; High Performance Building; In-

Home Display; Industrial Ecology; Load Shifting; Market Transformation; Peak Shaving; 

Plug-in Hybrid-Electric Vehicle; Post-Occupancy Evaluation; Real Time Pricing; 

Recycled Energy; Renewable Generation; Smart Meter; Time of Use Rates; Utility 

Restructuring; Weatherization; AFV; Biofuels; Biomass; C-BED; CIP; Cogeneration; 

Combined Cycle; Distributed Generation (DG); DSM; Energy Conservation; Energy 

Efficiency; Greenhouse gases; Greenhouse; Net metering; NEM; PACE; Property 

Assessed Clean Energy (PACE); PV; RDF; REC; Renewable Energy Certificate; 

Renewable Resources; RES; Renewable Energy Standard; RPS; Renewable Portfolio 

Standard; Societal Benefits Charge; SREC; Solar; Solar Renewable Energy Certificate; 

Unbundling; Wind; Turbine 
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