
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2021

Geometric Unified Method in 3D Object Classification Geometric Unified Method in 3D Object Classification

Mengyi Shan

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Geometry and Topology Commons, Other Applied Mathematics Commons, and the Other

Computer Sciences Commons

Recommended Citation Recommended Citation
Shan, Mengyi, "Geometric Unified Method in 3D Object Classification" (2021). HMC Senior Theses. 235.
https://scholarship.claremont.edu/hmc_theses/235

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/235?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Geometric Unified Method in 3D Object
Classification

Mengyi Shan

Weiqing Gu, Advisor

Nicholas Pippenger, Reader

Department of Mathematics

May, 2020

Copyright © 2020 Mengyi Shan.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

Abstract

3D object classification is one of the most popular topics in the field of
computer vision and computational geometry. Currently, the most popular
state-of-the-art algorithm is the so-called Convolutional Neural Network
(CNN) models with various representations that capture different features
of the given 3D data, including voxels, local features, multi-view 2D features,
and so on. With CNN as a holistic approach, researches focus on improving
the accuracy and efficiency by designing the neural network architecture.
This thesis aims to examine the existing work on 3D object classification
and explore the underlying theory by integrating geometric approaches. By
using geometric algorithms to pre-process and select data points, we dive
into an existing architecture of directly feeding points into a deep CNN,
and explore how geometry measures how important different points are in
a CNN model. Moreover, we attempt to extract useful geometric features
directly from the object data to introduce the feature matrix representation,
which can be classified with distance-based approaches. We present all
results of experiments and analyzed for future improvement.

Contents

Abstract iii

Acknowledgments xiii

1 Introduction to 3D Object Classification 1

2 Introduction to Convolutional Neural Network 5

3 Previous Works 11
3.1 Volumetric Convolutional Neural Network 11
3.2 Surface Polygon Mesh . 15
3.3 Multi-View Convolutional Neural Network 20
3.4 PointNet: Direct Point Cloud Representation 23
3.5 Geometric Feature Extraction 29

4 Geometry and CNN: Comparison and Combination 35

5 Alpha Shape: The Shape Formed By Points 39
5.1 A Game With Ice Cream Spoon 39
5.2 Definition . 41
5.3 Edelsbrunner’s Algorithm . 42
5.4 Alpha-shape on Real Examples 45

6 Curvature: The Amount of Deviation 49
6.1 Basic Curve . 49
6.2 Interpolation and Curvature in Real Data 51
6.3 Curvature for Surfaces . 52
6.4 Curvature for Riemannian Manifold 55

vi Contents

7 Feature Matrix and Shape Partial Derivative 57
7.1 Feature Matrix: Idea and Definition 57
7.2 Distance Function Design . 59
7.3 Shape Partial Derivative: Another Measure 61

8 Data, Experiment and Results 63
8.1 Data . 63
8.2 Experiments . 65
8.3 Results and Analysis . 66
8.4 Future Works . 67

Bibliography 69

List of Figures

1.1 Point clouds of a chair and a table, which are likely the object
of what 3D object classification will study. Adopted from the
ShapeNet Core55 dataset. 1

1.2 Example baggage-CT scan containing handgun and bottle.
Left figure shows volumetric rendering. Right figure shows
single 2D axial slice with handgun, bottle and artefacts indi-
cated. From Flitton et al. (2015). 2

1.3 3D object detection in real world self-driving case. 3D Boxes
are projected to the bird’s eye view and the images. From
Chen et al. (2017). 3

2.1 An CNN with eight different layers works on the task of
identifying a car. It learns features based on local group of
pixels and combines the information together through layers
to generate a set of probabilities. 7

2.2 Convolutional neural network break down: calculation with
a 3-by-3 kernel and three different color channels. 8

3.1 CNN representation. It is similar to Figure 2.1 except for
generalizing two-dimensional case to three-dimensional case.
FromWu et al. (2014). 12

3.2 Example flowcharts show the overall procedure of VoxNet
and Vote3D. 13

3.3 View-based 2.5DObject Recognition. (1) A depthmap is taken
from a physical object. (2) The depth image is captured from
the back of the chair. (3) The profile of the slice and different
types of voxels. (4) The recognition and shape completion
result, conditioned on the observed free space and surface. . 14

viii List of Figures

3.4 Each subdivision step halves the edge lengths, increases the
number of faces bya factor of 4, and reduces the approximation
error by a factor of about 1/4. From Botsch et al. (2010). . . . 16

3.5 Mesh pooling operates on irregular structures and adapts
spatially to the task. Unlike geometric simplification, mesh
pooling delegates which edges to collapse to the network. Top:
MeshCNN trained to classify whether a vase has a handle,
bottom: trained on whether there is a neck. From Hanocka
et al. (2018). 17

3.6 Example of representation of a triangular mesh. The 1-ring
neighbors of e can be ordered as (a , b , c , d) or (c , d , a , b). This
ambiguates the convolutional receptive field, hindering the
formation of invariant features. 18

3.7 Constructed a local geodesic polar coordinates on a triangular
mesh. From Masci et al. (2015). 19

3.8 Determination of the formula for shading. This model is
abstracted into the x − y − z coordinates while light comes
from the z axis. From Phong (1975). 21

3.9 Multi-view CNN for 3D shape recognition is illustrated here.
At test time a 3D shape is rendered from 12 different views
to extract view based features. These are then pooled across
views to obtain a compact shape descriptor. 22

3.10 PointNet CNN takes n points as input, applies input and
feature transformations, and then aggregates point features
by max pooling. The output is classification scores for k
classes. From Qi et al. (2016). 24

3.11 Diagrams show examples of max pooling layers. Left image is
a pictorial explanation in two-dimensional matrix case. Right
image is a real life application on three dimensional vision data. 25

3.12 While critical points jointly determine the global shape feature
for a given shape, any point cloud that falls between the critical
points set and the upper bound shape gives exactly the same
feature. 28

3.13 Pipeline of generating Eigen-shape descriptor and Fisher-
shape descriptor. A collection of Heat shape descriptors are
used to train Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA). The trained Eigen-shape
descriptors are illustrated on the right and Fisher-shape de-
scriptors are shown on the left. From Fang et al. (2015). . . . 31

List of Figures ix

3.14 The geometric feature DNN can extract features of various
parts from a single object. From Guo et al. (2015) 32

3.15 Compiles a knowledge matrix requires calculation of geomet-
ric features from each object and comparison between each
pair of objects. Then a logical judgement process will be used
to classify based on information in the knowledge matrix.
From Ma et al. (2018). 32

4.1 Flowchart shows the logic of further explorations. 36

5.1 An intuitive understanding of alpha-shape in 2D case can be
expressed by the circles as the metaphored ice-cream spoons.
From Edelsbrunner and Mücke (1994). 40

5.2 An α-exposed ball (left) doesn’t contain any other point while
a non α-exposed ball does (right). 41

5.3 Boundary of an alpha-shape 42
5.4 Original 3D shape. This example will be used throughout the

chapters for other illustration. 45
5.5 All 2D level sets of a 3D object (chair). 45
5.6 α-Shape with 4 different αs: 0.01, 0.5, 1, 2. 46
5.7 Find α-shape of all level sets. 46
5.8 3D α-shape result. 47

6.1 Logarithmic curve example 50
6.2 Example of curvature for various curves. 51
6.3 Find α-shape of all level sets. 52
6.4 Different cubic splines result 53
6.5 The principal curvatures at a point on a surface. 54
6.6 The Gauss map sends a point on the surface to the outward

pointing unit normal vector, a point on S2. 55

7.1 Find α-shape of all level sets. 58
7.2 Correspondence between the geometric features and the

original object. 59

8.1 ModelNet10 data example . 64
8.2 ModelNet10 model size . 64
8.3 Re-visit the system flowchart: adding geometric features to

CNN . 65
8.4 Re-visit the system flowchart: using geometric without CNN 65

List of Tables

8.1 Classification accuracy results 67

Acknowledgments

I would like to express my deepest appreciation to Professor Weiqing Gu for
all her instructions and help which is crucial for my thesis works, as well as
all her encouragement and patience. Without her guidance and persistent
help this thesis wouldn’t be completed.

I’d like to extend my gratitude to Professor Nicholas Pippenger who
agrees to be my second reader, especially for the useful comments on my
thesis draft.

In addition, I’d like to thank Professor Jon Jacobsen for his encouragement
in the middle of my thesis when I was feeling extremely unsure about my
work.

Special thanks to all the professors, staff and my friends from Harvey
MuddCollege Department ofMathematics whose assistancewas amilestone
in the completion of this thesis.

Chapter 1

Introduction to 3D Object
Classification

The so-called 3D object classification task is easy to interpret right from its
name, even without any math or computer science background. To do 3D
object classification simply means that given a certain object, represented
in 3D form with either points, surfaces or other information specified, we
would like to decide what this object is. For example, given a set of points
comprising the skeleton of a thin rectangular board with four thin and long
legs under it, we would argue that it’s possibly a table, but not a television.
If there is another rectangular shape put vertically on the top of the board,
it’s likely a chair. (See Figure 1.1 for example.)

Figure 1.1 Point clouds of a chair and a table, which are likely the object of
what 3D object classification will study. Adopted from the ShapeNet Core55
dataset.

2 Introduction to 3D Object Classification

Figure 1.2 Example baggage-CT scan containing handgun and bottle. Le�
figure shows volumetric rendering. Right figure shows single 2D axial slice with
handgun, bottle and artefacts indicated. From Flitton et al. (2015).

Apparently, the task of 3D object classification is not hard for human
eyes. In our daily life, every moments our eyes take in information about
the surrounding world and decide what the objects are. We could never
possibly confuse a normal chair with a table. This is definitely partly because
of the plenty of details we can see, including colors, texture, shape, etc. But
as in Figure 1.1, even with very basic point clouds, human eyes can decide
what the object is without any difficulties. This is because we can detect the
shape, or geometric information from the objects.

However, there are also lots of cases where we need computers, instead
of human eyes, to classify and identify the objects. Especially with the recent
availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect, Intel
RealSense, Google Project Tango, and Apple Prime-Sense). For example,
in security check of airports of train stations, a single camera view will
provide scan information of a baggage and we need to identify if there’s
any dangerous objects in the baggage. Flitton et al. (2015) investigates the
performance of a Bag of (Visual) Words (BoW) object classification model
as an approach for automated threat object detection within 3D Computed
Tomography (CT) imagery from a baggage security context (Figure 1.2).
Zheng et al. (2009) shows the possibility of applying this technology to
medical areas with their projects, which use Marginal Space Learning (MSL)
to automatically detect 3D anatomical structures in many medical imaging
modalities. Chen et al. (2017) proposes Multi-View 3D networks (MV3D),
a sensory-fusion framework that takes both LIDAR point cloud and RGB
images as input and predicts oriented 3Dbounding boxes used in self-driving
vehicles (1.3).

A brief review of existing 3D object classification technologies show that
deep learning and especially deep neural network plays a significant role in
recent 3D object classification algorithms. Dating back to previous years,

3

Figure 1.3 3D object detection in real world self-driving case. 3D Boxes are
projected to the bird’s eye view and the images. From Chen et al. (2017).

deep learning had long shown great potentiality and application in 2D object
classification, detection and identification tasks, especially with the help
of the new larger datasets include LabelMe by Russell et al. (2008), which
consists of hundreds of thousands of fully-segmented images, and ImageNet
by Li et al. (2010), which consists of over 15 million labeled high-resolution
images in over 22,000 categories. Researchers include Krizhevsky et al. (2017)
and Ciresan et al. (2012) explored 2D image classification and achieved very
competitive accuracy with deep learning approaches.

While more and more high-quality data sets become available and
the computation ability of devices significantly increases, the emphasis in
object classification field in computer vision has gradually moved from 2D
classification (or image classification) to directly working with 3D point set
data that efficiently, directly and accurately models real life problems.

Considering 3D object classification as an interesting, worth studying
and developing area, this thesis aims to review, study and compare some of
the notable existing algorithms with high performance. Starting from next
chapter, the theories of algorithms including the so-called Convolutional
Neural Network (CNN) will be introduced. Future chapters after those will
introduce how geometric ideas will be compared and combined into existing
technologies.

Chapter 2

Introduction to Convolutional
Neural Network

Up to now, the most popular method that produces most of the state-of-
the-art algorithms with good performance is classification with Artificial
Neural Networks (ANN) models, especially Convolutional Neural Notworks
(CNNs). These systems are able to learn how to perform tasks by considering
examples, generally instead of being explicitly programmed with domain-
specific rules. This is not surprising because CNN is already proved to be a
fruitful approach in 2-dimensional cases. This chapter will begin with a brief
introduction to the mathematical background of artificial neural network,
and then focus on discussing CNN.

Definition 2.1. A feedforward neural network, aka multi-layer perceptron
(MLP), is a series of logistic regression models stacked on top of each
other, with the final layer being either another logistic regression or a linear
regression model, depending on whether we are solving a classification or
regression problem. (Murphy (2012))

Suppose a MLP used to solve regression problem has two layers, then it
can be mathematically expressed as

p(y |x, θ) � N
(
y |wTz(x), σ2)

z(x) � g(Vx) �
[
g
(
vT

1 x
)
, . . . , g

(
vT

Hx
)]

where g is a non-linear activation or transfer function (commonly the logistic
function), z(x) � φ(x,V) is called the hidden layer (a deterministic function
of the input), H is the number of hidden units, V is the weight matrix from

6 Introduction to Convolutional Neural Network

the inputs to the hidden nodes, and w is the weight vector from the hidden
nodes to the output.

Theorem 2.1. An MLP is a universal approximator, meaning it can model
any suitably smooth function, given enough hidden units, to any desired level of
accuracy.

Hornik (1991) proved Theorem 2.1 twenty years ago, making a solid
stepping stone for other further usage of MLP to various computer-related
tasks. The underlying meaning here is that as long as the computing power
allows a certain number of hidden units, any smooth function underlying
the regression or classification tasks should be able to be approximated by
deep neural network.

The purpose of the hidden units is to learn non-linear combinations of
the original inputs; this is called feature extraction or feature construction.
These hidden features are then passed as input to the final generalized linear
model.

This approach is particularly useful for problems where the original
input features are not individually informative. For example, each pixel in an
image is not very informative; it is the combination of pixels that tells us what
objects are present. Conversely, for a task such as document classification
using a bag of words representation, each feature (word count) is informative
on its own, so extracting "higher order" features is less important (Murphy
(2012)).

The so-called Convolutional Neural Network (CNN) is a special and
widely-used type of neural network. The name "convolutional neural
network" indicates that the network employs amathematical operation called
convolution. Convolutional layers have analogy in human neuroscience,
which is actually the origin and conceptual background of all neural network
models. Then convolve the input and pass its result to the next layer, which is
similar to the response of a neuron in the visual cortex to a specific stimulus.
Each convolutional neuron processes data only for its receptive field.

For a more mathematically rigorous definition, convolution is a special-
ized kind of linear operation. Convolutional networks are by definition
neural networks that replace general matrix multiplication with convolution
in at least one of the layers.

Definition 2.2. Convolution is the process of taking a small matrix of real
numbers (called kernel or filter), passing it over our image and transforming

7

the image based on the filter values.

G[m , n] � (f ∗ h)[m , n] �
∑

j

∑
k

h[j, k]f[m − j, n − k]

where f is the input data and h is the kernel.

With the Definition of convolution, (Definition 2.2), we can specify the
following definition of Convolutional Neural Network.

Definition 2.3. A Convolutional Neural Network is an MLP in which the
hidden units have local receptive fields, and in which the weights are tied
or shared across the data (usually image), in order to reduce the number of
parameters. (Murphy (2012))

Figure 2.1 An CNN with eight di�erent layers works on the task of identify-
ing a car. It learns features based on local group of pixels and combines the
information together through layers to generate a set of probabilities.

A convolutional neural network can assign importance (learnableweights
and biases) to various aspects or parts in the input data and be able to
differentiate one from the other. Intuitively, the effect of such spatial
parameter tying is that any useful features that are "discovered" in some
portion of the data can be re-used everywhere else without having to be
independently learned. (Murphy (2012)) The resulting network then exhibits

8 Introduction to Convolutional Neural Network

Figure 2.2 Convolutional neural network break down: calculation with a 3-
by-3 kernel and three di�erent color channels.

translation invariance, meaning it can classify patterns no matter where they
occur inside the input data.

Figure 2.1 shows how a convolutional neural network works on a 2D
image case. In order to identify a car, each layer of the neural network picks
some details of the original image and uses a specially designed filter to
catch important information. Finally the image is summarized into a list
of data representing what the filter "think" is important in the image. Not
surprisingly, just as in this case, convoluitonal neural networks are mostly
applied to visual pattern recognition.

Figure 2.2 provides a mathematical breakdown of what a CNN does. In
this case, it has a 3-by-3 filter that goes through the whole matrix, multiply
with the sub-matrices, and produces results in a compressed form for each
color channel of an image. Different filters could be designed for specific
tasks, like edge detection.

Previous studies and those illustrations above shows clearly how con-
volutional network is promising in the area of 2D image processing. When
problem comes to three-dimensional, however, things become much more
complex. The data form of 2D images are simple in that all images can be
represented with a uniform representation of pixels. In Figure 2.2, we have
three matrices representing the values of three color channel on each single
location of an image. However, this is not the only intuitive representation for

9

3D data, especially sparse data. Consider a chair object with no background,
instead of pixel values, it might be more intuitive to view it as a cloud of
points with surfaces covering the points. Some object might be hard to view
inside structures, and some objects can only be viewed from several angle
as 2D rendering images. All these problems remind us that although it’s a
great insight to generalize CNN to 3D case, we need to solve the problem of
choosing the right representation beforehand. The next few chapters will
discuss several widely used representations, including their strength and
weakness.

Chapter 3

Previous Works

3.1 Volumetric Convolutional Neural Network

3.1.1 A Single Naive Representation: Voxel

As a beginning, we will start from the most intuitive generalization from
2D image to 3D object representation. When dealing with two-dimensional
image data, we in fact consider it as a huge matrix of tuples, where each
element in a single tuple, is a pixel indicating the color or transparency of
that certain location on the graph. It’s natural, then, to extend this notion to
a 3D grid with unit cube called voxel.

Definition 3.1. A voxel represents a value on a regular grid in three-
dimensional space.

The so-called voxel representation is themostwidelyused, traditional and
popular approach. Wu et al. (2014) was the first research group introducing
this groundbreaking approach which represents a geometric 3D shape as a
probabilistic distribution of binary variables on a 3D voxel grid, and they
applied it into 3D classification. Each 3D mesh is represented as a binary
tensor: 1 indicates the voxel is inside the mesh surface, and 0 indicates the
voxel is outside the mesh (i.e., it is empty space).

Wu et al. (2014) used Convolutional Deep Belief Network (CDBN), which
is a powerful class of probabilistic models often used to model the joint
probabilistic distribution over pixels and labels in 2D images. This is directly
adopted from 2D image cases, again showing why this voxel representation
is natural and intuitive.

A traditional 3D Volumetric CNN system basically consists of two parts:

12 Previous Works

1. A volumetric grid representing our estimate of spatial occupancy.

2. A 3D CNN that predicts a class label directly from the occupancy grid.

Theorem 3.1. The energy, E of a convolutional layer can be computed as:

E(v, h) � −
∑

f

∑
j

(
h f

j

(
W f ∗ v

)
j
+ c f h f

j

)
−

∑
l

bl vl

where vl denotes each visible unit, h f
j denotes each hidden unit in a feature channel

f , and W f denotes the convolutional filter.

Figure 3.1 CNN representation. It is similar to Figure 2.1 except for generalizing
two-dimensional case to three-dimensional case. FromWu et al. (2014).

Theorem 3.1 shows how the energy of a convolutional layer is calculated
in their CNN model. It’s a traditional model with visible units, hidden
units, and a convolutional layer (a more complex version of the 3-by-3
matrix filter shown in Figure 2.2). Although this is not a very specifically
designed method, it’s extraordinary at its time because it’s actually the first

Volumetric Convolutional Neural Network 13

CNN-based 3D object classification algorithm with good performance, and
provides motivation for a great number of following researchers.

After training the CNN, the model learns the joint distribution p(x, y) of
voxel data x and object category label y ∈ {1, · · · , K}.

After them, other researchers improved the volumetric representation
by adding details and fine-tuning the neural network for different datasets.
Maturana and Scherer (2015) proposed VoxNet that integrated a volumetric
occupancy grid representation with a supervised 3D CNN, which signifi-
cantly improved the performance. Shi et al. (2015) converted each 3D shape
into a panoramic view, namely a cylinder projection around its principle
axis, and thus developing a robust representation called DeepPano. Zhao
et al. (2019) considered the normal vectors after voxelized the input. He
et al. (2015) presented a residual learning framework to ease the training of
networks that are substantially deeper than those used previously.

a. VoxNet Structure (Maturana and
Scherer (2015))

b. Vote3D Structure (Wang and Posner
(2015))

Figure 3.2 Example flowcharts show the overall procedure of VoxNet and
Vote3D.

In general, the volumetric CNN approach abstracts the information
stored in 3D point cloud to free, occupied and unknown voxels, thus turning
irregular data into regular representations. This distinction among three
types provides an extremely rich information in representation, while can
be stored in easy and structured data form. However, a noticeable weakness
of this approach is that it requires lots of memory and computation, which

14 Previous Works

Figure 3.3 View-based 2.5D Object Recognition. (1) A depthmap is taken from
a physical object. (2) The depth image is captured from the back of the chair.
(3) The profile of the slice and di�erent types of voxels. (4) The recognition and
shape completion result, conditioned on the observed free space and surface.

greatly restricts the amount of data it could take in as training set.
Additionally, voxelized approach ignores the extent of sparsity in 3D data

representation: even though a large majority of the space are not occupied
at all, the "empty" information will be marked with equal significance as the
"occupied" information. Wang and Posner (2015) illustrates an approach that
differs in that its nature comes from the sliding window algorithm widely
used in 2D image processing. Wang and Posner generalizes this idea to 3D
cases, replacing a sliding square to a sliding window. Compared with the
most generic voxel-CNN, this idea specifies in dealing with sparsity in the
input 3D point cloud.

3.1.2 Play with 2.5D Data

Note that up to the CNN step, only full completed data set is used to train
the model and make predictions. However, as Wu et al. (2014) mentioned,
it’s also possible to recover full 3D shapes from view-based 2.5D depth maps.
Imagine the application with Microsoft Kinetic or other depth detection
hardware: in Figure 3.3 when you have a depth map viewed from only
one direction, only very limited knowledge is known about the 3D object.
But the volumetric ShapeNet is able to construct a probabilistic model on
the grids. That is, it will generate a probability for each voxel to be either
free, occupied or unknown. This probability distribution then guides us
to complete the full model based on assumptions. This shape completion
functionality suggests that not the full information in dataset is necessary
for generating a successful classification. Then the natural question arises:
what points are necessary or important for generating a good classification?
This topic will be explored again in further chapters.

Surface Polygon Mesh 15

3.2 Surface Polygon Mesh

3.2.1 Introduce Mesh

While the locations of points are one good representation and descriptor
of 3D shape, another feature marks how 3D object is in nature different
from 2D images: it has the so-called surface information that cannot be
easily captured by voxelized data or point cloud data. This leads to another
popular representation, which is called mesh.

Definition 3.2. The polygonal mesh representation, or mesh, for short,
approximates surfaces via a set of 2D polygons in 3D space. (Botsch et al.
(2010))

The mesh provides an efficient, non-uniform representation of the shape.
Only a small number of polygons are required to capture large, simple,
surfaces. On the other hand, representation flexibility supports a higher
resolution where needed, allowing a faithful reconstruction, or portrayal, of
salient shape features that are often geometrically intricate. (Hanocka et al.
(2018))

The most basic and commonly used mesh is the so-called triangular
mesh. It’s widely used in 3D object classification problem by representing
the object with surface mesh information and build descriptors on that.

Definition 3.3. A triangle meshM consists of a geometric and a topolog-
ical component, where the latter can be represented by a graph structure
(simplicial complex)with a set of vertices

V � {v1 , . . . , vV }

and a set of triangular faces connecting them

F �
{

f1 , . . . , fF
}
, fi ∈ V ×V ×V

(Botsch et al. (2010))

The geometric embedding of a triangle mesh into R3 is specified by
associating a 3D position pi to each vertex vi ∈ V :

P � {p1 , . . . , pV } , pi :� p (vi) �
©«

x (vi)
y (vi)
z (vi)

ª®¬ ∈ R3

16 Previous Works

Figure 3.4 Each subdivision step halves the edge lengths, increases the num-
ber of faces by a factor of 4, and reduces the approximation error by a factor of
about 1/4. From Botsch et al. (2010).

such that each face f ∈ F actually corresponds to a triangle in 3-space
specified by its three vertex positions. Notice that even if the geometric
embedding is defined by assigning 3D positions to the discrete vertices,
the resulting polygonal surface is still a continuous surface consisting of
triangular pieces with linear parameterization functions. Figure 3.4 shows
and example of triangular mesh with different sizes.

Another significant characteristic of the mesh is its native provision of
connectivity information. This forms a comprehensive representation of the
underlying surface. Compared with the PointNet approach discussed in
further chapters, mesh representation perfectly deals with the problem of
connectivity and surface representation. The examplar work of Masci et al.
(2015) introduced deep learning of local features on meshes and showed
how to use these learned features for correspondence and retrieval. Haim
et al. (2018) used toric topology to define the convolutions on the shape
graph. Fouinat et al. (2018) defined a new convolutional layer that allows
propagating geodesic information throughout the layers of the network.

3.2.2 Mesh CNN: Theory and Insight

As one of the pioneer work and currently one of the best performance system,
Hanocka et al. (2018)’s system proposed a convolution on the edges of a
mesh and also a learned mesh pooling operation that adapts to the task at
hand, further expanding the research on meshes and significantly increased
the performance. Note that in Figure 3.5, the most traditional non-uniform
triangular mesh was used: large flat regions use a small number of large
triangles, while detailed regions used a larger number of triangles.

The input edge feature for each edge is afive-dimensional vector including
the dihedral angle, two inner angles and two edge-length ratios for each

Surface Polygon Mesh 17

Figure 3.5 Mesh pooling operates on irregular structures and adapts spatially
to the task. Unlike geometric simplification, mesh pooling delegates which
edges to collapse to the network. Top: MeshCNN trained to classify whether a
vase has a handle, bottom: trained on whether there is a neck. From Hanocka
et al. (2018).

face. The edge ratio is between the length of the edge and the perpendicular
(dotted) line in Figure 3.6 for each adjacent face. The researchers sorted each
of the two face-based features (inner angles and edge-length ratios), thereby
resolving the ordering ambiguity and guaranteeing invariance. Observe
that these features are all relative, making them invariant to translation,
rotation and uniform scale. (Hanocka et al. (2018).)

However, compared with the geometric feature representation, the mesh
representation is not as natural and intuitive if considering how human
eyes actually recognize objects: most of the objects have smooth shape, like
the vase shown in Figure 3.5 in real life won’t be recognized as composing

18 Previous Works

Figure 3.6 Example of representation of a triangular mesh. The 1-ring neigh-
bors of e can be ordered as (a , b , c , d) or (c , d , a , b). This ambiguates the con-
volutional receptive field, hindering the formation of invariant features.

of small polygons. The success of mesh representation again urges us to
explore if there’s some more natural way to enhance it by mimicing how
human eyes approach the identification task.

3.2.3 Local Polar Coordinate

Before introducing a more advanced technique also based on the idea of
mesh, let’s define the concept of manifold and RiemannianManifolds, which
will also be used in further chapters.

Definition 3.4. A manifold is a topological space that locally resembles
Euclidean space near each point. More precisely, each point of an n-
dimensional manifold has a neighborhood that is homeomorphic to the
Euclidean space of dimension n.

The rich theory of vector spaces endowedwith a Euclidean inner product
can, to a great extent, be lifted to various bundles associated with a manifold.
The notion of local (and global) frame plays an important technical role.

Definition 3.5. Let M be an n-dimensional smooth manifold. For any
open subset, U ⊆ M, an n-tuple of vector fields, (X1 , . . . ,Xn) , over U is
called a frame over U iff

(
X1(p), . . . ,Xn(p)

)
is a basis of the tangent space,

Tp M, for every p ∈ U. If U � M, then the Xi are global sections and
(X1 , . . . ,Xn) is called a frame (of M)

Surface Polygon Mesh 19

Now we could define a Riemannian manifold.

Definition 3.6. Given a smooth n-dimensional manifold, M, a Riemannian
metric on M is a family,

(
〈−,−〉p

)
p∈M , of inner products on each tangent

space, Tp M, such that 〈−,−〉p depends smoothly on p which means that for
every chart, ϕα : Uα → Rn , for every frame, (X1 , . . . ,Xn) , on Uα , the maps

p 7→
〈
Xi(p),X j(p)

〉
p , p ∈ Uα , 1 ≤ i , j ≤ n

are smooth. A smooth manifold, M, with a Riemannian metric is called a
Riemannian manifold.

Figure 3.7 Constructed a local geodesic polar coordinates on a triangular
mesh. FromMasci et al. (2015).

Geodesic Convolutional Neural Networks can be considered as another
kind of geometric feature recognition based on Riemannian Manifolds.
GCNN is a natural generalization of the convolutional networks (CNN)
paradigm to non-Euclideanmanifolds. Researchers’ construction is based on
a local geodesic system of polar coordinates to extract "patches“, which are
then passed through a cascade of filters and linear and non-linear operators.

Masci et al. (2015) model a 3D shape as a connected smooth compact
two-dimensional manifold (surface) X, possibly with a boundary ∂X. Locally
around each point x the manifold is homeomorphic to a two-dimensional

20 Previous Works

Euclidean space referred to as the tangent plane and denoted by TxX. A
Riemannian metric is an inner product 〈·, ·〉Tx X : TxX× TxX → R on the
tangent space depending smoothly on x.

Basically, how GCNN works is by building a local polar coordinate
system to represent the information in a 3D object. Broadly speaking, a
local feature descriptor assigns to each point on the shape a vector in some
multi-dimensional descriptor space representing the local structure of the
shape around that point. A global descriptor describes the whole shape,
which is harder to establish and not used in this algorithm.

3.3 Multi-View Convolutional Neural Network

While representations like voxel grid or polygon mesh are considered
descriptors operating on their native 3D formats, another possible direction
is to represent data in a view-based term. In another word, is it possible to
recognize 3D shapes from a collection of their rendered views on 2D images?
Answering this question, Su et al. (2015) provides a different approach in
lots of CNN attempts by tracking the 3D problem back to 2D. They tried
to render 3D point cloud or shapes into 2D images and then applied 2D
CNN to classify them. Even the first step of classifying only with a single
rendered image shows better performance than some state-of-the-art 3D
object recognition approaches. After that, they designed a special algorithm
also by convolutional neural network to combine several 2D classification
result of a single object to get an overall shape descriptor that leads to even
more accurate prediction performance.

3.3.1 Build Rendered 3DModels

3Dmodels in online databases are typically stored as polygonmeshes, which
are collections of points connected with edges forming faces. To generate
rendered views of polygon meshes, Su et al. (2015) used the Phong reflection
model (Phong (1975)) which basically consists of two parts:

1. Render the mesh polygons under a perspective projection. This type
of representation has the advantage that it avoids the problem posed
by mathematically curved surface approaches, of solving higher order
equations.

2. Determine the pixel color by interpolating the reflected intensity of
the polygon vertices. Taking into consideration that the light received

Multi-View Convolutional Neural Network 21

Figure 3.8 Determination of the formula for shading. Thismodel is abstracted
into the x − y − z coordinates while light comes from the z axis. From Phong
(1975).

by the eye is provided one part by the diffuse reflection and one part
by the specular reflection of the incident light, the shading at point P
on an object can be computed as:

Sp � Cp[cos(i)(1 − d) + d] + W(i)[cos(s)]n

where Cp is the reflection coefficient of the object at point P for a
certain wavelength. i is the incident angle. d is the environmental
diffuse reflection coefficient. Wi is a function which gives the ratio of
the specular reflected light and the incident light as a function of the
incident angle i. s is the angle between the direction of the reflected
light and the line of sight. n is a power which models the specular
reflected light for each material.

After building the 3D shape, the researchers actually setup viewpoints
(so-called virtual cameras) to create a multi-view shape representation. In
Figure 3.9, it shows how twelve cameras are set up around the object chair
and twelve images will be produced and classified by each camera.

3.3.2 Detailed CNN Design for Aggregation

In classification and retrieval test, the most crucial part is how to aggregate
the results from all those different rendered cameras. The following theorem

22 Previous Works

Figure 3.9 Multi-view CNN for 3D shape recognition is illustrated here. At test
timea3Dshape is rendered from12di�erent views toextract viewbased features.
These are then pooled across views to obtain a compact shape descriptor.

provides a metric to calculate the distance between two 3D objects by
computing all nx × ny pairwise distances between images. Simply averaging
or concatenating the image descriptors leads to inferior performance.

Theorem 3.2. Distance between two 3D shapes are defined as

d(x, y) �
∑

j mini
xi − y j

2

2ny
+

∑
i min j

xi − y j

2
2nx

Here x , y represent the two 3D objects. xi , y j represents the view from
each camera, with i , j going from 1 to the number of cameras. In a word,
we take the sum of the minimum of distance between views, which help us
rectify the possible rotation of the objects, then take the average to decide
the estimated distance between objects.

Result shows that 2D information can be highly informative to 3D struc-
tures. This method significantly increases spatial resolution (although with
less explicit depth information) compared to CNNs taking 3D information
as input. It can also take advantage of the much more mature and abun-
dant pre-trained models and data sets of 2D object classification, including
LabelMe by Russell et al. (2008) and ImageNet by Li et al. (2010) discussed
before.

3.3.3 Advanced Related Works

Yan et al. (2016) discussed Perspective Transformer Nets that formulated
the learning process as an interaction between 3D and 2D representations
and proposed an encoder-decoder network with a novel projection loss

PointNet: Direct Point Cloud Representation 23

defined by the perspective transformation. The projection loss enabled the
unsupervised learning using 2D observationwithout explicit 3D supervision.
Gao et al. (2018) explored pairwise multiview information and introduced
a novel pairwise Multi-View Convolutional Neural Network for 3D Object
Recognition (PMV-CNN for short), where automatic feature extraction and
object recognition were put into a unify CNN architecture.

Large scale experiments demonstrate that the pairwise architecture is
very useful when the number of labeled training samples is very small.
Recent researches on multi-view representation basically focused on two
directions: multi-view matching and label propagation. An exemplar
research in the former area is Wang et al. (2012) which used manifold to
manifold distance. The later one is generally related with graph propagation
(Gao et al. (2012)).

This approach is intuitive and also widely used at the beginning because
the huge number of developed, available dataset and technology for 2D
image classification. Evolving from 2D to 3D in this sense is probably
the most intuitive approach for experienced researchers. However, the
propagation algorithm that builds the bridge from 2D to 3D is not robust
enough. For example, Theorem 3.2 used to calculate the distance between 2
objects is still in a primary form. Although it’s designed to handle rotation
and different angle, it’s not elaborated enough to handle all subtle cases.

Moreover, the greatest problem for this approach is still that the camera
photo could only take care of outside features. For example, if there’s a hole
inside the object or some subtle features that is blocked from direct sight
but can be reflected by 3D point cloud, the camera couldn’t take care of
that. Especially if an object is not convex, several camera views will produce
significant torsion.

3.4 PointNet: Direct Point Cloud Representation

3.4.1 Point Cloud Representation: Opportunity and Challenges

The most basic and naive form of 3D object representation should be simply
a cloud of 3D points, embedding in the x− y− z coordinate, each represented
as a tuple of (x , y , z). Obviously, it’s not possible to take all points from a
single object. So, depending on the density and location of these points, the
level of difficulty varies. Besides the problem of point density, the 3D point
cloud representation has the following few features (Qi et al. (2016)):

24 Previous Works

Figure 3.10 PointNet CNN takes n points as input, applies input and feature
transformations, and thenaggregates point features bymaxpooling. Theoutput
is classification scores for k classes. From Qi et al. (2016).

1. Unordered. Unlike volumetric representation, a set of points is not
assigned in a special order. A network that consumes N 3D point
sets needs to be invariant to N! permutations of the input set in data
feeding order.

2. Interaction among points. The points are from a space with a distance
metric. It means that points are not isolated, and neighboring points
form a meaningful subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the combinatorial
interactions among local structures.

3. Invariance under transformations. As a geometric object, the learned
representation of the point set should be invariant to certain transforma-
tions. For example, rotating and translating points all together should
not modify the global point cloud category nor the segmentation of
the points.

Based on this idea, Qi et al. (2016) presented a modern neural network
approach that instead of using CNNs on voxels, takes the raw 3D point cloud
data as input. That is, each point is represented by just its three coordinates
(x , y , z). Because of the three features mentioned before, it takes special care
to design a specific CNN model that satisfies the features of point cloud. Qi
et al. (2016)’s algorithm learned optimization function that select interesting
or informative points. Then the fully connected layers aggregated these
learnt optimal values into the global descriptor and did classification or
segmentation. The whole architecture is shown in the block diagram in
Figure 3.10.

PointNet: Direct Point Cloud Representation 25

Figure 3.11 Diagrams show examples of max pooling layers. Le� image is a
pictorial explanation in two-dimensional matrix case. Right image is a real life
application on three dimensional vision data.

3.4.2 Max Pooling Layer for Special Features

What’s important and unique in this neural network structure are the three
specific features designed to accommodate the special properties of point
cloud, especially using symmetric function and max pooling layer to make
the model invariant to input permutation.

Definition 3.7. Max pooling is a sample-based discretization process. The
objective is to down-sample an input representation (image, hidden-layer
output matrix, etc.), reducing its dimensionality and allowing for assump-
tions to bemade about features contained in the sub-regions binned. (Anand
J. Kulkarni and Suresh Chandra Satapathy (2020))

In another word, max pooling layer does nothing more than dividing
the data into small sections, and take the maximum point of each section
to represent the whole bundle. This is used to reduce the size of data and
can easily catch the prominent features. Figure 3.11 shows two examples
on calculating max pooling layer by hand. In the left image, for example,
we want to take each small square of 2 by 2 dimension and use the single
maximum number to represent it, resulting in a matrix that is four times
smaller.

We value the max pooling function for the sense of symmetric it shows
in nature. In order to make the model invariant to input permutation, it’s
convenient to use a simple symmetric function to aggregate the information
from each point. The high level idea behind PointNet is to approximate a

26 Previous Works

general function defined on a point set by applying a symmetric function on
transformed elements in the set, illustrated by Theorem 3.3 below.

Theorem 3.3.
f ({x1 , . . . , xn}) ≈ g (h (x1) , . . . , h (xn))

where f : 2RN → R, h : RN → RK and g : RK × · · · ×RK︸ ︷︷ ︸
n

→ R is a symmetric

function.

By Theorem 3.3, the idea of PointNet is to approximate a general function
defined on a point set by applying a symmetric function on transformed
elements in the set. Empirically, this module is very simple: it approximates
h by a multi-layer perceptron network and g by a composition of a single
variable function and a max pooling function. Through a collection of h , we
can learn a number of f ′ s to capture different properties of the set.

Theorem 2.1 already shows that MLP can model any suitably smooth
function, given enough hidden units, to any desired level of accuracy. In
this case where we add the max pooling layers, it’s also required to show
the universal approximation ability of the neural network to continuous set
functions.

3.4.3 Arbitrarily Approximate and Critical Point

For a more mathematical rigorous explanation of the theory behind, let’s
start with a few background definition.

Definition 3.8. Let X and Y be two non-empty subsets of a metric space
(M, d).We define their Hausdorff distance dH(X,Y) by

dH(X,Y) � max

{
sup

x∈X∈Y
d(x , y), sup

y∈Y∈X
d(x , y)

}
where sup represents the supremum and infthe infimum. Equivalently

dH(X,Y) � inf {ε ≥ 0; X ⊆ Yε and Y ⊆ Xε}

where
Xε :�

⋃
x∈X

{z ∈ M; d(z , x) ≤ ε}

that is, the set of all points within ε of the set X (sometimes called the ε
-fattening of X or a generalized ball of radius ε around X).

PointNet: Direct Point Cloud Representation 27

Formally, let X � {S : S ⊆ [0, 1]m and |S | � n} , f : X → R is a continu-
ous set function onX w.r.t to Hausdorff distance dH(·, ·), i.e., ∀ε > 0, ∃δ > 0,
for any S, S′ ∈ X if dH (S, S′) < δ, then

�� f (S) − f (S′)
�� < ε. Then Theorem 3.4

below says that f can be arbitrarily approximated by our network given
enough neurons at the max pooling layer, i.e., K is sufficiently large.

Theorem 3.4. (Qi et al. (2016)) Suppose f : X → R is a continuous set
function w.r.t Hausdorff distance dH(·, ·). ∀ε > 0, ∃a continuous function h and
a symmetric function g (x1 , . . . , xn) � γ ◦MAX, such that for any S ∈ X�� f (S) − γ

(
MAXxi∈S {h (xi)}

) �� < ε
where x1 , . . . , xn is the full list of elements in S ordered arbitrarily, γ is a continuous
function, and MAX is a vector max operator that takes n vectors as input and
returns a new vector of the element-wise maximum.

With this in mind, we can go back to the beginning of the chapter, where
we raise the question about density of points for describing a 3D object. In
fact, Theorem 3.5 below argues that for any 3D point cloud object, only part
of the points are required to successfully identify the object.

Theorem 3.5. (Qi et al. (2016)) Define u � MAX
xi∈S
{h (xi)} to be the sub-network

of f which maps a point set in [0, 1]m to a K -dimensional vector.
Suppose u : X → RK such that u � MAX

xi∈S
{h (xi)} and f � γ ◦ u. Then

1. ∀S, ∃CS ,NS ⊆ X , f (T) � f (S) if CS ⊆ T ⊆ NS

2. |CS | ≤ K

To prove this theorem, notice that obviously, ∀S ∈ X , f (S) is determined
by u (S). So we only need to prove that ∀S, ∃CS ,NS ⊆ X , f (T) � f (S) if
CS ⊆ T ⊆ NS For the j th dimension as the output of u, there exists at least
one x j ∈ X such that h j

(
x j

)
� u j , where h j is the j th dimension of the

output vector from h. Take CS as the union of all x j for j � 1, . . . , K. Then,
CS satisfies the above condition.

(1) says that f (S) is unchanged up to the input corruption if all points in
CS are preserved; it is also unchanged with extra noise points up toNS. (2)
says that CS only contains a bounded number of points, determined by K in
(1). In other words, f (S) is in fact totally determined by a finite subset CS ⊆ S
of less or equal to K elements. We therefore call CS the critical point set of
S and K the bottleneck dimension of f . Note that this set of critical points

28 Previous Works

Figure 3.12 While critical points jointly determine the global shape feature for
a given shape, any point cloud that falls between the critical points set and the
upper bound shape gives exactly the same feature.

are different from the so-called critical points in the definition of differential
geometry.

Compared with the voxelized approaches, this representation is much
more direct and takes less voluminous input. Also it doesn’t require the
input to be quantized, and thus saving lots of important information. But the
most severe problem of it is that while considering point cloud information,
it selectively ignores surface information, local features and connectivity
status.

Further work on PointNet-liked CNNs generally aimed to improve its
ability to recognize local feature and topological structure. Qi et al. (2017)
then further improved the PointNet model’s performance by introducing a
hierarchical neural network that applies PointNet recursively on a nested
partitioning of the input point set. By exploiting metric space distances,
this network is able to learn local features with increasing contextual scales.
Shi et al. (2018) developed PointRCNN based upon the original PointNet
model, which is a bottom-to-up 3D proposal generation method directly
generates robust 3D proposals from point clouds, which is both efficient and
quantization free. Guerrero et al. (2017), similarly, attempted to improve
PointNet’s performance by extracting local features directly from point cloud.

Geometric Feature Extraction 29

3.5 Geometric Feature Extraction

Traditional methods explored and included some non-neural network ap-
proaches to this problem, including SVM, Bayes model, propagational graph,
and feature extraction.

3.5.1 Shape Descriptor

Fang et al. (2015) firstly converted the 3D data into a vector, by extracting
traditional shape features and then use a fully connected net to classify the
shape. To explore deeper into their work, we need to first define what is a
shape signature and what is a shape descriptor, the representation they used
to describe a 3D object.

Definition 3.9. 3Dshape signatures anddescriptors are succinct and compact
representations of 3D object that capture the geometric essence of a 3D object.
Shape signature is referred to as a local description for a point on a 3D
surface and shape descriptor is referred to as a global description for the
entire shape. (Fang et al. (2015))

Hand-crafted shape descriptors are sometimes not robust enough in
order to solve the problem of structural variations present in 3D models.
Discriminative feature learning from large datasets provides an alternative
way to construct deformation-invariant features. This method has been
widely used in computer vision and image processing. Specifically, there are
three types of traditional shape descriptors with relatively good performance
introduced in the sections below. (Fang et al. (2015)).

Heat shape descriptor (HeatSD)

The 3D model is represented as a graph G � (V, E,W), where V is the set of
vertices, E is the set of edges, and W represents the weight values for the
edges. Given a graph constructed by connecting pairs of vertices on a surface
with weighted edges, the heat flow on the surface can be quantitatively
approximated by the heat kernel:

ht
(
p1 , p2

)
�

∞∑
i�0

(
−λ′i t

)
φi

(
p1

)
φi

(
p2

)
which is a function of two points p1 and p2 on the network at a given time t
(Guo et al. (2015)).

30 Previous Works

Heat kernel signature is then defined by

HKS(p) �
(
Ht1(p , p),Ht2(p , p), . . . ,Htn (p , p)

)
where p denotes a point on the surface, HKS(p) denotes the heat kernel
signature at point p ,Ht(p , p) denotes the heat kernel value at point p , tn
denotes the diffusion time of the n− th sample point. HKS has attractive
geometric properties that includes invariance to isometric transformation,
robustness against other geometric changes and local numerical noise, and
multi-scale representation with scale parameter of diffusion time (Fang et al.
(2015)).

Eigen-shape descriptor (ESD)

S �
1
n

n∑
i�1

(
xi − µ

) (
xi − µ

)T

where S is the covariance matrix for the set of training shape descriptors xi ,
and

Svi � λi vi , i � 1, 2, . . . , n

where vi is the i-th Eigen-shape.

Fisher-shape descriptor (ESD)

SB �

c∑
i�1

Ni
(
µi − µ

) (
µi − µ

)T

where SB is the scatter matrix reflecting the margin among different class
and µi is the mean of class i and µ is the total mean.

SW �

c∑
i�1

∑
x j∈Xi

(
x j − µi

) (
x j − µi

)T

where SW is the scatter matrix reflecting closeness within the same classes,
µi is the mean of class i.

SBvi � λiSw vi

where vi is the i-th Fisher-shape.

Geometric Feature Extraction 31

Figure 3.13 Pipeline of generating Eigen-shape descriptor and Fisher-shape
descriptor. A collection of Heat shape descriptors are used to train Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The trained
Eigen-shape descriptors are illustrated on the right and Fisher-shape descriptors
are shown on the le�. From Fang et al. (2015).

3.5.2 Geometric Feature DNN

Guo et al. (2015) combines mesh-labeling methodology with feature ex-
traction and identification to build a feature-based deep CNNs. In their
algorithm, CNNs are first trained in a supervised manner by using a large
pool of classical geometric features. In the training process, these low-level
features are nonlinearly combined and hierarchically compressed to gen-
erate a compact and effective representation for each triangle on the mesh.
Compared with more traditional feature-extraction classification algorithm,
this one excels in that besides a fixed set of basic geometric objects, it aims to
combine and compress features together to get more complicated features.

3.5.3 Pair-wise Feature Matching

Another direction of feature-based algorithm is using logic and building a
pair-wise feature comparison table. Ma et al. (2018) considered pairwise
geometric feature of 3D objects and used a tailored matching algorithm. On
the other hand, geometric features are extracted and modified and fed into

32 Previous Works

Figure 3.14 The geometric feature DNN can extract features of various parts
from a single object. From Guo et al. (2015)

DNNs to do higher-level classification work. With the knowledge that some
building objects can be recognized based on the features of their lower level
geometry primitives. Figure 3.15 shows the process of feature matching.

Figure 3.15 Compiles a knowledgematrix requires calculation of geometric
features from each object and comparison between each pair of objects. Then a
logical judgement process will be used to classify based on information in the
knowledge matrix. FromMa et al. (2018).

Theorem 3.6. The similarity of two vectors could be measured by the angle between
them, which can be computed by the inner product of the two vectors. It is computed
using the following equation, where i , j ∈ [1, 2, 3], i , j and m , n ∈ [1, 2, 3, 4].

S(i , j)(m ,n) �
R∗(i , j) · R(m , n)��R∗(i , j)

�� |R(m , n)|
Theorem 7.1 gives a way to calculate the matching coefficient of two

different objects with geometric features already identified. This result can
be used to judged if two objects match or not based on the available features.

Geometric Feature Extraction 33

While feature extraction and similarity measure are intuitive, and this
approach is based on knowledge about the object shapes themselves and
doesn’t need lots of data to train, this geometric feature approach is consid-
ered natural and pioneering. However, it also suffers from the problem that
it restricts to specific types of data. Only when we know what’s the possible
composition of a bridge can we successfully identify parts of it. If the object
is entirely unknown even without possible classes, it’s hard to break it down
into parts.

Even with these limitations, geometric feature recognition representation
is still considered a promising direction.

Chapter 4

Geometry and CNN:
Comparison and Combination

Previous chapters give an overall discussion and summary of current state-
of-the-art approaches to solve 3D object classification problem. It’s not
surprised that this problem has so many different possible approaches, some
of them entirely unrelated and some rationales even contradicting with each
other. This is because 3D object classification, from the origin, is a pretty
basic, popular and well-studied problem with an extremely rich space of
possible representation, which promotes the usage of convolutional neural
network, debatably the single most powerful tool in image processing and
computer vision.

CNNs are successful in that they try to use tons of neurons to mimic
how human brain works. But then a natural problem rises: how do we
human recognize 3D objects? We must rely internally on some CNN-liked
structures, but on a higher level than that, if you are asked to describe why
this object is a chair but not a table, you would be able to provide some ideas
that are directly fed into your eyes, and possibly a simpler processor than
the complex layers of neurons. For example, you will be able to identify that
a chair has a vertical back supporting structure, while the table only has
a board staying on four legs. On the other hand, a bed might likely be a
combination of both, but with a larger area. You will be able to identify a
leg by detecting some prominent structure that protruded from the main
object, and decide that this cannot be a bath tub. All these standards seem
to be natural to human, but neural network doesn’t really care about this:
it takes in all the data, no matter important or no, and no matter what the

36 Geometry and CNN: Comparison and Combination

original shape appearance is. Then it does lots of arithmetic to identify what
are the features among those n × 3 matrices. They do achieve pretty nice
results, but from a human’s perspective, this is kind of counter-intuitive.

Figure 4.1 Flowchart shows the logic of further explorations.

We human recognizes and classifies objects naturally by geometry and
topology characteristics, like those described in the previous paragraph.
CNN, on the other hand, is like a blackbox that takes all of the data
and produce a model based on some features: probably the geometric
characteristics and probably something else. Not satisfied by this black-box
approach, we want to ask the following questions:

1. What feature, or just data points in this case, does a CNN need to
produce correct predictions? What points are crucial to the success
of a CNN, and what points are unnecessary and probably more like
noise? Couldwe assume that the points that representmore prominent
geometry characteristics will be more critical in a 3D point cloud CNN?

2. If we have the idea of what geometric feature is important, on the
other hand, is it possible to get rid of CNN from the beginning, but
instead define the distance between two objects simply in terms of
the geometric features we detected, and use more basic distance-
based classifier to recognize the objects? This might not work for

37

complicated data set, especially those with lots of rotation. But for an
easy and intuitive data set, could CNN be replaced by more intuitive,
human-liked direct geometric approach?

For 1, the concept of critical point and bottleneck dimension defined in
Chapter 3 shows possibility to find those geometrically important points.
For 2, in Chapter 3, when we discussed the concepts of shape descriptor and
shape signature, we are moving on the scale between pure geometric and
pure black-box approach, away from neural network.

Figure 4.1 shows the rough process of possible explorations that could be
done in terms of answering these two questions. For finding critical points,
we will use the concept of curvature (both for curves and for surfaces) to
evaluate how important a single point is. This will be discussed deeper in
Chapter 6. Chapter 5 will introduce an algorithm to get the shape formed by
points, since we assume our experiments to start with point clouds.

As answers to the second question, Chapter 7 will define our novel idea
of building a feature matrix for a geometric 3D object, and how to define
distance function on the matrix space for further classification tasks.

Finally, Chapter will specify more experimental details and results, as
well as discussion and possible further works.

Chapter 5

Alpha Shape: The Shape
Formed By Points

5.1 A Game With Ice Cream Spoon

Consider the normal scenario of 3D object classification, where we are given
a set of points but no more information. PointNet discussed in Chapter 3.4
described an algorithm that takes all the points as input to a convolutional
neural network and generates the classification result.

As analyzed before, not all points in a certain point cloud is crucial to the
classification. In fact, by Theorem 3.5 , only those so-called critical points
are necessary for generating the correct result. In order to figure out what
are the crucial points in a geometric way, it’s like assuming we are given a
set S ⊂ Rd of n points in 2D or 3D and we want to have something like "the
shape formed by these points." This is quite a vague notion and there are
probably many possible interpretations, the α-shape being one of them.

One can intuitively think of an α-shape as the following. Imagine a
huge mass of ice-cream making up the space Rd and containing the points
S as "hard" chocolate pieces. Using one of these sphere-formed ice-cream
spoons we carve out all parts of the ice-cream block we can reach without
bumping into chocolate pieces, thereby even carving out holes in the inside
(eg. parts not reachable by simply moving the spoon from the outside). We
will eventually end up with a (not necessarily convex) object bounded by
caps, arcs and points. If we now straighten all "round" faces to triangles and
line segments, we have an intuitive description of what is called the α-shape
of S. Figure 5.1 is an example for this process in 2D (where our ice-cream

40 Alpha Shape: The Shape Formed By Points

Figure 5.1 An intuitive understanding of alpha-shape in 2D case can be ex-
pressed by the circles as themetaphored ice-cream spoons. From Edelsbrunner
and Mücke (1994).

spoon is simply a circle).
And what is α in the game? α is the radius of the carving spoon. A very

small value will allow us to eat up all of the ice-cream except the chocolate
points S themselves. Thus we already see that the α -shape of S degenerates
to the point-set S for α → 0. On the other hand, a huge value of α will
prevent us even from moving the spoon between two points since it’s way
too large. So we will never spoon up ice-cream lying in the inside of the
convex hull of S, and hence the α-shape for α → ∞ is the convex hull of
S. This Theorem will be proved later in the chapter, once we define the
mathematically rigorous concept of α-shape.

Theorem 5.1.
lim
α→0
Sα � S

and
lim
α→∞
Sα � conv S

Definition 41

5.2 Definition

We will start to define the mathematical details of α-shape by first defining
a few basic background concepts.

Definition 5.1. For 0 < λ < ∞, let an λ-ball be an open ball with radius λ.
Now, a certain λ-ball b (at a given location) is called empty if b ∩ S � ∅.With
this, a k-simplex ∆T is said to be α-exposed if there exists an empty α -ball
with T � ∂b ∩ S where ∂b is the surface of the sphere (for d � 3) or the circle
(d � 2) bounding b , respectively.

Figure 5.2 An α-exposed ball (le�) doesn’t contain any other point while a
non α-exposed ball does (right).

Coming back to the ice-cream scenario from the introduction we notice
that a face is on the boundary of our intuitive α -shape (to be defined) if the
ice-cream spoon hits against one or more of the points in S. But this simply
means that the simplex spanned by these points is α -exposed. This leads to
the following definition of the "boundary" of the α-shape.

Definition 5.2. The boundary ∂Sα of the α-shape of the point set S consists
of all k-simplices of S for 0 ≤ k < d which are α-exposed,

∂Sα �
{
∆T |T ⊂ S, |T | ≤ d and ∆Tα-exposed

}
Alpha shape is often compared with another concept, the so-called

convex hull.

42 Alpha Shape: The Shape Formed By Points

Figure 5.3 Boundary of an alpha-shape

Definition 5.3. The convex hull of a sef points S in n dimensions is the
intersection of all convex sets containing S. For N points p1 , . . . , pN , the
convex hull C is then given by the

c�1

N∑

j�1
λ j p j : λ j ≥ 0 forall jand

N∑
j�1

λ j � 1

Since an infinitely small ball exposes any point in S but none of the
higherdimensional simplices, and since an α-ball with α greater than the
radius of the smallest enclosing circle of the points S doesn’t allow an
interior simplex to be α -exposed, we get limα→0 ∂Sα � S and limα→∞ ∂Sα �

∂ conv S, respectively. And thus we can follow the intuition and validate
previous Theorem 5.1.

5.3 Edelsbrunner’s Algorithm

At this stage it’s relatively straightforward to formulate a algorithm to obtain
the α -shape.

• Compute the Delaunay triangulation of S, knowing that the boundary
of our α -shape is contained in it.

• Then we determine Cα by inspecting all simplices ∆T in DT(S) : If the
σT−ball around µT is empty and σT < α(− this is the alpha test-) we accept
∆T as a member of Cα , together with all its faces.

Edelsbrunner’s Algorithm 43

• All d-simplices of Cα make up the interior of Sα . All simplices on the
boundary ∂Cα form ∂Sα

For this algorithm to work we need three things.

• TheDelaunay triangulation (which isn’t a problem, there are algorithms
to do that).

• A test to check whether or not the σT− ball is empty. This too can be
done, for instance by checking whether p lies in the said ball for every
p ∈ S\T.

• A way to see whether a simplex ∆T in Cα lies on the boundary. For
this, let’s assume that the Delaunay triangulation algorithm returns
(in addition to the triangulation) for every simplex whether or not it is
on the boundary ∂ conv(S) of the convex hull. Then:

Theorem 5.2. Let ∆T be a simplex in Cα(S). If ∆T ∈ ∂ conv(S), then it is
obviously on the boundary of Cα . Otherwise, it is in the interior of Cα iff all
of the simplices in DT(S) properly containing ∆T lie in Cα , too.

The algorithm is an efficient implementation of the above procedure,
with two additional advantages: First of all the algorithm does not run for a
single value α but computes an implicit representation instead which can be
used to deduceSα for any value of α.More precisely, the algorithm computes
for every simplex ∆T ∈ DT(S) an intervall I � [a ,∞] with the interpretation
that ∆T ∈ Sα iff α ∈ I .6 (That there is such an interval is a consequence
of observation 9, as already mentionned.) Second, the algorithm not only
distinguishes among interior and non-interior simplices of Cα (as we have
done above), but makes three distinctions instead, one more among the
non-interior simplices.

When we increase α continuously from 0 towards∞ and consider a sim-
plex ∆T ∈ DT(S), we see (using observation 9) that there are two (possibly
empty) intervals (a , b) and (b ,∞)(with 0 ≤ a ≤ b ≤ ∞) such that

∆T is

not in Cα (for α < a)
in ∂Cα (for α ∈ (a , b))

interior to Cα (for α ∈ (b ,∞))

Altogether we get the following algorithm on the next page:

44 Alpha Shape: The Shape Formed By Points

Algorithm 1 Algorithm for calculation of alpha shape

{ Given a point-set S ⊂ Rd , computes a list R of simplices ∆T and
}

{two lists B, I of intervals such that ∆T ∈ ∂Sα if and only if α ∈ BT
}{

and ∆T ∈ int (Sα) if and only if α ∈ IT .
}

R :� DT(S)
for each d-simplex ∆T ∈ R do

BT :� ∅; IT :� (σi ,∞)
end for
for k :� d − 1 to 0 by −1 do

for each k -simplex ∆T ∈ R do
if bT is empty then

a :� σT
elsea :� min

{
aU |BU � (aU , bu) ,∆U(k + 1) − Simplex, T ⊂ U

}
end if
if ∆T ∈ ∂ conv(S) then

b :� ∞
elseb :� max

{
aU |BU � (aU , bu) , BU d -Simplex mit T ⊂ U

}
end if
BT :� (a , b); IT :� (b ,∞)

end for
end for

Alpha-shape on Real Examples 45

5.4 Alpha-shape on Real Examples

α-shape can be used to describe the shape of any 3D point cloud. It can be
either used at 2D level set, or directly at 3D shapes. In order to simplify the
experiment and get an intuitive understanding, we will start with the 2D
case of α-shape on level sets. See Figure 5.5 for an example that will be used
throughout the thesis.

Figure 5.4 Original 3D shape. This example will be used throughout the chap-
ters for other illustration.

Figure 5.5 All 2D level sets of a 3D object (chair).

46 Alpha Shape: The Shape Formed By Points

Figure 5.6 α-Shape with 4 di�erent αs: 0.01, 0.5, 1, 2.

Note that different α will lead to entirely different results, and some of
them don’t make sense in our case of application. As α goes to infinity, the
shape goes to the convex hull. While as α goes to 0, the shape approaches
the simple set of all points. Figure 5.6 shows the α-shape on the same level
set. Note that in this case, the left bottom figure with α � 1 shows the best
approximation of the shape.

Figure 5.7 Find α-shape of all level sets.

Running our α-shape algorithm on all of the level sets, we can see it
successfully approximates the shapes of different parts of the object.

Alpha-shape on Real Examples 47

If we generalize the algorithm to 3D case (there is no existing implemen-
tation in Python3, but it would be easily implemented from the algorithm
provided in the section before), we could approximate the shape of an object
at a higher level. Figure 5.8 shows such an example: we can observe that it
does capture most of the important details of the object while significantly
reducing the number of points used here.

Figure 5.8 3D α-shape result.

As mentioned in Chapter 4, the data processed by the α-shape algorithm
could be used in two different ways. It can either be used to decide which
points are important as a pre-processing step for PointNet, or it can be used
directly to extract information describing the shape of an object on a level
set level. These two directions will be discussed further in Chapter 6 and
Chapter 7. Then experiments and results will be summarized and discussed
in Chapter 8.

Chapter 6

Curvature: The Amount of
Deviation

6.1 Basic Curve

In mathematics, a curve (also called a curved line in older texts) is an object
similar to a line which does not have to be straight.

Let α : I → R3 be a parametrized differentiable curve. For each t ∈ I
where α′(t) , 0, there is a well-defined straight line, which contains the
point α(t) and the vector α′(t). This line is called the tangent line to α at t.

Definition 6.1. A parametrized differentiable curve α : I → R3 is said to be
regular if α′(t) , 0 for all t ∈ I

From now on we shall consider only regular parametrized differentiable
curves (and, for convenience, shall usually omit the word differentiable).
Given t ∈ I , the arc length of a regular parametrized curve α : I → R3 from
the point t0 , is by definition

s(t) �
∫ t

t0

|α′(t)| dt

where
|α′(t)| �

√
(x′(t))2 +

(
y′(t)

)2
+ (z′(t))2

is the length of the vector α′(t). since α′(t) , 0, the arc.length s is a
differentiable function of t and ds/dt � |α′(t)|

50 Curvature: The Amount of Deviation

Figure 6.1 Logarithmic curve example

It can happen that the parameter t is already the arc length measured
from some point. In this case, ds/dt � 1 � |α′(t)| ; that is, the velocity vector
has constant length equal to 1. Conversely, if |α′(t)| ≡ 1, then

s �

∫ t

t0

dt � t − t0

i.e., t is the arc length of α some point.
Let α : I � (a , b) → R3 be a curve parametrized by arc length s . since the

tangent vector α′(s) has unit length, the norm |α′′(s)| of the second derivative
measures the rate of change of the angle which neighboring tangents make
with the tangent at s . |α′′(s)| gives, therefore, a measure of how rapidly the
curve pulls away from the tangent line at s , in a neighborhood of s (see Fig.
1 − 14). This suggests the following definition.

Definition 6.2. Let α : I→ R3 be a curve parametrized by arc length s ∈ I.
The number |α′′(s)| � k(s) is called the curvature of α at s

Interpolation and Curvature in Real Data 51

Figure 6.2 Example of curvature for various curves.

6.2 Interpolation and Curvature in Real Data

We can see how curvature can be used as a measure of how much changes
are happening at a certain location. This makes it an ideal metric to represent
the importance of a point in 3D point cloud model, since we expect that
points in an actively changing area might be more crucial to identify the
object.

Because the 3D object data doesn’t appear in the form of a curve or a
surface, it won’t be intuitive how to calculate the curvature. In order to
simplify this problem, we will start with curvature on curves, which can
be approximated after preprocessing the data with α-shape discussed in
Chapter 5.

Let’s go back to the same figure of all level sets that is presented in
Chapter 5. Although it doesn’t make sense to consider the set of points as a
curve, one possible direction is considering the outer most points (i.e., those
on the boundary of α-shape) as making up a curve. We will take all those
points and change the coordinates to polar by the following rule:{

x � r cos(θ)
y � r sin(θ)

(6.1)

52 Curvature: The Amount of Deviation

Figure 6.3 Find α-shape of all level sets.

Then we approximate the curve using cubic spline interpolation.

Definition 6.3. Cubic spline is a spline constructed of piece-wise third-order
polynomials which pass through a set of m control points. The second
derivative of each polynomial is commonly set to zero at the endpoints,
since this provides a boundary condition that completes the system of m − 2
equations.

After approximating the equations, we quantitized the segments and
calculated the curvature at the middle point each small segment. Figure 6.4
uses red to mark the points with large curvature than a learned threshold.

Only keeping those points with curvature larger than the threshold
will significantly decrease the amount of points, while keeping the most
important information. The amount todecrease canbe controlled by selecting
the threshold or approach to learn the threshold.

6.3 Curvature for Surfaces

For a curve drawn on a surface (embedded in three-dimensional Euclidean
space), several curvatures are defined, which relates the direction of curva-

Curvature for Surfaces 53

Figure 6.4 Di�erent cubic splines result

ture to the surface’s unit normal vector. These are the normal curvature,
geodesic curvature and geodesic torsion. The curvature of curves drawn on
a surface is the main tool for the defining and studying the curvature of the
surface.

Informally Gauss defined the curvature of a surface in terms of the
curvatures of certain plane curves connected with the surface. He later
found a series of equivalent definitions. One of the first was in terms of the
area-expanding properties of the Gauss map, a map from the surface to a
2-dimensional sphere. However, before obtaining a more intrinsic definition
in terms of the area and angles of small triangles, Gauss needed to make
an in-depth investigation of the properties of geodesics on the surface, i.e.
paths of shortest length between two fixed points on the surface.

The Gaussian curvature at a point on an embedded smooth surface given
locally by the equation z � F(x , y) in Eucidean space (E3), is defined to be
the product of the principal curvatures at the point; (4)4 the mean curvature
is defined to be their average. The principal curvatures are the maximum
and minimum curvatures of the plane curves obtained by intersecting the
surface with planes normal to the tangent plane at the point. If the point
is (0, 0, 0) with tangent plane z � 0, then, after a rotation about the z -axis

54 Curvature: The Amount of Deviation

setting the coefficient on x y to zero, F will have the Taylor series expansion

F(x , y) � 1
2 k1x2

+
1
2 k2 y2

+ · · ·

The principal curvatures are k1 and k2. In this case, the Gaussian curvature
is given by K � k1 · k2 and the mean curvature by

Km �
1
2 (k1 + k2)

Figure 6.5 The principal curvatures at a point on a surface.

Since K and Kn are invariant under isometries of E3,in general

K �
RT − S2

(1 + P2 + Q2)2

Km �
ET + GR − 2FS

2 (1 + P2 + Q2)2

where the derivatives at the point are given by’s)

P � Fx ,Q � Fy , R � Fxx , S � Fx y , T � Fw

Curvature for Riemannian Manifold 55

E � 1 + F2
r2 G � 1 + F2

y , F � FFFy

For every oriented embedded surface the Gauss map is the map into the
unit sphere sending each point to the (outward pointing) unit normal vector
to the oriented tangent plane at the P coordinates the map sends (x , y , z) to

N(x , y , z) � 1√
1 + P2 + Q2

(P,Q ,−1)

Direct computation shows that: the Gaussian curvature is the Jacobian of
the Gauss map.

Figure 6.6 The Gauss map sends a point on the surface to the outward point-
ing unit normal vector, a point on S2.

6.4 Curvature for Riemannian Manifold

When talking about curvature in 3D cases, we cannot avoid the discussion
of manifold, especially Riemannian manifold. For Riemannian manifolds
(of dimension at least two) that are not necessarily embedded in a Euclidean
space, one can define the curvature intrinsically, that is, without referring to
an external space.

Before going into details, we want to first give definition for manifold
and Riemannian manifold.

Definition 6.4. An n-dimensional manifold M is a set of points such that
each point has n-dimensional extensions in its neighborhood. That is, such
a neighborhood is topologically equivalent to an n-dimensional Euclidean
space.

56 Curvature: The Amount of Deviation

Mathematically trained readers may know the rigorous definition of a
manifold: A manifold M is a Hausdorff space which is covered by a number
of open sets called coordinate neighborhoods, such that there exists an
isomorphism between a coordinate neighborhood and a Euclidean space.
The isomorphism defines a local coordinate system in the neighborhood.
M is called a differentiable manifold when the coordinate transformations
are differentiable. See textbooks on modern differential geometry. Our
definition is intuitive, not mathematically rigorous, but is sufficient for
understanding information geometry and its applications.

Definition 6.5. A Riemannian manifold is defined as a smooth manifold
with a smooth section of the positive-definite quadratic forms on the tangent
bundle.

A Riemannian metric (tensor) makes it possible to define several geomet-
ric notions on a Riemannianmanifold, such as angle at an intersection, length
of a curve, area of a surface and higher-dimensional analogues (volume, etc.),
extrinsic curvature of submanifolds, and intrinsic curvature of the manifold
itself.

Note that with the discussions of curvature on surface and on manifold,
it’s definitely possible to extend our experiment with curvature on the level
sets to direct 3D data. Remember that we can also successfully calculate the
3D α-shape with relatively stability. This will be a possible further work.

Chapter 7

Feature Matrix and Shape
Partial Derivative

Previous chapters introduce how to find the critical points from a cloud
of data points comprising a whole 3D object. Namely, we assume that the
points on the boundary of an object are crucial, and the points at locations
experiencing more changes are crucial. With these two intuitions, we
translate them into the mathematical concepts of α-shape and curvature.
However, up to now, all work are done based on an existing architecture of
Convolutional Neural Network: we are just adding a sense of geometry to
preprocess the input that is fed into the built CNN.

As illustrated in Chapter 4, we also want to ask the question of whether
it is possible to completely discard the traditional CNN approach, and do
the classification work based on other more intuitive and geometric-like
features.

7.1 Feature Matrix: Idea and Definition

It is natural to start again with α-shape here, because the α-shape is the most
suitable algorithm to approximate the shape formed by a point cloud in this
application scenario.

From Figure 7.1, we can easily observe the difference of the overall shape
among different level sets. From the bottom four level sets, we can see four
small clusters of points indicating four legs. Then among the next five level
sets, we can see a large, convex shape approximating the middle part of the
chair. The next four level sets show the shape of the back part. The top-most

58 Feature Matrix and Shape Partial Derivative

seven level sets (with an upward curve on the top and a non-convex part at
the bottom) shows the top shape, especially arm part of the chair.

There are two important features describing the shape of each level set
which would be natural but useful information for classification.

• Howmany clusters are there? (Indicating topology information and
structure of the object.)

• What’s the shape of each cluster? (Indicating geometry information
and details of the object.)

Figure 7.1 Find α-shape of all level sets.

Fortunately, the information of number of clusters and area can be
naturally derived from α-shape due to its nature of Polygon object. (Recall
the definition of α-shape in Chapter 5 with Delaunay Triangulation.) We
might calculate the sumof areas of a triangulation easily from the coordinates
with the formula:

S �

�����Ax
(
By − Cy

)
+ Bx

(
Cy − Ay

)
+ Cx

(
Ay − By

)
2

�����

Distance Function Design 59

Figure 7.2 Correspondence between the geometric features and the original
object.

Figure 7.2 shows the result of those two different measures on all level
sets, and how the changing pattern corresponds exactly to the different parts
of a chair, which follows our intuition tightly.

Based on the two features discussed above, we could build a feature
matrix that relates each height to a tuple (N, S). Where N is the number of
clusters and S is the size of the shape. This matrix, instead of the full point
set, can capture the most important information of this object. Currently its
size is n where n is the number of level sets we take. In the future we might
want to add more features.

The feature matrix will be a natural measure to describe the shape of
a 3D object with limited and extremely structured information. Based on
the feature matrices, we could design distance functions so that a basic
supervised, distance-based classification algorithm could be applied here,
like k-nearest neighbors.

7.2 Distance Function Design

After defining the concept of feature matrix, it’s worthwhile to describe the
idea that two feature matrices will be close to each other when two objects
look similar. Consider the feature matrices of two objects.

60 Feature Matrix and Shape Partial Derivative

F1 �

N1,1 S1,1
N1,2 S1,2
...

...
N1,n S1,n

and

F2 �

N2,1 S2,1
N2,2 S2,2
...

...
N2,n S2,n

Thinking of a natural way to measure the distance between this two

matrices: First, we definitely want to treat the first and second column
differently by defining two different distance functions and take theweighted
sum of those two.

Dist(F1 , F2) � ω1 Dist(N1 ,N2) + ω2 Dist(S1 , S2)
For the number of cluster column, we need to take care of the fact that

some objects have sparse data and a single level set might be entirely empty.
This doesn’t mean that the object is broken down into two pieces from this
point, so we will not penalize a difference between 0 and other number of
clusters. We define the following function on each level set.

Dist(N1,i ,N2,i) �
{
|N1,i − N2,i | if both are not zero
1 otherwise

And then simply take the L2-norm on all sets.

Dist(N1 ,N2) �

√√ n∑
i�1
(Dist(N1,i ,N2,i))2

For the second column, simply taking the L2-norm suffices.

Dist(S1 , S2) �

√√ n∑
i�1
(S1,i − S2,i)2

This distance function is designed without any training on the data,
except for two hyper-parameters adjusting the weights. So it probably won’t
perform really good on the data. One promising possibility is to train the
distance function instead of using a hard, hand-crafted function based on
the training data.

Shape Partial Derivative: Another Measure 61

7.3 Shape Partial Derivative: Another Measure

In the previous sections, we discussed several measures that could be used
in the feature matrix. Note that both the number of clusters measure and
the average size of clusters measure is a sole description of a single level set.
Considering that we are interested in how level sets change, it might make
more sense to include a measure describing the trend of changes among
adjacent level sets. Here we introduce the idea of Shape Partial Derivative.

Looking at a single level set z � c in the (x , y , z) coordinate, we could
define the derivative d as the distance between boundary points divided by
the distance between two level sets. Namely

d �
f (x , y , c + δ) − f (x , y , c)

δ

where δ is a hyperparameter depending on the data.
The limitation of the feature matrix approach is that it only takes level

set level information, and wait for the distance function to discriminate the
changes as the height of level set changes. The shape partial derivative, on the
other hand, by taking differences between different level sets, summarizes
the information from each level set to a higher level. Thus it could more
vividly describe the shape of the object data.

Chapter 8

Data, Experiment and Results

8.1 Data

The dataset used in the PointNet paper is the Princeton ModelNet40 dataset
by Wu et al. (2014). It contains a list of the most common object categories
in the world, using the statistics obtained from the SUN database. Once
they established a vocabulary for objects, they collected 3D CAD models
belonging to each object category using online search engines by querying
for each object category term. Then, they hired human workers on Amazon
Mechanical Turk tomanually decidewhether each CADmodel belongs to the
specified cateogries, using their in-house designed tool with quality control.
To obtain a very clean dataset, they choose 10 popular object categories,
and manually deleted the models that did not belong to these categories.
Furthermore, they manually aligned the orientation of the CAD models for
this 10-class subset as well. All the dataset is available for download at their
wedsite.

In this project, in order to keep a comparison basis with lots of 3D point
cloud experiments project, we also use theModelNet dataset for training and
evaluation. However, as theModelNet40 dataset is too large and takes up too
much time with limited computing resources, we switch to the ModelNet10
dataset for the first step.

Figure 8.1 is an example of 15 objects for chairs in theModelNet10 dataset.
We can observe from the dataset that even in the same category, different
objects may be very different in their lookings. Some are very dense with
over 180000 points, while some others are very sparse with only several
hundreds points.

64 Data, Experiment and Results

Figure 8.1 ModelNet10 data example

Figure 8.2 ModelNet10 model size

In order to get a straightforward understanding of the size of each 3D
point cloud here, the histogram in Figure 2.2 is used to show the number of
points in each model. We can see that most of the models have 2500-7500
points, while some have much more or less. Since points with about 700
points are successfully in recognition, we assumes that most of the points in
most of the models are redundant, i.e., not "critical points“.

This dataset provides us with special meaning for study because of
this varied size of object point cloud. We’ll be able to decrease the size of
each object by identifying what points might be crucial in the process with
geometric methods.

Another issue with this dataset is that it fails to represent all the surface
information in the 3D point cloud. It does have a part specifying surface
mesh information, but we will ignore that part just for this project. As a
result, some objects might not look like it if we plot a scatter plot. This

Experiments 65

requires more effort to identify critical points. On the other hand, the
fact that projects like PointNet can identify objects only with point cloud
information again assures us that only a limited subset of the original points
are required to build a successful model.

8.2 Experiments

8.2.1 PointNet and Curvature

In this experiment, we took the CNNmodel from PointNet paper without
reconstructing the architecture, because it’s proved to work well on this
same dataset and we would have a fair comparison.

Figure 8.3 Re-visit the system flowchart: adding geometric features to CNN

This experiment runs with the whole data set, with train-test split of
80% vs 20%. It uses Harvey Mudd College Mathematics Department’s fast
machine to train the neural net and test on unseen data. The details about
the neural network architecture is introduced in Chapter 3.4.

8.2.2 Feature Matrix

Figure 8.4 Re-visit the system flowchart: using geometric without CNN

66 Data, Experiment and Results

In this experiment, we take our own feature matrix representation without
building a neural network. We define the distance function as discussed in
Chapter 7.

In terms of distance-based classification method, we take advantage of
the most traditional approach k-nearest neighbor with k � 5.

This experiment runs with the whole data set, with train-test split of 80%
vs 20%.

8.3 Results and Analysis

All the experiments results including accuracy and training time are sum-
marized in 8.1.

8.3.1 PointNet and Curvature

The results with fewer points are slightly less accurate than the original
result, but also take less time. Whenwe applied all new algorithms including
α-shape and cubic spline, the evaluation f-score decreases, but because the
size of the dataset is much smaller, the time taken is also significantly smaller.

This result suggests that those points selected by the simple combination
of α-shape and curvaturemight not be the critical points defined in Theorem
3.5. Analyzing the wrongly classified examples shows that the errors mostly
come from cases where the number of points is significantly smaller than
average, which makes the α-shape and interpolation algorithm fail since the
shape is not even clearly described by the point clouds.

However, what’s good about this result is that the training time per epoch
significantly decreases after the application of our pre-processing algorithm
due to reduction in number of points. This suggests a promising direction
for faster training and more geometrically intuitive understanding of the
convolutional neural network. This can be improved by designing more
domain-specific techniques to identify critical points.

8.3.2 Feature Matrix

Feature matrix, as a much more simpler algorithm designed from scratch,
shows much lower accuracy than the CNN-related approaches. This is
reasonable since our design is still in the first iteration. Details including
selection of features, designing of features and of the distance functions still
need much more careful consideration and dedicate work.

Future Works 67

However, the result is better than a dummy classifier without lots of
pre-train and much better than random. This suggests that our feature
matrix design does capture some essential aspects of a 3D object’s shape
which is useful for discrimination.

Table 8.1 Classification accuracy results

Approach Evaluation F-score Min per Epoch

Original PointNet 0.91 ∼ 15
Voxelized 0.81 ∼ 10

α-shape 0.73 ∼ 0.6
α-shape + 2D Curvature 0.70 ∼ 0.2
α-shape + 3D Curvature 0.70 ∼ 0.3

Feature Matrix 0.60 N/A
Feature Matrix + Shape Derivative 0.68 N/A

Feature Matrix + x − y − z Shape Derivative 0.75 N/A

8.4 Future Works

• The greatest limitation of our proposed algorithms is that the level
set algorithm strongly depends on the direction the object faces and
the type of the objects. In the dataset we use, the objects are in classes
of mostly furniture’s and daily objects with significant difference in
shape. And the dataset makes sure that we don’t need extra rotation
to make it stand straight on the "floor". In real world application,
obviously we don’t have these assumptions. So it’s worthwhile to
develop a rotation function so that we could find the correct direction,
possibly based on symmetry information. Even with successful and
stable rotation functions, this algorithm probably won’t work if we
want to discriminate objects with overall similar shapes but only small
differences (like application in medical cases).

• An alternative approach than figuring out a rotation algorithm is
entirely discarding usage of 2D level sets, but focusing on 3D object as
a whole. This direction is blocked at the beginning of our work, since
there is no existing package for calculating α-shape in Python. After it
is implemented, however, it would be natural to explore calculation of
curvature on surface with α-shape. Various kinds of surface curvature

68 Data, Experiment and Results

and manifold curvature would provide different insights on critical
point problems.

• Enrich the material of the feature matrix by adding more useful and
descriptive features. Currently we only have the number of clusters,
average area of cluster, and the shape derivative parameter. It would be
beneficial to add more features describing not only how a single level
set looks like, but also how does it "interact" with adjacent level sets.
Shape derivative is a possible direction representing how the shapes
of level sets are changing over time. Note that, however, increasing the
number of features will require more delicate hand-crafted distance
functions or more time to learn a good distance function.

Bibliography

Anand J. Kulkarni, and Suresh Chandra Satapathy. 2020. Optimization in
Machine Learning and Applications. Springer Singapore.

Botsch, Mario, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy.
2010. Polygon Mesh Processing. AK Peters / CRC Press. URL https://hal.inria.
fr/inria-00538098.

Chen, Xiaozhi, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. 2017. Multi-view
3d object detection network for autonomous driving. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Ciresan, Dan C., Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column
deep neural networks for image classification. CoRR abs/1202.2745. URL
http://arxiv.org/abs/1202.2745. 1202.2745.

Edelsbrunner, Herbert, and Ernst P. Mücke. 1994. Three-dimensional alpha
shapes. ACM Trans Graph 13(1):43–72. doi:10.1145/174462.156635. URL
https://doi.org/10.1145/174462.156635.

Fang, Y., Jin Xie, Guoxian Dai, Meng Wang, Fan Zhu, Tiantian Xu, and
E. Wong. 2015. 3d deep shape descriptor. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2319–2328. doi:10.1109/
CVPR.2015.7298845.

Flitton, Greg, Andre Mouton, and Toby P. Breckon. 2015. Object clas-
sification in 3d baggage security computed tomography imagery us-
ing visual codebooks. Pattern Recognition 48(8):2489 – 2499. doi:https:
//doi.org/10.1016/j.patcog.2015.02.006. URL http://www.sciencedirect.com/
science/article/pii/S0031320315000540.

Fouinat, Laurent, Pierre Sabatier, Fernand David, Xavier Montet, Philippe
Schoeneich, Eric Chaumillon, Jérôme Poulenard, and Fabien Arnaud. 2018.

https://hal.inria.fr/inria-00538098
https://hal.inria.fr/inria-00538098
http://arxiv.org/abs/1202.2745
1202.2745
https://doi.org/10.1145/174462.156635
http://www.sciencedirect.com/science/article/pii/S0031320315000540
http://www.sciencedirect.com/science/article/pii/S0031320315000540

70 Bibliography

Extended age model of lake lauvitel sediments. doi:10.1594/PANGAEA.
892908. URL https://pangaea.figshare.com/articles/Extended_age_model_of_
Lake_Lauvitel_sediments/11061785/1.

Gao, Y., M. Wang, D. Tao, R. Ji, and Q. Dai. 2012. 3-d object retrieval and
recognition with hypergraph analysis. IEEE Transactions on Image Processing
21(9):4290–4303. doi:10.1109/TIP.2012.2199502.

Gao, Zan, D.Y. Wang, Y.B. Xue, Guangping Xu, H. Zhang, and Y.L Wang.
2018. 3d object recognition based on pairwise multi-view convolutional
neural networks. Journal of Visual Communication and Image Representation
56. doi:10.1016/j.jvcir.2018.10.007.

Guerrero, Paul, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2017.
PCPNET: learning local shape properties from raw point clouds. CoRR
abs/1710.04954. URL http://arxiv.org/abs/1710.04954. 1710.04954.

Guo, Kan, Dongqing Zou, and Xiaowu Chen. 2015. 3d mesh labeling
via deep convolutional neural networks. ACM Trans Graph 35(1):3:1–3:12.
doi:10.1145/2835487. URL http://doi.acm.org/10.1145/2835487.

Haim, Niv, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron
Lipman. 2018. Surface networks via general covers. CoRR abs/1812.10705.
URL http://arxiv.org/abs/1812.10705. 1812.10705.

Hanocka, Rana, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman,
and Daniel Cohen-Or. 2018. Meshcnn: A network with an edge. CoRR
abs/1809.05910. URL http://arxiv.org/abs/1809.05910. 1809.05910.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
residual learning for image recognition. 1512.03385.

Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward
networks. Neural Networks 4(2):251 – 257. doi:https://doi.org/10.1016/
0893-6080(91)90009-T. URL http://www.sciencedirect.com/science/article/pii/
089360809190009T.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. Imagenet
classification with deep convolutional neural networks. Commun ACM
60(6):84–90. doi:10.1145/3065386. URL http://doi.acm.org/10.1145/3065386.

https://pangaea.figshare.com/articles/Extended_age_model_of_Lake_Lauvitel_sediments/11061785/1
https://pangaea.figshare.com/articles/Extended_age_model_of_Lake_Lauvitel_sediments/11061785/1
http://arxiv.org/abs/1710.04954
1710.04954
http://doi.acm.org/10.1145/2835487
http://arxiv.org/abs/1812.10705
1812.10705
http://arxiv.org/abs/1809.05910
1809.05910
1512.03385
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://doi.acm.org/10.1145/3065386

Bibliography 71

Li, Fei-Fei, J. Deng, and K. Li. 2010. Imagenet: Constructing a large-
scale image database. Journal of Vision - J VISION 9:1037–1037. doi:
10.1167/9.8.1037.

Ma, Ling, Rafael Sacks, Uri Kattel, and Tanya Bloch. 2018. 3d object
classification using geometric features and pairwise relationships. Computer-
Aided Civil and Infrastructure Engineering 33(2):152–164. doi:10.1111/mice.
12336. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12336. https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12336.

Masci, Jonathan, Davide Boscaini, Michael M. Bronstein, and Pierre Van-
dergheynst. 2015. Shapenet: Convolutional neural networks on non-
euclidean manifolds. CoRR abs/1501.06297. URL http://arxiv.org/abs/1501.
06297. 1501.06297.

Maturana, D., and S. Scherer. 2015. Voxnet: A 3d convolutional neural
network for real-time object recognition. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 922–928. doi:10.1109/
IROS.2015.7353481.

Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. The
MIT Press.

Phong, Bui Tuong. 1975. Illumination for computer generated pictures.
Commun ACM 18(6):311–317. doi:10.1145/360825.360839. URL https://doi.
org/10.1145/360825.360839.

Qi, Charles Ruizhongtai, Hao Su, KaichunMo, and Leonidas J. Guibas. 2016.
Pointnet: Deep learning on point sets for 3d classification and segmentation.
CoRR abs/1612.00593. URL http://arxiv.org/abs/1612.00593. 1612.00593.

Qi, Charles Ruizhongtai, Li Yi, Hao Su, and Leonidas J. Guibas. 2017.
Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. CoRR abs/1706.02413. URL http://arxiv.org/abs/1706.02413. 1706.02413.

Russell, Bryan C., Antonio Torralba, Kevin P. Murphy, and William T.
Freeman. 2008. Labelme: A database and web-based tool for image
annotation. International Journal of Computer Vision 77(1):157–173. doi:
10.1007/s11263-007-0090-8. URL https://doi.org/10.1007/s11263-007-0090-8.

Shi, B., S. Bai, Z. Zhou, and X. Bai. 2015. Deeppano: Deep panoramic
representation for 3-d shape recognition. IEEE Signal Processing Letters
22(12):2339–2343. doi:10.1109/LSP.2015.2480802.

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12336
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12336
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12336
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
1501.06297
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
http://arxiv.org/abs/1612.00593
1612.00593
http://arxiv.org/abs/1706.02413
1706.02413
https://doi.org/10.1007/s11263-007-0090-8

72 Bibliography

Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li. 2018. Pointrcnn:
3d object proposal generation and detection from point cloud. CoRR
abs/1812.04244. URL http://arxiv.org/abs/1812.04244. 1812.04244.

Su, Hang, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-
Miller. 2015. Multi-view convolutional neural networks for 3d shape
recognition. In Proc. ICCV.

Wang, Dominic Zeng, and Ingmar Posner. 2015. Voting for voting in online
point cloud object detection. In Proceedings of Robotics: Science and Systems.
Rome, Italy.

Wang, R., S. Shan, X. Chen, Q. Dai, and W. Gao. 2012. Manifold–manifold
distance and its application to face recognition with image sets. IEEE
Transactions on Image Processing 21(10):4466–4479. doi:10.1109/TIP.2012.
2206039.

Wu, Zhirong, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and JianxiongXiao. 2014. 3d shapenets: A deep representation
for volumetric shapes. 1406.5670.

Yan, Xinchen, Jimei Yang, Ersin Yumer, Yĳie Guo, and Honglak Lee. 2016.
Perspective transformer nets: Learning single-view 3d object reconstruction
without 3d supervision. 1612.00814.

Zhao, Wenbo, Xianming Liu, Yongsen Zhao, Xiaopeng Fan, and Debin
Zhao. 2019. Normalnet: Learning based guided normal filtering for mesh
denoising. 1903.04015.

Zheng, Yefeng, Bogdan Georgescu, and Dorin Comaniciu. 2009. Marginal
space learning for efficient detection of 2d/3d anatomical structures in
medical images. In Information Processing in Medical Imaging, eds. Jerry L.
Prince, Dzung L. Pham, and Kyle J. Myers, 411–422. Berlin, Heidelberg:
Springer Berlin Heidelberg.

http://arxiv.org/abs/1812.04244
1812.04244
1406.5670
1612.00814
1903.04015

	Geometric Unified Method in 3D Object Classification
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction to 3D Object Classification
	Introduction to Convolutional Neural Network
	Previous Works
	Volumetric Convolutional Neural Network
	Surface Polygon Mesh
	Multi-View Convolutional Neural Network
	PointNet: Direct Point Cloud Representation
	Geometric Feature Extraction

	Geometry and CNN: Comparison and Combination
	Alpha Shape: The Shape Formed By Points
	A Game With Ice Cream Spoon
	Definition
	Edelsbrunner's Algorithm
	Alpha-shape on Real Examples

	Curvature: The Amount of Deviation
	Basic Curve
	Interpolation and Curvature in Real Data
	Curvature for Surfaces
	Curvature for Riemannian Manifold

	Feature Matrix and Shape Partial Derivative
	Feature Matrix: Idea and Definition
	Distance Function Design
	Shape Partial Derivative: Another Measure

	Data, Experiment and Results
	Data
	Experiments
	Results and Analysis
	Future Works

	Bibliography

