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Abstract

As believers in the power of blending the creative with the quantitative, we design
our courses with an eye towards developing creative problem solvers. However,
when it comes time to evaluate our course’s success in developing creative prob-
lem solvers we come away with a plethora of qualitative evidence and yet we are
left hungry for the quantitative evidence we desire as mathematicians.

In this article we describe the development of the Mathematical Problem Solving
Creativity Rubric and its pilot use in a freshman-level Mathematical Modeling and
Introduction to Calculus course at the United States Military Academy. We not
only come away with the necessary quantitative evidence to satiate our hunger
for now, but with a rubric that will allow us to do so in future semesters and
courses.
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158 The Mathematical Problem Solving Creativity Rubric

1. Introduction

As mathematics instructors, we hope that our students not only learn the
course concepts, but can also apply these ideas in innovative and thoughtful
ways. In particular, we hope to foster the ability to solve problems creatively.
We go so far as to make developing creative problem solvers one of the
higher-order learning goals of our course. However, it is a goal which is
often stated and rarely, if ever, evaluated. If creative thought is a course
objective, we should be able to monitor student growth in this ability in
order to evaluate our successes and failures in addressing this higher-order
learning goal. While we acknowledge that assessing creativity is not easy,
we believe it is a worthwhile task. Consequently, our goal is to develop and
implement a rubric to assess creativity in problem solving primarily for use
in course evaluation. In particular, we want to know if there is evidence to
support our hypothesis that our Mathematical Modeling and Introduction
to Calculus course at the United States Military Academy is improving our
students’ abilities to solve problems creatively.

To do so, we first consider what characterizes creative thought, and what
it means to be creative in a mathematics class in Section 2. Our 5-Point
Mathematical Problem Solving Creativity Rubric is presented in Section 3.
In Section 4 the methodology of the pilot study using the rubric is discussed.
In Section 5 we present the results of the pilot study. Lessons learned from
the pilot study and future improvements are discussed in Section 6. Finally,
some concluding thoughts are presented in Section 7.

2. Literature Review

J. P. Guilford was among the first to develop a definition of creativity. In 1950
he generated a list of traits that he believed contribute to creative thought
[1]. Upon further research, Wilson, Guilford, Christensen, and Lewis iden-
tified fourteen factors that contribute to creativity in the sciences including;:
visualization, ideational fluency, originality, redefinition, adaptive flexibility
and spontaneous flexibility [2]. In 1965, Guildford addressed creativity and
the implications to high school education. In particular, he summarizes the
abilities that contribute to creative thought; these include divergent pro-
duction abilities (such as fluency, flexibility and elaboration) as well as the
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ability to transform information to new forms, and ultimately evaluate suc-
cess [3]. R. J. Sternberg and T. I. Lubart have also conducted research to
better understand creativity. According to their investment theory of cre-
ativity, the influences on creativity include intellectual abilities, knowledge,
styles of thinking, personality, motivation, and environment [4]. In particu-
lar, Sternberg and Lubart find that the “willingness to take sensible risks”
is a personality trait conducive to creative thought [4, p. 684]. A definition
of creativity should be consistent with the work done by these researchers.
One such definition is provided by the Association of American Colleges and
Universities (AAC&U), they define creativity as: “both the capacity to com-
bine or synthesize existing ideas, images or expertise in original ways and the
experience of thinking, reacting and working in an imaginative way charac-
terized by a high degree of innovation, divergent thinking, and risk taking”
[5]. The AAC&U was particularly influential to our definition and assessment
of creativity.

Since our goal is to assess student creativity in mathematical problem solv-
ing, we consider how creativity is defined in a mathematics class. Sriraman
discusses mathematical creativity, providing two definitions, one for profes-
sional mathematicians and another for K-12 students [6]. He defines creativ-
ity in a K-12 mathematics class as: “(a) the process that results in unusual
(novel) and/or insightful solution(s) to a given problem or analogous prob-
lems, and/or (b) the formulation of new questions and/or possibilities that
allow an old problem to be regarded from a new angle requiring imagina-
tion” [6, p. 24]. Our population is first-year undergraduate students with
a wide variety of interests and talents; it is likely that only a small fraction
will become mathematics majors. Therefore, when assessing creativity in
mathematical problem solving for this population, it is appropriate to adopt
the mindset that Sriraman gives for mathematical creativity in high schools.
After synthesizing the research, we formulate the following definition of cre-
ativity in mathematical problem solving: students can extend knowledge to
new situations, draw upon previous experiences, develop illustrations to clar-
ify concepts, establish connections between concepts, and take responsible
risks.

Amabile provides guidance on assessing creativity based on her consensual
definition of creativity [7]. According to her definition, “...creativity can
be regarded as the quality of products or responses judged to be creative by
appropriate observers, and it can also be regarded as the process by which
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something so judged is produced.” [7, p. 1001]. Therefore, the creativity of a
product should be assessed by an expert in the field. During implementation,
Amabile suggests assessing the level of creativity in comparison to similar
samples [7]. Several rubrics have been created with the goal of assessing the
creativity of a process or a product [8, 9, 5, 10, 11, 12].

While all of the facets of our definition of creativity in mathematical problem
solving are process oriented, we develop our rubric to assess evidence of
these creative processes within the product. This idea is not unprecedented.
Young creates a rubric to assess creativity in writing by looking for evidence
of creative thought [12]. When creating our rubric to assess creativity in
problem solving, we adopt a similar approach. One creativity rubric that was
particularly influential on our rubric as well as on the academic program goals
at the United States Military Academy was the Creative Thinking VALUE
Rubric created by the AAC&U [5]. The facets we chose to include in our
rubric are: Originality, Flexibility, Visualization, Elaboration, and Risk.

e Originality refers to the student’s ability to extend knowledge to new
situations. Originality has been linked to creativity by researchers such
as Wilson et al., and Sternberg and Lubart [2, 4]. Further, the AAC&U
includes this facet in their Creative Thinking Value Rubric as “Inno-
vative Thinking” [5]. To allow originality to be assessed relative to
similar products, a random sample of papers were evaluated indepen-
dently, the originality scores were discussed, and then this facet was
calibrated. This follows the suggestion given by Amabile in [7].

e Flexibility is the ability to integrate knowledge and skills from a variety
of disciplines. Wilson et al. establish the connection between creativity
and flexibility in their discussion of adaptive flexibility and spontaneous
flexibility [2].

o Visualization is the act of developing illustrations to clarify concepts.
While it is certainly possible that a student is able to arrive at a cre-
ative solution without a picture, providing an illustration can be evi-
dence that creative thought has taken place. Visualization is a facet
found to contribute to creative thinking according to Wilson et al. [2].
Furthermore, the process of creating an illustration involves transform-
ing the problem which is included in the AAC&U Creative Thinking
Value Rubric [5].
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e FElaboration is the ability to establish meaningful connections between
concepts and to explain a thought process in words. As with visu-
alization, elaboration is not essential for a creative solution, but it is
potential evidence of creative thought. It is a way for the evaluator to
see the student’s thought process, and the connections that they have
made. This facet is included in the AAC&U Creative Thinking Value
Rubric in the “Connecting, Synthesizing Transforming” component [5].

e Risk refers to taking responsible risk in the problem solving process.
Sternberg and Lubart tie taking reasonable risks to creativity, as sum-
marized in [4]. Further, taking risks is also a component of the AAC&U
Creative Thinking Value Rubric [5].

3. The 5-Point Rubric

After consulting the literature and choosing the five facets for our rubric
based on the work of others, we set out to develop a rubric that was clear,
concise, broadly applicable to mathematical problem solving, and ultimately
easy to use. While the AAC&U provides a well-known rubric for Creative
Thinking [5], their rubric is interdisciplinary and does not address the many
ways students may show creativity in mathematical problem solving when
working on problems with definite known answers. It is our belief that stu-
dents can show creativity when approached with a mathematics problem that
is not an open problem. Therefore, we sought to embrace the many ways
creativity may appear in all levels of mathematical problem solving in our
rubric. After several previous versions, we arrived at the rubric found in
Figure 1.

Because the rubric is broadly applicable in mathematical problem solving, it
is important that anyone using the rubric think about the problem that they
are planning to evaluate and consider what specifically some of the entries in
the rubric may mean for them. For example, in one problem using a volume
formula may be at least moderately original, while in another problem it may
simply be a standard formula. Additionally, we encourage anyone evaluating
originality to make sure they take the time to calibrate the rubric to the
student responses received for the problem. This is discussed further in
Section 6.
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Figure 1: 5-Point Mathematical Problem Solving Creativity Rubric



Blyman, Arney, Adams, and Hudson 163

4. Methods

Our primary goal in creating this rubric is to evaluate how our course is do-
ing at achieving our higher-order learning goal of developing creative problem
solvers. During the Fall 2018 semester we ran a pilot study to help us de-
velop the rubric and put it to the test. The pilot study was conducted in
Mathematical Modeling and Introduction to Calculus at the United States
Military Academy. This course is taken by about 75% of the incoming first-
year students during their first fall semester. The course first introduces
students to modeling using discrete dynamical systems consisting of a single
recursion equation, followed by modeling with systems of recursion equa-
tions, and finally modeling with continuous functions as a preparation for
their subsequent calculus course. Like many other mathematics courses, one
of the higher-order learning goals of this course is to develop creative problem
solving abilities. We developed this rubric and pilot study with the goal of
being able to evaluate how well we were doing in achieving this higher-order
learning goal as a course.

4.1. Sampling

In the Fall 2018 semester, 835 students were enrolled in Mathematical Mod-
eling and Introduction to Calculus. The 835 students were split into 50 sec-
tions that were taught by a total of 19 instructors. 10 of the 19 instructors
had taught college mathematics at the United States Military Academy or
another institution the previous year. All of these instructors were asked to
participate with all sections that they were teaching. Of those 10 instructors,
8 (80%) opted in. This created a sample for the pilot study consisting of 318
out of 835 (38%) students, in 19 out of 50 (38%) sections offered which were
taught by 8 out of 19 (42%) instructors overall for the course. Additionally,
the course was offered during four different hours throughout the day and
was sectioned into three different types of sections based on performance on
an assessment of fundamental mathematics concepts. The 19 participating
sections were spread relatively evenly across the hours and across perfor-
mance levels on the fundamental mathematics concepts assessment. These
sections were split into a group of 10 sections (164 students) and a group of 9
sections (153 students). Group 1 had 164 students complete the pre-test and
149 students complete the post-test. Group 2 had 153 students complete the
pre-test and 148 students complete the post-test. Each group represented a
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cross section of instructors, hours the course was offered, and performance
on the fundamental mathematical concepts assessment.

4.2. Study Design

Since no prior studies of this kind that we are aware of have looked at creativ-
ity in mathematical problem solving, there are no problems with benchmarks
for student performance with regards to creativity in their problem solving.
Consequently, we had approximately half of the sample for the study com-
plete Problem A as a pre-test and Problem B as the post-test while the other
half of the study population completed Problem B as a pre-test and Prob-
lem A as the post-test in an attempt to control for the natural differences
that may arise between problems. Which treatment each group received was
randomly assigned between the two groups. This resulted in 10 sections com-
pleting the cheese problem presented below as the pre-test (Group 1) and 9
sections completing the surface area problem presented below as the pre-test
(Group 2). The pre-test was administered during the first week of classes
and the post-test was administered during the last week of classes, 17 weeks
later.

4.8. The Problems

Much careful thought was put into the selection of problems. It was impor-
tant that the problems were able to be solved given the expected content
knowledge of our students, but it was equally important that course content
not be helpful in solving either of the problems so that there was no con-
tent advantage to taking either problem as a post-test rather than a pre-test.
Additionally, the problems chosen needed to be unique enough that the stu-
dents would feel like they had never seen the problem before for both the
pre-test and the post-test regardless of the order in which they received the
problems. Finally, the problems needed to not only be able to be explored
and ultimately solved in a variety of ways, but to be difficult enough that
the students would truly be challenged to solve them in any way.

The first problem selected was the cheese problem from an author’s graduate
course work:

A 3 x 3 x 3 cube of cheese is divided into 27 small (1 x 1 x 1)
cubes. A mouse eats one small cube each day and an adjacent
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small cube (that is sharing a face) the next day. Can the mouse
eat the center small cube on the last day?

The second problem selected was the surface area problem from the 2011
Mathematical Festival [13, p. 2]:

A wooden block is divided into eight smaller blocks by three cuts.
In the figure, the surface areas of the seven visible blocks are
labeled. What is the surface area of the eighth block?

72 88

126

148

28

ﬁ

46 58

Figure 2: Surface Area Problem Provided Figure

For each problem students were given ten minutes for completion without
technology and the following directions.

Do your best to solve the following problem. Show ALL of your
work. Explain your reasoning. Do not erase or cross out anything.

4.4. Data Analysis

When scoring the problems, pre-test and post-test problems were all put
together and the difference between them was unidentifiable to the two raters.
Each problem had a student’s identifying number on it to allow it to be
paired for a pre-test to post-test comparison and to know which problem
was the pre-test and post-test. The two raters were the developers of the
rubric and each scored all problems. Common themes and extremely unique
examples of student work were regularly discussed as we worked to calibrate
the rubric. Across 3,075 individual scores given on a 5-point scale, scores
between the two raters differed by more than one point 11.12% of the time.
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Moreover, of the 12,300 possible points of separation between the scores
given by the raters, only 13.38% of that separation occurred. In the end, the
scores used for analysis were the average of the two raters whenever there
was disagreement.

The main question that drove the study is “Are we succeeding in achieving
our higher-order learning goal of developing creative problem solvers?” To
address this question we conducted a paired t-test to assess if, on average,
the students performed better on their post-test problem. Additionally, we
conducted paired t-tests to assess if students on average improved on their
post-test problem in both groups. Lastly, we conducted two-sample t-tests to
assess how the pre-test scores, on average, compared to the post-test scores
for each problem. In all t-tests, the difference in scores were determined by
(post-test score) — (pre-test score). The null hypothesis for each t-test was
that there was no difference between the pre-test and post-test scores. The
alternative hypothesis was that there is a difference between the pre-test and
post-test scores (two-sided). R was utilized to perform all paired t-tests[14].
T-tests were utilized because the pre-test and post-test scores approximately
followed a normal distribution as well as their paired differences.

5. Results

Summary statistics of the scores for the cheese problem, Table 1, and surface
area problem, Table 2, were calculated using the pre-test and post-test scores
to assess how the different natures of the two problems might have influenced
the scores for each facet. On average, the cheese problem scores were higher
than the surface area problem scores. This could imply that the natures
of the problems made students less likely to use creative problem-solving
methods on the surface area problem than on the cheese problem.

5.1. Comparing Pre-test to Post-test Scores

Results from the paired t-test comparing the pre-test and post-test scores are
found in Table 3. The average difference was calculated using (post-test score)—
(pre-test score). A positive value implies, on average, the students improved
between the pre-test and post-test. The mean difference was positive for each
facet except visualization and elaboration. Flexibility (p-value = 0.019) and
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Facet Mean Minimum Q1 Median Q3 Maximum
Originality 2.72 1.00  2.00 3.00  3.50 5.00
Flexibility 3.13 1.00  3.00 3.00  3.50 5.00
Visualization — 2.95 1.00 2.50 3.00 3.50 5.00
Elaboration 3.00 1.00 2.00 3.00 4.00 5.00
Risk 3.90 1.00  3.00 4.00  5.00 5.00
Total 15.70 5.00 13.50 16.00 18.50 22.00

Table 1: Summary statistics for the cheese problem

Facet Mean Minimum Q1 Median Q3 Maximum
Originality 2.52 1.00  1.00 2.50  3.50 5.00
Flexibility 2.90 1.00  1.50 3.00 4.00 5.00
Visualization — 2.22 1.00  1.50 2.00 3.00 5.00
Elaboration 2.42 1.00 1.12 2.00 3.50 5.00
Risk 3.30 1.00  2.50 3.00  4.00 5.00
Total 13.37 6.00 10.50 13.50 16.00 22.50

Table 2: Summary statistics for the surface area problem

risk (p-value = 0.019) provided strong evidence against the null hypothesis.
For both measures, the 95% confidence interval contains only positive val-
ues, demonstrating that on average there was an increase in scores for these
facets.

5.2. Comparing Pre-test to Post-test Scores by Group

Results from the paired t-test comparing the pre-test and post-test scores for
each group are in Tables 4 and 5. Table 4 contains the results for students in
Group 2 that took the surface area pre-test and the cheese post-test. Table
5 contains the results for students in Group 1 that took the cheese pre-test
and the surface area post-test.

For Group 2, Table 4, the mean difference was positive for each facet and all
t-tests had p-values < 0.01. Each facet’s 95% confidence interval contains
only positive values showing that on average the students’ scores in this group
increased between pre-test and post-test.
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Facet Mean Difference t-statistic p-value 95% CI
Originality 0.154 1.636 0.103 (-0.031, 0.339)
Flexibility 0.194 2.352 0.019  (0.032, 0.357)
Visualization -0.079 -1.027 0.305 (-0.231, 0.073)
Elaboration -0.017 -0.183 0.855 (-0.198, 0.165)
Risk 0.194 2.368 0.019  (0.033, 0.356)
Total 0.446 1.496 0.136  (-0.141, 1.032)

Table 3: Paired t-test results for all students

Facet Mean Difference t-statistic p-value 95% CI
Originality 0.357 2.630 0.009 (0.089, 0.625)
Flexibility 0.441 3.570 < 0.001 (0.197, 0.685)
Visualization 0.696 8.150 < 0.001 (0.527, 0.865)
Elaboration 0.57 4.559 < 0.001 (0.323, 0.817)
Risk 0.801 7.035 < 0.001 (0.576, 1.026)
Total 2.864 7.086 < 0.001 (2.065, 3.663)

Table 4: Paired t-test results for students with the surface area pre-test and the cheese
post-test (Group 2)

For Group 1, Table 5, the mean difference was negative for each facet and all
t-tests for the facets, except originality and flexibility, had p-values < 0.01.
With the exception of originality and flexibility, each facet’s 95% confidence
interval contains only negative values showing that on average the students’
scores in this group decreased between pre-test and post-test.

5.8. Comparing Pre-test to Post-test Scores by Problem

Results from the two-sample t-test comparing the pre-test and post-test
scores for each problem are in Tables 6 and 7. Table 6 contains the re-
sults for the surface area problem. Table 7 contains the results for the cheese
problem.

For the surface area problem, all but elaboration had a positive difference
between pre-test and post-test scores. There were statistically significant
increases in scores from pre-test to post-test for the surface area problem
in the flexibility (p-value = 0.002) and risk facets (p-value < 0.001) for the
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Facet Mean Difference t-statistic p-value 95% CI
Originality -0.036 -0.279 0.781  (-0.290, 0.219)
Flexibility -0.036 -0.334 0.739  (-0.249, 0.177)
Visualization -0.804 -8.519 < 0.001 (-0.990, -0.617)
Elaboration -0.565 -4.747 < 0.001 (-0.801, -0.330)
Risk -0.373 -3.807 < 0.001 (-0.566, -0.179)
Total -1.814 -5.207 < 0.001 (-2.502, -1.126)

Table 5: Paired t-test results for students with the cheese pre-test and the surface area
post-test (Group 1)

surface area problem. For the cheese problem, only elaboration and risk had
a positive difference between pre-test and post-test scores. There were not
any statistically significant differences in the pre-test and post-test scores for
the cheese problem.

Facet Difference of Means t-statistic = p-value 95% CI
Originality 0.39 2.732 0.007  (0.109, 0.671)
Flexibility 0.459 3.168 0.002  (0.174, 0.745)
Visualization 0.03 0.270 0.788 (-0.193, 0.254)
Elaboration -0.077 -0.561 0.575 (-0.349, 0.194)
Risk 0.429 3.844 < 0.001 (0.209, 0.649)
Total 1.232 2.853 0.005  (0.382, 2.082)

Table 6: Two-sample t-test comparing the surface area problem pre-test and post-test
scores

5.4. Discussion

Evaluating creativity is a difficult task. Firstly, it is challenging to assign a
number for each of the facets of creativity based on student written work.
Appendix A provides an annotated spectrum of the solutions received for each
problem. Secondly, it is perhaps more challenging to meaningfully interpret
the consequent quantitative results. Overall, we feel that our results may
be somewhat confounded due to the nature of the problems chosen for this
experiment but we do find promise in the abilities of our students in flexibility
and risk when using our rubric.
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Facet Difference of Means t-statistic p-value 95% CI
Originality -0.09 -0.828 0.408 (-0.305, 0.124)
Flexibility -0.044 -0.435 0.664 (-0.245, 0.156)
Visualization -0.111 -1.257 0.21 (-0.284, 0.063)
Elaboration 0.061 0.501 0.617 (-0.179, 0.302)
Risk 0.035 0.315 0.753 (-0.182, 0.252)
Total -0.149 -0.382 0.703  (-0.920, 0.621)

Table 7: Two-sample t-test comparing the cheese problem pre-test and post-test scores

Table 5 tells us that students in Group 1 who completed the cheese problem as
the pre-test and the surface area problem as the post-test had a statistically
significant decrease in almost every facet of their creative problem solving
abilities throughout our course. Alternatively, Table 4 tells us that students
in Group 2 had a statistically significant increase in every facet of their
creative problem solving abilities throughout our course. Not surprisingly,
Table 3 reveals that when we put everyone together we do not see as many
statistically significant changes. Ultimately, the results in Table 3 indicate
that the increases seen in Table 4 outweigh the decreases seen in Table 5 for
the flexibility and risk facets, and for all of the other facets they more or less
balance one another.

Considering the summary statistics for the cheese problem presented in Table
1 compared to the summary statistics for the surface area problem presented
in Table 2 it is easy to notice that the scores for the cheese problem were
higher than the scores for the surface area problem on average. Consequently,
it is reasonable to believe that the difference in type of solution required for
each problem as well as the difference in tools provided for students within the
statement of each problem confounded the results seen in Tables 3, 4, and 5.
In fact, considering the differences in means from the cheese problem to the
surface area problem and the 95% confidence intervals provided in Tables
4 and 5, it is possible that the difference in means between the problems
accounted for all of the differences in means seen from pre-test to post-test
with the exception of one. In the case of the risk facet when the cheese
problem was the pre-test and the surface area problem was the post-test, the
difference in means between the problems leads to the expectation of a —0.6
difference from pre-test to post-test and —0.6 is below the 95% confidence
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interval, making the decrease in the risk facet from pre-test to post-test less
than we might expect.

Given the difference in problem means, it is reasonable to expect the com-
bined results to skew towards a decrease since more students completed the
cheese problem as a pre-test. However, Table 3 reveals that there was a
statistically significant increase in the flexibility and risk facets which is op-
posite of what the difference in problem means and the number of students
completing each problem would lead us to expect. Therefore, we conclude
that the increases in flexibility and risk from pre-test to post-test for our
combined sample are truly significant.

While we are encouraged by that positive result, perhaps the more convincing
result is found in Table 6. Here we find the results comparing the pre-
test scores for the surface area problem to the post-test scores for the same
problem. While it is important to note that the students completing the
surface area pre-test were not the same as the students completing the surface
area post-test, the two groups were assigned using random assignment to
ensure as much balance as possible between the two groups. Further, if the
two groups were out of balance, we should expect to see evidence of that
in Table 7 as well since the group that completed the surface area pre-test
completed the cheese post-test and vice versa. However, in Table 6 we see
statistically significant increases in originality, flexibility, risk, and in the total
of all five facets, while in Table 7 we see relatively neutral results across all
facets with no statistical significance. Overall, the cheese problem brought
with it a lot of challenges. In Section 6, we will discuss further the difficulties
that were realized as we evaluated the student responses to that problem.

6. Lessons Learned and Future Improvements

The pilot use of the Mathematical Problem Solving Creativity Rubric went
relatively smoothly and we are encouraged by the results. However, reflecting
on the experience reveals a few things that should be carefully considered,
and potentially addressed, in future iterations.
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Figure 3: Reduced 5-Point Mathematical Problem Solving Creativity Rubric
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6.1. The Rubric

When initially selecting facets for the rubric, we believed it would be help-
ful to evaluate visualization and elaboration as both are identified as being
potential evidence of creative problem solving. However, upon evaluating
the problems in our pilot study and considering the quantitative results, we
believe that evaluating these two facets was largely unhelpful in determin-
ing a student’s creative problem-solving ability. Rather, we found ourselves
relying on what the students communicated to us through visual and elab-
orative means to help us determine the other three facets of creativity. The
literature warned that this may be the case as it identifies both visualization
and elaboration as potential evidence for creativity rather than necessary
facets for creative thought [1, 3, 2]. Combining our experiences with the
literature, we have come to the conclusion that producing a separate score
for visualization and elaboration is unnecessary and have consequently made
the rather significant decision to simplify our rubric to include only three
facets — originality, flexibility, and risk — for future uses. Figure 3 provides
the reduced 5-point rubric.

6.2. Problem Selection

When selecting problems for the pilot, the cheese problem and the surface
area problem seemed relatively similar in that they both did not have an
obvious, straight-forward, solution and they could both be solved in multiple
ways. However, as we evaluated the two problems, the differences between
them became apparent. While we were initially excited about the creative
possibilities the cheese problem brought with it, we ultimately became frus-
trated by it.

One phenomenon that we observed was the seeming desire of students to do
whatever they could to manipulate the situation to make it possible for the
answer to the question to be “yes.” While our student population may be par-
ticularly predisposed to make it work one way or another, it seems plausible
that any student population may be inclined to respond in the affirmative to
a problem posed by their instructor. Consequently, we recommend avoiding
Yes/No problems to avoid this potential influence on student responses.

Another potential issue identified with the cheese problem was the large
amount of work that students could do on the problem through thought
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experiments without ever writing anything down. Despite the explicit in-
structions to write everything down and not erase or cross out anything, it
was apparent that there were unrecorded thoughts, erased work, and crossed
out work on several of the submissions. While it was not as prevalent with the
surface area problem, the same phenomenon occurred on a few of those sub-
missions as well. While some of this can be addressed by selecting problems
that make thought experiments without writing difficult, this consideration
may not be enough. Evidence for this is seen in the few surface area prob-
lems which had a similar phenomenon occur, despite the problem’s potential
to be a more computational problem. Seeing all of these responses that
clearly had more to them than what was recorded leads to the desire to gain
deeper insight into what students are thinking and not recording as they work
towards solving these problems. It seems the best way to do this moving for-
ward would be to have some students complete the problems in an interview
setting where they can both write and speak their problem-solving thoughts
and an interviewer can ask questions to prompt them to share their thoughts
if they are not naturally doing so. Not only would this allow for deeper in-
sight into the interviewed students creative problem-solving thoughts, but it
would allow a comparison to be made between the totality of the students’
communicated thoughts and what made its way onto paper.

One way that the two problems varied greatly was in how much insight we
could gain as evaluators into the students’ thoughts when there was little to
no elaboration present. Without students telling us their thought processes
we could often figure out what they were trying to do, and consequently
what they were likely thinking, on the surface area problem. However, when
there was little to no elaboration on the cheese problem it was almost always
impossible to tell what the thought process might have been. While there is
always going to be some amount of guessing involved when students fail to
elaborate well, some problems will require more than others. Consequently, it
is important to consider how much guessing may be involved when selecting
problems.

One of the most frustrating issues that we encountered was students mis-
interpreting and reinterpreting the problems posed in ways that made the
problems completely void of any richness. In these reinterpretations, the an-
swers should be things like “yes, of course the mouse can eat the center cube
of cheese eventually,” or “yes, if the mouse eats 27 cubes of cheese in one day
the mouse will eat the center cube on the last day.” Not only is there no need
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for creativity in answering these questions there is no real need for problem
solving either. Whether these misinterpretations and reinterpretations oc-
curred due to reading comprehension issues or due to uncertainty about how
to solve the problem as originally posed, they raised issues in evaluation and
should consequently be considered when selecting problems. Again while all
problems can be misinterpreted or reinterpreted, some are more likely to be
misinterpreted or reinterpreted. In the case of the pilot, the cheese problem
was much more regularly misinterpreted and reinterpreted compared to the
surface area problem.

6.3. Using the Rubric

If it is to be relevant, the rubric needs to remain useful when students solve
problems in unexpected ways. The Mathematical Problem Solving Creativ-
ity Rubric did a pretty good job at allowing us to adapt to all kinds of cir-
cumstances. If things do not go as planned, as with misinterpretations and
reinterpretations of the problem being prevalent, it is important to decide in
the beginning how to handle such occurrences and to remain consistent in
your treatment of them.

While almost all of the facets on the rubric do not require any real calibration,
the originality facet does. For the pilot study we looked at roughly 10% of the
submissions for each problem before deciding what problem-solving processes
were placed in each of the categories. After scoring all of the submissions, we
realized a need for a larger sample size when calibrating that facet. In the
future we will attempt to calibrate it using a sample size of approximately
25% of the submissions.

There were several occurrences of students turning the problem into a more
elaborate short story, making seemingly random and unnecessary assump-
tions about the problem, or drawing the whole situation out as a cartoon.
While all of these are most certainly evidence of creativity, they are not
necessarily evidence of creative problem solving. When using the rubric, it
can be tempting to get drawn into these displays of creativity sans problem
solving, but it is important to remember that we are ultimately evaluating
creative problem-solving ability, not simply creativity. As you evaluate the
papers it is advantageous to do periodic sanity checks that sound something
like “is this creative problem solving or just creative?”
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It is not uncommon when evaluating these submissions to find yourself on
a roller coaster of gut feelings about the submissions and questioning your
consistency. Creative problem solving is very difficult to evaluate. While we
believe the rubric is good because of how consistent we were between two
evaluators over all of the submissions, we both had our moments of feeling
like everything was awful. Because creative problem solving is so nebulous,
we recommend maintaining more than one evaluator per problem if at all
possible. If that is not possible, then having a single instructor evaluate
all submissions and then scramble them up and blindly evaluate them a
second time would suffice. This practice allows the evaluators to help keep
each other honest and balanced with scores during the high and low times
through comparison and ultimately through averaging the scores.

6.4. Using the Scores

No matter how consistent the scoring is, no two problems are going to look
alike on all facets of creative problem solving. Because of this, the split
sample with two problems is desirable so that overall summary statistics
including both pre-test and post-test submissions for each problem can be
established to help make the interpretation of the results from pre-test to
post-test meaningfully possible. If you are using a problem and the rubric
to get an idea of where your students are in their creative problem-solving
abilities, it may be desirable to use a problem that you know a pre-test
and post-test overall average for, or to at least think about how the type of
solution required as well as the tools provided within the statement of the
problem may effect the student responses in each of the facets.

6.5. Potential 3-Point Rubric

Along the way to developing our 5-Point Rubric, we developed a simplified
3-Point version of the rubric. Unfortunately, this version of the rubric did
not differentiate enough within each facet to be useful for our desired result
of evaluating our course’s successes or failures at achieving our higher-order
learning goal of developing creative problem solvers. However, we kept this
version of the rubric because it was incredibly fast and easy to use in com-
parison to the 5-Point version.

Consequently, depending on your intended use of the rubric, the 3-Point ver-
sion may be preferable. For example, sacrificing some differentiation within
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facets for speed may be desirable if the rubric is being used to gain insight
into the current creative problem-solving abilities of a class. This insight
may be useful in determining how much scaffolding to provide a class to
most effectively develop creative problem solvers.

One challenge that may arise when using the rubric in this way are the broad
range of solutions that may get lumped into the Score: 2 category if Score:
1 is allowed to mean awful and Score: 3 is allowed to mean amazing. By
allowing student submissions that are not amazing but are pretty good to
be placed in the Score: 3 category and submissions that are not awful but
are pretty weak to be placed in the Score: 1 category, the Score: 2 category
will retain some meaning. Another challenge that may arise is figuring out
how to assign any meaning to the scores on student submissions without a
comparison method.

7. Conclusion

Despite the many challenges involved in assessing creative problem solving,
it is a worthwhile pursuit. As we seek to foster students’ creativity in our
classrooms, we include higher-order learning goals to develop creative prob-
lem solvers in our course goals because we know that the future will need cre-
ative problem solvers. However, without the ability to evaluate our successes
and failures at fostering student creativity, we run the risk of maintaining
a status quo that falls short of truly developing creative problem solvers.
If we fail — even unknowingly — we will be leaving the future without the
ingenuity its problems demand. Therefore, no discussion of fostering creativ-
ity in mathematics classrooms is complete without addressing the need for
evidence of such.

This research resulted in the creation of a rubric that assists us in assessing
our course design as we strive to develop creative problem solvers through
experiences in our course. Based on our initial findings, we know that our
course is successfully addressing our higher-order learning goal of preparing
our students to be problem solvers, leaders, and decision makers in a world
that will demand creative problem solving.

The Mathematical Problem Solving Creativity Rubric makes the process of
evaluating creative problem solving much more approachable. We will be
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using it in the future and we hope that you will join us in evaluating how
your own courses are doing in their efforts to develop creative problem solvers.
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A. Sample Student Work

Responses to each problem varied widely. What is presented here represents
only a selection of the problem solving approaches and methods of commu-
nication received.

Figure 4 is an example of a brute force approach to solving the surface area
problem. In this example, the student has added the seven provided surface
areas of the smaller blocks along with a few sums of subsets of these surface
areas. Ultimately they did not provide an answer to the question posed.
This submission received an originality score of 1, a flexibility score of 1, a
visualization score of 1, an elaboration score of 1, and a risk score of 2.

Figure 4: A brute-force attempt of the surface area problem.

Figure 5 is an example of an approach to solving the surface area problem
where the student did not think beyond surface area formulas. In this ex-
ample, the student has added the seven provided surface areas of the smaller
blocks and has provided the surface area formula as well as dividing some of
the provided surface areas by two to determine the outer surface area of the
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Figure 5: An attempt at the surface area problem using only surface area.

larger block. Although they provided an equation which included a variable
which was defined to be the solution, ultimately they did not provide an
answer to the question posed. This submission received an originality score
of 1, a flexibility score of 2, a visualization score of 1, an elaboration score of
4, and a risk score of 4.

Figure 6 is an example of a solution attempt that makes use of an assumption
to answer the surface area problem. In this example, the student states that
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“If the cuts were evenly made, the eighth block should be the same size as
the 7th block.” Using this assumption they they arrive at a solution of 28
units?. This submission received an originality score of 3, a flexibility score
of 3, a visualization score of 2, an elaboration score of 3, and a risk score of
3.

Figure 6: An attempt of the surface area problem where the student makes an assumption
about the figure.

Figure 7 is an example of a solution attempt that makes use of proportions to
answer the surface area problem. In this example, the student sets up several
proportions involving the missing surface area and solves all of them. Seeing
multiple values around 23, they they arrive at a solution of about 23. While
the problem can not be solved exactly correctly, the proportion solution is
one of the most efficient methods of arriving at a very good estimate that we
saw. This submission received an originality score of 4, a flexibility score of
4, a visualization score of 1, an elaboration score of 3, and a risk score of 5.

Figure 8 is an example of a solution that recognizes a pattern in the dif-
ferences of the given surface areas and then applies it to find the miss-
ing surface area. In this example, the student states that “The difference
between148 — 126 = 22, difference between 58 — 46 = 12. Therefore, since
for back 88 — 72 = 16 so 28 — x = 6.” Solving for x they arrive at SA = 22.
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Figure 7: An attempt at the surface area problem using proportions.
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Figure 8: An attempt at the surface area problem using differences between related blocks.

While this student did not do the best job of explaining their process, they
do manage to get their point across and their process is a sound one that
reliably delivers the correct answer. This submission received an originality
score of 5, a flexibility score of 5, a visualization score of 1, an elaboration
score of 4, and a risk score of 5.

Figure 9 is an example of a submission that leaves the evaluator somewhat
frustrated and wondering about the student’s problem-solving technique.
While the student arrives at the correct answer of 22 they record only a
single thought about the missing surface area belonging to the smallest box.
This submission received an originality score of 1, a flexibility score of 2, a
visualization score of 3, an elaboration score of 2, and a risk score of 3.
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Figure 9: An attempt at the surface area problem with no communicated thought process.

Figure 10: An attempt at the surface area problem that displays a lot of potential insight.
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Figure 10 is an example of a student showing a lot of potential insight to
the surface area problem without following through to a solution. In this
example, the student sets the sum of the diagonal blocks on the base of
the cube equal to one another. If the student had extended this reasoning
to the entirety of the block they would have completed perhaps the most
insightful solution seen. As it is, their observation is incomplete and without
any elaboration providing insight to their thought process we have no way
of knowing if they were truly doing anything more than adding a pair of
given surface areas and setting them equal to the sum of a given surface area
and the missing surface area randomly. They arrive at an answer of 16 = .
This submission received an originality score of 2, a flexibility score of 4, a
visualization score of 3, an elaboration score of 2, and a risk score of 2.

Figure 11 is an example of a submission that attempts to make use of an
exhaustive brute-force method to solve the cheese problem. The student
states “If the mouse goes around the center cube when eating adjacent cubes,
I still don’t think it will be possible to eat the last day. I figured this by
looking at my model and trying to find out which way the mouse could go. I
could not find a route that the mouse could take.” While the student arrives
at the correct answer that it is not possible, their method must be exhaustive
and there is no evidence to believe that it is. This submission received an
originality score of 1, a flexibility score of 3, a visualization score of 3, an
elaboration score of 3, and a risk score of 5.

A 33 3 x 3 cube of cheese is divided intc 27 small (1 x 1 % 1) cubes. A mouse eats one small cube
each day and an adjacent small cube (that is sharing a face) the next day. Can the mouse eat the
center small cube on the last day?
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Figure 11: An attempt at the cheese problem using brute-force.

Figure 12 is an example of a submission that makes use of an assumption



188 The Mathematical Problem Solving Creativity Rubric

A 3x 3x 3 cube of cheese is divided into 27 small {1 % 1 % 1) cubes. A mouse eats one small cube
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Figure 12: An attempt at the cheese problem using assumptions.

to answer the cheese problem. The student states that the “cheese will be
spoiled though” which implies that the mouse “might get sick.” They go on
to answer “Yes, Assuming the mouse does not die from anything and remains
healthy. — It will continue to eat cheese everyday. — Eventually there will
be no more cheese.” This is an instance of a time when the student seems to
have misinterpreted or reinterpreted the question posed and answered their
new question which is void of the depth and richness of the original problem
instead. This submission received an originality score of 3, a flexibility score
of 1, a visualization score of 3, an elaboration score of 3, and a risk score of
3.

Figure 13 is an example of a submission that attempts to use observations
about the dimensions and volume of the cube to solve the cheese problem.
After stating the volume formula for a rectangular prism, the student states
“Dependent on number of faces each cube shares with another cube, center
cube is only cube that shares every face, each cube has six faces, so max face
touching is six.” The student goes on to attempt to use those observations to
arrive at an answer. Unfortunately, the student never answers the question
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A 3 3 x 3 cube of cheese is divided into 27 small (L x 1 x 1) cubes. A mouse eats one small cube
each day and an adjacent small cube (that is sharing a face) the next day. Can the mouse eat the

center small cube on the last day?
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Figure 13: An attempt at the cheese problem using observations about dimensions and
volume.

posed. This submission received an originality score of 4, a flexibility score

of 2, a visualization score of 1, an elaboration score of 4, and a risk score of
5.

Figure 14 is an example of a submission where the student considers the layers
of the cube to solve the cheese problem. The student numbers the cubes —
presumably determining an order in which the cubes should be eaten — in
three ways. Then the student states “The mouse cannot eat the center small
cube on the last day. each iteration leaves the center cube being eaten on
the 2" to last day.” With this statement, the student not only answers the
posed questions but goes a step further to communicate a bit of what seems
to be a deeper understanding of the problem. This submission received an
originality score of 4, a flexibility score of 4, a visualization score of 4, an
elaboration score of 4, and a risk score of 5.

Figure 15 is an example similar to Figure 14; however, this student takes
it a step further to explain how it could work after correctly answering the
question as stated. The student states “The mouse cannot eat the last cube
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A 3 3 % 3 cube of cheese is divided Into 27 small (1 = 1 x 1) cubes. A mouse eats one small cube
each day and an adjacent small cube (that is sharing a face) the next day. Can the mouse eat the
center small cube on the last day?
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Figure 14: An attempt at the cheese problem by numbering cubes in layers.

on the last day because the last cube eaten would have to be diagonal to
the center and therefore would not share a face. So, by the rule listed, it
cannot be done. He would have to eat 3 a day for this to be possible, or
the dimensions would have to be even numbers.” This submission received
an originality score of 4, a flexibility score of 3, a visualization score of 3, an
elaboration score of 5, and a risk score of 5.

Figure 16 is an example of the most elegant solution we received the cheese
problem. Another similar method that we also saw made the counting ar-
gument without the visual representation to accompany it. After shading a
schematic of the layers in a checkerboard patterns that holds in three dimen-
sions, the student makes a series of observations “14 shaded blocks; 13 non
shaded; The mouse can’t eat the same colored block 2 times in a row; center
block will always fall into the group with 13 blocks to begin.” The student
then jumps to the conclusion that it is not possible. If they had made one
more observation then they would have surpassed a correct answer and pro-
vided a rather elegant proof of their answer. This submission received an
originality score of 5, a flexibility score of 3, a visualization score of 4, an
elaboration score of 4, and a risk score of 5.
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A 3 x 3 x 3 cube of cheese is divided into 27 small {1 % 1 x 1} cubes. A mouse eats one small cube
each day and an adjacent small cube (that is sharing a face) the next day. Can the mouse eat the
center small cube on the last day?
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Figure 15: An attempt at the cheese problem that understands the next to last cube will
be diagonal from the center.

Figure 17 is an example of a submission that leaves the evaluator wondering
about the student’s method to solve the cheese problem. The student draws
a picture of a state that the cube of cheese cannot end up in given the
constraints provided in the problem and then simply answers “No” without
any explanation or work shown beyond the picture. While the student’s
problem solving may have been very creative, they provide the evlauator
with no evidence of that creative problem solving. This submission received
an originality score of 1, a flexibility score of 1, a visualization score of 2, an
elaboration score of 1, and a risk score of 3.
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A 3% 3= 3 cube of cheese is divided into 27 small (1 % 1 = 1) cubes, A mouse eats one small cube
each doy and an odjecent small.cube {that is sharing a face) the next doy. Cen the mouse eat the
cerder small cube on the last day?
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Figure 16: An attempt a the cheese problem using shading and a counting argument.



Blyman, Arney, Adams, and Hudson 193

A 3 x 3 x 3 cube of cheese is divided into 27 small {1 % 1 % 1} cubes. A mouse eats one small cube
each day and an adjacent small cube (that is sharing a face] the noxt day. Can the mouse eat the
cender small cube on the last day?

Figure 17: An attempt at the cheese problem with no communicated thought process.
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