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Abstract

We show the existence of countably many non-degenerate continua of singular
radial solutionss to a p-subcritical, p-Laplacian Dirichlet problem on the unit
ball in RN . This result generalizes those for the 2-Laplacian to any value p

[Ardila et al. (2014)], and extends recent work on the p-Laplacian by considering
solutions both radial and singular [Castro et al. (2019)].
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Background

1.1 Author’s Note

Does it even have a ****ing solution?

– Anonymous

The new decade has been an era of complex, critical thought for human-
ity. Ricky Gervais’ Golden Globe monologue went #1 trending on YouTube for
seven consecutive hours. Netflix took our favorite creepy white-male T.V. show
archetype and spawned the conflictingly-creepy, white-male, T.V. show archetype
in season 2 of hit seriesYou – that’s right Fred from Scooby-Doo! and Louis C.K.
from real life – Penn Badgley owns Netflix now. Our president got impeached,
we’re at war again, and now humanity faces extinction at the hands of a virus
named after America’s best selling beer. On the bright side, Parasite won best
picture! Wooooo!

But, on a darker side, we are not here for a 2020 rundown – we are here
for some 2020 mathematics. The years where corporeal punishment, strict dress
codes, and wrongly chosen majors motivating us to “find x” on our 8th - 18th

grade algebra problem sets are gone! ring-ring. Who is it? It’s the new decade(!),
and it’s calling us Into the Unknown in classic, magical-Disney-forest-vibes fash-
ion. We’re done finding x. We’re done with that. Let it Go. It’s time we start
looking for something bigger. Something faster. Something better. Because
2020 is the year we find f (x).



2 Background

1.2 Differential Equations for Beginners

In order to solve this differential equation, you look at it until a solution
occurs to you.

– George Pòlya

Differential equations (D.E.’s) model change. Solutions to these equations
describe a system’s behavior as this change occurs. And this would be the end
of the story if solutions were easy to come by, but solution-finding often bears
complicated tasks. The real world is inherently complex, and the equations
modeling physical processes reflect this complexity in their expression. Systems
with abundant complexity require D.E.’s hosting even greater complexity. An
ideal goal for understanding how these systems behave is by finding explicit
solutions to their complicated differential equations!

This can be quite hard. Impossible most of the time. Intuitively we’d think,
“why care about an equation that we can’t find all solutions to?” But we’ll see
that even these D.E.’s are from unstudy-able. They are at times the conser-
vation laws of physicists, the predictive (or not-so-predictive) market models of
economists, the weather forecasting methods of meteorologists, and much, much
more.

If D.E.’s appear to be such a universally studied field, where then does the
mathematician fit in? Well, these clever people (at least the ones who research
D.E.’s) frequently grapple questions lying at the foundations of the work of
physicists, economists, and other friends. Like whether solutions to D.E.’s can
even exist(!) (called existence problems) – and if they do, then how many exist(?)
(uniqueness and/or multiplicity problems), and do these solutions behave “nicely”
in any way (regularity problems)?

The main purpose of this thesis is proving that the quasilinear boundary value
problem

4p u + g(u) ⇤ 0 in x 2 R
N ; kxk < 1,

u(x) ⇤ 0 for kxk ⇤ 1
(1.1)

with g p-subcritical, has uncountably many non-degenerate continua of singular
radial solutions, see Theorem 2.6 below. In other words, this thesis project
tackles the question of multiplicity of solutions to a very special case of a famous
differential equation (Laplace’s equation).

With this in mind, let’s first speak on the topic of existence. Great! Let’s
look for a solution! you say. “BUT WAIT! Hold on” I say – “we can’t just
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look for any ol’ solution. The key is in the pudding...” Let us approach the
simplest kind of differential equation.

The ordinary differential equation (O.D.E.) is, simply put, an equation
relating two expressions of single-variable functions, their derivatives, and their
arguments.

Example: A Polite Nudge Toward Picard-Lindelöf
Suppose now that we are given a Lipschitz continuous function F : R ! R and are
asked to find the function f : R ! R satisfying the ordinary differential equation

F(x) ⇤ d
dx

f (x), 8x 2 R. (1.2)

Remark 1. Note that this O.D.E. represents an infinite number of different O.D.E’s,
all depending on the chosen continuous function F. With this example, we are
able to “kill uncountably many birds with one stone” so to speak.

Where would we start? If F is Riemann integrable – i.e. we can integrate using
methods from high school calculus, then choosing some a 2 R, integrating over the
interval [a , x], and using the Fundamental Theorem of Calculus, we have

π
x

a

F(t) dt ⇤

π
x

a

d
dt

f (t) dt

⇤ f (x) � f (a),
(1.3)

which tells us that

f (x) ⇤ f (a) +
π

x

a

F(t) dt . (1.4)

Hooray! Our O.D.E. has a solution. In fact, it has uncountably many of them! This
should not come as a surprise: our solutions f depend not only on x but also on our
initially chosen value a. We call this type of solution to D.E.’s the general solution.
It is the solution that encompasses the entire family of functions solving the O.D.E.!

This shows that for any given continuous function F, there exists uncountably
many different choices of a for our unknown function f to satisfy the differential
equation. This is a particularly nice property to have, and we will later see that
even equations with much, much higher complexity than that of (1.2) can still
bear similar fruit.

A nice question to ask could be “What if we did want a specific solution? How
should a P.D.E. problem be stated so that solutions exist, or so that solutions are
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unique, or so that solutions behave nicely if their initial conditions are changed
in small amounts?” And like the question points out, this has to do with how
the problem is posed.

Definition 1.1. We say that a problem is well-posed (in the sense of
Hadamard) if

1. there exists a solution,
2. the solution is unique, and
3. the solution depends continuously on initial conditions.

Point (3) refers to a very nice property of well-behaved solutions, in that
small deviations made to the initial input value (e.g. a from earlier) creates
correspondingly small deviations in the behavior of the solution (we’ll speak
more specifically on this soon ,)!

Evidently, there are many ways to pose a D.E. problem. However we do
pose it, finding an explicit solution to the D.E. is still, more often than not, an
incredibly difficult task. It is the complexity of the model itself that prevents this
from occurring easily.

A partial differential equation (P.D.E.) is a “not-so-ordinary” type of dif-
ferential equation that relates expressions between functions, their possibly many
arguments, and their partial derivatives.

While general solutions to O.D.E’s obtain at least one free constant ( f (a) as
we saw above), general solutions to P.D.E.’s (when they can be acquired) obtain
at least one free function! Observe: let F : R2 ! R be a function satisfying

@
@x

F(x , y) ⇤ 0, 8(x , y) 2 R2. (1.5)

Then
F(x , y) ⇤ f (y) (1.6)

for any function f : R ! R, since

ker
@
@x

⇤
�

f (y) : f : R ! R
 
. (1.7)

Variations of this free function can also dramatically change the character-
istics or class of the solution itself! Which can get even harder to track if no
explicit form of the solution can be found (and it usually can’t!). Many different
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methods are used in finding solutions to P.D.E.’s, and since P.D.E.’s and their
solutions vary so much from one to another, there is no “general theory” for
approaching any. Most work is done after their classification, and most P.D.E.’s
are classified by properties like their highest derivative term, whether their terms
are linear or nonlinear, the properties of their operator, and many more.

Let us now seamlessly transition into a famous excerpt from Richard Manylegs’
short story collection What Happens to Humans Who Don’t Study D.E.’s.

An ODE to Humans
by Richard Manylegs

Magindale Pedecent was a vicious warrior centipede from the Galagar-Voroy
system. Unlike her siblings, she excelled at mathematics but never pursued
it. Often putting more of her time into strategizing for military soft-wear

technology companies: high-paying, full-coverage companies promising
happier lives in their uncushioned cubical chairs to graduating

centipede-students.

One morning, while her coffee still steamed, she looked out the window and
into a cloud. She imagined herself in another life: Magindale the Voroyan

mathematician. World specialist in V.D.E. research (Voroyan differential
equations). Stumbled upon the secret to Voroyan-interstellar-space-travel

one morning before skittering into her shower. A publication two days
later. Awards raining down on her like thunder-gravel does on Galagar C.

Her grip tightened on her mug. She wondered what she would do with that
knowledge. A low breeze tickled her second leg and she swiped a fly away.

She would get rid of the primates. Them and their noise. She’d be doing
them a favor – it’s not like their planet had more than a few decades years
left. At most. The academy would fund her. They’d send her to Earth with
death rays and death beams and their finest flock of Voroyan warriors. The

ones with a million legs. She shuffled her feet under the table.

Magindale, the most benevolent of scientists from the Galagar-Voroyan
system, would arrive on Earth and test their knowledge. With her death rays

and death stars, she’d make the following announcement:

“Apes – if you can provide for us solutions to the differential equation
describing the motion of a ball rolling down an inclined plane 10 árjgĕns

high given an initial velocity of 2 bĕmb-árs, we shall spare your tribes and
go back to our colonies in peace.”
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Morale of the story: without further specification on how a P.D.E. problem
is posed, we are doomed to become meat pies to some vastly intelligent troop
of warrior centipedes.

Many interesting mathematical problems are physically motivated ; advance-
ments in the foundations of the physical sciences have often created a need for
newer, at times more profound, mathematical infrastructure.

In this thesis, we will pose and answer several questions about partial differen-
tial equations (P.D.E.’s). Some questions might come with little to no physical
motivation at all, some might. If you feel like this has occurred already – you
wouldn’t be wrong. But, to outright ignore the physical motivations present in
this work, I believe, would be a great disservice. I mean, who knows? Maybe
someone finds a great application to these studies (looking at you, star-folk in
physics!) and can give this thesis a nice little nudge of recognition and applica-
bility. Hopefully for its readability.

We tackle the question of multiplicity of solutions to a very special case of
very famous differential equations, similar to that of our first example. Over the
course of the background section, I aim to introduce this objective as clearly as
possible, still attempting to pay close attention to the connective tissue beneath
the subject matter we may pass through.

Finally, from the words of my previous summer research advisor:

1.3 The Initial Value Problem (I.V.P.)

This project is in pure mathematics, and its most direct applications are
also of theoretical nature. Remember that Einstein’s General Relativity
theory remained as an essentially purely theoretical mind practice for al-
most a century before humankind came up with a profound application
of it, which shapes our daily lives today – the GPS.

– Dr. Zhirayr Avetisyan

Let ↵ ⇤ (↵1 , . . . , ↵n) be a multi-index where each ↵i is a nonnegative integer.
Denote |↵ | ⇤ Õ

n

i⇤1 ↵i and define

D
↵

u ⇤
@|↵ |u

@x
↵1
1 · · · @x

↵n

n

⇤ @↵1
x1 · · · @

↵n

xn
u. (1.8)
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Additionally, if k is a nonnegative integer, define the collection of all partial
derivatives of order k as

D
k
u ⇤ {D

↵
u : |↵ | ⇤ k}, (1.9)

which we will call the kth-order derivative operator.

Definition 1.2 (Partial Differential Equation). Let⌦ be an open subset of Rn

and u : ⌦! R. We call an equation of the form

F(Dk
u(x), D

k�1
u(x) , . . . ,Du(x), u(x), x) ⇤ 0 (1.10)

a kth-order partial differential equation (P.D.E.) if the k
th order derivative

term is the highest order derivative term present, where

F : R
Õ

k

i⇤1 n
i ⇥R ⇥⌦! R (1.11)

is given, and u is the unknown function. We say that u solves the P.D.E. if it
satisfies the differential equation in (1.10).

Definition 1.3 (Linear and Nonlinear P.D.E.). A kth-order P.D.E. is linear if
it can be written as ’

|↵ |k

a↵(x)D
↵

u(x) ⇤ f (x). (1.12)

Alternatively, call a P.D.E. is nonlinear if it is not linear [Levandosky (25
Sept. 2002)].

Definition 1.4 (Types of Nonlinear P.D.E.). A P.D.E. is quasilinear if it can
be written as’
|↵ |⇤k

a↵
�
D

k�1
u , . . . ,Du , u , x

�
D
↵

u(x)+ a0
�
D

k�1
u , . . . ,Du , u , x

�
⇤ 0, (1.13)

or in other words, if its highest order derivative terms occur linearly.
We call it semilinear if it can be written as’

|↵ |⇤k

a↵(x)D
↵

u(x) + a0
�
D

k�1
u , . . . ,Du , u , x

�
⇤ 0, (1.14)
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or in other words, if it is quasilinear and if the coefficients of the highest
order derivative terms do not depend on the unknown function or its lower
order derivatives.

Finally, we call it fully nonlinear if the highest-order derivatives of u

appear nonlinearly in the equation [Levandosky (25 Sept. 2002)].

Below are common examples and names of famous P.D.E’s a physics or
mathematics student would encounter in their studies (or in their thesis).

Example: Partial Differential Equations

1. Laplace’s equation (2nd order; linear):

4 u ⇤

n’
i⇤1

uxi xi
⇤ 0.

2. Heat equation (2nd order; linear):

ut � 4 u ⇤ 0.

3. Wave equation (2nd order; linear):

utt � 4 u ⇤ 0.

4. Schrödinger’s equation for a free particle (see Heat equation):

ıut + 4 u ⇤ 0.

5. Dimensionless Newton’s second law (2nd order):

F
�
u(t), t� ⇤ utt .

6. p-Laplace equation (quasilinear):

div(|ru |p�2ru) ⇤ 0.

Like mentioned before, finding general solutions explicitly is not an easy task
once an equation becomes even slightly more complex (let’s all thank computers
for still trying though). But this task can be simplified if we choose to go at it
a different direction.

Instead of finding the general solution of a P.D.E. explicitly then checking
to see if certain solutions lie in the span of the general one, we can instead ask:
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“are there solutions to the P.D.E. that meet [certain requirements] in the first
place?” In other words: can we have a better time finding solutions to P.D.E.’s
by imposing extra requirements on the solutions we look for from the get-go?

The answer is...*drumroll*...yes! The Initial value problem (I.V.P.) is a type
of P.D.E. problem requiring the solutions sought after to satisfy some initial
condition (or initial data) given as input.

Definition 1.5 (Initial Value Problem). Let ⌦ ⇢ Rn and u : ⌦ ! R be a
solution to a partial differential equation. An initial value problem is posed
as a partial differential equation alongside a point (t0 , u0) 2 R⇥⌦ called the
initial condition.

A function u then solves the I.V.P. if it is both:

(i) a solution to the partial differential equation, and
(ii) satisfies the condition

u(t0 , x) ⇤ u0(x) 8x 2 ⌦.

Recall that proving a P.D.E. has solutions is at the forefront of big questions
in the field of differential equations. To be able to prove this existence, we first
desire the governing functional of our P.D.E. to exhibit some kind of continuity
property. The more “well-behaved” our functional is, the more we are capable
saying about the solutions to the P.D.E. One of these continuity properties is
global Lipschitz continuity, or simply, just Lipschitz continuity.

Definition 1.6 (Lipschitz Continuous). Let F : X ! Y be a function between
two metric spaces (X, dX) and (Y, dY). We say that F is Lipschitz continuous
if there exists 0  k 2 R (called the Lipschitz constant) such that

dY(F(x1), F(x2))  kdX (x1 , x2) 8x1 , x2 2 X.

Additionally, if F maps from one metric space to itself and the Lipschitz
constant is strictly less than one, we say that F is a contraction (or a contraction
mapping).

While we may have narrowed our search from looking at all possible solu-
tions of a P.D.E. to only those satisfying a provided initial condition, this added
requirement allows us to prove our first theorem regarding the existence of these
solutions to I.V.P.’s with well-behaved P.D.E.’s!
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Theorem 1.1 (Picard-Lindelöf). Let D ⇢ R ⇥ Rn be an open set, and let
F : D 7! Rn be continuous in the first variable and Lipschitz continuous in its
second variable. Then, for any (t0 , y0) 2 D, there exists an interval I B (t� , t+)
containing t0 and at least one solution y : I ! Rn to the initial value problem.

dy(t)
dt

⇤ F(t , y(t)), (1.15)

y(t0) ⇤ y0. (1.16)

The source of many techniques in P.D.E.’s comes from the construction of
an equivalent integral equation. Below, we outline and motivate the proof of
Picard-Lindelöf. Let (t0 , y0) 2 D. Integrating both sides by [t0 , t], we have:

y(t) ⇤ y0 +

π
t

t0

F(t , y(t)) dt . (1.17)

The goal now is showing there exists a continuous function y satisfying the
integral equation above. Note that the solution appears as a fixed point of the
operator!

One way to prove existence without obtaining an explicit solution is by con-
structing a sequence of functions that converges to our desired solution. We
shall do this using what’s called Picard iteration. Starting with the initial data,

y(t0) ⇤ y0 (1.18)

iteratively define:

yn+1(t) ⇤ y0 +

π
t

t0

F(t , yn(t)) dt . (1.19)

If {yn} is a convergent sequence of functions such that yn ! y, then we’re
done, since y is a solution to the integral equation (and consequently, a solution
exists to the initial value problem).

Definition 1.7 (Space of Continuous Functions). Let C[a, b] denote the set
of all functions that are continuous on [a , b].

If y 2 C[a , b], then the norm of y (i.e. the distance from the function y

to the zero function) is kyk B maxx2[a ,b] |y(x)|.
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Furthermore, one can show that C[a , b] satisfies the properties of a Banach
space with the equipped norm. That is, C[a , b] is a complete normed linear space
(meaning that all sequences whose terms eventually get really close together
converge).

Fix ↵ 2 R(+) and let X B {y(t) 2 C[I] : ky � y0k  ↵}. One can then show
that the operator � : X ! X defined by

�[y](t) B y0 +

π
t

t0

F(s , y(s)) ds (1.20)

is a contraction mapping. Then, our integral equation becomes:

�[y] ⇤ y (1.21)

which means that the solutions to the integral equation are exactly the fixed
points of our operator �! Luckily, we know there always exists a fixed point via
the following theorem (also known as the contraction mapping principle), proven
by Stefan Banach and Renato Caccioppoli.

Theorem 1.2 (Banach Fixed Point Theorem). Let (X, d) be a non-empty, complete
metric space and T : X ! X a contraction. Then T admits a unique fixed-point
x
⇤ 2 X. In other words, there exists a unique point x

⇤ 2 X such that T(x⇤) ⇤ x
⇤.

Which proves there exists a solution to (1.21), and thus, a solution to the
initial value problem. For a proof of this theorem, the reader is referred to
[Renardy and Rogers (2004)].
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Introduction

Consider the linear Dirichlet problem

4 u + g(u) ⇤ q(kxk), x 2 B1(0) ⇢ RN ,

u(x) ⇤ 0, x 2 @B1(0),
(2.1)

where B1(0) denotes the unit ball around the origin, g : R 7! R is a locally
Lipschitz continuous function (meaning it is Lipschitz continuous on any interval),
q : B1(0) 7! R is a continuous, bounded, radially symmetric function, and 4
denotes the Laplace operator.

Recall that in Cartesian coordinates, the action of the 3-dimensional Lapla-
cian on a twice-differentiable function u : R3 ! R is

4 u ⇤
@2

u

@x2 +
@2

u

@y2 +
@2

u

@z2 . (2.2)

The modeling of spherically symmetric systems play a large role in fields such as
physics and chemistry. In spherical coordinates, the action of the 3-dimensional
Laplacian can be expressed as

4 u ⇤
1
r2
@
@r

✓
r

2 @u

@r

◆
+

1
r2 sin ✓

@
@✓

✓
sin ✓ @u

@✓

◆
+

1
r2 sin2 ✓

@2
u

@'2 , (2.3)

an expression arguably greater in complexity than its Cartesian sibling. This
complexity continues to trend in the N-dimensional case. The action of the
n-dimensional Laplace operator in spherical coordinates is

4 u ⇤
@2

u

@r2 +
N � 1

r

@u

@r
+

1
r2�SN�1 u , (2.4)



14 Introduction

where �SN�1 is an operator depending only on the N � 1 angular coordinates
acting on S

N�1, the unit sphere embedded on RN�1. This operator is known
as the Laplace-Beltrami operator – a generalization of the Laplace operator to
Riemannian manifolds.

We will call a function radial if it is independent of all angular coordinates.
If the function u is radial, then equation (2.4) becomes

4 u ⇤
@2

u

@r2 +
N � 1

r

@u

@r
. (2.5)

Call u a radial solution to the Dirichlet problem in (2.1) if u satisfies

u
00
+

n � 1
r

u
0
+ g(u) ⇤ q(r), r 2 [0, T],

u(T) ⇤ 0.
(2.6)

For additional information on radial solutions to quasilinear problems, the reader
is referred to [Castro and Jacobsen (2020)] and [Jacobsen and Schmitt (2000)].
This boundary value problem has been studied extensively through the study of
the associated initial value problem:

u
00
+

N � 1
r

u
0
+ g(u) ⇤ q(r), r 2 [0, 1],

u
0(0) ⇤ 0 and u(0) ⇤ d.

(2.7)

Existence and uniqueness of solutions to the initial-value problem for every d 2 R,
as well as continuity with respect to these initial conditions, can then be demon-
strated using an application of Banach’s fixed-point theorem.

Because our goal is to find solutions to a boundary value problem, we wish
to better understand how the solutions of the initial value problem behave at
and near our specified boundary. To help do so, we will define an “energy” quan-
tity to these solution functions that will help measure their oscillatory behavior.
Let

E(r; d) ⌘ 1
2 (u

0(r; d))2 + G(u(r; d)), where G(u) ⇤
π

u

0
g(v) dv , (2.8)

denote the total classical energy (analogous to the total mechanical energy of
a physical system) a solution u to the initial-value problem in (2.7) would have,
associated to the initial condition d, at a point r 2 [0, 1] in its domain.

Sufficient conditions for the classical energy to tend to infinity, as initial
conditions get very large, were given by the work of Castro and Kurepa in [Castro
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and Kurepa (1987a)] as follows. For  2 (0, 1], ⇢ > 0, g strictly increasing, and
g(0) ⇤ 0, they define, a priori, the functions

⇤(, u) B nG(u) � N � 2
2 u g(u) , (2.9)

⇤±() B lim
u!±1

⇤(, u)
✓

u

g(u)

◆N/2
, and (2.10)

F(d) B
✓

d

g(d)

◆N+⇢�1
G(d) , (2.11)

to prove the following theorem:

Theorem 2.1 (Castro, Kurepa [1987]). Suppose that |g(u)| � a |u | holds for
some a > 0 when u sufficiently large. If

i� ⇤(1, u) is bounded below and ⇤+() ⇤ 1 �respectively ⇤�() ⇤ 1� for some
 2 (0, 1), or
ii� F(d) ! 1 as d ! 1 �respectively F(d) ! 1 as d ! �1�,

then
lim
d!1

E(r; d) ⇤ 1, (respectively lim
d!�1

E(r; d) ⇤ 1) (2.12)

uniformly for r 2 [0, 1].
This result, alongside the phase-plane analysis in [Castro and Kurepa (1987a)],

was used to show that there are sufficiently large initial conditions such that the
initial value problem (2.7) is a solution to the Dirichlet problem (2.1). From
[Castro and Kurepa (1987b)], the theorem is stated as follows:

Theorem 2.2 (Castro, Kurepa [1987]). Suppose lim|u |!1
g(u)

u
⇤ 1. If

i� ⇤(1, u) is bounded below and ⇤+() ⇤ 1 �respectively ⇤�() ⇤ 1� for some
 2 (0, 1), or
ii� F(d) ! 1 as d ! 1 �respectively F(d) ! 1 as d ! �1�,

then the boundary value problem

4 u + g(u) ⇤ q(kxk), x 2 B1(0) ⇢ RN ,

u(x) ⇤ 0, x 2 @B1(0),

has infinitely many radial solutions with u(0) > 0 �respectively u(0) < 0�.
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Note that we can also speak of ways to categorize different types of the
Dirichlet problem in (2.1). One way to differentiate between different versions
of the problem is by the growth rate of the nonlinear (or perturbation) function
g. We say that g is a superlinear nonlinearity if it satisfies the growth rate
condition

lim
|u |!1

g(u)
u

⇤ 1. (2.13)

Another way to “categorize” the problem is by changing the types of solutions
we look for. For example, by weakening the requirements for a function to be
a solution for our Dirichlet problem, we may investigate properties of the new
solution space and see if holds any similarities to the old one. Call u a singular
radial solution to the Dirichlet problem if u is radial, the functions r

N�1
u
0 and

r
N�1

g(u) are integrable on [0, 1], u(r) ! ±1 as r ! 0, and if u satisfiesπ
B1(0)

�
u
0'0 + (q(r) � g(u))'� dr ⇤ 0. (2.14)

In other words, we would call u a weak solution to the Dirichlet problem in (2.1),
for all functions ' : B1(0) 7! R of class C

1 having compact support in B1(0).
Such functions u satisfying (2.14) are also known as distributional solutions to
the boundary value problem. The study of these solutions rely heavily on the
initial value problem

u
00
+

N � 1
r

u
0
+ g(u) ⇤ q(r), r 2 [0, 1],

u(b̃) ⇤ c1 and u
0(b̃) ⇤ c2 ,

(2.15)

where 0 < b̃ < 1 and c1 , c2 constants.

Consider the following cases for p 2 �
N

N�2 ,
N+2
N�2

�
:

1. Say g is a subcritical nonlinearity if

lim
u!+1

g(u)
up

2 (0,1), and

lim
u!�1

g(u)
�|u |q 2 (0,1), for q 2

✓
1, N + 2

N � 2

◆
.

(2.16)

2. Say g is a sub-super critical nonlinearity if

lim
u!+1

g(u)
up

2 (0,1), and

lim
u!�1

g(u)
�|u |q 2 (0,1), for q >

N + 2
N � 2 .

(2.17)
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3. Say g is a jumping nonlinearity if

lim
u!+1

g(u)
up

2 (0,+1), and

lim
u!�1

g(u)
u

⇤ � 2 (�1, �1), for �1 > 0.
(2.18)

where �1 is the principal eigenvalue of �4 in B1(0) with zero Dirichlet
boundary data.

Finally, a continuum is a nonempty compact, connected metric space, and a
non-degenerate continuum is a contiuum containing more than a one point.

The following theorems were proven in [Ardila et al. (2014)] regarding the
multiplicity of solutions satisfying both the initial value problem in (2.15) and
the boundary condition u(1) ⇤ 0, for different nonlinearity cases shown above.

Theorem 2.3 (Ardila et al. [2014]). If g is subcritical or sub-super critical, then
the Dirichlet problem

4 u + g(u) ⇤ q(kxk), x 2 B1(0) ⇢ RN ,

u(x) ⇤ 0, x 2 @B1(0),
(2.19)

has countably many non-degenerate continua of singular, radial solutions. In
particular, the problem has uncountably many radial singular solutions.

Theorem 2.4 (Ardila et al. [2014]). If g is a jumping nonlinearity then the
Dirichlet problem

4 u + g(u) ⇤ q(kxk), x 2 B1(0) ⇢ RN ,

u(x) ⇤ 0, x 2 @B1(0),

has two non-degenerate continua of singular radial solutions.

We aim to extend Theorem 2.3 to the subcritical quasilinear Dirichlet prob-
lem. The quasilinear analog of the Laplace operator, the p-Laplace operator, is
defined in n-dimensional Cartesian coordinates as

4p u B div
�|ru |p�2ru

�
, for 1  p < 1,

⇤ |ru |p�4
266664
|ru |2�u + (p � 2)

N’
i , j⇤1

@u

@xi

@u

@xj

@2
u

@xi@xj

377775
,

(2.20)
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where

|ru |p�4
⇤

"✓
@u

@x1

◆2
+ · · · +

✓
@u

@xN

◆2
# p�6

2

. (2.21)

When p ⇤ 2, the p-Laplace operator turns into the Laplace operator. Addition-
ally, the the p-Laplace operator turns into the 1�Laplace operator as p ! 1,
and the Mean Curvature operator when p ⇤ 1. All have their own interesting
geometric and analytic properties, as well as a fair share of applications.

We study the following extension of the semilinear Dirichlet problem in (2.1):

4p u + g(u) ⇤ 0, x 2 B1(0) ⇢ RN ,

u(x) ⇤ 0, x 2 @B1(0),
(2.22)

assuming 1 < p < N and g is a p-subcritical nonlinearity

g(s) B
(
|s |q1 s � 0,
�|s |q2 s < 0,

with p � 1 < q1 < q2 < p
⇤ � 1 < 1, (2.23)

with p
⇤ B Np

N�p
denoting the critical Sobolev exponent.

We say that g has p-sub-super critical growth if

g(s) B
(
|s |q1 s � 0,
�|s |q2 s < 0,

with p � 1 < q1 < p
⇤ � 1 < q2 < +1. (2.24)

The existence of infinitely many radial regular solutions for a p-subcritical
and a p-sub-super critical Dirichlet problem on the unit ball was shown in [Castro
et al. (2019)]. The radial solutions to the boundary value problem (3.1) are the
solutions to

(p � 1) |u0 |p�2
u
00
+

N � 1
r

|u0 |p�2
u
0
+ g(u(r)) ⇤ 0, 0 < r < 1,

u
0(0) ⇤ 0, u(1) ⇤ 0.

(2.25)

The proofs in [Castro et al. (2019)] rely on the study of the initial value problem

(p � 1) |u0 |p�2
u
00
+

N � 1
r

|u0 |p�2
u
0
+ g(u(r)) ⇤ 0, 0 < r < 1,

u(0) ⇤ d , u
0(0) ⇤ 0.

(2.26)

The results of Castro et. al are summarized below:
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Theorem 2.5 (Castro et al. [2019]). If g is a p-subcritical or a p-sub-super critical
nonlinearity, then the problem

4p u + g(u) ⇤ 0, x 2 B1(0),
u(x) ⇤ 0, x 2 @B1(0),

(2.27)

has infinitely many radial solutions.

Their work extended the results of Theorem 2.2 to a Dirichlet problem with
arbitrary p value.

The goal of this thesis is similar: we wish to extend the result shown in
Theorem 2.3 for a Dirichlet problem p 2 (1,N). That is, we wish to study the
singular radial solutions to the quasilinear, p-subcritical boundary value problem
stated in (3.1). The main theorem I prove is:

Theorem 2.6 (Main Theorem). If ��.�� holds, then there exists countably many
non-degenerate continua of singular radial solutions to the p-subcritical problem in
��.��.

Given a solution u to this problem, define now the following quantities:

E(r) B p � 1
p

|u0(r)|p + G
�
u(r)� , (2.28)

H(r) B rE(r) + N � p

p
|u0(r)|p�2

u
0(r) u(r) , (2.29)

P(r) B
π

r

0
s

N�1

NG

�
u(s)� � N � p

p
g
�
u(s)� u(s)

�
ds , (2.30)

where

G(s) B
π

s

0
g(t) dt ⇤

( |s |q1+1

q1+1 , s � 0,
|s |q2+1

q2+1 , s < 0.
(2.31)

The quantities above are related by the Pohozaev-type identity

r
N�1

H(r) � t
N�1

H(t)

⇤

π
r

t

s
N�1

h
NG

�
u(s)� � N � p

p
g
�
u(s)� u(s)

i
ds (2.32)



20 Introduction

or equivalently, when t ⇤ 0 as

r
N


p � 1

p
|u0(r)|p + G

�
u(r)�

�
+

N � p

p
r

N�1 |u0(r)|p�2
u
0(r) u(r)

⇤

π
r

0
s

N�1

NG

�
u(s)� � N � p

p
g
�
u(s)� u(s)

�
ds .

(2.33)

Finally, we define the Pohozaev energy PE of a solution u as

PE(r) B r
N�1

H(r) . (2.34)



3

Singular Radial Solutions

3.1 Preliminaries
We study the quasilinear Dirichlet problem(

4p u + g(u) ⇤ 0 in B1(0) ⇢ RN ,

u ⇤ 0 on @B1(0),
(3.1)

where 4p u ⇤ div(|ru |p�2 ru), for 1 < p < N, denotes the p-Laplacian opera-
tor (2.20) and g is the p-subcritical nonlinearity

g(s) B
(
|s |q1 s � 0,
�|s |q2 s < 0,

with p � 1 < q1 < q2 < p
⇤ � 1 < 1, (3.2)

where p
⇤ B Np

N�p
denotes the critical Sobolev exponent. Let I B

�
0, N�p

p�1
�
. For

↵ 2 I, let

⇤(↵) ⇤ ⇤(↵; q1 , p ,N) B
✓
↵p�1(q1 + 1)


N � p

p
� ↵ p � 1

p

� ◆� 1
q1�p+1

. (3.3)

Our results are based on the study of the solutions to the initial-value problem(�
r

N�1 |u0 |p�2
u
0�0 + r

N�1
g
�
u(r)� ⇤ 0, 0 < r < 1,

u(b; b , ↵) ⇤ b
� p

q1�p+1⇤(↵), u
0(b; b , ↵) ⇤ �b

� q1+1
q1�p+1 ↵⇤(↵),

(3.4)

for b 2 (0, 1). Define the classical energy E and Pohozaev energy P for any
solution u of (3.4) as

E(r; u) B p � 1
p

|u0(r)|p + G
�
u(r)� , (3.5)
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P(r; u) B r
N


p � 1

p
|u0(r)|p + G

�
u(r)�

�

+
N � p

p
r

N�1 |u0(r)|p�2
u
0(r) u(r) ,

(3.6)

where

G(s) B
π

s

0
g(t) dt ⇤

(
s

q1+1

q1+1 , s � 0,
|s |q2+1

q2+1 , s < 0 .
(3.7)

Henceforth, fix ↵ 2 I and b 2 (0, 1) and assume u(b; b , ↵) > 0 (results are
analogous for u(b; ↵, b) < 0).

3.2 Energy Analysis

Lemma 1. Choose b 2 (0, 1). If

u(b) ⇤ b
� p

q1�p+1⇤(↵) ,

u
0(b) ⇤ �b

� q1+1
q1�p+1 ↵⇤(↵),

(3.8)

then
P(b; u) ⇤ 0. (3.9)

Proof. Under the assumptions of (3.8),

P(b; u) ⇤ b
N

2666664
p � 1

p

⇣
b
� q1+1

q1�p+1 ↵⇤(↵)
⌘p

+

⇣
b
� p

q1�p+1⇤(↵)
⌘ q1+1

q1 + 1

3777775
� N � p

p
b

N�1
⇣
b
� q1+1

q1�p+1 ↵⇤(↵)
⌘p�2

· b
� q1+1

q1�p+1 ↵⇤(↵) · b
� p

q1�p+1⇤(↵). (3.10)

Factoring and combining b and ⇤(↵) terms, see that

P(b; u) ⇤ �b

p(q1+1)
p�(q1+1)+N �

⇤(↵)�p

h �⇤(↵)� q1�p+1

q1 + 1 + ↵p�1
⇣

p � 1
p
↵ � N � p

p

⌘i
⇤ 0 (3.11)

from (3.3). ⇤
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Lemma 2. Solutions to ��.�� have no critical point on (0, b).

Proof. Suppose to the contrary that there exists at least one r
⇤ 2 (0, b) such

that u
0(r⇤) ⇤ 0. Let r̂ B sup{r 2 (0, b) : u

0(r) ⇤ 0}. By the continuity of u
0, we

have u
0 < 0 over the interval (r̂ , r). Hence, Lemma 1 and the Pohozaev-type

identity (2.32) give

0 ⇤ P �
b; u(r; b , ↵)� ⇤ P �

r; u(r; b , ↵)�+π
b

r

s
N�1

h
NG

�
u(s; b , ↵)� � N � p

p
g
�
u(s; b , ↵)� u(s; b , ↵)

i
ds (3.12)

implying that
P �

r; u(r; b , ↵)� ⇤ r
N

G
�
u(r; b , ↵)� < 0, (3.13)

which is a contradiction, since r
N

G
�
u(r; b , ↵)� > 0 for every r 2 (r̂ , b). ⇤

Lemma 3. The Pohozaev energy function is a strictly increasing function on every
closed interval.

Proof. Let [r1 , r2] ⇢ [0, 1] be a closed interval such that u(r) > 0 for all
r 2 [r1 , r2]. Employing (2.32) we have

P(r2; u) � P(r1; u) ⇤
π

r2

r1

h
NG

�
u(s)� � N � p

p
g
�
u(s)� u(s)

i
ds

⇤

π
r2

r1

h
N

q1 + 1
��u(s)��q1+1 � N � p

p

��u(s)��q1+1
i

ds

� min
s2[r1 ,r2]

��u(s)��q1+1
π

r2

r1

s
N�1


N

q1 + 1 � N � p

p

�
ds

> 0.
(3.14)

Now let [r1 , r2] ⇢ [0, 1] be a closed interval such that u(r)  0 for all
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r 2 [r1 , r2]. Observe that

P(r2; u) � P(r1; u) ⇤
π

r2

r1

h
N

q2 + 1
��u(s)��q2+1

+
N � p

p

��u(s)��q2
u(s)

i
ds

�
π

r2

r1

h
N

q2 + 1
��u(s)��q2+1 � N � p

p

��u(s)��q2+1
i

ds

� min
s2[r1 ,r2]

��u(s)��q2+1
π

r2

r1

s
N�1


N

q2 + 1 � N � p

p

�
ds

> 0
(3.15)

as desired. ⇤

Lemma 4. There exists a constant m > 1 such that

lim
b!0+

P(mb; u) ⇤ +1. (3.16)

Proof. Define

r̂ B [̂witch]r(b) ⇤ sup{r 2 (b , 1) : u(t) � 1
2 u(b) for all t 2 [b , r]}. (3.17)

Fix r 2 [b , r̂] and integrate (3.4) on [b , r]:

�r
N�1 |u0(r)|p�2

u
0(r) ⇤ �b

N�1 |u0(b)|p�2
u
0(b) +

π
r

b

s
N�1 �

u(s)� q1 ds

� �b
N�1 |u0(b)|p�2

u
0(b) +

✓
u(b)

2

◆ q1 (rN � b
N)

N

�
✓

u(b)
2

◆ q1 (r � b) r
N�1

N
,

(3.18)

since r
N � b

N � (r � b)rN�1 whenever r � b. Note that the first line of
equation (3.18) also tells us u

0(r) < 0 (since the right hand side is strictly
positive). Dividing by a factor of r

N�1, we have

�u
0(r) �

✓
u(b)

2

◆ q1
p�1 (r � b) 1

p�1

N
1

p�1
. (3.19)

Integrating over [b , [̂witch]r]:

u(b)
2 � p � 1

p

✓
u(b)

2

◆ q1
p�1 (r̂ � b)

p

p�1

N
1

p�1
(3.20)
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implying that

N
1

p�1
p

p � 1

✓
u(b)

2

◆ p�(q1+1)
p�1

� (r̂ � b)
p

p�1 . (3.21)

Let C ⇤ N
1

p�1 p

p�1
� 1

2
� p�(q1+1)

p . Raising both sides to the p�1
p

power and isolating
r̂, we have

r̂  b + C · (u(b))
p�(q1+1)

p . (3.22)

Finally, substituting in (3.8) gives us

b  r̂  (1 + C · ⇤(↵)) b B mb. (3.23)

Observe that because

u(t) � u(b)
2 8t 2 [b , r̂], (3.24)

Lemma 3 tells us that

P(mb; u) � P(r̂; u)

� N � p

p
r̂

N�1 |u0(r̂)|p�2
u
0(r̂) u(r̂)

� N � p

p
r̂

N�1 |u0(r̂)|p�2
u
0(r̂) u(b)

2

⇤
N � p

p
r̂

N�1 |u0(r̂)|p�2
u
0(r̂) b

p

p�(q1+1)⇤(↵)

! +1

(3.25)

as b ! 0+. Using Lemma 3 again, we conclude that P(1; u) ! +1 as
b ! 0+. ⇤

Corollarys 1. The following�

lim
b!0+

E(r; u) ⇤ +1. (3.26)

holds for all r 2 (b , 1].
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Proof. The energy

E(r; u) B p � 1
p

|u0(r)|p + G
�
u(r)� , (3.27)

is a decreasing function for any solution u, since

E0(r) ⇤
h
(p � 1)|u0 |p�2

u
00
+ g

�
u
� i

u
0  �N � 1

r
|u0 |p  0 (3.28)

for r 2 (0, 1]. Combining this with Lemma (4), we get

lim
b!0+

P(1; u) ⇤ lim
b!0+

⇥
E(1; u) + N � p

p
|u0(1)|p�2

u
0(1) u(1)

⇤
⇤ lim

b!0+
E(1; u)

 E(r; u)

(3.29)

as desired. ⇤

Lemma 5. For each b 2 (0, 1), the solutions to ��.�� satisfy

lim
r!0

u(r) ⇤ +1. (3.30)

Proof. If u(r⇤)  0 for some r 2 (0, b), by the Mean Value Theorem, there exists
s 2 (r⇤ , b) such that u

0(s) > 0. Since u
0(b) < 0, applying the Intermediate

Value Theorem, there exists ŝ 2 (s , b) such that u
0(ŝ) ⇤ 0, contradicting

Lemma 2. Thus, solutions to (3.4) are positive on (0, b).
By Lemma , u(r⇤) , 0, so either u

0(r⇤) > 0 or u
0(r⇤) < 0. If u

0(r⇤) > 0,
then by the continuity of u

0, there would exist s 2 (r⇤ , b) such that u
0(s) ⇤ 0,

violating Lemma 2. If u
0(r⇤) < 0, then by the continuity of u, there would

exist s2 2 (r⇤ , b) such that u
0(s2) > 0. Then, by the continuity of u

0, there
would exist s1 2 (r⇤ , s2) such that u

0(s1) ⇤ 0, violating Lemma 2. We conclude
that u(r) > 0 for all r 2 (0, b).

Suppose there exists M such that u(r)  M for all r 2 (0, b

2 ). Let r 2 (0, b

2 ).
Since u

0(r) < 0, Lemma 3 gives us

P(b/2; u) � �N � p

p
r

N�1 �
u
0(r)�p�1

u(r)

� �N � p

p
r

N�1 �
u
0(r)�p�1 · M .

(3.31)
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Let K B K(M; b) ⇤
⇣
� p

N�p
· P( b

2 )
M

⌘ 1
p�1

. The above can be re-expressed as

� u
0(r) � K r

1�N

p�1 . (3.32)

Integrating over [r, b

2 ] we have

u(r) � u(b/2) + K
p � 1
p � N

©≠
´
✓

b

2

◆ p�N

p�1

� r

p�N

p�1 ™Æ
¨
. (3.33)

But p�N

p�1 < 0, which means

lim
r!0+

u(r) � lim
r!0+

266664
u(b/2) + K

p � 1
p � N

✓
b

2

◆ p�N

p�1

� p � 1
p � N

r

p�N

p�1

377775
⇤ +1 , (3.34)

a contradiction. Thus, limr!0+ u(r) ⇤ +1 by the continuity of u, concluding
the proof. ⇤

Lemma 6. If

q1 > max
⇢

p
⇤ � N

N � p
,
(p � 1)(N + 1)

N � (p � 1)

�
(3.35)

then singular solutions of ��.�� are also weak solutions of ��.��.

Proof. Multiplying (3.1) by� 2 C
1(B1(0))of compact support and integrating

over B1(0), we have the weak formulationπ
B1(0)

4p u � dx +

π
B1(0)

g(u) � dx ⇤ 0. (3.36)

We wish to show both integrals converge. Recall that 4p u ⇤ r · (|ru |p�2ru).
Using a Green’s identity (integration by parts),π

B1(0)
4p u � dx ⇤ �

π
B1(0)

|ru |p�2 ru · r� dx. (3.37)

We now claim that π
B1(0)

|ru |p�2 |ru · r� | dx < 1. (3.38)
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By the Cauchy-Schwarz inequality and the boundedness of test functions,
π

B1(0)
|ru |p�2 |ru · r� | dx 

π
B1(0)

|ru |p�1 |r� | dx

 M

π
B1(0)

|ru |p�1 dx.
(3.39)

Because u is a radial solution to (3.1), we have @u

@x
i

⇤ @u

@r
· @r

@x
i

for i ⇤ 1, . . . ,N .

It follows that @r

@x
i

⇤
xi

r
, since r ⇤ (x2

1 + · · · + x
2
N
) 1

2 , and

|ru | ⇤
✓ N’

i⇤1

⇣@u

@r
· xi

r

⌘2
◆ 1

2

⇤

���@u

@r

��� ·
✓

1
r2

N’
i⇤1

x
2
i

◆ 1
2

⇤

���@u

@r

���.

(3.40)

Substituting and performing a coordinate transformation, the claim in (3.38)
can be re-expressed as

π
b

0
r

N�1
���@u

@r

���p�1
dr +

π 1

b

r
N�1

���@u

@r

���p�1
dr < 1, (3.41)

or equivalently, as the claim that @u

@r
2 L

p�1(B1(0)).
Since the energy

E(r; u) B p � 1
p

|u0(r)|p + G
�
u(r)� , (3.42)

is a decreasing function for any solution u and r 2 (0, 1], we have

E(r) ⇤ p � 1
p

|u0(r)|p + G
�
u(r)�  E(b) < 1 for b  r  1, (3.43)

which shows u and u
0 are bounded on [b , 1], and thus u is defined on [b , 1].

From Lemmas 1 and 3,

r
N

p � 1
p

|u0(r)|p + N � p

p
r

N�1 |u0(r)|p�2
u
0(r) u(r)  0 (3.44)
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for r 2 (0, b]. Moving the second term and cancelling a |u0(r)|p�1 and an
r

N�1, we have
r

p � 1
p

|u0(r)|  N � p

p
u(r), (3.45)

or equivalently,

|u0(r)|  N � p

p � 1 · u(r)
r
. (3.46)

Again, from Lemmas 1 and 3,

r
N

�
u(r)� q1+1

q1 + 1 +
N � p

p
r

N�1 |u0(r)|p�2
u
0(r) u(r)  0 (3.47)

for r 2 (0, b]. Moving the second term, cancelling a factor of u(r) and r
N�1,

and utilizing (3.46) we have

�
u(r)� q1  (q1 + 1)(N � p)

p
· |u

0(r)|p�1

r

 (q1 + 1)(N � p)
p

✓
N � p

p � 1

◆p�1
·
�
u(r)�p�1

rp
,

(3.48)

or equivalently,

u(r) 
"
(q1 + 1)(N � p)

p

✓
N � p

p � 1

◆p�1
# 1

q1�(p�1)

· r
� p

q1�(p�1) (3.49)

Using the estimates from (3.46) and (3.49),

|u0 |p�1 
✓

N � p

p � 1

◆p�1 1
rp�1 · �u(r)�p�1


✓

N � p

p � 1

◆p�1
"
(q1 + 1)(N � p)

p

✓
N � p

p � 1

◆p�1
# p�1

q1�(p�1)

r
� p(p�1)

q1�(p�1)�(p�1)

B C1C2 r
� (q1+1)(p�1)

q1�(p�1) .
(3.50)

Meaning that r
N�1 |u0 |p�1 is integrable, since q1 >

(p�1)(N+1)
N�(p�1) .

Finally, term two of (3.36) is integrable if r
N�1 �

u(r)� q1 is integrable. Using
estimate (3.49), we have

r
N�1 �

u(r)� q1  C2 r
N�1 · r

� pq1
q1�(p�1) , (3.51)
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which is integrable, since q1 > p
⇤ � N

N�p
.

⇤

3.3 Phase-Plane Analysis

Lemma 7. Let 0 < b < 1. If x : [b , 1] ! R and y : [b , 1] ! R are continuous
functions such that

⇢(t) ⇤
q�

x(t)�2
+

�
y(t)�2

> 0, 8t 2 [b , 1], (3.52)

then there exists a continuous function ✓ : [b , 1] ! R such that

x(t) ⇤ ⇢(t) cos
�
✓(t)� and y(t) ⇤ ⇢(t) sin

�
✓(t)� (3.53)

for all t 2 [b , 1].

Proof. By the continuity of x, fix an ✏ 2 (b , 1] such that x(t) > 0 for all
t 2 [b , ✏] and define

✓0(t) B tan�1
✓

y(t)
x(t)

◆
. (3.54)

Then
cos

�
✓0(t)

�
⇤

x(t)
⇢(t) and sin

�
✓0(t)

�
⇤

y(t)
⇢(t) ,

satisfying the desired relations (3.53) on [b , ✏]. Define

S B
�

t 2 [✏, 1] : there exists a continuous function
✓ : [b , t] ! R with ✓(t) ⇤ ✓0(t) 8t 2 [b , ✏]

 
(3.55)

and let ⌧ ⇤ sup S � ✏.

By way of contradiction, suppose ⌧ < 1. Then either x(⌧) ⇤ 0 or x(⌧) , 0.
If x(⌧) , 0, then

��� y(⌧)
⇢(⌧)

��� < 1. Via an elementary calculation, it follows that
���� y(⌧)
⇢(⌧)

���� < 1
2

⇣
1 +

���� y(⌧)
⇢(⌧)

����
⌘
. (3.56)

Hence, there exists a � > 0 such that for t 2 (⌧ � �, ⌧ + �),���� y(t)
⇢(t)

���� < 1
2

⇣
1 +

���� y(⌧)
⇢(⌧)

����
⌘
. (3.57)
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Because x(⌧) , 0, let k be an integer such that ✓(⌧) 2 � ⇡
2 + k⇡, ⇡2 + (k + 1)⇡� .

Define for all t 2 (⌧, ⌧ + �)

✓(t) B sin�1
k

✓
y(t)
⇢(t)

◆
(3.58)

where sin�1
k

is the inverse of sin x on the open interval
� ⇡

2 + k⇡, ⇡2 + (k + 1)⇡� .
Observe that ✓ satisfies (3.53) and is continuous since sin�1

k
is continuous.

Thus, we have a contradiction on the fact that ⌧ is the least upper bound of S.

If x(⌧) ⇤ 0, then
��� y(⌧)
⇢(⌧)

��� ⇤ 1 and proceed likewise (i.e. if x ⌘ 0 in a small
neighborhood around ⌧, then define (3.58) over that neighborhood. If x . 0
around a small neighborhood of ⌧, repeat the prior argument).

⇤

3.4 Proof of Theorem 2.6 (Main Theorem)
Let u(r; ↵, b) and u

0(r; ↵, b) be as in (3.4), and define

⇢(r; ↵, b) B
r⇣

u(r; ↵, b)
⌘2

+

⇣
u0(r; ↵, b)

⌘2
. (3.59)

By Lemma 7 and Lemma 5, there exists b0 > 0 such that if ↵ 2 I and
b 2 (0, b0), then

⇣
u(r; ↵, b), u0(r; ↵, b)

⌘
, (0, 0) for all r 2 [b , 1] and there

exists a unique continuous argument function ✓(r; ↵, b) for all r 2 (0, 1] such
that

u(r; ↵, b) ⇤ ⇢(r; ↵, b) cos
�
✓(r; ↵, b)� , (3.60)

u
0(r; ↵, b) ⇤ �⇢(r; ↵, b) sin

�
✓(r; ↵, b)� . (3.61)

Differentiating (3.60) with respect to r,

u
0(r; ↵, b) ⇤ ⇢0(r; ↵, b) cos

�
✓(r; ↵, b)�
� ⇢(r; ↵, b) sin

�
✓(r; ↵, b)� · ✓0(r; ↵, b). (3.62)

Lemma 8. If r̂ > b and u
0(r̂; ↵, b) ⇤ 0, then

lim
r!r̂

⇢0(r) ⇤ 0 and lim
r!r̂

✓0(r) ⇤ 1. (3.63)
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Proof. Suppose u(r̂) > 0 and u
0(r̂) ⇤ 0 for r̂ 2 (b , 1) and let r < r̂ be such that

u(s) > 0 for s 2 (r, r̂). From (3.4),

r
N�1 |u0(r; ↵, b)|p�2

u
0
⇤

π
r̂

r

s
N�1

g
�
u(s)� ds . (3.64)

Since u
0(r; ↵, b) > 0 and

�
u
0(r; ↵, b)�2

⇤


1

rN�1

π
r̂

r

s
N�1

g
�
u(s)� ds

� 2
p�1

(3.65)

we have

⇣ �
u
0(r; ↵, b)�2

⌘ 0
⇤

2
p � 1


1

rN�1

π
r̂

r

s
N�1

g
�
u(s)� ds

� 3�p

p�1

·

1 � N

rN

π
r̂

r

s
N�1

g
�
u(s)� ds � g

�
u(r)�

�
, (3.66)

which means that
lim

r!r̂�

⇣ �
u
0(r; ↵, b)�2

⌘ 0
⇤ 0. (3.67)

From (3.59), observe now that

lim
r!r̂�

⇢0(r) ⇤ lim
r!r̂�

"
u(r; ↵, b) u

0(r; ↵, b) +
⇣ �

u
0(r; ↵, b)�2

⌘ 0
⇢(r; ↵, b)

#
⇤ 0, (3.68)

and from (3.62),

lim
r!r̂�

u
0(r; ↵, b) ⇤ lim

r!r̂�

h
� ⇢(r; ↵, b) sin

�
✓(r; ↵, b)� i · ✓0(r; ↵, b) (3.69)

we conclude that
lim

r!r̂�
✓0(r; ↵, b) ⇤ 1 (3.70)

using (3.61), proving the lemma. Similarly, the same can be shown for

lim
r!r̂�

⇢0(r) ⇤ lim
r!r̂�

"
u(r; ↵, b) u

0(r; ↵, b) +
⇣ �

u
0(r; ↵, b)�2

⌘ 0
⇢(r; ↵, b)

#
⇤ 0, (3.71)

lim
r!r̂+

u
0(r; ↵, b) ⇤ lim

r!r̂�

h
� ⇢(r; ↵, b) sin

�
✓(r; ↵, b)� i · ✓0(r; ↵, b) (3.72)
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we conclude that
lim

r!r̂�
✓0(r; ↵, b) ⇤ 1 (3.73)

The case of u(r̂) < 0 follows similarly. ⇤

By Lemma 8 and equating (3.61) and (3.62), we have

✓0(r; ↵, b) ⇤ sin2 �
✓(r; ↵, b)� � u

00

⇢(r; ↵, b) cos
�
✓(r; ↵, b)� (3.74)

for u
0(r̂) , 0, and ✓0(r̂) ⇤ 1 at u

0(r̂) ⇤ 0.
Now we are ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let

q B q(u) ⇤
(

q1 u � 0
q2 u < 0

(3.75)

Fix L and positive integers j and � such that

L < min
n⇣

q + 1
2

⌘ q+1�p

q+1
,
⇣

p

2(p � 1)
⌘ q+1�p

p
o

(3.76)

and
j > max

⇢
2(N � 1) +

p
4(N � 1)2 + 1, 4(N � 1)2

L
, j0

�
(3.77)

with j > j0 satisfying

⇡ � 2
j

L j

N�1 � 4(N � 1)
<

1
4 b

p
jc

and 2
j � 4(N � 1) � 1

j

<
1

4 b
p

jc
(3.78)

and
� > max

⇢
p(q + 2)
q � p + 1 ,

(p + 1)(q + 1)
q � p + 1

�
(3.79)

so that
� � p

p
· (q + 1 � p) � p > 1 and

�
q + 1 · (q + 1 � p) � p > 1. (3.80)

By Corollary 1 there exists b0 > 0 such that E(r; ↵, b) � j
� for all r 2 [b , 1]

for b < b0.
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Next we note that either u(r; ↵, b) > 0 for all r 2 (b , 1
4 ), or there exists

r̄ 2 (b , 1
4 ) such that u(r̄; ↵, b) ⇤ 0 and u

0(r; ↵, b) < 0 in (b , r̄). If u(r; ↵, b) > 0
for all r 2 (b , 1

4 ), then ✓(r) > 0 for all r 2 (b , 1
4 ). On the other hand, if there

exists r̄ 2 (b , 1
4 ) such that u(r̄; ↵, b) ⇤ 0, we may assume u(r) > 0 for all

r 2 [b , r̄]. Hence ✓(r̄) ⇤ ⇡
2 . Since ✓0(r̄) > 0, then ✓(r; ↵, b) � ⇡

2 for any r > r̄.
Suppose that r 2 [1

4 ,
3
4 ] and

✓(r; ↵, b) 2

k⇡ +

⇡
2 � 1

j
, k⇡ +

⇡
2 +

1
j

�
(3.81)

for some nonnegative integer k. Then |cos
�
✓(r; ↵, b)� |  1

j
and consequently

�� sin
�
✓(r; ↵, b)� �� �

s
j2 � 1

j2 . (3.82)

Thus, from (3.74) we have

✓0(r; ↵, b) ⇤ sin2 �
✓(r; ↵, b)�

+
g(u) u

⇢2(r; ↵, b) · (p � 1) |u0 |p�2 +
(N � 1) u

0 cos
�
✓(r; ↵, b)�

r · ⇢(r; ↵, b)

� j
2 � 1
j2 �

4(N � 1)
��u0 cos

�
✓(r; ↵, b)� ��

⇢(r; ↵, b)

� j
2 � 1
j2 � 4(N � 1)

���� u
0

⇢(r; ↵, b)

���� · 1
j

� j
2 � 1
j2 � 4(N � 1) · 1

j

> 0.

(3.83)

Assuming that ✓(s; ↵, b) 2 [✓(r), k⇡ + ⇡2 + 1
j
] for s 2 [r, r1],

✓(r1; ↵, b) � ✓(r; ↵, b) +
⇣
r1 � r

⌘ 
j
2 � 1
j2 � 4(N � 1) · 1

j

�
. (3.84)

Since ✓(r1; ↵, b)  k⇡ + ⇡2 + 1
j

and ✓(r; ↵, b) � k⇡ + ⇡2 � 1
j
,

k⇡ +
⇡
2 +

1
j
� k⇡ +

⇡
2 � 1

j
+

⇣
r � 1

4

⌘ 
j
2 � 1
j2 � 4(N � 1) · 1

j

�
, (3.85)
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implying that ⇣
r1 � r

⌘
 2

j � 4(N � 1) � 1
j

<
1

4 b
p

jc
(3.86)

using (3.78). That is, if r satisfies (3.81) then there exists r1 2
h
r, r + 1

4 b
p

jc

i
such that

✓(r1) ⇤ k⇡ +
⇡
2 +

1
j
. (3.87)

Now suppose

✓(r; ↵, b) 2

k⇡ +

⇡
2 +

1
j
, (k + 1)⇡ +

⇡
2 � 1

j

�
. (3.88)

Then |cos ✓(r; ↵, b)| � 1
j

and

(u0)2  ( j
2 � 1) u

2 (3.89)

follows from (3.60). Consequently,

|u0 |  ⇢(r; ↵, b) ⇤ (u2
+ (u0)2) 1

2  j |u |. (3.90)

Using these estimates on (3.74),

✓0(r; ↵, b) ⇤ sin2 �
✓(r; ↵, b)�

+
g(u) u

⇢2(r; ↵, b) · (p � 1) |u0 |p�2 +
(N � 1) u

0 cos
�
✓(r; ↵, b)�

r · ⇢(r; ↵, b)

� |u |q+1

⇢p(r; ↵, b) · (N � 1) �
(N � 1) |u0 cos

�
✓(r; ↵, b)� |

r · ⇢(r; ↵, b)
� 1

jp (N � 1) · |u |
q+1�p � 4(N � 1).

(3.91)

We now wish to bound |u | by a factor of j. Recall that E(r; ↵, b) � j
� for all

r 2 [b , 1]. Hence

|u | �
✓

p

2(p � 1)

◆ 1
p

· j

��p

p or |u | �
✓

q + 1
2

◆ 1
q+1

· j

�
q+1 . (3.92)

Since both cases in (3.92) are addressed by our choices of � and j in (3.77),
(3.79), and (3.80), we conclude that

✓0(r; ↵, b) > L j

N � 1 � 4(N � 1) > 0. (3.93)
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Thus by (3.93), if (3.88) holds, then there exists r2 2
h
r1 , r1 +

1
4 b
p

jc

i
such that

r2 � r <
⇡ � 2

j

L j

N�1 � 4(N � 1)
<

1
4 b

p
jc
, (3.94)

and
✓(r2; ↵, b) ⇤ (k + 1)⇡ +

⇡
2 � 1

j
. (3.95)

Next we estimate ✓(1; ↵, b). Suppose that
��✓(1

4 ; ↵, b) � (k⇡ + ⇡2 � 1
j
)
�� < 1

j
.

By (3.83), there exists r1 2
⇣

1
4 ,

1
4 + 2

j�4(N�1)� 1
j

⌘
such that

✓(r1; ↵, b) ⇤ k⇡ +
⇡
2 +

1
j
. (3.96)

Now consider any ✓(s; ↵, b) 2 [k⇡ + ⇡2 + 1
j
, (k + 1)⇡ + ⇡2 � 1

j
] for s 2 [r1 , t]

and t > r1. From (3.94), we see that ✓(s; ↵, b) cannot remain in the interval

for longer than
⇡� 2

j

L j

N�1�4(N�1)
. Thus there exists r2 2

⇣
r1 , r1 +

⇡� 2
j

L j

N�1�4(N�1)

⌘
such

that
✓(r2; ↵, b) ⇤ (k + 1)⇡ +

⇡
2 � 1

j
. (3.97)

The existence of an r3 2
⇣
r2 , r2 +

2
j�4(N�1)� 1

j

⌘
such that

✓(r3; ↵, b) ⇤ (k + 1)⇡ +
⇡
2 +

1
j

(3.98)

can then be shown by iterating on this procedure, imitating the argument
used to establish the existence of r1. Since r � 1

4 and we assumed that��✓(1
4 , ↵, b) � (k⇡ + ⇡2 � 1

j
)
�� < 1

j
, we obtain

1
4 < r3 <

1
4 +

4
j � 4(N � 1) � 1

j

+

⇡ � 2
j

L j

N�1 � 4(N � 1)
✓(r3; ↵, b) � ✓(r; ↵, b) > ⇡.

(3.99)

By repeating the existence argument for r1 and r2 a total of b
p

jc times, we
see that there will exist some r such that

1
4 < r <

1
4 + b

p
jc

h 2
j � 4(N � 1) � 1

j

+

⇡ � 2
j

L j

N�1 � 4(N � 1)

i

and ✓(r; ↵, b) � b
p

jc ⇡.
(3.100)
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From (3.78), we get r  3
4 . Finally, since ✓0(r; ↵, b) > 0 for ✓(r; ↵, b) ⇤ k⇡+ ⇡2 ,

we have proven that
✓(1; ↵, b) ⇤ b

p
jc ⇡. (3.101)

In the case that
��✓(1

4 , ↵, b)� (k⇡ + ⇡2 � 1
j
)
�� � 1

j
, we provide a similar set of

arguments by first proving the existence of an r1 2 (1
4 ,

1
4 +

⇡� 2
j

L j

N�1�4(N�1)

⌘
with

✓(r1; ↵, b) ⇤ (k + 1)⇡ + ⇡2 � 1
j

and proceeding likewise, such that repeating
these arguments b

p
jc total times gives (3.100), and consequently,

✓(1; ↵, b) � b
p

jc ⇡, (3.102)

proving the theorem. ⇤
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