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ABSTRACT 

cGMP-dependent protein kinase (PKG, cGPK) is a serine-threonine kinase of the AGC-
kinase family. Although PKG type Ia plays a prominent role in the control of blood-flow and 
blood pressure, no current hypertension therapies target this enzyme.1 A PKG-targeted therapy 
would establish a first-in-class treatment for patients with uncontrolled blood pressure and may 
provide a clinically relevant alternative to existing antihypertensive therapies. 
 Dostmann et al. developed novel peptides derived from the crystal structure of PKG Ia, 
which are helical in solution and found to activate the kinase independent of cGMP and were 
demonstrated to lower blood pressure in vivo.2,3 Two consecutive phenylalanine residues were 
identified as a central element of the putative pharmacophore within the full-length peptide. 
However, a shortened peptide derivative, called S1.5 (here SP), was found to have increased po-
tency and thus has been suggested as a potential lead compound for further development.  The 
aim of this thesis is to reevaluate the pharmacophore and specifically the role of the phenylala-
nine residues in context of the SP peptide.  
 In this study, analogs of SP were designed using an alanine-scanning approach to analyze 
the role of specific amino acids in the activation mechanism. By employing recombinant PKG 
Ia, kinetic parameters were determined using a specific radiometric assay.4,5 
 We found that substituting either or both phenylalanine residues for alanine did not im-
pair the peptide’s potency or efficacy. However, deleting one phenylalanine greatly diminished 
activity. This phenotype could be rescued by substituting either of two positively charged lysine 
residues N-terminal to the pharmacophore for alanine. These results indicate that the interactions 
between the kinase and these novel synthetic peptides are more complex and involve unidenti-
fied amino acids. Furthermore, the results presented here will serve to evaluate the role of N-ter-
minal residues in peptide binding and the rescue phenotype discovered in this study.  
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 1 

INTRODUCTION 

 

Overview of PKG and cGMP 

 Cyclic-GMP dependent protein kinase (PKG, cGPK) is a signaling protein which is 

widely distributed in eukaryotes. PKG isozymes are part of a larger family of basophilic AGC 

protein kinases which also includes PKA and PKC.6 These kinases catalyze the transfer of the g- 

phosphate from ATP to serine or threonine residues on basic substrate peptides and proteins.7 

PKG is activated allosterically by 3’,5’-cyclic guanosine monophosphate (cGMP), unlike some 

other protein kinases which are activated covalently through modifications such as phosphoryla-

tion.8 

Three variants of PKG are known to exist in mammalian tissue: PKG Ia, PKG Ib, and 

PKG II. PKG I isozymes are derived from the gene prkg 1 while PKG II is derived from a sepa-

rate gene, prkg 2.7  PKG I isozymes are found in smooth muscle, platelets, and specific neuronal 

areas. Specifically, PKG Ia is most common in lung tissue, heart tissue, and dorsal root ganglia 

while PKG Ib is found in platelets and hippocampal neurons. PKG II is found in small intestine 

epithelium, the adrenal cortex, juxtaglomerular cells, chondrocytes, and neurons.7 All PKG 

isoforms are essential signaling molecules in mammalian tissue, and they serve as the principle 

receptors for cGMP.9 Additionally, all isoforms have the same general, highly homologous do-

main organization. The parallel homo-dimers are composed of N-terminal regulatory domains 

encompassing two nucleotide binding sites, followed by C-terminal catalytic domains.10  

As a classic second messenger molecule, cGMP plays a prominent role across a myriad 

of species. In smooth muscle, production of cGMP can occur by nitric-oxide mediated activation 
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of soluble guanylyl cyclase (sGC) or by natriuretic peptide activation of the membrane associ-

ated particulate guanylyl cyclase (pGC). In vascular smooth muscle, sGC is responsible for syn-

thesis of cGMP,11 however both sGC and pGC covert guanosine triphosphate (GTP) to GMP in 

other mammalian tissues. Activated cGMP has downstream targets in other tissues that contrib-

ute to processes such as regulating smooth muscle tone, platelet aggregation, bone growth and 

development, renin release in the kidney, intestinal fluid secretion, and serotonin transport in the 

brain.11 Phosphodiesterases (PDEs) hydrolyze cGMP to 5’-GMP. PDE-5 can be phosphorylated 

by PKG itself which activates the enzyme and decreases intracellular levels of cGMP.12  

 

PKG Ia and Smooth Muscle Regulation 

PKG Ia plays a role in controlling constriction and relaxation of smooth muscle cells in 

the central and peripheral vasculature.13 Smooth muscle contraction is a calcium-dependent pro-

cess. Ca2+ binds calmodulin, which activates the myosin light chain kinase (MLCK). This kinase 

phosphorylates myosin light chains, which leads to cross-bridge formation between myosin and 

actin and therefore causes muscle contraction.14  

PKG relaxes smooth muscle by decreasing calcium levels. First, PKG is activated 

through a series of biological events referred to as the nitric-oxide (NO) signaling cascade. NO, 

generated in the endothelium, diffuses into cells and binds to the heme group of soluble guanylyl 

cyclase (sGC), which converts GTP to cGMP. This cGMP activates PKG Ia. PKG decreases in-

tracellular calcium levels by several mechanisms. The primary mechanism is such that PKG 

phosphorylates the large conductance Ca2+-activated K+ channel (KCa1.1, BKCa), which hyperpo-

larizes the membrane by increasing efflux of potassium. Hyperpolarization of the membrane in-

hibits voltage-dependent calcium channels, decreasing intracellular levels of Ca2+ responsible for 
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muscle contraction.3,15 Other substrates for PKG include phopsholamban (PLN), the inositol tri-

phosphate receptor-associate cGMP-kinase substrate (IRAG), the regulator of G-protein signal-

ing 2 (RGS2), and the Ras homolog gene family member A (RhoA)2 (Figure 1). 

  

Figure 1. PKG signaling in vascular smooth muscle cells. Image from Osborne, 2011.2 
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PKG Ia Structure  

 PKG Ia shows significant sequence homology to the other PKG isoforms. PKG Ia, like 

the other isoforms, is a homodimer in which each monomer has an N-terminal regulatory domain 

and a C-terminal catalytic domain (Figure 2). At the N-terminus of the kinase there is a dimeri-

zation domain (DD) where the two protomers interact.16,17 Facilitation of the homodimer at the 

DD contributes to cooperative binding of cyclic nucleotides.18 A linker region connects the DD 

to an auto-inhibitory (AI) domain and another linker region.19 Following this, there are two cy-

clic-GMP binding sites. The N-terminal binding site, or A site, demonstrates higher binding af-

finity than the C-terminal B site. This contrasts cyclic-nucleotide binding sites of other protein 

kinases such as PKA, where the order of the high and low affinity sites is reversed.9,20 In addi-

tion, examination of cyclic nucleotide binding revealed that the A site was able to bind both 

cGMP and cAMP.9 The difference between these sites may be due to the A-site being more sol-

vent-exposed as well as the presence of an arginine residue in the B site. This could serve to 

prime the kinase to be more sensitive to changes in cGMP levels under conditions of elevated 

cAMP while still activate normally by cGMP when cAMP levels are low.9 At the C-terminus of 

the B-site there is a region referred to as the switch helix domain (SW) which plays a role in in-

teracting with the opposing protomer.20 This transitional domain bridges between the regulatory 

and catalytic domains and is only found in type I isoforms. At the C-terminus of the SW helix 

lies a motif called the “knob,” comprised of the amino acids FFANL. The “knob” interacts with a  

hydrophobic “nest” located within the B binding site on the opposing protomer (Figures 3, 4).9 

The successive phenylalanine residues provide the hydrophobicity for this interaction and the as-

paragine residue provides hydrogen bonding. Recent analysis of PKG Ia structure revealed this 
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novel domains is critical to kinase’s function as disruption of the knob/nest interaction dimin-

ished both cooperativity and activation of the kinase.9 In the context of the full, dimeric enzyme, 

creating a quadruple mutant with FF and NL residues in the knob changed to alanine caused a 

marked shift in activation and cooperativity of the enzyme, demonstrating the importance of the 

knob-nest interface.20 Finally, the SW is followed by the catalytic domain which contains bind-

ing regions for ATP and substrate.  

Current models suggest that under inactive conditions, the catalytic domain interacts with 

the regulatory domain and the switch helix. When bound to cGMP, the catalytic domains are re-

leased and the knobs on the switch helices interact with the two nests. It is believed that the di-

mer stays intact upon activation but undergoes significant conformational change. This lack of 

dissociation marks the  most distinct difference between it and protein kinase A (PKA).20  

 

 

Figure 2. Organization of domains within PKG Ia: Dimerization Domain (DD), Auto-inhibitory Domain (AI), cyclic-nucle-
otide binding sites A and B, Switch Helix (SW) ATP-binding site (ATP), and substrate binding site. 



   

  

6 

 

  
Figure 3. Dimeric view of PKG78-355 crystal structure with cyclic-nucleotide binding sites and switch helices labeled. Image from Osborne, 2011. 

Figure 4. Top view of switch helices with their neighboring protomer. Hydrophobic knobs are located at the end of the SW (blue) and bind 

within the hydrophobic nest (orange) within the B-domain. Image from Osborne, 2011.  
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Synthetic Peptide Activators 

Recent developments in PKG-targeted therapy have looked to modulate PKG activity in-

dependent of cGMP. Upon solving the crystal structure for the fragment PKG78-355, it was deter-

mined that the two protomers interact via hydrophobic interactions between the switch helix seg-

ment and the B site on the opposing protomer. The isolated switch helix segment (residues 329-

358) proved to be helical in solution and was assessed to determine if this segment alone could 

activate the kinase. Moon et al (2015) introduced a set of synthetic peptide activators (S-tides) 

derived from the structure of the SW helix (Table 1). The full length peptide, named S1.1, was 

able to activate PKG Ia with 80% efficacy compared to cGMP.3 To confirm that the primary 

structure of this peptide is crucial to its function, a scramble peptide (S1.7) served as a negative 

control. 

Derivative S-tides were created that sequentially removed C-terminal amino acid residues 

until the peptides no longer activated the kinase. This activity dropped off when knob residues 

(FFANL) were deleted from the synthetic peptides (S1.3). This truncation also partially dimin-

ished helicity of the peptide. This truncation removes the proposed hydrophobic interactions pro-

vided by the phenylalanine residues as well as hydrogen bonding provided by the asparagine res-

idue. To further probe the hydrophobic interaction provided by the phenylalanine residues, the 

wild type sequence was next mutated in the knob region. Both phenylalanine residues in the 

knob region were replaced with alanine, following the logic of alanine-scanning mutagenesis. In 

brief, mutating residues to alanine removes side chain interactions due to the small, nonpolar 

character of alanine. This peptide, termed S1.6, was unable to activate the kinase at all, support-

ing the hypothesis that the two phenylalanine residues are crucial for the peptide’s ability to acti-

vate the kinase.  
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Next, sequential truncations were made on the N-terminus of the peptide. These trunca-

tions increased the potency of each peptide to activate the kinase up until removal of the tyrosine 

residue at position #7 in the parent peptide. Truncations beyond this point gradually lowered ac-

tivity to zero. The peptide that showed the best activation, called S1.5, activated PKG Ia at con-

centrations as low as 3 µM, but failed to activate PKG Ib. In physiological context, these pep-

tides were shown to increase open probability of large-conductance calcium-activated potassium 

channels. In the same study, it was also demonstrated that S1.5 reduced myogenic tone in endo-

thelium-denuded cerebral arteries via this mechanism.3  

Though the role of the phenylalanine knob residues was assessed in context of the full-

length peptide (S1.1), it was never re-evaluated in the context of S1.5. This provided the basis for 

the aims of this study.  In this study, the S1.5 peptide is referred as “switch peptide” or SP.  

 

Name Sequence Ka (µM) Hill 

S1.1 Ac-DVSNKAYEDAEAKAKYEAEAAFFANLKLSD-NH2 35 ± 4 2.2 ± 0.4 

S1.7 Ac-ALKSENYADKVEFKDAKYEASALANEFADA-NH2 - - 

S1.6 Ac-DVSNKAYEDAEAKAKYEAEAAAAANLKLSD-NH2 - - 

S1.3 Ac-DVSNKAYEDAEAKAKYEAEAA-NH2 - - 

S1.5 (SP)                Ac -YEDAEAKAKYEAEAAFFANLKLSD-NH2 3 ±1 2.4 ± 0.6 

 

Table 1. Novel S-tide names and sequences are listed with corresponding activation constants (Ka) and Hill coefficient (nH).3 Ka 

indicates the concentration of activator which produces half maximal activation of the enzyme. A Hill coefficient above one indi-

cates positive cooperativity in binding such that binding of one ligand facilitates binding of another.  
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Relevance 

 Hypertension is a highly prevalent condition both in the United States and across the 

globe and it has very serious outcomes. Despite there being a myriad of mediations to treat hy-

pertension through various mechanisms, there remains significant unmet need for those individu-

als who do not respond to available treatments. The nitric oxide pathway has been a major target 

for these drugs for decades, however there is no current treatment which targets PKG. Though 

PKG may theoretically be a good target for this pathway, it is highly expressed throughout the 

body and therefore may cause off-target effects. However, novel S-tides are isozyme specific and 

therefore would target PKG Ia localized to the vascular smooth muscle and minimize off-target 

effects. Additionally, these S-tides have been demonstrated to lower blood pressure in vivo in an-

imal models of hypertension with L-NAME treated rats (B. Osborne and W. Dostmann un-

published data). Therefore, this research provides a pharmaceutical platform for first-in-class 

agents to treat hypertension.  

 

Experimental Methods for Measuring Kinase Activity 

 The kinetics of kinase enzymes can be determined by various methods. Enzyme-coupled 

spectrophotometric assays couple the kinase-mediated phosphorylation of a substrate to colori-

metric measurable reactions such as the conversion of phosphoenolpyruvate (PEP) to pyruvate 

and lactate dehydrogenase (LDH)-mediated conversion of pyruvate and nicotinamide adenine 

dinucleotide (NADH) to lactate and NAD+. The reaction is set up such that the kinase-mediated 

reaction is the rate limiting step.21 By measuring NADH oxidation with a spectrophotometer the 
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decrease in absorbance is used to determine the reaction rate. This assay type is particularly use-

ful in that it takes measurements continuously, though other methods may be more efficient for 

rapidly analyzing large sample numbers.22   

Fluorescence can also be a useful tool in determining kinase kinetics. Fluorescence polar-

ization (FP) and anisotropy (FA) are two widely used techniques used for binding assays of nu-

merous biological signaling molecules. These assays rely on the principle that the polarization of 

a fluorophore is inversely related to its rotation.23 The FP measurement is equal to the difference 

between the intensity of emission light parallel and perpendicular to the excitation light, and 

changes in this measurement are used to determine enzymatic velocity. Because Brownian mo-

tion decreases as molecular weight increases, the polarization of the fluorescent label is low 

when attached to a small molecule and high when attached to a larger molecule.24 For assays ex-

amining serine-threonine kinases such as PKG, fluorescently-labeled high-affinity antibodies are 

used which can discriminate between phosphorylated and non-phosphorylated residues such as 

tyrosine.25 

 The transfer of radio-labeled phosphate groups from ATP to a kinase’s substrate, as it 

was utilized in this study, can be measured to determine the enzyme’s kinetics. In this method, 

32P in the g position of ATP is transferred to a peptide or protein substrate by the kinase. This 

32P-labeled substrate can then be caught on a filter and quantified by scintillation counting.4,5 The 

ionizing radiation given off by the decay of 32P interacts with aromatic hydrocarbons in the scin-

tillation materials, either liquid or crystal, and results in an energy transfer. Electrons in the scin-

tillation materials are transiently excited and emit photons upon returning to the ground state.26 

These photons are caught by a detector, hereafter referred to as a “counter.” Radioactive assays 

with scintillation counting were used in this experiment and are detailed in the methods section.  
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AIMS AND HYPOTHESIS 

Aim: To evaluate the pharmacophore of the switch peptide and to probe specific interac-

tions between SP derivatives and PKG Ia.  

Substitution of the two phenylalanine residues within the knob region of the full-length 

synthetic helix (S1.1) were substituted for alanine, the resulting peptide (S1.6) exhibited no ac-

tivity. This suggested that the phenylalanine residues interact with the nest and in way that is 

necessary for kinase activation. N-terminal truncations of the full-length peptide led to a short-

ened peptide which displayed improved potency and now serves as the lead peptide for a new 

pharmacological platform. However, the pharmacophore of the switch peptide (S1.5) has not 

been revisited and solidified. 

 

Hypothesis: The phenylalanine residues within the knob of the switch peptide provide a 

crucial hydrophobic interaction with the nest which allow this peptide to activate the ki-

nase.  

  Derivative peptides without these phenylalanine residues will be unable to efficiently in-

teract with the kinase. Therefore, they will have a significantly reduced activation constant and 

maximum velocity compared to the parent peptide, SP. This will be explored by using an alanine 

scanning approach to create derivative peptides which have altered knob sequences. Peptide ki-

netics will be determined using a radioactive protein kinase assay. 
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MATERIALS AND METHODS 

 

Peptide Synthesis and Quality Control 

The synthetic peptides were synthesized by Dr. Werner Tegge at the Helmholtz Centre 

for Infection Research (Braunschweig, Germany). Peptides were synthesized via solid-phase 

synthesis on Rapp S RAM Resin with a Syro multiple peptides synthesizer.  Fmoc chemistry was 

used with activation by TBTU / diisopropylethyl amine activation in tenfold excess. The reaction 

time was 1 hour. The side chain protections were as followed: Asp, Glu, Syr, Tyr, and Thr with 

t-Bu; Asn, Gln, and His with trityl group; Arg with Pmc; Lys and Trp with Boc. Peptides were 

then cleaved from the resin and deprotected with TFA.  Crude peptides were purified by high-

performance liquid chromatography (HPLC) and characterized by MALDI-MS. Final products 

were lyophilized from water.  

 

Peptide Solutions 

 Peptides were put into solution and serially diluted to be used in the kinase assay. Top 

stocks were made by calculating the milligram mass and volume of ddH2O required to create 1 

mL of 2 mM solution for each peptide. Physical differences between peptides caused variability 

in the amount of peptide that was able to be dissolved into solution. Once a top stock was made, 

a serial dilution was performed such that concentrations were halved with each successive dilu-

tion. Final stock concentrations ranged from 2.5 µM to 1.25 mM. These concentrations were 

confirmed using Nanodrop technology at l=276 nm with a molar coextinction coefficient of 

2,840. 
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Protein Expression, Purification, and Storage.  

PKG Ia used in this study was expressed by Joseph Charles (Dostmann laboratory) using the 

insect cell (Sf9) Bac-to-Bac baculovirus expression system.18 Nickel affinity chromatography 

was used for purification and purified kinase was assayed with cGMP to ensure the resulting ac-

tivity was consistent with previously determined data. The purified protein was stored in a buffer 

containing 50 mM MES, 150 mM NaCl, 1 mM TCEP and 10% glycerol and stored in 20 µL ali-

quots at -80 °C. 

 

P81 Phosphotransfer-Assay 

Overview: 

In order to measure the enzyme kinetics of PKG with various activators, a radioactive as-

say was used. This assay measures PKG-mediated phosphorylation of the substrate with the g-

phosphate of a 32P tagged ATP.4,27 The peptide substrate, called W15, has the sequence 

TQAKRKKSLAMA, and its many positively charged residues allows it to bind to a phosphocel-

lulose filter.28 The filter paper is then placed in a liquid scintillation counter where CPM can be 

measured. These counts are analyzed to determine reaction velocity and the concentration at 

which half-maximal activation is achieved (Ka).  

Protocol:  

 To prep for the cGMP assay, reaction tubes were set up with increasing concentrations of 

cGMP. Each reaction tube received 10 µL of the respective 10x cGMP stock. For each reaction, 

a cocktail of reagents, hereafter referred to as “reaction mix,” was created. This reaction mix 

consisted of 20 µL of 5x MES (250 mM MES pH 6.9, 5 mM MgOAc, 50 mM NaCl), 10 µL of 
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100 mM DTT, 10 µL of 10 mg/mL BSA, 10 µL of 100 µM W15, 10 µL of ddH2O, and 10 µL of 

32P-ATP.  

Before the reaction mix was added to each tube, ATP was spiked with the radio-labeled 

isotope. 32P -ATP was added to 1 mM ATP such the volume of P32-ATP was 1/100th the total 

volume at the calibration date, and 1/50th the total volume after one half-life (14 days). To find 

the specific activity of the spiked ATP, 15 µL of the mixture was blotted onto the P81 filters and 

counted by liquid scintillation. Once the specific activity of the spiked ATP was determined, 70 

µL of the reaction mix was added to each tube.  

Each reaction was initiated with the addition of the kinase. PKG Ia was suspended in En-

zyme Dilution Buffer (EDB) in 1:1000 dilution resulting in 8 ng of PKG per reaction. This dilu-

tion was used to initiate the phosphotransferase reaction. The reaction was allowed to run for 3 

minutes and was terminated by blotting 25 µL of the reaction contents onto individually labeled 

Whatman P81 filter papers. The filters were then washed four times in 1% phosphoric acid for 

three minutes per wash. The purpose of the wash is to prevent non-specific binding and remove 

excess 32P -ATP. The filters were then dried and placed into vials containing fluid comprised of 

toluene, 45 mM 2,5-diphenyloxazole (PPO), and 0.36 mM 1,4-bis(5-phenyl-2- oxazolyl)benzene 

(POPOP) so that CPM could be measured in a liquid scintillation counter. 

Radiation given off by the 32P, now attached to the substrate which was caught on the 

P81 filters, transiently elevates electrons in the aromatic hydrocarbons of the scintillation fluid. 

As they return to the ground state, a photon is emitted which is detected by the counter. The out-

put for each filter is reported in counts per minute measurement which was used to calculate the 

enzyme velocity at each activator concentration.   
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Variation for Peptide activators:  

The study by Moon et al. (2015) illustrated that the binding of the peptide activators to 

PKG is markedly slower than that of the natural activator, cGMP.3 Because of this, the experi-

mental designed was modified such that the activators were allowed to incubate with the kinase 

prior to the reaction being started. The protocol is as follows: 1.5 mL Eppendorf tubes were la-

beled and aliquoted with 10 µL of the experimental peptide at varying concentrations. The blank 

and zero received 10 µL of ddH2O in place of the experimental peptide. PKG Ia was diluted in 

the same manner as previously described and 20 µL of this PKG/EDB solution was added to the 

reaction tubes—excepting the blank—and allowed to incubate at 30 °C with the peptide for 30 

minutes. The necessity of this incubation time was previously established by the Dostmann lab 

and it was demonstrated that the incubation had no negative effect on the enzyme itself. This re-

action was initiated with 70 µL of the reaction mixed described above, consisting of 5x MES, 

DTT, BSA, W15, 32P-ATP and ddH2O. The reaction was allowed to run for 3 minutes and termi-

nated in the same manner as above. The P81 filters were washed and submerged in scintillation 

fluid for counting as described (Figure 5). 
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Data Analysis 

In order to evaluate the kinetics of each activator, raw experimental data was analyzed in 

Microsoft Excel and Graphpad Prism 8TM. The liquid scintillation counter gives an output of 

counts per minute (CPM) for each filter. After importing this data into Excel, the velocity for 

each concentration is calculated by multiplying CPM by the blotting correction (0.25) and purity 

correction (0.98) and divided by reaction time (3 minutes), concentration of protein (8 ng), and 

specific activity (variable). This gives each velocity measurement with the units of µmol (P-

W15) / min*mg (PKG).  

Figure 5. Work flow diagram for the phosphotransferase assay activating PKG with synthetic peptide activators. 
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The resulting velocity measurements were then plotted against their corresponding acti-

vator concentration in Graphpad Prism 8TM. A nonlinear regression curve fit was performed with 

log concentration versus velocity to determine the activation constant (Ka), Hill coefficient (nH), 

Vmax, and Vmin. For each parameter, 95% confidence intervals calculated by GraphPad Prism 8TM 

are provided.  

To correct for variability in the Vmax of the cGMP control for each assay, results from 

each peptide-activated assay were normalized such that the Vmax of the cGMP control repre-

sented 100%. This is referred to hereafter as “normalized velocity.”  

 

3D Modeling 

 In order to further probe the interactions between the switch peptide and the kinase, 3D 

modeling was implemented. The PyMol visualization program was used and PKG crystal struc-

tures were obtained from the protein data bank (PDB). The PDB entry used in this study, 3SHR, 

was crystalized by Osborne et al (2011) and provides an interactive representation of PKG Ia as 

shown in Figure 3.  
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RESULTS 

Controls: cGMP and SP  

 Control trials were run for both cGMP and the switch peptide SP. All results for the con-

trol were found to be within a similar range relative to previously published data. Assays per-

formed using cyclic nucleotides, required a protocol as outlined in the methods, whereby the re-

actions were initiated by adding kinase to the individual reaction mixes. cGMP had an activation 

constant (Ka) of 180 nM and it reached a maximum velocity of 6.5 µmol per min*mg while Vmin 

was comparatively low with 0.3 µmol per min*mg as is typical for enzyme preparations per-

formed in the presence of strong reducing agents such as TCEP, see Methods (Figure 6).13,18 

Concentrations that resulted in maximal kinase activation level (8 µM cGMP) were used as a 

control for each subsequent assay involving peptides. This allowed us to normalize each pep-

tide’s maximum velocity to the velocity of cGMP.  

 

Activator Vmin   Vmax Hill (nH) Ka (nM) n 

cGMP 0.31 ± 0.12 6.51± 0.12 1.68 ± 0.2 179 ± 14 4 
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Figure 6. Activation of PKG Ia with cGMP. The enzyme (1 nM, 8 ng per assay) was activated with increasing concentrations (4 nM – 16 µM) 

of cGMP under non-preincubation conditions as described in the methods. The adjacent table summarizes the kinetics constants derived from 

the reaction. Reaction velocities are given in µmols of substrate per minute and mg of PKG.  
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 The parent peptide, SP, was also used as a control. However, the assay had been changed 

to accommodate the need for preincubation of the peptide with kinase, due to the peptide’s rela-

tively slow activation of the kinase relative to cGMP, demonstrated by Moon et al (2015). Fol-

lowing a 30-minute preincubation period of kinase and various concentrations of peptide, reac-

tions were initiated by addition of reaction mix. The activation constant for SP in this study was 

found to be 7.2 µM and its maximal activation was 74% of cGMP (Figure 7). Derivative peptide 

results are compared to these values. This Ka value is approximately 2-fold higher than previ-

ously reported. However, it was highly reproducible and is likely a reflection of the differences 

in enzyme preparation protocols.29 

   

 

Figure 7. Activation of PKG Ia with the with peptide (SP). The kinase was preincubated with increasing concentrations of the 

peptide as described in the variation protocol. 8 µM cGMP was used as a control. A: representative trace. B: trials had been com-

bined and normalized to each trial’s respective cGMP control. The accompanying table gives the kinetic constants for SP with 

normalized velocities.   

  

Name Sequence N. Vmin   N. Vmax  Hill (nH) Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.20 ± 3.88 74.18 ± 4.29 2.70 ± 1.19 7.23 ± 1.25 8 
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Simultaneous Activation with cGMP and Switch Peptide 

 Due to the close physical proximity of the nest and the cGMP binding site B, it had been 

hypothesized that the presence of basal levels of cGMP would significantly affect the activation 

kinetics of switch peptides. This was assessed by activating the kinase with the switch peptide in 

the presence of low levels of cGMP (25 nM and 50 nM) (Figure 8). These concentrations are 

well below those required for half-maximal PKG activation. In addition, previous reports esti-

mated that the basal intracellular levels of cGMP are likely ranging from 20-50 nM.30,31 Though 

the presence of cGMP slightly shifted the activation constant for the peptide, this change was 

found to be insignificant in both cases. As predicted, the Vmin was increased with the addition of 

cGMP, however the Vmax was slightly reduced in the 25 nM cGMP experiment. Furthermore, in 

the 50 nM cGMP experimental set-up the cooperativity of peptide activation was markedly re-

duced, while the Ka values were unchanged. 

 

Activator Vmin   Vmax Hill Ka (µM) 

SP Control 1.0 ± 0.9 9.0 ± 0.9 3.8 ± 2.2 6.9 ± 1.9 

SP + 50 nM cGMP 2.7 ± 0.5 9.1 ± 1.5 1.2 ± 1.5 13 ± 7.6  

Activator Vmin   Vmax Hill Ka (µM) 

SP Control 0.3 ± 0.3 4.0 ± 0.5 2.0 ± 1.1 7.0 ± 2.5 

SP + 25 nM cGMP 0.7 ± 0.2 3.4 ± 0.3 2.4 ± 1.3 11 ± 2.9 
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Figure 8. PKG activation with the switch peptide compared to activation with the switch peptide and basal levels of cGMP. Co-activation with 

both 25 nM cGMP (A) and 50nM cGMP (B) was analyzed. In the accompanying tables, kinetic data is given comparing the coactivation trials 

with their respective SP control. Velocity is given in µmol of W15 per minute*mg of PKG and Ka is given in µmol. 
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C-Terminal Substitutions: Alanine Substitutions of Phenylalanine Residues 

In order to probe the function of the phenylalanine residues within the knob, derivative 

peptides were made. These derivatives were designed with an alanine-scanning approach. Ala-

nine mutagenesis is a powerful technique to identify the functional role of amino acid side-chains 

as each substitution removes side-chain atoms beyond the b-carbon.32 Alanine residues are used 

because the methyl side chain is small in size and chemically inert. Because it retains a beta-car-

bon, it has the propensity to form alpha-helices. Glycine, which does not have a beta-carbon, is 

more flexible and can cause conformational changes.32 In this study, alanine-scanning mutagene-

sis was used to determine the relationship between primary amino acid sequence and peptide ac-

tivity. Amino acid side chains provide crucial noncovalent interactions between the peptide and 

their respective binding site on the kinase.  

In Moon et al (2015), it was posited that the dual phenylalanine residues constituting the 

“knob” of the peptide, provide hydrophobic interactions on the B-site of the opposing protomer. 

Each phenylalanine residue was mutated to alanine sequentially to assess the validity of this 

claim in the context of the switch peptide. In a third peptide, both were substituted to alanine. 

SP-F16A had the sequence YEDAEAKAKYEAEAAAFANLKLSD such that compared 

to SP, the first phenylalanine residue has been substituted for an alanine residue. This peptide 

showed similar efficacy and potency to the parent peptide with an activation constant of 5.53 µM 

and a normalized velocity of 77%. The increase in cooperativity with a Hill coefficient of 3.44 

was not significantly different from that of SP (Figure 9). 
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Name Sequence N. Vmin   N. Vmax  Hill  Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.20 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

SP-F16A YEDAEAKAKYEAEAAAFANLKLSD 11.55 ± 8.3 77.19 ± 9.0 3.44 ± 1.8 5.53 ± 1.9 6 

Figure 9. Kinase activation with SP-F16A showed results similar to parent peptide, SP. A: representative trace for one trial is given, B: 

all trials (n=6) are represented. This curve reached 77% of the cGMP control and had an activation constant of 5.5 µM. On the right, SP-

F16A is compared to SP which had activation at 74% of cGMP and a Ka of 7.2 µM. The accompanying table provides kinetic constants 

for SP and SP-F16A with normalized velocities as a percent of the cGMP control. 
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Similar results were observed when the second phenylalanine residue was substituted for 

alanine. This peptide was termed SP-F17A and had the sequence YEDAEAKAKYE-

AEAAFAANLKLSD. The activation constant for this peptide was 5.36 µM and the normalized 

velocity reached 81% of cGMP (Figure 10). With a Hill coefficient of 3.53, all three major ki-

netic constant values were nearly identical between SP-F16A and SP-F17A. 

 
Name Sequence N. Vmin   N. Vmax  Hill  Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.20 ± 3.90 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

SP-F17A YEDAEAKAKYEAEAAFAANLKLSD 15.84 ± 5.0 81.26 ± 5.7 3.53 ± 2.1 5.36 ± 1.1 8 
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Figure 10. Activation of PKG Ia with SP-F17A. A: a representative trace for one trial is given, B: all trials are represented (n=8). The 

accompanying table gives the kinetic constants for this peptide with normalized velocity as a percent of the cGMP control.  
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Results from SP-F16A and -17A show that with only one phenylalanine residue in either 

position, the peptides will still activate PKG. This led to the development of a third analog with 

both phenylalanine residues substituted for alanine, creating a chain of 5 sequential alanine resi-

dues. This peptide was referred to as SP-F16,17A and it had the amino acid sequence 

YEDAEAKAKYEAEAAAAANLKLSD. The activation constant of this peptide was 5.65 µM 

and the normalized velocity reached 73% (Figure 11).  

 

 

 

Name Sequence N. Vmin   N. Vmax  Hill  Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.20 ± 3.90 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

SP-F16,17A YEDAEAKAKYEAEAAAAANLKLSD 13.47 ± 4.3 72.53 ± 5.4 1.95 ± 1.0 5.65 ± 1.4 2 
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Figure 11. Activation of PKG Ia with SP-F16,17A. A: a representative trace is given, B: trace represents n=2. It is overlaid with 

the trace for SP to show that this peptide’s activation kinetics are not significantly shifted from SP. The accompanying table gives 

the kinetic constants with normalized velocity given as a percent of the cGMP control.  

 



   

  

25 

Deletion Peptide 

 Next, a peptide was synthesized which had one phenylalanine residue removed. This 

peptide is referred to as DSP and has the sequence: YEDAEAKAKYEAEAAF_ANLKLSD. This 

peptide exhibited significantly reduced potency and efficacy. In fact, an activation constant and 

maximal velocity could not be determined (higher concentrations could not be achieved due to 

solubility issues of the peptides (Figure 12). Though this result was expected, it was hypothe-

sized that further modifications to this shortened peptide may restore its functionality. Recalling 

that N-terminal residues constitute the difference between S1.6, which failed to activate the ki-

nase, and SP-F16,17A which activated just as well as SP, N-terminal residues of DSP were modi-

fied in assessing rescued the phenotypes. In addition, the C-terminus of the switch peptide has 

been heavily investigated in previous studies, where C-terminal truncations resulted in inactive 

peptides.  

 

 

N-terminal Substitutions: Negatively Charged Residues 

Name Sequence Vmin   Vmax  Hill  Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.2 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

DSP YEDAEAKAKYEAEAAF_ANLKLSD 8 ± 1 N/A 1.6 ± 1 >100 2 
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Figure 12. Activation of PKG Ia with DSP. Kinetic constants for this peptide are reported in the accompanying table. Velocities have 

been normalized to the cGMP control. All trials are represented. 
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N-Terminal Substitutions: Negatively Charged Residues 

To determine if any N-terminal modifications could rescue the activity of the frame-

shifted peptide, a series of alanine scanning peptides were made. Charged residues were chosen 

to be sequentially substituted because charged amino acids are critical to binding specificity. 

The first of these peptides examined was named DSP-D3A and had the sequence 

YEAAEAKAKYEAEAAFANLKLSD, such that compared to DSP, the third amino acid was 

changed from a glutamic acid residue to alanine. DSP-D3A showed minimal efficacy and po-

tency. The activation constant was 90.54 µM, demonstrating over a ten-fold shift in activity com-

pared to SP (Figure 13). Additionally, the normalized velocity was only 29.77% of cGMP while 

SP consistently shows ~70% activation. This suggests that the aspartic acid residue at position # 

is not the sole caused of the poor activation seen in DSP. 

 DSP-E5A followed the alanine scanning rationale described above and consequently had 

the next non-alanine residue substituted for alanine, giving it the sequence YEDAAAKAKYE-

AEAAFANLKLSD. This peptide gave similar results to DSP-D3A, with an activation constant 

of 44.20 µM and a normalized velocity of 27.02% (Figure 13). This supports the results of DSP-

D3A illustrating that removal of negatively charged amino acids will not rescue the deleterious 

phenotype caused by the deletion.  

 Results from the next alanine scanning analog, DSP-E11A, followed this pattern as well. 

This peptide had the glutamic acid residue at position 11 in the parent peptide substituted for ala-

nine (YEDAEAKAKYAAEAAFANLKLSD) and demonstrated similar potency and efficacy to 

DSP-D3A and DSP-E5A. Specifically, the activation constant for DSP-E11A was 39.71 µM and 

the normalized velocity was 27.62% of the cGMP control (Figure 13).  
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  The next alanine substitution was to the glutamic acid residue at position 13 in the parent 

peptide giving it the sequence YEDAEAKAKYEAAAAFANLKLSD which was termed DSP-

E13A. This peptide continued the previously described pattern of significantly diminished po-

tency and efficacy compared to SP. This peptide had an activation constant of 20.90 µM and a 

maximum normal velocity of 29.83% (Figure 13).  

 

Name Sequence N. Vmin   N. Vmax  Hill Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.2 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

DSP YEDAEAKAKYEAEAAF_ANLKLSD 8 ± 1 N/A 1.6 ± 1 >100 2 

DSP-D3A YEAAEAKAKYEAEAAF_ANLKLSD 7  ± 1 30 ± 13 1.3 ± 1 91 ± 33 4 

DSP-E5A YEDAAAKAKYEAEAAF_ANLKLSD 5 ± 1 27 ± 13 2 ± 2 44 ± 13 4 

DSP-E11A YEDAEAKAKYAAEAAF_ANLKLSD 7 ± 4 29 ± 6 2.00* 37  ± 18 4 

DSP-E13A YEDAEAKAKYEAAAAF_ANLKLSD 5 ± 4 32 ± 7 2.00* 23 ± 12  4 
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Figure 13. Activation of PKG Ia with analog peptides. Traces have been overlaid to compare their kinetics to each other and to the parent 

peptide, SP. The accompanying table provides kinetic constants for these analogs as well as the parent peptides, SP and DSP. Velocities have 

been normalized as a percent of cGMP controls.  

 
* Hill values for DSP-E11A and DSP-E13A were fixed at 2.0. Prism8’s automatic curve fit function caused an artificially high Hill and ambig-

uous kinetic constants caused by a steep increase between two points.  



   

  

28 

N-terminal Substitutions: Positively Charged Residues 

After examining negatively charged residues, positively charged residues were scanned. 

DSP-K7A, had the sequence YEDAEAAAKYEAEAAFANLKLSD, which contrasts previously 

discussed DSP derivatives as the single residue substituted in this peptide was positively charged 

lysine, instead of a negatively charged glutamic acid or aspartic acid. This peptide gave a moder-

ately stored Ka compared at 15.46 µM, and efficacy was regained with a normalized velocity of 

72% (Figure 14).  

Name Sequence N. Vmin   N. Vmax  Hill Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.2 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

DSP-K7A YEDAEAAAKYEAEAAF_ANLKLSD 8.93 ± 4.2 72.14 ± 8.8 1.91 ± 1.2 15.46 ± 5.0 4 

Figure 14. Activation of PKG Ia with DSP-K7A. A: representative trace for a single trial with its respective cGMP control. B:  all 

trials are represented and overlaid with the SP to compare activation of the derivative peptide to SP. The accompanying table gives 

the kinetic constants for DSP-K7A and SP with normalized velocities.  
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The final DSP derivative was made such that lysine residue at position 9 in the parent 

peptide was substituted for alanine. This peptide, with the sequence YEDAEAKAAYE-

AEAAFANLKLSD, was termed DSP-K9A. Results from this peptide mimicked that of DSP-

K7A with significantly restored potency, represented by Ka, and efficacy, represented by maxi-

mum velocity. The activation constant for DSP-K9A was 12.70 µM, which is nearly two-fold 

shifted compared to SP but significantly improved from DSP-D3A, DSP-E5A, and DSP-E11A. 

The normalized velocity reached 65.97%, which is relatively comparable to SP (Figure 15). 

Name Sequence N. Vmin   N. Vmax  Hill  Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.2 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

DSP-K9A YEDAEAKAAYEAEAAF_ANLKLSD 7.84 ± 4.2 65.97 ± 7.0 2.61 ± 2.1 12.70 ± 3.5 6 
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Figure 15. Activation of PKG Ia with DSP-K9A. A: representative trace for a single trial with its respective cGMP control. B: all 

trials are represented and overlaid with the SP curve compare the kinetics of the derivative peptide with SP.  The accompanying 

table gives the kinetic constants for DSP-K9A and SP with normalized velocities.  
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  To expand on results from DSP-K7A and -K9A, the lysine to alanine substitution was 

examined in context of the full-length peptide. SP-K9A and had the sequence 

YEDAEAKAAYEAEAAFFANLKLSD such that both phenylalanine residues of the parent 

pharmacophore are present and the lysine residue at position 9 has been changed to an alanine. 

The Ka for this peptide was 11.70 µM and it reached a maximal normalized velocity of ~70% 

(Figure 16). The observation that SP-K7A and -K9A yielded similar results to SP-K9A raises 

questions about the role of the lysine residues in the peptide-kinase interaction. 

Name Sequence N. Vmin   N. Vmax  Hill Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.2 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

SP-K9A  YEDAEAKAAYEAEAAFFANLKLSD  8.08 ± 4.8 69.93 ± 7.7  2.32 ± 1.4 11.70 ±0.3 10 
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Figure 16. Activation of PKG Ia with SP-K9A to assess the effect of the lysine substitution at position 9 in the context of the full-length 

peptide. A: representative trace for one trial with its respective cGMP control. B: all trials are represented, and the trace is overlaid with 

that of SP to compare the kinetics of the derivative peptide and SP.  The accompanying table provides kinetic constants for SP-K9A and 

SP with normalized velocities.  
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 Table 2 provides a summary of all peptides examined in this study. Listed is each pep-

tide’s name, sequence, normalized minimum and maximum velocity, Hill coefficient, activation 

constant (Ka) and number of trials.  

Name Sequence N. Vmin   N. Vmax  Hill Ka (µM) n 

SP YEDAEAKAKYEAEAAFFANLKLSD 9.20 ± 3.9 74.18 ± 4.3 2.70 ± 1.2 7.23 ± 1.3 8 

SP-F16A YEDAEAKAKYEAEAAAFANLKLSD 11.55 ± 8.3 77.19 ± 9.0 3.44 ± 1.8 5.53 ± 1.9 6 

SP-F17A YEDAEAKAKYEAEAAFAANLKLSD 15.84 ± 5.0 81.26 ± 5.7 3.53 ± 2.1 5.36 ± 1.1 8 

SP-F16,17A YEDAEAKAKYEAEAAAAANLKLSD 13.47 ± 4.3 72.53 ± 5.4 1.95 ± 1.0 5.65 ± 1.4 2 

DSP YEDAEAKAKYEAEAAF_ANLKLSD 8 ± 1 N/A 1.6 ± 1 >100 2 

DSP-D3A YEAAEAKAKYEAEAAF_ANLKLSD 7  ± 1 30 ± 13 1.3 ± 1 91 ± 33 4 

DSP-E5A YEDAAAKAKYEAEAAF_ANLKLSD 5 ± 1 27 ± 13 2 ± 2 44 ± 13 4 

DSP-E11A YEDAEAKAKYAAEAAF_ANLKLSD 7 ± 4 29 ± 6 2.00* 37  ± 18 4 

DSP-E13A YEDAEAKAKYEAAAAF_ANLKLSD 5 ± 4 32 ± 7 2.00* 23 ± 12  4 

DSP-K7A YEDAEAAAKYEAEAAF_ANLKLSD 8.93 ± 4.2 72.14 ± 8.8 1.91 ± 1.2 15.46 ± 5.0 4 

DSP-K9A YEDAEAKAAYEAEAAF_ANLKLSD 7.84 ± 4.2 65.97 ± 7.0 2.61 ± 2.1 12.70 ± 3.5 6 

SP-K9A  YEDAEAKAAYEAEAAFFANLKLSD  8.08 ± 4.8 69.93 ± 7.7  2.32 ± 1.4 11.70 ±0.3 10 

 

Table 2. Results from all peptide assays with Vmin, Vmax, Hill coefficient, activation constant and number of trials. Velocities 

have been normalized to each trial’s respective cGMP control values. 

* Hill values for DSP-E11A and DSP-E13A were fixed at 2.0. Prism8’s automatic curve fit function caused an artificially high 

Hill and ambiguous kinetic constants caused by a steep increase between two points.  
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DISCUSSION AND FUTURE DIRECTIONS 

 

Pharmacophore Revisions 

This study probed the function of residues within the “knob” of the switch peptide, previ-

ously created by Dostmann et al.3 Two successive phenylalanine residues were thought to pro-

vide a hydrophobic interaction with the “nest” located in the cGMP B-binding site of PKG Ia  

and therefore allow these novel S-tides to bind to the kinase and cause activation. 

Results from the SP-F16,17A peptide as well as SP-F16A and SP-F17A indicate that the 

phenylalanine residues themselves are not necessary for peptide activity, which directly contrasts 

results from the S1.1 peptide examined by Moon et al (2015). The difference between S1.1 and 

SP-F16,17A is the length of the peptide, with S1.1 having additional peptides at the N-terminus. 

These additional N-terminal residues were previously thought to only provide structure however 

with SP-F16,17A as a direct parallel we can conclude that those additional residues on S1.1 pre-

vented optimal activation of the kinase.  

  When one phenylalanine was deleted (DSP) from the knob, the DSP peptide showed 

nearly no activation of the kinase. We hypothesize that this shift disrupts essential binding inter-

actions either N-terminally or C-terminally from the deletion location. Removing charged resi-

dues that may be responsible for this effect could potentially save the phenotype. Both negative 

and positively charged N-terminal residues were probed. Results from DSP analogs clearly 

demonstrate that positively charged residues play a different role in binding than negatively 

charged residues. Though substitution of negatively charged residues did not improve activity, 

substitution of either lysine residue (DSP-K7A, -K9A) did improve both efficacy and potency to 
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approximately the same level as SP. This suggests that positively charged residues may be re-

sponsible for the diminished activation by the DSP peptide. This hypothesis was further explored 

with 3D modeling in the PyMol program. After modeling the interaction between the switch pep-

tide and the nest, the location of both lysine residues was examined in an attempt to identify 

charged or steric interactions that may have caused the phenotype exhibited by DSP-K7A, -K9A 

(Figure 17). However, no obvious interactions were noted in the model and thus further studies 

are required to determine the cause of the rescue effect and the exact role of the lysine residues. 

To expand upon this work it is suggested that both lysine residues be substituted within the same 

peptide. If our hypothesis is correct, this derivative should show activation similar to SP. 

 

  

Figure 17. PyMol models of the switch peptide and PKG Ia B-site. Left: side view, right: top-view. Phe residues are represented in orange and 

reside within the nest. Lys residues are indicated in magenta are and are distant from both charged areas on the B-site or significant structures 

which would pose steric interaction.  
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It is also possible that the alanine substitutions made in these peptides, which created a 

string of multiple alanine residues, impaired the binding specificity of derivative peptides. In this 

way, the peptide is able to bind to PKG in both the N- to C-terminus direction and the C- to N-

terminus direction. This may suggest that the activating interaction between the peptide and PKG 

is not caused by specific residues at a precise location in the sequence but rather any string of ca-

pable residues within the sequence. This theory could be further evaluated with retro-inverted 

peptides. These peptides would maintain the same sequence as the parent peptide in question, but 

with the N- and C-termini reversed.  

 

Co-Activation of SP with cGMP 

 The nest site on PKG Ia and the cGMP-binding site are in close physical proximity. The 

crystal structure of this protein illustrates a single ridge separating the two pockets (Figure 18). 

It was hypothesized that because of the proximity of these two binding sites, the presence of 

cGMP may affect the binding kinetics of the switch peptide. This was explored by performing 

the kinase assay with the switch peptide as the activator with the addition of 25 nM or 50 nM 

cGMP (Figure 8). In both experiments, with the addition of cGMP a predicted increase in Vmin 

was observed and Vmax remained unchanged. Additionally, neither concentration of cGMP 

caused a significant shift in the activation constant for the peptide. However, in the 50 nM exper-

iment, there was a significant decrease in the Hill coefficient (nH). The Hill coefficient for the SP 

control was 3.8, and after the addition of cGMP, nH was markedly reduced to 1.2.  This suggests 

that cGMP, at elevated concentrations, prevents cooperative activation by the peptides. The phe-

nomenon of cooperativity inherently relies on multiple ligand binding sites, however peptide 
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studies up to this point suggest the nest is the only location of peptide binding on PKG Ia. There-

fore, the role of cGMP on the cooperativity of SP remains unclear.   

 

 

Figure 18. Binding site proximity of the switch peptide and cGMP. The top image shows the crystal structure of the unbound B-

site. The bottom image has SP modeled (blue) such that it is interacting via the proposed mechanism with Phe residues providing a 

hydrophobic interaction with the nest. The two sites are separated by a pronounced ridge, which is located at the center and runs 

vertically in both images.  
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Hill Coefficient  

 The Hill coefficient is used to describe cooperativity in ligand binding. A Hill coefficient 

above 1 indicates that the binding of one ligand to an enzyme facilitates the binding of a second. 

All peptides examined in this study had a Hill coefficient above 1, which suggests that the pep-

tides exhibited positive cooperativity. This may be observed because the dimeric structure of the 

kinase provides two nests which do not interact with the peptide independently. This hypothesis 

could be explored by using a monomeric mutant PKG Ia in the peptide assays.18 If the dimeriza-

tion of the kinase is responsible for the observed cooperativity, using a monomeric version of the 

kinase should reduce the Hill coefficient below 1.  

  

Concentration-Dependent Effects on PKG Ia activity 

At the highest peptide concentrations tested, it was noted that the activity of the kinase 

began to decrease instead of the predicted plateau (see Figures 9,14, 15, 16). This highly repeata-

ble effect was observed for multiple peptides in this study as well previous studies. This may 

suggest that at high concentrations, the peptide activators begin to interact with the substrate it-

self. This hypothesis could be tested by using a different peptide substrate and seeing if the drop 

in activity occurs. Future studies could also examine this effect by incrementally increasing pep-

tide concentrations beyond concentrations used in this study to determine how far activity could 

be reduced in this way.  
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Conclusion 

 An estimated 73M Americans have hypertension; however most respond poorly to cur-

rent treatments. Uncontrolled hypertension leads to increased risk of stroke, heart attack, conges-

tive heart failure, and kidney failure. There remains a significant unmet need for novel antihyper-

tensive agents with improved efficacy and fewer side effects. None of the existing hypertension 

drugs target PKG, an enzyme critically responsible for mediating arterial dilation.  

A peptide library directly targeting cGMP-dependent protein kinase (PKG) has been de-

veloped, however the pharmacophore of the lead peptide (SP) had not yet been solidified. It was 

hypothesized that two phenylalanine residues toward the C-terminus of the peptide provide cru-

cial hydrophobic interactions which allow the peptide to activate the kinase. In this study it was 

observed that in the context of SP, neither phenylalanine residue is necessary for peptide-medi-

ated activation of PKG. Though deleting one phenylalanine residue caused a marked reduction in 

potency and efficacy, substituting either lysine residue N-terminal from the deletion to alanine 

rescued the peptide’s ability to activate the kinase.  

Our peptides show dose-dependent activation specifically for the vascular PKG isoform, 

resulting in a rapid and reversible onset of action. These peptides have been demonstrated to pro-

mote 20-50% blood pressure reductions in rodent models of hypertension. This approach may 

provide immediate clinical benefit as an IV-administered drug for acute hypertensive crisis or may 

serve as a platform for oral/subcutaneous therapeutics for resistant hypertension. 
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