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ABSTRACT 

 

A computational study was conducted of axisymmetric droplet impingement on a flat 

surface at low droplet Reynolds numbers. The study was motivated by deposition of 

melted volcanic ash particles within gas turbine engines, which can pose significant 

safety risk for jet aircraft encountering volcanic ash clouds. The computations were 

performed using the combined level-set volume-of-fluid method for Reynolds numbers 

Re in range 0.05≤Re≤10, typical of volcanic ash impingement problems. Computational 

results were compared to typical assumptions for approximate droplet impact models at 

high Reynolds number. The computational predictions were validated using existing 

experimental data. The computations indicate that contact radius increases over short 

time in proportion to the square root of time, in agreement with short-time analytical 

predictions. The droplet shape was well approximated by a truncated spherical cap, which 

spread on the substrate surface an increasing amount as Re was increased. The axial 

velocity component was approximately independent of radius over most of the droplet, 

and the radial velocity component was observed to vary log-normally with axial distance. 

The dissipation rate was distributed throughout the droplet for low Reynolds numbers 

cases, but became increasingly localized near the contact line as the Reynolds number 

increased past unity. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

 During the 21st century there has so far been 18 major volcanic eruptions around 

the world, and during the 20th century there were 64 major volcanic eruptions, all 

classified as a four or higher on the Volcanic Explosivity Index (VEI). The VEI is a 

logarithmic scale describing the destructive power of an eruption based on criteria such 

as amount of ejected material, height of ejected ash cloud, and impact on infrastructure. 

Volcanic eruptions release lava, gases, and tephra. Tephra is a generic term for 

fragmented material released during an eruption, including ash. Ash particles released 

during an eruption can have a wide range of size and composition. For example, the 

Eyjafjallajökull volcano in Iceland emitted large ash clouds containing particles ranging 

in size from 1-100 micrometers (Dacre et al., 2013). Small particles can remain 

suspended in the atmosphere for weeks and can travel many hundreds of kilometers from 

the volcanic source. Figure 1.1 shows a schematic of volcanic ash deposition and 

sedimentation. Larger particles tend to settle out closer to the source eruption and not 

remain suspended long, while smaller particles can be transported thousands of 

kilometers in the atmosphere over the course of several weeks.  
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Figure 1.1: Volcanic ash and sedimentation and deposition after a volcanic event. The 

grey scale indicates the concentration of the ash. The x-axis simultaneously shows the 

time after the eruption and the distance from the source. The y-axis shows the height of 

the ash cloud after eruption. Near source eruption process are defined as six hours after 

the eruption and 500 kilometers from the source. Reproduced from Ojovan (2008). 

 

Approximately nine percent of the world’s population lives within 100 kilometers 

of an active volcano (Horwell & Baxter, 2006). Particle size and concentration in ash 

clouds decay exponentially with distance from the volcanic source (Pyle, 1989). Ash 

deposits can negatively impact residential homes, agricultural land, municipalities, and 

aircraft infrastructure located at large distances from the volcanic source (Wilson et al., 

2012). Roughly one-fifth of airports world-wide are located within 500 kilometers of an 

active volcano (Guffanti et al., 2009). Ingestion of volcanic ash particles into aircraft gas 



3 

 

turbine engines at high particle concentrations and over long exposure times can cause 

significant engine damage (Dunn, 2012). Between the years of 1953 and 2009, over one-

hundred incidents of airplanes flying through volcanic ash clouds have been recorded, 

including 26 incidents resulting in severe damage (Guffanti et al., 2010). Nine of these 

incidents resulted in total engine failure. Additional related incidents have occurred with 

entrainment of small sand particles into gas turbine engines, which is particularly 

problematic for military aircraft operating in desert locations.  

Volcanic ash is primarily composed of silicon dioxide (SiO2) and is considered an 

amorphous solid (Chen & Zhao, 2015). Amorphous solids have the unique characteristic 

that their viscosity depends logarithmically on temperature. The Vogel-Fulcher-

Tammann (VFT) equation models the logarithmic temperature dependence of viscosity 

well. When amorphous, or glassy, solids experience a large temperature change the 

viscosity of the substances rapidly changes, and can vary anywhere from 1024 to 10-4.6  

(Angell, 1991, 1996; Russell et al., 2003). The rapid change in the viscosity leads to a 

rapid change in the mechanics of the material. For instance, an amorphous solid at a 

relatively low temperature will resist shear and exhibit constitutive behavior more similar 

to an elastic solid. If the same material experiences the same shear, but at much higher 

temperature, the reaction will be different. The material may instead be prone to 

plastically deforming, or undergoing continuous deformation like a fluid (Ojovan, 2008). 

An aircraft gas turbine engine (GTE) may have a temperature peak as high as 2000 ºC, 

which is high enough to cause volcanic ash to heat past its melting point (Giordano et al., 
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2008; Song et al., 2016). This melting will lead to adhesion and deposition of material on 

the surfaces inside of the GTE (Chen & Zhao, 2015; Taltavull et al., 2016). 

Engine damage from ingestion of small volcanic ash and sand particles is of two 

types. The first occurs due to erosion of compressor blades by collision with solid 

particles traveling at high speeds, as shown in figure 1.2 (Chen & Zhao, 2015; Dunn, 

2012; Taltavull et al., 2016).  

 

Figure 1.2: Damage done to the ninth stage compressor blades of a P/W F100 engine, 

S/N P580043. The engine was subjected to continuous feeds of dust for varying particle 

size distributions and concentrations. The average particle size feed into the engine was 

37 microns. Reproduced from Dunn (2012). 

 

The particle-induced erosion will cause significant change in the shape of the compressor 

blade, leading to reduced blade efficiency. Particles passing through the engine 

combustion section are exposed to high temperatures, with turbine inlet temperature often 

in excess of 1000 °C Song et al. (2016). Exposure to high temperatures causes an ash 
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particle to become soft, leading either to material sintering or melting into a highly 

viscous liquid droplet (Song et al., 2016). The second type of GTE damage is due to 

deposition of molten ash material on the hot section components of the engine, including 

plugging of film cooling channels and deposition on turbine nozzle guide vanes, shown in 

figures 3 and 4 (Bonilla, 2012; Walsh et al., 2006). Upon impact on a downstream 

surface, a melted particle spreads on the surface while exchanging heat with the 

underlying substrate. The melted particle will eventually reach an equilibrium resting 

state driven by the balance of surface tension and viscous forces, while at the same time 

the droplet is cooling via contact with the substrate. This process results over time in 

formation of a glassy deposit on the turbine nozzle blades and guide vanes, which can 

plug film cooling holes and cause cracking of ceramic coating used for heat protection of 

hot section components (Chen & Zhao, 2015). 

It has been shown that particles larger than 100 microns in diameter are less likely 

to melt and adhere upon a collision, while particles less than approximately three microns 

in diameter are unlikely to collide with any surface at all (Dunn, 2012). The primary area 

of interest, in terms of melting and colliding potential, is particles with diameters in the 

range 10-30 microns and is shown in figure 1.3 (Taltavull et al., 2016).  
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Figure 1.3: (a) A diagram of how a spherical particle, with some diameter Dp, may collide 

with a solid object, with a characteristic length scale Do. The particle is advected by a 

velocity U in a carrier fluid, in this case air. The particle density and carrier fluid 

viscosity are given by ρp and ηg, respectively. In this figure, both (a) and (b), Stk refers to 

the stokes number between the particle and carrier fluid. (b) Is the calculated stokes 

number assuming values for the, particle density, characteristic length scale, and velocity, 

with varying particle diameters. Reproduced from Taltavull et al. (2016). 

 

When softened, or molten, volcanic ash particles that collide with turbine blades will 

adhere and spread out on the impacting surface. The turbine blades feature cooling holes 

which are necessary to keep the blades at a safe operating temperature. If the film cooling 

holes become blocked by deposited material, they can no longer supply sufficient heat 

transfer, effectively not performing the task for which they were designed. Without 

sufficient heat transfer the blade will melt and completely fail, as seen in figure 1.4.  
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Figure 1.4: Image of turbine blades after exposure to continuous dust feed. Reproduced 

from Dunn (2012). 

 

There are similar concerns for the turbine guide vanes. When material adheres to the 

vanes by impingement of molten ash particles, as shown in figure 1.5, the heat transfer 

ability of the blade is changed.  
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Figure 1.5: Volcanic ash material that has been melted and deposited on the turbine vanes 

of a GTE. Reproduced from Dunn (2012). 

 

Cracking and degradation of thermal barriers applied to the vanes becomes a significant 

issue due to the buildup of material (Chen & Zhao, 2015). Another concern for turbine 

guide vanes is that significant material buildup will decrease the lift on the blades and 

degrade turbine efficiency. A decrease in efficiency will force the GTE compressor to 

work harder, resulting in decreased service or even engine stall. 

 The volcanic ash deposition problem discussed above is associated with the 

broader topic of droplet impingement, which is important for a wide variety of 

applications, such as thermal spray coating (Alavi et al., 2012; Bertagnolli et al., 1994), 
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inkjet printing (Lim et al., 2009; van Dam & Le Clerc, 2004), agriculture (Wirth et al., 

1991), droplet erosion on turbine blades (Zhou et al., 2008), icing of airfoils (Antonini et 

al., 2011; Mishchenko et al., 2010) and others. The physics of droplet impingement have 

been extensively investigated over several decades, as discussed in detail in the Literature 

Review chapter of this thesis. However, nearly all research on droplet impingement has 

considered cases where the droplet Reynolds number is large compared to unity. By 

contrast, the problem of molten volcanic ash particle impingement in gas turbine engines 

is a small Reynolds numbers process, due to the high viscosity and small diameter of the 

droplets. Many of the assumptions used in theoretical models of droplet impingement at 

high Reynolds numbers may not be valid for low Reynolds numbers. Therefore, there is a 

need for expanding the existing body of research on droplet impingement to cover low 

Reynolds number impingement problems. In particular, as has been discussed above, 

melted volcanic ash particles pose a significant danger to aviation safety and equipment 

through adhesion and deposition in gas turbine engines. An improvement in our ability to 

predict this damage by an improved understanding of the droplet impingement problem 

under appropriate parameter values is a critical concern.  

 

1.2. Objectives and Scope 

This thesis examined the impact and spreading of fluid droplets on a flat surface 

under parametric values typical of volcanic ash passage through an aircraft gas turbine 

engine. In particular, this research differed from the existing body of research on droplet 
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impingement in that it is primarily concerned with problems of low Reynolds number 

droplet impingement and associated modeling.  

To model the spreading process of volcanic ash inside of a gas turbine engine, 

two preliminary analyses were completed. The analyses completed were done to 

determine significance of heat transfer during the droplet spreading process and the 

uniformity of the fluid temperature for a melted volcanic ash particle. After the 

preliminary analyses were completed, a computational fluid dynamics model was 

developed for an axisymmetric droplet impingement onto a flat surface at low droplet 

Reynolds number. The model used a coupled level-set volume-of-fluid (CLSVOF) solver 

to simulate the liquid and gas phases. The simulated solutions were used to assess the 

validity at low Reynolds numbers of various assumptions typically used for theoretical 

modeling of droplet impingement at higher Reynolds numbers, including droplet shape, 

dissipation rate field, and velocity profiles during droplet impact.  

The layout of this thesis is as follows. Chapter 2 gives a literature review covering 

volcanic ash material properties, a discussion of previous work on droplet impingement, 

and experimental and numerical studies done on volcanic ash ingestion into gas turbine 

engines. Chapter 3 covers the thermal assessments used to justify the simulation setup. 

Chapter 4 details the computational method used for direct numerical simulations of 

droplet impingement. Chapter 5 assesses the results of the droplet impingement 

simulations, examining the energetics of the droplet by looking at the local kinetic 

energy, potential energy, and dissipation rates during the collision. The computations are 

validated using previous experimental data. Conclusions are presented in Chapter 6, 
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including discussion of how low Reynolds number droplet impingement differs from the 

more widely studied high Reynold’s number cases and the significance of these 

differences for modeling of volcanic ash passage through gas turbine engines. 
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CHAPTER 2 

LITERATURE REVIEW 

 This literature review discusses background information necessary to understand 

volcanic ash interactions with solid surfaces under conditions relevant to GTEs. Section 

2.1 discusses the material properties of volcanic ash, including viscosity and thermal 

properties as functions of temperature and ash chemical composition. Section 2.2 

provides background on the problem of droplet impingement onto a flat surface, 

including an overview of the physics of a droplet collision, regime mapping, a more 

detailed discussion of experimental and numerical results for droplet collision. Section 

2.3 covers droplet solidification, including an in-depth review of droplet adhesion and 

solidification inside of GTEs. Relevant material on droplet solidification and adhesion in 

thermal spray coating applications are also discussed. 

 

2.1. Volcanic Ash Material Properties 

2.1.1. Volcanic Ash Viscosity 

 Viscosity is one of the most important transport properties of a fluid. The 

viscosity of molten volcanic ash can span 15 orders of magnitude or more, with 

variations largely due to differences in temperature and composition. Molten volcanic ash 

is derived from liquid magma, which is composed of a mixture of silicon dioxide (SiO2) 

and a wide range of secondary suspended substances (Hobiger et al., 2011). When 
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discussing the material properties of volcanic ash, whether its thermal, viscous, or any 

other property, the composition is important.  

Vogel et al. (2017) is one of only a few studies to present a systematic and 

extensive evaluation of a large set of widely varying volcanic ash samples. The study 

characterized the composition, optical features, and density of various volcanic ash 

samples.  Figure 2.1 depicts a phase plot of the percent weight of SiO2 and alkali oxides 

with varying volcanic ash samples.  

 

Figure 2.1: Classifications of volcanic ash samples based on their mean SiO2 and alkali 

oxide content. The colors indicate the main igneous rock type of the samples; dark blue is 

basalt, light blue is basalite-andesite, green is andesite, yellow is dacite, and red is 

rhyolite. The symbols indicate the volcanic eruption that the sample was collected from; 

GRI is Grimsvotn, Iceland, KEL is Mount Kelud, Indonesia, EYJ is Eyjafjallajokull, 

Iceland, SPU is Mount Spurr, United States, SAK is Mount Sakurajima, Japan, MSH is 

Mount St. Helens, United States, SOU is Soufriere, United Kingdom, RED is Mount 

Redoubt, United States, CHA is Chailten, Chile. Reproduced from Vogel et al. (2017). 
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In figure 2.1 the percent weights of SiO2 and alkali oxides will not sum to 100 percent, as 

much of the constitutive material is not measured or considered significantly important 

compared to the SiO2 and alkali oxides. Silicon dioxide gives volcanic ash it’s glassy 

content, while the alkali oxides contribute to the non-linear material behavior (Chen & 

Zhao, 2015; Giordano et al., 2008). Alkali oxides are what is formed from the reaction 

between a metallic oxide and water (Krawietz et al., 1998). The alkali oxides also play an 

important role in determining interfacial characteristics of melted volcanic ash, such as 

contact angle and surface tension (Hobiger et al., 2011). The data in figure 2.1 exhibits 

large variations among samples from a single eruption (indicated by error bars) and 

among samples from different eruption sites around the globe. Throughout this section 

the suspended constituent material will be referred to as 'crystals', where the composition 

of the material is unimportant. If the composition, or classification, is important it will be 

specifically named, e.g. alkali oxides. 

Measuring the viscosity of a molten volcanic ash is a non-trivial task. The non-

Newtonian material behavior, which arises largely from the crystal content, will cause 

complications in the mathematics used to derive the measurement method (Krieger, 

1953). Taking a direct magmatic sample from an active volcano is not currently possible, 

so creating a reliable laboratory sample is required. Using wide gap rotational viscometry 

has been shown to work fairly well for measuring the viscosity of non-Newtonian fluids, 

becoming the standard method of measuring non-Newtonian viscosities at temperatures 

and strain rates analogous to magma transport (Krieger, 1953; Macosko, 1994; Sonder et 
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al., 2006). For the purposes of measuring volcanic ash viscosity with rotational 

viscometry, the separation gap must be larger than the length scale of the suspended 

crystals (Hobiger et al., 2011). The cylindrical viscometry method, with an arbitrary gap 

length, has an exact solution for the viscosity based on the rotation rate of the cylinders 

and applied torque (Krieger, 1953). The method has been adapted to commercially 

available tools and supplies accurate results for high temperatures and non-Newtonian 

fluids (Hobiger et al., 2011; Sonder et al., 2006; Song et al., 2017). Because obtaining 

samples of actual magmatic substances is near impossible, sample preperation is quite 

important. Equally as important as composition is how the term 'melt' is defined. Broadly 

speadking, in the literature the term 'melt' refers to a sample whose material properties are 

being tested, such as viscosity or thermal conductivity (Eriksson et al., 2003; Giordano et 

al., 2008; Hobiger et al., 2011; Nishi et al., 2018; Sonder et al., 2006; Song et al., 2017). 

Unfortunately, 'melt' also refers to how the test sample was prepared and processed, such 

as sintering and heating rate. While being tested the melt sample can either be in an 

equilibirum or non-equilibirum state. For silicate melts the equilibirum state is defined as 

time invariant thermodynamic conditions and material properties (Hobiger et al., 2011; 

Onorato et al., 1978). Material property equilibrium is when the crystal content has 

achieved checmial equilibrium, meaning the constituent material (crystal content) is no 

longer reacting with one another (Lofgren, 1971; Thornber & Huebner, 1985). For 

studies that don’t mention the state of the crytal content it is assumed that the melt 

contains both equilibiurm and non-equilibrum crystals. It is likely that there is always 

some non-equilibirum crystals present in the melt sample, even if the concentration is low 
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(Lofgren, 1971). The cylindrical viscometry method has been used over a range of 1131 

to 1451 °C on samples produced directly from the 2010 eruption of Eyjafjallajökull 

volcano, Iceland. The results showed a viscosity ranging from ~103-10 Pa-s, see figure 

2.2 (Song et al., 2017). 

 

 
Figure 2.2: Viscosity and temperature plot produced from a cylindrical viscometry test on 

material gather from the Eyjafjallajökull volcano, Iceland. The red shaded region (left) 

indicates that the sample has heterogenous microstructures during heating, while the 

white region (right) indicates homogenous microstructures during heating. Data was 

collected at temperatures of: 1133 °C (black square), 1180 °C (red circle), 1226 °C (blue 

delta), 1272 °C (purple triangle), 1315 °C (green diamond), 1360 °C (blue hexagon), 

1406 °C (purple star), 1451 °C (dark purple pentagon). Reproduced from Song et al. 

(2017). 
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 The viscosity of amorphous substances can be well modeled by the Vogel-

Fulcher-Tammann (VFT) equation (Lara et al., 2004). Previous models used a strictly 

Arrhenian temperature dependence to model the viscosity (Bottinga, 1972; Shaw, 1972). 

An Arrhenian temperature dependence is purely exponential and has been shown to break 

down at temperatures as low as 130 degrees Celsius. This led to the implementation of 

models which used three fitting parameters rather than two, known as a non-Arrhenian 

model (Baker, 1996; Giordano et al., 2004a; Hess & Dingwell, 1996; Vetere et al., 2006). 

The crystal content, specifically taken as alkali oxides, is crucial to the nonlinear 

behavior of viscosity (Giordano et al., 2008; Giordano, et al., 2004a; Giordano et al., 

2004b). The nonlinear effects of the crystals led to the breakdown of most Arrhenian and 

non-Arrhenian models. Giordano et al. (2008) developed a semi-empirical model for the 

viscosity of magmatic liquids using an extensive database to ensure robust data for 

parameter fitting. The model was developed with data from 1,774 labs which covers most 

forms of terrestrial volcanic rock. The data considered ranged in temperature from 535 to 

1,705 °C, and a viscosity that ranged from 10-1 to 1013.8 Pa-s. 

 The Giordano et al.’s (2008) model used the form of the VFT equation given by  

log10 𝜂 = 𝐴 +
𝐵

𝑇(𝐾)−𝐶
. (2.1) 

Coefficients A, B, and C are fitting parameters determined from viscosity data given as a 

function of temperature. It is noted that as the temperature goes to infinity this equation 

predicts that the viscosity approaches a constant value, regardless of the parameters B and 

C. This implies that there is a universal high temperature viscosity for all silicate 

materials, approximately 10-5 Pa-s (Angell, 1991, 1996; Eyring et al., 1982; Russell et al., 
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2003; Scopigno et al., 2003). Giordano et al.’s (2008) model addressed the coefficient A 

as the value required to achieve the measured high temperature viscosity for a given data 

set. The coefficients B and C determined by the Giordano et al.’s (2008) model come 

from 18 adjustable parameters. The adjustable parameters were determined from linear 

combinations of coefficients determined by material properties. The result is a system of 

nonlinear equations that can be solved for the coefficients, which accurately reflected a 

given data set’s material properties. The resulting model is robust for both volatile-rich 

and anhydrous material compositions, capturing Arrhenian and non-Arrhenian behaviors. 

Figure 2.3 shows the fitted curve for volatile-rich and anhydrous material compositions 

with good agreement for both. 
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Figure 2.3: Experimental data, shown as the circles, plotted against the Giordano (2008) 

model, shown as a black line. The black dashed lines are the 5 percent confidence 

intervals. The y-axis is the base ten logarithm of viscosity. The x-axis is 10,000 divided 

by the temperature the sample was taken at, T(k). Plot (a) is a data set of anhydrous melt 

samples, with N=932. Plot (b) is a data set of volatile-rich melt samples, with N=842. 

Reproduced from Gordiano et al. (2008). 

 

Figure 2.3 can be easily compared to both older and more recent models shown in figure 

2.4.  
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Figure 2.4: Predicted viscosity shown as the solid black line with five percent confidence 

interval, shown as the dashed black line. Plots (A) and (B) were reproduced with the 

Arrhenian Shaw (1972) model and the same data used in figure (bb)* by Giordano 

(2008). Plots (C) and (D) were reproduced with the non-Arrhenian Hui and Zhang (2007) 

model and the same data used in figure (bb)* by Giordano (2008). The y-axis is the base 

ten logarithm of viscosity. The x-axis is 10,000 divided by the temperature the sample 

was taken at, T(k). 

*All four plots, (A)-(D), do not include fluorine based experimental samples, the models 

were not calibrated to this material. Reproduced from Gordiano et al. (2008). 

 

In figure (c) four plots are shown. Two of the plots, (A) and (B), are based on an 

Arrhenian models (Shaw, 1972). The other two plots, (C) and (D), are based on a non-

Arrhenian models (Hui & Zhang, 2007). Both models were calculated using the same 
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volatile-rich and anhydrous material composition data as figure 2.3. In figure 2.4 

Giordano et al.’s (2008) model is clearly shown to be more robust for the presented data. 

 

2.1.2. Volcanic Ash Thermal Properties 

 The previous section demonstrates that the viscosity of a silicate melt, such as 

volcanic ash, decreases logarithmically with increased material temperature. If a 

significant temperature gradient is present in the volcanic ash material, then a significant 

viscosity gradient will also be present. For this reason, how the material conducts heat 

becomes very important when considering the impact of ash particles onto GTE surfaces. 

The thermal properties of volcanic ash melts have not been well studied, so we will also 

consider properties of silicate-based melts in general in this section as an analogy for 

volcanic ash, as ash is primarily composed of SiO2. 

 Methods for measuring the thermal conductivity of silicate melts were developed 

in the decades spanning from 1970 to 1990 (Carrigan & McBirney, 1997; Murase & 

McBirney, 1973; Snyder et al., 1994; Snyder et al., 1997). One of the first methods 

developed for measuring thermal conductivity of silicate melts used either a hot plate or 

hot wire to measure heat flux, which was then used to solve the radial heat flow equation 

for temperature (Murase & McBirney, 1973). This method is very simple to use (Speyer, 

1994), but the requirement that the thermocouple must be directly linked to the medium 

being tested creates contact issues, mainly that attaching the apparatus to a liquid sample 

is limited (Bagdassarov & Dingwell, 1994). A more sophisticated method, proposed by 
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Parker et al. (1961) and further refined in a series of papers in the 1990's, is called the 

laser flash analysis (LFA) method. This method was first applied to silicate melts by 

Ogawa (1993). The advantage of LFA over a hot plate or hot wire is the minimally 

intrusive nature of the measurement procedure, where radiation and conduction are less 

of a concern (Ogawa et al., 1993; Parker et al., 1961). LFA is conducted by placing a 

cylindrical sample with planer parallel faces on an isothermal surface. An infrared laser 

pulse is directed at the exposed planar face, where the laser is set up in such a way that 

the exposed surface heats homogenously. The other planar face will heat up due to 

conduction, while the surface temperature is recorded as a function of time. The 

procedure allows for the heating caused by radiation and diffusion to be easily 

distinguished (see figure 2.5 for a schematic and description of the setup). 
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Figure 2.5: Original laser flash analysis (LFA) scheme. The sample holder was connected 

to a thermo couple on the back side away from the flash lamp. The flash lamp was a 

commercially available unit capable comprised of a four-turn quartz spiral and Pyrex 

envelope. Each flash required 400 Joules of energy. The oscilloscope, with the use of a 

differential transistor preamplifier, output the electrical signal from the thermocouple. 

The display of the oscilloscope was recorded on a polaroid camera. Reproduced from 

Parker et al. (1961). 

 

 The methods of determining the thermal properties of molten volcanic ash have 

been developed largely by testing on silicate-based materials. While these materials are 

certainly useful to validate measurement techniques, results for general silicate-based 

materials might not be relevant to volcanic ash samples, as volcanic ash is extremely 

varied in composition of silicate and the crystal materials. The silicate content varies 

from approximately 30 - 60 percent for volcanic ash samples from different volcanoes, 
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see figure 2.1. A number of studies done over the last 20 years were examined to typical 

ranges of the volcanic ash thermal properties, including thermal conductivity, thermal 

diffusivity, and specific heat. The thermal properties have a strong dependence on the 

silicate content and crystal content, so the data is presented in terms of order of 

magnitude. The results of this survey indicate that thermal diffusivity ranges from O(10-7) 

- O(10-6) m2/s. The thermal diffusivity is a relatively challenging quantity to measure and 

is typically done using the laser flash analysis method (Büttner et al., 1998; Merriman et 

al., 2013; Vosteen & Rudiger, 2003). The thermal conductivity of volcanic ash ranges 

from O(1) - O(10) W/m-K (Büttner et al., 1998; Horat & Simmons, 1969; Merriman et 

al., 2013; Mielke et al., 2016; van Manen & Wallin, 2012). The specific heat ranges from 

O(0.1) - O(1) J/g-K (Büttner et al., 1998; Mielke et al., 2016; Vosteen & Rudiger, 2003).  

  

2.2. Droplet Impact onto a Flat Surface 

This section provides an overview of experimental and numerical results for 

droplet impact, regime mapping, and approximate models used to describe the droplet 

motion following impact. Droplet impact on a flat surface is a problem that arises in a 

wide variety of fluid mechanics applications, including ink-jet printing (Bechtel et al., 

1981; Lim et al., 2009; Son & Kim, 2009; van Dam & Le Clerc, 2004; Zable, 1977), 

thermal spray coating (Alavi et al., 2012; Attinger et al., 2000; McDonald et al., 2006; 

Pasandideh-Fard et al., 2002), plasma spraying (Bertagnolli et al., 1994; McDonald et al., 

2006), raindrop erosion (Abuku et al., 2009; Zhao et al., 2015), pesticide deposition 
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(Bergeron et al., 2000; Wirth et al., 1991), spray impingement cooling (J. Kim, 2007), 

lithography (Banine et al., 2011), additive manufacturing (Suli et al., 2017), fire 

suppression (Manzello & Yang, 2002), icing from freezing rain (Antonini et al., 2011; Fu 

et al., 2016; Ju et al., 2019; Mishchenko et al., 2010), precipitation effects on erosion and 

performance degradation of turbine blades (Corrigan & DeMiglio, 1985; Li et al., 2008), 

and blood splatter forensics (Hulse-Smith et al., 2005; Laan et al., 2014). Previous 

research on droplet impingement has been extensive, including a wide range of studies 

examining physical processes such as droplet spreading and oscillation (Clanet et al., 

2004; Gao & Li, 2014; Kim & Chun, 2001; Lee et al., 2016; Roisman et al., 2002), rim 

formation (Eggers et al., 2010; Roisman et al., 2009; Visser et al., 2015), splash 

formation (Guo et al., 2016; Mani et al., 2010; Riboux & Gordillo, 2014), air entrapment 

during droplet impact (Kolinski et al., 2012; Liu et al., 2013; Wang & Bourouiba, 2017; 

Xiong & Cheng, 2018), effect of surface contact angle and surface roughness on droplet 

spreading (Kim et al., 2013; Šikalo et al., 2005; Tang et al., 2017), anisotropic effects 

caused by surface motion (Almohammadi & Amirfazli, 2017), and effects of fluid 

viscoelasticity (Izbassarov & Muradoglu, 2016; Venkatesan & Ganesan, 2019). Four 

review papers that provide particularly useful overviews of the underlying physics of 

droplet impact were given by Rein (1993), Yarin (2006), Attané et al. (2007) and 

Josserand and Thoroddsen (2016). 
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2.2.1. Overview of Droplet Impact Behavior 

Droplet collisions have been visualized experimentally using high-speed cameras 

by a number of investigators (Attané et al., 2007). However, obtaining detailed 

measurements of fluid velocity and pressure fields during droplet collisions is both 

complicated and costly. Various types of numerical methods have been used to simulate 

droplet collisions, including the Lattice Boltzmann Method (Xiong & Cheng, 2018), the 

axisymmetric Euler equation (Haller et al., 2002), and the volume-of-fluid (VOF) and 

VOF-like solvers (Pasandideh-Fard et al., 2002; Šikalo et al., 2005; Yokoi et al., 2009). A 

challenge in numerical modeling of droplet impact concerns solving for the motion of the 

contact line, which is the line on the solid where the two fluid phases and solid all meet 

(see figure 2.6).  

 

Figure 2.6: A schematic of the moving contact for two fluid phases. The red dot indicates 

the cross section of an arbitrary curve going into and out of the page, for a three-

dimensional case. If two dimensions are considered then the red dot is only a point, 

referred to as the triple point. Reproduced from Holmgren (2017). 
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It has long been known that the fluid near the contact point undergoes a rolling motion 

(Dussan, 1979) and that at the molecular scale there is slip along the wall near the contact 

line, whose value is proportional to the shear stress (Shikhmurzaev, 1997). This 

molecular slip, also referred to as Navier slip, is necessary to overcome the stress 

singularity in the continuum theory associated with motion of the contact line (Dussan & 

Dussan V., 1976). Computational methods regulate this singularity in a number of 

different ways, either by explicitly introducing slip near the contact line or via 

discretization of the Navier-Stokes equations. A full discussion of contact line 

regularization by the VOF method is given by (Afkhami et al., 2009; Legendre & Maglio, 

2015).  A second complication associated with the contact line involves time-variation of 

the contact angle associated with contact line motion, the so-called dynamic contact angle 

(Blake et al., 1999; Šikalo et al., 2005). The dynamic contact angle depends on the 

surface roughness, the contact line speed, and the chemical heterogeneity of the impact 

surfaces (Choi et al., 2009; David & Neumann, 2011; Extrand & Kumagai, 1996). For a 

more detailed of dynamic contact angle properties, refer to Eral et al. (2013). 

Numerical simulations excel at visualizing fields that cannot be easily determined 

experimentally (Alavi et al., 2012; Bussmann et al., 2000; Eggers et al., 2010; Hirt & 

Nichols, 1979; Pasandideh-Fard et al., 2002; Philippi et al., 2016; Šikalo et al., 2005; 

Sussman & Puckett, 2000; Wildeman et al., 2016; Xiong & Cheng, 2018). The first 

computationally efficient and widely used method for interface tracking and multiphase 

flow modeling was the volume-of-fluid formulation (Hirt & Nichols, 1979). The original 

VOF formulation lacked both surface tension modeling and was quite diffuse in the 
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interface. The surface tension modeling was addressed by Brackbill et al. (1992) and was 

adapted to the VOF formulation (Bussmann et al., 2000). Front tracking and level-set 

(LS) algorithms produce highly resolved interfaces and geometric reconstructions 

(Sethian, 1999). However, it is well known that level-set algorithms are not mass 

conserving. Coupling the VOF and LS algorithms produces a solver that is both mass 

conserving and highly resolved (Sussman & Puckett, 2000). 

Any sort of analytical or numerical droplet spreading model either directly or 

indirectly confronts the moving contact line (MCL). The MCL deals with motion of fluid 

interfaces as they move along solid surfaces, see figure 2.7. The velocity and spreading of 

the MCL is dictated by both the material and surface properties (Dussan, 1979), including 

the static and dynamic contact angle. The static contact angle is a material property while 

the dynamic contact angle changes throughout the spreading process (De Gennes, 1985; 

Dussan, 1979; Hoffman, 1975). The Hoffman–Voinov–Tanner law couples the cubic 

dynamic and cubic static contact angles proportionally to the spreading velocity 

(Hoffman, 1975). The Hoffman–Voinov–Tanner law is only a proportionality statement 

so empirical modeling is often used to couple the dynamic and static contact angles with 

the spreading velocity (Jiang et al., 1979). 

For droplet impact normal to a flat stationary surface, three broad flow categories 

can be used to describe the result of the impact - bouncing, spreading, and splashing 

(figure 2.7).  
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Figure 2.7: The three possible collision mechanics of normal droplet impingement; 

bouncing, spreading, and splashing. Reproduced from Rein (1993). 

 

For bouncing to occur a droplet collides with a solid surface without any wetting. This 

typically occurs on super hydrophobic surfaces where the contact angle is close to 180º. 

Kinetic energy is transferred to the impact surface without wetting which allows for 

bouncing (Richard & Quéré, 2000). If the surface allows wetting, then spreading will 

occur. Two possible limiting cases exist for spreading. The first is that the kinetic energy 

is small and near zero. The second is that the kinetic energy and impact velocity are of 

moderate magnitude. If the kinetic energy is near zero then the molecular forces, such as 

surface tension, govern spreading. If the kinetic energy and impact velocity are of 

moderate magnitude, the balance between dissipation and surface energy governs 

spreading. Splashing is characterized by the breakup of one droplet into two or more 
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upon collision with the surface. The limit when spreading transitions to splashing is 

governed by the impact conditions and fluid material properties. A delicate balance of 

kinetic energy and surface tension, classified by the Weber number, acts as a critical 

indicator. However, the viscosity and surface properties (e.g., contact angle) are not 

included in the Weber number, so another criterion is required. The development and 

examination of this criterion is the focus of much literature (Baker et al., 1988; Burzynski 

& Bansmer, 2018, 2019; Schmidt & Knauss, 1976; Stow et al., 1981; Walzel, 1980). 

 

2.2.2. Regime Mapping 

The dynamics of droplet impact are determined by the droplet diameter D, the 

impact velocity V, and direction of the droplet motion relative to the collision surface, as 

well as the properties of the materials involved. Important material properties include the 

surface tension, density, viscosity and contact angle, as well as thermal properties for 

problems involving heat transfer. The substrate the droplet collides with has a significant 

effect on the collision dynamics, properties such as surface roughness and wettability.  

Four dimensionless parameters are used to classify the droplet collision, as given 

in (2.2a-d). Important dimensional variables include the liquid density, surface tension, 

and viscosity, as well as length and velocity scales. The Weber number, We, is the ratio 

between the inertial and surface tension forces. The Reynolds number, Re, is the ratio of 

inertial and viscous forces. The Ohnesorge number, Oh, is the ratio of the Weber and 

Reynold number. The final parameter, the Bond number, Bo, describes the ratio of 
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gravitational and surface tension forces. In these equations,   and   are the liquid 

density and viscosity, σ is the liquid-gas surface tension, and g is the acceleration of 

gravity. Typically, the Bond number is found to be much smaller than unity, implying 

that gravitation effects are negligible. The three remaining dimensionless parameters - 

We, Re and Oh - are coupled so only two are needed to describe a collision. The 

dimensionless parameters are defined mathematically by 

𝑊𝑒 =
𝜌𝐷𝑉2

𝜎
 𝑅𝑒 =

𝜌𝐷𝑉

𝜇
 𝑂ℎ =

𝜇

√𝜌𝐷𝜎
=

√𝑊𝑒

𝑅𝑒
 𝐵𝑜 =

𝜌𝑔𝐷2

𝜎
 

. 

(2.2) 

 Because droplet impingement can be described using two parameters, such as the 

Weber and Ohnesorge or Weber and Reynolds numbers, regime mapping can 

conveniently be performed in a two-dimensional space. A regime map proposed by 

Schiffano and Sonin (1997a) includes four regions labeled I-IV (figure 2.8). 
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Figure 2.8: Schiaffino-Sonin map showing four regimes of droplet impact in the plane of 

Weber number versus Ohnesorge number. The range of parameter values typical of 

molten volcanic ash particle impingement in the hot section of gas turbine engines is 

indicated by a shaded rectangle. The four points indicate computational conditions 

examined, with Re = 0.05 (A, blue), 0.19 (B, red), 1 (C, green), 10 (D, black). 

 

Each region is dominated by different mechanics. Region I describes as collision that is 

impact-driven and almost inviscid. The droplet fluid spreads out rapidly into a thin sheet, 

and then undergoes a series of oscillations in which the flow alternates from spreading 

radially outward to rebounding back inward. These oscillations are eventually damped by 

viscous diffusion. In Region II, the flow is again nearly inviscid, but the spreading is 

driven more by capillary force rather than by the impact pressure difference. The droplet 

again experiences oscillations that are damped over time by viscous effects. Region III is 

characterized by highly viscous droplets whose outward spreading is driven by capillary 



33 

 

force and resisted by viscous shear. The droplet spreads slowing outward on the surface, 

with no oscillations, and the impact velocity has negligible effect. Region IV is 

characterized by droplets that are highly viscous, so that the droplet spreading is driven 

by the impact pressure and resisted by viscous shear. There are no oscillations in this 

region, and droplet is observed to maintain approximately a spherical cap form. The 

problem of volcanic ash collision in gas turbine engines is characterized by the shaded 

region shown in figure 2.8, which lies mostly in Region IV. 

 

2.2.3. Spreading and Analytical Modeling 

Because of the complexities of fully resolving and understanding three-

dimensional droplet impingement, an approximate model is desirable. An approximate 

model is also advantageous because most industry applications are only concerned with 

the geometric properties of the droplet collision, such as the spreading radius and final 

deposition shape. A typical approximation made in droplet impact studies is restriction to 

an axisymmetric flow field, which can be described by two spatial dimensions and time. 

A variety of other approximations are typically made in developing simplified models for 

droplet impacts, including restrictions on droplet geometry, velocity profile, and 

dissipation rate. Development of approximate models for droplet impacts is discussed in 

detail by Attané et al. (2007). 

Experimental and analytical modeling of droplet collision has been of scientific 

interest for over a century (Worthington, 1876). While Worthington (1876) did not have 
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the means to image the droplet collision or the ability to model the process, he did spark 

the race to understand the spreading phenomena. The next significant study on the subject 

had the technology to image the spreading process, and attempted to model several 

characteristics of the droplet (Engel, 1955). The quantities calculated included the 

maximum impact pressure and the spreading radius. The calculated spreading radius 

appears to be in good agreement, but this assessment is based only on inspection of table 

1 from the study (Engel, 1955), no comparative figure was provided. Despite developing 

an expression to calculate the maximum impact pressure, no experimental or calculated 

data was provided for comparison (Engel, 1955).  

Engel (1955) did not apply strict geometric constraints to the colliding droplet as 

it evolves in time. Instead, an area internal to the droplet where the fluid velocity was 

considered significant was considered. Kendall and Rohsenow (1979) were the first 

researchers to use an energy balance that included explicit geometric constraints, 

calculation of kinetic energy, and potential energy. The report introduced the cylindrical 

disk and spherical cap geometries, see figure 2.9 (a) and (b).  
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Figure 2.9: Approximate droplet shapes used in various droplet impingement theories: (a) 

truncated sphere, (b) cylinder, (c) rimmed cylinder, (d) cylinder with spherical rims. 

 

The model did not account for viscous dissipation (Kendall & Rohsenow, 1978), which 

was introduced by (Bechtel et al., 1981). The Bechtel model balanced kinetic energy, 

surface tension, and dissipation with geometric constraints, resulted in an ODE for the 

droplet height. The kinetic energy was obtained by assuming that the droplet flow was an 

irrotational straining flow. The potential energy was modeled as the interfacial area 

between the gas and liquid minus the contact surface area multiplied by one minus the 

contact angle. The viscous dissipation was included by approximating the region where 

dissipation occurs as a thin boundary layer. The effect of the thin boundary layer was 

modeled as the shear stress over some radial displacement. The shear stress was assumed 

to be the product of the radial velocity, viscosity and a constant. The constant had 

dimensions of inverse length. The radial displacement was written as a function of the 

center of mass and radius. The ODE was written in a dimensionless form, embedding 

parameters describing the surface tension and viscous dissipation into the models. 

Solving the ODE was done numerically using a Runge-Kutta integrator while 
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systematically varying the governing parameters. The result was a comprehensive study 

that analyzed the stability of the energy balance as it was numerically integrated for 

various parametric values. The numerical results were compared against available 

experimental data and were overall not in good agreement. Nevertheless, this study 

pioneered the concept of mathematically modeling the viscous dissipation in a droplet. 

Kendall and Rohsenow (1979) and Bechtel et al. (1981) established the standard energy 

balance recipe used in analytical modeling. 

The dissipation rate of a droplet collision isn’t only governed by the viscosity and 

radial velocity with a constant, as proposed by Bechtel et al. (1981). The dissipation 

function can be represented as tensor product of velocity gradients, given by (Chandra & 

Avedisian, 1991)  

𝜙 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
. (2.3) 

The dissipation function was approximated by the initial state of the collision, eliminating 

the need for a correction coefficient. The energy balance formulation used by Chandra et 

al. (1991) was significantly different than Bechtel et al. (1981), in that the initial kinetic 

and potential energy were balanced against the final potential energy and dissipation rate. 

The initial kinetic and potential energy states were calculated from the initial geometry 

and impact conditions, as well as the material properties. The final potential energy was a 

function of the final spreading diameter. The balance resulted in an analytical expression 

for the maximum spreading factor as a function of the initial parameters and contact 

angle. The initial parameters were given as the Weber and Reynolds. The liquid-solid 
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contact angle was given as a function of the collision substrate temperature, which was 

referred to as the 'wall temperature'. The analytical expression was used to obtain the 

maximal spread radius data as a function of the wall temperature. Comparing the 

analytical data to available experimental data revealed a significant discrepancy. This was 

attributed to either not accounting for viscous dissipation correctly or droplet evaporation 

occurring during spreading. The latter is likely as evaporation was not included in the 

analytical model and the analytical results were consistently higher. 

The energy balance used by Chandra and Avedisian (1991) was further developed 

by Pasandideh-Fard et al. (1995). The dissipation function developed by Chandra and 

Avedisian (1991) was taken and modified to include boundary layer effects (Pasandideh-

Fard et al., 1996). The boundary layer effects were captured by using the classical self-

similar solution (White, 1991), for which the boundary layer thickness scales with the 

inverse square root of the Reynolds number. The boundary layer thickness in conjunction 

with the cylindrical disk geometry yields a modified dissipation formulation, yielding a 

modified solution for the maximal spread radius (Pasandideh-Fard et al., 1996). An 

experiment was used to obtain transient spread radius and contact angle data. The 

volume-of-fluid approach originally developed by Hirt and Nichols (1979) was modified 

to include dynamic contact angle. The computations were used to compare to the 

experimental images and spreading data. Qualitatively and quantitatively, the 

experimental spreading data agreed well with the computations. The analytical maximal 

spreading radius was compared against various experimental results, which also agreed 

well for a range of parameters. 
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The regime map discussed in section 2.2.2 was developed by Schiaffino and 

Sonin (1997a) to explore the wide variety droplet deposition parameters. Both molten and 

non-molten materials were tested. The non-molten materials were tested under isothermal 

conditions and the molten materials were performed under non-isothermal conditions. 

The results indicated that the low Weber number limit is driven by capillary force. In the 

highly viscous limit, the spreading is resisted by the contact line velocity and dynamic 

contact angle. In an inertially dominated limit the mechanics become much more 

complex, including rebound, receding, and oscillations, all with their own respective time 

scales. In the case of non-isothermal molten deposition, the spreading mechanism is 

coupled to solidification mechanism. In the coupled spreading-solidification problem two 

singularities are present, the MCL and the heat flux problem (Schiaffino & Sonin, 

1997b). Schiaffino and Sonin, (1997b) showed that continuum theory breaks down when 

considering a molten liquid cooling as it spreads along a similar solid surface. The 

contact angle at which the material solidifies cannot be determined because at the contact 

point the heat flux is singular (Schiaffino & Sonin, 1997b). 

Continued modification of the dissipation mechanism proposed by Bechtel et al. 

(1981) was done by Kim and Chun (2001). The improved dissipation mechanism 

proposed by Pasandideh-Fard et al. (1995) only predicted the final spread radius, rather 

than the time-variation of the droplet radius. Instead, Kim and Chun modified the 

dissipation model employed by Bechtel et al. (1981) to use a semi-empirical expression, 

where the correction coefficient was scaled by the Ohnesorge number (Kim & Chun, 

2001). The change to the correction coefficient was the only change made to Bechtel et 
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al.’s (1981) model. The same kinetic energy and potential energy models as Bechtel et al. 

(1981) were used. The resulting ODE was functionally the same and solved with a 

Runge-Kutta type integrator. The correction coefficient was determined empirically by 

solving the ODE and tuning the coefficient, so the maximum spread factor was equal to 

the experimental spread factor. All of the experiments that were conducted were 

classified as a Region I collisions, the collisions are shown in figure 2.8. In figure 2.8 the 

Reynolds numbers of the collisions shown in (a) and (b) are 730 and 1410, respectively. 

The results shown were consistent with the expected mechanics for an inertia-dominated 

collision, see figure 2.10 (a) and (b).  
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Figure 2.10: Droplet collision of water onto a polycarbonate surface. (a) Droplet diameter 

of 3.6 mm, impact velocity of 0.77 m/s. Corresponding We and Oh numbers are 30 and 

0.0017, respectively. (b) Droplet diameter of 3.5 mm, impact velocity of 3.47 m/s. 

Corresponding We and Oh numbers are 582 and 0.0017, respectively. Reproduced from 

Kim & Chun (2001). 

 

In both of these figures, the droplet spreads out rapidly into a lamella with a rim and then 

recedes inward and outward until reaching its final resting state. In figure 2.10 (b) fingers 

are formed and the rim spreads further and more thinly than (a). The purpose of this study 

was to develop a semi-empirical one-dimensional model describing the spreading 

process. Results shown in figure 16 compare the model to the experimental results shown 

in figure 2.10a. Figure 2.11 shows the Reynolds number 730 experimental and numerical 

data.  
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Figure 2.11: Experimental results for We and Oh numbers 30 and 0.0017, respectively, 

shown as circles. The solid lines indicate the semi-empirical model assuming either the 

truncated-sphere (TS) or cylindrical (CY) geometry. Both cases assume an irrotational 

straining flow as the velocity profile. Reproduced form Kim & Chun (2001). 

 

The truncated sphere model agrees reasonably well with the spreading process but does 

not capture the amplitude of the oscillations effectively, see figure 2.11. The cylindrical 

disk model captures initial spreading process well but overall does not perform as well as 

the spherical cap model. 

The spreading of moderate and high Reynolds number droplet collisions often 

results in lamella bound by a rim being formed (Chandra & Avedisian, 1991; Kim & 

Chun, 2001; Pasandideh-Fard et al., 1996; Rioboo et al., 2002). Prior to the 2000’s all 
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attempts made to model droplet spreading assumed a simple geometry, either a spherical 

cap or cylindrical disk. As it is seen in the referenced studies the droplet spreading 

geometry determined experimentally isn’t a simple geometry. Roisman et al. (2002) 

considered a disk combined with a half sphere. The novel geometry was accompanied 

with a new velocity profile which was taken as the viscous creeping flow between two 

approaching disks. The dissipation was taken to be similar to Chandra and Avedisian 

(1991) but was not simplified and instead was written in an axisymmetric form as  

𝜙 = 2𝜇 [(
𝜕𝑢

𝜕𝑟
)

2

+ (
𝑢

𝑟
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2

+
1

2
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2
]. (2.4) 

The same potential energy model as Bechtel et al. (1981) was used. In the case were the 

dissipation was not considered, the results were compared against experimental data for 

𝑅𝑒 ≫ 𝑊𝑒. The results for these cases agreed well, but when dissipation was considered 

and compared against equivalent experimental data the agreement broke down rapidly. 

The problem of developing a more realistic geometry describing the spreading process is 

periodically revisited. Attané et al. (2007) attempted to better model the formation of the 

lamella by developing a rimmed cylinder (figure 2.9c). The end result isn’t exactly a 

lamella, but there is a rim around the outer diameter of the spreading droplet. Similar to 

Kim and Chun (2001) a semi-empirical model was developed. The same kinetic and 

potential energy models as Bechtel et al. (1981) were used. The results were compared 

against Kim and Chun (2001) and Bechtel et al. (1981). The Attané et al. (2007) model 

more accurately captured the data while maintaining the spreading oscillations. The 

rimmed cylinder model was further improved by changing the rimmed cylinder to a 

rimmed sphere (Gao & Li, 2014), shown in figure 2.9d. Gao and Li (2014) developed 



43 

 

two different analytical expressions; one for maximum spread factor and one for transient 

spreading. The maximum spread factor model was developed similarly to Pasandideh-

Fard et al. (1995), where the potential energy differed to include a non-uniform pressure 

field. The dissipation given by Pasandideh-Fard et al. (1995) was modified to include 

both spreading and receding radii and associated contact angles. The transient spread 

factor model was developed similarly to Bechtel et al. (1981), with modifications to the 

three energy terms to better describe advancing and receding radii. Results for the 

maximal spread factor agreed well with the experiment data. The results for the transient 

modeled agreed well with the presented experimental data, but only data from the author 

was provided. The provided data did not capture a wide range of parameters or physics, 

such as spreading oscillations.  

The collision surface plays a role in the spreading dynamics by affecting the 

dynamic contact angle. Spreading on a superhydrophobic surface can result in rebound 

and bouncing (Clanet et al., 2004; Rioboo et al., 2002). Plotting the spread factor versus 

some dimensionless parameter, like the Reynolds or Weber number, reveals the nature of 

spreading under limiting conditions. Rioboo et al. (2002) completed a series of droplet 

impingement experiments across a wide range of parameters. The Reynold’s number 

ranged from 9 to as high as 8800, with Weber numbers ranging from 30 to 600. The 

purpose was to propose a new equation that could predict the spread factor. What was 

found is that as the time after collision increases, the number of factors that determine 

spreading increases. This means that for longer times it will become harder, if not 

impossible, to develop an expression for the spread factor that is globally accurate 
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(Rioboo et al., 2002). Clanet et al. (2004) conducted a droplet impingement study with 

fluids having low and high viscosities onto a super hydrophobic and partially wetting 

surfaces. The intent was to study droplet spreading that is resisted by capillary or viscous 

forces. In figure 2.8 the regions that resist motion through capillary action are I and II 

while Regions III and IV resist motion through high viscous forces. Clanet et al. (2004) 

defined the impact parameter P=We/Re-4/5 as a universal data rescaling. The impact 

parameter is capable of capturing both capillary and viscous effects when plotted with the 

maximal spreading renormalized by Re1/5 (figure 2.12).  
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Figure 2.12: Maximum dimensionless spreading of an impinging drop, normalized by a 

factor of Re1/5, as a function of the impact number P. Reproduced from Clanet et al. 

(2004). 

 

For P less than unity, the droplet spreading is resisted by capillary action. For P greater 

than unity, the droplet is resisted by viscosity. A transitional point is location at P equal 

to unity. Both the capillary and viscous regions contain their own scaling laws (Clanet et 

al., 2004). For the capillary regime the maximal spreading scales as 𝐷𝑚𝑎𝑥~𝐷0𝑊𝑒1/4 and 

the viscous regime scales as 𝐷𝑚𝑎𝑥~𝐷0𝑅𝑒1/5.  

 It was claimed by Laan et al. (2014) that the scaling results for the capillary 

regime from Clanet et al. (2004) were not generally valid for different materials, but that 

the scaling expression 𝐷𝑚𝑎𝑥~𝐷𝑜𝑊𝑒1/4 was only valid for water (Laan et al., 2014). The 

contact angles measured for the liquid-surface combinations ranged from 20 to 90 
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degrees (Laan et al., 2014), so these were not classified as superhydrophobic. This 

indicated that the material properties play an important role in capillary-driven spreading. 

Figure 2.13 shows four different materials colliding with stainless-steel with curves 

representing two different scaling arguments.  

 

Figure 2.13: The spread factor (Dmax/D0) plotted against the Weber number. The blue 

squares are water, up triangles are water-glycerol at 6 mPa-s, down triangles are water-

glycerol at 51 mPa-s, and circles are blood. All collisions occurred onto stainless steel, 

with a contact angle varying from 80-90 degrees. The short-dashed line is 

𝐷𝑚𝑎𝑥~𝐷𝑜𝑊𝑒1/4 and the long-dashed line is 𝐷𝑚𝑎𝑥~𝐷𝑜𝑊𝑒1/2 proposed by Clanet et al. 

(2004) and Eggers et al. (2010). Reproduced by Laan et al. (2014). 

 

Laan et al. (2014) used figure 2.13 to claim that two parameters based on the initial 

conditions cannot be used to describe the whole spreading process. This suggests that 

there is likely a smooth transition from the capillary regime to the viscous regime, which 

can’t be modeled by a single parameter. To address this a function that interpolates 
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between two scaling arguments given as the Weber and Reynolds number is used, an 

expression was proposed by Eggers et al. (2010) of the form 

𝐷𝑚𝑎𝑥/𝐷0 ∝ 𝑅𝑒1/5𝑓𝐸𝐶(𝑊𝑒𝑅𝑒−2/5). (2.5) 

This equation was developed using asymptotic theories and scaling arguments, validated 

by computations. The scaling arguments were defined as We1/2 and Re1/5 with a rescaling 

variable of WeRe-2/5. The resulting equation was solved using a Padé approximant which 

requires the use of a fitting parameter. The rescaling for the given experimental data, as 

well as data taken from other studies, worked very well once the tuning parameter was 

fitted using a least squares method. The scaling arguments defined by Clanet et al. (2004) 

as We1/4 and Re1/5 with a rescaling variable of WeRe-4/5. The results did not collapse to a 

single curve, failing to produce a universal model. 

 Producing experimental results over a wide range of Weber and Reynolds 

numbers is difficult. Developing highly viscous fluids may require melting amorphous 

solids or using non-Newtonian fluids (Gordillo et al., 2018; Song et al., 2017). Producing 

and controlling droplets with very small length scales and imaging the spreading is 

challenging. This challenge was partially overcome with clear limitations in the reliability 

of the spreading images (Visser et al., 2012) (figure 2.14).  
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Figure 2.14: Two high speed micro droplet collision image sets. Both image sets were 

sampled at one micro-second intervals. (a) Impact velocity of 73 m/s, droplet diameter of 

23 µm. Corresponding We and Oh numbers are 1.8*103 and 0.0223, respectively. (b) 

Impact velocity of 100 m/s, droplet diameter of 20 µm. Corresponding We and Oh 

numbers are 1.8*103 and 0.0238, respectively. Reproduced from Visser et al. (2012). 

 

Visser et al. (2012) sought to develop an experimental method to accurately produce 

micron sized droplets but did not address the issue of viscosity. The result was an 
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apparatus that produced droplets with a diameter of 12 µm and with an impact velocity as 

high as 100 m/s. The validity of the method was tested by taking the spread factor as a 

function of the Weber number and plotting analytical models provided by Chandra and 

Avedisian (1991) and Pasandideh-Fard et al. (1995). Experimental data from other 

another study with similar parameters was taken for comparison. A new experimental 

method was successfully developed. Figure 2.15 took data from various authors and 

plotted a Re-We map with the impact parameter equal to one as a solid line.  

 

Figure 2.15: Weber and Reynolds numbers for various droplet impact experiments, with 

sources given in the box to the right. The solid blue line indicated P equals one, where 

capillary regime is P < 1 and the viscous regime is P >1. Reproduced from Visser et al. 

(2012). 

 

The figure effectively shows how few studies have considered low Reynolds number 

droplet collisions in the viscous regime.   
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Non-Newtonian fluids can be used to produce extremely viscous fluids (Gordillo 

et al., 2018). The result is a fluid with a kinematic viscosity as high as 0.3 m2/s and a 

Reynolds number of 0.11. By using a piezoelectric force sensor highly accurate data was 

rapidly taken (Gordillo et al., 2018; Lagubeau et al., 2012). Capturing pressure is 

advantageous because it can be computed numerically (Philippi et al., 2016). Using 

experimental and numerical data, analytical expressions for pressure at the collision 

surface have been developed (Gordillo et al., 2018; Lagubeau et al., 2012; Philippi et al., 

2016). Three analytical expressions are plotted against data taken by Gordillo et al. 

(2018) in figure 2.16.  

 

Figure 2.16: Force data as function of time from the Gordillo et al. (2018) experiments. 

Data shown is for a Reynolds number of 212. The blue dashed-dot line is Phillippi et al. 

(2016) force expression. The short-dashed line is Lagubeau et al. (2012) force 

computation. The long-dash green line is the inertial spreading expression proposed by 

Gordillo et al. (2018). Reproduced from Gordillo et al. (2018). 
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Figure 2.17 shows transient force data for varying Reynolds number. As the Reynolds 

number became smaller the force curve developed a rebound. Gordillo et al. (2018) 

attributed this to the use of non-Newtonian silicon oils as the droplet substance, where the 

droplet did not completely detach from the droplet generator. 

  

Figure 2.17: Dimensional force plotted against time. Viscosity is given in centistokes 

(cSt). For each droplet collision the diameter and impact velocity were kept the same, 

producing a wide range of Reynolds numbers. The Reynolds numbers are 0.10, 0.72, 6.9, 

66, 670 and 3200, respectively. The upper x-axis is the time non-dimensionalized by the 

impact velocity and initial diameter. Reproduced from Gordillo et al. (2018). 

 

The expression developed by Phillippi et al. (2016) is only valid for short times with 

inviscid flows, and rapidly blows up. The expression developed by Lagubeau et al. 

(2012) asymptotically approaches a steady value, making it suitable for long times but 
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cannot yield results for short times. A model that is continuous over the entire range of 

collision time was developed but failed to reproduce the maximum impact force (Gordillo 

et al., 2018). A scaling law was developed to address the maximal impact force the 

models could not predict (figure 2.18).  

 

Figure 2.18: The maximum dimensionless impact force and time as functions of the 

Reynolds number. (a) Shows the dimensionless peak time, 𝜏𝑚𝑎𝑥 = (𝑡𝑚𝑎𝑥𝐷)/𝑈, and (b) 

shows the dimensionless maximum impact force, �̃�𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥/(𝜌𝑈2𝐷2). The color 

bars to the right of (a) and (b) indicate the decades of Reynolds data was taken for. 

Asymptotic values are shown for (a) and (b). The black dashed line is an asymptotic 

value based on averaging all data for Re > 103. The dash-dotted lines are model 

predictions given by Gordillo et al. equations (3.18) and (3.20), respectively. Reproduced 

by Gordillo et al. (2018). 

 

Philippi et al. (2016) considered the short time dynamics of a single droplet 

impacting onto a flat solid surface. Simulations were conducted using the Gerris flow 

solver, an open source CFD code specialized for multiphase flow modeling and adaptive 

mesh refinement. The CFD results were used to develop short time asymptotic theories 

for the impact pressure field, impact velocity field, and spreading radius. The results 
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required using a variant of the Wagner theory of liquid impact to simplify the self-similar 

derivation. Both the pressure and velocity fields contain singularities at zero time and the 

origin point. Despite the singularities the asymptotic solutions are in good agreement 

with the numerical results over three decades of time.  

 The VOF formulation with surface tension modeling developed by Bussmann et 

al. (2000) was further advanced to include heat transfer and solidification (Pasandideh-

Fard et al., 2002). Two simulations of molten tin droplets colliding with a steel surface 

were conducted. The first case was for normal impact onto a flat surface, conducted at a 

Reynolds number of 9,800. The second case was for droplet impact onto an angled flat 

surface, conducted at a Reynolds number of 18,800. Validation of the solidification 

model was done by comparing the numerical results to the Neumann solidification 

problem in one dimension. The overall three-dimensional solver was validated by 

comparing the spread factor to experimental data, and qualitatively comparing spreading 

images. The results were in excellent agreement with the data. 

 The standard fluid-wall boundary condition assumes a constant contact angle and 

a no-slip condition on the velocity (Bussmann et al., 2000; Hirt & Nichols, 1979). 

Including a relationship between the contact line speed and dynamic contact angle has 

been done to increase accuracy (Šikalo et al., 2005). The Hoffman relationship with an 

empirical model developed by Kistler (1993) was used to determine the dynamic contact 

angle. The main conclusion was that the dynamic contact angle is not just a function of 

the contact line speed. Sikalo et al. (2005) stated that the flow field near the MCL also 
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effects the dynamic contact angle. This conclusion is also supported by Blake et al. 

(1999). 

 The dynamic contact angle likely doesn’t just depend on the contact line velocity 

(Blake et al., 1999; Šikalo et al., 2005). Empirical modeling reflects a case by case basis 

of the surface wettability and material properties. Yokoi et al. (2009) took the CLSVOF 

developed by Sussman et al. (2000) and introduced a dynamic contact angle formulation. 

The Hoffman relationship was modified is a piecewise manner, where each of the 

components depended on a tuning parameter. The tuning parameters were used to reflect 

the material and surface properties. The model was in good agreement with the authors 

experimental findings but required significant adjustment of the tuning parameters. 

Zhou et al. (2008) used a numerical method they had developed in a previous 

study and applied it to a more complicated system (Li et al., 2008). The previous model 

was designed to simulate a non-linear wave internal a fluid droplet as it spreads out along 

a solid surface. The local stress in the solid was coupled to the pressure field in the fluid, 

which was solved from the non-linear wave equation. The model is also capable of giving 

the stress distribution of the impact surface. The numerical method was taken and set up 

to run with parameters similar to a water drop colliding with a 1Cr13 airfoil (Zhou et al., 

2008). The stress distribution in the solid was used to extrapolate to the erosion of the 

blade.  
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2.3. Solidification in Gas Turbine Engine 

2.3.1. Volcanic Ash Solidification 

 This section refers to 'solidification', as opposed to 'fusion' or 'sticking', and 

volcanic ash is referred to simply as 'ash'. Solidification is one of the key issues when 

considering particle ingestion in GTEs. When ash is ingested into a GTE it encounters the 

compressor blades, the combustion section, and the turbine section in that order (figure 

2.19). 

 
Figure 2.19: Schematic of volcanic ash ingestion into a GTE. Green arrows indicate a 

relatively low gas temperature, typical of ash softening. The red arrows indicate the high 

temperatures capable of melting the ash. The first section is the compressor blades. Then 

comes the combustion section indicated with peak temperature. Followed by the high 

temperature (HT) turbine blades at a lower temperature. Finally, the gas and particle 

matter are exhausted. Reproduced from Song et al. (2019). 

 

Ash will encounter the compressor blades at a low temperature and is likely to rebound 

(Chen & Zhao, 2015; Dunn, 2012; Taltavull et al., 2016). After the ash passes through the 

compressor and combustion section it may be heated as high as 2000 °C (Song et al., 



56 

 

2016). The high temperature is capable of fully melting the ash (Song et al., 2017). After 

melting the volcanic ash may collide with and adhere to a surface in the GTE. 

 The primary method for studying volcanic ash adhesion in GTEs is by attempting 

to experimentally reproduce the GTE conditions in a laboratory test. Experimental studies 

of this type can be grouped into two broad classifications. The first uses an in-vitro setup, 

where particles are shot at high velocity at a surface, representing a wall within a 

component of a GTE (Song et al., 2014, 2016, 2019; Taltavull et al., 2016; Walsh et al., 

2006). These representative experiments are typically done to obtain detailed 

measurements of the effect of a specific quality of volcanic ash, such as contact angle, 

splat characteristics, viscosity, and other properties (Dean et al., 2016; Song et al., 2017). 

The second classification of experiment is one where either an actual GTE, or a model of 

a GTE, is used (Bonilla, 2012; Dunn, 2012). These experiments are typically done to 

address engine related damage (figures 3 and 4), but do not yield detailed data on 

individual droplet impacts. Few studies use numerical modeling to analyze volcanic ash 

adhesion and solidification (Kondo et al., 2018; Murugan et al., 2017). However, this can 

be easily supplemented by considered powder coating processes for which there is a large 

body of both experimental and numerical work. The numerical works of plasma coating 

will be discussed in section 2.3.2. 

 Using in-vitro style experimental simulations are invaluable for determining 

properties of volcanic ash under conditions similar to operating GTEs. Knowing the 

properties of the ash are a requirement for any kind of modeling. A variety of different 

properties are involved in the ash melting, deposition and solidification process (Song et 



57 

 

al., 2016). As the ash undergoes melting it will reach a critical temperature required to 

first adhere to a surface at a given impact velocity. Molten volcanic ash is a complex 

material and exhibits non-Newtonian behaviors. Characteristic temperatures have been 

identified to describe how ash material responds to high temperatures (figure 2.20). 

 
Figure 2.20: The original temperature is the sample geometry after fine volcanic ash is 

compressed in a cylindrical mold. Shrinkage temperature (ST) is when sintering begins to 

occur and porous media begins to collapse. Deformation temperature (DT) is defined as 

sticking to surfaces due to melting. Hemisphere temperature (HT) is defined as flowing 

and wetting of a surface. Flow temperature (FT) is defined as significant spreading due to 

gravity. Reproduced from Song et al. (2017). 

 

The characteristic temperatures include the shrinkage temperature (ST), which is when 

sintering begins to occur and porous media begins to collapse; the deformation 

temperature (DT), defined as sticking to surfaces due to melting; the hemisphere 

temperature (HT) at which flowing and wetting of the material occurs; and the flow 

temperature (FT), identified by significant material spreading due to gravity. Song et al. 

(2014) was the first group to apply these characteristics to volcanic ash in an attempt to 

identify solidification. The samples were heated from 50 to 1400 °C at a rate of 10 

°C/min while conducting simultaneous thermal analysis and differential scanning 

calorimeter to gain insight into the sintering and thermal properties. The sintering data 
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was used to identify the different characteristic temperatures. At each characteristic 

temperature the sample was held at isothermal conditions for a span of time to assess 

adhesion. The span of time a sample was held at for a characteristic temperature was 

determined by the sample’s response to that temperature. If adhesion was achieved, flow 

was assessed by inclining the substrate to 70 degrees and waiting for the test material to 

reach a constant deformed sloped. The sample at the ST showed no adhesion to the 

aluminum substrate, even after 50 minutes. Without adhesion the flow properties could 

not be tested. At the DT the sample adhered to the substrate after 10 minutes. After 20 

minutes constant flow was achieved. At the HT and FT the sample materials adhered and 

flowed immediately. Twenty minutes were required for constant flow. For temperatures 

above the ST fusion of volcanic ash becomes much more likely (Song et al., 2014). 

 Song et al.’s (2014) study indicated that volcanic ash melting under GTE 

conditions can be described by a three stage process: (1) shrinkage, (2) fusion, (3) wetting 

(Song et al., 2016). Shrinkage occurs at the ST, fusion occurs at the DT, and wetting 

occurs at the HT and FT (figure 2.21). 
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Figure 2.21: The top three images show the phases of volcanic ash melting in GTE 

conditions. The bottom four images show the fusion potential, also referred to as sticking. 

At the ST the sample does not fuse and refers to the shrinkage process. The fusion 

process occurs at the DT. Wetting occurs readily at the HT and FT. Reproduced from 

Song et al. (2016). 

 

Song et al. (2014) addressed the characteristic temperatures in volcanic ash, and Song et 

al. (2016) expanded upon those ideas. In particular, it addressed sticking and heating rate. 

In Song et al. (2014), a single heating rate of 10 °C/min was considered. In the current 

study being discussed heating rates of 10, 20, 30, and 40 °C/min were considered (figure 

2.22a).  
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Figure 2.22: (a) Temperature in °C (y-axis) versus characteristic temperatures 

classification (x-axis), with varying heating rates. The heating rates are; 10 °C/min (black 

squares), 20 °C/min (red circles), 30 °C/min (blue triangles), and 40 °C/min (purple 

deltas). (b) Logarithm of the heating rate in °K/s (y-axis) versus inverse temperature as 

104/°K. The characteristic temperatures are given as; DT (green triangles), HT (purple 

circles), and FT (blue squares). The solid black line is an Arrhenian fit of the temperature 

as a function of heating rate (r=0.99; n=4), to the left of the line ash sticks and to the right 

it does not. The blue box indicates the heating rate and temperature range of a GTE. 

Reproduced from Song et al. (2016). 

 

The important take away from figure 2.22 is that as the heating rate increased the DT 

increased. This means that the sticking potential decreased with increased heating rate. 

The multiple heating rate DT data points were plotted against a scaled inverse 

temperature (figure 2.22b). The plot was fitted with a highly accurate Arrahian model 

(r=99) and extrapolated to heat rates more common in GTEs. However, because three 

decades separate the experimental heating rates and the heating rates experienced in 

GTEs, relevance of these observations to GTE conditions requires confirmation.   
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  Determining the spreading and wetting properties of volcanic ash is useful for 

modeling purposes (Song et al., 2014, 2016, 2017). However, it is generally impossible to 

extrapolate these properties to an accurate description of the effects in a GTE. For this 

reason, macroscale experiments involving ash and GTEs much be conducted. These 

experiments, while important and insightful, are generally limited in their ability to 

identify and produce detailed data on individual droplet impact events. Much of this data 

is also protected by companies and not published in a form accessible by researchers. 

However, a limited number of studies presenting images of damaged turbine vanes 

(figure 1.5), turbine blades (figure 1.4), compressor blades (figure 1.2), and other 

components are available (Dunn, 2012). 

 Simulations are a useful tool that can reveal much more detailed information than 

experiments. Simulations specifically referencing volcanic ash adhesion in GTEs are few 

and far between. A multi-physics finite-element simulation has been employed to 

determine whether sand can melt while flowing through the combustion section of a GTE 

(Murugan et al., 2017). The study conducted two sets of simulations. The first was to 

determine is a fully molten particle could be achieved, and the second was to solve the 

particle laden flow field across a turbine cascade. The melt simulations were run using a 

two-dimensional axisymmetric first-order accurate thermal solver with particle sizes 

varying from 100nm-500µm. The material properties were assigned to be similar to a 

commonly available testing sand, AFRL 02 test sand (34 wt.% quartz, 30wt.% gypsum, 

17 wt.% aplite, 14 wt.% dolomite, and 5 wt.% salt). The melting simulations were done 

to determine the time scales for various diameters to reach a molten or semi-molten state. 
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The particle-laden flow was solved with a couple finite-volume and Eulerian-Lagrangian 

particle injection method including chemical reactions (Bravo et al., 2016). The carrier 

gas was modeled using a Reynolds Averaged Navier Stokes (RANS) equation and the 

particle thermophysical properties were assigned to reflect SiO2. Computational results 

indicated significant particle build up on the turbine blade leading edges (figure 2.23).  

 

Figure 2.23: The left plot is a schematic of the turbine blade cascade, shown in white, 

interacting with the SiO2 particles. The right plot shows the same time frame as the left, 

but with a velocity contour map over it. Reproduced from Murugan et al. (2017). 

 

See figure 1.5 for an experiment that confirms build-up on the leading edge of the turbine 

guide vanes.  

 

2.3.2. Plasma Coating Simulations 

 Because there is not an extensive body of literature numerically simulating 

volcanic ash collisions, plasma coating techniques will be discussed. Plasma coating 
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refers to molten or semi-molten ceramic materials impacting at high velocities against a 

solid surface. The length scales of a plasma coating particles range anywhere from tens to 

hundreds of microns (Gu & Kamnis, 2009; Saleh et al., 2014; Shinoda et al., 2005; 

Shinoda & Murakami, 2010). The similarities in impact velocity and length scales are 

why the simulation techniques are being discussed. However, the materials used in 

plasma coating varying greatly from the composition and properties of volcanic ash 

(Shinoda et al., 2005), and in particular tend to be significantly less viscous.  

Kondo et al. (2018) used an explicit moving particle simulation (e-MPS) to study 

the collision and solidification of molten tin with a plate, which has been experimentally 

studied (Kondo et al., 2018; Shakeri & Chandra, 2002). The e-MPS method works 

essentially by representing the particle in question, the molten tin, as an ensemble of 

many small particles (Oochi et al., 2010). Roughly 195,000 computational particles all 

initially in the liquid state were used. In each particle the continuity, Navier–Stokes, and 

energy equations are solved. Because solidification is being studied the latent heat of a 

computational particle is very important. As the particle collides with the isothermal 

surface it begins to transfer heat, and the adjacent particles begin to transfer heat. If a 

computational particle reaches a prescribed melting temperature, the temperature 

becomes fixed. At this point the heat equation is used to calculate the heat transfer 

between adjacent particles, and the latent heat of the particle in question. Once the latent 

heat reaches zero the particle is considered solid. The numerical results were in good 

agreement with the available experimental data and depicted the expected fingering. 
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Tabbara and Gu (2011) developed a novel method for modeling the impingement 

of a semi molten oxide ceramic particle. The solid core of the impingement model is 

treated as a perfect solid that can move but cannot deform, however it can still transfer 

heat. The substrate surrounding the particle, the molten phase, is modeled using the VOF 

method which is well established. The novelty of the solver comes from the heat transfer 

model which couples the solid particle and molten phase, creating smooth temperature 

gradients across the boundaries. The spread factor of the droplet agrees reasonably well 

with available experimental data, with comparing splat images furthering agreement.  

In the previous paragraph a novel model with obvious limitations was discussed. 

Zhu et al. (2015) took this idea and expanded upon it slightly by allowing for a 

deformable core, creating a novel coupled Eulerian and Lagrangian solver. The solver 

does not use the VOF method to capture the molten phase. The solver is capable of 

handling both molten or semi-molten ceramic particle collisions. The model considers 

four unique systems of equations. The first is the thermodynamic model which uses the 

Mie–Grüneisen equation of state. The second is a pressure equation which imbeds the 

relative velocity of the particle and material speed of sound in the equation. The third 

equation is a temperature dependent viscosity model that uses a shifted Arrhenian form. 

The fourth equation is a plasticity modeled applied to the material which operates for a 

range of temperature covering both the solid and melt regime. 

Pairzi et al. (2007) simulated molten droplet collisions onto patterned surfaces. A 

modified VOF method including heat transfer and phase changes was used. The work 

was done using the material properties of molten nickel and zirconia because it is a 
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commonly used material in manufacturing. If the material is heated beyond 1000 °C the 

liquid viscosity falls below one Pa-s (Shinoda et al., 2005). The material temperature was 

set to match experimental data at 2390 °C, producing a viscosity of 0.03 Pa-s. The 

droplet size range was between 15 and 60 microns, with an impact velocity between 70-

250 m/s. The reference density of the material used was 5700 kg/m3. The results 

presented were for Reynolds numbers of 550 and 600. Qualitative validation was 

completed by comparing numerical splat images against the experimental. The key 

takeaway was that a VOF formulation could be used to faithfully simulate droplet splat 

on patterned surfaces at moderate Reynolds numbers. 
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CHAPTER 3 

THERMAL SCALING ANALYSIS 

 A two-part thermal analysis was conducted to determine if the spreading process 

during volcanic ash droplet impingement can reasonably be approximated as being 

isothermal with a uniform temperature across the droplet. The first part of this study was 

done with scaling analyses that approximated the spreading, thermal diffusion, and 

convective time scales. These topics and results are covered in sections 3.1.1. and 3.1.2.. 

The nominal values from table 3.1. were used for all parts of the thermal analysis. 

Table 3.1: Typical values of input parameters for volcanic ash impingement in gas 

turbine engines. 

Property Symbol Units Range of Values Nominal 

Value 

Diameter1 

0d  µm 3 - 30  

 

10 

Turbine Inlet 

Temperature2 

Tp °C 980 - 1370  1200 

Impact 

Velocity3 0V  m/s 130 - 450 200 

Viscosity4 µ Pa-s 10 - 105  

 

25 

Density5 ρ kg/m3 2350 - 2450  

 

2400 

Surface 

Tension6 

σ N/m 0.35 - 0.37 

 

0.36 

Thermal 

conductivity7 

k W/m-K 1 - 2  1.5 

Specific heat7 cp J/g-K 0.7 - 1.7  

 

1.2 

Equilibrium 

contact angle8 e  degrees 18 - 71  55 

NOTES 
1Based on a distal particle size distribution analysis, Dacre et al (2013) found that 90% of 

ash particles (by mass) ejected from Eyjafjallajökull volcano where in size range of 3-30 
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µm. 
2Dunn (2012) examined three 1980-1990's era GTEs with turbine inlet temperatures 

sufficiently hot to melt volcanic ash particles. Range is TIT for these engines is given in 

the table. 
3Velocity range within turbine section of GTE is from Fundamentals of Gas Turbine 

Engines (https://www.cast-safety.org/pdf/3_engine_fundamentals.pdf). 
4Viscosity varies from 10 - 105 over the range of TIT typical of GTEs, as recorded above, 

based on measurements of Giordano et al (2008). Strongly dependent on temperature, but 

the dependency is well known and a good correlation exists. Viscosity nominal value 

based on measurement by Song et al (2017) at 1200°C. 
5Based on data from Vogel et al. (2017), Wilson et al. (2012), and Shipley and Sarna-

Wojcicki (1983) for amorphous volcanic glass particles.  
6Based on data from Song et al. (2017) and Li et al. (1997). Surface tension has 

negligible dependence on temperature.  
7Based on data from Büttner et al. (1998) for olivine-melilitite volcanic rock samples. 
8Song et al (2017) found that the contact angle has a strong dependence on temperature. 

Nominal value used based on measurements of Song et al (2017) at 1200°C. 

 

The second part was done using numerical approximations to assess degree of uniformity 

of the particle/droplet temperature profile.   

 

Section 3.1. Scaling Analyses 

 Because the conduction time scale is used in both sections 3.1.1. and 3.1.2. it will 

be introduced here. The conduction time scale is the order of magnitude of time for 

thermal diffusion to occur over a given length scale. The thermal diffusivity is defined as 

pck  /= , and the length scale for particle heat conduction is the particle diameter d, 

so that the resulting conduction time scale is given by  

𝜏𝛼 =
𝑑2

𝛼
. 

(3.1) 
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3.1.1. Conduction Time Scale and Convective Transport Time Scale 

 The convective transport time scale is the ratio of the length and velocity scales of 

the fluid motion. The characteristic length scale of the GTE is on the order of 1~L m 

and the velocity scale is denoted by V  in table 3.1. The resulting convective time scale is  

𝜏𝑉 =
𝐿

𝑉
. (3.2) 

Taking the ratio of the convective transport and conduction time scales reveal the 

approximate nature of how fast the particle moves through the GTE with respect to the 

heating time. The ratio is denoted by Ω and is referred to as the conduction-convection 

ratio, given by 

Ω ≡
𝜏𝑉

𝜏𝛼
=

𝛼

𝑑𝑉

𝐿

𝑑
. (3.3) 

Using the nominal volcanic ash properties given in table 3.1, the conduction-convection 

ratio has a typical value of about 26 for ash particles in GTEs. Because this value is O(1), 

a more detailed analysis of temperature uniformity in advected ash particles is reported in 

section 3.2.   

 

3.1.2. Conduction Time Scale and Spreading Time Scale 

 The spreading time scale for a liquid droplet is given by (Schiaffino & Sonin, 

1997a) as 
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𝜏𝑠 =
𝜇

𝜌𝑉2
. (3.4) 

 

The viscosity is logarithmically dependent on temperature and chemical composition, as 

discussed in section 2.1.1 of the literature review. Giordano et al’s. (2008) model was 

used to produce the results for viscosity in table 3.1, with the nominal value used in the 

scaling analysis. Taking the ratio of the spreading and conduction time scales revealed 

the approximate nature of how fast the particle solidifies as it spreads on a flat surface. 

This is ratio is referred to as the conduction spreading ratio, defined by 

VdVd
S S 











= . 
(3.5) 

 

The conduction spreading ratio has a typical value of 0.0014 for ash particles in GTEs, 

based on the nominal properties listed in table 3.1. The fact that 1S  for this 

application implies that the spreading process occurs much more quickly than the 

diffusion process. This observation implies that solidification is negligible during the 

spreading process. Consequently, the spreading and solidification processes can be 

separated, so that the droplet first experiences a nearly isothermal spreading process 

followed by solidification of a nearly stationary droplet. 

 

Section 3.2. Numerical Analyses 

 

 The observation that the conduction-convection ratio for ash particles in GTEs is 

approximately order unity motivated us to perform a more in-depth analysis of the 
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particle temperature profile during passage through the GTE. This assessment was 

important since, if the particle temperature profile is not uniform, significant viscosity 

gradients within the droplet could exist during impact with the GTE surfaces. Section 

3.2.1 covers the numerical method used for this assessment while 3.2.2 covers the results. 

 

3.2.1. Crank-Nicholson Scheme and Boundary Conditions 

 The particle was treated as a sphere and thermal diffusion across the sphere was 

computed as a function of radius r and time t as the droplet traversed through the GTE. 

The transient temperature profile ),( trT  through the sphere is governed by the energy 

equation  

𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑟2 +
2

𝑟

𝜕𝑇

𝜕𝑟
). 

(3.6) 

 

The boundary conditions at the center of the sphere and the radial edge are given by  

𝜕𝑇

𝜕𝑟
|

𝑟=0
= 0, (3.7a) 

−𝑘𝑝
𝜕𝑇

𝜕𝑟
|

𝑟=𝑟𝑜

= ℎ (𝑇|𝑟=𝑟𝑜
− 𝑇∞(𝑥)). (3.7b) 

 

Equation (3.7a) enforces a smooth temperature gradient across the center of the particle, 

and (3.7b) is a mixed-type boundary condition which balances thermal conduction within 

the particle at the outer surface to the thermal convection away from the particle surface. 
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Here,  kp is the particle thermal conductivity and h is the convective heat transfer 

coefficient from the particle surface. A correlation for h can be expressed in terms of the 

Nusselt number fkhdNu /= , where fk  is the working fluid thermal conductivity. For 

particles moving through a gas, the Marshall-Randz relation can be used to estimate the 

Nusselt number as a function of the relative particle Reynolds number and Prandtl 

number, given by 

𝑁𝑢 = 2 + 0.6𝑅𝑒𝑝
1/2 

𝑃𝑟1/3. (3.8) 

  

Assuming that the particle moves through the GTE with approximately the same 

velocity as the working fluid, the particle Reynolds number Rep in (3.8) is approximately 

zero and 2Nu . This results in an expression for the temeprature gradient at the outer 

edge of the particle of the form  

𝜕𝑇

𝜕𝑟
|

𝑟=𝑟𝑜

= −
𝑘𝑓

𝑘𝑝𝑟𝑜
(𝑇|𝑟=𝑟𝑜

− 𝑇∞(𝑥)) 
(3.9) 

 

where )(xT
 denotes the ambient temperature of the gas within the GTE at the particle 

location. 

A Crank-Nicholson scheme was used to simulate the transient particle 

temperature. The Crank-Nicholson scheme is difficult to use directly with (3.6), so a 

variable scaling and transformation was used of the form shown below:  

𝜃 = 𝑇 − 𝑇∞(0), (3.10a) 



72 

 

𝜃𝑜 = max(𝑇∞) − min (𝑇∞), (3.10b) 

𝑢(𝑟, 𝑡) = 𝜃(𝑟, 𝑡)𝑟, (3.11) 

Here,   denotes the difference between the temeprature at the particle location and the 

GTE inlet temperature. The variable transformation (3.11) converts the nonlinear 

equation (3.6) into a linear equation (3.12). The reduction leads to the rectangular heat 

equation. For convenience, these equations were nondimensionalized by   

𝑢′ =
𝑢

𝑟𝑜𝜃𝑜
, 𝜃′ =

𝜃

𝜃𝑜
, 𝑟′ =

𝑟

𝑟𝑜
, 𝑡′ =

𝛼

𝑟𝑜
2 𝑡, (3.13) 

So (3.12) reduces to (3.14) given by  

𝜕𝑢′

𝜕𝑡′
=

𝜕2𝑢′

𝜕𝑟′,2. (3.14) 

  

From here moving forward all equations will be given in non-dimensional form 

with the primes dropped unless otherwise specified. Applying the scaling, variable 

transformation, and nondimensionalization as well as defining 𝜂 = 𝑘𝑓/𝑘𝑝 and 𝜃∞(𝑥) =

𝑇∞(𝑥) − 𝑇∞(0) gives the final results for the boundary conditions, equations (3.15a and 

3.15b). 

𝑢|𝑟=0 = 0 (3.15a) 

𝜕𝑢

𝜕𝑟
|

𝑟=1
+ 𝑢|𝑟=1(𝜂(𝑡) − 1) =

𝜂(𝑡)𝜃∞(𝑡)

𝜃𝑜
 

(3.15b) 

 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑟2. 
(3.12) 
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A particle initial temperature profile was chosen as constant across the radius and equal 

to the GTE inlet temperature which is defined as T∞(0). The initialization is then given as 

𝑢|𝑡=0 = 0. 

 The latent heat of melting is set to zero since the particle is an amorphous solid 

(Shinozaki et al., 2013). The carrier gas in the GTE was treated as air with temperature 

dependent thermal conductivity. With the boundary conditions, initialization, and 

governing equation, the Crank-Nicholson scheme was employed to numerically 

approximate the heat equation and a second-order predictor-corrector method was used to 

track the particle location in the GTE. Particle diameters of 3, 10 and 30 m were used. 

Two different GTE data sets with different peak temperatures were used, one having 

relatively low temperature peak (900 °C) and the other with higher temperature peak 

(1800 °C). The high peak data used for the computation is shown in figure 3.1.  
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Figure 3.1: In both the top and bottom plots the x-axis the position in the GTE given in 

meters. In the top plot the y-axis is the reference frame temperature of the GTE. In the 

bottom plot the y-axis is the reference frame velocity used in predictor-corrector 

algorithm. The vertically dashed black line indicates the end of the engine in both plots, 

at approximately 3.6 meters. 

 

The results for the high peak and low peak engine data were similar, so only the results 

from the high peak data are discussed. The material properties used for the volcanic ash 
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are given in table 3.1. With the numerically calculated temperature profiles the viscosity 

was determined from (2.1). The three coefficients in (2.1) were taken to be A=-4.55, 

B=7720 J/mol, and C=344 K (Giordano et al., 2008). The method of Giordano et al. 

(2008) used to determine the coefficients, as discussed in section 2.1.2.. 

 

3.2.2. Numerical Results 

 The variation of the particle surface temperature and the particle surface viscosity 

is plotted in figure 3.2 for 3, 10, and 30 m diameter particles as functions of particle 

position in the gas turbine engine.  

 
Figure 3.2: Variation of (a) the particle surface temperature 𝑇𝑠𝑢𝑟𝑓(𝑡) and (b) the particle 

surface viscosity 𝜇𝑠𝑢𝑟𝑓(𝑡) as functions of position x in the gas turbine engine for particles 

with diameter of 3 m (green line, A), 10 m (blue line, B), and 30 m (red line, C). The 

gas turbine engine fluid temperature fT  is plotted as a black dashed-dotted line in (a). 
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The particle surface temperature changes by about 1800 °C and the viscosity changes by 

approximately 35 orders of magnitude as the particle travels through the engine. 

Computations for 3 m diameter particles indicate that the surface temperature value 

almost exactly follows the GTE fluid temperature and the temperature profile across the 

particle is very close to uniform. The change in the particle surface temperature is seen to 

lag the change in the ambient GTE fluid temperature by a slight amount for the 10 m 

particle and by a significant amount for the 30 m particle. The peak temperature within 

the engine is also observed to be lower for the 30 m particle than for the 10 m particle, 

although due to its larger thermal mass, the 30 m particle remains hotter with a 

significantly lower viscosity for a much longer period of time than the smaller particles. 

This difference is significant since it is this rear region of the engine, downstream of the 

thermal peak, where particle deposition on the turbine blades and nozzle guide vanes is 

observed to occur.   

 The temperature variation in the radial direction across the particle can be 

characterized by the difference between the surface and the center, ∆𝑇(𝑡) = 𝑇(𝑟0, 𝑡) −

𝑇(0, 𝑡). The temperature difference is plotted as a function of time for the three particle 

sizes in figure 3.3.  
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Figure 3.3: Plot of temperature difference between particle surface and center as a 

function of position x in the gas turbine engine for particles with diameter of 3 m (green 

line, A), 10 m  (blue line, B), and 30 m (red line, C). 

 

The temperature difference is largest in the region where the temperature increases 

rapidly at the entrance of the hot section of the GTE (at about x = 1.75 m), since in this 

region the slope of the temperature variation is almost vertical. The temperature 

difference exhibits a negative peak near the end of the engine hot section, at about x = 3 

m. 

 Results for the maximum absolute value and the root-mean-square value of the 

temperature difference ∆𝑇(𝑡) are listed in table 3.2 for each of the three particle sizes. 

Here, Δ𝑇𝑚 is defined by 

∆𝑇𝑟𝑚𝑠 = [
1

𝑁
∑(∆𝑇(𝑡) − ∆𝑇𝑚)2

𝑁

𝑖=1

] 

(3.16) 
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where Δ𝑇𝑚 is the mean value of Δ𝑇(𝑡) as the particle moves through the engine.  

Table 3.2: Maximum and root-mean square (rms) values of the difference in temperature 

between the particle surface and center, Δ𝑇(𝑡) ≡ 𝑇(𝑟0, 𝑡) − 𝑇(0, 𝑡), and of the viscosity 

difference ratio Δ𝛽(𝑡) ≡ {𝜇[𝑇(𝑟0, 𝑡)] − 𝜇[𝑇(0, 𝑡)]}/𝜇[𝑇(𝑟0, 𝑡)] for three particle 

diameters.   

Profile Measure 3 m diameter 10 m diameter 30 m diameter 

Max T  C  0.839 3.77 19.8 

RMS T  C  0.115 1.01 6.71 

Max   0.0341 0.239 3.97 

RMS   0.00567 0.0572 0.928 

 

Also listed in table 3.2 is the maximum absolute value and root-mean square value of the 

viscosity difference ratio 

∆𝛽 =
𝜇[𝑇(𝑟0, 𝑡)] − 𝜇[𝑇(0, 𝑡)]

𝜇[𝑇(𝑟0, 𝑡)]
 

(3.17) 

which represents the difference between the particle surface and center viscosity divided 

by the surface viscosity.  

 Bearing in mind that the maximum temperature within the GTE is approximately 

𝑇𝑚𝑎𝑥 = 1800℃ , we see that the maximum temperature difference across the particle is 

only about 0.05%, 0.2% and 1.1% of 𝑇𝑚𝑎𝑥 for the 3, 10 and 30 m diameter particles, 

respectively. The maximum value of the temperature difference occurs on the nearly 

vertical section of the temperature profile near x = 1.7 m, and the value in other parts of 
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the GTE is significantly lower. Correspondingly, the root-mean-square temperature 

difference across the particle is much smaller, measuring only about 0.006%, 0.06%, and 

0.4% of 𝑇𝑚𝑎𝑥 for the three particle diameters, respectively. Since the viscosity varies 

exponentially with temperature, as indicated by (2.1), the maximum and root-mean-

square values of the viscosity difference ratio ∆𝛽(𝑡) listed in table 3.2 are significantly 

larger than the temperature ratios listed above. For instance, the maximum and root-

mean-square values of the viscosity difference ratio for the 10 m diameter particle are 

about 24% and 5.7%, respectively. However, these values should be interpreted in light 

of the 35 orders of magnitude variation in particle viscosity as it passes through the GTE. 
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CHAPTER 4 

COMPUTATIONAL METHOD 

Section 4.1. Computational formulation 

Computations were conducted of droplet impingement onto a flat surface using 

the finite-volume based formulation in ANSYS Fluent v19.2 and employing the 

combined level-set volume-of-fluid (CLSVOF) method to represent the droplet fluid and 

the external fluid phases (Griebel & Klitz, 2017; Sun & Tao, 2010; Sussman & Puckett, 

2000). The flow field was computed in polar cylindrical coordinates (𝑟, 𝜃, 𝑧), with 

axisymmetric velocity profile given by  

 

𝐮 = 𝑢(𝑟, 𝑧, 𝑡)𝐞𝐫 + 𝑤(𝑟, 𝑧, 𝑡)𝐞𝐳. (4.1) 

 

The governing equations for the fluid flow are based on the assumption of an 

incompressible Newtonian viscous fluid with viscosity   and density   that are 

functions of the level-set function  , given by   

 

0= u   (4.2) 

  sf

Tp
t

Fuuuu
u

−++−=







+




))(()()(   (4.3) 
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The level-set function    is equal to 0+  in the liquid phase, 0−  in the gas phase, and 0 

on the gas-liquid interface, where 0  is a prescribed constant. The level-set function   is 

evolved in time using the standard equation 

 

0)( =+






u

t
. (4.4) 

 

The level-set function is regularly re-initialized using the geometrical interface-front 

construction method to preserve the property 1=  (Sethian, 1999).   

 The distributed surface tension force sfF  is evaluated using an extension of the 

Brackbill et al. (1992) equation as  

 

nF  )()(2Hsf =  (4.5) 

 

where the interface unit normal n and mean curvature   are defined by 

 

0=


=




n , n= .  (4.6) 

 

A phase-smoothed Heaviside function )(H  and Dirac delta )(  can be defined for an 

interface with thickness a as (Croce et al., 2010)  



82 

 

 

)(interface  for 

phase) (liquid  for  

phase) (gas  for 

)]sin(1[

1

0

)(
1

2

1
aa

a

a

H

aa
−













++

=














 (4.7) 

 

aa

a

a

a
−












+
=








for 

for 

2

)/cos(1

0

)(  (4.8) 

 

The fluid density and viscosity were specified in terms of the values (   , ) in the 

liquid and the values ( gg  , ) in the gas as 

 

 )()](1[)( HH g +−=  (4.9a) 

 )()](1[)( HH g +−=  (4.9b) 

 

A block-structured mesh containing four blocks was generated using the ANSYS 

meshing utility, as shown in figure 4.1a. 
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Figure 4.1: Plots illustrating the computational domain, of height H and radius R. Here r 

and z are the radial and axial coordinates, respectively. In (a), the four blocks of the 

multi-block structured grid are indicated. The plot in (b) shows the droplet initial 

configuration and the boundary conditions on the domain sides. 

 

The mesh is uniform in blocks 1 and 3, with the mesh size is set equal to a value Le in 

block 1 and 0.62 in block 3. In blocks 2 and 4, the mesh gradually varied from the small 

grid size in block 1 to the large grid in block 3.  A fully implicit coupled pressure and 

velocity solver was used to solve equations (4.2) and (4.3) on the block-structured grid. 

The momentum equation (4.3) and the level-set equation (4.4) were solved using a 

second-order upwind scheme. The pressure interpolation was performed using the 

PRESTO! (PREssure STaggering Option) scheme, and gradients were computed using a 

cell-based least-squares method.  

The domain initial and boundary conditions are shown in figure 4.1b. The droplet 

is entrained in a downward axisymmetric stagnation-point flow. A uniform downward 

velocity was set at the velocity inlet, and the no-slip condition was prescribed at the wall 
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boundary. In order to enhance computational stability, the density and viscosity of the gas 

phase were set to 1000 times smaller than the liquid phase. The offset distance between 

the droplet surface and the wall at the initial time was set equal to one-tenth of the droplet 

diameter. The transient droplet solution was initialized using a steady-state solution for 

the gas phase. All variables in the computations were non-dimensionalized using the 

initial droplet diameter d, the impact velocity 0V , and the liquid density   as 

0/Vuu = , d/xx = , 
2

0/ Vpp = , dtVt /0= . (4.10) 

Primes on dimensionless variables are dropped in the remainder of the paper for 

convenience. 

 



85 

 

CHAPTER 5 

COMPUTATIONAL RESULTS 

 Direct computations of droplet impingement were performed using the 

dimensionless parameters listed in table 5.1.  

Table 5.1: Computed parameters for melted volcanic ash in gas turbine engines. 

 

Property Symbol Equation Units Range of 

Values 

Nominal Value 

Weber 

number 

We 𝜌𝑑𝑉0
2/𝜎 none 320 - 42,500 2667 

Reynolds 

number 

Re 𝜌𝑑𝑉0/𝜇 none 0.9*10-5-3.3 0.19 

Ohnesorge 

number 

Oh 𝜇/√𝜌𝑑𝜎 none 61-2.0*106 273 

Bond 

number 

Bo 𝜌𝑔𝑑2/𝜎 none 5.6*10-7-6.2*10-

5 

6.5*10-6 

Spreading 

velocity 

U 𝜌𝑉0
2𝑑/𝜇 m/s 0.0012 - 1490 38 

Collision 

time 
C  𝜇/𝜌𝑉0

2 s 0.020 - 2500 0.26 

 

 

To maximize computational efficiency, a variable time stepping method was used with 

maximum Courant number of 0.75. The grid size near the contact line was selected as 

Le=0.006.  

  

5.1. Results for a Typical Low Reynolds Number Case 

 Typical results for volcanic ash transported in a gas turbine engine (Case 2, with 

Re = 0.19) are plotted in figure 5.1 showing a time series of the velocity magnitude both 

inside and external to the droplet during collision.  
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Figure 5.1: Time series of computational results for Case 2 (Re = 0.19) showing contours 

of the velocity magnitude at times (a) t = 0.016, (b) 0.156, (c) 0.238, (d) 0.360, (e) 0.560 

and (f) 0.938. The 0=  surface indicating the droplet interface is identified by a solid 

black line. 

 

The droplet surface (𝜙 = 0) is indicated using a solid black line. The droplet first makes 

contact with the surface in figure 5.1a, at which time the velocity within the droplet is 

nearly unchanged from the initial state, save for a decrease in velocity magnitude within a 

small region surrounding the collision point. The external fluid exhibits a high-velocity 

jet away from the droplet along the impact surface, as the squeeze-film is emptied of fluid 

by the impinging droplet. Figure 5.1b-e show the droplet flattening as the contact line 

moves outward along the impact surface. The velocity magnitude rapidly decreases both 

within the droplet and external to the droplet. A jet of external fluid is emitted from the 
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vicinity of the contact line in figure 5.1b-c due to the corner flow in this region, but the 

magnitude decreases rapidly.  

 The pressure field internal to the droplet is shown in figure 5.2a at t =0.29.  

Figure 5.2: Contour plots of (a) the droplet pressure field and (b) the smoothed Heaviside 

function H(ϕ), with velocity streamlines, for Case 2 at time t = 0.29. The solid line in (a) 

denotes the droplet interface 0= , and the shaded region in (b) indicates the interior of 

the droplet. 

 

A region of high pressure is observed along the impact surface, just inward of the contact 

line. This pressure field is very similar to that obtained in the droplet impact simulations 

of Philippi et al. (2016) and Eggers et al. (2010). Figure 5.2b shows contours of the step 

function 𝐻(𝜙) indicating the fluid phase at a time of 0.29, where the grey region of the 

plot indicates the region inside the droplet. Streamlines of the velocity field are also 

shown. The presence of a recirculating vortical flow in the external fluid streamlines just 

outside of the impacting droplet is similar to the flow structures present in the numerical 
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computations of droplet impingement by Guo et al. (2016). The phase plot in figure 5.2b 

exhibits a thin strip along the bottom surface of the droplet in which the phase transitions 

back to the external fluid. This strip, which was a common feature observed in 

computations that we performed for low Reynolds number droplet impingement, is 

consistent with observations of air film formation beneath impinging droplets made by 

numerous researchers (Hicks & Purvis, 2010; Kolinski et al., 2012; Liu et al., 2013; 

Thoroddsen et al., 2003, 2005). Experimentally studies indicate that this air film beneath 

impacting droplets is sometimes very thin, only a few tens of nanometers thick (Kolinski 

et al., 2012). 

 Theories for droplet impingement on surfaces (Attané et al., 2007; Bechtel et al., 

1981; Kim & Chun, 2001) typically utilize a balance between the rate of change of 

potential and kinetic energy in the droplet and the rate of energy dissipation. 

Consequently, it is of interest to examine the contours of some of these energy terms 

within the droplet. A time series showing the contours of the kinsetic energy 

1

2
𝐻(𝜙)(𝑢2 + 𝑤2) for Case 2 is presented in figure 5.3 for the same six times as used in 

Figure 5.1. 
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Figure 5.3: Time sequence showing the kinetic energy contours within the droplet for 

Case 2 at the six times plotted in figure 5.1. The 0=  surface indicating the droplet 

interface is identified by a solid black line. Contour levels in each frame are not 

equivalent. 

 

The kinetic energy contour levels are reset at each time frame since the value of kinetic 

energy decreases significantly during the time series. The value of the kinetic energy 

gradually increases with height and with radius within the droplet at any time during the 

spreading process.  

 A time series of the contours of the rate of hydraulic energy dissipation 𝜋ℎ 

(nondimensionalized by 
3

0
2Vd ) within the droplet is plotted in figure 5.4, which is 

defined by 
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𝜋ℎ(𝑟, 𝑧, 𝑡) =
2𝐻(𝜙)

𝑅𝑒
[(

𝜕𝑢

𝜕𝑟
)

2
+ (

𝑢

𝑟
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+

1

2
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2
]. (5.1) 

 

 

Figure 5.4: Time sequence showing the contours of the rate of energy dissipation within 

the droplet for Case 2 at the six times plotted in figure 5.1. The 0=  surface indicating 

the droplet interface is identified by a solid black line. Contour levels in each frame are 

not equivalent. 

 

At the droplet contact time in figure 5.4a, the energy dissipation rate is dominated by a 

region surrounding the contact point, and it is small in the upper part of the droplet. As 

the droplet spreads on the impacting surface, the magnitude of the energy dissipation rate 

decreases but the region with significant values of energy dissipation rate spreads out 

over a wide region within the droplet. We note that most theories for droplet 

impingement at high Reynolds number assume that all energy dissipation occurs within a 

thin boundary layer lying between the droplet and the impact surface (Bechtel et al., 
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1981; Kim & Chun, 2001). By contrast, our direct computation results for energy 

dissipation rate at low Reynolds number exhibit significant energy dissipation rate values 

within the body of the droplet and relatively small dissipation rate along the impact 

surface (except very close to the contact line).  

  

5.2. Reynolds Number Effect 

 The effect of Reynolds number on the droplet impingement computations was 

examined by repeating the above computations with four different Reynolds number 

values over the interval 0.05 ≤ 𝑅𝑒 ≤ 10, with the same value of We (see Table 3.1). The 

computed contact radius 𝑟𝑐 and the droplet center of mass height 𝑧𝑚 are plotted in figure 

5.5 as functions of time for Re values of 0.05, 0.19, 1 and 10.  

 

 

Figure 5.5: Effect of Reynolds number on droplet (a) contact radius cr  and (b) center of 

mass height mz  as functions of time. The Reynolds number is indicated by the capital 

letters A to D, and the solid black arrow indicates a decreasing Reynolds number. The 

Reynolds numbers shown are 0.05 (A, blue), 0.19 (B, red), 1 (C, green), 10 (D, black). 
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The maximum spread factor is observed to increase as the Reynolds number increases.  

 A comparison of our computational results for time variation of the contact radius 

with experimental data and analytical predictions from other investigators is shown in 

figure 5.6, which is shown using a log-log plot. 

 

 

Figure 5.6: Plot of contact radius versus time, using a log-log scale. The solid black arrow 

indicates an increasing Reynolds number. The computed data is indicated by solid lines, 

with Reynolds numbers of 0.05 (A, blue), 0.19 (B, red), 1 (C, green), and 10 (D, black). 

Data from Gordillo et al. (2018) is plotted using deltas, squares, and crosses for Reynolds 

numbers of 0.11, 0.7, and 7, respectively. Data from Rioboo et al. (2002) for Reynolds 

number of 9 is plotted using diamonds. The dashed line indicates the Philippi et al. 

(2016) analytical expression for short-time droplet spreading. 

 

Our computational data is plotted as solid curves, with decreasing contact radius as the 

Reynolds number increases (as indicated by the arrow from A to D).  The computational 

results are compared to experimental data for low Reynolds number droplet impingement 

obtained by Gordillo et al. (2018) for Reynold’s numbers of 0.11, 0.7, and 7 and by 

Rioboo et al. (2002) for a Reynolds number of 9. The experimental data is colored in 
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figure 5.6 using the same color as the computational prediction with the nearest 

computational Reynolds number. A short-time analytical result from Philippi et al. (2016) 

based on approximate solution of the inviscid flow equations is also plotted in figure 5.6, 

which can be written in dimensionless form as  

𝑟𝑐 = √3𝑡/2 . (5.2) 

Both the computational results and the experimental data exhibit the trend that the contact 

radius decreases with decrease in Reynolds number. The Philippi et al. (2016) invsciid 

flow solution yields a higher contact radius than any of the finite Reynolds number 

computational or experimental results. The log-log plot in figure 5.6 indicates that both 

our computational results and the comparison experimental data agrees with the ~t1/2 

trend predicted by the Philippi et al. (2016) solution for short times.  

 In comparing the quantitative predictions between our computational data and the 

comparison experimental results, it should be kept in mind that the highly viscous liquids 

used in these experiments tend to also exhibit significant viscoelastic behavior. The effect 

of viscoelasticity on inhibiting the droplet spreading was pointed out by Gordillo et al. 

(2018) as a major reason why the contact radius in their experimental data was 

substantially lower than indicated by extrapolation of power law predictions made from 

higher Reynolds number data. Viscoelastic effects in the experimental data is therefore a 

likely reason for why the Gordillo et al. (2018) experimental results for contact radius 

suddenly plateau at finite time, which is a behavior not observed in the computations or 

theory, or in the higher Reynolds number experimental results.      
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 We have also examined the total kinetic and potential energy of the droplet, Ec 

and Ep, which can be written in dimensionless form as 𝑒𝑐 = 𝐸𝑐/(𝜌𝑙𝑑
3𝑉0

2) and 𝑒𝑝 =

𝐸𝑝/(𝜌𝑙𝑑3𝑉0
2). The potential energy consists of both gravitational potential energy and 

interfacial potential energy. The potential energy is given by the sum of the air-liquid 

interfacial energy GLA  and the liquid-solid interfacial energy 
2

c SLR  , minus the 

interfacial energy 
2

c SGRr   that was present before the surface was covered by the liquid. 

Here, GLA  is the area of the liquid-gas interface, cR  is the contact line radius on the 

planar solid substrate, and  , SL  and SG  denote the liquid-gas, solid-liquid and solid-

gas surface tensions, respectively. The resulting interfacial potential energy is given by  

𝐸𝑝 = 𝜎𝐴𝐺𝐿 + 𝜋𝑅𝑐
2(𝜎𝑆𝐿 − 𝜎𝑆𝐺). (5.3) 

Young's equation defines the equilibrium contact angle e  by  

𝜎 cos 𝜃𝑒 = 𝜎𝑆𝐿 − 𝜎𝑆𝐺  (5.4) 

so that (5.3) reduces to 

𝐸𝑝 = 𝜎(𝐴𝐺𝐿 − 𝜋𝑅𝑐
2 cos 𝜃𝑒). (5.5) 

Nondimensionalizing the interfacial area and the contact radius using the droplet radius d 

as 
2/GL GLa A d=  and /c cr R d= , the potential energy can be written in dimensionless 

form as 

𝑒𝑝 =
1

𝑊𝑒
(𝑎𝐺𝐿 − 𝜋𝑟𝑐

2 cos 𝜃𝑒). (5.6) 

The dimensionless kinetic energy within the droplet is given by  
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𝑒𝑐 =
1

2
∫ 𝐻(𝜙)(𝑢2 + 𝑤2)𝑑𝑣

 

𝑉
. (5.7) 

 Plots of the time variation of pe  and ce  are shown in figure 5.7 for the same 

Reynolds number values examined in figure 5.6.  

 

Figure 5.7: Reynolds number effect on (a) semi-logarithmic plot of the potential energy 

and (b) log-log plot of the kinetic energy within the droplet as functions of time. The 

Reynolds number is indicated by the capital letters A to D, and the solid black arrow 

indicates a decreasing Reynolds number. The Reynolds numbers shown are 0.05 (A, 

blue), 0.19 (B, red), 1 (C, green), 10 (D, black). 

 

A log-log plot is used for the kinetic energy since it reduces rapidly following droplet 

impact. The potential energy flattens out at a value between 50-60% of the value for the 

initial spherical droplet, whereas the kinetic energy decreases by nearly eight orders of 



96 

 

magnitude during the computation. The potential energy of the droplet is observed to 

decrease as the Reynolds increases. This trend is further examined in figure 5.8, where 

the product of potential energy and Weber number in the long-time steady state 

configuration of the droplet is plotted versus Reynolds number both for our 

computational results and for and values calculated from the droplet impingement videos 

given in the Gordillo et al. (2018) supplementary information.  

 

Figure 5.8: Plot of the steady potential energy multiplied by the Weber number (ep We) 

versus the Reynolds number. The circular symbols indicate the steady values from our 

simulations, with Reynolds numbers 0.05 (A, blue), .019 (B, red), 1 (C, green), 10 (D, 

black). The delta (Δ), square (□), and cross (x) indicate values computed from the 

experimental video data from Gordillo et al. (2018). 

 

The multiplication by We in figure 5.8 was used to normalize the data, as suggested by 

(5.1), since our computations and the Gordillo et al. (2018) experiments were conducted 
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at different Weber number values. Both our computations and the Gordillo et al. (2018) 

experiments indicate a decrease in potential energy as the Reynolds number increases.  

 Figure 5.9 shows the droplet shape and contours of the local dissipation rate 

plotted at two different times for three different Reynolds numbers.  

 

Figure 5.9: Local dissipation rate at two times and three different Reynolds numbers. 

Frames (a), (c), (e) are at time of 0.08 and frames (b), (d), (f) are at time 0.23. Frames (a) 

and (b) are Reynolds number 0.05. Frames (c) and (d) are Reynolds number 1. Frames (e) 

and (f) are Reynolds number 10. The 0=  surface indicating the droplet interface is 

identified by a solid black line. Contour levels in each frame are not equivalent. 

 

The dissipation rate is largest in the low Reynolds number cases, and it occurs over a 

larger fraction of the droplet volume. This trend is expected because the dissipation 

defined in (5.1) scales with the inverse Reynolds number. The velocity gradients in (5.1) 
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define the shape of the contours. For the Re =10 case, the dissipation rate is dominated by 

velocity gradients near the contact line, whereas dissipation rate is more spread out in the 

low Reynolds number cases.  

 

5.3. Velocity Profile Within the Droplet 

 An important feature of many theoretical models for impacting droplets is the 

need to assume a velocity profile within the droplet. The droplet flow field is often 

assumed to have the form of an inviscid stagnation-point flow (Bechtel et al., 1981; 

Eggers et al., 2010; Kim & Chun, 2001; Pasandideh-Fard et al., 1996), such that   

𝑢 = 𝑠𝑟  𝑤 = −2𝑠𝑧 (5.8) 

where the straining rate )(ts  is determined by an additional boundary condition, such as 

the kinematic condition hthw =),,0(  at the top of the droplet. This form of velocity 

profile is appropriate at sufficiently long times after impact for cases with high Reynolds 

numbers. Since the radial velocity in (5.8) does not satisfy the no-slip condition, the 

droplet is assumed to have a thin boundary layer underneath it in which most of the 

viscous dissipation occurs. Alternatively, Madejski (1976) developed a theory using a 

cylinder model for the lamellar film that forms at long time as a droplet spreads on the 

surface, in which the radial velocity was assumed to have the linear shear form  

𝑢 = 𝑐𝑧𝑟  𝑤 = −𝑐𝑧2 (5.9) 

where 𝑐 = 𝑐(𝑡) is a coefficient with SI dimensions of 1/m-s. This velocity profile is more 

appropriate for droplet impact cases with low Reynolds number at long time, as the radial 

velocity satisfies the no-slip condition on the substrate surface.  
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 A similarity theory for droplet impact for short times after impact was developed 

by Philippi et al. (2016) based on solution of the potential flow equations, which gives 

droplet velocity and pressure fields as a function of time after impact for cases with high 

droplet Reynolds numbers. Philippi et al. (2016) also provide a solution for the viscous 

boundary layer flow lying under the self-similar inviscid flow within the droplet, where 

the boundary layer velocity field varies as a function of tz Re/ , in agreement with the 

classical Stokes impulsive motion solution. Similar results are noted by Wildeman et al. 

(2016) based on computational solution of droplet impacts with Reynolds number in the 

interval 100 ≤ 𝑅𝑒 ≤ 1000.   

 In the current subsection, we explore the direct computation results for droplet 

impingement to determine a reasonable approximate form for the velocity profile within 

the droplet that is appropriate for low Reynolds number collisions. One common feature 

of the velocity profiles in (5.8) and (5.9) is that the axial velocity component w is 

approximately independent of radius r, at least near the central and middle parts of the 

droplet. This feature is examined in figure 5.10, in which the axial velocity is plotted as a 

function of height at three different radial locations (r = 0, 0.15 and 0.3) and at different 

times during the droplet impact. It is observed that at each of these times, the velocity 

profile at each radial location is very similar, indicating that the axial velocity can 

reasonably be assumed to be independent of radius, or ),( tzww = , for low Reynolds 

number droplet impingement problems. In this case, the radial velocity can be obtained 

from the axisymmetric continuity equation as  
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𝑢(𝑟, 𝑧, 𝑡) = −
𝑟

2

𝜕𝑤

𝜕𝑧
. (5.10) 

 We seek a functional fit for the radial and axial velocity profiles which satisfies 

the no-slip and no-penetration boundary condition on the substrate surface, which from 

(5.10) requires that 0/ == zww  on 0=z . Satisfaction of these boundary condition 

can be ensured by approximating the gradient of the axial velocity as proportional to a 

log-normal distribution )(zf , such that  

𝜕𝑤

𝜕𝑧
= −𝐶𝐿𝑁𝑓(𝑧) = −

𝐶𝐿𝑁

𝜎𝐿𝑁𝑧√2𝜋
exp (−

(𝑙𝑛 𝑧 − 𝜇𝐿𝑁)2

2𝜎𝐿𝑁
2 ) (5.11) 

and from (5.10)  

𝑢 =
𝐶𝐿𝑁𝑟

2
𝑓(𝑧) (5.12) 

 

Here 𝐶𝐿𝑁, 𝜇𝐿𝑁 and 𝜎𝐿𝑁 are undetermined fitting coefficients. The axial velocity profile 

),( tzw  can be obtained by integrating (5.11) to obtain 

𝑤(𝑧, 𝑡) = −𝐶𝐿𝑁[Φ(𝑧) − Φ(0)] (5.13) 

where Φ(𝑧) = 1 −
1

2
erfc [

ln 𝑧−𝜇𝐿𝑁

√2𝜎𝐿𝑁
] is the cumulative normal distribution and erfc() is the 

complementary error function.  

 A plot demonstrating these functional fits for the case with Re = 0.19 is given in 

figure 5.10.  
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Figure 5.10: Computational results for the axial velocity ),,( tzrw  as a function of height 

z at times t = 0.158 (black), 0.614 (red), and 1.752 (green). Results are compared at three 

radial locations, r = 0 (squares), r = 0.15 (crosses), and r = 0.30 (deltas), demonstrating 

that the axial velocity depends only weakly on radius within the body of the droplet. The 

droplet shape for the three times shown is indicated in the inset plots on the right, with 

the radial cuts at r = 0.15 and r = 0.30 indicated in the bottom plot. 

 

The radial velocity profile at r = 0.15 was fit using (43), which is shown in figure 5.11a.  
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Figure 5.11: Plots showing (a) radial velocity profile in z at r = 0.15 and (b) axial velocity 

profile in z at 0=r  for the case with Re = 0.19 at times 168.0=t  (black squares), 0.614 

(red deltas), and 1.752 (green circles). The curves in (a) are best-fit log-normal curves of 

the form (5.12) with coefficients given in table 5.2, which end on the droplet boundary. 

The curves in (b) were computed using (5.13) with the same coefficients as the curves in 

(a).   

 

The best-fit coefficient values were obtained by searching for values yielding minimum 

least-square error with increment sizes Δ𝐶𝐿𝑁 = 0.008, Δ𝜇𝐿𝑁 = 0.004, Δ𝜎𝐿𝑁 = 0.002. 

Corresponding plots for the axial velocity profile were obtained using (45) with the same 

coefficient values as used for the curves in figure 5.11a. The resulting predictions for 

axial velocity profiles are shown in figure 5.11b to be in excellent agreement with axial 

velocity data taken along the symmetry axis ( )0=r . This procedure was repeated for the 

velocity profiles obtained for computations with all four Reynolds number values listed 

in table 5.2, and the best-fit values for the coefficients 𝐶𝐿𝑁, 𝜇𝐿𝑁 and 𝜎𝐿𝑁 are plotted in 

figure 5.12 as functions of Reynolds number. 

Table 5.2: Listing of parameter values in different computational cases examined. 
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Case Weber Reynolds Ohnesorge 

1 2666 0.05 1032 

2 2666 0.019 271 

3 2666 1 51 

4 2666 10 5 

 

 

 

Figure 5.12: Plots of the best-fit values for the log-normal coefficients (a) C, (b) µ, and 

(c)   for the radial velocity profile, for times 168.0=t  (black), 0.614 (red), and 1.752 

(green) and for Reynolds numbers 0.05 (deltas), 0.19 (crosses), 1 (squares), and 10 

(diamonds).  

 

The data indicate that 𝜇𝐿𝑁 and 𝜎𝐿𝑁 are approximately constant while 𝐶𝐿𝑁 decreases 

significantly in time. We also do not see any clear trend in values of 𝜇𝐿𝑁 and 𝜎𝐿𝑁 with 

Reynolds number, but rather the values of scattered around mean values of approximately 

-1.1 and 0.85, respectively.   
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5.4. Droplet Shape During Impact 

It is also necessary in many analytical theories for droplet impact to assume a family of 

shapes for the droplet. Common choices are a truncated sphere or a cylinder (Attané et 

al., 2007), although other options such as the rimmed cylinder or cylinder with spherical 

rims are sometimes employed. A comparison of the computed droplet shape over a series 

of times during droplet impingement with the popular cylinder and truncated sphere 

shapes is given in figure 5.13 for the Re = 0.19 case.  

 

Figure 5.13: Time series of plots showing computed phases (grey = droplet and white = 

external fluid) at the same times as in figure 5.1, compared to a truncated sphere (dashed-

dotted line) and a cylinder (dashed line) with the same volume and center-of-mass. 
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The cylinders and truncated spheres shown for comparison have the same volume and 

center of mass as the computed droplet. It is apparent from these results that the truncated 

sphere is an excellent approximation of the droplet shape during the early stages of 

droplet impingement, and even for long times remains a reasonable approximation to the 

computed profile.  

In figure 5.14 a time series showing the droplet shapes (in grey shading) and 

velocity vectors during droplet impingement are compared for cases with two Reynolds 

numbers: Re = 0.19 (on the left) and Re = 10 (on the right).  
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Figure 5.14: Velocity vectors within the droplet for impact computations with Reynold’s 

numbers 0.19 (left - a, b, and c) and 10 (right- d, e, and f). The images are shown at the 

same times - 0.158 (top), 0.614 (middle), and 1.752 (bottom). Grey shading indicates the 

interior of the droplet. 

 

All other parameters except the fluid viscosity are the same for the two computations. 

The lower Reynolds number problem clearly shows less spreading and less droplet 

flattening at times t = 0.614 and 1.752 after the initial impact has occurred. The higher Re 
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case not only spreads more than the low Re case, but it also spreads more rapidly along 

the substrate surface.    
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CHAPTER 6 

CONCLUSIONS 

6.1. Thermal Analysis Conclusions 

 A two-part thermal analysis was conducted to determine if the spreading process 

could be modeled as isothermal with a uniform temperature. The first part, section 3.1, 

covered scaling analyses used to approximate the various time scales of the impingement 

and the spreading processes. The stokes number calculated by Taltavull et al. (2016) 

indicated that the volcanic ash particle will collide with solid surfaces, given that the 

particle is larger than about 1 m. The conduction-convection time scale ratio Ω was of 

order unity, so a more detailed analysis of temperature uniformity within the particle was 

conducted. The spreading-conduction time scale ratio S was much less than unity, which 

indicated that the spreading process occurs much more quickly than the thermal diffusion 

process, so that thermal effects can be ignored during droplet spreading simulations. 

 A Crank-Nicholson scheme was used to model the thermal response of the 

volcanic ash particle as it flowed through a GTE. The results showed that for particles 

less than 30 m in diameter the temperature profile was uniform within 1% of the peak 

GTE temperature. The assumption of a uniform temperature profile was therefore 

justified for simulation purposes. 
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6.2. Droplet Impingement Conclusions 

 Small volcanic ash particles (with diameter from 3-30 m) can be suspended in 

the atmosphere for periods of several weeks following a volcanic eruption. Jet aircraft 

flying through volcanic ash clouds ingest suspended particles into their gas turbine 

engines. These small particles can heat up and melt in the combustion portion of the 

engine, and then deposit on the downstream sections of the engine. Such deposits are of 

particular concern when they block film cooling holes on the turbine blades, leading the 

blades to heat up and the material to fail. Scaling studies of molten volcanic ash particle 

impingement in gas turbine engines indicate that this collision occurs at high Weber 

numbers (We = O(1000)) but at low droplet Reynolds numbers (Re = O(0.1-1)). A survey 

of the literature on droplet impingement on flat surfaces reveals that nearly all existing 

work was done for high droplet Reynolds numbers, and does not adequately capture the 

parameter range involved in the volcanic ash droplet impingement problem.     

 The current thesis presents a computational study of droplet impingement at high 

Weber number (We = 2776) and at relatively low Reynolds number (0.05 ≤ 𝑅𝑒 ≤ 10). 

This Reynolds number range was selected because it extends into the range of interest for 

molten volcanic ash impingement while also extending up into the bottom part of the 

range covered by previous moderate Re studies. The computations were conducted using 

an axisymmetric finite-volume approach with the combined level-set volume-of-fluid 

method used for interface tracking. Validation of the computations was performed by 

comparing predictions for contact radius variable with time to experimental data from 

Gordillo et al. (2018) for Reynold’s numbers of 0.11 ≤ 𝑅𝑒 ≤ 7 and experimental data 
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Rioboo et al. (2002) for Reynolds number of 9. The comparison of the computational 

predictions with the Gordillo et al. data was good for short times, but the presence of 

viscoelastic effects caused a spreading of the droplet to terminate prematurely (Gordillo 

et al., 2018). The Rioboo et al. (2002) data compared well with our computational 

predictions. The results were also compared over short times to the inviscid-flow 

analytical solution of Philippe et al. (2016), which seems to form a high Re bound for the 

data. At all Re values examined, the contact radius is observed to increase in proportion 

to the square root of time for short times after impact, in agreement with the Philippe et 

al. (2016) prediction. In general, the results show that the droplet spreads less rapidly, and 

reaches a smaller value of the maximum spread radius, as the Reynolds number 

decreases.  

 The computational results were used to examine the time and spatial variation of 

the kinetic energy and dissipation rate, as well as the time variation of the potential 

energy of the droplet. The dissipation rate decreases with increase in Reynolds number. 

At low Re the dissipation rate occurs throughout middle part of the droplet, but as Re 

approaches moderate values (~10) the dissipation rate becomes increasingly dominated 

by the region around the contact line. Spatial patterns of dissipation rate differ 

significantly from assumptions made in high Reynolds number approximate models (Kim 

& Chun, 2001), which typically assume that all dissipation occurs in a thin boundary 

layer underneath the essentially inviscid droplet flow. Droplet kinetic energy increases 

with Reynolds number, corresponding with the observed decrease in dissipation rate. The 

droplet potential energy was found to decrease with increase in Reynolds number in the 
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computed data. This trend was also observed in the experimental data of Gordillo et al. 

(2018).       

The computed droplet shape was shown to be well approximated by a truncated 

sphere throughout the low Reynolds number impingement process. The axial velocity 

was found to be nearly independent of radius within the central part of the droplet, from 

which it follows that the radial velocity increases linearly with radius. The radial velocity 

profile was shown to fit closely to a log-normal form, from which the axial velocity 

profile was shown to be proportional to the cumulative probability distribution function, 

which can be written in terms of the complementary error function. The velocity profiles 

were shown to approach the form proposed by Madejski (1976) at long times, in which 

the radial velocity varies linearly in height z and the axial velocity varies quadratically in 

z.   

6.3. Future Work and Applications 

 We have presented a work that assesses the fundamentals of low Reynolds 

number droplet impingement and how that relates to volcanic ash being ingested into a 

GTE. Moving forward there are several options to further advance the understanding of 

low Reynolds number droplet impingement. First, more experimentation that addresses a 

low Reynolds number should be conducted. Visser et al. (2012) was able to develop a 

micro sized droplet generater that could produce high speeds but was limited to low 

viscosity fluids. Gordillo et al. (2018) was able to produce a low Reynolds number but 

used a viscoelastic fluid which contributed to experimental uncertainty. Conducting an 
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experiment that overcomes the issues encountered by Gordillo et al. (2018) and Visser et 

al. (2012) would be a very useful dataset for modeling purposes. A second future work 

could be the development of an analytical spreading model applicable to low Reynolds 

numbers in conjunction with new experimental data. 

 The application of this work was laid out such that it pertains to volcanic ash 

ingestion in GTE. The premise for this choice was that if the spreading process of low 

Reynolds number droplets can be better understood then we can better design surface 

coating and engine components to mitigate ash build up. The study of the effect of 

volcanic ash on thermal barrier coatings is fairly extensive (Arai et al., 2019; Cai et al., 

2016; Mechnich et al., 2011; Naraparaju et al., 2018; Schulz & Braue, 2013). Thermal 

barrier coatings are used to increase engine component life span and resilience against 

particulate matter. Our findings will help inform future researchers who attempt to model 

the process as the volcanic ash melts and spreads along an engine surface. 



113 

 

References 

Abuku, M., Janssen, H., Poesen, J., & Roels, S. (2009). Impact, absorption and 

evaporation of raindrops on building facades. Building and Environment, 44(1), 

113–124. https://doi.org/10.1016/j.buildenv.2008.02.001 

Afkhami, S., Zaleski, S., & Bussmann, M. (2009). A mesh-dependent model for applying 

dynamic contact angles to VOF simulations. Journal of Computational Physics, 

228(15), 5370–5389. https://doi.org/10.1016/j.jcp.2009.04.027 

Alavi, S., Passandideh-Fard, M., & Mostaghimi, J. (2012). Simulation of semi-molten 

particle impacts including heat transfer and phase change. Journal of Thermal Spray 

Technology, 21(6), 1278–1293. https://doi.org/10.1007/s11666-012-9804-8 

Almohammadi, H., & Amirfazli, A. (2017). Asymmetric Spreading of a Drop upon 

Impact onto a Surface. Langmuir, 33(23), 5957–5964. 

https://doi.org/10.1021/acs.langmuir.7b00704 

Angell, C. A. (1991). Relaxation in liquids, polymers and plastic crystals — 

strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131–133, 

13–31. https://doi.org/https://doi.org/10.1016/0022-3093(91)90266-9 

Angell, C. A. (1996). The glass transition. Current Opinion in Solid State and Materials 

Science, 1(4), 578–585. https://doi.org/https://doi.org/10.1016/S1359-

0286(96)80076-3 

Antonini, C., Innocenti, M., Horn, T., Marengo, M., & Amirfazli, A. (2011). 

Understanding the effect of superhydrophobic coatings on energy reduction in anti-

icing systems. Cold Regions Science and Technology, 67, 58–67. 

https://doi.org/10.1016/j.coldregions.2011.02.006 

Arai, M., Fukushima, Y., & Ito, K. (2019). Numerical Simulation of Volcanic Ash 

Infiltration into Thermal Barrier Coatings. Key Engineering Materials, 827, 367–

372. https://doi.org/10.4028/www.scientific.net/KEM.827.367 

Attané, P., Girard, F., & Morin, V. (2007). An energy balance approach of the dynamics 

of drop impact on a solid surface. Physics of Fluids, 19(1). 

https://doi.org/10.1063/1.2408495 

Attinger, D., Zhao, Z., & Poulikakos, D. (2000). An experimental study of molten 

microdroplet surface deposition and solidification: Transient behavior and wetting 

angle dynamics. Journal of Heat Transfer, 122(3), 544–556. 

https://doi.org/10.1115/1.1287587 

Bagdassarov, N., & Dingwell, D. (1994). Thermal properties of vesicular rhyolite. 

Journal of Volcanology and Geothermal Research, 60(2), 179–191. 

https://doi.org/10.1016/0377-0273(94)90067-1 

Baker, D. R. (1996). Granitic melt viscosities; empirical and configurational entropy 



114 

 

models for their calculation. American Mineralogist, 81(1–2), 126–134. 

https://doi.org/10.2138/am-1996-1-216 

Baker, L. J., Pilch, M., & Tarbell, W. W. (1988). Droplet structure interactions in direct 

containment heating. Transactions of the American Nuclear Society, 361–363. 

http://inis.iaea.org/search/search.aspx?orig_q=RN:20085876 

Banine, V. Y., Koshelev, K. N., & Swinkels, G. H. P. M. (2011). Physical processes in 

EUV sources for microlithography. Journal of Physics D: Applied Physics, 44(25). 

https://doi.org/10.1088/0022-3727/44/25/253001 

Bechtel, S. E., Bogy, D. B., & Talke, F. E. (1981). Impact of a Liquid Drop Against a 

Flat Surface. IBM Journal of Research and Development, 25(6), 963–971. 

https://doi.org/10.1147/rd.256.0963 

Bergeron, V., Bonn, D., Martin, J. Y., & Vovelle, L. (2000). Controlling droplet 

deposition with polymer additives. Nature, 405, 772–775. 

https://doi.org/10.1038/35015525 

Bertagnolli, M., Marchese, M., Jacucci, G., Doltsinis, I. St., & Noelting, S. (1994). 

Modelling the Impact of Particles on a Rigid Substrate under Plasma Spraying 

Conditions. Flash Reaction Processes, 239–263. https://doi.org/10.1007/978-94-

011-0309-1_9 

Blake, T. D., Bracke, M., & Shikhmurzaev, Y. D. (1999). Experimental evidence of 

nonlocal hydrodynamic influence on the dynamic contact angle. Physics of Fluids, 

11(8), 1995–2007. https://doi.org/10.1063/1.870063 

Bonilla, C. (2012). The Effect of Particle Size and Film Cooling on Nozzle Guide Vane 

Deposition [The Ohio State University]. https://doi.org/10.1115/1.4007057 

Bottinga. Y, W. (1972). The viscosity of magmatic silicate: a model for calculation. In 

American Journal of Science (Issue 272, pp. 438–475). 

Bravo, L., Wijeyakulasuriya, S., Pomraning, E., Senecal, P. K., & Kweon, C.-B. (2016). 

Large Eddy Simulation of High Reynolds Number Nonreacting and Reacting JP-8 

Sprays in a Constant Pressure Flow Vessel With a Detailed Chemistry Approach. 

Journal of Energy Resources Technology, 138(3). https://doi.org/10.1115/1.4032901 

Burzynski, D. A., & Bansmer, S. E. (2018). Droplet splashing on thin moving films at 

high Weber numbers. International Journal of Multiphase Flow, 101, 202–211. 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.01.015 

Burzynski, D. A., & Bansmer, S. E. (2019). Role of surrounding gas in the outcome of 

droplet splashing. Physical Review Fluids, 4(7), 1–10. 

https://doi.org/10.1103/PhysRevFluids.4.073601 

Bussmann, M., Chandra, S., & Mostaghimi, J. (2000). Modeling the splash of a droplet 

impacting a solid surface. Physics of Fluids, 12(12), 3121–3132. 



115 

 

https://doi.org/10.1063/1.1321258 

Büttner, R., Zimanowski, B., Blumm, J., & Hagemann, L. (1998). Thermal conductivity 

of a volcanic rock material (olivine-melilitite) in the temperature range between 288 

and 1470 K. Journal of Volcanology and Geothermal Research, 80(3–4), 293–302. 

https://doi.org/10.1016/S0377-0273(97)00050-4 

Cai, C., Chang, S., Zhou, Y., Yang, L., Zhou, G., & Wang, Y. (2016). Microstructure 

characteristics of EB-PVD YSZ thermal barrier coatings corroded by molten 

volcanic ash. Surface & Coatings Technology, 286(C), 49–56. 

https://doi.org/10.1016/j.surfcoat.2015.12.003 

Carrigan, C., & McBirney, A. (1997). Comment on “Experimental determination of the 

thermal conductivity of molten CaMgSi 2 O 6 and the transport of heat through 

magmas” by Don Snyder, Elizabeth Gier, and Ian Carmichael. Journal of 

Geophysical Research: Solid Earth, 102(B7), 15077–15080. 

https://doi.org/10.1029/97jb00650 

Chandra, S., & Avedisian, C. T. (1991). On the collision of a droplet with a solid surface. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 432(1884), 13–41. https://doi.org/10.1098/rspa.1991.0002 

Chen, W. R., & Zhao, L. R. (2015). Review - Volcanic Ash and its Influence on Aircraft 

Engine Components. Procedia Engineering, 99, 795–803. 

https://doi.org/10.1016/j.proeng.2014.12.604 

Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., & McKinley, G. H. (2009). A modified 

Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on 

non-wetting textured surfaces. Journal of Colloid and Interface Science, 339(1), 

208–216. https://doi.org/10.1016/j.jcis.2009.07.027 

Clanet, C., Béguin, C., Richard, D., & Quéré, D. (2004). Maximal deformation of an 

impacting drop. Journal of Fluid Mechanics, 517, 199–208. 

https://doi.org/10.1017/S0022112004000904 

Corrigan, R., & DeMiglio, R. (1985). Effects of precipitation on wind turbine 

performance. https://doi.org/NASA-TM-86986 

Croce, R., Griebel, M., & Schweitzer, M. A. (2010). Numerical simulation of bubble and 

droplet deformation by a level set approach with surface tension in three 

dimensions. International Journal for Numerical Methods in Fluids, 62(9), 963–

993. https://doi.org/10.1002/fld.2051 

Dacre, H. F., Grant, A. L. M., & Johnson, B. T. (2013). Aircraft observations and model 

simulations of concentration and particle size distribution in the Eyjafjallajökull 

volcanic ash cloud. Atmospheric Chemistry and Physics, 13(3), 1277–1291. 

https://doi.org/10.5194/acp-13-1277-2013 

David, R., & Neumann, A. W. (2011). Calculation of contact angle hysteresis on 



116 

 

chemically heterogeneous surfaces. Abstracts of Papers of the American Chemical 

Society, 241, 351–355. 

De Gennes, P. G. (1985). Wetting: Statics and dynamics. Reviews of Modern Physics, 

57(3), 827–863. https://doi.org/10.1103/RevModPhys.57.827 

Dean, J., Taltavull, C., & Clyne, T. W. (2016). Influence of the composition and viscosity 

of volcanic ashes on their adhesion within gas turbine aeroengines. Acta Materialia, 

109, 8–16. https://doi.org/10.1016/j.actamat.2016.02.011 

Dunn, M. G. (2012). Operation of Gas Turbine Engines in an Environment Contaminated 

with Volcanic Ash. Journal of Turbomachinery, 134(5), 1–18. 

https://doi.org/10.1115/1.4006236 

Dussan, E. B. (1979). On the Spreading of Liquids on Solid Surfaces: Static and Dynamic 

Contact Lines. Annual Review of Fluid Mechanics, 11(1), 371–400. 

https://doi.org/10.1146/annurev.fl.11.010179.002103 

Dussan, E. B., & Dussan V., E. B. (1976). The moving contact line: the slip boundary 

condition. Journal of Fluid Mechanics, 77(4), 665–684. 

https://doi.org/10.1017/S0022112076002838 

Eggers, J., Fontelos, M. A., Josserand, C., & Zaleski, S. (2010). Drop dynamics after 

impact on a solid wall: Theory and simulations. Physics of Fluids, 22(6). 

https://doi.org/10.1063/1.3432498 

Engel, O. G. (1955). Waterdrop collisions with solid surfaces. Journal of Research of the 

National Bureau of Standards, 54(5), 281. https://doi.org/10.6028/jres.054.033 

Eriksson, R., Hayashi, M., & Seetharaman, S. (2003). Thermal Diffusivity Measurements 

of Liquid Silicate Melts. International Journal of Thermophysics, 24(3), 785–797. 

https://doi.org/10.1023/A:1024048518617 

Extrand, C. W., & Kumagai, Y. (1996). Contact angles and hysteresis on soft surfaces. 

Journal of Colloid and Interface Science, 184(1), 191–200. 

https://doi.org/10.1006/jcis.1996.0611 

Eyring, H., Henderson, D., & Stover, B. J. (1982). Statistical mechanics and dynamics 

(2nd ed.). John Wiley eds. 

Fu, S. P., Sahu, R. P., Diaz, E., Robles, J. R., Chen, C., Rui, X., Klie, R. F., Yarin, A. L., 

& Abiade, J. T. (2016). Dynamic Study of Liquid Drop Impact on Supercooled 

Cerium Dioxide: Anti-Icing Behavior. Langmuir, 32(24), 6148–6162. 

https://doi.org/10.1021/acs.langmuir.6b00847 

Gao, X., & Li, R. (2014). Spread and recoiling of liquid droplets impacting solid 

surfaces. AIChE Journal, 60(7), 2683–2691. https://doi.org/10.1002/aic.14440 

Giordano, D., Romano, C., Dingwell, D., Poe, B., & Behrens, H. (2004). The combined 



117 

 

effects of water and fluorine on the viscosity of silicic magmas. Geochimica et 

Cosmochimica Acta, 68, 5159–5168. https://doi.org/10.1016/j.gca.2004.08.012 

Giordano, D., Romano, C., Papale, P., & Dingwell, D. (2004). The viscosity of trachytes, 

and comparison with basalts, phonolites, and rhyolites. Chemical Geology, 213, 49–

61. https://doi.org/10.1016/j.chemgeo.2004.08.032 

Giordano, D., Russell, J. K., & Dingwell, D. B. (2008). Viscosity of magmatic liquids: A 

model. Earth and Planetary Science Letters, 271(1–4), 123–134. 

https://doi.org/10.1016/j.epsl.2008.03.038 

Gordillo, L., Sun, T. P., & Cheng, X. (2018). Dynamics of drop impact on solid surfaces: 

Evolution of impact force and self-similar spreading. Journal of Fluid Mechanics, 

840, 190–214. https://doi.org/10.1017/jfm.2017.901 

Griebel, M., & Klitz, M. (2017). CLSVOF as a fast and mass-conserving extension of the 

level-set method for the simulation of two-phase flow problems. Numerical Heat 

Transfer, Part B: Fundamentals, 71(1), 1–36. 

https://doi.org/10.1080/10407790.2016.1244400 

Gu, S., & Kamnis, S. (2009). Bonding mechanism from the impact of thermally sprayed 

solid particles. Metallurgical and Materials Transactions A: Physical Metallurgy 

and Materials Science, 40(11), 2664–2674. https://doi.org/10.1007/s11661-009-

9959-1 

Guffanti, M., Casadevall, T., & Budding, K. (2010). Encounters of Aircraft with 

Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009. In U.S. 

Geological Survey (Vol. 14, Issue 3). https://doi.org/10.1007/BF00932611 

Guffanti, M., Mayberry, G. C., Casadevall, T. J., & Wunderman, R. (2009). Volcanic 

hazards to airports. Natural Hazards, 51(2), 287–302. 

https://doi.org/10.1007/s11069-008-9254-2 

Guo, Y., Lian, Y., & Sussman, M. (2016). Investigation of drop impact on dry and wet 

surfaces with consideration of surrounding air. Physics of Fluids, 28(7). 

https://doi.org/10.1063/1.4958694 

Haller, K. K., Ventikos, Y., Poulikakos, D., & Monkewitz, P. (2002). Computational 

study of high-speed liquid droplet impact. Journal of Applied Physics, 92(5), 2821–

2828. https://doi.org/10.1063/1.1495533 

Hess, K.-U. U., & Dingwell, D. B. (1996). Viscosities of hydrous leucogranitic melts: A 

non-Arrhenian model. American Mineralogist, 81(9–10), 1297–1300. 

https://doi.org/10.1016/0016-7037(82)90381-7 

Hicks, P. D., & Purvis, R. (2010). Air cushioning and bubble entrapment in three-

dimensional droplet impacts. Journal of Fluid Mechanics, 649, 135–163. 

https://doi.org/10.1017/S0022112009994009 



118 

 

Hirt, C. W., & Nichols, B. D. (1979). Volume of Fluid (VOF) Method for the Dynamics 

of Free Boundaries. Journal of Computational Physics, 42(3), 357–366. 

https://doi.org/10.1007/s40998-018-0069-1 

Hobiger, M., Sonder, I., Büttner, R., & Zimanowski, B. (2011). Viscosity characteristics 

of selected volcanic rock melts. Journal of Volcanology and Geothermal Research, 

200(1–2), 27–34. https://doi.org/10.1016/j.jvolgeores.2010.11.020 

Hoffman, R. L. (1975). A study of the advancing interface. I. Interface shape in liquid-

gas systems. Journal of Colloid And Interface Science, 50(2), 228–241. 

https://doi.org/10.1016/0021-9797(75)90225-8 

Holmgren, H. (2017). Modelling of Moving Contact Lines in Two-Phase Flows. 

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329059 

Horat, K., & Simmons, G. (1969). THERMAL CONDUCTIVITY OF ROCK-

FORMING MINERALS a. Earth and Planetary Science Letters, 6, 359–368. 

Horwell, C. J., & Baxter, P. J. (2006). The respiratory health hazards of volcanic ash: A 

review for volcanic risk mitigation. Bulletin of Volcanology, 69(1), 1–24. 

https://doi.org/10.1007/s00445-006-0052-y 

Hui, H., & Zhang, Y. (2007). Toward a general viscosity equation for natural anhydrous 

and hydrous silicate melts. Geochimica et Cosmochimica Acta, 71, 403–416. 

https://doi.org/10.1016/j.gca.2006.09.003 

Hulse-Smith, L., Mehdizadeh, N., & Chandra, S. (2005). Deducing drop size and impact 

velocity from circular bloodstains. Journal of Forensic Sciences, 50(1). 

https://doi.org/10.1520/JFS2003224 

Izbassarov, D., & Muradoglu, M. (2016). Effects of viscoelasticity on drop impact and 

spreading on a solid surface. Physical Review Fluids, 1(2), 1–18. 

https://doi.org/10.1103/physrevfluids.1.023302 

Jiang, T. S., Soo-Gun, O. H., & Slattery, J. C. (1979). Correlation for dynamic contact 

angle. Journal of Colloid And Interface Science, 69(1), 74–77. 

https://doi.org/10.1016/0021-9797(79)90081-X 

Ju, J., Yang, Z., Yi, X., & Jin, Z. (2019). Experimental investigation of the impact and 

freezing processes of a hot water droplet on an ice surface. Physics of Fluids, 31(5). 

https://doi.org/10.1063/1.5094691 

Kendall, G. E., & Rohsenow, W. M. (1978). Department of Mechanical Engineering 

Massachusetts Institute of Technology Sponsored by National Science Foundation D 

. S . R . Project No . 85694 March 1978 Department of Mechanical Engineering 

Massachusetts Institute of Technology Cambridge , Massachuse. Contract, 85694. 

Kim, H., & Chun, J. (2001). The recoiling of liquid droplets upon collision with solid 

surfaces. Physics of Fluids, 13(3), 643–659. https://doi.org/10.1063/1.1344183 



119 

 

Kim, J. (2007). Spray cooling heat transfer: The state of the art. International Journal of 

Heat and Fluid Flow, 28(4), 753–767. 

https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003 

Kim, S. J., Kim, J., Moon, M. W., Lee, K. R., & Kim, H. Y. (2013). Experimental study 

of drop spreading on textured superhydrophilic surfaces. Physics of Fluids, 25(9). 

https://doi.org/10.1063/1.4821985 

Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A., & 

Mahadevan, L. (2012). Skating on a film of air: Drops impacting on a surface. 

Physical Review Letters, 108(7), 1–5. 

https://doi.org/10.1103/PhysRevLett.108.074503 

Kondo, S., Mamori, H., Fukushima, N., Fukudome, K., & Yamamoto, M. (2018). 

Numerical simulation of solidification phenomena of single molten droplet on flat 

plate using E-MPS method. Journal of Fluid Science and Technology, 13(3), 1–8. 

https://doi.org/10.1299/jfst.2018jfst0013 

Krawietz, T. R., Murray, D. K., & Haw, J. F. (1998). Alkali metal oxides, peroxides, and 

superoxides: A multinuclear MAS NMR study. Journal of Physical Chemistry A, 

102(45), 8779–8785. https://doi.org/10.1021/jp9823190 

Krieger, I. (1953). Direct Determination of the Flow Curves of Non-Newtonian Fluids. II. 

Shearing Rate in the Concentric Cylinder Viscometer. 24(2), 135–136. 

Laan, N., De Bruin, K. G., Bartolo, D., Josserand, C., & Bonn, D. (2014). Maximum 

diameter of impacting liquid droplets. Physical Review Applied, 2(4), 1–7. 

https://doi.org/10.1103/PhysRevApplied.2.044018 

Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V., & Petitjeans, P. 

(2012). Spreading dynamics of drop impacts. Journal of Fluid Mechanics, 713, 50–

60. https://doi.org/10.1017/jfm.2012.431 

Lara, C., Pascual, M. J., Prado, M. O., & Durán, A. (2004). Sintering of glasses in the 

system RO-Al2O3-BaO- SiO2(R=Ca, Mg, Zn) studied by hot-stage microscopy. 

Solid State Ionics, 170(3–4), 201–208. https://doi.org/10.1016/j.ssi.2004.03.009 

Lee, J. B., Derome, D., Guyer, R., & Carmeliet, J. (2016). Modeling the Maximum 

Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces. 

Langmuir, 32(5), 1299–1308. https://doi.org/10.1021/acs.langmuir.5b04557 

Legendre, D., & Maglio, M. (2015). Comparison between numerical models for the 

simulation of moving contact lines. Computers and Fluids, 113, 2–13. 

https://doi.org/10.1016/j.compfluid.2014.09.018 

Li, N., Zhou, Q., Chen, X., Xu, T., Hui, S., & Zhang, D. (2008). Liquid drop impact on 

solid surface with application to water drop erosion on turbine blades, Part I: 

Nonlinear wave model and solution of one-dimensional impact. International 

Journal of Mechanical Sciences, 50(10–11), 1526–1542. 



120 

 

https://doi.org/10.1016/j.ijmecsci.2008.08.001 

Lim, T., Han, S., Chung, J., Chung, J. T., Ko, S., & Grigoropoulos, C. P. (2009). 

Experimental study on spreading and evaporation of inkjet printed pico-liter droplet 

on a heated substrate. International Journal of Heat and Mass Transfer, 52(1–2), 

431–441. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.028 

Liu, Y., Tan, P., & Xu, L. (2013). Compressible air entrapment in high-speed drop 

impacts on solid surfaces. Journal of Fluid Mechanics, R9-1-R9-12. 

https://doi.org/10.1017/jfm.2012.583 

Lofgren, G. (1971). Spherulitic textures in glassy and crystalline rocks. Journal of 

Geophysical Research, 76(23), 5635–5648. 

https://doi.org/10.1029/jb076i023p05635 

Macosko, C. (1994). Rheology: Principles, Measurements and Applications (1st ed.). 

Wiley/VCH. 

Mani, M., Mandre, S., & Brenner, M. P. (2010). Events before droplet splashing on a 

solid surface. Journal of Fluid Mechanics, 647, 163–185. 

https://doi.org/10.1017/S0022112009993594 

Manzello, S. L., & Yang, J. C. (2002). On the collision dynamics of a water droplet 

containing an additive on a heated solid surface. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 458(2026), 2417–2444. 

https://doi.org/10.1098/rspa.2002.0980 

McDonald, A., Lamontagne, M., Moreau, C., & Chandra, S. (2006). Impact of plasma-

sprayed metal particles on hot and cold glass surfaces. Thin Solid Films, 514(1–2), 

212–222. https://doi.org/10.1016/j.tsf.2006.03.010 

Mechnich, P., Braue, W., & Schulz, U. (2011). High-Temperature Corrosion of EB-PVD 

Yttria Partially Stabilized Zirconia Thermal Barrier Coatings with an Artificial 

Volcanic Ash Overlay. American Ceramic Society. Journal of the American 

Ceramic Society, 94(3), 925. https://doi.org/10.1111/j.1551-2916.2010.04166.x 

Merriman, J. D., Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., & Benn, K. 

(2013). Thermal transport properties of major Archean rock types to high 

temperature and implications for cratonic geotherms. Precambrian Research, 232, 

358–372. https://doi.org/10.1016/j.precamres.2013.05.009 

Mielke, P., Weinert, S., Bignall, G., & Sass, I. (2016). Thermo-physical rock properties 

of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, 

New Zealand. Journal of Volcanology and Geothermal Research, 324, 179–189. 

https://doi.org/10.1016/j.jvolgeores.2016.06.002 

Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J. A., Krupenkin, T., & Aizenberg, J. 

(2010). Design of ice-free nanostructured surfaces based on repulsion of impacting 

water droplets. ACS Nano, 4(12), 7699–7707. https://doi.org/10.1021/nn102557p 



121 

 

Murase, T., & McBirney, A. R. (1973). Properties of some common igneous rocks and 

their melts at high temperatures. Bulletin of the Geological Society of America, 

84(11), 3563–3592. https://doi.org/10.1130/0016-

7606(1973)84<3563:POSCIR>2.0.CO;2 

Murugan, M., Ghoshal, A., Walock, M., Nieto, A., Bravo, L., Pegg, R. T., & Rowe, C. 

(2017). MICROSTRUCTURE BASED MATERIAL-SAND PARTICULATE 

INTERACTIONS AND ASSESSMENT OF COATINGS FOR HIGH TEMPERATURE 

TURBINE BLADES. 

Naraparaju, R., Lau, H., Lange, M., Fischer, C., Kramer, D., Schulz, U., & Weber, K. 

(2018). Integrated testing approach using a customized micro turbine for a volcanic 

ash and CMAS related degradation study of thermal barrier coatings. Surface & 

Coatings Technology, 337, 198–208. https://doi.org/10.1016/j.surfcoat.2018.01.030 

Nishi, T., Ohta, H., Sukenaga, S., & Shibata, H. (2018). Estimation of thermal 

conductivity of silicate melts using three-dimensional thermal resistor network 

model. Journal of Non-Crystalline Solids, 482(September 2017), 9–13. 

https://doi.org/10.1016/j.jnoncrysol.2017.11.014 

Ogawa, H., Ohta, H., & Waseda, Y. (1993). Thermal diffusivity measurement of LiNbO3 

melts doped with MgO by the laser flash method. Journal of Crystal Growth, 

133(3–4), 255–260. https://doi.org/10.1016/0022-0248(93)90162-P 

Ojovan, M. I. (2008). Viscosity and Glass Transition in Amorphous Oxides. Advances in 

Condensed Matter Physics, 2008, 1–23. https://doi.org/10.1155/2008/817829 

Onorato, P. I. K., Uhlmann, D. R., & Simonds, C. H. (1978). The thermal history of the 

Manicouagan Impact Melt Sheet, Quebec. Journal of Geophysical Research: Solid 

Earth, 83(B6), 2789–2798. https://doi.org/10.1029/JB083iB06p02789 

Oochi, M., Koshizuka, S., & Sakai, M. (2010). Explicit MPS Algorithm for Free Surface 

Flow Analysis. Transactions of the Japan Society for Computational Engineering 

and Science, 2010, 20100013. 

Parker, W. J., Jenkins, R. J., Butler, C. P., & Abbott, G. L. (1961). Flash Method of 

Determining Thermal Diffusivity. Journal of Applied Physics, 32(9), 1679–1684. 

https://doi.org/10.1007/978-94-007-2739-7_100240 

Pasandideh-Fard, M., Chandra, S., & Mostaghimi, J. (2002). A three-dimensional model 

of droplet impact and solidification. International Journal of Heat and Mass 

Transfer, 45(11), 2229–2242. https://doi.org/10.1016/S0017-9310(01)00336-2 

Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary 

effects during droplet impact on a solid surface. Physics of Fluids, 8(3), 650–659. 

https://doi.org/10.1063/1.868850 

Philippi, J., Lagrée, P. Y., & Antkowiak, A. (2016). Drop impact on a solid surface: 

Short-time self-similarity. Journal of Fluid Mechanics, 795, 96–135. 



122 

 

https://doi.org/10.1017/jfm.2016.142 

Pyle, D. M. (1989). The thickness, volume and grainsize of tephra fall deposits. Bulletin 

of Volcanology, 51(1), 1–15. https://doi.org/10.1007/BF01086757 

Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces. 12, 61–

93. https://doi.org/10.1016/0169-5983(93)90106-K 

Riboux, G., & Gordillo, J. M. (2014). Experiments of drops impacting a smooth solid 

surface: A model of the critical impact speed for drop splashing. Physical Review 

Letters, 113(2), 1–5. https://doi.org/10.1103/PhysRevLett.113.024507 

Richard, D., & Quéré, D. (2000). Bouncing water drops. Europhysics Letters, 50(6), 769–

775. https://doi.org/10.1209/epl/i2000-00547-6 

Rioboo, R., Marengo, M., & Tropea, C. (2002). Time evolution of liquid drop impact 

onto solid, dry surfaces. Experiments in Fluids, 33(1), 112–124. 

https://doi.org/10.1007/s00348-002-0431-x 

Roisman, I. V., Berberović, E., & Tropea, C. (2009). Inertia dominated drop collisions. I. 

On the universal flow in the lamella. Physics of Fluids, 21(5). 

https://doi.org/10.1063/1.3129282 

Roisman, I. V., Rioboo, R., & Tropea, C. (2002). Normal impact of a liquid drop on a dry 

surface: Model for spreading and receding. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 458(2022), 1411–1430. 

https://doi.org/10.1098/rspa.2001.0923 

Russell, J. K., Giordano, D., & Dingwell, D. B. (2003). High-temperature limits on 

viscosity of non-Arrhenian silicate melts. American Mineralogist, 88(8–9), 1390–

1394. https://doi.org/10.2138/am-2003-8-924 

Saleh, M., Luzin, V., & Spencer, K. (2014). Analysis of the residual stress and bonding 

mechanism in the cold spray technique using experimental and numerical methods. 

Surface and Coatings Technology, 252, 15–28. 

https://doi.org/10.1016/j.surfcoat.2014.04.059 

Schiaffino, S., & Sonin, A. A. (1997a). Molten droplet deposition and solidification at 

low Weber numbers. Physics of Fluids, 9(11), 3172–3187. 

https://doi.org/10.1063/1.869434 

Schiaffino, S., & Sonin, A. A. (1997b). On the theory for the arrest of an advancing 

molten contact line on a cold solid of the same material. Physics of Fluids, 9(8), 

2227–2233. https://doi.org/10.1063/1.869345 

Schmidt, P., & Knauss, G. (1976). Prallzerstäubung von Flüssigkeiten bei 

Nichtbenetzung. Chemie Ingenieur Technik, 48(7), 659. 

https://doi.org/10.1002/cite.330480724 



123 

 

Schulz, U., & Braue, W. (2013). Degradation of La 2 Zr 2 O 7 and other novel EB-PVD 

thermal barrier coatings by CMAS (CaO-MgO-Al 2 O 3 -SiO 2 ) and volcanic ash 

deposits. Surface and Coatings Technology, 235(C). 

https://doi.org/10.1016/j.surfcoat.2013.07.029 

Scopigno, T., Ruocco, G., Sette, F., & Monaco, G. (2003). Is the Fragility of a Liquid 

Embedded in the Properties of Its Glass? Science, 302(5646), 849 LP – 852. 

https://doi.org/10.1126/science.1089446 

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving 

Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and 

Materials Science (2nd ed.). Cambridge University Press. 

Shakeri, S., & Chandra, S. (2002). Splashing of molten tin droplets on a rough steel 

surface. International Journal of Heat and Mass Transfer, 45(23), 4561–4575. 

https://doi.org/https://doi.org/10.1016/S0017-9310(02)00170-9 

Shaw, H. R. (1972). Viscosities of magmatic silicate liquids; an empirical method of 

prediction. In American Journal of Science (Vol. 272, Issue 9, pp. 870–893). 

https://doi.org/10.2475/ajs.272.9.870 

Shikhmurzaev, Y. D. (1997). Moving contact lines in liquid/liquid/solid systems. Journal 

of Fluid Mechanics, 334, 211–249. https://doi.org/10.1017/S0022112096004569 

Shinoda, K., Kojima, Y., & Yoshida, T. (2005). In situ measurement system for 

deformation and solidification phenomena of yttria-stabilized zirconia droplets 

impinging on quartz glass substrate under plasma-spraying conditions. Journal of 

Thermal Spray Technology, 14(4), 511–517. 

https://doi.org/10.1361/105996305X76531 

Shinoda, K., & Murakami, H. (2010). Splat morphology of yttria-stabilized zirconia 

droplet deposited via hybrid plasma spraying. Journal of Thermal Spray 

Technology, 19(3), 602–610. https://doi.org/10.1007/s11666-009-9460-9 

Šikalo, Š., Wilhelm, H. D., Roisman, I. V., Jakirlić, S., & Tropea, C. (2005). Dynamic 

contact angle of spreading droplets: Experiments and simulations. Physics of Fluids, 

17(6), 1–13. https://doi.org/10.1063/1.1928828 

Snyder, D., Gier, E., & Carmichael, I. (1994). Experimental determination of the thermal 

conductivity of molten CaMgSi2O6and the transport of heat through magmas. 

Journal of Geophysical Research, 99(B8). https://doi.org/10.1029/94jb01018 

Snyder, Don, Gier, E., & Carmichael, I. (1997). Reply. JOURNAL OF GEOPHYSICAL 

RESEARCH, 102(B7), 15077–15080. 

Son, Y., & Kim, C. (2009). Spreading of inkjet droplet of non-Newtonian fluid on solid 

surface with controlled contact angle at low Weber and Reynolds numbers. Journal 

of Non-Newtonian Fluid Mechanics, 162(1–3), 78–87. 

https://doi.org/10.1016/j.jnnfm.2009.05.009 



124 

 

Sonder, I., Zimanowski, B., & Büttner, R. (2006). Non-Newtonian viscosity of basaltic 

magma. Geophysical Research Letters, 33(2), 3–5. 

https://doi.org/10.1029/2005GL024240 

Song, W., Hess, K.-U., Damby, D. E., Wadsworth, F. B., Lavallée, Y., Cimarelli, C., & 

Dingwell, D. B. (2014). Fusion characteristics of volcanic ash relevant to aviation 

hazards. Geophysical Prospecting, April, 6413–6419. 

https://doi.org/10.1002/2014GL061184.Received 

Song, W., Lavallee, Y., Hess, K. U., Kueppers, U., Cimarelli, C., & Dingwell, D. B. 

(2016). Volcanic ash melting under conditions relevant to ash turbine interactions. 

Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms10795 

Song, W., Lavallée, Y., Wadsworth, F. B., Hess, K. U., & Dingwell, D. B. (2017). 

Wetting and Spreading of Molten Volcanic Ash in Jet Engines. Journal of Physical 

Chemistry Letters, 8(8), 1878–1884. https://doi.org/10.1021/acs.jpclett.7b00417 

Song, W., Yang, S., Fukumoto, M., Lavallée, Y., Lokachari, S., Guo, H., You, Y., & 

Dingwell, D. B. (2019). Impact interaction of in-flight high-energy molten volcanic 

ash droplets with jet engines. Acta Materialia, 171, 119–131. 

https://doi.org/10.1016/j.actamat.2019.04.011 

Speyer, R. F. (1994). Thermal Analysis of Materials (1st ed.). Marcel Dekker. 

Stow, C. D., Hadfield, M. G., & Ziman, J. M. (1981). An experimental investigation of 

fluid flow resulting from the impact of a water drop with an unyielding dry surface. 

Proceedings of the Royal Society of London. A. Mathematical and Physical 

Sciences, 373(1755), 419–441. https://doi.org/10.1098/rspa.1981.0002 

Suli, L., Zhengying, W., Jun, D., Pei, W., & Bingheng, L. (2017). A Numerical Analysis 

on the Metal Droplets Impacting and Spreading out on the Substrate. Rare Metal 

Materials and Engineering, 46(4), 893–898. https://doi.org/10.1016/s1875-

5372(17)30118-2 

Sun, D. L., & Tao, W. Q. (2010). A coupled volume-of-fluid and level set (VOSET) 

method for computing incompressible two-phase flows. International Journal of 

Heat and Mass Transfer, 53(4), 645–655. 

https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.030 

Sussman, M., & Puckett, E. G. (2000). A Coupled Level Set and Volume-of-Fluid 

Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. 

Journal of Computational Physics, 162, 301–337. 

https://doi.org/10.1006/jcph.2000.6537 

Taltavull, C., Dean, J., & Clyne, T. W. (2016). Adhesion of volcanic ash particles under 

controlled conditions and implications for their deposition in gas turbines. Advanced 

Engineering Materials, 18(5), 803–813. https://doi.org/10.1002/adem.201500371 

Tang, C., Qin, M., Weng, X., Zhang, X., Zhang, P., Li, J., & Huang, Z. (2017). Dynamics 



125 

 

of droplet impact on solid surface with different roughness. International Journal of 

Multiphase Flow, 96, 56–69. https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.002 

Thornber, C. R., & Huebner, J. S. (1985). Dissolution of olivine in basaltic liquids: 

experimental observations and applications. American Mineralogist, 70(9–10), 934–

945. 

Thoroddsen, S. T., Etoh, T. G., & Takehara, K. (2003). Air entrapment under an 

impacting drop. Journal of Fluid Mechanics, 478, 125–134. 

https://doi.org/10.1017/S0022112002003427 

Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N., & Hatsukih, Y. (2005). The 

air bubble entrapped under a drop impacting on a solid surface. Journal of Fluid 

Mechanics, 545, 203–212. https://doi.org/10.1017/S0022112005006919 

van Dam, D. B., & Le Clerc, C. (2004). Experimental study of the impact of an ink-jet 

printed droplet on a solid substrate. Physics of Fluids, 16, 3403–3414. 

https://doi.org/10.1063/1.1773551 

van Manen, S. M., & Wallin, E. (2012). Ground temperature profiles and thermal rock 

properties at Wairakei, New Zealand. Renewable Energy, 43, 313–321. 

https://doi.org/10.1016/j.renene.2011.11.032 

Venkatesan, J., & Ganesan, S. (2019). Computational modeling of impinging viscoelastic 

droplets. Journal of Non-Newtonian Fluid Mechanics, 263(September 2018), 42–60. 

https://doi.org/10.1016/j.jnnfm.2018.11.001 

Vetere, F., Behrens, H., Holtz, F., & Neuville, D. (2006). Viscosity of andesitic melts—

new experimental data and a revised calculation model. Chemical Geology, 228, 

233–245. https://doi.org/10.1016/j.chemgeo.2005.10.009 

Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D., & Sun, C. (2015). 

Dynamics of high-speed micro-drop impact: Numerical simulations and experiments 

at frame-to-frame times below 100 ns. Soft Matter, 11(9), 1708–1722. 

https://doi.org/10.1039/c4sm02474e 

Visser, C. W., Tagawa, Y., Sun, C., & Lohse, D. (2012). Microdroplet impact at very 

high velocity. Soft Matter, 8(41), 10732–10737. https://doi.org/10.1039/c2sm26323h 

Vogel, A., Diplas, S., Durant, A. J., Azar, A. S., Sunding, M. F., Rose, W. I., Sytchkova, 

A., Bonadonna, C., Krüger, K., & Stohl, A. (2017). Reference data set of volcanic 

ash physicochemical and optical properties. Journal of Geophysical Research: 

Atmospheres, 122(17), 9485–9514. https://doi.org/10.1002/2016JD026328 

Vosteen, H., & Rudiger, S. (2003). Influence of temperature on thermal conductivity , 

thermal capacity and thermal diffusivity for different types of rock. 28, 499–509. 

https://doi.org/10.1016/S1474-7065(03)00069-X 

Walsh, W. S., Thole, K. A., & Joe, C. (2006). Effects of Sand Ingestion on the Blockage 



126 

 

of Film-Cooling Holes. Volume 3: Heat Transfer, Parts A and B, 2006, 81–90. 

https://doi.org/10.1115/GT2006-90067 

Walzel, P. (1980). Zerteilgrenze beim Tropfenprall. Chemie Ingenieur Technik, 52(4), 

338–339. https://doi.org/10.1002/cite.330520412 

Wang, Y., & Bourouiba, L. (2017). Drop impact on small surfaces: Thickness and 

velocity profiles of the expanding sheet in the air. Journal of Fluid Mechanics, 814, 

510–534. https://doi.org/10.1017/jfm.2017.18 

Wildeman, S., Visser, C. W., Sun, C., & Lohse, D. (2016). On the spreading of impacting 

drops. Journal of Fluid Mechanics, 805, 636–655. 

https://doi.org/10.1017/jfm.2016.584 

Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D. M., Cole, J. 

W., Wardman, J., Wilson, G., & Barnard, S. T. (2012). Volcanic ash impacts on 

critical infrastructure. Physics and Chemistry of the Earth, 45–46, 5–23. 

https://doi.org/10.1016/j.pce.2011.06.006 

Wirth, W., Storp, S., & Jacobsen, W. (1991). Mechanisms controlling leaf retention of 

agricultural spray solutions. Pesticide Science, 33, 411–420. 

https://doi.org/10.1002/ps.2780330403 

Worthington, B. A. M. (1876). On the Forms assumed by Drops of Liquids falling 

vertically on a horizontal Plate. 261–271. 

Xiong, W., & Cheng, P. (2018). Numerical investigation of air entrapment in a molten 

droplet impacting and solidifying on a cold smooth substrate by 3D lattice 

Boltzmann method. International Journal of Heat and Mass Transfer, 124, 1262–

1274. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.056 

Yokoi, K., Vadillo, D., Hinch, J., & Hutchings, I. (2009). Numerical studies of the 

influence of the dynamic contact angle on a droplet impacting on a dry surface. 

Physics of Fluids, 21(7). https://doi.org/10.1063/1.3158468 

Zable, J. L. (1977). Splatter during ink jet printing. IBM Journal of Research and 

Development, 21, 315–320. https://doi.org/10.1147/rd.214.0315 

Zhao, R., Zhang, Q., Tjugito, H., & Cheng, X. (2015). Granular impact cratering by 

liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes. 

Proceedings of the National Academy of Sciences of the United States of America, 

112(2), 342–347. https://doi.org/10.1073/pnas.1419271112 

Zhou, Q., Li, N., Chen, X., Xu, T., Hui, S., & Zhang, D. (2008). Liquid drop impact on 

solid surface with application to water drop erosion on turbine blades , Part II : 

Axisymmetric solution and erosion analysis. International Journal of Mechanical 

Sciences, 50, 1543–1558. https://doi.org/10.1016/j.ijmecsci.2008.08.002 

 


	Modeling Volcanic Ash Particle Impingement In The Hot Sections Of A Gas Turbine Engine
	Recommended Citation

	Chapter 1

