
University of Vermont University of Vermont

ScholarWorks @ UVM ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2020

The Iteration Domain Reference Governor, a Constraint The Iteration Domain Reference Governor, a Constraint

Management Scheme for Batch Processes Management Scheme for Batch Processes

Aidan Ridner Laracy
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Laracy, Aidan Ridner, "The Iteration Domain Reference Governor, a Constraint Management Scheme for
Batch Processes" (2020). Graduate College Dissertations and Theses. 1259.
https://scholarworks.uvm.edu/graddis/1259

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It
has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of
ScholarWorks @ UVM. For more information, please contact donna.omalley@uvm.edu.

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/graddis
https://scholarworks.uvm.edu/etds
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1259?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

The Iteration Domain Reference
Governor, a Constraint Management

Scheme for Batch Processes

A Thesis Presented

by

Aidan Laracy

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

Specializing in Mechanical Engineering

August, 2020

Defense Date: June 5th, 2020
Dissertation Examination Committee:

Hamid Ossareh, Ph.D., Advisor
James Bagrow, Ph.D, Chairperson

Dryver Huston, Ph.D.
Mads Almassalkhi, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

In this work, a novel combination of Reference Governors (RG) and Iterative Learning
Control (ILC) to address the issue of simultaneous learning and constraint manage-
ment in systems that perform a task repeatedly is proposed. The proposed control
strategy leverages the measured output from the previous iterations to improve track-
ing, while guaranteeing constraint satisfaction during the learning process. To achieve
this, the plant is modeled by a linear system with uncertainties. An RG solution based
on a robust Maximal Admissible Set (MAS) is proposed that endows the ILC algo-
rithm with constraint management capabilities. The proposed method is applied to
the Scalar Reference Governor (SRG), the Vector Reference Governor (VRG) and
the Command Governor (CG). An update law on the MAS is proposed to further
improve performance.

For my family

ii

Acknowledgements

I’d like to thank my advisor, Dr. Ossareh, for his guidance, assistance, and teach-

ings during this past year.

I’d like to thank my committee for their time, questions, and interest in my work.

I’d like to thank Collin, Yudan, and Joycer for helping me to learn the ropes of

RG, and for fielding all of my questions.

I’d like to thank my parents for their love and support throughout this degree. I

couldn’t have done it without y’all.

iii

Table of Contents
Dedication . ii
Acknowledgements . iii
List of Figures . vii

1 Introduction 1
1.1 Motivation . 1
1.2 Literature Review . 3

1.2.1 Iterative Learning Control . 3
1.2.2 Constraint Management for Iterative Learning Control 4
1.2.3 Reference Governor . 5

1.3 Contributions . 8
1.4 Thesis Outline . 9
1.5 An Explanation of the Iteration Domain 10

2 Preliminaries 11
2.1 Iterative Learning Control . 11
2.2 Maximal Admissable Set . 14
2.3 Reference Governor . 16

2.3.1 Scalar Reference Governor . 17
2.3.2 Vector Reference Governor . 18
2.3.3 Command Governor . 19

3 Main Results 20
3.1 The Iteration Domain Reference Governor 20
3.2 Robust IDRG Formulation . 25

4 Illustrative Examples 29
4.1 Output Constraints . 29
4.2 State Constraints . 33
4.3 Multiple-Input Multiple-Output System 34

5 Extensions 39
5.1 Vector Reference Governor . 39

5.1.1 Revisiting the Original Example 41
5.1.2 State Constraints . 44

5.2 Command Governor . 45
5.2.1 Revisiting the Original Example 46

iv

6 Conclusions 49
6.1 Summary . 49
6.2 Future Work . 50

v

List of Figures

1.1 A robotic arm, for illustrative purposes. 2
1.2 Reference governor block diagram. 6

2.1 A block diagram of the ILC. All signals are lifted signals as defined in
(5.5). The plant is given by yk = Hyuk, where Hy is given in (5.4).
Note: z−1 denotes a one-step delay in the iteration (i.e., k) domain. . 14

3.1 A block diagram of the proposed strategy. All signals are lifted signals
as defined in (3.3). The plant is given by yk = Hyuk, where Hy is given
in (5.4). Note: z−1 denotes a one-step delay in the iteration (i.e., k)
domain. 21

3.2 An illustration to help visualize α and esk. 27

4.1 The system output yk for various iterations. The dashed lines show
the imposed constraint. 31

4.2 The control input uk for various iterations. 31
4.3 The system output yk with the MAS updating law implemented. . . . 32
4.4 The system input uk with the MAS updating law implemented. . . . 33
4.5 The same simulation as previous, but with constraints imposed on the

state xk(t). The dashed lines show the imposed constraints. 34
4.6 The simulation with state constraints, and the proposed MAS updating

algorithm. The dashed lines show the imposed constraints. 35
4.7 The outputs y1(t) and y2(t) of the system described in Section 4.3. . 36
4.8 The outputs y1(t) and y2(t) of the system described in Section 4.3

implemented with the MAS updating law. 37

5.1 The output yk for various iterations implemented with the VRG. . . . 41
5.2 The input uk for various iterations implemented with the VRG. . . . 42
5.3 The output yk for various iterations implemented with the VRG and

the MAS updating algorithm. 43
5.4 The input uk for various iterations implemented with the VRG and

the MAS updating algorithm. 43
5.5 The system implemented with a VRG, and constraints on the states. 44
5.6 The system implemented with a VRG, constraints on the states, and

the MAS updating algorithm. 45
5.7 The output yk of the original example implemented with the command

governor. 46

vi

5.8 The input uk of the original example implemented with the command
governor. 47

5.9 The output yk of the system controlled with the CG, implemented with
the MAS updating algorithm. 48

5.10 The input uk of the system controlled with the CG, implemented with
the MAS updating algorithm. 48

vii

Chapter 1

Introduction

1.1 Motivation

Initially proposed in [1], Iterative Learning Control (ILC) is a method of control used

for systems that perform a task repeatedly. Similar to how humans learn from previ-

ous experiences, ILC controllers use information from previous iterations or batches

to improve tracking performance. Its applications have been explored in high speed

trains [2], hard disk drives [3], robotics [4], and numerous other systems performing

a repetitive task [5–10].

To provide an illustrative example of a system controlled using ILC, consider the

robotic arm in Figure 1.1, and imagine it is in a factory setting attempting to track

some reference signal to perform a pickup and place task. The inputs to the system

would be the motor torque at a given joint, the states would be the position, or

velocity of a joint, and the output would be the position of the end effector of the

robot. On the first attempt of the task, you would send an arbitrary input signal to

the robot, and you would observe some response. On the next attempt (or iteration),

1

Figure 1.1: A robotic arm, for illustrative purposes.

you would send that same input signal, but also add a learning term based on the

tracking error from the previous iteration of the task. Using this control method,

the robot arm learns continually, and will eventually track the reference signal nearly

perfectly. Currently, it is very difficult to tell what the system will do while it is

learning, so constraints could be violated while the arm is learning.

One of the main challenges with ILC is enforcing constraints, be that input, out-

put, or state constraints. To provide examples of constraints for an ILC controlled

system, consider the example previously mentioned. Typical constraints in this sys-

tem would be position and arm angle constraints, actuator saturation, and power

consumption constraints. While this arm is learning, constraint violation could lead

to damaged machine components, damaged machinery in the surrounding area, or

injured factory workers.

Several schemes to solve the issue of constraint management in ILC have been

proposed in the literature. These methods either are computationally expensive,

do not consider output, state, or actuator constraints, or violate constraints as the

system learns. This thesis provides a constraint management solution for ILC that

2

is computationally efficient, while being able to enforce input, output, and state

constraints as the system learns.

1.2 Literature Review

In this section, we will be presenting a review of the current state of the literature on

ILC, constraint management for systems controlled using ILC, and a brief overview

of the current state of the art for reference governors.

1.2.1 Iterative Learning Control

The initial proposal of ILC in [1] was formulated in continuous time. This work

proposed the derivative, or D-type ILC, where the time-derivative of the tracking error

is used as the learning parameter. Shortly after this work, [11–13] proposed several

ILC algorithms applied to robotic manipulators. These works were considered to

have been the main elements that drove the popularity of ILC in the modern control

community.

A PID-type ILC was proposed in [14], an improvement to the D-type ILC proposed

in [1]. Later, model-based ILC was proposed in [15–17] to address more complex ILC

problems, like MIMO systems. These model based methods were based on plant

inversion.

More recent developments of ILC include the Quadratic criterion-based ILC (Q-

ILC) algorithm. Q-ILC utilizes a quadratic program to solve for the control input

at a given iteration. In [18], a quadratic criterion based ILC was proposed for batch

processes subject to stochastic disturbances. Other variations of Q-ILC can be seen

3

in [19–21]

1.2.2 Constraint Management for Iterative Learn-

ing Control

Several schemes have been proposed in the literature to handle constraint manage-

ment of systems controlled by ILC. In [22], a data-driven ILC scheme is used for

systems with unknown models that have input, output, and rate of change of input

constraints. A quadratic program is used to optimize the control signal, and input-

output data is used to estimate system matrices as the ILC learns. [23] uses ILC

for linear time-varying systems with input and output constraints, where an output

feedback loop based on barrier functions is used for output constraint management.

In [24], input saturation is considered for nonlinear MIMO systems. To do this, a P-

type ILC is used containing a saturated control term, a feedback term, and a system

uncertainty estimate term. The work in [25] uses a convex optimization-based ILC

for iteration-varying systems with output constraints. This is done by defining a cost

function to optimize the learning term of the ILC algorithm. In [26], a dual-loop ILC

law was formed with a restrained learning law, and a saturated feedback law to deal

with input constraint in a robotic arm experiment.

Optimization methods for constraint management in ILC are used in [27, 28].

This is done by formulating an ILC problem with a quadratic objective function

and constraints, as a convex quadratic program. They also produce methods on

reducing computational complexity, making the optimization easier to solve. Results

are applied to a temperature control system for buildings in [28]. Barrier functions

4

are used in [29–33] to enforce output and input constraints.

The work in [34–37] uses constrained optimization techniques using super vector

notation to enforce hard constraints.

Machine learning methods are explored in [38, 39] In [38], a genetic algorithm

based optimization technique is used for constraint management in ILC. This method

is able to deal with non-linearities and constraints. [39] uses a neural network based

ILC algorithm to deal with speed constraints and actuator faults in a subway train.

The work proposed in [40] utilizes a feedback based PD type ILC controller with

input constraints on a robotic manipulator.

One of the most compelling prior works that motivates the work presented in this

thesis is seen in [41], which is another combination of the Reference Governor (RG)

and ILC. The RG proposed in [41] reduces either the amplitude or the frequency of

the reference signal, so that it can be realized within the saturation bounds of the

system. The proposed solution in [41] does eventually reach an optimal input signal,

but the imposed constraints are violated as the system learns. The work in this thesis

differs from that in [41] in that it is able to enforce output, and state constraints in

addition to input saturation constraints, and guarantees constraint satisfaction as the

system learns. The above papers either do not consider output or state constraints,

or use nonlinear or quadratic programming to update the control signal.

1.2.3 Reference Governor

The RG is an add-on scheme for pre-stabilized control systems. The main goal is

to enforce constraints by modifying the reference signal (see Figure 1.2). The add-

on functionality is ideal for black box or legacy type controllers. To give a brief

5

Reference
Governor

Closed-Loop
System

r(t) v(t) y(t)

x(t)

Figure 1.2: Reference governor block diagram.

background, the RG was initially proposed as a continuous-time control scheme in

[42], and was later introduced in the discrete time framework in [43, 44], due to the

fact that the continuous-time RG is not practically implementable. The static RG

was proposed in [43] which had the control update law v(t) = λ(t)r(t). Due to the

chance of oscillations, it was succeeded by the dynamic RG, which has the ability of

finite-time convergence for constant reference signals.

The dynamic RG includes methods such as the Scalar Reference Governor (SRG),

as introduced in [43–46]; the Vector Reference Governor (VRG), as introduced in [47];

and the Command Governor (CG), as seen in [48–50], which was later extended to

the Extended Command Governor (ECG). Each of these methods is based on the

Maximal Admissible Set (MAS) [51], or the set of all initial conditions and constant

control inputs that will satisfy constraints. The MAS will be explained in further

detail later.

Applications of the RG have been explored in turbocharged automobile engines

in [52–55] protecting against compressor surge, robots with actuator constraints [56],

manufacturing equipment [57,58], aerospace systems [59,60], power distribution sys-

tems [61,62], and many other areas.

6

Scalar Reference Governor

The SRG utilizes the maximal admissible set, or the set of all possible initial condi-

tions and constant control inputs which satisfy constraints, to govern the reference

signal to a closed loop system as a form of constraint management. The advantage of

the SRG is that the optimization solved at each time step is a simple linear program

that can be solved explicitly, making it very computationally efficient. The drawback

is that there is only one optimization parameter, so for systems with more than one

input, the SRG will produce an overly-conservative response.

Vector Reference Governor

Similar to the SRG, the VRG utilizes the maximal admissible set to form a control

signal that is constraint admissible. The main difference between the SRG and the

VRG is that instead of having only one optimization parameter, the VRG contains

multiple. Specifically, for a multiple-input multiple-output system with multiple chan-

nels, the VRG has an optimization parameter for each channel. Instead of a simple

linear program to solve the optimization problem, the VRG utilizes a quadratic pro-

gram, making it more computationally expensive. A trade-off must be made between

tracking capability and computational costs.

Command Governor

The CG is another RG method used for systems with more than one input. The CG

also makes use of the maximal admissible set, but instead of using the optimization

variable λ (which will be explained in Chapter 2), the control signal is optimized

directly. In other words, v(t), as seen in Figure 1.2 is treated as the optimization

7

variable. This leads to quicker convergence for MIMO systems, but as with the VRG,

the control signal is optimized using a quadratic program so a trade off must be made.

1.3 Contributions

ILC, as stated above, is a method of control used for systems that perform a task re-

peatedly. There is plenty of existing theory describing convergence properties of ILC,

or whether or not the output of the controlled system will converge to the reference

signal. However, there is not established theory that described how an ILC algo-

rithm will converge. ILC systems can converge monotonically: where tracking gets

better with each batch, or asymptotically (i.e. non-monotonically): where tracking

will worsen before it improves. Often times (especially in the case of non-monotonic

convergence), system constraints can be violated as an ILC algorithm is learning.

Thus, constraint management is a very hot topic in the ILC community.

The state of the literature shows that when dealing with constraint management

for ILC systems, current methods either violate constraints as the ILC-controlled

system is learning, cannot enforce input, output, or state constraints, or use non-

linear or quadratic programming to update the control signal.

The RG, by nature, is able to handle input, output, and state constraints in a

very computationally efficient manner. The work presented in this thesis outlines a

method using a lifted traditional ILC algorithm in conjunction with RG theory. The

proposed method is able to enforce input, output, and state constraints for systems

controlled by ILC, and is able to do so in a very computationally efficient manner

thanks to the RG

8

To reiterate, the contributions of this work are:

• A constraint management scheme for systems controlled by ILC, that is able to

enforce input, output, and state constraints, is robust to modeling uncertainties,

and is computationally efficient.

• A new way of modeling uncertainties through radial scaling of the maximal

admissible set.

• An algorithm to reduce the effects of an overly robust maximal admissible set.

• Various illustrative examples to demonstrate the efficacy of the proposed control

solution.

1.4 Thesis Outline

Here, we will be giving a brief overview of the rest of this document. Chapter 2 will

be a review on the theory of ILC, construction of the maximal admissible set, and

theory of RG, VRG, and CG. Chapter 3 will give an overview of the contribution:

the Iteration Domain Reference Governor (IDRG). Chapter 4 will show applications

of the IDRG on different systems using SRG, VRG, and CG, and demonstrations of

the MAS updating algorithm. Chapter 6 will present a summary of the work and a

discussion of future works.

9

1.5 An Explanation of the Iteration Do-

main

In this work, we will often refer to the “iteration domain” or the “iteration dynamics”

of a system. The iteration domain refers to the batch domain of the system. In other

words, one iteration is equivalent to one batch of a repetitive system performing a

task. When we refer to iteration dynamics, we are referring to how the dynamics

of the batches are behaving as they evolve. In this thesis, we use the variable k to

denote the iteration or batch number.

10

Chapter 2

Preliminaries

2.1 Iterative Learning Control

ILC is a control method used for systems that perform a repeated task, e.g., a robotic

arm in an assembly line, where the arm is to track some reference trajectory. Consider

the discrete-time linear model describing the dynamics of the system:

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(2.1)

where t ∈ Z+ is the discrete time index, k ∈ Z+ is the iteration or batch number,

xk(t) ∈ Rn is the state of the system in batch k at time t, uk(t) ∈ Rm is the input, and

yk(t) ∈ Rm is the output. A, B, and C are system matrices of appropriate dimensions.

For simplicity, we assume that the system starts from zero initial conditions at every

iteration, i.e., xk(0) = 0 for all k. To illustrate the above variables with an example,

consider a robotic manipulator whose end effector needs to follow a given path. The

11

batch number k would represent one full run of the robot attempting to follow the

path, and t represents the discrete-time (e.g., sampled time) during that run. The

state xk(t) would be the internal states of the robot at a given time in a given batch,

be that the torque being applied to a joint, or the angle and angular velocity of a

joint.

Let r(t) be a desired reference trajectory, defined on the time interval from t = 0

to some finite time t = T . The goal of ILC is to update the input uk(t) so that yk(t)

converges to r(t) as k tends to infinity (i.e., the goal is to make the system learn from

the previous iterations). This can be achieved, for example, using a simple Arimoto

ILC update law:

uk+1(t) = uk(t) + γek(t+ 1) (2.2)

where ek(t) = r(t)− yk(t) is the tracking error in iteration (or batch) k, and γ ∈ R+

is the “learning coefficient”. A larger γ will lead to faster convergence to the reference

signal, but can cause the system to become unstable. Work from [63] addresses

stability and convergence criteria of this algorithm. Note that many variations of

the ILC algorithm have been proposed, including those that use different learning

coefficients for each input channel, and those with more complex update laws. For

the sake of simplicity, we only consider the update law (2.2) in this thesis.

We will now define the lifted version of the system in (2.1). To begin, the lifted

versions of r(t), xk(t), yk(t), and uk(t) are defined as r, xk, yk, and uk respectively.

r =


r(1)
...

r(T)

 , xk =


xk(1)

...

xk(T)

 , yk =


yk(1)
...

yk(T)

 , uk =


uk(0)

...

uk(T − 1)

 (2.3)

12

Here, r, yk, uk ∈ RmT and xk ∈ RnT , where m is the number of inputs/outputs

of the plant, n is the number of states, and T is the number of discrete time steps in

each batch. Lifting system (2.1) with this notation, yk and xk can be expressed as

yk = Hyuk and xk = Hxuk, where Hy and Hx are given by:

Hy =



CB 0 ... 0

CAB CB ... 0
...

CAT−1B CAT−2B ... CB


, Hx =



B 0 ... 0

AB B ... 0
...

AT−1B AT−2B ... B


(2.4)

Now consider the ILC law in (2.2). After lifting this update law and a handful

of algebraic manipulations, a state-space model for the closed-loop iteration-domain

dynamics of the ILC algorithm can be formulated as:

uk+1 = (I − γHy)uk + γr

xk = Hxuk, yk = Hyuk

(2.5)

It is apparent that the ILC algorithm will converge if the system (2.5) is asymp-

totically stable. This condition is true if the eigenvalues of I−γHy are inside the unit

disk. Since Hy is a diagonal matrix, and I−γCB is on each diagonal element, then to

put it more simply, the ILC algorithm will converge if the eigenvalues of I−γCB are

in the unit disk. This is identical to the original ILC convergence criteria described

by Arimoto. A block diagram of ILC described by (2.5) can be seen in Figure 2.1

The lifted system in (2.5) will be very important later on.

13

yk

uk +ek

+
_

+

Plant

?

z
?1

rz
?1

Figure 2.1: A block diagram of the ILC. All signals are lifted signals as defined in (5.5).
The plant is given by yk = Hyuk, where Hy is given in (5.4). Note: z−1 denotes a one-step
delay in the iteration (i.e., k) domain.

2.2 Maximal Admissable Set

The Maximal Admissible Set (MAS), referred to as O∞ will be introduced in this

section. The O∞ is defined as the set of all possible initial conditions, and constant

control inputs, for which a given system will satisfy constraints.

To construct O∞, consider the multi-input multi-output (MIMO), discrete-time

stable system below

x(t+ 1) = Ax(t) +Bv(t) (2.6)

where x is subject to polytopic constraints

x(t) ∈ X , {x : Sx ≤ s} (2.7)

In this thesis, vector inequalities are to be interpreted element-wise, and note that

constraints on the state, output, and input can all be expressed using (2.7).

14

As stated previously, O∞ is defined as the set of all possible initial conditions and

constant control inputs that satisfy constraints for all future time:

O∞ = {(x0, v0) : x(0) = x0, v(t) = v0, x(t) ∈ X, ∀t ∈ Z+} (2.8)

As seen in (2.8), v = v0 is held constant for all t. Using this assumption, x(t)

can be be expressed as a function of the initial condition x0, and the constant control

input as:

x(t) = Atx0 + (I − At)(I − A)−1Bv0 (2.9)

Making a substitution, the MAS in (2.8) can also be defined a polytope with an

infinite number of inequalities:

O∞ = {(x0, v0) : SAtx0 + S(I − At)(I − A)−1Bv0 ≤ s, ∀t ∈ Z+} (2.10)

Practically, this set cannot be used, as it is infinitely large. To make this MAS

finitely determined, the steady state value of x(t) must be constrained to the interior

of the constraint set as shown in [47,51]. The steady state value of x(t) can be defined

as x(∞) := (I − A)−1Bv0, and is constrained to the interior of the constraint set as

seen below:

S(I − A)−1Bv0 ≤ (1− ε)s (2.11)

where ε is a small number. When (2.11) is introduced into (2.10), it can be shown

15

that there exists a finite time t∗ such that for all times t > t∗, the corresponding

inequalities are redundant. Combining (2.10) and (2.11), the MAS can be represented

with a polytope of the form below:

O∞ = {(x0, v0) : Gxx0 +Gvv0 ≤ g} (2.12)

where the matrices Gx, Gv and g are finite dimensional, and have the following form:

Gx =



0

S

SA

...

SAt
∗


Gv =



S(I − A)−1B

0

S(I − A)(I − A)−1B

...

S(I − At∗)(I − A)−1B


g =



(1− ε)s

s

s

...

s


(2.13)

This MAS is computed offline to be used in the Reference Governor, as will be de-

scribed next.

2.3 Reference Governor

The Reference Governor (RG) for linear systems, as seen in [47, 64–68], modifies the

reference signal to a closed-loop system, and is an add-on scheme to a traditional

feedback control system. The inner dynamics of the system are not modified, so the

RG is ideal for “black-box” systems, or systems with legacy controllers. A block

diagram of the RG can be seen in Figure 1.2. In the block diagram, r(t) is the

reference signal, v(t) is the governed reference signal, x(t) is the state, and y(t) is the

constrained output.

16

The main goal of the RG is to select a control input that does not violate con-

straints, which can be done using various different methods. In this thesis, we inves-

tigate three different RG methods, the Scalar Reference Governor (SRG), the Vector

Reference Governor (VRG), and the Command Governor (CG).

2.3.1 Scalar Reference Governor

As mentioned in the previous section, the main goal of the RG is to select a control

input such that system constraints will not be violated. When using the SRG, the

optimal control input that achieves this is as follows:

v(t) = v(t− 1) + λ(r(t)− v(t− 1)) (2.14)

where λ ∈ [0, 1]. To find λ the following linear program is solved at each discrete-time

step.

maximize
λ∈[0,1]

λ

s.t.
(
x(t), v(t− 1) + λ(r(t)− v(t− 1)

)
∈ O∞

(2.15)

In this case, x(t), v(t − 1) and r(t) are known parameters. If the reference is

feasible, then λ = 1, and if the reference is not feasible, then λ < 1. One of the

benefits of the SRG is that this optimization problem can be solved explicitly, and

therefore is extremely quick to solve.

To briefly explain some of the properties of RG, if the initial condition (x0, v0) ∈

O∞, then λ = 0 will always be a solution to the optimization problem in (2.15), so

constraints will always be satisfied, and the RG formulation is recursively feasible.

17

Second, if the reference r(t) is bounded, then v(t) is also bounded, as it lies on the

straight line between r(t) and v(t−1). Last, if r(t) is constant, then v(t) will converge

in finite time.

2.3.2 Vector Reference Governor

The VRG is an extension of the SRG, but differs in that there are multiple λ for each

channel of the system, and instead of an easy to solve linear program to calculate

v(t), a more complex quadratic program must be solved. In the VRG, the control

signal is selected as follows:

v(t) = v(t− 1) + Λ(r(t)− v(t− 1)) (2.16)

where Λ = diag(λi). To solve for Λ, the following quadratic program is solved at

each discrete-time step.

minimize
λi∈[0,1]

‖v(t)− r(t)‖

s.t. v(t) = v(t− 1) + Λ(r(t)− v(t− 1)(
x(t), v(t)

)
∈ O∞

(2.17)

For MIMO systems, the SRG will select a λ that satisfies constraints, but this

may be overly conservative for some channels. Using the VRG, each channel has its

own λi which leads to a less conservative response.

18

2.3.3 Command Governor

The Command Governor (CG) is a generalization of the traditional RG, and while

it still utilizes O∞, there is no optimization of λ. Instead, the control signal v(t) is

directly used as an optimization variable. This is beneficial for systems with mul-

tiple inputs because, similar to the VRG, there can be more than one optimization

parameter. The control signal is updated at each discrete time step by solving the

quadratic program seen below.

v(t) = minimize
v

‖v(t)− r(t)‖

s.t.
(
x(t), v(t)

)
∈ O∞

(2.18)

For MIMO systems, the CG is able to provide quicker convergence compared to

the SRG and VRG, but since a quadratic program is needed for the optimization, it

is more computationally expensive than the SRG.

19

Chapter 3

Main Results

In this chapter, we present the main results of this thesis, the Iteration Domain

Reference Governor (IDRG), and a method for relaxing a robust MAS in the case of

“over-governing”.

3.1 The Iteration Domain Reference Gov-

ernor

As mentioned in the Introduction, this thesis investigates a method of control that

combines ILC and RG to enforce the constraints during the ILC learning process.

Recall from Section 2.3 that the traditional RG algorithm governs the reference signal

to a closed-loop system to enforce the constraints (see Figure 1.2). In this thesis, this

idea is preserved, but instead of governing the reference at each discrete time-step,

the entire reference signal is governed at each iteration. In other words, the RG is

implemented on the iteration (i.e., k) domain, as opposed to the time (i.e., t) domain.

20

yk

uk +ek

O?
+

ILC

_

+

Plant

MAS update

?

z
?1

RGvk r
z

?1

Figure 3.1: A block diagram of the proposed strategy. All signals are lifted signals as defined
in (3.3). The plant is given by yk = Hyuk, where Hy is given in (5.4). Note: z−1 denotes
a one-step delay in the iteration (i.e., k) domain.

To elaborate, a high-level block diagram of the proposed control strategy in shown

in Figure 3.1, where the “Plant” is described by the following system:

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(3.1)

and is to be controlled by the Arimoto ILC law:

uk+1(t) = uk(t) + γek(t+ 1) (3.2)

The signals r, xk, yk, and uk in the Figure 3.1 represent the lifted versions of r(t),

xk(t), yk(t), and uk(t) as defined below:

r =


r(1)
...

r(T)

 , xk =


xk(1)

...

xk(T)

 , yk =


yk(1)
...

yk(T)

 , uk =


uk(0)

...

uk(T − 1)

 (3.3)

21

Here, r, yk, uk ∈ RmT and xk ∈ RnT , where m is the number of inputs/outputs of

the plant, n is the number of states, and T is the number of discrete time steps in

each batch. Lifting system (3.1) with this notation, yk and xk can be expressed as

yk = Hyuk and xk = Hxuk, where Hy and Hx are given by:

Hy =



CB 0 ... 0

CAB CB ... 0
...

CAT−1B CAT−2B ... CB


, Hx =



B 0 ... 0

AB B ... 0
...

AT−1B AT−2B ... B


(3.4)

Now consider the ILC law in (3.2), with the reference r(t) replaced by the governed

reference vk(t). After lifting this update law, and substituting vk(t) for r(t), the lifted

version of (3.2) can be expressed as:

uk+1 = uk + γek (3.5)

Now, considering ek = vk − yk, and yk = Hyuk, (3.5) becomes:

uk+1 = uk + γ(vk −Hyuk) (3.6)

and then through a slight algebraic manipulation, a state-space model for the closed-

loop iteration-domain dynamics of the ILC algorithm can be formulated as:

uk+1 = (I − γHy)uk + γvk

xk = Hxuk

yk = Hyuk

(3.7)

22

where vk ∈ RmT is the lifted version of vk(t). Next, suppose the goal is to enforce the

constraint xk(t) ∈ X on system (2.1). Using the relation xk = Hxuk, we recast this

constraint in terms of the lifted system:

Hxuk ∈ X× X× · · · × X︸ ︷︷ ︸
T terms

(3.8)

where × denotes the Cartesian product.

In other words, the matrices that describe the constraint set are defined as:



S 0 ... 0

0 S ... 0
...

0 0 ... S





xk(1)

xk(2)
...

xk(T)


≤



s

s

...

s


(3.9)

Remark 1 The constraints defined here do not have to constant in time, they may

be time-varying. Each row in the above inequality denotes a constraint on a certain

instant in time in a given batch. Each entry si in the right hand side of the inequality

may have a different value, where i denotes the i-th row.

The iteration-domain RG proposed in this thesis is designed based on the lifted system

(3.7) (treating uk as the state) with constraint (3.9). This requires the computation

of the MAS, O∞ ⊂ R2Tm, for (3.7), (3.9). Note that, as explained in Section 2.3,

computing the MAS requires tightening the constraint on the steady-state value of

the state. It can be shown that this is possible for system (3.7) if the eigenvalues

of I − γCB are inside the unit disk. In situations where this condition fails because

CB = 0 (e.g., the relative degree of the system is greater than 1), the definition of

23

the lifted output yk in (3.3) can be slightly modified to overcome this issue (see [17]

for details).

Finally, the iteration-domain RG update law is as follows:

vk = vk−1 + λ(r − vk−1)

where λ ∈ [0, 1] is obtained by solving the following linear program after every itera-

tion:
maximize

λ∈[0,1]
λ

s.t.
(
uk, vk−1 + λ(r − vk−1)

)
∈ O∞

(3.10)

It is important to note that this formulation does not modify the dynamics of

the ILC, as the RG is outside of the ILC loop, and only vk is modified. Thus, ILC

convergence conditions still hold. To select a learning coefficient such that the output

signal converges to the reference signal, γ must lead to all eigenvalues of I − γCB

being inside the unit disk.

Since the proposed RG algorithm is essentially a standard RG applied to the lifted

system, it enjoys the properties described in the following proposition.

Proposition 1 Suppose the initial condition of the system satisfies (u0, v0) ∈ O∞.

Then, formulation (3.10) enjoys the following properties:

1. it is recursively feasible;

2. it guarantees constraint satisfaction for all t and k;

3. it guarantees convergence of vk and, hence, yk as k tends to infinity.

24

Here, we provide a sketch of the proof. Selecting a λ = 0 will lead to vk+1 = vk.

Therefore, a λ = 0 is always a feasible solution to the optimization problem seen

in (3.10). Constraint satisfaction qualities of the RG are preserved thanks to the

definition of O∞. To show that the convergence criteria of ILC is not modified, note

that since only the reference signal is modified, the convergence condition discussed

above still holds, as this is for an arbitrary reference signal.

Note that the iteration-domain O∞ has a much higher dimension than a time-

domain O∞, because it has to account for the entire time-history of the signal in a

given iteration. One may be led to believe that this would cause large computation

times, but due to the structure of the linear program used in the RG, this computation

is still tractable, as illustrated in Chapter 4.

3.2 Robust IDRG Formulation

ILC has traditionally been a model-free control technique, in that, similar to PID

control, a model of the plant is not needed inside the controller for implementation.

The RG, on the other hand, is a model-based technique that requires a faithful model

of the plant in order to enforce the constraints. To resolve this apparent discrepancy,

we now present a modification of the strategy presented in Section 3.1 to account for

uncertainties.

To deal with modeling uncertainties using RG, a robust MAS, denoted by Orobust
∞ ,

must be created. To accomplish this, the methods outlined in [69] and [44] may

be used. Specifically, [69] presents a method for generating MAS robust to systems

with “polytopic uncertainties”, where the actual system matrices are unknown but

25

lie inside the convex hull of known matrices. Certain aspects of this method make

it rather computationally expensive, and considering the dimension of the matrices

we will be dealing with, this method is intractable. [44] presents an alternative, more

computationally-tractable method for creating the robust MAS, by assuming that

the system is affected by set-bounded disturbances. The main idea is to “shrink” the

MAS to account for the worst case realization of the disturbances at any given time.

We take a simpler approach in this thesis to create the robust MAS. Specifically,

suppose a nominal (possibly inaccurate) model of the system is given. We construct

an O∞ for this nominal model using the approach presented in Chapter 2. This

leads to a characterization of a “non-robust” O∞ with the form shown in (2.12). To

robustify this set, we radially shrink it as follows:

Orobust
∞ = {(x, v) : Gxx+Gvv ≤ βg} (3.11)

where 0 < β < 1 is a parameter that adjusts the amount of shrinking that the

MAS experiences. It must be chosen small enough to capture the effects of modeling

uncertainties and disturbances, but not too small so as to avoid making the response

overly conservative. In this thesis, we refer to this overly conservative response as

“over-governing”, meaning that the RG believes that the system is going to violate

constraints, when in fact it is safe.

To overcome the issue of over-governing, we reverse the tightening operation and

gradually enlarge (i.e., radially expand) Orobust
∞ as follows: after every N iterations,

with N being a tunable parameter that will be discussed later, the value of β in (3.11)

is incremented towards 1. To be more specific, recall that the constraint that we wish

to impose on the system is given by xk(t) ∈ X, where X , {x : Sx ≤ s}. Now,

26

0 5 10 15 20 25

Time

-1.5

-1

-0.5

0

0.5

1

1.5

A
m
p
li
tu
d
e

e
s

k

α

Reference

Ouput

Constraint

Figure 3.2: An illustration to help visualize α and esk.

let us introduce the following two parameters: let esk be the smallest distance of the

state from the constraint in iteration k, that is esk = mint mini(si − Sixk(t)), where

the subscript i denotes the i-th row. Let erk be the maximum value of the tracking

error in iteration k, that is erk = maxt maxi |ri(t) − yki(t)|, where i as before denotes

the i-th row. Using this notation, β is updated after every N -th iteration as follows:

if esk > α then

if erk > ξ then
β ← β + ρ

where ξ and α are user-defined threshold values, and ρ is the user-defined incremental

update of Orobust
∞ . See Figure 3.2 to help viusualize α and esk.

As mentioned previously, N is the number of iterations between updates of Orobust
∞ .

This is selected sufficiently large to allow the transient of the learning response to die

out before making an update to the MAS.

27

The parameter α can be thought of as the allowable distance of the output from

the constraint. Normally this would be selected to be sufficiently small, so that the

MAS is not overly relaxed during the MAS updating algorithm.

ρ is the amount β is increased for each update. This parameter is also selected to

be sufficiently small, and we recommend to select ρ as follows: ρ ≤ α
‖s‖∞ . A ρ larger

than this would lead to quicker convergence to the optimal β, but could lead to an

overshoot of the actual constraint, leading to violation.

The final parameter, ξ can be thought of as the maximum allowable tracking

error. This parameter is checked so that β is not continually updated if the system

is tracking well, but is far from the constraint. This way, the MAS is not continually

updated which would make the RG algorithm become unstable.

Remark 2 For this uncertainty method, matrix uncertainty may be time varying as

long as the uncertainty is constant on the iteration domain. To provide an exam-

ple of this with some system matrix Ak(t), this matrix may vary with t. That is

Ak(1), Ak(2) ... Ak(T) may be different, but A1(1) must equal Ak(1) for all k, and

A1(2) must equal Ak(2) for all k, and so on.

28

Chapter 4

Illustrative Examples

In this chapter, we will be exploring a couple of applications of the IDRG. We will

be looking at a SISO example with output constraints implemented with the IDRG,

exploring state constraints for the same system, and then a MIMO system.

4.1 Output Constraints

To illustrate the results from Chapter 3, consider a system with known B and C

matrices, and an uncertain A matrix of the following form

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t)
(4.1)

Below are the nominal A, B, and C used to create O∞, as well as the actual A matrix,

Aactual.

29

A =

0.0438 −0.4387

0.4387 0.7018

, Aactual =

0.0438 −0.4000

0.4387 0.8000

, B =

0.4387

0.2982

,
C =

[
0.5 0.5

]

Using the above matrices, the robust MAS, Orobust
∞ , is created as discussed above

with an output constraint of −1 ≤ yk(t) ≤ 1, and a β of 0.8. For this Orobust
∞ , the

Gx, Gv, and g matrices are 960 × 30, 960 × 30, and 960 × 1, respectively. The

RG/ILC algorithm in Chapter 3 is then implemented with this robust MAS and the

ILC learning coefficient of γ = 2. A numerical simulation is performed in MATLAB

using a laptop computer equipped with an Intel Core i7 CPU and 16 GB of RAM. The

desired reference trajectory for the simulation is assumed to be r(t) = 1.3 sin3(0.2t).

Figures 4.1 and 4.2 shows the output and control input of the simulated system

respectively. As can be seen in the figure, in each iteration, the constraints are

satisfied for all t. Also, after k = 10 iterations, the output has converged (i.e., does

not change significantly with further iterations) and the learning is complete. Note

that the RG linear program in (3.10) was implemented using an explicit algorithm

(similar to [66]). The mean computation time of this algorithm was 4.5 ms for this

example, which shows that the proposed scheme is computationally tractable.

Notice that the output response is overly conservative, as evidenced by the gap

between the output and the constraint, even at higher iterations. This implies that

optimal tracking has not been achieved. The reason for this is that the Orobust
∞ is too

conservative (i.e., the system has been made too robust to modeling errors).

Now to mitigate the effects of over-governing, the MAS relaxing algorithm ex-

plained in Chapter 3 is implemented. To help visualize, esk is the smallest distance of

the output from the constraint. In this simulation, the parameters α, ρ, ξ are all set

30

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1
A
m
p
li
tu
d
e

Reference

Constraint

k = 2

k = 3

k = 10

k = 12

Figure 4.1: The system output yk for various iterations. The dashed lines show the imposed
constraint.

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 2

k = 3

k = 10

k = 12

Figure 4.2: The control input uk for various iterations.

31

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Reference

Constraint

k = 15

k = 30

k = 45

k = 100

Figure 4.3: The system output yk with the MAS updating law implemented.

to 0.03. The output and input of the system above implemented with the updating

algorithm can be seen in Figures 4.3 and 4.4 respectively.

To further explain the rationale behind the above algorithm, we note that over-

governing is determined by the distance of the output from the constraint (i.e., esk is

large) in situations in which the output does not track the reference (i.e., erk is large).

In these situations, the update algorithm above will continually update β to reduce

the effect of over-governing. Note that the condition esk > α is required to ensure that

the updates of β do not lead to an over-relaxation of the set, and the condition erk > ξ

is introduced to ensure that the set is not relaxed when the tracking performance is

already within an acceptable level.

32

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 15

k = 30

k = 45

k = 100

Figure 4.4: The system input uk with the MAS updating law implemented.

4.2 State Constraints

As is stated in Chapter 3, the proposed control method can handle all sorts of con-

straints. To demonstrate other variations of constraints, the same example from the

previous subsection will be recast with state constraints. Specifically, the constraints

imposed on the state are −.7 ≤ x1,k(t) ≤ .7, and −1.5 ≤ x2,k(t) ≤ 1.5. All other

parameters of the simulation are the same, including the A, B, and C matrices used

to form the lifted model, and the matrix Aactual. Results of the simulation can be

seen in Figure 4.5.

From this simulation, it is evident that the system is experiencing over-governing.

To mitigate this, the updating algorithm from Chapter 3 is used, with α = ρ = ξ =

0.03, as in the previous example.

33

0 10 20
-2

-1

0

1

2
x1,k(t)(governed)

0 10 20

Time

-2

-1

0

1

2
x2,k(t)(governed)

0 10 20

Time

-1.5

-1

-0.5

0

0.5

1

1.5
yk(t)

k = 2
k = 3
k = 10
k = 12
Reference

Figure 4.5: The same simulation as previous, but with constraints imposed on the state
xk(t). The dashed lines show the imposed constraints.

The result of the updating algorithm implemented on the example with state

constraints can be seen in 4.6. Notice that the parameter esk accounts for the smallest

distance of each state, from each constraint. This means that the MAS will not be

continually updated if one output is at a constraint, and another is not. After 200

iterations, the state x2,k(t), is within α of it’s constraint, and the updating algorithm

is complete.

4.3 Multiple-Input Multiple-Output Sys-

tem

To further demonstrate the efficacy of the proposed control solution, an example of

a MIMO system, with two inputs and two outputs was considered. The system had

34

0 10 20
-2

-1

0

1

2
x1,k(t)(governed)

0 10 20

Time

-2

-1

0

1

2
x2,k(t)(governed)

0 10 20

Time

-1.5

-1

-0.5

0

0.5

1

1.5
yk(t)

k = 13
k = 50
k = 100
k = 200
Reference

Figure 4.6: The simulation with state constraints, and the proposed MAS updating algo-
rithm. The dashed lines show the imposed constraints.

the form of (4.1), with system matrices seen below.

A =



0.9 0 0 0

1 0.1 0.2 1

0 0 0.5 0.1

0.3 0 0 0.2


, Aactual =



0.9 0 0 0

1 0.1 0.2 1

0 0 0.4 0.1

0.25 0 0 0.15


, B =



.5 0

0 0

0 .0426

0.04285 0.1349


,

C =

1 0 0 0

0 1 0 0


The robust MAS is formed with the matrices A, B, and C, output constraints

−0.06 ≤ y1(t), y2(t) ≤ .06, and β = 0.8. For this Orobust
∞ , the Gv, Gx, g matrices

were 40804× 202, 40804× 202 and 40804× 1 respectively, and a learning coefficient

of γ = 0.5 was used. The mean computation time for λ was 0.3059 seconds using the

35

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

y
1
(t
)

k = 3
k = 10
k = 50
k = 85
Reference

0 0.2 0.4 0.6 0.8 1

Time

0

0.05

0.1

y
2
(t
)

Figure 4.7: The outputs y1(t) and y2(t) of the system described in Section 4.3.

36

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

y
1
(t
)

k = 85
k = 150
k = 250
k = 400
Reference

0 0.2 0.4 0.6 0.8 1

Time

0

0.05

0.1

y
2
(t
)

Figure 4.8: The outputs y1(t) and y2(t) of the system described in Section 4.3 implemented
with the MAS updating law.

37

same computer described above. The outputs of the system can be seen Figure 4.7,

where the reference signals for each output are shown by the blue dashed lines.

This MIMO system was also implemented with the MAS update law proposed in

Chapter 3. As can be seen in Figure 4.7, this system has a settling-time of about 85

iterations, so the parameter N was chosen to be 90 iterations. To allow the output

to come sufficiently close to the constraint, an α of 0.003 is used. To select the value

of ρ the criteria ρ ≤ α
‖s‖∞ is used. This led to ρ = 0.045. The outputs y1(t) and y2(t)

implemented with the IDRG, and the MAS updating law can be seen in Figure 4.8.

38

Chapter 5

Extensions

In this chapter, we will be exploring a couple of extensions of the IDRG. Specifically,

we will be taking a look at the Vector Reference Governor (VRG) and the Command

Governor (CG). These RG methods are better suited for systems with multiple inputs

and outputs.

5.1 Vector Reference Governor

The VRG is commonly used for multiple-input multiple-output (MIMO) systems, as

it has the ability to optimize multiple different λ for multiple different channels. The

control signal for the VRG differs from the SRG in that the control signal is selected

as

v(t) = v(t− 1) + Λ(r(t)− v(t− 1)) (5.1)

where Λ = diag(λi) and to reiterate, the quadratic program solved at each

discrete-time step is

39

minimize
λi∈[0,1]

‖v(t)− r(t)‖

s.t. v(t) = v(t− 1) + Λ(r(t)− v(t− 1)(
x(t), v(t)

)
∈ O∞

(5.2)

To motivate the use of the VRG in the IDRG control method, consider again the

iteration domain model of a system controlled with the Arimoto-type ILC controller:

uk+1 = (I − γHy)uk + γr

xk = Hxuk, yk = Hyuk

(5.3)

where Hx, Hy are

Hy =



CB 0 ... 0

CAB CB ... 0
...

CAT−1B CAT−2B ... CB


, Hx =



B 0 ... 0

AB B ... 0
...

AT−1B AT−2B ... B


(5.4)

and r, xk, yk, uk are

r =


r(1)
...

r(T)

 , xk =


xk(1)

...

xk(T)

 , yk =


yk(1)
...

yk(T)

 , uk =


uk(0)

...

uk(T − 1)

 (5.5)

The iteration-domain model in (5.3) is essentially a MIMO system, as yk, uk, and

xk are mT ×1, mT ×1, and nT ×1 vectors respectively. Each discrete-time instant in

the batch is treated as an input in the IDRG. This way, each input (or discrete-time

40

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Reference

Constraint

k = 3

k = 10

k = 35

k = 50

Figure 5.1: The output yk for various iterations implemented with the VRG.

instant) would have it’s own λi potentially improving tracking performance.

5.1.1 Revisiting the Original Example

To demonstrate this idea, we will take another look at the example used in Section

4.1. This example is almost exactly the same as above, the only difference being as

opposed to being controlled by a SRG, a VRG is used. The simulated output and

input of the IDRG controlled system can be seen in Figures 5.1 and 5.2.

Notice, that at each discrete-time instant where the reference signal is inside

constraint boundaries, perfect tracking can be achieved, but in places where the

reference exceeds constraint boundaries the reference is governed. This is seen around

t = 5 seconds to t = 10 seconds, and around t = 20 seconds to t = 27 seconds. The

same β = 0.8 is used, so the system is still experiencing over-governing. Tracking

41

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 3

k = 10

k = 35

k = 50

Figure 5.2: The input uk for various iterations implemented with the VRG.

performance was obviously greatly improved with the use of the VRG, but the mean

computation time for λ was 0.3076 seconds.

Next, we apply the MAS updating algorithm to the system controlled by the

VRG. Similar to previous sections, it was implemented with α = ρ = ξ = 0.03, but

a larger N is needed. The settling time of the system implemented with the VRG

was considerably larger than that of the system implemented with the SRG. As can

be seen in Figure 5.1, the transient of the learning response dies out by around 50

iterations, so for this update algorithm to work, N = 50 is used. Simulated outputs

and inputs with the update law of this system are presented in Figures 5.3 and 5.4.

It can be seen that after 275 iterations, the output is within α of the constraint, and

MAS updating terminates.

42

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Reference

Constraint

k = 50

k = 100

k = 150

k = 275

Figure 5.3: The output yk for various iterations implemented with the VRG and the MAS
updating algorithm.

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 50

k = 100

k = 150

k = 275

Figure 5.4: The input uk for various iterations implemented with the VRG and the MAS
updating algorithm.

43

0 10 20
-2

-1

0

1

2
x1,k(t)(governed)

0 10 20

Time

-2

-1

0

1

2
x2,k(t)(governed)

0 10 20

Time

-1.5

-1

-0.5

0

0.5

1

1.5
yk(t)

k = 4
k = 11
k = 25
k = 50
Reference

Figure 5.5: The system implemented with a VRG, and constraints on the states.

5.1.2 State Constraints

The VRG controlled IDRG was also implemented with state constraints. Similar to

Section 4.2, the same system matrices and learning coefficient are used, and state

constraints −.7 ≤ x1,k(t) ≤ .7, and −1.5 ≤ x2,k(t) ≤ 1.5 are imposed. Similar to the

previous section, the A, B, and C matrices are used to form the lifted system (and

Orobust
∞), but the actual matrix Aactual is used for simulations, and the learning coeffi-

cient is γ = 2. As can be seen in Figure 5.5, the learning response is slightly different,

but the time for the learning dynamics to die out is the same, and overgoverning is

experienced.

When the update law was implemented, parameters of the update law, similar

to the previous section are α = ρ = ξ = 0.03, and N = 50. The VRG with state

constraints, and the MAS update law are seen in 5.6.

44

0 10 20
-2

-1

0

1

2
x1,k(t)(governed)

0 10 20

Time

-2

-1

0

1

2
x2,k(t)(governed)

0 10 20

Time

-1.5

-1

-0.5

0

0.5

1

1.5
yk(t)

k = 50
k = 200
k = 500
k = 900
Reference

Figure 5.6: The system implemented with a VRG, constraints on the states, and the MAS
updating algorithm.

5.2 Command Governor

Similar to the VRG, the Command Governor (CG) provides better, less conservative

control response for MIMO systems. The most apparent difference between the VRG

and the CG is that instead of using the optimization parameter λi, the control signal

is optimized directly.

v(t) = arg minimize
v

‖v(t)− r(t)‖

s.t.
(
x(t), v(t)

)
∈ O∞

(5.6)

In other words, each control input at each time instant is treated as an input, that

is v(1), . . . , v(T) are all inputs to the CG.

45

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Reference

Constraint

k = 2

k = 3

k = 10

k = 12

Figure 5.7: The output yk of the original example implemented with the command governor.

5.2.1 Revisiting the Original Example

Again, we will be looking at the original example, with the state space model seen

in 4.1, and system matrices Aactual, B, C, and where the O∞ is formed with the

matrices A, B, and C. Results of this example implemented with the CG can seen

in Figures 5.7 and 5.8.

As can be seen by these results, the CG provides a convergence time very similar

to the SRG results with a convergence time of around 12 iterations. Also, similar

to the VRG, tracking within constraint boundaries is drastically improved compared

to the SRG. In this simulation, the average computation time for each iteration was

0.2932 seconds, which makes the trade off between tracking ability and computation

time very apparent. This is quicker than the VRG, but still drastically slower than

46

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 2

k = 3

k = 10

k = 12

Figure 5.8: The input uk of the original example implemented with the command governor.

the SRG.

For the sake of continuity, the CG simulation was also implemented with the MAS

updating algorithm. Results of this simulation can be seen in Figures 5.9 and 5.10.

As with all of the previous examples with this system, the parameters α, ρ, and

ξ are all set to 0.03. Since the convergence time of the CG is considerably quicker

than that of the VRG, an N of 15 iterations is used. The total iterations needed to

reach the optimal MAS was very similar to that of the SRG. Comparatively, the CG

provided better tracking within constraint boundaries, but took longer to compute

the control signal.

47

0 5 10 15 20 25

Time

-1

-0.5

0

0.5

1

A
m
p
li
tu
d
e

Reference

Constraint

k = 15

k = 30

k = 45

k = 100

Figure 5.9: The output yk of the system controlled with the CG, implemented with the MAS
updating algorithm.

0 5 10 15 20 25

Time

-2

-1

0

1

2

A
m
p
li
tu
d
e

k = 15

k = 30

k = 45

k = 100

Figure 5.10: The input uk of the system controlled with the CG, implemented with the MAS
updating algorithm.

48

Chapter 6

Conclusions

6.1 Summary

Today, many modern processes are considered “batch processes”, where they are

performed repeatedly. Manufacturing processes with robotic arms, hard disk drives,

and high speed trains can all be considered batch processes. A popular method of

control for these batch processes is Iterative Learning Control (ILC), which, similar to

how humans learn, uses information from previous runs or batches of the process to

improve tracking performance. Several schemes have been proposed in the literature

to tackle the problem of constraint management for ILC, but many of these schemes

either do not consider input, output or state constraints, or utilize quadratic or non-

linear programming to optimize the control signal.

This thesis provides a novel solution to the issue of constraint management for

ILC, by using the Reference Governor (RG). Specifically the Iteration Domain Ref-

erence Governor (IDRG) is a modification of a traditional RG, in that it governs the

iteration domain dynamics of a system controlled by ILC, as opposed to the time

49

domain dynamics. The proposed solution can handle constraints imposed on the in-

put, output, and the state, and thanks to the RG, provides a very computationally

efficient solution.

This IDRG formulation is endowed with robustness properties through a robust

Maximal Admissible Set (MAS). As the algorithm learns, the set is updated to allow

better tracking performance within constraint boundaries. Results were applied to

different systems, utilizing different forms of the RG: the SRG, the VRG, and the

CG.

6.2 Future Work

In this work, there are many different routes to go down for future research. One

of the most motivating would be to investigate other ILC learning laws. Similar

to classical control (PID), as the ILC is updated, the learning term of the ILC can

contain a proportion, derivative, or integral of the error. This thesis considered the

D-type, or Arimoto ILC algorithm, but the error term did not contain proportional

or integral terms. Extending this theory to contain proportional and integral action

in the ILC law would be a great addition to the work, and generalize its applications

greatly.

Traditionally, ILC is a “model-free” control technique, meaning that a model of

the plant is not needed inside the controller for ILC to be implemented, but a model

can be used to design the controller to guarantee convergence properties and such

(similar to PID). The RG on the other hand, is model-based. In this thesis, we deal

with this discrepancy by implementing a maximal admissible set robust to modeling

50

uncertainties. Another method to deal with this discrepancy would be to implement

a data-driven IDRG, where a MAS would be formed from input and output data

alone. This would greatly improve the variety of applications for the IDRG, and put

more emphasis on the model-free aspect of ILC.

There is also another common type of learning control called Repetitive Control

(RC) [70, 71]. This type of control is also commonly used in batch processes, but is

mostly seen used in rotational type systems (like hard disc drives). The main differ-

ence between ILC and RC is that ILC systems start from the same initial conditions

for each batch, and RC initial conditions are the final conditions of the previous batch.

An interesting extension of this work would be to extend it to RC, as it is another

type of learning control.

51

Bibliography

[1] S. Arimoto, S. Kawamura, and F. Miyazaki. Bettering operation of robots by
learning. Journal of Robotic systems, 1(2):123–140, 1984.

[2] Q. Yu, X. Bu, R. Chi, and Z. Hou. Modified p-type ilc for high-speed trains
with varying trial lengths. In 2018 IEEE 7th Data Driven Control and Learning
Systems Conference (DDCLS), pages 1006–1010, May 2018.

[3] J. Xu, T. H. Lee, and H. Zhang. Comparative studies on repeatable runout com-
pensation using iterative learning control. In Proceedings of the 2001 American
Control Conference. (Cat. No.01CH37148), volume 4, pages 2834–2839 vol.4,
June 2001.

[4] P. C. Marchal, O. SĂśrnmo, B. Olofsson, A. Robertsson, J. GĂłmez Ortega, and
R. Johansson. Iterative learning control for machining with industrial robots.
IFAC Proceedings Volumes, 47(3):9327 – 9333, 2014. 19th IFAC World Congress.

[5] Jiang Xiaoming, Yu Zhiliang, and Chen Xinglin. Iterative learning control for
the synchronization control system of the scanner. In Proceeding of the 11th
World Congress on Intelligent Control and Automation, pages 2519–2524, 2014.

[6] Hu Yunan and Bin Qu. Application of iterative learning genetic algorithms
for pid parameters auto-optimization of missile controller. In 2006 6th World
Congress on Intelligent Control and Automation, volume 1, pages 3435–3439,
2006.

[7] M. K. Cobb, K. Barton, H. Fathy, and C. Vermillion. Iterative learning-based
path optimization for repetitive path planning, with application to 3-d crosswind
flight of airborne wind energy systems. IEEE Transactions on Control Systems
Technology, pages 1–13, 2019.

[8] T. Van Pham, D. H. Nguyen, and D. Banjerdpongchai. Design of iterative
learning control via alternating direction method of multipliers for building tem-
perature control system. In 2017 14th International Conference on Electrical

52

Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), pages 814–817, 2017.

[9] B. S. Zhang and J. R. Leigh. Predictive time-sequence iterative learning control
with application to a fermentation process. In Proceedings of IEEE International
Conference on Control and Applications, pages 439–442 vol.1, 1993.

[10] F. You and J. An. Iterative learning control for batch weighing and feeding
process*. In 2018 37th Chinese Control Conference (CCC), pages 2904–2908,
2018.

[11] John J Craig. Adaptive control of manipulators through repeated trials. In
American Control Conference, number 21, pages 1566–1573, 1984.

[12] Giuseppe Casalino. A learning procedure for the control of movements of robotic
manipulators. IASTED Sympo. on Robotics and Automation, 1984, 1984.

[13] Sadao Kawamura. Iterative learning control for robotic systems. Proc. of
IECON’84, Tokyo, pages 393–398, 1984.

[14] Paola Bondi, Giuseppe Casalino, and Lucia Gambardella. On the iterative learn-
ing control theory for robotic manipulators. IEEE Journal on Robotics and Au-
tomation, 4(1):14–22, 1988.

[15] KS Lee, SH Bang, and KS Chang. Feedback-assisted iterative learning control
based on an inverse process model. Journal of Process Control, 4(2):77–89, 1994.

[16] Pasquale Lucibello. Learning control of linear systems. In 1992 American Control
Conference, pages 1888–1892. IEEE, 1992.

[17] K. L. Moore, M. Johnson, and M. J. Grimble. Iterative Learning Control for
Deterministic Systems. Springer-Verlag, Berlin, Heidelberg, 1993.

[18] Won Cheol Kim, In Sik Chin, Kwang Soon Lee, and Jinhoon Choi. Analysis and
reduced-order design of quadratic criterion-based iterative learning control using
singular value decomposition. Computers & Chemical Engineering, 24(8):1815–
1819, 2000.

[19] Notker Amann, David H Owens, and Eric Rogers. Iterative learning control for
discrete-time systems with exponential rate of convergence. IEE Proceedings-
Control Theory and Applications, 143(2):217–224, 1996.

[20] Insik Chin, S Joe Qin, Kwang S Lee, and Moonki Cho. A two-stage iterative
learning control technique combined with real-time feedback for independent
disturbance rejection. Automatica, 40(11):1913–1922, 2004.

53

[21] Kwang S Lee and Jay H Lee. Convergence of constrained model-based pre-
dictive control for batch processes. IEEE Transactions on Automatic Control,
45(10):1928–1932, 2000.

[22] R. Zhang, Z. Hou, R. Chi, and Z. Li. Data-driven iterative learning control for
i/o constrained lti systems. In 2016 35th Chinese Control Conference (CCC),
pages 3166–3171, July 2016.

[23] G. Sebastian, Y. Tan, D. Oetomo, and I. Mareels. Iterative learning control for
linear time-varying systems with input and output constraints. In 2018 Aus-
tralian New Zealand Control Conference (ANZCC), pages 87–92, Dec 2018.

[24] Z. Ruikun and C. Ronghu. Iterative learning control for a class of mimo non-
linear system with input saturation constraint. In 2017 36th Chinese Control
Conference (CCC), pages 3543–3347, July 2017.

[25] X. Jin, Z. Wang, and R. H. S. Kwong. Convex optimization based iterative
learning control for iteration-varying systems under output constraints. In 11th
IEEE International Conference on Control Automation (ICCA), pages 1444–
1448, June 2014.

[26] T. Meng and W. He. Iterative learning control of a robotic arm experiment
platform with input constraint. IEEE Transactions on Industrial Electronics,
65(1):664–672, 2018.

[27] S. Mishra, U. Topcu, and M. Tomizuka. Optimization-based constrained iterative
learning control. IEEE Transactions on Control Systems Technology, 19(6):1613–
1621, 2011.

[28] C. Peng, L. Sun, W. Zhang, and M. Tomizuka. Optimization-based constrained
iterative learning control with application to building temperature control sys-
tems. In 2016 IEEE International Conference on Advanced Intelligent Mecha-
tronics (AIM), pages 709–715, 2016.

[29] Jian-Xin Xu, Ying Tan, and Tong-Heng Lee. Iterative learning control de-
sign based on composite energy function with input saturation. Automatica,
40(8):1371–1377, 2004.

[30] Ying Tan, Hao-Hui Dai, Deqing Huang, and Jian-Xin Xu. Unified iterative
learning control schemes for nonlinear dynamic systems with nonlinear input
uncertainties. Automatica, 48(12):3173–3182, 2012.

[31] J. Xu and X. Jin. State-constrained iterative learning control for a class of mimo
systems. IEEE Transactions on Automatic Control, 58(5):1322–1327, 2013.

54

[32] Xu Jin and Jian-Xin Xu. A barrier composite energy function approach for robot
manipulators under alignment condition with position constraints. International
Journal of Robust and Nonlinear Control, 24(17):2840–2851, 2014.

[33] G. Sebastian, Y. Tan, D. Oetomo, and I. Mareels. Feedback-based iterative
learning design and synthesis with output constraints for robotic manipulators.
IEEE Control Systems Letters, 2(3):513–518, 2018.

[34] Y. Chen, B. Chu, and C. T. Freeman. Point-to-point iterative learning control
with optimal tracking time allocation. IEEE Transactions on Control Systems
Technology, 26(5):1685–1698, 2018.

[35] C. T. Freeman and Y. Tan. Iterative learning control with mixed constraints
for point-to-point tracking. IEEE Transactions on Control Systems Technology,
21(3):604–616, 2013.

[36] S. Mishra, U. Topcu, and M. Tomizuka. Iterative learning control with saturation
constraints. In 2009 American Control Conference, pages 943–948, 2009.

[37] Marnix Volckaert, Moritz Diehl, and Jan Swevers. Generalization of norm opti-
mal ilc for nonlinear systems with constraints. Mechanical Systems and Signal
Processing, 39(1-2):280–296, 2013.

[38] V. E. Hatzikos, J. Hatonen, T. Harte, and D. H. Owens. Robust analysis of
a genetic algorithm based optimization method for real-time iterative learning
control applications. In EFTA 2003. 2003 IEEE Conference on Emerging Tech-
nologies and Factory Automation. Proceedings (Cat. No.03TH8696), volume 2,
pages 396–401 vol.2, 2003.

[39] G. Liu and Z. Hou. Rbfnn-based adaptive iterative learning fault-tolerant control
for subway trains with actuator faults and speed constraint. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, pages 1–15, 2019.

[40] G. Sebastian, Z. Li, Y. Tan, and D. Oetomo. On implementation of feedback-
based pd-type iterative learning control for robotic manipulators with hard input
constraints. In 2019 IEEE 15th International Conference on Control and Au-
tomation (ICCA), pages 43–48, 2019.

[41] Y. Tan, J.X. Xu, M. NorrlĂśf, and C. Freeman. On reference governor in iter-
ative learning control for dynamic systems with input saturation. Automatica,
47(11):2412 – 2419, 2011.

[42] Petros Kapasouris, Michael Athans, Günter Stein, et al. Design of feedback
control systems for stable plants with saturating actuators. 1988.

55

[43] Elmer G Gilbert, Ilya Kolmanovsky, and Kok Tin Tan. Nonlinear control of
discrete-time linear systems with state and control constraints: A reference gov-
ernor with global convergence properties. In Proceedings of 1994 33rd IEEE
Conference on Decision and Control, volume 1, pages 144–149. IEEE, 1994.

[44] E. G. Gilbert and I. Kolmanovsky. Discrete-time reference governors for systems
with state and control constraints and disturbance inputs. In Proceedings of 1995
34th IEEE Conference on Decision and Control, volume 2, pages 1189–1194 vol.2,
Dec 1995.

[45] Alberto Bemporad and Edoardo Mosca. Nonlinear predictive reference filtering
for constrained tracking. In Proc. European Control Conf., pages 1720–1725,
1995.

[46] Elmer G Gilbert and Ilya Kolmanovsky. Fast reference governors for systems with
state and control constraints and disturbance inputs. International Journal of
Robust and Nonlinear Control: IFAC-Affiliated Journal, 9(15):1117–1141, 1999.

[47] E. G. Gilbert and I. Kolmanovsky. Discrete-time reference governors for sys-
tems with state and control constraints and disturbance inputs. In Proc. IEEE
Conference on Decision and Control, volume 2, pages 1189–1194, Dec 1995.

[48] Alberto Bemporad, Alessandro Casavola, and Edoardo Mosca. Nonlinear con-
trol of constrained linear systems via predictive reference management. IEEE
transactions on Automatic Control, 42(3):340–349, 1997.

[49] Alessandro Casavola, Edoardo Mosca, and David Angeli. Robust command gov-
ernors for constrained linear systems. IEEE transactions on Automatic Control,
45(11):2071–2077, 2000.

[50] David Angeli and Edoardo Mosca. Command governors for constrained nonlinear
systems. IEEE Transactions on Automatic Control, 44(4):816–820, 1999.

[51] E. G. Gilbert and K. T. Tan. Linear systems with state and control constraints:
the theory and application of maximal output admissible sets. IEEE Transactions
on Automatic Control, 36(9):1008–1020, Sep. 1991.

[52] Adam Nathan Banker, Julia Helen Buckland, Joseph Norman Ulrey, Uros Vojko
Kalabic, Matthew John Gerhart, Tobias John Pallett, Ilya Kolmanovsky, and
Suzanne Kay Wait. Methods and systems for torque control, November 3 2015.
US Patent 9,174,637.

56

[53] Uros Kalabic, Ilya Kolmanovsky, Julia Buckland, and Elmer Gilbert. Reference
and extended command governors for control of turbocharged gasoline engines
based on linear models. In 2011 IEEE International Conference on Control
Applications (CCA), pages 319–325. IEEE, 2011.

[54] Uros Kalabic. Reference governors: Theoretical Extensions and Practical Appli-
cations. PhD thesis, 2015.

[55] Uroš V Kalabić, Julia H Buckland, Stephen L Cooper, Suzanne K Wait, and
Ilya V Kolmanovsky. Reference governors for enforcing compressor surge con-
straints. IEEE Transactions on Control Systems Technology, 24(5):1729–1739,
2016.

[56] S-R Oh and Sunil Kumar Agrawal. A reference governor-based controller for
a cable robot under input constraints. IEEE transactions on control systems
technology, 13(4):639–645, 2005.

[57] S Di Cairano, A Goldsmith, and S Bortoff. Model predictive control and spatial
governor for multistage processing machines in precision manufacturing. In Proc.
5th IFAC Nonlinear Model Predictive Control Conference, pages 3800–3805. Cite-
seer, 2013.

[58] Sohrab Haghighat, Stefano Di Cairano, Dmytro Konobrytskyi, and Scott Bortoff.
Coordinated control of a dual-stage positioning system using constrained model
predictive control. In ASME 2014 Dynamic Systems and Control Conference.
American Society of Mechanical Engineers Digital Collection, 2014.

[59] James Wilborn and John Foster. Defining commercial transport loss-of-control:
A quantitative approach. In AIAA atmospheric flight mechanics conference and
exhibit, page 4811, 2004.

[60] Meir Pachter and Russel B Miller. Manual flight control with saturating actua-
tors. IEEE Control Systems Magazine, 18(1):10–20, 1998.

[61] Francesco Tedesco and Alessandro Casavola. Fault-tolerant distributed load-
/frequency coordination strategies for multi-area power microgrids. IFAC-
PapersOnLine, 48(21):54–59, 2015.

[62] Alessandro Casavola, Giuseppe Franze, Francesco Tedesco, and Emanuele
Garone. Distributed coordination-by-constraint strategies in networked multi-
area power systems. In 2011 IEEE International Symposium on Industrial Elec-
tronics, pages 1697–1702. IEEE, 2011.

57

[63] K. L. Moore. Multi-loop control approach to designing iterative learning con-
trollers. In Proceedings of the 37th IEEE Conference on Decision and Control
(Cat. No.98CH36171), volume 1, pages 666–671 vol.1, Dec 1998.

[64] I. Kolmanovsky, E. Garone, and S. Di Cairano. Reference and command gover-
nors: A tutorial on their theory and automotive applications. In 2014 American
Control Conference, pages 226–241, June 2014.

[65] J. Osorio and H. R. Ossareh. A stochastic approach to maximal output admissible
sets and reference governors. 2018 IEEE Conference on Control Technology and
Applications (CCTA), pages 704–709, 2018.

[66] Y. Liu, J. Osorio, et al. Decoupled reference governors for multi-input multi-
output systems. In 2018 IEEE Conference on Decision and Control (CDC),
pages 1839–1846. IEEE, 2018.

[67] H. R. Ossareh. Reference governors and maximal output admissible sets for
linear periodic systems. International Journal of Control, 0(0):1–13, 2019.

[68] N. Li, I. V. Kolmanovsky, and A. Girard. A reference governor for nonlinear
systems with disturbance inputs based on logarithmic norms and quadratic pro-
gramming. IEEE Transactions on Automatic Control, pages 1–1, 2019.

[69] B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor. The efficient
computation of polyhedral invariant sets for linear systems with polytopic uncer-
tainty. In Proceedings of the 2005, American Control Conference, 2005., pages
804–809 vol. 2, June 2005.

[70] Shinji Hara, Yutaka Yamamoto, Tohru Omata, and Michio Nakano. Repetitive
control system: A new type servo system for periodic exogenous signals. IEEE
Transactions on automatic control, 33(7):659–668, 1988.

[71] Youqing Wang, Furong Gao, and Francis J Doyle III. Survey on iterative learning
control, repetitive control, and run-to-run control. Journal of Process Control,
19(10):1589–1600, 2009.

58

	The Iteration Domain Reference Governor, a Constraint Management Scheme for Batch Processes
	Recommended Citation

	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Motivation
	Literature Review
	Iterative Learning Control
	Constraint Management for Iterative Learning Control
	Reference Governor

	Contributions
	Thesis Outline
	An Explanation of the Iteration Domain

	Preliminaries
	Iterative Learning Control
	Maximal Admissable Set
	Reference Governor
	Scalar Reference Governor
	Vector Reference Governor
	Command Governor

	Main Results
	The Iteration Domain Reference Governor
	Robust IDRG Formulation

	Illustrative Examples
	Output Constraints
	State Constraints
	Multiple-Input Multiple-Output System

	Extensions
	Vector Reference Governor
	Revisiting the Original Example
	State Constraints

	Command Governor
	Revisiting the Original Example

	Conclusions
	Summary
	Future Work

