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Abstract

The new work in this document can be broken down into two main parts.
In the first, we introduce a formalism for viewing the signed Gauss code

for virtual knots in terms of an action of the symmetric group on a countable
set. This is achieved by creating a “standard unknot” whose diagram contains
countably-many crossings, and then representing tame knots in terms of the
action of permutations with finite support; wild knots with topologically
discrete crossing sets can be encoded by permutations for which the “finite
support” condition is dropped. We present some preliminary computational
results regarding the group operation given by this encoding, but do not
explore it in detail. We then discuss some of the main challenges to working
with this representation, and finish with a discussion of directions for future
work.

To make the encoding above formal, we require the aforementioned
“unknot with a countable sequence of crossings;” building up the machinery to
work with these kinds of objects is the focus of the second part of the project.
Note that initially, the presence of infinitely-many crossing might appear
to be a contradiction to the finiteness constraint in Reidemeister’s theorem;
we show that this is not the case, and introduce the notion of feral points
to represent areas of our diagrams in which it is not immediately obvious
whether the knot is wild or tame. Our countable-crossing unknot possesses
such a point. We employ uniform convergence to create sufficient conditions
for guaranteeing the preservation of ambient isotopy under limits, and resolve
a seeming contradiction given by the wild arc of Fox-Artin. Finally, we show
that any knot (wild or tame) whose crossings are topologically discrete in a 2D
diagram is ambient isotopic to a countable union of polygonal segments, and
discuss implications for extending Reidemeister’s theorem in this context.
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Preface

A copy of this document and of all of its source code can be found at
https://github.com/redpanda1234/thesis-public.

Given the scope of this project, despite our best efforts, there are probably
a few typos. If any are spotted, we highly encourage the reader to submit
an issue report1 or contact the author directly at fkobayashi@g.hmc.edu.
Similarly if one discovers any factual inaccuracies.

Notation

We record some notational conventions used throughout this document. First,
a note on some non-standard glyphs:

Note: we will sometimes make use of glyphs from the two Japanese
phonetic alphabet systems, ひらがな (IPA:a [çiRagaŤna]) and カタカナ
(IPA: [katakaŤna]). The motivation is that (a) more commonly-employed
glyph systems (e.g., Greek / Roman) are heavily overloaded in mathe-
matics, and (b) the ひらがな characters つ, の, ゆ, and め look quali-
tatively similar to

• Planar isotopy (つ),
• Reidemeister I (の),
• Reidemeister II (ゆ), and
• Reidemeister III (め)

respectively, so they seemed a convenient alternative in the context of
knot theory.

It’s worth mentioning that it’s possible to typeset these symbols with-
out having to use X ELATEX or LuaLATEX by using the newunicodechar

1URL: https://github.com/redpanda1234/thesis-public/issues

https://github.com/redpanda1234/thesis-public
https://github.com/redpanda1234/thesis-public/issues
https://github.com/redpanda1234/thesis-public/issues
mailto:fkobayashi@g.hmc.edu
https://github.com/redpanda1234/thesis-public/issues


xx Preface

package and manually specifying the code point in udmj30.b The author
has made a small package for LATEX that does this; it can be found on
Github.c

aSee https://en.wikipedia.org/wiki/International_Phonetic_Alphabet and
https://en.wikipedia.org/wiki/Help:IPA/Japanese

bSee https://tex.stackexchange.com/a/171614
chttps://github.com/redpanda1234/kana.sty

Table of Symbols

Notation Meaning Page (if applc.)

つ Reidemeister “0” move (planar isotopy)
の Reidemeister I move
ゆ Reidemeister II move
め Reidemeister III move
ラ Generic Reidemeister move
ら Alt. to ラ

K Generally reserved for knots
K Generally reserved for polygonal knots
Sn The standard n-sphere
Dn The standard n-ball (∂Dn = Sn−1)
4 Used for simplices
〈A〉 Sometimes used for convex hull(A)

(a, b)	 Open interval in S1 151
[a, b]	 Closed interval in S1 151
a≺	 b≺	 c b ∈ (a, c)	 151

Tstd The standard topology on Rn

[a, b] {x ∈ R | a ≤ x ≤ b}
(a, b) {x ∈ R | a < x < b}
Br(x) Ball of radius r centered at x
(xα)α∈� Seq. of x indexed by α ∈ �
(xα)α∈� ⊆ X Shorthand for a seq. of points in X.
xα ↗ x xα increase to x
xα → x xα converges to x
xα

u−→ x xα converges to x uniformly
xα ↘ x xα decrease to x

A Closure of A
Ac Set complement of A
X \A {x ∈ X | x 6∈ A}
X −A Alt. to X \A
A ⊆ X A is a subset of X
A ( X A is a proper subset of X

https://github.com/redpanda1234/kana.sty
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/Help:IPA/Japanese
https://tex.stackexchange.com/a/171614
https://github.com/redpanda1234/kana.sty
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f : A ↪→ B f is injective from A to B
f : A� B f is surjective from A to B
f : A ↪� B f is a bijection between A and B
f |S f restricted to S
←−
f (A) Inverse image of A under f
−→
f (A) Image of A under f

Z>0 Positive integers
Z≥0 Non-negative integers
R>0 Positive reals
R≥0 Non-negative reals
Z+ Alt. for Z>0

R+ Alt. for R>0

s.t. Such that
囧 Contradiction2

� QED
� QED for small proofs (e.g. claims, sketches)
♦ Used to denote the end of definitions, etc.

[IPA] Occasionally used for IPA pronuncation
〔words〕 Used to help parse large noun phrases

Table 1 Some notational conventions

Flipbook

A flipbook showing the construction of a (7, 2) knot has been provided in
the right margin for the reader’s entertainment.

Document Formatting

Throughout this document we will occasionally use a leftbar environment
to visually distinguish some parts of the document from others. E.g., in
providing a recap of a series of proofs, we might do something like

Recap: The above results are rather technical, but they are important
because Lemma 1 gives [. . . ], which will allow us to show [. . . ] later.

If pursuing an iff proof, it will likely be formatted as follows:

(⇒) : We want to show A=⇒B. [. . . ]

(⇐) : We want to show B=⇒A. [. . . ]

2https://en.wiktionary.org/wiki/%E5%9B%A7#Chinese

https://en.wiktionary.org/wiki/%E5%9B%A7#Chinese
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We mentioned this in the notation table, but we’ll do so here again. Sometimes,
if there is a particularly nasty-to-parse noun phrase, we’ll wrap it in〔tortoise
shell brackets〕3 to make the sentence easier to read (we hope).

Finally, wherever possible, we have sought to insert hyperlinks for cross-
referenced material (e.g., theorems, citations, equations, etc.) so that readers
using a PDF copy can navigate it more easily. The coloring scheme is the
default for the hyperref package, which is as follows.

• Red for linkcolor,

• Black for anchorcolor,

• Green for citecolor,

• Cyan for filecolor,

• Red again for menucolor,

• Cyan again for runcolor, and

• Magenta for urlcolor.

3きっこ う([kik^kofl:]).



Chapter 1

Introduction

The night Max wore his wolf suit and made mischief of one kind
and another

his mother called him “WILD THING!”
and Max said “I’LL EAT YOU UP!”

so he was sent to bed without eating anything.

—Maurice Sendak, Where the Wild Things Are

Before we begin: if the reader has not yet read the preface, we would like
to take this opportunity to mention its existence. Among other things, it
contains a table of notation (Table 1) and a brief note on the formatting of
the document.

1.1 Two Overviews of the Project

We will give two birds-eye views of some of the questions we’ve examined over
the course of this project. The first (Section 1.2) is presented in chronological
order, so as to capture more of the overarching motivation to the topics we
pursued. We hope this will help to ground the reader in a sense of how each
component of the project grew out of the previous ones, and that it can also
help orient new researchers who are investigating similar questions to the
ones we pursued. Note, by virtue of this choice in presentation, it might be
harder to get a sense for “where things are going” while reading this section.

To address this, the second (Section 1.3, Page 8) contains more technical
detail, and stays much closer to the final layout of topics within the document.
Essentially, it is meant to function as an annotated table of contents, listing
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big takeaways and/or theorems from each section of the report. It is also
much terser than the first, owing to its different objective.

Naturally there is some redundancy between these two summaries, but we
hope that their different focuses will afford clarity to the reader in navigating
the content. On a final note, we should mention that careful definitions
of all the concepts presented below can be found later; the ones here are
occasionally given in loose terms to help keep the pacing brisk.

1.2 A Chronological Overview

At the outset, our goals were as follows.

(1) Give clear/engaging exposition on the foundations of knot theory,
paying close attention to rigor.

(2) Explore the extent to which unknotting moves give us way to define
new algebraic structure on the category of knots. In particular, we were
interested in the loosely “multiplicative” structure of the connected sum,
and wanted to see if we could find an underlying “addition” operation
corresponding to it.

We leave it to the reader to judge our handiwork regarding (1). Regarding
(2), after a semester of largely-fruitless exploratory work, it became clear
that this was too ambitious for a 1-year project.1

However, there was at least one intriguing result that came out of our
attacks. In attempting to define all modifications of the Gauss code in terms
of group actions, we needed a way to treat all knots as if they contained the
same number of crossings. Essentially, this was because we needed a way
to interpret what “flip crossing 17” would mean if we only had a 3-crossing
knot. This led us to the following example of a knot that appears to be
ambient-isotopic to the unknot, despite having infinitely-many crossings
(shown in Fig. 1.1).

1That’s not to say we did nothing — we have some interesting exploratory results,
but most of them are computational, as working theoretically turned out to hinge on the
following example (which led us down the bottomless rabbit hole of wild knot theory).
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L1

L2

L3
L4

L5 L6 L7 L8 L9

Figure 1.1 A strange unknot. . .

We’ll show this is a valid embedding of S1 when we talk about it in depth
in Section 5.1.2 Note, the proof we will give in that section differs from the
sketch we’re about to describe; the latter came first chronologically (and
ends up being a bit more powerful), but is messier to work with.

Anyways: The loose idea is that we can create a uniformly convergent
sequence of ambient isotopies yielding Fig. 1.1 in the limit. We can show that
the associated homeomorphisms are uniformly convergent, and that their
inverses are as well. Then, after arguing bijectivity, we can apply the fact that
a uniform limit of continuous functions is continuous to get a homeomorphism
in the limit. Finally, we apply a uniform convergence argument to the overall
ambient isotopy to show it is continuous.

This example was particularly puzzling, as it seemed to create inconsis-
tencies in the common definitions of tame knots, a handful of which are given
below:

Common Definition 1. We say a knot K : S1 ↪→ R3 is tame iff it is ambient
isotopic to a polygonal knot. ♦

Common Definition 2. We say a knot K : S1 ↪→ R3 is tame iff for every point
x on K, there exists a neighborhood Ux such that the pair (Ux,K ∩ Ux) ∼= the

2In particular, see Theorem 5.3
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standard (ball, diameter) pair. ♦

Common Definition 3. We say a knot K : S1 ↪→ R3 is tame iff it can be thickened
to an embedding of a solid torus. ♦

Common Definition 4. We say a knot K : S1 ↪→ R3 is tame iff it has finitely
many crossings. ♦

In particular: we were claiming that our K satisfied Common Definition 1
(which would also imply satisfying Common Definition 2), but it was in
no way obvious that it satisfied Common Definition 3. Further, Common
Definition 4 seemed to be outright violated. Hence the project shifted focus
to examining the foundations of Knot Theory in an attempt to verify

1. Whether or not any inconsistency was actually present, and

2. If so, where? If not, why didn’t we think so?

For (a), the first plan of attack was to try and determine whether there was
a flaw in our theorems. One was not forthcoming to us.3

Having failed to find an error in our proofs (but being convinced at the
time that a flaw must exist), we set about trying to disprove our claim by
finding another context where the same technique yielded a contradiction.
This led us to the following example of Fox and Artin (1948), here drawn as
an arc4 made of countably-many line segments (Fig. 1.2)

3Of course, this does not mean an error does not exist (the reader is encouraged to get
in touch if the find a problem), but we are fairly confident in our techniques, especially
given that we provided multiple approaches (E.g., Theorem 5.3, Section 5.1.1).

4An arc is an embedding of [0, 1] ↪→ R3 (as opposed to a knot, which is an embedding
of S1 ↪→ R3).
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Figure 1.2 The Wild Arc of Fox-Artin

Interestingly, although it’s possible to use Reidemeister II moves to
undo any finite number of the “stitches” in the above, this knot is provably
inequivalent to any tame knot. To show this, Fox and Artin developed an
invariant for “tameness” based on the fundamental group of a nested sequence
of closed neighborhoods of the wild point.5 The idea is that by showing that
the induced homomorphisms at each step are necessarily nontrivial, one can
show no ambient isotopy to a tame arc exists.

At this point, we took a deep dive into investigating the question of when
two arbitrary knots are ambient-isotopic. In particular, we wanted to know
when we could use countable sequences of Reidemeister moves. This became
the focus of most the remainder of the project.

As it turns out, this was far harder than we suspected. In fact, across
multiple books, papers, and conversations with knot theorists, we heard
sentiments like the following:

• “It would be fair to say that we know next to nothing about wild
knots. Hence, we will not discuss them. We leave the problem to future
generations.” -An unnamed book

• “I feel like I really know nothing about wild knots. . . and I think most
knot theorists would say the same (about themselves as well as me).”
-An unnamed knot theorist

5We reproduce their argument in Example 7.2.
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And so on. Further, a book we just recently discovered that treats the general
topic of embeddings of manifolds (Daverman and Venema (2009)) has this
to say about the requirements for approaching the topic:

“What background is needed for reading this text? Chiefly, a knowledge
of piecewise linear topology. [Although] to be honest, [we must also]
presume extensive understanding of both general and algebraic topology
[. . . ] as well. In an attempt to limit our presumptions, we [. . . ] shall take
as granted the results from two fairly standard texts on general and
algebraic topology [. . . ] each of which can be treated quite effectively
in a year-long graduate course. Unfortunately, even [these] turn out to
be insufficient for all our needs.”

Naturally, all of this would be sure to strike fear into the heart of any
undergraduate attempting to tackle the problem, particularly one who has
yet to actually complete a single formal course in Topology. Thus, it is a
good thing we did not discover these problems until near the completion of
the project.

Being blithely unaware of the dangers ahead, we forged dutifully onward.
Due to some confusion with the definition of a locally-finite simplicial complex,
we ended up focusing a large amount of our effort on studying the question of
which knots can be converted (through ambient isotopy) to a countable union
of polygonal segments. The source of the confusion was as follows: If one
ignores the weak topology6 and views simplicial complexes solely in terms of
partitioning Rn, then it becomes possible to find “locally-finite” “simplicial
complexes” realizing many wild knots as chains of 1-simplices (with the wild
points being included as separate 0-simplices). The prototypical example is
to do something like the following:

For all n ∈ N, let an =
{

1
n+1

}
, bn =

{
1
n

}
, and In =

[
1

n+1 ,
1
n

]
. Also let

I∞ = {0}. Then
K = {I∞} ∪

⋃
n∈N
{an, bn, In}

satisfies the following properties:
1. For all σ ∈ K, every face τ of σ is also an element of K
2. For all σ0, σ1 ∈ K, if σ0 ∩ σ1 6= ∅, then τ = σ0 ∩ σ1 is a sub-face

6Or, in our case, (a) simply does not know about its existence, followed in short time
by (b) even upon learning about its existence, does not understand its significance
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of both σ0 and σ1, and
3. For all 0-simplices σ ∈ K, σ is a vertex of at most finitely-many

simplices in K.

At first glance, one might protest that I∞ should really be a face of infinitely-
many of the 1-simplices. Morally, maybe yes. But definitionally, no, this
is actually not the case. I∞ is only incident in one simplex, namely itself.
Indeed, one can see that for all n ∈ N, In ∩ I∞ = an ∩ I∞ = bn ∩ I∞ = ∅.
We can create analogues in higher dimensions; E.g., an R2 example is given
by the following.

Figure 1.3 A “locally-finite” simplicial complex.

With this as motivation, we built up some formal machinery for working
directly with diagrams of wild knots provided that the crossing points remain
transverse and discrete.7 This allowed us to show in Theorem 9.7 that all such
knots are ambient isotopic to representatives comprised of a countable union
of polygonal segments. This was very exciting, since it seemed it could open
the door to attempting to generalize Reidemeister’s theorem to countable
sequences of moves. We already had an if direction from Theorem 7.4; we
were interested in an only if. Unfortunately, we did not have time to see it
through. This would be an interesting direction for future work.

Having taken a deep foray into the topic of wild embeddings & built up
more machinery, at long last we returned back to our countable Reidemeister
I example, now much more confident in its correctness. Using it as the corner-
stone, we built up some basic definitions for our desired algebraic framework
(Section 5.2), and created some basic tools for performing computational

7For those familiar with the subject matter, this relaxes our axioms for “regular
diagrams” to allow possibly countably many crossings.
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search.8
We should emphasize that the primary strengths of this new formalism

do not stem from it delivering us a new understanding of the equivalence
problem (although its possible that connections will arise in the future), but
rather from the fact that it seems to offer a natural language for studying
unknotting moves. We would be very interested in seeing future work in this
direction.

This more-or-less wraps up the timeline for the project. In composing
this report, we were given an opportunity to reflect on what the “heart” of
the project was. From the above, it might seem like an answer is hard to
glean, given the wide range of tangents we embarked on. We would agree.
In fact, we think that in it’s own way, the〔“slipperiness” of identifying the
correct road forward in absence of established machinery〕was the defining
feature of our work. We found that often, as soon as we stepped outside
the scope of Reidemeister’s theorem, the standard intuition we used to
approach knot theory was fundamentally challenged at every turn. There
were many theorems we took for granted — e.g., “ambient isotopy and ambient
orientation-preserving homeomorphism are equivalent” — that turned out
to contain hidden PL hypotheses that we did not quite understand the
significance of.

Thus, in choosing how to present our findings, we decided to strive for
being as encyclopedic as possible, to help orient those interested in future
work. To that end we have placed particular attention on (a) pointing out
ways in which this perspective might be useful in studying tame embeddings,
(b) drawing attention to important counterexamples that challenge our
intuition, and (c) striving to be maximally rigorous in working with our
proofs.

We hope they find the reader well.

1.3 The More Technical Overview

The document is structured as follows.

(I) Chapter 1: In this chapter (which you are reading right now), we give
two high-level overviews of the project, including one that has a more
personal/chronological feel to it (Section 1.2), as well as a more detailed
“table of contents,” which includes, among other things, a recursive
reference to its own contents (Section 1.3).

8The code is available on Github: https://github.com/redpanda1234/permutation-knots

https://github.com/redpanda1234/permutation-knots
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(II) Part I: Fundamentals of Knot Theory. Here, we give an overview of the
big picture ideas in knot theory, and list some basic definitions. We
encourage those more familiar with the topics to read Chapter 2 but
skip the rest.

1) In Chapter 2, we discuss the knot equivalence problem, with
particular focus on an analogy with determining equivalence of
arithmetic expressions. We discuss the differences between these
two contexts (e.g., the absence of a good simplification algorithm
for knots), as well as what kinds of additional structure on the knot
category might help get around some of these difficulties in the
future. This serves to motivate the approach taken in Chapter 5

2) In Chapter 3, we provide the standard definitions for knots, ambi-
ent isotopy (highlighting the problems with choosing something
like isotopy instead as our definition of equivalence), tameness,
regular diagrams, orientation, and so on. This is targeted mainly
at those who are new to the topic; experts will probably find
nothing surprising. One thing of note is that we place emphasis
on highlighting the fact that going from “working with knots” to
“working with knot diagrams” should not be taken for granted.

(III) Part II: Combinatorial Representations. Here, we discuss what we call
combinatorial representations, i.e. ways of abstracting information in
knot diagrams to strings that can be manipulated purely algebraically
/ combinatorially.

4) In Chapter 4, we introduce the signed Gauss code for a knot
diagram. We discuss the Gauss code encoding of Reidemeister
moves, especially the planarity constraint of Reidemeister II. A
significant portion of the exposition is dedicated to discussing
what we have called the diagram graph (Definition 4.3), which
is a graph constructed from the Gauss code that is particularly
natural for computational manipulation. In particular, we prove
that it has a unique planar embedding, and thus can be used to
verify proposed Reidemeister II moves (we give a sketch for a
greedy algorithm performing this check).
Finally, we finish by introducing virtual knots as a way to avoid
the planarity concerns of Reidemeister II, and work instead in a
more purely combinatorial context. Discussion of the forbidden
moves leads us to briefly mentioning unknotting moves, and the
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intriguing sense in which they encode “recipes” for how to build
knots from the unknot.

5) In Chapter 5, motivated by the discussion of unknotting moves,
we build up basic definitions for our formalism that connects
Gauss codes to actions of the symmetric group on a countable
set. The desire here is to flesh out the idea of unknotting moves
as “building” knots and “converting them into each other.” Un-
fortunately, it seems like on a purely theoretical level, it’s not
possible to reconcile knot equivalence with the group structure in
a sensible way. Nonetheless, we did see some unexpected patterns
in performing computer searches with sage.
Underpinning all of our results in this chapter is the example
of an unknot with a countable number of crossings. To show
this is valid, we use a slightly simpler version of the uniform
convergence proof we give later (Theorem 7.4). To be extra sure
that the result is valid (even if our proof turns out to secretly
contain a flaw), we construct a C1 embedding for our example of
interest (Section 5.1.1), which suffices to guarantee it is tame (see
Appendix A).

(IV) In Part III, we shift our focus to general topological embeddings, withe
the goal of getting a better understanding our examples of countable
Reidemeister I moves.

6) In Chapter 6, we clarify common definitions for tameness and
wildness that we have found in the literature, reconciling those
that we can with the terms used when studying more general
embeddings of m-manifolds into n-manifolds. We try to be par-
ticularly cognizant of which category we are working in at all
times.

7) In Chapter 7, we begin building up machinery for our later work
in studying ambient isotopy for general topological embeddings.
We develop two tools (strand separation and uniform converence)
which prove useful for working with wild knots whose wild points
are topologically discrete. We do not build machinery for working
with everywhere-wild knots.

8) In Chapter 8, we apply these tools in the case of R2, and show
that all curves K : S1 ↪→ R2 are ambient isotopic (this will be
important when we move to R3 in Chapter 9). In Section 8.2, we
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discuss the pathologies that can arise in diagrams in R2, which
we refer as feral behavior.

9) In Chapter 9, we use the techniques of Chapter 7 and Chapter 8
to study ambient isotopies in R3. The loose idea is that as long
as the crossing points in our diagrams are toplogically discrete,
we have a bunch of strands that essentially act like they’re curves
embedded in R2 (because, after all, they don’t cross). This reduces
the behavior to results covered by Chapter 8. By then showing we
can also constrain the behavior of our embeddings near crossing
points, we can then show that if a wild knot has a diagram with
topologically discrete crossings, then it is ambient isotopic to
a representative comprised of a countable union of polygonal
segments. We conclude with some directions for future work, and
offer a very brief sketch of how one might build an analogue to
Reidemeister’s theorem in this context.

10) Lastly, in Chapter 10, we summarize the results of the project,
and discuss possible ways of turning our “crossing-discrete wild
knots” into a category more directly analogous to the PL case.
This concludes the main body of the document.

(V) Part IV is the appendix. Here, we include some miscellany that didn’t
fit particularly well into any parts of the main document.

A) Appendix A contains two extra feral knots that we have parame-
terized by a C1 embedding.

B) Appendix B contains a basic crash-course in PL Topology, with
an emphasis on the “crash” part.

C) Appendix C includes misc. data from the project. This includes
tables for the cycle representations computed in Chapter 5.
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Fundamentals of Knot
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Chapter 2

Motivation

That very night in Max’s room a forest grew
and grew–

and grew until his ceiling hung with vines
and the walls became the world all around

—Maurice Sendak, Where the Wild Things Are

One of the most fascinating things about knot theory is the disconnect
between the relative ease of posing a question and the great difficulty of
providing a rigorous answer to it. Granted, many mathematical fields are like
this — but knot theory is somewhat curious in the extremity of the mismatch.
Many of the most fundamental problems in the field can be boiled down to
ideas that are accessible to any lay-person, and yet are quite challenging to
approach mathematically.

Understanding why is the goal of this chapter of the document. As a
motivating example, we discuss the problem of knot equality through analogy
with equality of arithmetic strings. This analogy ends up also serving as the
motivation for our proposal that studying unknotting moves could offer new
insights into the structure of the knot category.

In Chapter 3, we give background definitions, with a focus on emphasizing
the fact that relationships between knots and knot diagrams are subtle, and
should not be taken for granted. As we will see later on, loosening what we call
“an admissible diagram” can give us some valuable tools for understanding
Knots.

Lastly, in Section 3.3 we offer a brief discussion of polygonal knots. Mainly,
this is a gallery of some pictures; rigorous treatment is left to the section
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in the appendix about PL Topology and our examination of tameness in
Part III.

The remainder of the discussion in this chapter is presented at a high
level, with just a few (optional) formal definitions.1 We hope the ideas remain
both〔accessible to a non-technical audience〕and〔interesting for experts〕.

2.1 The Big Picture

Picture
Figure 2.1 A Bad Joke

In mathematics, a knot is an embedding of a circle into another space.2
Intuitively, think of taking a rope and twisting it around in space in all sorts
of ways, finally fusing the ends together so that we get a closed loop:

Figure 2.2 Constructing a knot

1We hope the more rigor-oriented readers will be patient in tolerating some imprecision
for the time being, but if not, formal definitions can be found in Chapter 3, Page 31.

2In loose terms, “embedding” means that (a) if we zoom in closely enough to our knot,
it looks like a line, and (b) if we walk all the way around in one direction, we get back to
where we started. This is made formal in Section 3.1.
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Note, our loop does not need to have any twists to be considered a knot
— a regular old circle is a perfectly valid knot! We call this the unknot, and
we’ll see that it has some interesting properties later (e.g., it acts like the
number 0 for a knot “addition” operation).

We say two knots K1, K2 are equivalent (denoted K1 ∼= K2) if we can
deform K1 into K2 without cutting the rope and gluing it back together. For
example, the left two knots in the diagram below are equivalent, and both
are distinct from the knot on the right.3

Figure 2.3 Two equivalent knots and one inequivalent one

One of the central questions in knot theory is “given diagrams D1 and
D2 how do we determine whether they represent the same knot?” If starting
from first principles, this question is HARD to approach mathematically; in
fact it requires a bit of topological knowledge to even formulate the question
properly. Thankfully, in practice we don’t usually need to think about any of
that because of a theorem proven by Reidemeister (1927) and, independently,
Alexander and Briggs (1926). In essence, they were able to show that two
“well-behaved” diagrams4 D1, D2 represent the same knot iffD1 can be turned
into D2 by a sequence of the following so-called Reidemeister moves:

∼ ∼ ∼

which are creatively referred to (in left-to-right order) as “Reidemeister
I,” “Reidemeister II,” and “Reidemeister III,” respectively.5 Note, while
Reidemeister III might look complicated, it’s really just saying that we can
move one strand between the crossing formed by two other strands.

3At this point, it is worth noting that there’s a technical distinction between a diagram
for a knot and the actual knot itself. We’ll return to this later when we define things
rigorously, but gist is that knots live in R3 and diagrams are projections onto R2.

4Again, we’ll discuss what “well-behaved” means in great detail during Chapter 3, but
it boils down to “the string only crosses itself in an X shape.”

5We also include another move, which allows us to bend the string arbitrarily as long
as we don’t introduce a crossing.
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On a theoretical level, this is a very elegant characterization of knot
equivalence. However, in practice, determining equivalence is still quite
challenging. Even if D1, D2 are relatively simple and both represent the same
knot, the sequence of moves relating the two can be quite long. It’s even worse
when K1 6∼= K2, because then we have to prove a negative result: namely,
that there does not exist a sequence of Reidemeister moves takes D1 to D2!
Again, this is usually quite hard. Though Algorithms deciding the problem
do exist, they are currently far too inefficient to be practical. For those
who are familiar with Complexity Theory: It has been proven (Hass et al.
(1998)) that a special case of knot equality is at least NP. Reidemeister-based
algorithms for the general problem have runtimes like O(k ↑↑ n) (Lackenby
(2016)), which makes even an NP solution seem out of reach for now.

But why? This seems like it should be easy! Our objects are very tangible,
the space we’re working in (R3) is well-behaved, and we aren’t asking for
anything too fancy — just a simple way to determine equality. How can we
understand the source of this difficulty? Here, an analogy with something
more familiar will be helpful.

2.2 An Analogy

Let’s say I hand you two integers n,m. Would you be able to tell me if
n = m? Most likely the answer is yes. For instance, if I said

n = 8 m = 31

you’d probably be able to distinguish n and m. In particular, they’re
uh. . . not. . . the same number.

But now let’s frame the same problem in a slightly different way. Suppose
I had given you something like

n = ((1 + 3) + 3) + 1 m = (((3 · 3) · 3) + (2 · 2)) · 1

instead. Could you still determine if n = m? Maybe mental arithmetic isn’t
your forte, but in theory the answer is “yes” — these equations give us the
same solutions for n,m as before, we just have to do a little bit of extra work
to see it.

n = (4 + 3) + 1 m = ((9 · 3) + (2 · 2)) · 1
= 7 + 1 m = (27 + (2 · 2)) · 1
= 8 m = (27 + 4) · 1
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For all intents and purposes these are cosmetic differences; they don’t make
the problem too much harder to solve than it was before. We can just simplify
the expressions, see that the left gives 8 and the right gives 31, and then we
know 8 6= 31 so we can go on our way.

This continues to hold even when the expressions get comically large, e.g.
n = 2 · (2 · (8 · (21− 38)− 7 · 6) + (4 · (21 + (−10 · (2− 4))) + 7 · 28))
m = (2 · (−3 · (1500))− 4)− (4 · (18− (8 · (10− (3− 12))))) · 15 + 5 · (25 · (3 · 4)− 101)

While simplifying these by hand might be tedious and unpleasant, it’s
certainly something we could get a computer to do. In fact, programs for
this task are fairly efficient, being able to handle expressions far larger than
the above with near-instantaneous results.6

The point of these examples is the following insight: When we say things
like “n = 8,m = 31,” we are often really thinking about equivalence classes
of arithmetic expressions that can be converted into each other using the
standard rules of algebra.7 Hence, when we say things like

8 = ((1 + 3) + 3) + 1

we really mean

8 ∈ [8] and ((1 + 3) + 3) + 1 ∈ [8].

In a deep sense, this is the same kind of problem we’re tackling with knots.
We’re given two “expressions” (knot diagrams) representing our objects of

6To be precise: We claim we can verify equality of two n-bit integer arithmetic expres-
sions in O

(
n log2(n)

)
time — not too much worse than the O(n) time for a direct equality

check. We would like to acknowledge Jonathan Hayase for helping to produce the argument
below.

Sketch: First, note that given any two k-bit numbers, +,− are O(k) and × is O(k log k).
Hence, without loss of generality the worst case for our problem is an input of the form
I = x1×x2×x3×· · ·×xm where m < n and each of the xi are of the same length (requires
some finagling to argue).
Observe that multiplying two k-bit numbers yields (at most) a 2k-bit integer. Hence,

employing a divide-and-conquer approach, we can perform the total computation for I
recursively by computing (x1 × x2), (x3 × x4), . . . , (xm−1 × xm), and then using this to
compute ((x1 × x2)× (x3 × x4)), and so on. At the `th pass, we multiply 2log(n)−` pairs
of numbers, each of length 2` bits, and there are log(n) passes total. This gives us a final
runtime of

∑log(n)−1
`=1 2log(n)−` · 2` log(2`) = n ·

∑log(n)−1
`=1 ` = n · (log(n)−1)·log(n)

2 , which is
O(n log2(n)).

We run this algorithm twice (once for each side of the equation), and then finally check
the resulting products for equality, which runs in O(n). This gets us a total runtime of
O(n log2(n)), which is quite fast.

7Recall, we denote the equivalence class of x by [x].
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interest, and we want to know whether they can be converted into each other
by a sequence of rules (Reidemeister moves) that preserve equivalence. In
this sense, Reidemeister moves can be thought of as analogous to things like
“adding 0 to both sides” or “rearranging terms.” That is,

0 = 0 + (1− 1)

is philosophically similar to

∼=

Of course, the analogy isn’t perfect. If it were, then we could just import
all of our techniques for simplifying expressions in Z to the context of Knots
and the problem would be solved! In the next section, we’ll scrutinize some of
the differences that cause the analogy to break down. Understanding exactly
where we lose the structure we rely on in Z will be essential in motivating
the questions we’ll examine throughout the rest of this document. Hence, we
now turn our attention to these concerns.

2.3 Where the Analogy Breaks Down

First we define some helpful vocabulary to make concepts like “simplest form”
a bit more rigorous. Note, the terms below are sometimes used with different
meanings in different fields.

Definition 2.1 (Normal Form). Let S be a set of strings with an equivalence
relation ∼ and a length function `.8 Let s ∈ S. Then we say s is in normal form
(also sometimes called simplest form) if there exists no s′ ∈ S such that s′ ∼ s and
`(s′) < `(s). ♦

Basically, a normal form for some s is the shortest possible expression
equivalent to s. In the integers, we’d say the string〔1 + 1〕is not in normal
form, as it requires 3 characters to write out (two numerals and a + sign),

8` just counts the number of symbols that appear in our written representation of
elements of S. E.g., if the string 123 ∈ S, we’d have `(123) = 3.
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while〔2〕only requires 1 character to write. For knots, one of the most
natural choices for ` is the number of crossings in the knot.

Note, we do not require normal forms to be unique; e.g., if we’re working
with two-variable polynomial strings, then x+ y and y + x would both be
considered normal forms. They are equivalent under ∼, but not identical as
strings. We employ another definition when we care about uniqueness:

Definition 2.2 (Canonical Form). Let S be a set of strings with an equivalence
relation ∼. Index the equivalence classes of S/ ∼ by some set I. For each i ∈ I,
select a representative element si from [s]i. Then we say si is the canonical form for
all s ∈ [s]i. ♦

If one wants to think about canonical form more tangibly in terms of a
simplification process, the definition can be restated in terms of functions:

Definition 2.3 (Canonicalization). Let S be a set of strings with an equivalence
relation ∼. Then a canonicalization is a map c : S → S such that

1. For all s ∈ S, c(c(s)) = c(s), and

2. For all s1, s2 ∈ S, we have s1 ∼ s2⇐⇒c(s1) = c(s2). ♦

The correspondence to Definition 2.2 comes with the observation that for
all s, c(s) satisfies the requirements given in Definition 2.2 for the canonical
element of [s].

Ok, now we turn to examining the differences between Z and knots. There
are two big ones we’ll focus for now:

(1) We have no efficient algorithm for reducing knot diagrams to normal
forms using Reidemeister moves.9

(2) What’s more, even if there were such an algorithm, it would not give
us a canonical form. This is because normal forms for knots are not
unique, in contrast to the situation in Z and Q.

Let’s expand on these points. Regarding (1): Note that when we simplified
our integer arithmetic expressions, each line had fewer terms than the ones
above. E.g.,

m = (((3 · 3) · 3) + (2 · 2)) · 1
= ((9 · 3) + (2 · 2)) · 1

9Here, “simplifying” means finding an equivalent diagram with fewer crossings.
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= (27 + (2 · 2)) · 1
= (27 + 4) · 1
= 31 · 1
= 31.

That is, each step of the simplification process took us strictly closer to a
normal form. This is not an inherent property of simplification algorithms in
general. If, for instance, we were working in arithmetic expressions over Q,
then we could have situations like the following:

` = 1
3 + 1

2 .

In order to simplify this expression symbolically, we actually have to make
it more complicated first. In particular, making the terms share a common
denominator requires adding extra symbols.

= 1 · 2
3 · 2 + 1

2
= 1 · 2

3 · 2 + 1 · 3
2 · 3

= (1 · 2) + (1 · 3)
3 · 2

= 2 + (1 · 3)
3 · 2

= 2 + 3
3 · 2

= 2 + 3
6

= 5
6 .

We encounter a similar situation with Knots. Consider the following example
from Kauffman and Lambropoulou (2011):

Figure 2.4 A “hard” unknot
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Although perhaps not immediately obvious, this is an unknot. To see
this, note that the strand going horizontally across the middle of the knot
can be pulled up behind the arc at the top, tucked down through the same
arc, and then out through the middle arc, at which point one can apply a
Reidemeister II move followed by a reidemeister I move to undo the knot.
For a more detailed view using only Reidemeister moves, see Kauffman and
Lambropoulou (2011).

One can verify that there are no Reidemeister I or Reidemeister II moves
that we can perform without adding more crossings to the diagram. What’s
more, there are actually no Reidemeister III moves available at all. Thus,
this is a knot diagram that has to be made more complicated before it can
be reduced, similarly to the fractions in Q.

However, there is a key distinction between these two cases. With the
fractions in Q, it’s always fairly obvious what the next step should be. We
scan left-to-right looking for two fully-simplified sub-expressions we can
combine together; if they’re both fractions, then we convert everything to a
common denominator. Next, we combine the numerators, and then finally we
simplify. While seemingly not as efficient as parsing arithmetic expressions
in Z, we can still develop a greedy algorithm to attack the problem.

By contrast, there seems to be no obvious strategy to determine which
strands we should move first on the unknot shown above — or at least, there
isn’t one that scales well to large knots.10 Hence the simplification problem
for knots seems a bit “harder.”

Now, regarding (2) (“even if there were such a simplification algorithm,
this still wouldn’t immediately give us a canonical representative.”). The
problem here is that in Z and Q, the normal forms yielded by our simplifica-
tion algorithms ended up coinciding with our canonical forms. Thus, after
simplifying completely, we could simply check for literal equality. This is not
always the case with Knots.

10This doesn’t mean one does not exist — but to the author’s knowledge, nobody has
found one yet.
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1+ 2+ 3+ 4+ 5+ 6+ 7− 8− 9− 10− 11+

1+ 2− 3− 4+ 5+ 6+ 7+ 8+ 9− 10− 11+

Figure 2.5 Two drawings of the same knot.

The reader can verify that these diagrams contain the same number of
crossings. It is harder to see why they are equivalent, though the way we’ve
drawn them might be suggestive of an argument.11 It is known that the
diagrams above are in normal form (in that they achieve the minimal crossing
number), although we will not discuss the details in this document. In any
case, we see that for knots,〔normal form〕;〔canonical form〕.

Taken in tandem, these problems make approaching the knot equivalence
problem quite challenging. However, there’s one saving grace: if we only want

11If the reader would like to give this a shot, we heavily encourage a more hand-wavey
proof that does not attempt to employ the Reidemeister moves.
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coarse, back-of-the-envelope heuristics for determining whether two knots
are “probably” equivalent, then we can actually employ strategies similar to
those used in Z,Q. This is the motivation for invariants.

2.4 Invariants, Briefly.

Hey you — Think fast! In 10 seconds or less, which of the following are
true?12

1. 5
(
33 · 11

)2 = 2(72 + 33− 8)

2. − 2(√
47 + 1

47
)3 = 47− 1

472

3. 3x4 + (x+ 3)(x2 + 2x+ 2) + 2
3(x− x2) = 2

(
x4 + 3

2x(x2 − 3x)
)

+ 3x

Ok, hopefully that was far too little time to actually figure them all out. As
it turns out, they are all false. Here are some short arguments for why:

1. Note that all the factors on the left side (5, 3, 11) are odd, while
the right has a leading factor of 2. So they’re not equal.

2. Observe that the left side is negative, while the right side is positive
(since 47 > 1 > 1

472 ).
3. This one takes more time to verify, but the leading coefficients

don’t match (3 and 2, respectively). Also, the right side has no
constant term, whereas the left side does.

Implicitly, each of these are using an invariant of arithmetic strings. For 1.,
we know that if two expressions are equal, then if one is even, the other must
be even too. For 2., we are using the fact that equivalent expressions must
have the same sign. And for 3., we use an invariant of polynomials — namely
that when simplified, their coefficients must match up.

We can define similar invariants for many other problems. It’s worth
noting that these don’t always look like simple arithmetic properties, as
demonstrated by the following example:

Example 2.1. Consider a 7× 7 chessboard with a knight placed on each square.
Is there a way to move each night exactly once such that after each knight has been
moved, no knight has left the board, and no knights have doubled up on the same
square?

12. . . I’m counting.
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7 MNMNMNM
6 NMNMNMN
5 MNMNMNM
4 NMNMNMN
3 MNMNMNM
2 NMNMNMN
1 MNMNMNM

a b c d e f g

Figure 2.6 Diagram of the Situation

There is an extremely short solution. To emphasize just how short, we’ve
included a redacted version of a short proof by one J. Yossarian, just to taunt
the reader (an unredacted version can be found in Appendix C.1, Page 221)

Claim:

Proof: are and .
a an .

the , ’ and ,
a .

Likewise, many of the invariants we employ in Knot Theory are hard to
connect to explicit algebraic structures we understand. Here are some high-
level examples — we won’t be studying invariants directly, so don’t worry
too much about the details, the point is just to know that they exist.

Example 2.2 (Biquandles). Let X be a set and K be a knot represented by some
diagram D. Label (“color”) each arc in D by an element of X. Then, define two
binary operations ., . (read “under” and “over,” respectively) that describe how
our labels change when strands cross.13

13Technically the words here are in the wrong order — we aren’t actually guaranteed
that such operations exist if we begin with an arbitrary coloring. But this is meant to
capture the high-level overview of what the biquandle axioms seek to do, so we’ll leave it
like this for today.
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x

x . y

y . x

y

Figure 2.7 Example of a colored crossing

By translating the Reidemeister moves into algebraic axioms for ., . , we can
turn “coloring by X” into a knot invariant:14

1. For all x ∈ X, x . x = x . x,

2. For all x, y ∈ X, the maps αy, βy : X → X and S : X ×X → X ×X defined
by

αy(x) = x . y, βy(x) = x . y and S(x, y) = (y . x, x . y)

are all invertible, and

3. For all x, y, z ∈ X, we have the following exchange laws:

(x . y) .(z . y) = (x . z) .(y . z)
(x . y) .(z . y) = (x . z) .(y . z)
(x . y) .(z . y) = (x . z) .(y . z)

In this case we call (X, ., .) a biquandle. ♦

Biquandles are an example of coloring invariants, which are currently
a popular area of study. Another example of a well-known class of knot
invariants is the family of knot polynomials. Knot polynomials are generally
agreed to be some of our most powerful invariants, combining ease of com-
putation with relatively good performance in distinguishing between knots.
An example is the celebrated Jones polynomial, which can be recursively
computed from a knot diagram using the Kauffman Bracket:

Example 2.3 (Jones Polynomial). Define a map [ ] on formal sums of knot diagrams
as follows:

14The biquandle axioms can look somewhat intimidating at first, but with the right
diagrams, one can see that they are direct translations of the reidemeister moves. We
haven’t included such diagrams since again, we won’t really be working with biquandles,
but for more we encourage the reader to reference Nelson and Elhamdadi (2015), which we
found to be an excellent resource.
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[ ]
x + x−1

Figure 2.8 Kauffman Bracket

where the diagram is unchanged outside of the dotted neighborhood. After
applying the bracket map until there are no crossings remaining, we’re left with a
formal sum whose terms are diagrams of some number of unlinked unknots. For
each such term, apply the following conversion:


 · · ·


 =

(
−x2 − x−2

)k−1

︸ ︷︷ ︸
k copies

1
Figure 2.9 Converting unknots to polynomial terms

Now every term is a Laurent polynomial in x. Combine them all and and simplify
to yield the Jones polynomial.15 ♦

The Jones Polynomial has many remarkable properties; the reader is
encouraged to poke around through some of the literature on it.

2.4.1 Fantastic Invariants & Where to Find Them

The section above is meant to highlight two main points: First, invariants
are helpful. We did not discuss explicit performance metrics, but it is safe to
say that employing them is generally much easier than doing a brute-force
search with Reidmeister moves. Second, powerful invariants can look very
different from each other. Biquandles and the Jones polynomial both operate
on diagrams, but do so through very different mechanisms. This can make it
tricky to identify where we should look next for new invariants, since it can
be hard to interpret exactly what structure they are preserving. What other
strategies can we try?

15This process is easier to follow by looking at some examples; the reader is encouraged
to do so. This is also covered in Nelson and Elhamdadi (2015); an approach that combines
knot polynomials with coloring invariants like biquandles can be seen in Nelson et al.
(2017).
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There are two main ways to approach this problem. First, we can try and
generalize the strategies that we know work to see if we can get modified
versions that perform better. A lot of interesting work goes on here currently,
including some of our own results on more general methods for combining
coloring invariants with knot polynomials (Kobayashi and Nelson (2019)).
However, there is also a more direct strategy—if we can find ways to describe
algebraic structure in the Knot category more explicitly, we might be able
to understand invariants from a more functorial perspective. Currently, this
is generally avoided, since the structure of the Knot category is not very
well-understood. However, there is one interesting approach that has yielded
some preliminary results recently, which is to make use of unknotting moves.

Unknotting moves are operations on a diagram that can be used to
reduce arbitrary knots to the circle (an example is being allowed to “flip”
which strand is on top at any given crossing). Observe that for an arbitrary
knot K, playing a sequence of unknotting moves for K in reverse gives us
a way to create K out of an unknotted circle. Hence, there is a sense in
which unknotting moves encode the information of how to build a knot, and
so it seems plausible that examining them could give us insights into our
invariants.

The literature contains precedent for this idea; for instance, it has been
shown that an unknotting move called the delta move affects some polynomial
invariants in predictable ways (see Kanenobu and Nikkuni (2005), Ganzell
(2014)). However, there has been little analysis of the effects of other kinds
of unknotting moves, the effects of performing multiple moves in succession,
and whether the results found can be generalized to other kinds of invariants.
So, in general, the idea remains largely unexplored.

Our motivating goal for this project was to try and attack the problem of
using unknotting moves to define a group-like structure on knots. The hope
is that if we can do so, it will make it easier to search for powerful invariants
by looking at something more homomorphism flavored.





Chapter 3

Knots and Knot diagrams

and an ocean tumbled by with a private boat for Max
and he sailed off through night and day

and in and out of weeks
and about over a year

to where the wild things are.

—Maurice Sendak, Where the Wild Things Are

The material here is targeted at readers with a basic background in
topology. Experts are advised to skim (or even skip).

Knots are fundamentally 3D objects. Studying 3D objects can be hard,
so we’d much rather work with 2D representations if possible. Knot diagrams
facilitate this process. The idea is that placing strict requirements on what
we call a “knot diagram” allows us to translate results about these 2D objects
to ones for the actual knots. It’s important to be very explicit about how
we do this, as the restrictions we place on our diagrams will dictate what
families of knots we can study with them. The goal for this chapter is to give
the reader intuition for this process.

Our exposition is structured as follows: First, we give the formal definition
of a knot and discuss some of its equivalent versions (Pages 32 to 36). We also
offer some intuition for why each requirement in the definition is necessary.
Next, we introduce the standard equivalence relation on knots, which is
known as ambient isotopy (Pages 36 to 38). In doing so, we first examine
two other definitions of equivalence that seem reasonable but turn out to be
flawed (homeomorphism and non-ambient isotopy, respectively). Finally, we
define knot categories and their associated diagram categories. This offers
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a nice segue into the next chapter, which discusses the most common knot
category/diagram category pair: polygonal knots and regular diagrams.

3.1 Definition of a Knot

We have to define knots before defining knot diagrams. But to make our the
definition tangible, we need to draw pictures. Hence, we’ll have to make use
of knot diagrams before we’ve actually defined them. The reader shouldn’t
worry about this, since it turns out most of the things we’ll need to address
in our formal treatment of knot diagrams are edge cases.

Recall, the intuitive description of a knot that we gave earlier (Fig. 2.2 on
Page 16) involved taking a rope, twisting it around in space, and then fusing
the ends to get a closed loop. Importantly, the strand remained “unbroken”
(in the sense that there were no cuts in the rope anywhere), and never passed
through itself. This is encoded in the following definition.

Definition 3.1 (Topological Knot). Let (X,T) be a topological space. Then a
knot is a continuous map K : [0, 1] → X such that K is injective on [0, 1), and
K(0) = K(1). ♦

We’ll discuss the importance of the choice of codomain (X,T) later on.
But first, to build intuition, we’ll restrict our analysis to the case where
(X,T) is R3 with the standard topology (denoted Tstd). This gives us the
field of classical knot theory, whose objects of study are classical knots.1

3.1.1 Classical Knots

Most of the intuition from R3 generalizes to the other choices of (X,T) we’ll
be interested in. We just chose to examine the special case of classical knots
first to decrease the number of moving parts in the definition.

Definition 3.2 (Classical Knot). A classical knot is a topological knot where (X,T)
is (R3,Tstd). ♦

Aside. The choice [0, 1] is arbitrary; we could modify our definition to use any
interval [a, b] and still get a topologically equivalent framework. Similarly, choosing
K to be injective on [0, 1) vs (0, 1] is also arbitrary since we have K(0) = K(1).
We’ll remove these annoyances later with an equivalent definition in terms of S1,
but first, let’s talk about what this definition is doing.

1Some authors choose to use S3 instead of R3 because S3 is compact. We won’t worry
about this distinction today.
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First, the codomain is R3, so we get an object that lives in 3D space like
we want. Second, we do indeed get a “loop;” we can think of the the domain
[0, 1] as parameterizing how far along a 1D path we are.2 As an example, if
we had K(t) = (cos(2πt), sin(2πt), 0), then looking down along the z axis
and playing time forwards, we would see something like the following:

0

1/
8

0

1
/4

01/2

Figure 3.1 Analogy for the domain

Here, the inner ring shows K(t) itself, while the outer ring is just showing us
a reminder of what the corresponding values of t are.

Next, note that requiring K be continuous and K(0) = K(1) prevents us
from getting any “breaks” in the strand (a rope wouldn’t make a good knot
if it had a cut in it); see Fig. 3.2 below. Similarly, the injectivity condition
prevents us from getting self-intersections in our rope; see Fig. 3.3 below.

Figure 3.2 A “knot” with a
break in it

Figure 3.3 A “knot” with
points of self-intersection (black)

To see that the “knot” in Fig. 3.3 really can be realized as a continuous
function K : [0, 1] → R3 (and thus the injectivity condition is strictly
necessary), consider the following construction:

2You might wonder if space-filling curves would cause problems here. It turns out they
won’t, since we would need to loosen one of {injectivity, continuity} to get one.
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Figure 3.4 Example of how we’d construct the self-intersecting “knot”

Hence we see we need all of the pieces of the definition given.

3.1.2 Equivalent Definition in terms of S1

Okay: Definition 3.2 is fine and intuitive, but as alluded to before, it can
be written more succinctly. In particular, the whole “injective on [0, 1) and
K(0) = K(1) except you could also use (0, 1]” part can be done away with
by gluing the ends of [0, 1] together to get a circle. This motivates the second
definition, which is more commonly used.

Definition 3.3 (Classical Knot, redux). A knot is an injective, continuous map
K : S1 ↪→ R3. ♦

Note, since we already identify 0 and 1 in S1, we don’t have to state the
extra injectivity conditions. We’ll use this definition throughout the rest of
this document.

It is straightforward to show that this is equivalent to the previous
definition. Here’s the strategy: let K : [0, 1]→ R3 be a knot (in the sense of
the first definition), and let π be the quotient map π : [0, 1]→ [0, 1]/{0 ∼ 1}.
Then show that there exists a unique continuous K ′ : S1 ↪→ R3 such that
the following diagram commutes:

[0, 1]

S1

R3

π

K

K ′

Figure 3.5 Commutative diagram
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This is straightforward enough that it might seem silly to state explicitly,
but it is cool to see it in action. Check out https://youtu.be/7cDroN4n8EQ
for an example animation.

Example 3.1. The following is a knot known as (7, 2).

K(7,2)

Figure 3.6 The (7, 2) knot
♦

The name (7, 2) convention comes from the fact that 7 is the minimum
number of crossings we can have in a diagram for the knot. The 2 is just a
label dictated by convention so that we know which of the 7-crossing knots
we’re dealing with.3

There is a sense in which knots act like homeomorphims. In particular,
for a knot K, the image of S1 under K is still a closed loop (and in fact,
this loop is homeomorphic to S1). But since K is not a bijection (K is not
not onto R3), we can’t call it a homeomorphism. We can, however, call it an
embedding.

Definition 3.4 (Embedding). Let (X,T), (Y,S) be topological spaces, and let
f : X → Y . Then we say f is an embedding iff f is a homeomorphism between X
and f(X), where f(X) is given the subspace topology from Y . ♦

Proposition 3.1. Let K : S1 ↪→ R3 be a knot. Then K is an embedding.

Proof. We want to show K is a homeomorphism between X and K(X). Note,
any injective function is bijective with its image, so K is a bijection between
X and K(x). Now, the definition of a knot guarantees K is continuous. Given
these conditions, one can show that it suffices to prove K is a closed map
(i.e. image of a closed set is closed).

Let A ⊆ S1 be closed. Since S1 is compact, it follows that A is compact.
Since K is continuous, it follows that K(A) is compact. Now, since R3 is

3For a gallery of the so-called prime knots up to a given crossing number, see
http://katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table

https://youtu.be/7cDroN4n8EQ
http://katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table
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Hausdorff, all compact sets are closed. Hence K(A) is closed, so K is a closed
map, and thus a homeomorphism (as desired).

3.1.3 Other Codomains

We want to take a moment to stress that the choice of codomain is a hugely
important factor in determining the behavior of our knots. Knottedness (as
a general phenomenon) fundamentally arises out from taking a small space
and trying to find ways to fit into a slightly larger one. Here, we’ve taken S1

(a 1-manifold) and stuck it into R3, but one might wonder whether we’d get
different theories if we tried, say, R2, R4, or Rn.

It turns out that we do. In both R2 and R4, all knots turn out to be
equivalent to each other. The intuition is a bit different in R2 than in R4,
however. We’ll examine the R2 case in more detail during Chapter 8, but the
loose idea is that R2 “confines” our embedded copy of S1 too tightly to allow
it to get all tangled up (indeed, the string can’t cross itself when restricted
to R2). In R4, we see the opposite phenomenon. Because we have a whole
extra spatial dimension to work with, the string can never quite get “stuck”
on itself in R4 — there’s always a sneaky way to get around the barrier.4

Interestingly, things of this flavor turn out to be a fairly general phe-
nomenon — given a “tame” n-manifold N and an m-manifold M (with some
additional niceness constraints), if n−m 6= 2, the embedded copy of M in N
is often easy to unknot. However, when we have equality (n = m− 2), things
can get hairier. The interested reader is encouraged to read more in Daverman
and Venema (2009), but be warned, the content is very prerequisite-heavy.

Anyways, in light of the trivial behavior in R2 and R4, the only other
codomains we’ll look at here will be thickened orientable surfaces. These
yield virtual knot theory, which we will discuss in Section 4.3. Until then the
reader should just assume we’re always thinking about knots from S1 ↪→ R3.

3.2 Knot Equivalence

We’ll now go about formalizing what it means for two knots K0,K1 (oriented
or unoriented) to be the same. On an intuitive level, we want our definition
to capture the idea that if we were to tie a rope up in the shapes of K0,K1,
then K0 would be “equivalent to” K1 iff by playing with the rope for long

4We have some slides posted at https://bedmathandbeyond.xyz/files/kaestner-brackets.
pdf with a small visualization, but the reader should look elsewhere for a detailed explana-
tion.

https://bedmathandbeyond.xyz/files/kaestner-brackets.pdf
https://bedmathandbeyond.xyz/files/kaestner-brackets.pdf
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enough, we could find a way to make K0 look exactly like K1 (without just
cutting the string apart and gluing it back together). We seek a way to make
this idea formal. We’ll discuss two definitions that turn out to fail before
introducing the correct one.

Attempt 1 (Homeomorphism). Let K0,K1 be knots. Then we say K0 and K1 are
equivalent iff there exists a homeomorphism between their images. ♦

This does not work. In particular, since K0,K1 are embeddings, their
images are always homeomorphic to S1, and thus to each other. So this
would make all knots equal, which we don’t want to have happen. Here’s a
much better idea: what if we defined K0, K1 to be equivalent if we can find
a continuous “path” through intermediate knots that get us from K0 to K1?
This is captured by isotopy:

Attempt 2 (Isotopy). Let K0,K1 : S1 ↪→ R3 be knots. Then we define an isotopy
from K0 to K1 to be a function H : [0, 1]×X → Y such that

1. For all x ∈ X, t ∈ [0, 1], the map Ht(x) = H(t, x) is an embedding,

2. For all x ∈ X, we have H(0, x) = K0(x) and H(1, x) = K1(x), and

3. H is continuous. ♦

Note, condition (1) guarantees that we take a “path” through other
embeddings. Condition (2) requires that this “path” start at f and end at g.
Condition (3) guarantees that the path doesn’t have any “jumps.”

This almost works, but there’s a small hiccup that breaks this definition
as well. The reader might take a moment to try and identify the issue.
Here’s some food for thought: Homeomorphism put all knots into the same
equivalence class. Does isotopy do the same? Or does it distinguish some
families of knots? Which ones?

As it turns out, this definition also puts all knots in the same equivalence
class. Here’s some intuition: Let x ∈ X be fixed. Because the continu-
ity condition on H only requires ∀ε > 0, there exists δ > 0 such that
d(K(t, x),K(t+ δ, x)), we can get two arbitrary embeddings K0, K1 to be
equivalent to each other by just “shrinking all the differences down to an
arbitrarily small region” An example for the trefoil (known as Bachelor’s
unknotting) is shown below.
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Figure 3.7 Bachelor’s unknotting

By shrinking down the region in which the crossings occur, we have found
an isotopy removing all of the crossings of the trefoil. Note, we could even
play it in reverse, and spontaneously generate a trefoil out of an unknot!
Clearly this is undesirable. But we are on the right track. It turns out the
“correct” definition will be very similar. Instead of performing an isotopy
on the embeddings themselves, we perform it on the ambient space. This is
known as ambient isotopy.

Definition 3.5 (Ambient Isotopy). LetK0,K1 be knots. Then we sayK0 is ambient
isotopic or equivalent to K1 iff there exists a map H : [0, 1]× R3 → R3 such that

1. For all x ∈ R3, t ∈ [0, 1], the map Ht(x) = H(x, t) is a homeomorphism,

2. For all s ∈ S1, H(K0(s), 0) = K0(s) and H(K0(s), 1) = K1(s), and

3. H is continuous. ♦

This turns out to be the “correct” notion of equivalence, and with it, we
can begin to partition our knots into equivalence classes. However, it can
often be unwieldy to work with ambient isotopies directly, as topological
embeddings can get quite messy. As such we often restrict ourselves to a family
of knots where ambient isotopy can be characterized by the Reidemeister
moves, which affords us a more combinatorial approach to equivalence. This
nice family is known as the collection of tame knots, which are defined
in terms of the even simpler polygonal knots. A more careful look at the
definitions of tameness will be given in Chapter 6.

3.3 Tame and Polygonal Knots

In this section, we will (very briefly) examine the “simplest” possible knots,
polygonal knots. If the reader would like a deeper examination of the topic,
they are encouraged to take a look at Burde and Zieschang (2003) and
Crowell and Fox (1963).
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Polygonal knots form the backbone for modern combinatorial knot theory.
The idea is that since they are formed out of finite unions of straight line
segments, they can be studied combinatorially, which makes them nice.
What’s a little less obvious is that we can actually extend some of the
resulting ideas to any knot ambient isotopic to a polygonal knot. Indeed,
essential results such as Reidemeister’s Theorem rely on our knots of interest
being ambient isotopic to polygonal knots.

Definition 3.6 (Polygonal Knot). A polygonal knot K : S1 → R3 is a knot com-
prised of a finite union of straight line segments.5 ♦

Figure 3.8 Examples of some polygonal knots

It might be helpful to think of polygonal knots in terms of finite sequences
of vertices. This really hammers home the idea that polygonal knots can be
encoded with finite information.

Example 3.2. We would write the following knot as K = (v1, v2, v3, v4, v5, v6, v7),
where each vi ∈ R3.

5Note that we will also try to use the sans-serif font to distinguish polygonal knots
from their topological counterparts, since sans-serif letters are straight and angular.
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v1 v2

v3

v4

v5

v6

v7

Figure 3.9 Polygonal (4, 1) knot with vertices labeled
♦

The promised combinatorial niceness comes from the following theorem:

Theorem 3.2. Let K0,K1 : S1 ↪→ R3 be polygonal knots. Then K0 ∼= K1 iff
there exists an ambient isotopy F : [0, 1]× R3 → R3 with F(1,K0) = K1 that
can be realized entirely through a finite sequence of the two elementary moves
(note, in the below, the dashed lines are draw somewhat arbitrarily — we
don’t really care what the knot looks like away from our local picture):

1) Subdivision:

va vb

add

delete

va vbvc

Figure 3.10 Elementary move 1: adding or deleting a vertex

2) Kinking (note, we require that no line segment passes through the
triangle in R3 with vertices va, vb, vc):
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va vb

vc

va vb

vc

Figure 3.11 Elementary move 2: swapping edges on a triangle

Remark. It’s worth emphasizing that although we’ve drawn the moves above to
appear planar, they’re really happening in R3. So we could have all sorts of things
happening above or below our region of interest. We just need to require that there
are no obstacles in performing the kink move.

We will not offer a proof of the theorem, since working with ambient
isotopy directly turns out to be somewhat of a headache, and the proof won’t
be terribly informative for the contexts we do interact with ambient isotopy
in later on. The point is just to illustrate how simple ambient isotopy is for
polygonal knots.

We now define tame knots from polygonal knots.

Definition 3.7 (Tame Knot). Let K : S1 ↪→ R3 be a knot. Suppose that there
exists a polygonal knot K : S1 ↪→ R3 such that K ∼= K. Then we say K is a tame
knot. ♦

We call knots that are not tame wild knots. Little is known about wild
knots; they are the focus of Part III.

∼=

Figure 3.12 Example of a
tame knot

Figure 3.13 Example of a wild
knot (the loops repeat infinitely)
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The next step in constructing our theory is to state Reidemeister’s theorem
for tame knots, which will allow us to turn the 3D moves in Theorem 3.2
into purely 2D moves on diagrams. In order for this to work, we need our
diagrams to give us enough information to reconstruct everything that’s
going on in 3D up to ambient isotopy.

3.4 Knot Diagrams

When first learning about functions f : R→ R (e.g., in a Calculus I course),
we are often taught to think of functions and graphs of functions interchange-
ably. For instance, if we were given

f(x) = −x
2

4 + 2x,

we’d probably imagine a picture similar to the following:

2 4 6 8

2

4

x

f(x)

Figure 3.14 Plot of f(x) = −x
2

4 + 2x

Hence, we might be mystified to see a definition like the following in an
Analysis I book.

Definition 3.8 (Graph of a Function). Let f : X → Y . The graph of f is defined
to be

G(f) = {(x, f(x)) | x ∈ X}.

Note G(f) ⊂ X × Y , and when X = Y = R, we often represent G(f) visually by
plots like in Fig. 3.14. ♦
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This is confusing. Why have we made this extra definition? Does its
presence mean there’s a flaw in thinking of a function and its graph inter-
changeably?

Well, sort of, but they don’t really cause problems for f : R→ R. First,
note that in modern set theory, the definition of “Graph of a Function”
we gave above is actually how functions themselves are defined formally.
Nonetheless, there are some caveats, e.g.

• Our picture here doesn’t actually include the full domain of the function,
because our drawing space is finite.

• For multivariable functions, e.g. f : R2 → R, it is often no longer
possible to give an injective 2D representation of G(f) without making
some concessions. In particular, we are constrained to represent G(f)
on a 2D canvas, so we can’t just plot a point at every (x, y, z) pair.

We’ll focus on the latter for today. How do we represent 3D objects in
2D? Often, we try to find clever ways of including extra information in
our diagrammatic representations such that we can recover some of the
information we lose in projection. In the particular case of f : R2 → R, we
have various tools at our disposal, such as making use of color, grid lines
and contours.

Figure 3.15 A surface

−5

0

5

10

Figure 3.16 Contour plot of
the same surface

Using these tools, we can create 2D representations from which we can (more
or less) reconstruct the 3D picture we started with. We will employ a similar
idea in dealing with knots, although this turns out to be a bit of a delicate
matter. In particular, because we want to make diagrams our fundamental
object of study, in order to maintain rigor we must be very exacting in
understanding what our diagrams represent, and how we can pull that back
to a result about our actual knot in 3D. ♦

We motivate this with the following examples.
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3.4.1 What makes a “helpful” knot diagram

As we have seen, it is often useful to represent knots by 2D diagrams. However,
not all diagrams are equivalently helpful. For instance, if we were to “line
up” all the crossings of the (7, 2) knot like so,

Figure 3.17 (7, 2) with crossings lined up

then if we were to look along the following axis,

You are Here

Figure 3.18 New perspective

we might end up seeing something like this:

Figure 3.19 Unhelpful sideways view
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which is hardly helpful.6 Hence, we will place some restrictions on what
exactly we are allowed to refer to as a knot diagram. The standard set of
rules here are for what are known as regular diagrams.

Definition 3.9 (Regular Knot Diagram). Let K be a knot, and let π : R3 → R2

be a projection onto a 2-dimensional subspace of R3. Then we say D = π ◦K(S1) is
a diagram for K iff D satisfies the following conditions:

1) D is injective at all but finitely many points {yi}ni=1 ∈ R2, called crossings.
2) For each of these yi, there exist exactly two x ∈ S1 such that D(x) = yi.
3) Each crossing “looks like an X.” Formally, there exists ε > 0 such that

Bε(yi) ∩D(S1) is homeomorphic to {(x, y) | x = 0 or y = 0}.
4) The diagram contains some information by which we can recover which strand

was “on top” at each crossing.
♦

Note. If K is oriented, we also require the diagram to include information that
allows us to recover the orientation.

We interpret these properties as follows. Condition (1) requires that
strands only cross at single points in our diagrams (not entire line segments).

3 Allowed 7 Not allowed

Condition (2) requires that we can’t have multiple strands crossing at
the same point:

3 Allowed 7 Not allowed

6Note, we say “might” because there are multiple possible 3D realizations that could
yield Fig. 3.17 in a 2D projection. But at least one of those would look like Fig. 3.19.
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Condition (3) precludes situations like the following:

3 Allowed 7 Not allowed

single point of crossing

that is, we don’t allow crossings to take the form of “tangencies;” both of
the strands that come in must leave on opposite sides. Finally, condition (4)
actually refers to a convention that we have been employing tacitly all along;
namely breaks in the diagram represent places were crossings occur, and the
broken strand is understood to be going “underneath” the unbroken strand.

underov
er

Figure 3.20 Breaks tell us which strand is on top

Now, we have the following important theorem:

Theorem 3.3. Let K : S1 ↪→ R3 be a knot. Then K is tame iff there exists
a regular diagram D of K.

Proof. Left as an exercise. Hint: For the forward direction, first, prove a
lemma showing that for conditions (2), (3), and (4), we can deform the space
ever so slightly to fix all of our issues. For condition (1), do the same and then
use the finite polygonal representation to get injectivity at all but finitely
many points.

There are a number of ways to do the back direction. Use the diagram to
get your polygonal representation.

Later, it will be helpful to draw diagrams of wild knots as well as tame
knots, hence we make the definition below. To the best of my knowledge,
this is not something that has been treated before.
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Definition 3.10 (Regular Diagrams for Wild Knots). Identical to the definition for
a regular knot diagram, except we allow injectivity to fail at a countable collection
of points. ♦

In general, all knots and their diagrams are assumed to be tame unless
otherwise stated.

Remark. At this point, let’s take some time again to highlight the difference
between a knot and a regular diagram. A knot is an abstract function going from S1

to R3, while a regular diagram is a function going S1 to R2. In the section above,
we defined knot diagram D in terms of composing a particular projection π with a
knot K. However, we can also think of D as an abstract function in its own right.
This gives us the following commutative diagram:

S1 R2

R3

D

K π

Figure 3.21 Relationships between D,K, and π

It’s worth nothing that this factorization is not unique! In particular, we can have
many different K,π pairs that give us the same D:

S1 R2
D

R3

R3

R3

R3

R3

R3

π3

K3
π2

K2 π1

K1

π4

K4 π5

K5

π6

K6

Figure 3.22 Taste the rainbow!

I feel like having multiple copies of R3 might be an abuse of commutative
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diagram notation (I’m sorry to any Category Theory enthusiasts out there), but
hopefully it gets the point across. Anyways, in sort of dual vein, different projections
π can take the same knot K to many different diagrams.

S1 R3
K

R2

R2

R2

R2

R2

R2

π3

D3
π2

D2 π1

D1

π4

D4 π5

D5

π6

D6

Figure 3.23 Another colorful diagram

Both of these properties are undesirable. In order to use diagrams to
study knots, we must figure out a way to ensure that they “contain the same
information” in some sense. In particular, we want to define an equivalence
relation on the category of regular diagrams such that equivalence classes of
diagrams correspond exactly to equivalence classes of knots under ambient
isotopy. This is what Reidemeister’s Theorem allows.

Theorem 3.4 (Reidemeister, 1927). Let K0,K1 : S1 ↪→ R3 be tame knots,
and let D0, D1 be regular diagrams for K0,K1. Then K0 ∼= K1 iff D0 can be
turned into D1 by applying a finite sequence of the following moves:

∼ ∼ ∼

together with “planar isotopy:”

∼
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i.e., we can arbitrarily reshape a strand in a neighborhood provided we don’t
change the endpoints or the crossing information.

Note, if we can locally straighten out K0,K1 to look like polygonal knots,
the theorem follows as a straightforward corollary to Theorem 3.2. This is
the point that most proofs of Reidemeister’s theorem start from (see Prasolov
et al. (1997), for instance). However, getting there is not entirely trivial, as
topological embeddings can be extremely poorly-behaved. For instance, our
knot could look like the Weierstrass7 function from the side, but a plain
straight line from the top.

−2 −1 1 2

−1

1

2

Figure 3.24 Side-view: Weierstrass function

Figure 3.25 Top-down-view: Just a line

We address this rigorously in Part III once we have the machinery to
discuss lifting ambient isotopies from R2 to R3, but until then, we hope the
high-level ideas have been communicated to the reader satisfactorily.

3.5 Orientation

The final concept we’ll add to our knots is orientation. Note, if we pick an
arbitrary point s ∈ S1, there are two options for how to transverse the curve
before ending up back where we started. We call these orientations.

7Pronunciation guide: ["vaI5StKa:s]
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Figure 3.26 The two possible choices of orientation on S1

We can think of the orientation as giving us a canonical ordering of the
elements of S1.8 A choice of orientation on S1 similarly induces an orientation
on our knots, which we denote by arrows in the diagrams.

K(7,2)

Figure 3.27 An oriented (7, 2)

An interesting consequence of this fact is that crossings are now chiral,
coming in two non-rotationally-equivalent flavors. We refer to them as positive
and negative respectively, according to the right hand rule.9 This is in
contrast to the case with unoriented knots, where all crossings are rotationally
equivalent.

8The interested reader should read more about cyclic orders. An interesting note is that
unlike the traditional < relation we’re used to in R, cyclic orders are not binary relations.
It doesn’t really make sense to say “s1 < s2” in S1, since if we simply continue out from
s2 far enough we’ll get back to s1, so it would seem s2 < s1 as well. The solution is to
employ a ternary relation. That is, we define an order-like relation by saying s1 < s2 < s3
iff we encounter s1, s2, s3 sequentially while traversing S1 in some direction, and s2 and
s3 occur before we see s1 again.

9Point your index finger along the overstrand, and middle finger along the understrand.
If your thumb points up, the crossing is positive, otherwise it’s negative.
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Figure 3.28 Rotating an unoriented crossing 3×

Figure 3.29 Rotating a positive crossing 3×

Figure 3.30 Rotating a negative crossing 3×

As one can see, there is no way to convert a positive crossing to a negative
crossing without performing a reflection on the dotted neighborhood.

Orientation is important because it’s necessary for making certain op-
erations well-defined. An example is the connected sum, which we define in
loose terms below.

Definition 3.11 (Connected Sum). Let K0,K1 be oriented knots, with associated
diagrams D0, D1. Then we define the connected sum of K0, K1 by slicing D0, D1
along arcs that only intersect each at two points, and gluing the ends together in a
way that’s consistent with the orientation. ♦
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# =

Figure 3.31 Example of the connected sum

Without orientation, it wouldn’t be clear where to glue the knots back
together after cutting them. In particular: dropping the orientation for now,
we can see that we formed Fig. 3.31 by attaching u0 to v0 in the diagram
below.

# =

v0

v1

u0

u1

However, without orientation to keep us in check, we could just as well
have connected (v0, u1) and (u0, v1). This yields two different knots — the
former, a square knot, and the latter, a granny knot. Hence, orientation is
important!

This about wraps it up for the background. We close with some remarks
about the connected sum and how it ties in with our desire to find more
algebraic descriptions of knot structure.

Proposition 3.5. The connected sum is commutative and well-defined for
tame knots.

We’ll give a sketch. If being fully rigorous, a lot of the details here can be
a pain to write out explicitly, but conceptually they are fairly straightforward.

Sketch. Given K0, K1, we’ll show K0 #K1 can be ambient isotopied to
K1 #K0, with arbitrary choice of cut points.

Use ambient isotopy to turn K0 #K1 into a polygonal knot. Because it
has finitely-many strands, the it doesn’t get infinitely bunched up at any
point. This intuition translates to the existence of a ε > 0 such that for any
point x0 on K0 # K1, Bε(x0) intersects K0 # K1 at exactly two points.
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Use ambient isotopy to shrink the K1 portion down until it’s bounded in
Bε(x1) for some x1 on the K1 portion of K0 # K1.10 This allows us to move
the K1 around arbitrarily inside of K0 # K1. Position K1 so that it is on the
desired strand of K0 for the connected sum K1 #K0. Unshrink K1, and then
shrink K0 and apply the same process to it. �

The connected sum enjoys the following properties that we will not prove
here.

Proposition 3.6.

1. # defines a monoid on tame knots, with the unknot being the identity
element.

2. Every tame knot has a unique prime factorization under #.

3. The unknot cannot be written as the connected sum of two non-trivial
knots.

The unique prime factorization part is particularly interesting, since
it’s reminiscent of multiplication in Z. We’d be curious to see whether the
permutation representations we introduce in the next chapter can be used to
generate an operation analogous to addition in Z, as this would create ring
structure on tame knots.

10Note that this must be done so that the K0 portion remains unmodified.
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Chapter 4

The Gauss Code

And when he came to the place where the wild things are
they roared their terrible roars and gnashed their terrible teeth

and rolled their terrible eyes and showed their terrible claws

—Maurice Sendak, Where the Wild Things Are

Working with diagrams and Reidemeister moves is significantly better
than working with 3D objects, but it still has its limitations. What we really
want is a way to represent knots so that we (or, more likely, a computer)
can apply algebraic techniques to this representation to get us results about
knots themselves. This is what is offered by a combinatorial representation.
Essentially, we boil the information in our diagram down to a finite string in
such a way that we can recover the original diagram losslessly.1 Then, by
translating the Reidemeister moves to permutations on this string, we can
view the study of knots in a purely combinatorial way.

4.1 Definitions

One of the most well-known combinatorial representations is the signed Gauss
code:

Definition 4.1 (Signed Gauss Code). Let K be an oriented knot represented as a
regular diagram. Suppose K has n crossings. Then we encode K in a string コ2 of
symbols by the following scheme:

1At least, up to planar isotopy.
2Katakana ko, pronounced [ko]. Chosen for the Katakana transcription of “code,”

「コード」。
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1. Pick some starting point p0 on K, and a direction along which to transverse
K.

2. Starting at p0, begin transversing K. Label new crossings as with 1, . . . , n in
the order that they’re encountered. Each crossing should be visited exactly
twice; we only label a crossing the first time.

3. Whenever we encounter a crossing, we record three pieces of information:

(a) The crossing label,
(b) whether we’re on the under/overstrand, and
(c) the sign of the crossing.

We write this compactly by kεx, where k ∈ {1, . . . , n} is the label we’ve
assigned our crossing, x ∈ {u, o} denotes whether we’re on the understrand
or overstrand, and ε ∈ {+,−} denotes the sign of k.

We call the resulting string of 2n characters the signed Gauss code.3 ♦

In the following, it will often be helpful to visualize signed Gauss codes
by linear diagrams. Much of the work on the drawing program4 (and on
finding convenient graph encodings) builds on earlier work done jointly with
Jonathan Hayase.

Definition 4.2 (Linear Presentation). Let コ be a signed Gauss code for an n-
crossing knot diagram D. Then a linear presentation for コ (also called a linear
diagram) is a knot diagram satisfying the following rules:

1. All of the arcs are drawn on grid lines (straight up/down, left/right),

2. All of the crossing points 1, . . . , n are colinear, and

3. Each crossing k is drawn such that the〔end of the arc corresponding to k’s
first appearance in the signed Gauss code〕is horizontal. ♦

We now record some properties of the signed Gauss code.

Proposition 4.1. The signed Gauss code has the following properties:

3Note, this definition includes some non-standard normalizations, such as labelling the
crossings in order, and recording the handedness of each crossing both times it is encountered
(instead of just the second). These conventions are just to make the correspondence between
diagram and code clearer, and to give our drawing program a simpler input. However, it is
completely equivalent to the definition of signed Gauss code given elsewhere.

4See https://github.com/PythonNut/linear-presentation. The project is currently a
work-in-progress.

https://github.com/PythonNut/linear-presentation
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(I) The substring consisting of〔the first appearance of each crossing in the
signed Gauss code〕is strictly increasing. E.g., in the (11, 2) example
we have

1−u , 2−o , 3−o , 4−u , 5+
o , 6+

u , 7−o , 3−u ,8+
o , 5+

u , 6+
o ,9+

o , 10+
u , 8+

u , 4−o , 7−u ,11−u , 1−o , 2−u , 10+
o , 9+

u , 11−o .

(II) Two diagrams are planar isotopic iff they have the same Gauss code
(up to the choice of basepoint).5

(III) Given the signed Gauss code コ for an n-crossing knot diagram, for
all k = 1, . . . , n, there is an even number of characters in コ occurring
between ku and ko.

(I) follows immediately from the definition. (II) follows from the fact that
planar isotopies preserve crossings. For (III), a short proof can be given by
noting that the portion of the code between ku and ko (in either direction)
defines a closed curve γ in the plane. By the Jordan curve theorem, any
curve that enters the region must come back out. This intuition can be used
to generate a short proof.

We now provide some examples of signed Gauss codes and associated
linear presentations. Part (3) of Example 4.1 might be the most helpful in
understanding part (3) of Definition 4.2.

Example 4.1.

1. The signed Gauss code 1+
u , 2+

o , 3+
u , 1+

o , 2+
u , 3+

o corresponds to a diagram for
the trefoil:

1+ 2+ 3+

2. The signed Gauss code 1−u , 2−o , 3−u , 4−o , 5−u , 6−o , 7−u , 1−o , 6−u , 5−o , 4−u , 3−o , 2−u , 7−o
corresponds to a diagram for the (7, 2) knot:

5The choice of basepoint corresponds to a cyclic permutation on the Gauss code
followed by a relabeling.
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1− 2− 3− 4− 5− 6− 7−

3. The signed Gauss code 1−u , 2−o , 3−o , 4−u , 5+
o , 6+

u , 7−o , 3−u , 8+
o , 5+

u , 6+
o , 9+

o , 10+
u , 8+

u ,
4−o , 7−u , 11−u , 1−o , 2−u , 10+

o , 9+
u , 11−o corresponds to the following diagram of the

(11, 2) knot:

1− 2− 3− 4− 5+ 6+ 7− 8+ 9+ 10+ 11−

Note that 8’s first appearance in the signed Gauss code comes in 8+
o , hence 8

is drawn with the overstrand horizontal. This is what is meant by part 3 of
Definition 4.2. ♦

We now examine how the Reidemeister moves can be translated to the
language of the signed Gauss code.

4.2 Gauss Codes and Reidemeister Moves

In the context of signed Gauss codes, Reidemeister I corresponds to inser-
tion/deletion of an adjacent pair:
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i i

i i

(· · · , i+u , i+o , · · · ) (· · · , i−o , i−u , · · · ) (· · · , i−u , i−o , · · · ) (· · · , i+o , i+u , · · · )

Figure 4.1 signed Gauss code Reidemeister I

Reidemeister II corresponds to insertion/deletion of a pair of pairs, albeit
with some constraints based on the diagram (see Note):

j

i

(· · · , i+u , j−u , · · · , i+o , j−o , · · · )

j

i

(· · · , i−o , j+o , · · · , i−u , j+u , · · · )

j

i

(· · · , i−u , j+u , · · · , j+o , i−o , · · · )

j

i

(· · · , i+o , j−o , · · · , j−u , i+u , · · · )

Figure 4.2 signed Gauss code Reidemeister II

Reidemeister III corresponds to swapping three pairs. We have multiple
cases depending on the orientation of the strands; we’ll just show two here:

i

j

k i

j

k

Reid. 3

(· · · , i+u , j+u , · · · , i+o , k+u , · · · , j+o , k+o , · · ·)

(· · · , j+u , i+u , · · · , k+u , i+o , · · · , k+o , j+o , · · ·)
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i

j

k i

j

k

Reid. 3

(· · · , i+u , j+u , · · · , j+o , k+o , · · · , i+o , k+u , · · ·)

(· · · , j+u , i+u , · · · , k+o , j+o , · · · , k+u , i+o , · · ·)

Figure 4.3 Signed Gauss Code Reidemeister III

Note. Given two arcs in a knot diagram, it’s not always true that we can perform
a Reidemeister II move right away. For instance, consider the (5, 1) knot given by
1+
u , 2+

o , 3+
u , 4+

o , 5+
u , 1+

o , 2+
u , 3+

o , 4+
u , 5+

o :

1+ 2+ 3+ 4+ 5+

Figure 4.4 A (5, 1) knot

Suppose we wanted to perform a Reidemeister II move crossing the (2+
u , 3+

o ) arc
over the (5+

o , 1+
u ) arc.

1+ 2+ 3+ 4+ 5+

(5+o , 1
+
u )

(2+u , 3
+
o )

(5+o , 1
+
u )

(2+u , 3
+
o )

Figure 4.5 A (5, 1) Knot.
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If we only look at the signed Gauss code rules, this reasonable. We just add
two new crossings, 6, 7 as follows: 1+

u , 2+
o , 6−o 7+

o , 3+
u , 4+

o , 5+
u , 1+

o , 2+
u , 3+

o , 4+
u , 5+

o , 7+
u , 6−u ,

which would give us something like this in the new diagram:

6− 7+

Figure 4.6 Local View of the Magically-Inserted Crossings

However, dutiful examination of Fig. 4.5 reveals that Fig. 4.6 doesn’t make
sense. In particular, there’s no way to add such crossings without first introducing
additional crossings just to get the two strands to be adjacent. When we discuss
virtual knots later we will do away with these petty worldly concerns. For now,
however, it is a problem we need to address.

To describe things formally, we want to re-interpret the signed Gauss
code (and thus the associated knot diagram) as describing a combinatorial
embedding of a planar graph.6 Then, we can just say that we’re allowed to
do Reidemeister II moves whenever the edges represented by two arcs are in
the same face of the graph.

Some care here is required. We can’t just treat all of the crossings as
vertices in the new graph and be done with it, because (a) this makes it unclear
what we mean when we draw two different identical-looking edges between
the same pair of vertices, and (b) even then, we wouldn’t be guaranteed a
unique planar embedding of the graph, which would mean we wouldn’t have
a well-defined notion of “face” (see Fig. 4.7).

v1 v2 v3 v4 v5

Figure 4.7 Naively treating each crossing as a vertex

6For those familiar with rotation systems, the signed Gauss code is really just defining
one for the kind of 4-valent planar graph shown in Fig. 4.7.
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Point (a) above is referring to the ambiguity in how we’re meant to
distinguish between pairs of edges line like the two from v2 → v3 in the figure
above. Point (b) refers to the fact that even if we were to allow multiple such
edges (maybe by labeling the edges to distinguish them), then both Fig. 4.7
and Fig. 4.8 are isomorphic as graphs, but the faces in each are not the same.

v1 v2 v3 v4 v5

Figure 4.8 A planar graph isomorphic to that in Fig. 4.7. Note, the two
edges between v2, v3 have been exchanged.

There are multiple ways to resolve this problem; the one listed below is
particularly convenient when trying to programmatically reconstruct dia-
grams from signed Gauss codes.Note, the graph below will “forget” the sign
of the crossings in the knot, but since this turns out to be very simple to
recover from the Gauss code, we ignore it for now.

Definition 4.3 (Diagram Graph). Given a signed Gauss code コ for an n-crossing
knot diagram D, define a planar (undirected) graph representation G = (V,E) of
the knot as follows:

(1) For each k = 1, . . . , n, define five vertices kin
u , kout

u , kin
o , kout

o , and kmid. Add
them all to V .

(2) For each k as above: add edges from kmid to each of kin
u , kout

u , kin
o , and kout

o

to E. Also add the edges
{
kin
u , k

out
o

}
, {kout

o , kout
u },

{
kout
u , kin

o

}
,
{
kin
o , k

in
u

}
to

E. See Fig. 4.9, Fig. 4.10 for a diagram.
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kinu

koutu

kmidkino kouto

Figure 4.9 Local view of a positive crossing.

koutu

kinu

kmidkino kouto

Figure 4.10 Local view of a negative crossing. Note, the ku’s have been
swapped relative to Fig. 4.9.

We have drawn the edges
{
kin
u , k

}
and {k, kout

u } dashed to emphasize that
they correspond to understrands in the knot diagram D. The dotted edges
are dotted to emphasize that they do not appear in the original diagram at
all.

(3) For each consecutive pair of symbols
(
iεi
xi
, j
εj
xj

)
in コ, add the edge

{
ixi
, jxj

}
to E.

(4) The steps above are sufficient in the case of minimal-crossing diagrams for
prime knots (the reader might try and verify this after reading the proof of
Theorem 4.7); however, we need to do a bit more for the general case. We’ll
give further exposition on this point after we finish stating the definition.
For each k = 1, . . . , n, let ` be the crossing that comes directly after k’s first
appearance in the signed Gauss code. Then define uk, u` and vk, v` such that
if the signed Gauss code were re-indexed to start at k, then the right vertex
of k (see Figs. 4.9 and 4.10) would be vk, the top vertex of ` would be v`, the
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bottom vertex of k would be uk, and the left crossing ` would be u`. Explicitly,
the casework is as follows.

• (k+
u ): vk = kout

u , uk = kout
o

– (`+u ): v` = `ino , u` = `inu

– (`−u ): v` = `out
o , u` = `inu

– (`+o ): v` = `out
u , u` = `ino

– (`−o ): v` = `inu , u` = `ino

• (k−u ): vk = kout
u , uk = kin

o

– (`+u ): v` = `ino , u` = `inu

– (`−u ): v` = `out
o , u` = `inu

– (`+o ): v` = `out
u , u` = `ino

– (`−o ): v` = `inu , u` = `ino

• (k+
o ): vk = kout

o , uk = kin
u

– (`+u ): v` = `ino , u` = `inu

– (`−u ): v` = `out
o , u` = `inu

– (`+o ): v` = `out
u , u` = `ino

– (`−o ): v` = `inu , u` = `ino

• (k−o ): vk = kout
o , uk = kout

u

– (`+u ): v` = `ino , u` = `inu

– (`−u ): v` = `out
o , u` = `inu

– (`+o ): v` = `out
u , u` = `ino

– (`−o ): v` = `inu , u` = `ino

Finally, add the edges {uk, u`}, {vk, v`} to E.

Then we define the resulting G = (V,E) to be the diagram graph. ♦

See Fig. 4.11 on page Page 67 for an example of the full diagram graph for
the (5, 1) knot. Note, part (4) of Definition 4.3 is meant to address situations
like the following: Consider the segment contained in the dashed region of
Fig. 4.11.7

7For reference, the signed Gauss code for this diagram is given by 1+
u , 2+

o , 3+
u , 4+

u , 5+
o ,

6+
u , 4+

o , 5+
u , 6+

o , 1+
o , 2+

u , 3+
o .
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1mid1inu 1outu

1ino

1outo

2mid

2inu

2outu

2ino 2outo 3mid3inu 3outu

3ino

3outo

4mid

4inu

4outu

4ino 4outo 5mid5inu 5outu

5ino

5outo

Figure 4.11 Example of the diagram graph for the diagram of (5, 1) shown in Fig. 4.5. The dashed edges are the ones
added in in step (4) of Definition 4.3. See below for more.
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1+ 2+ 3+ 4+ 5+ 6+

Figure 4.12 An example knot.

Suppose we were to omit the edges from step (4) of Definition 4.3. Then
observe that, holding the rest of the graph constant, mirroring the region
yields a valid graph isomorphism (Fig. 4.13).

1m
id

1i
n u

1o
u
t

u

1i
n o

1o
u
t

o

2m
id

2
in u

2o
u
t

u

2
in o

2o
u
t

o
3
m
id

3i
n u

3o
u
t

u

3i
n o

3o
u
t

o

1m
id

1
in u

1o
u
t

u

1i
n o

1o
u
t

o

2m
id

2
in u

2o
u
t

u

2
in o

2o
u
t

o
3
m
id

3i
n u

3o
u
t

u

3i
n o

3o
u
t

o

Figure 4.13 A valid graph isomorphism.
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However, this would change our graph from representing the knot in
Fig. 4.12 to representing the following:

1+ 2+ 3+ 4− 5− 6−

As the two are not even ambient isotopic, this is undesirable. Thankfully,
part (4) of Definition 4.3 prevents this by adding auxiliary edges as follows.
Consider the following neighborhood of the original knot:

1+ 2+ 3+ 4+ 5+ 6+

Figure 4.14 A neighborhood of crossings 3 and 4

In the knot graph with the edges added by part (4), the neighborhood
appears as follows:

1mid1inu 1outu

1ino

1outo

2mid

2inu

2outu

2ino 2outo

Edge added by 4

Edge added by 4

Figure 4.15 Zoomed view of the neighborhood of Fig. 4.14 in the diagram
graph
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We now show that the diagram graph has a unique planar embedding.
To that end, we’ll make heavy use of the following theorem of Whitney.8

Theorem 4.2 (Whitney). Let G be a simple graph planar graph. Suppose
G is 3-connected. Then G has a unique9 planar embedding.

There are three hypotheses we need to verify: G is simple, G is planar,
and G is 3-connected.10 Simplicity follows by construction. Planarity and
3-connectedness are slightly more involved, so we’ll treat them separately in
the below. In both cases, the following vocabulary will be helpful.

Definition 4.4 (Crossing subgraph, underlying crossing, and representing vertices).
Let コ be a signed Gauss code for a regular diagram D, and let G = (V,E)
be the associated diagram graph. Let v = k�x ∈ V , where x ∈ {u, o, } and
� ∈ {in,mid, out}.11 Let Gk be given by Vk =

{
kmid, kin

u , k
out
u , kin

o , k
out
o

}
and all

their edges.12 Then we call

• Gk the crossing k subgraph of G,

• k the underlying crossing of v, and

• Vk the set of representing vertices of k. ♦

Ok — first, we show the diagram graph is planar.

4.2.1 The Diagram Graph is Planar

Recall, a subdivision of a graph G = (V,E) is obtained by inserting vertices
into the middle of edges of E.13 The following is a well-known result.14

Proposition 4.3. Let G = (V,E) be an arbitrary graph. Then G is planar
iff every subdivision of G is planar.

The following proposition is also straightforward to prove. We will actually
only need the special case where we are connecting v0 and v2 (where v0, v1, v2

8For a nice treatment of this theorem, see Bondy and Murty (2008). The theorem itself
is stated as Theorem 10.28 on pg. 267.

9Here, “unique” means that any other embedding of G has the same set of faces
(considered as sets of edges).

10Recall, a graph is called k-connected if it has more than k vertices, and removing
11Note, x is the blank character only when we have kmid

12Explicitly, Ek = {{v1, v2} ∈ E | v1, v2 ∈ V ′}.
13Explicitly: let e = {v1, v2} ∈ E. Then (a) define a new vertex v′ and add it to V , (b)

delete the edge {v1, v2} from E, and (c) add {v1, v
′}, {v′, v2} to E.

14See Proposition 10.3 on pg. 246 of Bondy and Murty (2008).
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are consecutive vertices in a face), but the proof is completely identical, so
we kept the more general version.

Proposition 4.4. Let G = (V,E) be a planar graph. Consider an arbitrary
planar embedding of G (denote it E), and let v0, v1 be two vertices on some
face F of E(G). Then G′ = (V,E ∪ {{v0, v1}}) is planar.

Sketch. We proceed by construction. By definition of a face, F is a connected
subset of R2 such that F ∩ E(G) = ∅ and ∂F ⊆ E(G).

Observe that closure preserves connectedness, hence F is connected.
Since we’re working in R2, connected implies path connected, so F is path
connected. Thus there exists a path γ : [0, 1] ↪→ F with γ(0) = E(v0) and
γ(1) = E(v1). We define use this to define the embedding of G′ by15

E′(�) =

E(�) if � ∈ V or � ∈ E,
−→γ ([0, 1]) if � = {v0, v1}

Since F ∩ E(G) = ∅, it follows that −→γ ([0, 1]) ∩ E(G) = ∅. Hence the new
edge doesn’t cross any of the embeddings of the previous edges. Thus E′ is a
planar embedding too. �

Now we can show that the diagram graph is planar.

Proposition 4.5 (Planarity of Diagram Graph). Let コ be the signed Gauss
code for an n-crossing knot diagram D, and let G = (V,E) be the associated
diagram graph. Then G is planar.

Proof. Note that by definition of a regular diagram, the non-simple graph
G0 = (V0, E0) defined by

1. V0 is the set of crossing points of D (labeled 1, . . . , n), and

2. E0 = {{u0, v0} ∈ V0 | u0, v0 are the endpoints of a semiarc of D}

is planar (see Fig. 4.7).16 Observe that taking kmid = k and then performing
step (1), the first part of step (2), and step (3) of Definition 4.3 corresponds

15Recall that we use −→f (A) to denote “the image of A under f .”
16Sketch: The knot diagram trivially gives an embedding of the graph, since by definition

crossings only occur at points of V0, so we can just take the semi-arcs to be embeddings of
the edges, and all the boxes get ticked.
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to taking a subdivision of G0.17 In particular, we have subdivided each edge
{vi, vj} twice by inserting an “out” vertex and an “in” vertex, assigned to
vi, vj as dictated by the signed Gauss code. Thus, by Proposition 4.3, the
resulting graph G1 = (V1, E1) is planar.

Now observe that by Proposition 4.4, performing the second part of
step (2) (adding the rims to each of the crossing k subgraphs) yields a new
planar graph G2.18 A similar argument can be applied to show that step (4)
corresponds to applying Proposition 4.4 to G2, hence the resulting graph
G3 is planar as well. Since G3 is the diagram graph itself, we now have the
desired result. �

Now, we show the diagram graph is 3-connected.

4.2.2 The Diagram Graph is 3-Connected

We start by proving that each crossing k subgraph is 3-connected, then we
use this to argue the case for the diagram graph.

Lemma 4.6. Let コ be a signed Gauss code for a regular n-crossing diagram
D, and let G = (V,E) be the associated diagram graph. Then for all k =
1, . . . , n, the crossing k subgraph is 3-connected.

Proof. Note that for all k, by construction, Gk is isomorphic to the wheel
graph W4. One can do a brute-force check to verify W4 is 3-connected19 �

Now, we attack the diagram graph.

Theorem 4.7. Given a signed gauss code コ for an n-crossing knot diagram
D, there exists a unique planar embedding of the associated diagram graph
G = (V,E).

17These steps were:〔step (1)〕adding the representative vertices,〔first part of (2)〕
adding all the spokes from kmid to the other representative vertices, and〔step (3)〕
connecting the rims of the crossing k subgraphs together as dictated by the signed Gauss
code.

18If being extremely rigorous, one would need to argue that none of these added edges
can ever cross each other. This is straightforward: the crossing k subgraphs are each planar
(since they’re isomorphic to W4), and we haven’t added edges anywhere else.

19A straightforward way is to apply Menger’s theorem and argue that between any two
vertices, there exist 3 internally vertex-disjoint paths (fancy way of saying paths that are
disjoint except the endpoints). One can use the symmetry of W4 to reduce the argument
to just 3 cases: (1) two adjacent vertices on the rim, (2) two opposite vertices on the rim,
and (3) the center vertex with any other vertex.
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Proof. Again, by Theorem 4.2, we want to show that G is 3-connected. To
that end, consider an arbitrary cut (S, T ) of G, and let the cut-set be Ecut.20

We want to show |Ecut| ≥ 3. We have two subcases.

1. Suppose Ecut contains an edge from one of the crossing k subgraphs,
denote it Gk. Then S, T partition Gk, and by Lemma 4.6, we have at
least 3 edges in Ecut, as desired.

2. Now suppose Ecut does not contain an edge from any of the crossing
k subgraphs. Then S, T partition the crossing k subgraphs. By the
pigeonhole principle, there exists some k such that if ` is the crossing
that comes directly after k’s first appearance in the signed Gauss code,
the representing vertices Vk, V` satisfy Vk ⊆ S, and V` ⊆ T .21

Recall the definitions of uk, u`, vk, v` from Definition 4.3 step (4). Note
that uk, u` and vk, v` are distinct. Thus the edges {uk, u`}, {vk, v`},
{vk, u`} are all distinct. The first two are added in step (4), the latter
in step (3). Thus |Ecut| ≥ 3, as desired.

Since these cases are exhaustive, we have |Ecut| ≥ 3, as desired.

Huzzah! Now, we can finally go back and clear up the problems with the
Gauss code Reidemeister II move. In particular, we have

Proposition 4.8. We can perform a Reidemeister II move on two semi-arcs
of a regular diagram D iff they are part of a shared face in the diagram graph
G.

The proof follows directly from the construction.

4.2.3 Some More Notes on the Diagram Graph

With the (admittedly significant) planarity constraints on the diagram graph,
we can encode our knots losslessly up to a choice of chiraliy, as described in
the following proposition.

20Recall, a cut is a partition of V into two disjoint sets S, T 6= ∅, such that the
subgraphs GS = (S,E |S), GT = (T,E |T ) (where E |S , E |T denote is the original edge
set restricted to S, T respectively) are connected. The set of edges bridging GS , GT in G
is defined to be the cut-set, denoted Ecut = {{s, t} ∈ E | s ∈ S, t ∈ T}.

21To argue this: first note that the case where there’s only 1 crossing subgraph is covered
by the first case. Hence, without loss of generality n ≥ 2. Now observe that there are n
such k, ` pairs, and only two sets to partition them across.
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Proposition 4.9. For knots K0, K1 with diagrams D0, D1, the associated
diagram graphs G0, G1 are isomorphic iff D0 and D1 are equivalent by planar
isotopy together with (at most) a single reflection.

Again, this follows more or less by construction. The upshot is that we
can now fully encode knot equivalence by moves on the signed Gauss code
subject to planarity constraints.22

Proposition 4.10. Given: two sets V,E representing a diagram graph G,
there exists a greedy algorithm for enumerating the faces of the G that runs
in O(n) time (where n = |V |).

Proof. Initialize an empty list of faces. Subdivide each edge in the graph into
two directed half-edges with opposite orientations (O(n)). Note of these, there
are only 4n edges that we’re actually interested in (the half-edges representing
arcs in the diagram). Also observe that each half-edge is contained in exactly
1 face of G.

Initialize a counter to 0 to keep track of how many half edges we’ve seen
so we know when to stop. Choose an arbitrary starting edge, and perform an
O(1) check to make sure it’s not the interior half-edge for one of the vertex-k
subgraphs. If it is, then it’s another O(1) operation to find a correct starting
point (this can be done by adding casework to navigate through the vertex
k-subgraph).

Once at a valid starting point, follow the graph counterclockwise around
the boundary of each face, popping half-edges off as they are encountered.
Observe that throughout this process, the decision of “which edge to traverse
next” can always be made in O(1) time because the rim vertices of the vertex
k subgraphs are canonically ordered.23 �

Of course, we rarely need a full list of the faces, but enumerating one face
vs. all of the faces turns out to be a difference of a constant in the average
case if we use a strategy like the one above.

Proposition 4.11. Determining whether we can perform a Reidemeister II
move is O(n) in number of crossings.

Proof. Use an algorithm similar to the above. �
22Alternatively, we can encode the Gauss code Reidemeister moves directly in moves on

the diagram graph.
23In terms of implementation, we can do something simple like representing each vertex

by a tuple (v, label) where label encodes the under/over/in/out/mid information, or by
representing the vertices as integers where kmid 7→ 5k, kout

u 7→ 5k + 1, etc., and then using
the remainder mod 5 to calculate the label.
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4.3 Virtual Knots

While the diagram graph defined in the previous chapter is a nice computa-
tional tool for manipulating knots, from a more theoretical standpoint, it
leaves quite a bit to be desired.

Ultimately, our purpose with the signed Gauss code was to try and
identify a cleaner algebraic way of understanding knot theory in terms of
purely combinatorial structure. Unfortunately, the planarity restrictions we
had to place on Reidemeister II make it hard to see this panning out. What
are we to do? We have a few options:

1) Abandon the signed Gauss code approach and search for something
more fruitful,

2) Double down on it and work at building up a rich theory around the
diagram graph, or

3) Extend our interpretation of “knot” to a new context where we don’t
have to worry about planarity concerns at all.

We’ll choose option (3), which will lead us to the field of virtual knot theory
(first introduced by Kauffman (1998)). The idea is to make signed Gauss
codes our fundamental object of study, without including any concerns about
planarity conditions. We’ll give two small pieces of motivation before getting
into the thick of it. One draws an analogy with defining the complex numbers,
the other with drawing planar graphs on surfaces other than R2.

Question 1 (Motivation). Is it possible to find an x such that x2 = −1?

Answer 1. No. For any x ∈ R we have x2 ≥ 0. Hence such an x doesn’t
exist. �

But of course, we could use complex numbers instead to make things work
out.

Answer 2. Define a new symbol i such that i2 = −1. Then this gives
the desired x.a �

aOr, for a more algebraic point of view, instead of thinking “i2 = −1” we can view
C as working in R[i]/

〈
i2 + 1

〉
. Same end result, but the explicit focus on modding

out by an ideal might carry a different flavor for some people.

While we often take the complex numbers for granted, it’s important to
recognize that at first glance defining i2 = −1 might seem like nonsense —
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or at the very least, a cop-out. But after years of careful study, we now know
that C can be very intuitive, and in many ways is actually nicer than R.
For instance, every polynomial in C of degree n has n roots in C. The same
property is not enjoyed by the real numbers.

This is analogous to the relationship between classical knots (the things
we have been referring to as “knots” up to this point) and virtual knots. With
virtual knots, every Gauss code has a corresponding knot. With classical
knots, we can sometimes get Gauss codes that are comparable to x2 = −1 —
unless we extend our scope, it seems like there’s no way to make sense of the
statement. The extension comes from loosening the planarity constraints on
the signed Gauss code. How do we interpret the result? To start, consider
the following question.

Question 2 (Motivation). Is it possible to draw the K3,3 graph without any
edge crossings?

Figure 4.16 The K3,3 graph.

We’ll examine two answers.
Answer 1. No. One can show that in a planar graph, if there are no
cycles of length 3, then |E| ≤ 2|V | − 4. For K3,3, one can verify that
|E| = 9 and |V = 6|. But 9 6≤ 2 · 6− 4 = 8, so K3,3 is non-planar. Hence
it cannot be drawn without edge crossings. �

Nice! Rigorous, sensible, and to-the-point. Here’s another answer.
Answer 2. Yeah just draw it on a donut.
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Figure 4.17 K3,3 on a torus. Apologies for the strange color theme;
due to the author’s partial colorblindness, more standard palettes were
hard to work with.

�

4.3.1 Definitions

We define (oriented) virtual knots in terms of signed Gauss codes.

Definition 4.5 (Virtual Knot). A virtual knot is a string コ of 2n characters such
that for each k = 1, . . . , n, for some choice of εk ∈ {+,−}, the symbols kεk

u , kεk
o each

appear in コ exactly once. ♦

Compare with Definition 4.1. Here, instead of defining Gauss codes in
terms of knots, we’ve defined knots in terms of Gauss codes. Returning to
our analogy with C and R, this would be like defining C as “the set of all
roots of single-variable polynomials with real coefficients.”24

We define equivalence for virtual knots as follows:

Definition 4.6 (Equivalence of Virtual Knots). We say two virtual knots K1, K2
are equivalent if K1 can be transformed into K2 by a finite sequence of Gauss code
Reidemeister moves (this time without the planarity constraints on Reidemeister
II). ♦

How do we interpret virtual knots and their equivalence geometrically?

24To see this, note that for any z ∈ C, (x− z) · (x− z) has real coefficients.
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Treating this question in full would take us beyond the scope of our purposes
today, but we will give a high-level overview.25 Our first order of business is
to define virtual knot diagrams.

Definition 4.7 (Virtual knot diagram). A virtual knot diagram is defined identically
to the classical case, only now we include special virtual crossings that we insert
whenever we’re forced to violate planarity to connect strands together. Virtual
crossings are denoted by circles, as in Fig. 4.18. ♦

Figure 4.18 A virtual crossing

Note. Virtual crossings do not appear in the signed Gauss code. This is because
there’s a sense in which they’re not really “there” — rather, they’re an artifact of
our projection into R2. We’ll expand on this below.

Example 4.2. Consider the virtual knot given by 1+
o 2+

o 1+
u 2+

u . If we were to try
and interpret this as a classical knot, we’d run into some problems:

1+ 2+

Figure 4.19 Now what?

Note, there’s no way to connect the strand to crossing 2 in the desired manner
without introducing a new crossing along the (2+

o , 1+
o ) semiarc. Hence, we employ a

virtual crossing, which allows us to complete the diagram without problems.

25For more, the reader is encouraged to investigate Scott Carter et al. (2002)
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1+ 2+

Figure 4.20 Virtual diagram
♦

How do we interpret the resulting “knot” as an embedding? A hint
comes from Motivating Question 2. As we saw there, it’s still possible
to draw K3,3 without having edges cross each other if we work on a torus.
Recalling the connection between signed Gauss codes and planar graphs that
we established through the diagram graph, it seems reasonable to think of
virtual knots as knots that we draw on thickened surfaces.26 In this context,
we see that virtual crossings don’t really represent real crossings of the
strands in our knot. Rather, they’re artifacts of our 2D representations.

Figure 4.21 An example of how we might obtain something like Fig. 4.20.

Some care has to be taken in reworking our interpretation of what it
means for knots to be “equivalent” in this new context — e.g., it seems

26We need [−ε, ε] of wiggle room to let the strands pass over/under each other.
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we might be able to get two inequivalent unknots by drawing closed loops
longitudinally / latitudinally on the surface. We will not worry too much
about this today; we’re only interested in the combinatorial aspects. For
more, the reader is encouraged to look at Scott Carter et al. (2002).

By carefully studying Fig. 4.21, the reader might realize that performing
Reidemeister moves on the surface of the torus can actually introduce extra
virtual crossings into our 2D projection.27 This suggests that the purely
diagrammatic Reidemeister moves are insufficient for manipulating virtual
diagrams.28 Indeed this is the case. To work purely in terms of diagrams, it’s
necessary to introduce an expanded moveset, which is given by adding the
following four operations:29

∼
a. Virtual Reid. I

∼
b. Virtual Reid. II

c. Virtual Reid. III d. Mixed Reid. III

Figure 4.22 The virtual moves. Note that in the cases of Virtual Reid.
II and Virtual/Mixed Reid. III, we should really be displaying analogues
for all of the classical moves (i.e., the different possible combinations of
connectivities/orientations)

Together with the 3 standard diagrammatic Reidemeister moves, these
are sufficient to fully encode equivalence of virtual knot diagrams.

27This can also be derived entirely from looking at the signed Gauss code Reidemeister
moves without planarity constraints.

28Of course, by definition the signed Gauss code Reidemeister moves still suffice for
virtual equivalence.

29Note that as with the Reidemeister moves, one should actually include all possible
combinations of orientations / connectivities on the diagrams above.
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4.4 A Very Brief Note on Unknotting Moves

It is very important to note that although they might look similar to the
other virtual diagram moves, the following are not valid local modifications
for virtual knot diagrams.30

a. Forbidden Move I b. Forbidden Move II

Figure 4.23 The Forbidden Moves

In fact, if we were to allow this move together with the others, it would be
sufficient to unknot any knot, virtual or classical! See here31 for an excellent
step-by-step demonstration of unknotting the trefoil using these moves.

The forbidden moves are examples of unknotting move. These are typically
defined in terms of modification rules for diagrams, but we’ll define them below
in terms of Gauss codes, since we’re trying to move in more combinatorial
directions.

Definition 4.8 (Unknotting Moves & Unknotting Sequence). An unknotting move
is a modification rule for the Gauss code such that, together with the Gauss code
Reidemeister moves, the operation is sufficient to reduce any Gauss code to one for
the unknot (e.g., the empty string).

Such a sequence of Gauss codes + Reidemeister moves is called a unknotting
sequence. ♦

Example 4.3. The forbidden moves displayed above act on the Gauss code by
exchanges of the form

(. . . , i, . . . , i, j, . . . , j, . . .) 7→ (. . . , i, . . . , j, i, . . . , j, . . .)

together with the appropriate choices of {u, o} and {+,−} (note, the middle j, i
always have the same u/o label). Adding in the versions with other connectivities

30Once more, one should really be considering all possible orientations / connectivities
for these moves.

31In case the link doesn’t work, the url is https://www1.cmc.edu/pages/faculty/VNelson/
unknottingthetrefoil.html.

https://www1.cmc.edu/pages/faculty/VNelson/unknottingthetrefoil.html
https://www1.cmc.edu/pages/faculty/VNelson/unknottingthetrefoil.html
https://www1.cmc.edu/pages/faculty/VNelson/unknottingthetrefoil.html
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and orientations gets us moves of the form

(. . . , j, . . . , i, j, . . . , i, . . .) 7→ (. . . , j, . . . , j, i, . . . , i, . . .),

again with the corresponding choices of {u, o} and {+,−}. Hence we see that these
moves allow for essentially arbitrary permutations of the Gauss code. ♦

One of the reasons unknotting moves are fascinating is because it seems
they could offer us a nice way to define explicit algebraic structure on knots.
For instance, consider the following: let K be a knot given by some Gauss
code コK , and let σ1, σ2, . . . , σn be an unknotting sequence for コK . If we
use コ〇 to denote the Gauss code for the unknot, we think of this process
as follows:

(σn ◦ σn−1 ◦ · · · ◦ σ2 ◦ σ1)(コK) =コ〇.

But then note, since the σi all have well-defined notions of “inverses,” we
can also write

コK = (σn ◦ σn−1 ◦ · · · ◦ σ2 ◦ σ1)−1(コK)

=
(
σ−1

1 ◦ σ
−1
2 ◦ · · · ◦ σ

−1
n−1 ◦ σ

−1
n

)
(コK).

That is, we can express K in terms of a “recipe” for building コK from
the unknot! This idea becomes even more tantalizing when we see just how
simple these moves can be:

Proposition 4.12. Let K be a classical knot represented by a Gauss code
コK . Then being allowed to exchange kεku , kεko arbitrarily yields an unknotting
move.

Sketch. Note, this corresponds to switching which strand is on top vs. on
bottom at any given crossing. Using this, one can switch the crossings
until コK represents a knot that is always passing “underneath” itself.32 A
simple pigeonhole principle argument can be applied to show that there must
always exist a simplifying Reidemeister I or Reidemeister II move in this
situation. �

Remark. Using this, one can show that the move defined by “flipping k consecutive
crossings” is an unknotting move as well. The idea is that we can derive the single-
crossing flip by simply inserting k − 1 Reidemeister I loops into コK after some
crossing, flipping all k of these, and then removing the k − 1 Reidemeister I loops.

32In terms of the Gauss code: If one considers the sub-string consisting of the first time
we encounter each crossing k, all of them would be labeled with overcrossings.
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Note too that the single-crossing-flip can be used to derive the k-crossing version. In
this sense, the two are “equivalent.” For more on these ideas, see Nakanishi (1994).

One might note that the unknotting moves we’ve discussed so far appear
to have a very “symmetric group” flavor to them. Indeed, both of our examples
seem to be encoding transpositions of some flavor, which we might recall
are the generators for Sn. We spend the next chapter describing one way of
making this explicit. Before that, we have a brief discussion of how if we were
able to make this unknotting move representation algebraically well-defined
in an efficiently-computable way, then we would be able to reduce knot
equivalence to the unknot detection problem.

4.4.1 Addendum: Reducing Knot Equivalence to the Unknot-
ting Problem

Currently, we do not have an NP solution for determining knot equivalence
(Lackenby (2016)). However, we do have an NP solution for determining if a
given knot is unknotted (Lackenby (2013)). If something like the following
were true, then we would be able to explicitly construct a reduction showing
knot equivalence is NP. We should be very clear that we expect Problem 4.1
is almost certainly impossible, but we have no proof of this. We remain
hopeful that a related approach could prove fruitful (or at the very least,
interesting), which is why we have chosen not to omit its mention.

Problem 4.1. Let K0,K1 be tame knots represented by Gauss codes コK0 , コK1 .
Given an unknotting sequence ΣK0 for K0, does there exist a polynomial-time
algorithm for converting ΣK0 to ΣK1 , such that ΣK1 unknots K1 iff K0 ∼= K1? ♦

We actually need a second proposition as well, but it is straightforward
in the case of classical knots. We have not considered the virtual case, but
we imagine an analogous version holds.
Proposition 4.13. Given an n-crossing classical knot K represented by
a Gauss code コK , there exists an O(n) time algorithm for computing an
unknotting sequence reducing コK to a (non-simplified) Gauss code for the
unknot.
Proof. One can simply traverse コK , checking at each crossing kεkxk whether
we have encountered k in the Gauss code already or not. If we haven’t, then
we apply a crossing-flip move if needed to ensure xk = o. Else, we continue.
Per the argument in Proposition 4.12, the resulting Gauss code represents
an unknot. �
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This gives us the following.

Proposition 4.14. If Problem 4.1 is true, then the (classical) knot equiva-
lence problem is polynomial-time reducible to the unknotting problem, and
hence NP.

Sketch. Given K0, compute ΣK0 . Apply Problem 4.1 to yield ΣK1 . Apply
ΣK1 to K1. Then the result is an unknot iff K0 ∼= K1, hence we have a
polynomial-time reduction to unknot detection. �

As we’ve said, Problem 4.1 seems like far too much to hope for. However,
other approaches can yield similar reductions, and we wonder whether there’s
one that could yield a feasible approach to demonstrating knot equivalence
is NP. For now, however, this seems out of reach.

We’ll now switch our focus to examining an algebraic formalism for knots
that encodes the idea of “unknotting moves generating knots, together with
Reidemeister equivalence.” This is the focus of Chapter 5.



Chapter 5

Connections to Sn

till Max said “BE STILL!”
and tamed them with the magic trick

of staring into all their yellow eyes without blinking once
and they were frightened and called him the most wild thing of all

and made him king of all wild things.

—Maurice Sendak, Where the Wild Things Are

In leaving off the last chapter, we mentioned that unknotting moves
appear reminiscent of actions of the symmetric group (in that they involve
permuting the orderings of our characters in the Gauss code). In particular,
we saw that the forbidden moves allow us to perform near-arbitrary exchanges
of adjacent characters in the Gauss code. We also saw that unknotting moves
allow us to think about a Gauss code コK as being “generated” by applying
an unknotting sequence in reverse to the code for the unknot, コ〇. In this
chapter we want to try and make this correspondence more explicit by finding
a way to view knots as a byproduct of group-like structure.

For our particular approach, we will describe knots in terms of elements
of the Symmetric group for a countable set acting on a string of characters,
which will take the form of a standard Gauss code for the unknot. We
should stress that equivalence will not translate into a clean set of rules
here — in fact, we have not yet found an explicit formalism for incorporating
it — nevertheless in computational searches, the formalism seems to yield
interesting behavior.

The main challenge for the project comes from the fact that knots can
have different numbers of crossings. Hence it’s not clear what we’re supposed
to do if somebody hands us a permutation encoding the move “flip crossing
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17” when all we have is a trefoil. Choosing crossings arbitrarily is no good
in this situation, since flipping different crossings in a knot generally yields
different effects. For example, twist knots can be unknotted with a single
move by flipping one of the crossings in the clasp, while flipping one of the
crossings in the twisted portion generally just reduces the number of crossings
by 2.1

One solution is to use the fact that Reidemeister I and II moves insert
or delete elements from our string to add /remove extra crossings until we
can interpret the result. But this would make our rules convoluted to say the
least, and would raise all sorts of questions about how/where we should be
inserting crossings to get the expressions to match. Hence this is undesirable
as well.

What we’d really like is a way to view everything — Reidemeister moves,
unknotting moves, and all the moves in between — in terms of permutations,
where nothing is ever “added” or “deleted.”The solution we propose is to
choose our canonical unknot string to be one that already contains every
possible crossing. In this light, we can view Reidemeister I and II as just
moving these crossings to new locations.

L1

L2

L3
L4

L5 L6 L7 L8 L9

Figure 5.1 An unknot that contains countably many crossings.

It’s not immediately clear that this is something we can do without
breaking ambient isotopy, since the result doesn’t immediately appear tame.
It turns out that it works, and justifying this is the first order of business for
this chapter.

1The exception being the trefoil and figure-eight knots.
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5.1 Countable Reidmeister I Moves

In addition to helping us establish connections to permutations, the theorems
in this section will also form the inspiration for our examination of general
topological embeddings in Part III. The proofs below will not use uniform
convergence (later ones will), and we won’t go as deep in investigating the
broader implications of our results so as to avoid going too far afield.2 We
begin with a straightforward lemma.

Lemma 5.1. Let {Vn}n∈N be a collection of closed, pairwise-disjoint subsets
of R3. For all n ∈ N, let fn : R3 → R3 be a homeomorphism such that fn is
identity on R3 \ V ◦n . Suppose too that

lim
n→∞

diam(Vn) = 0.

Then f defined by

f(x) =



f1(x) if x ∈ V1

f2(x) if x ∈ V2
...
fn(x) if x ∈ Vn
...
x if x is not in any Vn

is a homeomorphism.

Proof. First, we show f is a bijection by defining an inverse. Let

g(x) =



f−1
1 (x) if x ∈ V1

f−1
2 (x) if x ∈ V2
...
f−1
n (x) if x ∈ Vn
...
x if x is not in any Vn.

2The uniform convergence framework is more powerful, but it also is much easier to
accidentally misuse. Essentially, it will allow us to drop the “disjointness” conditions in
our theorems below, but this will sometimes causes us to lose bijectivity on the ambient
space and thus break our ambient isotopies.
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Let x ∈ R3 be arbitrary; we want to show g(f(x)) = x. We have two simple
subcases.

1) Suppose that for some n ∈ N, we have x ∈ Vn. Then g(f(x)) =
g(fn(x)) = f−1

n (f(x)) = x.

2) Suppose that there exists no n ∈ N with x ∈ Vn. Then g(f(x)) =
g(x) = x.

Hence g = f−1, so f is a bijection (as desired).
Now, we want to show f is continuous. There are any number of ways

to do this; we choose a more topologically-flavored argument. Observe that
for all n ∈ N, f |Vn = fn|Vn , which is continuous. Hence f is continuous on
each Vn. One can then apply a sequential continuity argument to show f is
continuous on X0 =

⋃
n∈N Vn.3

Now observe that Xq = R3 \
⋃
n∈N V

◦
n is closed, and that f |X1 =

Identity|X1 , which is continuous. Thus f is continuous on X1. Now, since
X0 ∪X1 = R3 and f is continuous on both, the gluing lemma gives us that
f is continuous on R3.

Applying an identical argument for f−1 shows it is continuous as well.
Hence f is a homeomorphism.

Remark. By taking all but finitely many of the fn to be identity, we get the same
result for finite collections of homeomorphisms.

Remark. One can drop the diam(Vn)→ 0 condition by assuming the collection of
Vn is locally-finite instead, but this precludes us from packing countably-many Vn’s
into a compact space, so we won’t use it.

We have one more elementary lemma before we prove the analogue for
ambient isotopy.

Lemma 5.2. Let K0 : [0, 1]× R3 ↪→ R3, and let F : [0, 1]× R3 → R3. Then
K1 : S1 ↪→ R3 defined by

K1(s) = F (1,K0(s))

is an embedding.

3The only sneaky case comes in noticing that x ∈ X0 does not require x ∈ Vn for some
n. To address it: note that the only other case is if x is a limit point of

⋃
n∈N. Then note

that because diam(Vn)→ 0, one can apply a sequential continuity argument to obtain the
desired result.
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Proof. By definition of an ambient isotopy, f : R3 → R3 defined by f(x) =
F (1, x) is a homeomorphism. By definition of an embedding, K0 is a homeo-
morphism onto its image, hence f ◦K0 = K1 is too. Thus K1 is an embed-
ding. �

We now prove our first main result, which is essentially an extension of
Lemma 5.1 above to ambient isotopy.

Theorem 5.3 (Countable Concatenations of Ambient Isotopies). Let (Kn)n∈N
be a collection of embeddings from S1 ↪→ R3. Now, suppose that for all n ∈ N
there exists a closed set Vn such that

1. Kn
∼= Kn+1 by an ambient isotopy Fn : [0, 1]× R3 → R3 such that Fn

is identity on [0, 1]× (R3 \ V ◦n ),

2. For all n 6= m, Vn ∩ Vm = ∅, and

3. We have
lim
n→∞

diam(Vn) = 0.

Then Klim = limn→∞Kn is an embedding, and K1 ∼= Klim.

Proof. In light of Lemma 5.2, that Klim is an embedding will follow from
our construction of an ambient isotopy from K0 to Klim.

To that end, define F : [0, 1]× R3 → R3 by

F (t, x) =



F1(t, x) if x ∈ V1,

F2(t, x) if x ∈ V2,
...

Fn−1(t, x) if x ∈ Vn−1,

Fn(t, x) if x ∈ Vn,
...
x otherwise.

We want to show F is an ambient isotopy.4
Observe that for all x ∈ R3, F (0, x) = x, and for all s ∈ S1, F (1,K1(s)) =

Klim(s) (by construction). Now observe that by definition of the an ambient
4To that end, recall that we need to show (1) F (0, x) = x, (2) For all s ∈ S1,

F (1,K1(s)) = Klim(s), (3) For all t ∈ [0, 1], F (t, ·) is a homeomorphism, and (4) F is
continuous.
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isotopy, for all t ∈ [0, 1] and n ∈ N, ft,n(x) = Fn(t, x) is a homeomorphism.
Now, since for all t ∈ [0, 1] we have

F (t, x) =



F1(t, x) if x ∈ V1,

F2(t, x) if x ∈ V2,
...

Fn−1(t, x) if x ∈ Vn−1,

Fn(t, x) if x ∈ Vn,
...
x otherwise

=



ft,1(x) if x ∈ V1,

ft,2(x) if x ∈ V2,
...

ft,n−1(x) if x ∈ Vn−1,

ft,n(x) if x ∈ Vn,
...
x otherwise,

Lemma 5.1 implies F (t, ·) is a homeomorphism. Hence, it just remains to
show that F is continuous. This follows from the gluing lemma.

Note that for all n ∈ N, An = [0, 1]×Vn is a closed set with F |An = Fn|An .
Hence F is continuous on An. Defining X0 =

⋃
n∈NAn, we can use a similar

sequential continuity argument as in Lemma 5.1 to show F is continuous on
X0.5

Similarly, observe that X1 = R3 \
⋃
n∈N V

◦
n is closed, and F |X1 =

Identity|X1 , hence F is continuous here as well.
It follows that F is continuous, hence F is an ambient isotopy.

Proposition 5.4. The countable Reidemeister I move example we described
above can be realized as the kind of ambient isotopy described in Theorem 5.3.

5Again, the key comes from diam(Vn)→ 0 implying sequential continuity.
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L1

L2

L3
L4

L5 L6 L7 L8 L9

Figure 5.2 A countable sequence of Reidemeister I moves, for the 3rd time.

Sketch. Without loss of generality, suppose the diagram in Fig. 5.2 represents
a projection onto the xy plane. Observe that none of the loops in the diagram
overlap, so we can find closed sets Un separating each of them when viewed
as subsets of R2. Taking Vn = Un × R for each n, we get the desired closed
subsets of R3. One can then use Reidemeister’s theorem to argue that we can
find ambient isotopies Fn representing the process of〔inserting a single loop
in the strand in Vn while keeping the boundary fixed〕. Applying Theorem 5.3,
we obtain the desired result. �

Example 5.1. In a similar manner, one can also employ this result to show that
cases like the following are possible:

Figure 5.3 Countable Reidemeister II

However, some care is required. Note that it’s not immediately obvious how we
could define the disjoint closed sets Vn — in fact, it seems impossible. The trick is
to do it in parts. Suppose we start with a caret-shaped arc, like the following:



92 Connections to Sn

Figure 5.4 A caret-shaped arc

Insert half of the moves as follows (note, the drawing software distorted the
figure slightly, so the correspondence with Fig. 5.3 might be a bit hard to see):

Figure 5.5 Half of the Reidemeister II moves

This can be achieved by taking the Vn’s to be the dotted regions shown in the
below.

Figure 5.6 The closed neighborhoods, shown with dotted lines

After this, one can apply a similar technique to the “flat” strands to yield a
figure like Fig. 5.3. ♦

Remark. Although the result might look very similar Fig. 5.3, to the best of our
knowledge, the following figure cannot be obtained from Theorem 5.3.
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For this, we need the uniform convergence form of Theorem 5.3, which we prove
in Theorem 7.4.

5.1.1 An Alternative Argument: A C1 Parameterization

In case the arguments above are not convincing, we have constructed an
explicit parameterization of an arc with a diagram similar to that of Fig. 5.2
that is C1 embedded in R3.6 The idea behind the parameterization is as
follows: take a big circle and a small circle, where the center of the small
circle lies on the circumference of the big circle, and the plane of the small
circle is normal to the tangent vector of the big circle. Let θ denote the polar
angle of the big circle, and r its radius. As θ → 0, we’ll make the radius of
the small circle decay like rθ3, while watching a point on its circumference
oscillate with frequency ∝ ω

θ . C
1-ness will then follow from the C1-ness of

the function

g(θ) =

rθ3 sin
(
ω
θ

)
θ 6= 0

0 θ = 0
(5.1)

for r, ω > 0.

Proposition 5.5. Consider f : [0, π/3]→ R3 defined7 by: f(0) = 0, and for
all θ ∈ (0, π/3],

f(θ) =

0 cos(θ)
r 0

0 sin(θ)
r 0

1 0 0


︸ ︷︷ ︸

M

θ3 sin
(
ω
θ

)
θ3 cos

(
ω
θ

)
0


︸ ︷︷ ︸

v

+

r cos(θ)
r sin(θ)

0


︸ ︷︷ ︸

v0

6This is proven in Crowell and Fox (1963) to be sufficient to guarantee tameness — see
Appendix A for more details, as well as some other examples.

7We choose the domain [0, π/3] just because it looks nice with the rest of the parameters
we chose when plotting. This quirk can be removed by inserting constants in various places.
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=


t3 cos(t) cos(ω/t)

r + r cos(θ)
t3 cos(t) sin(ω/t)

r + r sin(θ)
t3 sin(ω/t)


Then f is C1 on (0, π/3), and limθ→0+ f ′(θ) = (0, r, 0).8

Remark. In the equations above, M rotates us into the orthogonal frame for the
big circle’s tangent vector (here, the big circle is parameterized to lie in the xy-plane),
v represents the point on the circumference of the small circle, and v0 shifts the
result so that the center of the small circle would lie on the circumference of the big
circle.

Proof. One can argue that limθ→0 f
′(θ) exists by noting that the function

g(θ) defined in Eq. (5.1) is C1, and then using the product rule, etc. Feeding
it into Mathematica also works.

It follows that f(θ) can be extended to a C1 function f : S1 ↪→ R3. �

We now provide some plots. Code for an interactive 3D version using
Julia can be found in Appendix C.2

3.0 3.5 4.0 4.5 5.0
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−0.25
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0.50

0.75

Figure 5.7 The parameterized function with r = 5, ω = 2π2, here projected
onto the xz plane.

8In fact limθ→0 f
′(θ) = (0, r, 0) as well (not just from the 0+ side), we just included

right-handed limit to emphasize that we’ve only defined f on [0, π/3]. On that note,
limθ→π/3− f ′(θ) exists as well, but that’s not really a surprise — the only place things
could really go wrong are at θ = 0.
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Figure 5.8 A 3D view of a version defined over [−π/3, π/3].

Note, if we were to use θ2 instead of θ3, we’d lose the C1 condition, but
it’d still yield some pretty plots.
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Figure 5.9 Using θ2 instead

So, to recap: we’ve shown that under certain mild conditions, we can



96 Connections to Sn

apply countably-many Reidemeister moves to our knots and still yield tame
embeddings. We use this to create our desired representation in terms of Sn.

5.2 Using Countable-Crossings to Define an Ac-
tion

The effects of the Proposition 5.4 can be summarized as “we can create
many bounded, tame arcs that have infinitely many crossings.” We apply
this to create our combinatorial representation. Note that in our creation
of a “standard unknot code,” we’re imagining a slightly modified version of
Proposition 5.4 in which we insert both a + and a − version of crossing k using
Reidemeister I moves. While it might seem strange to have two crossings
labeled by k in our Gauss codes, this will turn out to be more natural for
our purposes. Further, we’ll see that only one can appear nontrivially (i.e.,
not locally removable by a Reidemeister I move) at any given time.

In deciding how to add both of these +/− characters, we’ve elected to
define the standard unknot in a way that the process corresponds to the
insertion of a framed Reidemeister I move for each k.

Definition 5.1 (Standard Gauss sequence for the unknot). The standard Gauss
sequence for the unknot, denoted コ〇, is defined by

コ〇 =
∞

#
k=1

(k+
u , k

+
o , k

−
o , k

−
u )

= 1+
u , 1+

o , 1−o , 1−u , 2+
u , 2+

o , 2−o , 2−u , . . . , n+
u , n

+
o , n

−
o , n

−
u , . . . ♦

n+ n−

Figure 5.10 An example of one of the inserted blocks

Question 1. Is this the most natural choice of canonical representative for 〇?
After reading the below and seeing the way we try and use コ〇 in our Symmetric
group formalism, the reader is encouraged to ponder this question. The author
would be excited to hear any insights! ♦
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We use this to define the standard Gauss sequence for a knot K in a way
that will be germane to viewing it in terms of permutations. The idea is very
simple (we’re basically just inserting the symbols that are missing from コ〇
in コK in the places they would be in コ〇), but the notation in the below is
almost laughably verbose. This is because we were trying to define things as
precisely as possible to make translation into computer programs easier. We
encourage the reader to reference the examples if the definition is hard to
parse.

Definition 5.2 (Standard Gauss Sequence). Let K be an n-crossing knot given
by some signed Gauss code コK = kε1

1,x1
, kε2

2,x2
, . . . , kε2n

2n,x2n
. Note, in コK we have

indexed εi by i = 1, . . . , 2n to describe the sign of the〔crossing partially represented
by the ith symbol in K〕.9 We’ll define a related set of symbols (here labeled as ¬µj
over j = 1, . . . , n) by “¬µj is the opposite of the sign of crossing j in K.” Again,
to be extra clear, note the difference in indexing — ith symbol, jth crossing. The
symbol µ is chosen just to avoid confusion with the ε’s; the ¬ is to emphasize the
fact that we want the opposite of the sign of crossing k.

We’ll also define symbols αj , βj by

• If ¬µj = −, then αj = o, βj = u.

• If ¬µj = +, then αj = u, βj = o.

Use these to construct a sequence of n 4-symbol blocks bj as follows:

• If ¬µj = −, then bj is given by

bj = k
ε2j−1
2j−1,x2j−1

k
ε2j

2j,x2j
j¬µj
αj

j
¬µj

βj
,

and

• If ¬µj = +, then bj is defined by

bj = j¬µj
αj

j
¬µj

βj
k
ε2j−1
2j−1,x2j−1

k
ε2j

2j,x2j
.

Then we overwrite the definition of コK to be a string of 4n symbols constructed
by concatenating the bj ,

コ
fin
K =

n

#
j=1

bj .

We call this the finite portion of the standard Gauss sequence representation. The
full standard Gauss sequence representation is given by

コK =コfin
K #

( ∞

#
k=2n+1

k+
u , k

+
o , k

−
o , k

−
u

)
. ♦

9“Partially” because each crossing is encoded by two symbols in コK
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From now on, when we writeコK , unless otherwise stated, we are thinking
of the standard Gauss sequence representation. The following proposition
asserts that コK is realizable by ambient isotopy (up to relabeling to ensure
both the + and − copies of crossing k are included).

Proposition 5.6. Let K be an n-crossing knot. Then the underlying geo-
metric representative for K is ambient isotopic to one realizing the standard
Gauss sequence for K (with some minor relabeling to ensure both k+, k−
appear).

Proof. Immediate from the construction of コK . Insert the finitely-many
Reidemeister I moves as dictated by the j¬µjαj , j¬µjβj

to construct コfin
K , and

then apply Theorem 5.3 to yield the infinite tail. �

We now provide some examples of the コfin
K , and show how they compare

to equivalent-length standard unknot sequences.

Note. IMPORTANT! We highly recommend the reader try interacting with
some of the concepts below programmatically. If desired, sage10 code can be found
open-source here11 on Github.

At the time of writing, the code is mainly in the prototyping phase, hence
documentation is not extensive, and we have not done thorough bug-testing. However,
basic functionality appears to be quite solid. If the reader has any questions and/or
encounters a bug, we heavily encourage them to submit an issue report12, or to
contact the author at fkobayashi@g.hmc.edu.

Example 5.2 (Standard Gauss Sequences). In the following, we’ll highlight the
newly-inserted portions gray.

• Consider the trefoil given by 1+
u , 2+

o , 3+
u , 1+

o , 2+
u , 3+

o . Then コ
fin
(3,1) is given by

コ
fin
(3,1) = 1+

u , 2+
o , 1−o , 1−u , 3+

u , 1+
o , 2−o , 2−u , 2+

u , 3+
o , 3−o , 3−u .

Compare this to the finite part of the standard unknot sequence of the same
length. We’ve grayed out the same portions in the コ〇 as in コfin

(3,1) to focus
the reader’s eyes on the differences.

コ〇 = 1+
u , 1+

o , 1−o , 1−u , 2+
u , 2+

o , 2−o , 2−u , 3+
u , 3+

o , 3−o , 3−u
コ

fin
(3,1) = 1+

u , 2+
o , 1−o , 1−u , 3+

u , 1+
o , 2−o , 2−u , 2+

u , 3+
o , 3−o , 3−u

10If the link doesn’t work: https://www.sagemath.org/
11If the link doesn’t work: https://github.com/redpanda1234/permutation-knots
12If the link doesn’t work: https://github.com/redpanda1234/permutation-knots/issues

https://www.sagemath.org/
https://github.com/redpanda1234/permutation-knots
https://github.com/redpanda1234/permutation-knots/issues
https://www.sagemath.org/
https://github.com/redpanda1234/permutation-knots
https://github.com/redpanda1234/permutation-knots/issues
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• The purpose of the definition of the bj ’s is more apparent in knots where not
every crossing is the same sign. Consider the figure eight knot given by Gauss
code 1−u , 2−o , 3+

u , 4+
o , 2−u , 1−o , 4+

u , 3+
o . Then compare コ〇 and コfin

(4,1):

コ〇 = 1+
u 1+

o , 1−o 1−u , 2+
u 2+

o , 2−o 2−u , 3+
u 3+

o , 3−o 3−u , 4+
u 4+

o , 4−o 4−u
コ

fin
(4,1) = 1+

u 1+
o , 1−u 2−o , 2+

u 2+
o , 3+

u 4+
o , 2−u 1−o , 3−o 3−u , 4+

u 3+
o , 4−o 4−u

• Finally, we give the example of the (6, 1) knot given by

1+
u , 2+

o , 3−u , 4−o , 5−u , 6−o , 2+
u , 1+

o , 6−u , 5−o , 4−u , 3−o .

The codes are

コ〇 = 1+
u 1+

o , 1−o 1−u , 2+
u 2+

o , 2−o 2−u , 3+
u 3+

o , 3−o 3−u , 4+
u 4+

o , 4−o 4−u , 5+
u 5+

o , 5−o 5−u , 6+
u 6+

o , 6−o 6−u
コ

fin
(6,1) = 1+

u 2+
o , 1−o 1−u , 3−u 4−o , 2−o 2−u , 3+

u 3+
o , 5−u 6−o , 4+

u 4+
o , 2+

u 1+
o , 5+

u 5+
o , 6−u 5−o , 6+

u 6+
o , 4−u 3−o

♦

The point of the above is that we can think of signed Gauss codes as infinite
sequences where finitely many of the terms have been derranged. Using this,
we can begin to formally establish connections between knot equivalence and
the finitary symmetric group on a countable set. Recall the following:

Definition 5.3 (Group Action). Let (G, ·) be a group with identity element e, and
let S be a set. Let ϕ : G× S → S such that for all s ∈ S,

1. ϕ(e, s) = s, and

2. For all g, h ∈ G,
ϕ(g · h, e) = ϕ(g, ϕ(h, e)) ♦

Definition 5.4 (Finitary Symmetric Group). Let N be a countable set. Then the
set Sℵ0 of all bijections f : N → N forms a group under function composition.
Consider the subgroup Sfin defined by

Sfin = {σ ∈ Sℵ0 | σ fixes all but finitely many n ∈ N}.

We call Sfin the finitary symmetric group on N. ♦

Given the definitions above, we’ll usually think about N as being a
collection of the characters

N =
⋃
k∈N
{k+

u , k
+
o , k

−
o , k

−
u },

in which case we denote N by Nstr. However, we’ll note that there’s another
interesting set of characters we can use that yields some nice properties.
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Definition 5.5 (Z[i] Representation of Gauss sequences). For the sake of notational
compactness, let Ng.int = Z ∪ iZ (i.e., the set of all purely real or purely imaginary
elements of Z[i]).13 Define a bijection f : Nstr → Ng.int by

f(k+
u ) = −k f(k−u ) = −k · i

f(k+
o ) = k f(k−o ) = k · i

observe that f is indeed a valid bijection. Hence, using Ng.int as our set of label
characters is fully equivalent to using Nstr. ♦

Observe that multiplying コfin
K by i gives the obverse, while multiplying

by i2 = −1 gives the reverse.
Independent of whichever set we choose to be our alphabet for forming

the Gauss code strings, we have the following proposition.

Proposition 5.7. For each knot K represented by a standard signed Gauss
sequence コK , コK can be realized as the action of an element σK ∈ Sfin on
the standard signed Gauss sequence for the unknot, コ〇.

Proof. By construction of the standard Gauss sequence, writing theコ〇 and
コK on two adjacent lines, one can immediately see the correspondence with
the two-line notation for σK :

コ〇

(
1+
u 1+

o 1−o · · · n−u
σK(1+

u ) σK(1+
o ) σK(1−o ) · · · σK(n−u )

)
7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→コK .

Note that exactly one of the pairs (1+
u , 1+

o ), (1−o , 1−u ) is fixed by σK . �

From this, we can calculate the cycle representation of our permutations.
Full tables for the cycle representation of knots up to 8 crossings are given
in Appendix C.3 in Table C.1 (using the Ng.int notation) and in Table C.2
(using the Nstr representation). Again, the code we used to work with these
can be found on Github.14.

5.2.1 The Problem with Equivalence

Interpreting knot equivalence in this context gets a bit thorny, and it seems
that there’s likely no way to make it compatible with the group structure

13“g. int” is used to suggest “Gaussian integers.”
14Once more, if the link doesn’t work: https://github.com/redpanda1234/

permutation-knots

https://github.com/redpanda1234/permutation-knots
https://github.com/redpanda1234/permutation-knots
https://github.com/redpanda1234/permutation-knots
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(although we have not explicitly constructed counterexamples). On the one
hand, viewed in abstraction, the Reidemeister moves can clearly be defined
in terms of elements σ ∈ Sfin, as detailed by the following proposition.

Proposition 5.8. Let の, ゆ, and め denote the Reidemeister I, II, and III
moves, respectively.15 Then the collections of all valid の, ゆ and め moves
(denoted Sの, Sゆ, and Sめ) form countable subsets of Sfin.

Proof. We just consider the case of の; the others are identical. Let K0,K1
be knots with Gauss sequences コK0 , コK1 , such that K0 is related to K1 by
applying a single Reidemeister move. By Proposition 5.7, we can represent
them by permutations σK0 , σK1 ∈ Sfin such that

コK0 = σK0 ·コ〇 and コK1 = σK1 ·コ〇.

Hence

σ−1
K0
·コK0 =コ〇

= σ−1
K1
·コK1 ,

and thus we have
σK1σ

−1
K0
コK0 =コK1 .

Then define σの,K0→K1 by

σの,K0→K1 = σK1σ
−1
K0
,

and observe that it is an element of Sfin realizing the desired の move. By
considering all such K0, K1, we can show that we get countably many such
σ that act nontrivially on the unknot in distinct ways, which proves the
claim. �

On the other hand, it’s worth noting that applying σの,K0→K1 to the
Gauss sequence for some other knot K2 might not yield a の-type move, and
similarly withゆ andめ. In fact, it’s unclear whether fully unrestricted use of
such moves might allow for arbitrary permutations of the Gauss codes, and
thus unknotting operations. We summarize this in the following question:

15These characters are Hiragana no ([no]), yu ([jW]), and me ([め]). We choose them
for their visual similarity to diagrammatic representations of our Reidemeister moves.
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Question 2. Is
〈
Sの
〉

=
〈
Sゆ
〉

=
〈
Sめ
〉

= Sfin? Since it suffices to check whether or
not each of the moves can be used to define arbitrary transpositions, this seems
straightforward to check, but we haven’t had time to examine it yet. It’s worth
noting that one should be extra careful to note that the definition of the Gauss code
Reidemeister moves is encoded in terms of one-line notation, not cycle notation.

If the equality does not hold for at least one of the moves (suppose it’s Sの), then
we get a subgroup. What does it look like? What do the cosets look like? To what
extent do they correspond with equivalence classes of diagrams under Reidemeister
I? ♦

This is symptomatic of the bigger problem with trying to use Sfin to
discuss knot equivalence: Essentially, no matter what we do, determining
which σ ∈ Sfin we’re allowed to apply to a knot K seems to require specific
knowledge about K itself. Here are some descriptions of why. In all of the
following, let K be an n-crossing knot with Gauss sequence コK .

• Say we want to perform a Reidemeister I move between crossings i and
j. This can be accomplished by a σの move that essentially shifts the
entire portion of コK from j onwards to the right, while moving the
corresponding (n + 1εn+1

xn+1, n + 1¬εn+1
¬xn+1) block to appear right after i,

and then relabeling the n+ 1− j crossings we’ve just modified so that
they’re in increasing order once again. The problem here is that if we
try and apply this move to another knot, say one with m > n crossings.
Suddenly, it’s not clear that the permutations we used to define the
above can be used, since the n+ 1st crossing might be involved in a
nontrivial portion of the knot.

• Reidemeister II suffers from similar concerns.

• For Reidemeister III, the permutations σめ employed are comparatively
simple to define, but we have to be careful about when exactly we can
use them. In particular, the constraint that we have to start with a
Gauss code of a certain form in order to apply the move is troubling.

• Even removing the dependence on the choice of basepoint seems non-
trivial, since this would require permuting only the portions of コfin

K

that did not arise from the j¬mujαj , j¬µjβj
. Again, this would require

specific knowledge of K.

There are a number of possible directions for future work that could address
these issues.
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1. Can we find a way to interpret the signed Gauss sequence in a way
that’s more labeling-agnostic? For instance, if we were to insert a
countable number of “blank” characters between each of the non-trivial
symbols inコK (i.e., the non j¬µjαj , etc. ones), then we could resolve the
problem of Reidmeister I and Reidmeister II by just thinking about
exchanging the labels for the new crossings we’re inserting with an
appropriate choice of blank characters.
One way to achieve something like this would be to think of コ〇 as
actually representing all of Q, together with appropriate +/− and u/o
symbols. Then, if we want to insert a crossing between crossings 1
and crossing 2, instead of doing the shifting and relabeling process we
described for Reidemeister I, we could think the operation as inserting
a crossing 1

2 . Of course, this would require us to create a knot that
has a crossing everywhere on an embedded copy of Q in S1, which it
seems we can do using Theorem 7.4. The particular construction we’d
use solves the problem of Reidmeister I, but still leaves the issues of
Reidemeister II and Reidemeister III. We wonder whether using this,
there’s a way to construct a standard unknot that is “universal” for
Reidmeister I and II moves simultaneously, in the sense that our コ〇
is for Reidemeister I.

2. Even if it turns out Reidemeister equivalence is just too much to ask
for from a group-like structure, it seems that the formalism described
above certainly yields a nice framework for categorification of knots.
For instance, one could create a subcategory for〔each Reidemeister
equivalence class of knots〕in which the objects are sequences in one
of the N, and the morphisms are the σ ∈ Sfin that correspond to
valid Reidmeister moves. In this context, we could view unknotting
operations in terms between these subcategories. We’d be interested to
see if interesting structure can arise out of this perspective.

The point is that equivalence seems challenging to incorporate, especially
given the difficulty in working with the formalism above without some guiding
conjectures. Hence, we leave this as a direction for future work, and shift
instead to summarizing some of our computational results.
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5.3 Computational Observations & Directions for
Future Work

As we’ve stated twice before, source code for the following can be found on
Github.16.

Based on our sage computations, we’ve noticed the following patterns.17

• For any two knots K0, K1 with up to 8 crossings, when the products
σK0σK1 and σK1σK0 act on コ〇, it appears that (after relabeling) the
result is a prime knot.18 We would like to see if this can be verified
theoretically, and if not, whether it still tends to hold “most” of the
time as n→∞. This seems very unlikely to us, but we’d be willing to
be surprised.

• For classical knots K0, K1, it is possible for σK0σK1 to act on コ〇 to
yield a virtual knot. For example, (σ(6,3)σ(6,2)) ·コ〇 yields a virtual
trefoil with code 4−o , 6+

o , 4−u , 6+
u . By contrast, (σ(6,2)σ(6,3)) ·コ〇

• We computed the length of the Reidemeister I / II reduced forms of the
Gauss codes resulting from all pairwise multiplications up to 8 crossings
(see Table C.3 for explicit numbers, and Fig. C.1 for a heatmap). In
general, it seems the heatmap is approximately symmetric. We wonder
whether this can be explained purely in terms of the permutations.

• We have also made a log-scale plot of the orders of the groups that are
generated pairs of the σK (see Fig. C.2). We wonder whether there’s
any correlation with Fig. C.1. We’d also be curious to see whether the
patches that appear have interpretable meaning.

We’d be interested in seeing further work in understanding these observations.
In addition to the above, we have the following questions for further work:

• How do we interpret the multiplication operation in Sfin topologically?
One hiccup is that if crossing k appears with two different signs in σK0 ,
σK1 , then we have to relabel in the product to interpret the result. But

16https://github.com/redpanda1234/permutation-knots
17Note, whenever we say “up to 8 crossings,” that does not mean the bound is sharp;

rather, it is just that we have not tried higher crossing-number knots.
18We should note that our primality checker was not terribly sophisticated, hence

there could be a flaw in it. Essentially, the program just recursively removed all possible
Reidemeister I and Reidemeister II moves and then checked the result for an obvious point
to cut the Gauss code.

https://github.com/redpanda1234/permutation-knots
https://github.com/redpanda1234/permutation-knots
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putting that aside, the primality phenomenon described above seems
very intriguing, and we would like to see diagrammatic interpretations
of what’s going on.

• We can represent the σK by permutation matrices that have been
padded with countable sequences of 0’s. As n → ∞, how are the
non-zero parts of these matrices distributed in the space of n × n

matrices?

• We described earlier how we can think of Reidemeister moves as
describing subsets of Sfin. We reiterate the questions we had then: Do
these subsets generate Sfin in full? If not, they form subgroups; what
do the cosets look like? So on and so forth.





Part III

Wild Knots





Chapter 6

Tame & Wild Knots

“And now,” cried Max, “let the wild rumpus start!”

—Maurice Sendak, Where the Wild Things Are

The goal of this chapter is to define the basic concepts of tameness and
wildness. Both of these are defined in multiple ways throughout the literature,
and for the uninitiated, it can be non-obvious how to reconcile the different
characterizations. We’ve endeavored to collect some of the most common
definitions we’ve seen, and show that they are equivalent.1 One should note
that in general, the equivalence of these definitions does not necessarily
generalize to higher-dimensional cases, e.g. surfaces embedded in R4.

For our “starting-point” definitions, we’ll use those given in Daverman and
Venema (2009). These match the definitions used when studying embeddings
of general m-manifolds into n-manifolds.

Note that beyond this chapter, not much of this material to come will be
called upon explicitly. Nevertheless, we have felt it is important to include
for two reasons:

1. Given how ubiquitous the PL category is, we found it hard to find
references for whether fundamental results like “ambient orientation-
preserving homeomorphism guarantees ambient isotopy” are valid in
the full Topological category. It appears much of this information has
become mathematical folklore, which can make it difficult for non-
experts to approach questions of interest about wild knots. We hope
this helps to address part of that problem.

1We will not include proofs for all of the equivalences, but for the two most common
definitions, we’ve included references to full proofs whenever we omit the details.
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2. Second, it provides a good opportunity to ease ourselves into thinking
about ambient isotopy without immediately rushing to Reidemeister’s
theorem, as this will not be available to us once we move into the
Topological category.

Prerequisites & Further Reading

Discussing Tame and Wild knots requires some knowledge of PL topology.
We’ve included a (very) short crash course in Appendix B, and a more
philosophical discussion in Section 6.1. The former essentially consists of a
short collection of definitions and propositions about affine and convex sets,
ending with the definition of a simplicial complex. If the reader would like a
more detailed reference work, we have some suggestions.

• The standard reference for the topic appears to be Rourke and Sander-
son (1982). Although we have not personally used this text, it seems to
be well-regarded (although we gather that PL topology has generally
fallen out of favor).

• Starbird and Su (2019) offers an excellent inquiry-based-learning (IBL)
approach accessible to an undergraduate. We would highly recommend
this text for learning the basics of the material; however, as the IBL
approach means essentially all proofs are left to the reader, those looking
for a quick-and-easy reference work might consider other sources.

• Bryant (2001) gives a very readable birds-eye view of PL topology that
we found compelling, even though diagrams are relatively few and far
between.

• Sakai (2013) includes comprehensive exposition on PL topology through
simplicial complexes, without assuming local finiteness. We did find the
notation and writing style a bit too terse for our tastes (especially given
the relatively few diagrams), but this could be a matter of personal
preference.

For further reading on the topic of tame/wild embeddings in general, we
found Daverman and Venema (2009) to be an excellent resource with clear
exposition and fantastic illustrations. However, it assumes a high level of
familiarity with prerequisite material, and hence might inaccessible for most
undergraduates.
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Anyways, for our first section, we’ll give a brief discussion of the main
categories used when studying knots. This is not an area of expertise for the
author, so we would welcome any insights, helpful examples, or analogies the
reader has to offer.

6.1 A Word on the Topological, PL, and C∞ Cat-
egories

First, the philosophical motivation. Wild knots can offer seemingly patholog-
ical behavior. For instance, as we show later in Example 7.2, the following
arc is impossible to untie:

Figure 6.1 A wild arc of Fox and Artin (1948)

This counterintuitive property is often listed as one of the reasons why we
omit wild knots from our study of knot theory. Actually, as we’ll show (see
Fig. 7.8 and the associated discussion), the reason this arc is impossible to
unknot is quite intuitive: If we try to remove each of the stitches in succession,
then at every step we end up dragging some points in the ambient space
through the subsequent loop. As we continue to untie, these same points
(together with friends they pick along on the way) get dragged down further
and further towards the wild point, and in the limit, all of them converge.
Hence we lose bijectivity. Not so scary and mysterious after all!

But in any case: Historically, wild knots have been hard to approach.
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Hence knot theory is often restricted to “nicer” contexts where describing the
behavior of our knots (and their relationships to each other) can be reduced
to finite, combinatorial means. In the PL category for instance, we require
our knots to decompose into finitely many linear pieces, and also require
any modifications we’d like to make to them to be encoded by maps on the
ambient space that decompose similarly (see Theorem 3.2). Then, because
linear-flavored objects can be described with finite information,2 this ends
up giving us a context in which essentially all of our questions about knots
can be simplified into finite problems (again, this was the exact idea behind
Part II).

The point to highlight in the above is that in making a choice of a
particular category to work in, we are requiring both our objects (knots
embedded into R3) and our morphisms (functions deforming R3) to have
a particular kind of structure. By choosing our restrictions judiciously, we
can strike a nice balance between generality and tidiness in the theories we
construct.

As seen through the existence of wild knots in the Topological category,
working in different categories can yield very different results in the theory.
Hence it is important for us to always clarify exactly which category we’re
assuming, so that readers have a sense for the scope of our results. The goal
of this section is to remind us of this fact, and of some basic properties of
each of the common categories, which we list below.

• The Topological category.

– Objects: Embeddings K : S1 ↪→ R3 (or S3)
– Morphisms: Ambient isotopies F : [0, 1]× R3 → R3.3

– Notes: Most general context to work in, but allows “pathological”
behavior.

• The PL category.

– Objects: PL Embeddings K : S1 ↪→ R3

– Morphisms: PL Ambient isotopies F : [0, 1]× R3 → R3.4

2E.g., given the endpoints of a line segment, any point p in the middle can be described
by a single parameter encoding what percentage of the way from end 1 to end 2 p is

3Equivalently, ambient orientation-preserving homeomorphisms (see 6.3.2)
4Equivalently, ambient orientation-preserving PL homeomorphisms (see 6.3.2)
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– Notes: Rarely worked with directly, but forms the backbone of
almost all modern combinatorial knot theory. Underpins Reide-
meister’s theorem.

• The Ck category (k ≥ 1).

– Objects: k-times continuously differentiable embeddings K : S1 ↪→
R3.

– Morphisms: k-times continuously differentiable ambient isotopies
F : [0, 1]× R3 → R3.

– Notes: Uncommon. By Theorem A.1 in Appendix A (together
with an argument that every tame knot can be realized by a C1

representative), this is more-or-less isomorphic to the PL Category.
However it does allow for knots whose diagrams in R2 are feral
(see Section 8.2).

• The C∞ category, also commonly referred to as the Smooth category
(although we vehemently protest this choice of phrasing, since we’ve
found authors are not always consistent on whether “smooth” means
“C1” or “C∞,” especially between fields).

– Objects: Infinitely-differentiable embeddings K : S1 ↪→ R3.
– Morphisms: Infinitely-differentiable ambient isotopies F : [0, 1]×

R3 → R3.
– Notes: Also known to be “equivalent” to the PL category (in the

sense that every C∞ knot is topologically ambient-isotopic to a
PL knot, and vice versa).

With these distinctions in mind, we now move into a discussion of various
tameness properties, which essentially describe whether an embedding can
be encoded by a PL one.

6.2 What it Means to be Tame, Wild, and (Lo-
cally) Flat

We’ll begin by clarifying some vocabulary that caused us some confusion in
trying to understand the characterization of tame vs. wild knots. As discussed
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in the preface, there are many definitions given for tameness.5 The examples
we gave were the following:

Common Definition 1. We say a knot K : S1 ↪→ R3 is tame iff it is ambient
isotopic to a polygonal knot. ♦

Common Definition 2. We say a knot K : S1 ↪→ R3 is tame iff for every
point x on K, there exists a neighborhood Ux such that the pair (Ux,K∩Ux) ∼=
the standard (ball, diameter) pair. ♦

Common Definition 3. We say a knot K : S1 ↪→ R3 is tame iff it can be
thickened to an embedding of a solid torus. ♦

Common Definition 4. We say a knot K : S1 ↪→ R3 is tame iff it has a
diagram with finitely many crossings. ♦

Of these, Common Definition 1 is the closest to the definition given in
Daverman and Venema (2009) for tameness in the context of embeddings
of general manifolds. Common Definition 2 corresponds to the definition of
local flatness, but that turns out to coincide with tameness in the case of
embeddings S1 ↪→ R3. With some added clarification on what “thickened”
means in Common Definition 3, we were able to find a convincing argument
for the (=⇒) direction, but have not been able to find a similar one for the
(⇐=) direction. Finally, we believe Common Definition 4 is misleading, and
hence should be avoided.

6.2.1 Basic Definition

Almost all of our definitions will match those given in the introduction in
Daverman and Venema (2009). Note, they define equivalence of embeddings in
terms of ambient homeomorphisms, not ambient isotopies. In Section 6.3, we
show that as far as tameness vs. wildness is concerned, “ambient homeomor-
phism” can be replaced by “ambient orientation-preserving homeomorphism”
in the above, at which point the correspondence with ambient isotopy can
be shown. We provide references for proofs in each of the Topological, PL,
and C1 categories.

Definition 6.1 (Ambient homeomorphic). Let (X,T), (Y,S) be topological spaces.
Let ι0, ι1 : X ↪→ Y be embeddings.6 Then ι0, ι1 are said to be ambient homeomorphic

5We reproduce these below, but if the reader would like to see them in their original
context, they were Common Definitions 1-4 in the Preface.

6Recall, this just means ι0, ι1 are homeomorphisms onto their images.
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if there exists a homeomorphism f : Y → Y such that f ◦ ι0 = ι1. ♦

Note, taking t = 1 in the definition of ambient isotopy directly implies the
existence of an ambient homeomorphism. It is the converse we are uncertain
about (although we expect it to be true).

Definition 6.2 (Tame & Wild Embeddings). Let X be a polyhedron and let Y
be a PL manifold. Then we say K : X ↪→ Y is a tame embedding iff it is ambient
homeomorphic to a PL embedding. An embedding that is not tame is called wild. ♦

This is slightly different from the definition of tame & wild subsets, which
we alert the reader to now:

Definition 6.3 (Tame & Wild Subsets). Let Y be a PL manifold, and let A ⊆ Y
be closed. Then A is said to be tame iff there exists an ambient homeomorphism
f : Y → Y such that f(A) is a subpolyhedron of Y . A is said to be wild if it is
ambient homeomorphic to a simplicial complex but not tame. ♦

The correspondence can be established through the following proposition,
which is stated informally in Daverman and Venema (2009).

Proposition 6.1. Let Y be a PL manifold and let A ⊆ Y be closed. Use ι to
denote the inclusion ι : A ↪→ Y . Then A is tame as a subset iff there exists
a polyhedron X and a homeomorphism f : X → A such that ι ◦ f : X → Y

is a tame embedding.

Lastly, we describe two local properties embeddings can have: local
flatness, and local tameness.

Definition 6.4 (Local Flatness at a Point). Let X, Y be m and n-manifolds
respectively, with m < n. Let K : X ↪→ Y be an embedding, and let x ∈ X. Then
we say K is locally flat at x iff there exists an open set Ux ∈ Y s.t. K(x) ∈ Ux and
there exists a homeomorphism f : Ux → Rn such that

−→
f (Ux ∩K(X)) = Rm.7 ♦

Note, with all variables as above, sometimes we’ll also say f is locally flat
at f(x).

Definition 6.5 (Local Flatness of an Embedding). With all variables quantified as
above, then if K is locally flat for all x ∈ X, then we call K locally flat. ♦

7Long way of saying (Ux, Ux ∩K(X)) ∼= (Rn,Rm). We just chose the former to avoid
having to introduce new notation.
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Note, the definition of local flatness is just encoding the idea that we
can “straighten out” our embedded copy of X in Y around each point in the
image. We can define local tameness in a similar manner.

Definition 6.6 (Local Tameness of an Embedding). Let X be a polyhedron with
a fixed triangulation, and let N be a topological n-manifold. Let K : X ↪→ N be an
embedding. Then K is said to be locally tame iff for every x ∈ X, there exists〔a PL
neighborhood Ux ⊆ N s.t. K(x) ∈ Ux〕and a homeomorphism fx : Ux → Rn such
that

fx ◦K|←−K(Ux)

is PL with respect to the above fixed triangulation of X. ♦

Of course, for our purposes today we’ll primarily be interested in the case
of embeddings K : S1 ↪→ R3. Can the definitions above be made to match
Common Definitions 1-4 in these cases? The following gives the affirmative
for 1 and 2, but we will need to wait until later to determine the answer for
3 and 4.

6.3 Correspondence with Common Def. 1

There are two main sticking points in establishing the correspondence here.
First, can replace “homeomorphism” with “orientation-preserving homeo-
morphism” in our definitions for tameness / wildness / local flatness and get
the same theory? And second, is the existence of an orientation-preserving
homeomorphism equivalent to the existence of an ambient isotopy? We show
the affirmative for the former in Rn, and direct the reader to existing proofs
for the latter in R3.

6.3.1 Homeomorphism vs. Orientation-Preserving Homeomor-
phism

Showing the equivalence of “homeomorphism” and “orientation-preserving
homeomorphism” in Rn is straightforward. In each of the PL, C1, and
Topological categories, every homeomorphism must be either orientation-
preserving or orientation-reversing, hence we can make a non-orientation-
preserving homeomorphism into an orientation-preserving one by simply
applying a flip as necessary.

Theorem 6.2. Every homeomorphism f : Rn → Rn is either orientation-
preserving or orientation-reversing.
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Sketches. We give a sketch for a proof in each category.

• (PL) Given a fixed triangulation K of Rn and an n-simplex 4n ∈ K,
note that any PL homeomorphsim either fixes or reverses the orientation
of 4n. Now, the orientation of 4n induces a canonical orientation on
each of its (n − 1)-faces 4n−1. This gives us a unique compatible
orientation on each of the other simplices 4n′ that have 4n−1 as a face.
One can then show this extends to a unique compatible orientation for
all of K.

• (C1)8 Observe that in the C1 category, the derivative matrix

Df(x) =



∂f1
∂x1

(x) ∂f1
∂x2

(x) ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) ∂f2
∂xn

(x)

∂fn
∂x1

(x) ∂fn
∂x2

(x) ∂fn
∂xn

(x)


exists, is continuous in x ∈ Rn, and invertible everywhere (f is C1 with
C1 inverse). Now, note that for all x ∈ Rn, the local orientation of
−→
f (Rn) is given by sgn(det(Df(x))). One can show that det(Df(x)) is
continuous in x. Now, observe that Rn is path-connected (hence

−→
f (Rn)

is as well), and consider an arbitrary path γ : [0, 1] ↪→ Rn. Observe that
det(Df(γ(t))) 6= 0 for all t (Df(x) is invertible everywhere), hence by
continuity, the sign of Df(x) is the same at the endpoints γ(0), γ(1).
Since γ was arbitrarily chosen, it follows that sgn(Df(x)) is constant
over Rn. Hence we get a unique orientation over all of

−→
f (Rn).

• (Topological) This is given in Crowell and Fox (1963) on pg. 8, although
the matter is essentially definitional. We’ve reproduced a slightly more
detailed version below for completeness.
First, we consider homeomorphisms of Sn. Let g : Sn → Sn be a
homeomorphism. Observe that the induced map g∗ : Hn(Sn)→ Hn(Sn)
is an isomorphism. Since Hn(Sn) = Z, there are only two choices for g∗,
determined by whether g∗(1) = 1 or g∗(1) = −1. In the first case, we
call g orientation-preserving, and in the second, orientation-reversing.
Recall that we can think of Sn as a one-point compactification of Rn by
Sn ∼= Rn∪{∞}. Observe that in this light, our original homeomorphism

8See http://www.math.columbia.edu/~faulk/Lecture6.pdf for a bit more detail.

http://www.math.columbia.edu/~faulk/Lecture6.pdf
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f : Rn → Rn has a unique extension to f : Rn ∪ {∞} → Rn ∪ {∞} by
taking

f(x) =

f(x) x ∈ Rn

∞ x =∞.

hence f is either orientation-reversing or orientation-preserving.
Again, this is essentially definitional. The harder part is show that this
is consistent with both of the definitions above. We won’t do that. �

As a simple corollary we have the desired equivalence of “homeomorphism”
and “orientation-preserving homeomorphism” in the definitions of tameness,
wildness, and locally flat.

Corollary 6.3. An embedding K : X ↪→ Rn is tame iff there exists an
orientation-preserving ambient homeomorphism f : Rn → Rn such that f ◦K
is a PL embedding. Analogously for local flatness.

Proof.

(⇒) : Suppose we have an orientation-preserving ambient homeomorphism
satisfying the desired properties. Then take this to be our ambient
homeomorphism and we’re done.

(⇐) : Suppose we have a homeomorphism satisfying the desired properties.
If it’s orientation-preserving, then we’re done. If is not, then by
Theorem 6.2, it is orientation-reversing. Hence, compose it with

g =


−1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

.

And observe that the result is an orientation-preserving homeomor-
phism, and that we can take a subdivision of our triangulation on
Rn to show that we get a PL embedding, as desired. �

Hence, as far as tameness, wildness, and local flatness are concerned,
“homeomorphism” and “orientation-preserving homeomorphism” are equiva-
lent.
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6.3.2 Orientation-Preserving Homeomorphism vs. Ambient
Isotopy

Now, we collect some references establishing the equivalence of orientation-
preserving homeomorphism and ambient isotopy in each of the three cate-
gories.

1. The Topological Category: Here, the desired result is provided by Fisher
(1960) in Theorem 4.

Definition 6.7 (Deformation (Fisher)). A deformation of a manifold
M is a homeomorphism f : M → M such that f is isotopic to the
identity. ♦

Theorem 6.4 (Fisher, Theorem 4). If X = M is an n-manifold,
then every f in the group G0(M) of homeomorphisms of M is a
deformation of M .

2. The PL Category: One can find the desired proof in Burde and Zieschang
(2003). The numbering below follows that of the second edition.

Theorem 6.5 (Burde & Zieschang, Proposition 1.10). Let K0,
K1 : S1 ↪→ S3 be PL. Then there exists a PL orientation-preserving
homeomorphism f : S3 → S3 such that f ◦K0 = K1 iff there exists
a PL ambient isotopy taking K0 to K1.
Corollary 6.6 (Burde & Zieschang, Corollary 3.16). If two tame
knots are topologically equivalenta then they are PL equivalent.

aI.e., by topological ambient isotopy / toplogical orientation-preserving
homeomorphism

3. The C1 Category: A proof of the following is provided in Milnor and
Weaver (1997) as Lemma 2 in §6 (pg. 34).

Lemma 6.7 (Milnor, Lemma 2). Any orientation-preserving dif-
feomorphism f of Rm is C1 isotopic to the identity.

We also collect two helpful online threads the reader can investigate if
interested.

• See Hatcher (2014)’s post on MathOverflow for a general discussion of
references for proofs in each category.
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• See user98602 (2015)’s post on StackExchange for a proof of the PL case.
Note, user whippedcream (2016)’s post in the same thread includes
the argument for the C1 category given in Milnor and Weaver (1997)
with a few more details filled in.

In any case, we have our desired result:

Corollary 6.8. Let K : S1 ↪→ R3. Then K is ambient homeomorphic to a
PL knot iff K is ambient isotopic to a PL knot. In particular, Definition 6.2
and Common Definition 1 are equivalent.

6.4 Correspondence with Common Def. 2

In the following, we examine the correspondence between Definition 6.2 and
Common Definition 2 (this was “tame” iff “locally flat”). We prove that for
embeddings K : S1 ↪→ R3, “tame implies locally flat.” We outsource most
of the “locally flat implies tame” proof to Bing (1954). Because the “tame
implies locally flat” argument is somewhat trivial, we’ll spice it up a bit by
using the opportunity to demonstrate a technique for explicitly constructing
ambient isotopies.

Because it is generally not true that tameness is equivalent to local
flatness for arbitrary embeddings of m-manifolds in n-manifolds, we would
like to discourage the use of Common Definition 2 as the “starting-point”
definition of tameness in knot theory. A few more notes, which we summarize
from Daverman and Venema (2009):

• It is true that in general, if M , N are PL m, n manifolds with M

tamely embedded in N , then if n − m 6= 2, M is locally flat in N .
(Daverman and Venema (2009), Theorem 1.2.1)

• With all variables as above, in the case n−m = 2, M is locally flat at
a dense set of points.

• Local flatness generally does not imply tameness.

With these facts in mind, we move on to establishing that tameness and
local flatness do coincide in the case of S1 ↪→ R3. First, we note that the
definition for local flatness (Definition 6.4) can be reworded slightly. The
claim is trivial; we are including for the sake of being very explicit.
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Lemma 6.9. The (Ux, Ux ∩K(X)) f7−→ (Rn,Rm) condition in the definition
of local flatness can be replaced with (Ux, Ux ∩K(X)) f7−→ (n-ball, sub-m-ball)
where ∂(sub-m-ball) ⊆ ∂(n-ball).

Proof. Follows directly from the fact that n-ball’s are homeomorphic to
Rn. �

We’ll often use this definition above when discussing local flatness.

Lemma 6.10. Let K0,K1 : S1 ↪→ R3. Suppose there exists a homeomorphism
f : R3 → R3 such that f ◦K0 = K1. Then K0 is locally flat iff K1 is.

Proof.

(⇒) : Suppose K1 is locally flat. The proof that K0 is as well is essentially
identical to the one below.

(⇐) : Suppose K0 is locally flat. We want to show K1 is. To that end, let
p ∈
−→
K1
(
S1). Then f−1(p) ∈ −→K0

(
S1). Define q = f−1(p).

Since K0 is locally, flat there exists an open set Uq ⊆ R3 and a
homeomorphism fq : R3 → R3 such that

(a) q ∈ Uq, and

(b) (Uq,
−→
K0
(
S1) ∩ Uq) fq7−→ (3-ball, 3-ball diameter).

Define Up =
−→
f (Uq), and note that Up is open with p ∈ Up. Now,

observe that fp : R3 → R3 defined by

fp = fq ◦ f−1

is a homeomorphism satisfying

(Up,
←−
K1(S1) ∩ Up)

fp7−→ (3-ball, 3-ball diameter).

Hence K1 is locally flat at p. Since p was arbitrarily chosen, it
follows that K1 is locally flat. �

We use this in the following proposition, which is given as an exercise in
Daverman and Venema (2009).

Proposition 6.11 (Daverman and Venema, Exercise 1.2.3). Every tame
1-sphere in R3 is locally flat.
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Before we give the proof, an important note:

Note. The argument below is comically overkill, but we’ve included it because the
general technique of “parameterizing a closed region by lines connecting〔points on
the boundary〕to〔points on some 1-manifold we want to deform〕” is what underpins
a lot of our ambient isotopy proofs later.9 The idea is that we can take the boundary
to be fixed, after which all of the interior points must “follow” the points on the
1-manifold we’re deforming.

Because the explicit construction required for this technique is often so tedious,
we will usually choose to omit it in our proofs and speak in only vague terms instead.
This might make it a challenge for the reader to fill in the gaps on their own, so
we’ve chosen to showcase the technique in detail here to expose the key ideas in a
more approachable context. Hopefully this will help with the readability the proofs
to come.

Proof. By Lemma 6.10, it suffices to show polygonal knots are locally flat.
Hence, let K : S1 ↪→ R3 be polygonal, and let x ∈

−→
K
(
S1). Also let E denote

the set of all straight edges in
−→
K
(
S1); by definition, E is finite. We proceed

with two subcases.

1) Suppose x is an interior point of some Ex ∈ E (i.e., x is not a vertex).
Then let

ε = min
E∈E
E6=Ex

d(x,E),

and observe ε > 0. Then (Bε(x), Bε(x) ∩ K) is trivially homeomorphic
to the (3-ball, 3-ball diameter) pair.

2) Now, suppose x is one of the vertices of K (i.e., one of the points where
we join two polygonal segments). We construct the desired ambient
homeomorphism explicitly.
Let Ex,1,Ex,2 ∈ E be the distinct edges with Ex,1 ∩ Ex,2 = {x}. Let

ε = 1
2 min

E∈E
E6=Ex,1
E6=Ex,2

d(x,E),

and observe ε > 0. Note that since the other endpoints of Ex,1, Ex,2
correspond to the start of new strands, ε < 1

2 length(Ex,1), 1
2 length(Ex,2).

We draw a diagram in the plane of Ex,1, Ex,2 below.
9E.g., this appears in the proof of Proposition 9.4 when we make reference to Proposi-

tion B.8.
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x

ε

Figure 6.2 x, shown together with a 2D cross section of the closed ball
Bε(x) and the two line segments Ex,1, Ex,2

Note that Ex,1, Ex,2 partition this cross-section of Bε(x) into two regions
R1, R2, each bounded by Ex,1 ∪ Ex,2 a circular arc (which we’ll call
A1, A2 respectively).

A1

R1

A2

R2

Figure 6.3 The diagram with R1, R2, A1, A2 labeled.

By some trig, one can find explicit parameterizations of lines linking
each point of A1 to a point of A2 such that none of the lines cross.
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A1

A2

Figure 6.4 An example of the lines

Note that each of these lines intersect Ex,1 ∪ Ex,2 at a unique point.
Using this, we can parameterize every point p in the region R◦1 as
follows (and analogously for each q ∈ R◦2):

(a) Let `p be the unique line through p (guaranteed uniqueness since
none of the lines cross).

(b) Let cp be the unique point of A1 ∩ `p, and let ep be the unique
point of (Ex,1 ∪Ex,2)∩ `p. Then observe that there exists a unique
λ ∈ [0, 1] such that10

p = λcp + (1− λ)ep.

10Note, we’re really just writing p as a convex combination of cp and ep.
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A1

A2

ep

p

cp

Figure 6.5 An example of cp, ep, with `p shown in red

This gives us lines like the following:

A1

A2

Figure 6.6 The lines after being split over Ex,1 ∪ Ex,2

Now, observe that if we fix A1 ∪ A2, then the position of any point
in Bε(x) ∩ aff (Ex,1 ∪ Ex,2) is fully determined by the position of the
corresponding ep.11

One can perform a similar parameterization to make each of the ep’s
themselves depend only on the position of our vertex x (in this case,
the two points of Bε(x) ∩ (Ex,1 ∪ Ex,2) play the role of the cp’s, and x
plays the role of the ep’s). Together with the above, this makes the

11The aff here is just used to restrict Bε(x) to the Ex,1 ∪ Ex,2 plane.
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position of every point in Bε(x) ∩ aff (Ex,1 ∪ Ex,2) dependent only on
the position of x.
Finally, we extend this to all of Bε. There are two ways to do this.
One is to “rotate” around the axis passing through the midpoints
of A1 and A2, applying the same parameterization in each of the
rotated sections. This gives us a cone-shaped blue region in 3D, and
the complementary-shaped red region. The second is as follows: LOG,
suppose that aff (Ex,1 ∪ Ex,2) is parallel to the xy plane. Then “extend”
the lines in the z direction by performing an identical parameterization
to the above in each parallel cross section. Note, as we go further
up/down in z, the cp get closer to x.

Figure 6.7 The z > 0 portion of the sets defined by “extending” our lines
in the z direction within Bε(x).
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Figure 6.8 A denser version of the same plot.

Now, consider the map that takes x to the midpoint of the secant
line between the ends of Ex,1, Ex,2, with all the other points in Bε(x)
following x by way of their parameterizations.12

Figure 6.9 Taking x to the secant line

One can verify that this yields a homeomorphism (in fact, a PL
homeomorphism) on Bε(x) fixing the boundary. At last, one can
take an open sub-ball around the shifted x and show that it yields a
(3-ball, 3-ball diameter) pair, as desired.

In either case, we see K is locally flat at x. By Lemma 6.10, it follows that
any tame knot is locally flat. �

12Note, we can turn this into an ambient isotopy directly by sliding our points along
these lines.
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Again, the proof is overkill. The point is just that one should think of
this technique of “parameterizing points in some neighborhood by connecting
them with curves to 「anchor」 points” whenever we mention it in later.

Anyways — Proposition 6.11 gives us “tame implies locally flat.” The
reverse argument follows from the lemma below, together with a theorem of
Bing (1954).

Lemma 6.12. Let K : S1 ↪→ R3 be an embedding. Then if K locally flat,
then K is locally tame.

See Definition 6.4, Definition 6.6 for a refresher on the definitions for
locally flat and locally tame.

Proof. Let p ∈ −→K
(
S1) be arbitrary. Since K is locally flat, by Lemma 6.9,

there exists a homeomorphism f : R3 → R3 and an open set Up such that

1)
−→
f (Up) = standard 3-ball, and

2)
−→
f
(
Up ∩

−→
K
(
S1)) = standard 3-ball diameter.

Note that since Up is homeomorphic to the standard 3-ball, then there exists
a homeomorphism g0 : R3 → R3 such that −→g0(Up) is a 3-simplex. Similarly,
one can construct an ambient homeomorphism g1 : R3 → R3 taking the
(3-ball, 3-ball diameter) pair to a (polyhedron, 1-chain) pair. Taking

h = g1 ◦ f ◦ g−1
0

and taking the appropriate subdivisions gives us the PL homeomorphism
required in the definition of local tameness. �

Now, we have the following proposition of Bing (1954).

Theorem 6.13 (Bing, Theorem 9). Each locally tame closed subset K of a
triangulated 3-manifold with boundary is tame.

Proof. This is done in Bing (1954); see the paper for details on definitions
and/or the proof. �

Applying the result to R3 and using Proposition 6.1 yields the desired
result. Chaining the statements above together gives us

Corollary 6.14. Let K : S1 ↪→ R3 be an embedding. Then K is tame iff K

is locally flat. In particular, Definition 6.2 and Common Definition 2 are
equivalent.
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6.5 Correspondence with Common Def. 3

We would like to slightly protest the use of Common Definition Common
Definition 3. In particular, we feel the choice of the word “thickened” is
imprecise enough to be misleading. For instance, as we have argued, the
knots shown in Appendix A are tame (since they are C1), but it isn’t
immediately obvious how to “thicken” any of them to a torus.13 In fact, we
can construct simpler examples of objects for which this confusion might
arise. Consider the following knot K : S1 ↪→ R3:

Figure 6.10 A very excitable plane curve

Using a later result (Proposition 9.414), we can show that this is indeed
a tame knot. So, what happens if we try to “thicken” it to an embedding
of the torus? Here, we’ll interpret “thicken” to mean “find a simple rule to
associate each point p of this curve with a 2-disk Dp ⊆ R3 such that p is the
center of Dp.”

If we try this with most polygonal knots K, we can just think of following
an algorithm like the one below:

1) Let E denote the set of all the straight edges in
−→
K
(
S1). Let r > 0 be

13It certainly appears that it’s not always possible to find a tubular neighborhood of
our embedding, but we could be wrong.

14This proposition basically just confirms that planar isotopy is legal even for general
topological embeddings
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given by
r = min

E1,E2∈E
E1∩E2=∅

d(E1,E2).

2) For each vertex x of K joining edges E1, E2, extend a line `x of length
2r through x such that

(a) x is the midpoint of `x, and
(b) In the plane aff (E1,E2), `x bisects ∠E1E2.

3) Connect all the endpoints for consecutive `x’s together in a way that
“follows” the shape of K (apologies for the lack of diagram here). This
effectively gives us a “ribbon” tracing out the shape of K.

4) Finally, construct our embedded torus by “sliding” disks along the
body of the knot, such that the boundary of each disk is always “flush”
with the ribbon. This gives us an embedding of the torus.

Figure 6.11 An example of sliding the disks along.

This works out well-enough for most knots. Indeed, it seems straightforward
to extend this idea to all piecewise C1 knots by employing parallel curves:15

15See https://en.wikipedia.org/wiki/Parallel_curve, for example.

https://en.wikipedia.org/wiki/Parallel_curve
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Figure 6.12 An example for a piecewise C1 knot. Note, this figure does not
display actual parallel curves, but rather just a slightly-shrunk and slightly-
enlarged version of the square.

But again, it’s not clear how to translate this to the context of our knot
in Fig. 6.10, because we can’t define r.

Figure 6.13 An attempt to at a similar approach for the curve.
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It doesn’t work at the limit point of our sawtooth pattern. Fair enough,
the approach was quite naive. After some consternation, we find that in this
case, “shrinking” and “enlarging” the diagram can get us what we want.

Figure 6.14 The desired embedding of the torus.

It’s not immediately clear to us how to make this construction more
general, and we have not been able to find a proof or a more precise statement
of the claim. Hence, we propose a formal statement in the below. We’ll label
it as a conjecture (even though it’s almost surely been proven before) because
we have not worked out the full details ourselves, due to time constraints.
Our description uses the definition of a lift, which we state for purely comic
effect.

Definition 6.8. Let C = (ob(C), hom(C)) be a category. Let X,Y, Z ∈ ob(C), and
let f ∈ hom(X,Y ), g ∈ hom(Z, Y ), and h ∈ hom(X,Z) such that f = g ◦ h. Then
we say that h is a lift of f , or that f factors through h. ♦

X

Z

Y
f

gh

Figure 6.15 A commutative diagram for Definition 6.8
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Conjecture 1. A knot K : S1 ↪→ R3 is tame iff there exists an embedding
Ktor : S1 × D2 ↪→ R3 such that the embedding ι : S1 ↪→ S1 × D2 given by

ι(s) = (s,0)

(where 0 is the center of D2)16 satisfies K = Ktor ◦ ι.

S1

S1 × D2

R3
K

L
Ktor

Figure 6.16 A commutative diagram for Conjecture 1

It’s worth mentioning that we have recently found a discussion of this
proposition in a MathOverflow post by user Lilalas (2019); however, a proof
of the hard portion (existence of Ktor implies K tame) was not included. We
offer a tentative sketch of a possible approach, but we offer no guarantees on
correctness.

Possible Sketch. Let K : S1 ↪→ R3 be an embedding.

(⇒) : Suppose K lifts to an embedding Ktor : S1 × D2 ↪→ R3 by the
map ι : S1 ↪→ S1 × D2. Note, for all s ∈ S1, the image Ds =−−→
Ktor

(
s× D2) ⊆ R3 is homeomorphic to D2, hence diam(Ds) > 0.

Also observe that for all t ∈ S1 with t 6= s, t 6∈ Ds.17

Show that in a non-trivially knotted region of K, the diameters
diam(Ds) are bounded by the distance between strands participat-
ing in a crossing. Then, suppose (to obtain a contradiction) that K
were wild. Show that the distance between crossing strands goes to
0 as we approach the wild point, and obtain the contradiction.

(⇐) : For the reverse proof, use the fact that K is tame to obtain a
homeomorphism f : R3 → R3 such that K = f ◦ K is polygo-
nal. Construct the tubular neighborhood Ntube of

−→
K
(
S1) using the

16Really, any point in
(
D2)◦ works.

17Even stronger, Dt ∩Ds = ∅
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algorithm described above (Page 129). Note, since f is a homeo-
morphism,

←−
f (Ntube) is homeomorphic to the torus S1×D2. Define

Ktor in terms of
←−
f (Ntube), and show that it satisfies the desired

properties. ?

In any case: While this definition might have some theoretical properties,
it is hard to find a reference for, and seems to be easy to accidentally
misapply if care is not taken to be rigorous (e.g., again, we imagine most
people employing this definition would guess that Fig. A.2 is wild at first
glance).

Question 3. What does the torus in Fig. A.2 look like? We’ve managed to make
some for earlier examples; e.g., an xy plane projection of Fig. 5.8 yields a picture
that looks qualitatively similar to the following, hence we can draw a tubular
neighborhood without too much trouble:

Figure 6.17 A rough “flavor” for what the xy-plane projection of Fig. 5.8
looks like. Note, this is actually a different (nicer-looking) function, but the
idea is the same.

We’d be interested in seeing more plots of the associated embedded toruses for
feral knots. ♦
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6.6 Common Def. 4

This section is very short: Given the abundance of examples of tame knots
with countably-many crossings that we have demonstrated, we discourage
the use of Common Definition 4. We wonder whether the definition given
there was supposed to be “for every tame knot K : S1 ↪→ R3, there exists a
projection π : R3 → R2 such that π(K) has only finitely many crossings.”

We are skeptical of this claim as well — it’s not obvious what there is
to stop us from taking 6 arcs shaped like the one in Fig. A.2 and orienting
them so that the “core” of each of the spirals (formally, the line normal to
the plane in Fig. A.3 passing through the center of the spiral) lies along
one of the x, y, or z axes (each axis gets two spirals, one pointing in the
negative direction, the other pointing in the positive direction). It seems that
no projection of such a knot would yield only finitely-many crossings, but
we’d be willing to be surprised.

6.7 Conclusion

In this chapter, we’ve introduced several common definitions for tame-
ness/wildness/local flatness for knots, and established correspondence (or
lack thereof) with the definitions given in Daverman and Venema (2009). We
also gave a brief discussion of the differences between the Topological, PL, Ck,
and C∞ categories. The remainder of this document will be concerned with
building tools for working hands-on with ambient isotopy in the Topological
category. Our goal is ultimately to lay the groundwork for characterizing
ambient isotopy between embeddings that can be represented by a countable
union of polygonal segments. To that end, we first turn our attention to
some machinery based in the tools of real analysis.





Chapter 7

Machinery

“Now stop!” Max said and sent the wild things off to bed
without their supper. And Max the king of all wild things was lonely

and wanted to be where someone loved him best of all.

—Maurice Sendak, Where the Wild Things Are

In this chapter, we develop two pieces of machinery that are extremely
useful in working with general topological ambient isotopies. The first is a
uniform convergence version of Theorem 5.3, which has the benefit of not
requiring disjointness for our Vn. This is a double-edged sword: On the one
hand, it affords us greater latitude in the kinds of situations where we can
apply it, but on the other, it is much easier to accidentally misuse.

The second is separation of strands, which essentially allows us to partition
our knot into segments that are all “isolated” from each other except at their
ends (where they share mutual points with the neighboring strands).1 This
will allow us to work “locally” on our knots by keeping our ambient isotopies
contained to regions where they can only affect one part, which will prove
indispensable in the subsequent chapters.

7.1 Uniform Convergence and Ambient Isotopy

The following theorems will play a central role in allowing us to prove all
arcs are ambient isotopic in R2. The idea is to use uniform convergence to
concatenate countably-many ambient isotopies together without breaking

1Note, we will not make any guarantees about how complicated the segments themselves
look, only that they are separated from each other.
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any of our continuity concerns. We first recall some definitions from Analysis,
then we prove the ambient isotopy uniform convergence theorem.

Definition 7.1 (Uniform Convergence). Let (E, d), (E′, d′) be metric spaces, and
for all n ∈ N, let fn : E → E′. Also let f : E → E′. Then we say fn → f uniformly
iff for all ε > 0, there exists N ∈ N such that if n > N , then ∀x ∈ E,

|f(x)− fn(x)| < ε.

We will sometimes denote uniform convergence by fn
u−→ f . ♦

Proposition 7.1. For all n ∈ N, let fn : E → E′ be a continuous function.
Now, let f : E → E′, and suppose that fn

u−→ f . Then f is continuous.

The proof is an ε
3 argument and can be found in any standard analysis

text.

Corollary 7.2. Let (E, d), (E′, d′) be metric spaces, and for all n ∈ N, let
fn : E → E′ such that fn is a homeomorphism. Let f : E → E′ be a bijection
and suppose that

1. fn
u−→ f , and

2. f−1
n

u−→ f−1

Then f is a homeomorphism.

Proof. Continuity of f , f−1 follows directly from Proposition 7.1. Bijectivity
gives us a homeomorphism. �

We have the following straightforward lemma.

Lemma 7.3. Let (E, d) be a metric space. For all k ∈ N, let Vk ⊆ E, and let
fk : E → E be a homeomorphism such that fk is identity on E \ Vk. Define
f : E → E by

f = lim
n→∞

n

k=1
fk

= lim
n→∞

(fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1).

Then provided

1. f is a bijection,
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2. The g−1
n defined by g−1

n = f−1
1 ◦ · · · ◦ f−1

n−1 ◦ f−1
n , satisfy g−1

n
u−→ f−1,

and

3. The Vk satisfy

lim
n→∞

diam
( ∞⋃
k=n

Vk

)
= 0,

Then f is a homeomorphism.

Remark. Note, if E is a compact Hausdorff space, we can drop the condition on
the g−1

n ’s, since a continuous bijection from a compact space to a Hausdorff space is
always a homeomorphism. In particular, if

⋃∞
k=1 Vk is bounded in some compact set,

then it suffices to prove f is continuous. We stated the more general version of the
result here, but from now on, we will generally assume that we have this simplifying
condition.

Proof. For all n ∈ N, define

gn =
n

k=1
fk,

and note that it is a homeomorphism with inverse

g−1
n =

n

k=1
f−1
n+1−k

= f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
n−1 ◦ f

−1
n .

Since we assume bijectivity of f and g−1
n → f−1 (thus f−1 is continuous) by

hypothesis, it suffices to show that f is continuous. To that end, we want to
show gn

u−→ f . Let ε > 0 be given. Note that because

lim
n→∞

diam
( ∞⋃
k=n

Vk

)
= 0,

there exists n0 ∈ N such that n > n0 implies

diam
( ∞⋃
k=n

Vk

)
< ε.

Hence, let n > n0 be fixed, and let Un denote

Un =
∞⋃
k=n

Vk
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Observe that by definition, f = gn on E \Un, hence they are trivially ε-close
on E \ Un.

For showing ε-closeness on the Un, note that
−→
f (Un) = −→gn(Un). Thus

because diam(Un) < ε, it follows that f, gn are ε-close on Un as well. Hence
gn

u−→ f , so f is continuous.
By Corollary 7.2, it follows that f is a homeomorphism. �

This extends naturally to the following version for ambient isotopies. The
statement might appear a bit complicated, but it’s really just saying that
whenever we’re given a collection of ambient isotopies that are restricted to
acting on sets whose radii decay sufficiently quickly, we can play countably
many of them back-to-back in finite time and yield an ambient isotopy.

Theorem 7.4 (Ambient Isotopy and Uniform Convergence). Let (E, d) be
a metric space. For all k ∈ N, let Vk ⊆ E, and let Fk : [0, 1] × E → E

be an ambient isotopy such that Fk is identity on [0, 1]× (E \ Vk). For all
such k, define fk(x) : E → E by fk(x) = Fk(1, x); note that by definition of
ambient isotopy, fk(x) is a homeomorphism. Then define F : [0, 1]× E → E

as follows: For all (t, x) ∈ [0, 1]× E, let

F (t, x) =



F1(2t, x) if t ∈
[
0, 1

2

]
F2(4(t− 1/2), f1(x)) if t ∈

(
1
2 ,

3
4

]
F3(8(t− 3/4), f2(f1(x))) if t ∈

(
3
4 ,

7
8

]
...
Fn
(
2n
(
t− 1 + 1

2n−1

)
, n−1

k=1 fk(x)
)

if t ∈
(
1− 1

2n−1 , 1− 1
2n
]

...
∞
k=1 fk(x) if t = 1.

Then provided

1. F (1, ·) is a bijection,

2.
⋃∞
k=1 Vk is bounded in a compact set, and

3. The Vk satisfy

lim
n→∞

diam
( ∞⋃
k=n

Vk

)
= 0,

then F is an ambient isotopy.
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Proof. Note that〔
⋃∞
k=1 Vk is bounded in a compact set〕allows us to apply

the simplifying condition for Lemma 7.3.
1. To show F (0, ·) is identity: Observe F (0, x) = F1(0, x) = x, since
F1(0, x) is an ambient isotopy (and hence identity for t = 0).

2. To show F (t, x) is a homeomorphism for each t ∈ [0, 1): If t 6= 1, then
there exists n ∈ N such that t ∈

(
1− 1

2n−1 , 1 = 1
2n
]
. Hence

F (t, x) = Fn

(
2n
(
t− 1 + 1

2n−1

)
,
n−1

k=1
fk(x)

)
,

which is a finite composition of homeomorphisms, and thus a homeo-
morphism.2

3. To show that F (1, ·) is a homeomorphism: Observe that F (1, ·) is a bijec-
tion, fk is constant on E\Vk for each k, and limn→∞ diam(

⋃∞
k=n Vk) = 0.

Thus by Lemma 7.3, F (1, ·) is a homeomorphism.

4. Finally, to show that F is continuous: Define a sequence of ambient
isotopies Gn : [0, 1]× E → E such that

Gn(t, x) =



F1(2t, x) if t ∈
[
0, 1

2

]
F2(4(t− 1/2), f1(x)) if t ∈

[
1
2 ,

3
4

]
F3(8(t− 3/4), f2(f1(x))) if t ∈

[
3
4 ,

7
8

]
...
Fn
(
2n
(
t− 1 + 1

2n−1

)
, n−1

k=1 fk(x)
)

if t ∈
[
1− 1

2n−1 , 1− 1
2n
]

n
k=1 fk(x) otherwise.

Observe that Gn is a piecewise function whose pieces are each continu-
ous. By the gluing lemma, it suffices to show Gn is continuous at the
points where the pieces meet. This follows by observing that for each
k ∈ {1, . . . , n− 1}, Fk(1, x) = Fk+1(0, x), and Fn(1, n−1

k=1 fk(x)) =
fn ◦ n−1

k=1 fk(x) = n
k=1 fk(x).

We want to show Gn
u−→ F . By construction, Gn(t, x) = F (t, x) every-

where except perhaps for (t, x) in

Un =
[
1− 1

2n , 1−
1

2n+1

]
×
(

n⋃
k=n

Vk

)
.

2“Finite composition of homeomorphisms” follows because for all t′ ∈ [0, 1], Fn(t′, x)
and n−1

k=1 fk(x) are both homeomorphisms.
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But observe that for all (t, x) ∈ Un, we have Gn(t, x), F (t, x) ∈ Un,
hence as n→∞

d(Gn(t, x), F (t, x)) < diam(Un) < ε.

It follows that Gn
u−→ F . By Proposition 7.1, it follows that F is

continuous.

Thus F is an ambient isotopy.

This is a very powerful technique, and it allows us to prove that all sorts
of wacky curves are secretly ambient isotopic. For instance, consider the
following example:

Example 7.1. The following arc can be unknotted by an ambient isotopy F :
[0, 1]× R3 → R3 keeping the endpoints fixed.

Figure 7.1 A very wild-looking tame arc

The trick is to define the Vk to be a sequence of nested boxes as follows:

The reader should imagine these as properly nested rectangular prisms in R3.
For each of the Vk, define an ambient isotopy Fk performing the following trick:
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Figure 7.2 An example Fn.

Observe that we can now apply Theorem 7.4 to show that the arc can be
untangled in finite time. By contrast, we cannot apply a similar argument to even a
slightly-extended version of this arc:

Figure 7.3 A case where we can’t define the Vn such that
limn→∞ diam(

⋃
n Vn) 6= 0
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♦

We have to be extremely careful when applying this argument, as it is
very easy to subtly fail the hypotheses without noticing. For instance:

Example 7.2 (Fox-Artin Curve). Consider the following arc of Fox and Artin
(1948).

Figure 7.4 A non-example

At first, it might appear reasonable to use Theorem 7.4 to “undo” each of the
loops one-by-one. Certainly, one can define a sequence of boxes that satisfy both
the〔

⋃∞
k=1 Vk is bounded in a compact set〕and〔limn→∞

⋃
n∈N Vn = 0〕conditions:
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Figure 7.5 Some proposed Vn

And indeed, one can find a sequence of ambient isotopies that take us arbitrarily
close to the unknotted strand. Yet, we can prove that this is actually a wild arc,
using the invariant introduced by Fox and Artin (1948).

Theorem 7.5 (Fox-Artin3 Tameness Invariant). Suppose that γ : [0, 1] ↪→ R3 is
tamely embedded. Use S to denote the image

S = −→γ ([0, 1]),

and let p = γ(0). Now, let {Vn}∞n=1 be a properly-nested sequence of nested closed
sets such that for each n, p ∈ V ◦n , and further

{p} =
∞⋂
n=1

Vn.

Then there exists N ∈ N such that the homomorphism i∗

π1(VN − S) i∗−→ π1(V1 − S)

induced by i : VN − S ↪→ V1 − S is trivial.4

We will try to be very thorough in the proof for those who might have seen the
fundamental group before, but not had a lot of experience with it. This will likely

3Pronunciation Guide: ["a5
“
ti:n]

4For those who might not have seen it before: Here, π1 denotes the fundamental group.
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strike others as a bit overkill. The version in Fox & Artin’s paper is much terser,
and can be found on page 7.5

Proof. If γ is tame, by definition, there exists a closed set U ⊆ R3 and a homeo-
morphism f : R3 → R3 such that we have

(U,S)
f∼= (3-ball, 3-ball diameter).

Without loss of generality, we suppose that for all n ∈ N, Vn ⊆ U . Now, let p′ = f(p),
S′ =

−→
f (S) (note this is the diameter), and let let (V ′n)n∈N be given by V ′n =

−→
f (Vn).

Note that since f is a homeomorphism, the V ′n satisfy all the properties of the Vn.
In particular, p′ ∈ V ′1

◦. Thus there exists ε > 0 such that

Bε(p′) ⊆ V ′1 .

Also not that {p′} =
⋂∞
n=1 V

′
n implies that for some N ∈ N, we have

V ′N ⊆ Bε(p′) ⊆ V ′1

and thus
〔V ′N − S′〕⊆〔Bε(p′)− S′〕⊆〔V ′1 − S′〕. (7.1)

Choose some point q ∈WN to serve as the base point for the fundamental groups
of the sets in Eq. (7.1). Then observe that a

1. The inclusion i : V ′N − S′ ↪→ V ′1 − S′ is trivially given by composing i1 :
V ′N − S′ ↪→ Bε(p′) and i2 : Bε(p′) ↪→ V ′1 − S′

V ′N − S′

Bε(p′)

V ′1 − S′
i

i1 i2

Figure 7.6 Self-indulgent commutative diagram

2. π1(Bε(p′) − S′) is trivial (since Bε(p′) − S′ is an open ball with a radius
removed), and hence

3. The induced map i2,∗ : π1(Bε(p′)− S′) ↪→ π1(V ′1 − S′) is trivial, and hence
because i∗ = i2,∗ ◦ i1,∗, i∗ is trivial.

5In case the page numbering has gotten messed up, the paragraph begins with “To show
that Y is wildly imbedded [sic] we first develop a necessary condition for an imbedding of
an arc to be tame.”
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π1(V ′N − S′)

π1(Bε(p′))

π1(V ′1 − S′)
i∗

i∗,1 i∗,2

Figure 7.7 Another self-indulgent commutative diagram

Now, since homeomorphism preserves the fundamental group, taking VN =
←−
f (V ′N )

yields the desired result. ♦

One can verify that the Vn’s we drew in Fig. 7.5 don’t satisfy this property.
What’s the problem?

The answer is that we lose bijectivity at t = 1 — not on the curve itself, but
rather on the ambient space. There’s no way to undo the curve shown in Fig. 7.5
without dragging infinitely-many points down into the wild point. To visualize why,
imagine passing a solid torus vertically down through the first big loop.
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Figure 7.8 A 3D perspective.

Observe that as we remove the first loop, we end up pulling the cylinder through
the second loop. Note, we’re going to replace the torus with a line so as to make the
diagrams easier to create. The same argument works either way; we felt the torus
was more intuitive.
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Figure 7.9 Pulling out a stitch.

As we iterate this process further, note that the string/torus will get dragged
further and further downwards until finally converging to the wild point. In fact,
the same result holds for a torus passing through any such loop, so performing
our proposed ambient isotopy would actually collapse infinitely-many points of the
ambient space down to the wild point. Hence, this approach is no good, as it violates
bijectivity.6 ♦

Note. While we explicitly drew the torus/line in the figures above, note that we’re
not actually thinking about embedding a torus into R3. Rather, it’s just a helpful
visualization to see how the ambient space must get bent as we perform our proposed
sequence of ambient isotopies.

Remark. One might wonder what would happen if instead we were allowed to
move the loose end and pull it through the stitches one-by-one. Note that doing so
would require moving said strand arbitrarily close to the wild point; hence, it would

6An alternative argument is to show the “undoing” maps don’t converge uniformly.
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be lost in the limit.

The preceding two examples are meant to convey that we must proceed
with caution when dealing with Theorem 7.4. Example 7.1 shows that it’s
easy to take examples that work and have slight extensions break them.
Theorem 7.4 shows us that it’s easy to be deceived by our pictures; we must
be careful to be very rigorous when entering the realm of general topological
embeddings.

Now, we turn to our second tool: separating strands.

7.2 Separating Strands

7.2.1 A Note on Notation in S1

From now on, we’ll often have to work directly with sequences, open sets,
etc. in S1. To that end we’ll want to have some nice notational shorthand
to avoid having to say things like “let s0, s1, s3 ∈ S1 such that, if thought
of as an embedded R2, we would encounter s1 before s2 when traveling
counterclockwise around S1 starting at s0 . . . ” Instead, we’ll write this with
symbols.

• By s0≺	 s1≺	 · · · ≺	 sn, we mean that we’d encounter s0 before s1
before . . . before sn before encountering s0 a second time, if traversing
around S1 counterclockwise. Note, in displaystyle, ≺	 looks like the
following:

s0
	
≺ s1

	
≺ · · ·

	
≺ sn

In analogy with <, ≤, the �	 symbol allows the possibility of equality.

• By (s0, s1)	, [s0, s1]	, we mean

(s0, s1)	 =
{
s ∈ S1

∣∣∣ s0
	
≺ s

	
≺ s1

}
[s0, s1]	 =

{
s ∈ S1

∣∣∣ s0
	
� s

	
� s1

}
and analogously for (s0, s1]	, [s0, s1)	. We’ll denote the topology
generated by the (s0, s1)	 as T	.

• Often, we’ll think of S1 as a metric space. We’ll denote the “ball of
radius epsilon around s” by B	ε (s).

• In general, we will try to refer to elements of S1 by s, t, etc., but do
note that t is also used for the time variable in ambient isotopies.
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Note, despite the notation above looking evocative of an orientation, we are
not actually thinking about S1 as endowed with one. It just so happens
that in the below, we will often need to think about the “next” element of
a sequence in S1, but again this will be detached from thinking of S1 as
oriented.

All of the theorems we show below work in R2 as well as R3, which we
can see by taking K to be restricted to a 2D affine subset of R3.

Proposition 7.6. Let K : S1 ↪→ R3 be an embedding, and let I0 = [s0, t0]	
and I1 = [s1, t1]	 be disjoint closed arcs of S1. For the sake of notational
compactness, define Y0 = −→K(A0) and Y1 = −→K(A1). Then

inf
p0∈Y0
p1∈Y1

d(p1, p2) > 0.

Proof. Since K is an embedding, it is a homeomorphism onto its image. Now,
since I0, I1 are disjoint compact sets, it follows that their images under K
are as well. Hence Y0, Y1 are disjoint compact sets. From this point, the claim
can be proven by one of the following methods:

1. (With Analysis) Let f : Y0 → R be defined as follows: for all y0 ∈ Y0,
we have

f(y0) = inf
y1∈Y1

d(y0, y1).

Continuity of f follows directly from the triangle inequality. Now, since
Y0, Y1 are disjoiont, f(y0) > 0 for all y0 ∈ Y0. Since Y0 is compact, f
attains infy0∈Y0 f(y0) on Y0, which yields the desired result.

2. (With Topology) R3 is Hausdorff; apply the fact that disjoint compact
sets in a Hausdorff space can be separated by open sets. After a little
finagling the proof should pop out. �

Corollary 7.7. The same result holds if we replace “disjoint closed arcs” in
Proposition 7.6 with “arbitrary sets that have disjoint closures.”

Proof. The exact same proof as above works. We just chose to state the
specific case in Proposition 7.6 first because it’s more directly intuitive. �

The following theorem essentially says that we can separate strands in a
knot by closed, cone-shaped neighborhoods that only possibly intersect at
endpoints. Note, we’ll index almost all variables with 0 subscripts to make it
easier to refer to the analogues for the other strand described at the end of
the statement.
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Theorem 7.8. Let K : S1 → R3 be a knot, and let [s0, t0]	 ⊆ S1 with
s0 6= t0. Then there exists a nonempty, open, connected set U0 ⊆ R3 such
that

1. −→K
(
(s0, t0)	

)
( U0,

2. −→K
(
[s0, t0]	

)
⊆ U0, and

3. −→K
(
[s0, t0]c	

)
∩ U0 = ∅.

Further, given another disjoint arc [s1, t1]	, the associated U1 satisfies U0 ∩
U1 = ∅.

Proof. Use I0 to denote [s0, t0]	, and let its midpoint be denoted m0. We
first define a collection of “nested” subarcs of I0 centered at m0.7

Let ` be the length of I0. Define ε0,max = `
2 , and E0 ⊆ R by

E0 = (0, ε0,max).

For all ε0 ∈ E, let
Iε0 = B	ε0(m0),

and observe that for all ε′0 < ε0, we have

Iε′0 ( Iε0 ( I0. (7.2)

These are the desired “nested” subarcs of I0.8 Also note that taking closures
in Eq. (7.2) preserves all of the containments.

Now: Consider the complement Ic0 in S1, and note that it is an open arc
of S1. Also note that for all ε0 ∈ E0, Iε ( I0 implies

Iε0 ∩ Ic0 = ∅,

hence by Corollary 7.7, δε0 given by

δε0 = d(−→K(Ic0),−→K(Iε0))

satisfies δε0 > 0. We use these δε0 ’s to construct the desired open neighbor-
hood U0.

7We put “nested” in scare quotes because we’ll actually have uncountably many subarcs
in this collection, so there’s no canonical notion of “successor” or “predecessor.”

8For some intuition, note that as ε0 ↗ ε0,max, we have Iε0 ↗ I0.
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For each ε ∈ E, let Uε0 ⊆ R3 be defined by

Uε0 =
{

x ∈ R3
∣∣∣∣ d(x,−→K(Iε0)) < δε0

3

}
.

Note that each of these Uε0 are open and nonempty.9 Also note that by
definition of δε0 , for all ε0 ∈ E0, we have

Uε0 ∩ Ic0 = ∅.

Now, let
U0 =

⋃
ε0∈E0

Uε0 .

Observe that U0 is nonempty, open, and connected.10 Also note that

1. −→K
(
(s0, t0)	

)
( U0,

2. −→K
(
[s0, t0]	

)
( U0, and

3. By the distributive property,

−→
K(Ic0) ∩ U0 = −→K(Ic0) ∩

 ⋃
ε0∈E0

Uε0


=

⋃
ε0∈E0

(−→
K(Ic0) ∩ Uε0

)
= ∅.

Since s0, t0 6∈ Ic0 it follows that −→K(Ic0) ∩ U0 = ∅ as well, as desired.

This completes the proof of the claimed properties of U0; it remains to show
that given another arc I1 = [s1, t1]	 with I0 ∩ I1 = ∅, the associated U1
satisfies U0 ∩ U1 = ∅.

We proceed by contradiction. Suppose that U0 ∩ U1 6= ∅. We show that
the points of intersection must be at the ends of the arcs −→K(I0), −→K(I1).

To see this, note that by definition, for all ε0 ∈ E0,

d(−→K(Iε0), −→K(I1)) ≥ δε0 .

9We need the 1
3 for the U0 ∩ U1 = ∅ claim.

10Connectedness follows from being a union of pairwise non-disjoint connected sets.
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and similarly, for all ε1 ∈ E1,

d(−→K(I0), −→K(Iε1)) ≥ δε1 .

Because the Uε0 , Uε1 , were defined in in terms of δεi3 , one can use a simple
triangle inequality argument to show that for all ε0 ∈ E0, ε1 ∈ E1, we have

d(Uε0 , Uε1) > 1
3 min {δε0 , δε1}.

It follows that if d(U0, U1) = 0, this must occur when one of the δ’s is 0 (i.e.,
ε0 = ε0,max or ε1 = ε1,max, and hence Iε0 = I0, Iε1 = I1). This implies −→K(I0),
−→
K(I1) share an endpoint, a contradiction (囧) — the arcs were assumed to
be disjoint.

Figure 7.10 Example of V and the Vε

We have a number of remarks to make about this theorem.
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Remark. Note that in general, as ε0 ↗ ε0,max, we get δε0 ↘ 0. Further note
that δε0 : (0, ε0) → R (viewed as a function of ε0) is continuous and can be
continuously extended to a compact domain [0, ε0,max] by taking δε0(0) = d

(
m0, Ac

)
and δε0(ε0,max) = 0. Hence δε0 is in fact uniformly continuous.

Remark. Note that because we chose to define the Iε0 ’s in terms of the m0, if the
parameterization of K places K(m0) closer to one of the endpoints K(s0) or K(t0),
then we’ll get a much thinner & narrower U0 than the one shown in Fig. 7.10. There
are ways to change the proof above that avoid this issue, but we stuck with this
version for simplicity.

On a similar note, observe that the theorem makes no claims about substrands of
the strand I0 being separated from each other. Indeed, K could even be everywhere
wild on I0! The point is just that we can isolate the behavior of K on I0 from the
behavior of K on S1 \ I0, provided we keep our endpoints fixed.

We have the following question:

Question 4. Is the U0 defined in Theorem 7.8 always homeomorphic to R3? ♦

If we restrict ourselves to the analogous theorem for R2, a “yes” follows
from the Theorem 8.1 (Jordan-Schoenflies; see next section). In R3, we
don’t have such a result; in particular, we can find pathological objects like
the Alexander horned sphere that don’t partition our space nicely into two
topological 3-balls. Is it possible to find a knot for which the U0 displays this
kind of behavior? If not, this would provide us a nice correspondence with
local flatness.



Chapter 8

Ambient Isotopy in R2

Then all around from away across the world
he smelled good things to eat

so he gave up being king of where the wild things are.
But the wild things cried, "Oh please don’t go –

we’ll eat you up — we love you so!"
And Max said, “No!”

—Maurice Sendak, Where the Wild Things Are

We will now examine how ambient isotopy behaves in R2. Our main goal
is to show that in R2, all embeddings are ambient isotopic. The motivation
is to use this result to show that in R3, for two curves γ1, γ2 embedded in a
compact neighborhood V ⊆ R3 such that γ1, γ2 share the same endpoints,
then if γ1, γ2 have no crossing points in the diagram given by some projection
map π, then γ1, γ2 are ambient isotopic by an ambient isotopy fixing ∂V .
This will be useful later when we attack the problem of determining which
wild knots can be represented by a countable union of polygonal segments.

To that end, we must first discuss the extent to which we can separate
distinct strands of a knot by closed neighborhoods. This will allow us to
modify our knots locally by considering ambient isotopies in these neighbor-
hoods that fix the boundaries. Then, we will be able to apply Theorem 7.4 or
Theorem 5.3 to combine all of these into a single ambient isotopy achieving
our desired effects.
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8.1 All Embeddings in R2 are Ambient Isotopic

We begin by recalling the Jordan-Schoenflies theorem:1

Theorem 8.1 (Jordan-Schoenflies). Let γ : S1 → R2 be a simple closed
curve, and let ι : S1 ↪→ R2 be the standard inclusion of S1 as the unit circle.
Then there exists a homeomorphism f : R2 → R2 such that f ◦ γ = ι.

Note, “simple closed curve” is equivalent to “embedding.” We just chose
“simple closed curve” to match the language commonly used when stating
the theorem. Anyways, the following is an immediate corollary:

Corollary 8.2 (All Embeddings in R2 are Ambient Homeomorphic.). Let
K0,K1 : S1 ↪→ R2. Then K0 and K1 are ambient homeomorphic.

Proof. By Jordan-Schoenflies, there exist ambient homeomorphisms f0, f1 :
R2 → R2 such that f0 ◦K0 = ι = and f1 ◦K1 = ι. Hence

(f−1
1 ◦ f0) ◦K0 = f−1

1 ◦ (f0 ◦K0)
= f−1

1 ◦ ι
= f−1

1 ◦ (f1 ◦K1)
= K1. �

We now show the main result: In R2, ambient orientation-preserving
homeomorphism is equivalent to ambient isotopy. Again, we know this holds
in the PL case, but were unable to find a proof for the topological case. First,
we have the following:

Lemma 8.3. Let K0,K1 : S1 ↪→ R2 be simple polygonal curves. Then K0,K1
are ambient isotopic by some F : [0, 1]×R2 → R2 such that for some compact
set V , F is identity on [0, 1]× (R2 \ V ◦).

Proof. This follows as a consequence of an argument similar to those given
in Appendix B.4. In particular, see Corollary B.10 �

Our goal is to take finer and finer polygonal approximation of K, using
Lemma 8.3 to argue ambient isotopy with the unit circle, and taking a limit
to obtain the result. There is a problem that we need to be mindful of,
though: If we aren’t careful, naively connecting subsequent points together
with straight lines will introduce crossings, which would prevent us from

1Pronunciation guide: [ZOödã] and ["Sø:nfli:s], respectively.
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applying Lemma 8.3. Our strategy will be to use Theorem 7.8 to separate the
strands of our knot from each other, and then use the lemma below to connect
the endpoints of these strands by an ε-close polygonal approximation.

Lemma 8.4. Let X ⊆ Rn be open and connected. Then X is polygonally
path-connected.2

Proof. Let x0 ∈ X be arbitrarily chosen. We want to show that x0 is polygo-
nally path connected to every other point of X. To that end, define Cpoly
by

Cpoly = {x ∈ X | there exists a finite polygonal path in X from x0 to x}.

Note that Cpoly, Ccpoly partition X. We claim Cpoly is clopen.

• (Cpoly is open): Let x1 ∈ Cpoly be arbitrarily chosen. Then by definition,
there exists a polygonal path P0,1 from x0 to x1. We’ll use this later.
Now, sinceX is open, there exists ε > 0 such that Bε(x1) ⊆ X. We want
to show Bε(x1) ⊆ Cpoly. To that end, let x2 ∈ Bε(x1) be arbitrary, and
bserve that the straight line from x1 to x2 is a polygonal path in Bε(x1)
(and hence in X as well). Dxenote it by P1,2. Then concatenating P0,1
and P1,2 yields another finite polygonal path, hence x2 ∈ Cpoly.
Since x2 was arbitrarily chosen, it follows that Bε(x1) ⊆ Cpoly, as
desired.

• (Cpoly is closed): Here, we want to show Ccpoly is open. We proceed by
contradiction.
To that end, let x1 ∈ Ccpoly be arbitrarily chosen. Suppose, to obtain
a contradiction, that ∀ε > 0, there exists xε ∈ Bε(x1) such that
xε 6∈ Ccpoly. Then xε ∈ Cpoly. Thus there exists a path P0,ε from x0 to
xε. We have two subcases.

1. Suppose that the straight line path Pε,1 from xε to x1 were con-
tained in X. Then concatenating P0,ε and Pε,1 would yield a finite
polygonal path from x0 to x1, 囧.

2. Suppose that the straight line path Pε,1 from xε to x1 were not
contained in X. Then Bε(x1) 6⊆ X. Since ε > 0 was arbitrarily
chosen, it follows that there exists no ε > 0 such that Bε(x1) ⊆ X.
囧, x1 ∈ X, and X is open.

2I.e., every two points are connected by a finite sequence of line segments.
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In either case we obtain a contradiction. Hence, Ccpoly is open.

It follows that Cpoly is clopen.
Finally, observe that Cpoly is nonempty, since for any x ∈ X, taking ε

sufficiently small yields x is polygonally path connected to any x′ ∈ Bε(x).
The result follows.

Remark. Note, we don’t make any mention of whether the path above is guaranteed
to be simple. In fact, we can guarantee this: since our path is a finite union of
polygonal line segments, it intersects itself at most finitely many times (if two
segments are fully parallel, that case can be treated by taking the union of the two
and performing the following procedure). When that occurs, take a subdivision of
the path at the points of intersection and trim out the extraneous loops. This gives
a simple polygonal path.

The theorem now follows fairly easily.

Theorem 8.5. Let ι : S1 ↪→ R2 be the standard embedding of S1 as the unit
circle, and let K : S1 ↪→ R2 be arbitrary. Then ι, K are ambient isotopic.

Proof. We’ll construct an ambient isotopy from ι to K by applying a uni-
form convergence argument à la Theorem 7.4. First, select 3 distinct points
s0≺	 s1≺	 s2 ∈ S1.

s0

s1

s2

Figure 8.1 Example s0, s1, s2

Apply an ambient isotopy F0 to turn ι into a triangle with these points
as the vertices.3

3See Appendix B.4 for some inspiration on how to define this extremely rigorously.
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s0

s1

s2

s0

s1

s2

s0

s1

s2

Figure 8.2 Turning ι into a triangle. The strange layout is just to get the
diagram to fit on the page. Note, the dashed lines represent the boundary of
the original triangle 4ι(s0)ι(s1)ι(s2)

We now define a uniformly convergent sequence of polygonal curves
converging to our embedding.

For each n ∈ N, let εn = 1
2n , and note that εn > 0. Observe that

K : S1 ↪→ R2 is a continuous function between metric spaces and K has
a compact domain. Then by the Heine-Cantor theorem we have that K is
uniformly continuous, hence there exists δn > 0 such that for arbitrarily
chosen4

s0n
	
≺ s1n

	
≺ · · ·

	
≺ skn ,

provided that〔for all i = 1, . . . , kn− 1 we have d(sin , si+1n) < δn〕, it follows
that〔for all such i we have d(K(sin),K(si+1n)) < εn as well〕.

For each n ∈ N, define Pn to be the common refinement of the partition
defined above with Pn−1. Observe that Pn gives us a collection of closed
intervals [sin , si+1n ]	 such that the interiors are pairwise disjoint; denote
these by Iin . Observe that by Theorem 7.8, there exists an open neighborhood
Uin such that Uin is open, nonempty, and connected, and −→K(Iin) intersects
Uin only at the end points K(sin), K(si+1n). Applying Lemma 8.4, we can
connect the endpoints by a finite polygonal path Pin,i+1n .

Further, observe that by the construction of Uin , we have d(Pin,i+1n ,
−→
K(Iin)) <

εn. Now, define a polygonal embedding Kn by linking together all of the Pin .

4The double subscripts here are just meant to communicate that “s0n” refers to a
different element for each n. Hopefully it’s not too confusing.
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Observe that the result is a simple, closed, polygonal curve.5 By Lemma 8.3,
it follows that all of the Kn are ambient isotopic to each other by ambient
isotopies Fn : [0, 1]×R2 → R2. For each n = 0, 1, . . ., define fn : R2 → R2 to
be the homeomorphism given by fn(x) = Fn(1, x). Then define an ambient
isotopy F : [0, 1]× R2 → R2 as follows:

F (t, x) =



F0(2t, x) if t ∈
[
0, 1

2

]
F1(4(t− 1/2), f0(x)) if t ∈

(
1
2 ,

3
4

]
F2(8(t− 3/4), f1(f2(x))) if t ∈

(
3
4 ,

7
8

]
...
Fn
(
2n+1

(
t− 1 + 1

2n
)
, n−1

k=0 fk(x)
)

if t ∈
(
1− 1

2n , 1−
1

2n+1

]
...

After arguing bijectivity, one can then apply a uniform convergence argument
similar to that in the proof of Theorem 7.4 to the sequence of Fn’s to
showF is an ambient isotopy. Note that by construction of the Fn, we have
F (1, ι(s)) = K(s) for all s ∈ S1. Hence ι and K are ambient isotopic, as
desired! �

The following is immediate.

Corollary 8.6. Let K0,K1 : S1 ↪→ R2 be arbitrary topological embeddings.
Then K0 and K1 are ambient isotopic.

Proof. K0 and K1 are both ambient isotopic to ι and ambient isotopy is an
equivalence relation (just apply one at 2× speed and then then the inverse
of the other also at 2× speed). �

Before moving on, it’s worth mentioning that a very similar proof to the
above yields the following version for arcs:

Theorem 8.7. Let γ0, γ1 : [0, 1] ↪→ R2 be embeddings such that γ0(0) = γ1(0)
and γ1(0) = γ1(1). Also let V ⊆ R2 be closed such that

∂V ∩ −→γ0([0, 1]) = {γ0(0), γ0(1)} = ∂V ∩ −→γ1([0, 1])

Then there exists an ambient isotopy F : [0, 1]×R2 → R2 from γ0 to γ1 such
that F is identity on [0, 1]× (R2 − V ◦).

5“Simple” follows because the Uin are all disjoint except perhaps at the endpoints. The
endpoints are unchanged by applying Lemma 8.4.
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In particular, we can locally modify curves in a way that doesn’t affect
the rest.

Sketch. Use a similar polygonal approximation argument as in the above.
To get F identity on [0, 1]× (R2 − V ◦), use the fact that ∂V ∩ −→K0([0, 1]) =
{K0(0),K0(1)} = ∂V ∩

−→
K1([0, 1]) to find appropriate partitions of [0, 1] such

that the approximation gets finer as we approach [0, 1]. �

8.2 Feral Points

Observe that in Theorem 8.5, we have placed no conditions on K0,K1
other than that they are topological embeddings. Hence, even cases like the
following example are covered!

Example 8.1. Consider a curve defined piecewise by the following dynamics.

f(r, θ) =
{
ṙ = −r2

θ̇ = −1.
(8.1)

This gives us solutions of the form{
r(t) = 1

t+ 1
r0

θ(t) = −t+ θ0.
(8.2)

Consider a solution given by θ0 = 0 and r0 > 0. Then converting to Cartesian
coordinates by x(t) = r(t) cos(θ(t)) and y(t) = r(t) sin(θ(t)), we havex(t) = cos (t)

t+ t
r0

y(t) = − sin (t)
t+ t

r0

Note, we used sin odd, cos even to get the − signs out of the arguments. Extend
x(t), y(t) to t =∞ by taking x(∞) = ẋ(∞) = 0, y(∞) = ẏ(∞) = 0. As justification:
From Eq. (8.1), one can see that t =∞ gives a fixed point in cartesian coordinates
(since ṙ = 0), and by Eq. (8.2), we can see that it indeed occurs at (0, 0), hence this
continuous (and in fact smooth) on R≥0 ∪ {∞}.6 We now have a curve that looks
something like the following, depending on our choice of r0:7

6The topology we choose on R≥0 ∪ {∞} is defined by U is open iff U ∈ Tstd or
U = V ∪ {∞} where V ∈ Tstd is unbounded.

7Smaller r0 gives us loops that look more circular, since ṙ is nonlinear in r.
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Figure 8.3 A spiral.

We want to reparameterize to τ ∈ [0, 1]. Observe that t : [0, 1] → R≥0 ∪ {∞}
given by τ(t) = tan

(
π
2 t
)
is continuous and monotonic, hence

γ(τ) =
{
x(τ) = x(t(τ))
y(τ) = y(t(τ))

gives a valid reparameterization of the original trajectory. Now, we seek to make
γ closed. To do so, consider two solutions γ0, γ1 with slightly different initial radii
r0, r1. This gives us something like the following.

Figure 8.4 γ0 and γ1.

One can use the ṙ equation in Eq. (8.1) to argue that γ0, γ1 only intersect at
t = 1. Now, define γ0,1(t) by

γ0,1(t) =


γ0(2t) t ∈

[
0, 1

2
)

(0, 0) t = 1
2

γ1(2− 2t) t ∈
( 1

2 , 1
]
.

It follows that γ0,1(t) is continuous.8 We now extend γ0,1 to a fully closed curve
8Unfortunately, it is not smooth; ẋ(t), ẏ(t) oscillate unboundedly. To get a smooth (but
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by giving it a π rotation plus a translation, and concatenating with the curve in
Fig. 8.4.

Figure 8.5 A “Wild-Looking” Curve in R2

Again: as can be seen from Fig. 8.4, one can define this curve explicitly by
applying a rotation to γ0,1(t), applying an appropriate shift, and adjusting the time
scales to get agreement on the two boundary points. From Theorem 8.5, it follows
that this curve is ambient isotopic to the unit circle! ♦

There’s something strange going on at the centers of the spirals. Namely,
any line passing through them intersects the boundary of the curve infinitely
many times. For lack of a better name, we’ll call such points feral points.9
We’ll draw a distinction here between wiggly feral points and swirly feral
points in the definitions below. Note, in R2, it might not be immediately
obvious why we would want to think of wiggly feral points as pathological at
all, since they seem very easy to control. However, as we’ll see in R3, points
that look like swirly feral points when we take a projection into R2 might
turn out to be just wiggly feral points in another.

less pretty looking) curve, one can replace the ṙ = −r2 equation with ṙ = −r to yield a
logarithmic spiral, after which the construction above gives a smooth curve. If doing this,
there are a number of ways to close the two open ends together: e.g., one could extend the
tangent line for the inner curve outwards until it’s possible to close with the outer curve
using a semi-circular cap. This would yield a C1 embedding, but not a C2 one.

9Feral is chosen for its meaning as “having escaped from domestication and become
wild” (Merriam-Webster, https://www.merriam-webster.com/dictionary/feral). If a name
for this concept already exists, or if the reader has a better suggestion for a name, please
contact the author at fkobayashi@g.hmc.edu.

https://www.merriam-webster.com/dictionary/feral
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Definition 8.1 (Wiggly Feral Point). Let K : S1 ↪→ R2 be an embedding. Let
s ∈ S1, and let p = K(s). Reparameterize K to be in polar form rp(t), θp(t) (for
t ∈ S1) such that the pole is at p. Then if there exist sequences (sn)n∈N, (tn)n∈N
such that

1. For all n ∈ N, sn≺	 tn≺	 sn+1, and

2. At least one of the following holds:

(a) For all n ∈ N,
rp(tn) > max {rp(sn), rp(sn+1)},

or
(b) For all n ∈ N,

θp(tn) > max {θp(sn), θp(sn+1)}.

Then we call p a wiggly feral point (sometimes just wiggly point) of K. We say that
K is wiggly feral or wiggly at p. ♦

Remark. This definition is meant to encode the idea that the graph ofK “oscillates”
infinitely often as we approach p. Note, this is quite different form our example in
Fig. 8.5, where we actually have θ ↗∞. By contrast, wiggly feral points are meant
to capture behavior like the following:

Figure 8.6 An arc with a wiggly feral point.



Feral Points 167

Figure 8.7 A closed curve in R2 with a wiggly feral point. We’ve drawn a
tubular neighborhood around it just for pizzazz.

Figure 8.8 An everywhere-wiggly arc. Essentially every non-self-intersecting
fractal is everywhere wiggly.

The case where θ →∞ is covered by swirly feral points.

Definition 8.2 (Swirly Feral Point). Let K : S1 ↪→ R2 be an embedding. Let
s ∈ S1 be arbitrarily chosen, and let p = K(s). Reparameterize K to be in polar
form rp(t), θp(t) (for t ∈ S1) such that the pole is at p. Then if θp(t) → ±∞ as
t→ s, we say p is a swirly feral point (sometimes just swirly point) of K. We say K
is swirly feral or sometimes just swirly at p. ♦

Sometimes it will be helpful to think of the swirly feral points without
needing to reparameterize. The following proposition gives one way of doing
so.

Proposition 8.8. Let K : S1 ↪→ R2 be an embedding. Let s ∈ S1 be
arbitrarily chosen, and let p = K(s). Consider an arbitrary infinite sequence
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of nested arcs In:

[s1, t1]	︸ ︷︷ ︸
I1

⊆ [s2, t2]	︸ ︷︷ ︸
I2

⊆ · · · ⊆ [sn, tn]	︸ ︷︷ ︸
In

⊆ · · · .

For each n ∈ N, define γn to be the (possibly non-simple) curve defined by
taking −→K(In) and connecting K(si) and K(ti) with a straight line. Use wn
to denote the winding number of γn about p. Then p is a swirly feral point
of K iff there exists such a sequence of In’s such that

lim
n→∞

wn = ±∞.

Remark. One should note that we require nested arcs in the proposition above.
The reason might not be immediately obvious: One can imagine a variety of swirly-
looking curves that yield visually-similar graphs to Fig. 8.5 but always “double back”
before wn can get unbounded (we apologize for the lack of diagrams here). Why
don’t we want to include those? As it turns out, they are actually easier to treat,
and are really better thought of as wiggly feral points.

One might wonder whether feral points have to obey some kind of
discreteness properties. This appears not to be the case, but we have not
investigated the matter in great detail. As a first example, note that Fig. 8.8
is actually everywhere wiggly, hence we certainly can’t expect discreteness
from wiggly feral points.10 For swirly-feral points, the situation is a bit
trickier, but we propose the following counterexample to the claim “swirly
feral points must be topologically discrete.”

Counterexample 8.2. Let K be defined iteratively from Kn as follows.

1. Let K0 be the spiral embedding from Example 8.1.

Figure 8.9 The spiral, redux
10For an even more pathologically-flavored example, one might consider an Osgood

curve, which can actually have positive measure in R2.
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2. Draw a line through the center of the spiral:

Figure 8.10 A line through the centers

3. Define Ki as follows: At each point of intersection xi of the line with the
spiral, −→K

(
S1) locally looks like an arc. Hence, remove a small portion from

K, and replace it with a shrunk-down copy of the spiral.11

Figure 8.11 A crude diagram for the replacement process. Unfortunately,
pgfplots’s drawing capabilities gave out on us past the second replacment.

By applying uniform convergence, one can show that the limit of the Ki is
continuous.

This gives an infinite sequence of swirly points converging to another swirly point.
Hence we see the swirly points are not topologically discrete. 囧

We imagine that a similar construction can be used in a fractal-like
construction to yield a curve that is swirly feral on an uncountable set. We
leave some questions for future work:

Question 5. Let K : S1 ↪→ R3. Just how “not discrete” can the swirly feral points
of K be? E.g.,

11To guarantee the spiral will fit, we can apply Theorem 7.8.
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1) Can the swirly points of K be perfect?12

2) Can the swirly points of K be dense in −→K
(
S1)?

3) Can the swirly points of K have positive measure in −→K
(
S1)? (Here, we’re

viewing S1 as [0, 2π]/{0 ∼ 2π} inheriting the Lebesgue measure on [0, 1]).

4) Can K be swirly almost everywhere?

5) Can K be everywhere swirly feral? ♦

We have the following conjecture:

Conjecture 2. The answers to the first three above are “yes,” “yes,” “yes,”
“no,” and “no.” Here’s some of our intuition:

1) This seems fairly straightforward to accomplish by constructing a K
that maps a Cantor set to swirly feral points (e.g., identify the two
loose ends of each sub-spiral with the endpoints of a Cantor set in S1

and prove the correspondence).

2) Here, one might try a construction that iterates through {2πt | t ∈ Q ∩ [0, 1]}
where the radii of our inserted sub-spirals decay according to the de-
nominator of t.13

3) Here, one might try the same argument as in (1) but with the Smith-
Volterra-Cantor set.

4) Our intuition is a bit shaky on these last two, but it seems that any
construction for an “almost everywhere swirly feral embedding” would
require the swirls to get small so quickly that in the limit, there’s
no winding about our points of interest. We’d be interested to see an
example, though.

5) If almost everywhere swirly feral fails, then so does everywhere swirly
feral.

This concludes our discussion of the 2D case. We now move into 3D,
where all the interesting pathologies lie.

12Recall, perfect means “closed and has no isolated points.”
13This is basically Thomae’s function but swirly.



Chapter 9

Moving into R3

The wild things roared their terrible roars and gnashed their terrible teeth
and rolled their terrible eyes and showed their terrible claws

—Maurice Sendak, Where the Wild Things Are

In this chapter, we partially extend the machinery from the previous
chapter for use in R3. The idea is that away from crossing points, arcs in
our diagrams in R2 can just be treated with Theorem 8.7, and this lifts
to an ambient isotopy in R3 that only affects one strand. We will use this
in developing a simple condition on our diagrams that guarantees we can
represent the corresponding embeddings by countable unions of polygonal
segments — namely, that the set of crossing points are topologically discrete.
In addition to tame arcs, certain classes of wild arcs (e.g., the Fox-Artin
curve in Example 7.2) will fall into this category. This sets the stage for
future work in which we hope to use Theorem 7.4 to show an analogue of
Reidemeister’s theorem holds. We present a sketch of how we might plan to
attack the problem, however, we have not confirmed the details.

We begin by defining a slightly-relaxed version of regular diagrams,
namely discrete diagrams. These are identical to regular diagrams, except
we allow the set of crossing points to be discrete instead of restricting them
to be finite. Note, the discreteness condition allows at most countably-many
crossings (Proposition 9.1).

In Section 9.1 and Section 9.2, we then develop the two pieces of machinery
needed to analyze such diagrams. Section 9.1 is concerned with demonstrating
that planar isotopy is always valid, even without PL constraints. This allows
us to control the behavior of our knots away from crossings, and the proofs
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are fairly straightforward in light of Chapter 8. In Section 9.2, we do the
complimentary analysis, showing we can control the behavior of our knots
near crossing points; in particular, we can represent every crossing by two
perpendicular line segments.1

Finally, we put these pieces together to yield the promised proof that a
discrete diagram is sufficient to guarantee a representation as a countable
union of polygonal segments. Anyways, the definition.

Definition 9.1 (Discrete Diagram). Let K : S1 ↪→ R3 be an embedding. Let
π : R3 → R2, and let D be the diagram of K given by π. Then we say D is a discrete
diagram iff

1. (No multi-crossings): For all p ∈ D, |←−π (p)| ≤ 2

2. (All crossings are transverse): The diagram is locally X-shaped at points of
crossing, and

3. (Crossings are discrete): The set C of crossing points of D is topologically
discrete in R2. ♦

We have the following proposition:

Proposition 9.1. If D is a discrete diagram, then the set of crossing points
C is at most countable.

Proof. C is a subspace of R2, which is second-countable. It follows C is second-
countable. Since a discrete space is second-countable iff it is countable, we
have the desired result. �

One might wonder what a non-discrete diagram might look like, and
whether it is even possible to obtain one. Indeed we can — everywhere-wild
knots are examples of embeddings for which no diagram is discrete. We
provide an example construction below (imagine taking the limit as n→∞),
but for more on this subject, one should reference Shilepsky (1974) and
Bothe (1981).

1Of course, this might seem obvious, but a rigorous argument turns out to be highly
technical given that we are only assuming the crossings are discrete (and not that our knot
is tame).
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Figure 9.1 Step 1 in the construction of an everywhere-wild knot

Figure 9.2 Step 2 in the construction of an everywhere-wild knot
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Figure 9.3 Step 3 in the construction of an everywhere-wild knot

9.1 Controlling Behavior Away from Crossings

We now prove lemmas that allow us to perform planar isotopies in the
toplogical category. The first says that we can polygonalize our diagrams
away from crossing points.

Lemma 9.2. Let K : S1 ↪→ R3 be an embedding with diagram D and associ-
ated projection π. Let [s0, t0]	 ⊆ S1 such that A = −→K

(
[s0, t0]	

)
participates in

no crossings in D. Then there exists an ambient isotopy F : [0, 1]×R3 → R3

taking A to a curve P such that −→π (P ) is polygonal.

Sketch. Use Theorem 7.8 to find a closed neighborhood V ⊆ R3 separating A
from other strands (except at the endpoints). Use −→π (V ) to apply Theorem 8.7
to the diagram to yield an ambient isotopy G : [0, 1]× R2 → R2 yielding the
desired polygonal curve in R2. Without loss of generality, suppose that π
projects onto the xy plane; then we can lift G an ambient isotopy in R3 by
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the following:

F (t, (x, y, z)) =

Gx(t, (x, y))
Gy(t, (x, y))

z


Here, Gx, Gy denote the x and y components of G, respectively. That F is
an ambient isotopy on R3 can be argued from the fact that G is on R2. �

Corollary 9.3. With all variables quantified as above, there exists an ambient
isotopy F : [0, 1]× R3 → R3 taking A to a curve P such that P is polygonal
in R3.

Note that this is stronger than the preceding claim, which only guaranteed
−→π (P ) is polygonal.

Sketch. First, apply Lemma 9.2. Because the curve is now represented as a
finite collection of polygonal segments P , one can argue that it’s possible
to perturb π slightly (such that it now includes a portion of the view along
the z direction) without introducing any new crossing points. Applying the
result again to this new curve yields a result that is polygonal in R3 (since
its x, y, and z components are now all linear). �

Now, we can show that given a crossing-less strand in a knot, we can
locally “straighten it out” to some extent. The removal of feral points is
important in that it allows us to create a “nice” neighborhood of our curve
in the below.

Proposition 9.4. Let K : S1 ↪→ R3 be an embedding with diagram D and
associated projection π. Let [s0, t0]	 ⊆ S1 such that −→K

(
[s0, t0]	

)
does not

participate in a crossing in D. Now, let γ : [s0, t0]	 ↪→ R3 be a curve such
that

1. (Same endpoings in R3): γ(s0) = K(s0) and γ(t0) = K(t0), and also

2. (Same diagram in R2): On all of [s0, t0]	, π ◦ γ = π ◦K.

Then if we define

Kγ(s) =

K(s) s 6∈ [s0, t0]	
γ(s) s ∈ [s0, t0]	,

then K ∼= Kγ.
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s0

t0

Figure 9.4 An example of A.

Proof. Let AK = −→K
(
[s0, t0]	

)
, and let Aγ = −→K

(
[s0, t0]	

)
. Also let C =

−→π (AK) = −→π (Aγ). Observe that the inverse image

M =←−π (C)

gives us an embedding of a closed subset S ⊆ R2 into R3:

Figure 9.5 An example of the embedded S (here shown in blue), shown
split into two halves to make the diagram easier to interpret. Note, viewing
from the top down yields Fig. 9.4
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Now, let V ⊆ R2 be the neighborhood guaranteed by Theorem 7.8. We
want to find a way to guarantee that ∂V gives us two curves that “trace”
the shape of C, instead of kind of “enveloping” it (see Fig. 9.6).

a. 3 Good b. 7 Bad

Figure 9.6 Examples of good and bad V ’s.

To that end, one can apply Lemma 9.2 to yield an ambient isotopy FP
giving a polygonal representation PK of AK , and argue that we can guarantee
the existence of such a V in that case. Note that by the construction in
Lemma 9.2, applying FP also yields a polygonal representative Pγ of Aγ .
In any case, the inverse image of the diagram for AK gives us a polygonal
version of Fig. 9.5, denote it SP . Observe that one can now apply Theorem 8.7
to SP to yield an ambient isotopy G : [0, 1]× SP → SP taking PK to Pγ . By
using a similar argument to Proposition B.8 (Appendix B.4), one can then
extend this to an ambient isotopy H : [0, 1]× (V × R)→ R3 that fixes ∂V .2
Finally, defining F : [0, 1]× R3 → R3 by

F (t, x) =


FP (3t, x) t ∈

[
0, 1

3

]
H(3t− 1, FP (1, x)) t ∈

[
1
3 ,

2
3

]
FP (3− 3t,H(1, FP (1, x))) t ∈

[
2
3 , 1
]

yields an ambient isotopy taking AK to Aγ while keeping the endpoints fixed,
and not moving any of the other strands of K. It follows that F defines an
ambient isotopy from K to Kγ .

2In 2D, the lines are defined by putting one anchor point in ∂V , and making the other
a point on the diagram for PK . The properties we need are maintained when we consider
the analogues in R3.
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9.2 Controlling Behavior Near Crossings

In the following lemma we show that given any knot K with a discrete
diagram, we can “straighten out” the strands near each crossing ci in the
sense that we can find a cylinder around ←−π ({ci}) which K intersects at only
four points. In particular, we can do this in a way that doesn’t move any of
the strands outside of our cylinder.

Theorem 9.5 (Cleaning up near crossings). Let K : S1 → R3 be a knot.
Suppose that K admits a discrete diagram D, and let ci be an arbitrary
crossing of D. Then there exists〔ε, ν > 0 with ν < ε〕such that there exists
an ambient isotopy F : [0, 1]× R3 → R3 with the following properties:

(i) F is identity outside of [0, 1]×←−π (Bε(ci)), and

(ii) |F (1,K) ∩ ∂[←−π (Bν(ci))]| = 4.

Note. Observe that the two lines above employ radii for the balls. The outer one
will serve as a sort of “buffer zone” we can push things into in case we find some
extra strands floating around.

Remark. At first it might seem like it’d be sufficient to just shrink the radius until
we’re sufficiently close to the crossing. However, it turns out this can fail for cases
like the following where a feral point occurs at the crossing.

Figure 9.7 An example of a crossing and a Bε where ∀η ∈ (0, ε), K
intersects Bη(ci) more than 4 times.
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Proof. By definition of a discrete diagram, ci is an isolated point of the set
of crossings, C. Hence, there exists ε > 0 such that Bε(ci) ∩ C = {ci}.

In general, we can have many arcs of K contained in Bε(ci); however, the
definition of a discrete diagram stipulates only two such arcs will be involved
in the crossing itself (see Fig. 9.8).

Figure 9.8 Example of Bε(ci). The dashed lines show places where the
strands poke outside Bε(ci). Note, if being pedantic, the ball should be
technically be centered on ci.

We’ll take a somewhat funky notation here and use ←−A to denote the
preimage of the arcs in Fig. 9.8.

←−
A = K(S1) ∩←−π (Bε(ci)).

We can visualize ←−A by something like the following:
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Figure 9.9 Example ←−A in R3, with a 3-ball drawn to help communicate
that we’re no longer in R2. Note that the dashed lines are not included in ←−A .

Without loss of generality, suppose our projection π was onto the xy
plane. We want to show that ←−A is bounded in the z direction. To that end,
note that K is a continuous function from a compact space, hence it is
bounded. This gives us ←−A is bounded, hence there exists rε > 0 such that←−
A ⊆ Bε(ci)× [−rε, rε]. Call this cylinder Cε.

Cε = Bε(ci)× [−r, r].
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Figure 9.10 An example drawing for Cε

We now have a claim. Essentially, it states that if we look at a sub-cylinder
Cη that’s small enough, there are only finitely many points where our strands
intersect the boundary. This will be important when we construct an ambient
isotopy to remove them later. Note, there is nothing special about using ci
defined in the following claim. The same should hold for any point in R3.

Claim 1: There exists η, rη > 0 such that η < ε, rη < rε, and Cη
defined by

Cη = Bη(ci)× [−rη, rη].

is such that ∂Cη ∩
←−
A is finite.

Proof of Claim 1: We show existence for η; the existence of rη follows
similarly.

Suppose, to obtain a contradiction, that no such η exists. One can
show that this requires the strand to oscillate infinitely (think wiggly-
feral point), per the following sketch: The only other way the claim
could occur would be if for each η, there were a strand going around
part of the circumference of Bη(ci). One can show that each such strand
has nonzero length, and that this causes problems with the fact that
there are infinitely-many η (we’d end up filling a portion of the region).

Let η0, η1 ∈ (0, ε] with η0 6= η1; without loss of generality suppose
η0 < η1. By hypothesis, infinitely many arcs {Aj}j∈J of ←−A intersect
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both of the cylinders.

Cη0 = Bε0(ci)× [−rε, rε] C1 = Bη1(ci)× [−rε, rε].

This might look something like the following:

η0

η1

Figure 9.11 An example visualization in 3D showing the top strand of
the crossing, another arc, and the bottom strand of the crossing, each
separated vertically. The projection obtained is shown at the bottom,
and the corresponding top-down view displayed on the right.

We want to show this breaks continuity of K. To that end, we’ll
employ sequential continuity. First, we define a collection of sub-strands
that live in the annulus between η0 and η1: For all j ∈ J , let

Bj =

Aj ∩ Cη1 − Cη0 if |Aj ∩ Cη0 | = 1 = |Aj ∩ Cη1 |, and
∅ otherwise.

Note that the Bj omit the arcs that just oscillate around one of ∂Cη0 ,
∂Cη1 without ever going over to the other.

To ensure the Bj are actually valid arcs, we must subdivide them
into their maximal connected components and remove all of the empty
entries. Reindex the Bj accordingly to yield {B`}`∈L. Then define sets
{O`}`∈L, {I`}`∈L (O for “outer”, I for “inner”) by for all ` ∈ L,

O` = B` ∩ ∂Cη1 and I` = B` ∩ ∂Cη0 .
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Let (On)n ∈ N be an arbitrary sequence of distinct O`’s. Note that Cη1

is compact, thus we can apply Bolzano-Weierstrass to {On}n∈N to obtain
a convergent subsequence {Onk}k∈N. Now, observe that because the O’s
are endpoints of arcs bridging ∂Cη0 , Cη1 , each Onk has a corresponding
Ink ∈ ∂Cη0 . Apply Bolzano-Weierstrass to {Ink}k∈N to get another
convergent subsequence, call it (Inm)m∈N. Note that restricting the O’s
to (Onm)m∈N still yields a convergent sequence.

Now, recall that because K is an embedding, it is a homeomorphism
onto its image. Thus, image and preimage underK preserve convergence,
and so taking the elementwise inverse of the Onm , Inm gives us sequences
in

{Onm}m∈N and {Inm}m∈N
in S1. One can show that they must converge to the same s ∈ S1 as
follows: Observe each arc Anm linking Onm , Inm corresponds to an
interval of one of the forms

[Inm ,Onm ]	 or [Onm ]	,Inm .

Since S1 is compact, in order for these intervals to be disjoint (required
since the images are disjoint) the lengths must go to 0 as m→∞. Thus
O`m → I`m .

But note, taking the image once more gets us thatK(O`m) = O`m 6→
I`m = K(I`m) (since the O`m , I`m are separated by η1− η0). But this is
a contradiction (囧), K preserves convergence. Thus, there must exist
η > 0 such that only finitely many of the arcs of ←−A intersect Bη(ci)×R.
Applying a similar argument for rη gives us the existence of the desired
Cη, which proves the claim. �
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Figure 9.12 An attempted drawing of Cε and Cη.

Remark. Note that in the particular example shown in Fig. 9.12, we could have
just taken η = ε. An example of when we can’t is when one of the strands travels in
a circular arc partway around ∂Cε.

OK: By the claim, there exists η, rη > 0 such that

η ∈ (0, ε) and rη ∈ (0, rε)

and ←−A intersects ∂Cη = Bη(ci)× [rη, rη] at finitely-many points. Apply the
claim a second time to define a proper sub-cylinder Cν by Cν = Bν(ci) ×
[−rν , rν ] (where ν < η rν < rη) such that ←−A only intersects Cν at finitely-
many points.

The next claim essentially states that we can remove〔the strands that
don’t participate in our crossing〕from Cν by pushing them out into Cη.
Note, the fact that we have only finitely many points of intersection helps in
avoiding an appeal to Theorem 7.4.3

Claim 2: Let So, Su be the strands corresponding to the overstrand
and understrand (respectively) in Fig. 9.8. Let {Sj}nj=1 be the collection
of arcs of ←−A that intersect Cη but do not participate in the crossing.
Then we can find an ambient isotopy F : [0, 1]× Cη → Cη such that

3There is a more direct proof using the techniques of Appendix B.4, but it’s horrible
to write out formally.
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1. F keeps〔both the boundary of Cη and the crossing strands So,
Su〕fixed, and

2. For all x ∈ Sj , F (1, x) ∈ Cη \ Cν (F moves all the other strands
outside Cν).

Proof of Claim 2: Observe that for each j = 1, . . . , n, ∂Tj yields a
crossing-less curve. Thus, one can apply Proposition 9.4 to find ambient
isotopies moving each into Cη \ C◦ν , keeping the rest of the region fixed.
Since we have only finitely-many strands to remove, concatenating them
yields another ambient isotopy. �

One way to visualize the net effect of this process is as follows. Note
that the crossing strands (marked with the black dots in Fig. 9.13) partition
Bη(ci) into four disjoint regions R1, R2, R3, R4 that contact ∂Bν(ci). Let
M1,M2,M3,M4 be defined by for each index µ ∈ {1, 2, 3, 4}, Mµ = ∂Rµ.

Note: In the figures below, we accidentally re-drew Bν(ci) as Bε(ci),
and Bη(ci) as some ball containing Bε. We apologize for this inconsistency;
unfortunately, we currently do not have enough time to go back and fix them.

R1

R2

R3 R4

Figure 9.13 The regions R1, R2, R3, R4, and (approximations of) the cor-
responding M1,M2,M3,M4’s in black. Not to scale.

Then we “push” ∂Rµ∩∂Bν(ci) outwards to the dotted curves shown below,
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and ∂Rµ ∩Bν(ci) out to the circumference. The dashed lines (representing
∂Bη(ci)) remain fixed.

R1

R2

R3 R4

Finally: observe that by construction,

1. Cν ( Cη ( Cε,

2. |F (1,K) ∩ ∂[←−π (Bν(ci))]| = |F (1,K) ∩ ∂Cν | = |{endpoints of So, Su}| =
4, and

3. ∂Cε remains fixed.

As desired.

Corollary 9.6 (K can be polygonalized near crossings). Let K, ci, Cν , Cε
be as defined in the preceding theorem/proof. Then there exists an ambient
isotopy F : [0, 1]× R3 → R3 such that

1. F is identity outside of [0, 1]× Cε, and
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2. F (1,K) ∩ Cε is polygonal.

Sketch. By the Theorem 9.5, we can find an ambient isotopy removing all
non-crossing strands from Cν while keeping ∂Cε and〔the crossing strands
themselves〕fixed. Apply this ambient isotopy from t = 0 to t = 1/2. Then,

• Observe that there are no other strands in ←−π (Bν(ci)) “above” So or
“below” Su.

• Use this to define an ambient isotopy flattening out So in the z direction
(so that it’s only non-polygonal in x and y), while translating it half of
the way to the top circular cap of Cν . Apply a similar ambient isotopy
flattening Su out in z and moving it half of the way to the bottom
circular cap.4

• Use a proof similar to that of Proposition 9.4 (taking a smaller sub-
cylinder if necessary) to turn the crossing strands into straight lines
while keeping ∂Cν fixed.

This yields the desired result. �

Finally, this concludes the analysis of behavior near crossing points. We
are now ready to put it all together.

9.3 The Conclusion

Together, these give us the following theorem:

Theorem 9.7 (Discrete Diagram Implies Countably Polygonal). Let K :
S1 ↪→ R3 be a knot. Then if K admits a discrete diagram D, then K is
ambient isotopic to a knot comprised of (at most) a countable union of
polygonal segments.

Proof. Apply Theorem 9.5 to triangulate K at each of the crossing points.
Note that this implicitly defines a collection of pairwise-disjoint arcs con-
necting each of the resulting Cν together. Applying Corollary 9.3, we can
polygonalize each of these connecting strands with a finite collection of line
segments.

4Although drawn for a different purpose, Fig. 9.11 displays this idea nicely the blue/red
circles. Note, there we drew the crossing strands as straight lines in xy as well as in z; we
have not done this yet in our construction.
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Finally, observe that for each crossing, this gives us a finite collection
of corresponding polygonal segments. By Proposition 9.1, we have at most
countably-many crossings in the diagram, hence the total number of polygonal
segments employed is at most countable!

The following appears to be a reasonable extension of the claim.

Conjecture 3. If the set of wild points are topologically discrete, then the
same result as above holds.

The techniques above can be used to obtain a variety of other expected
results. E.g.,

Proposition 9.8. Let K0,K1 : S1 ↪→ R3. Suppose that the diagrams for K0,
K1 are related by planar isotopy. Then K0 ∼= K1.

In particular:

Corollary 9.9. Let K0,K1 : S1 ↪→ R3 such that K0, K1 share the same
discrete diagram D. Then K0 ∼= K1.

We conclude this section with a discussion of directions for future work.

9.3.1 A Generalization of Reidemeister’s Theorem?

The usual proof of Reidemeister’s theorem relies on using polygonalizations
to reduce the problem of ambient isotopy to the elementary moves. Now that
we have a locally-polygonal representation for some wild knots, can we prove
an analogous theorem for countable sequences of moves? E.g., something like

Conjecture 4. Let K0,K1 : S1 ↪→ R3 be knots with discrete diagrams.
Suppose that K0 ∼= K1. Then there exists a sequence of Reidemeister moves
satisfying the hypotheses of Theorem 7.4 taking K0 to K1.

One plan of attack might be as follows:

1. Theorem 7.4 (or alternatively, Theorem 5.3) gives us an “if” direction
(provided we’re careful to mind bijectivity in the Theorem 7.4 case).
Hence, the main plan of attack would be to find an only-if proof.

2. One idea could be as follows: First, show that given an ambient isotopy
F : [0, 1]× R3 → R3 taking K0 to K1, we can realize the same effects
on K0, K1 by restricting F to a compact subspace V . Then use this to
argue that F restricted to F : [0, 1]× V → V is uniformly continuous.
Hence, we can partition [0, 1] × V into a finite collection of small
sub-regions such that F is guaranteed to vary by less than ε on them.
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3. First, note that the local sets we constructed in the proof in the previous
section (e.g., the Cν , or the sets guaranteed by Theorem 7.8) can be
made arbitrarily small. Use this to argue that our choices of polygonal
representatives can be made continuously dependent in some sense on
the input knots themselves.

4. Then, show that in light of the above, away from wild points, we can
realize the effects of the ambient isotopy by local polygonal moves.
Near the wild points, keep the effect of the given F .

5. Define a uniformly convergent sequence of ambient isotopies “shrinking”
the region where we keep the effects of F down to the wild points.
Finally, apply Theorem 7.4 to yield the result.





Chapter 10

Conclusion & Directions for
a Category

but Max stepped into his private boat and waved good-bye
and sailed back over a year

and in and out of weeks
and through a day

and into the night of his very own room
where he found his supper waiting for him

and it was still hot.

—Maurice Sendak, Where the Wild Things Are

What’s the big takeaway from this project? What’s the summary?
Sometimes we can reduce the behavior of objects in a messier knot

category to that of ones in a cleaner sub-category. For instance, in studying
tame knots, our motivation was to noting that all knots that are topologically
ambient isotopic to a polygonal knot inherit the nice structure of the PL
category.

However, as we saw in Chapter 5, it seems that broadening our perspective
to the context of〔knots that can be described by discrete (but possibly
infinite) packets of information〕could be a more natural place to study tame
knots. What tools do we have for doing so? The work of Chapter 7 gave us
two key strategies: Namely, being able to separate strands from each other
(although not necessarily from themselves; that requires the discreteness
conditions), and applying uniform convergence / bijectivity arguments to
guarantee ambient isotopy under limiting conditions.
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In Chapter 9, we used these tools to formally prove that if we loosen the
“finite crossings” condition on regular diagrams to just “discrete crossings,”
we get a formalism that is tied to a particular class of well-behaved wild
knots in a way that is directly analogous to regular diagrams and tame knots.
In particular, regular diagrams (finite crossings) are the tools for studying
polygonal knots (finite unions of line segments), while discrete diagrams
(possibly countably many crossings) seem to offer potential for studying
“discrete” knots (possibly countable unions of line segments). In a qualitative
sense, this makes these “discrete” knots (even the wild ones) feel much more
similar to tame knots than to the pathological everywhere-wild knots.

We conclude this report with a discussion of possible approaches to
making this “qualitative” similarity more rigorous. Our main focus is on how
we might generalize our definition of simplicial complexes to this new context;
this would represent a new category living in between PL and TOP. Again,
we would like to emphasize that this is not the author’s area of specialty
(really, few things are), so we would appreciate receiving any feedback the
reader has to offer.

10.1 A Countably PL Category?

Recall the following definition for a locally-finite simplicial complex:

Definition 10.1 (Simplicial Complex). A simplicial complex is a collection K =
{σi} of linear simplices such that:

1. For all σ ∈ K, if τ is a face of σ, then τ ∈ K.

2. For all σ1, σ2 ∈ K, if τ = σ1 ∩ σ2 6= ∅, then τ is a face of both σ1 and σ2. ♦

We also have

Definition 10.2. Let K be a simplicial complex. Then we define the underlying
space of K (denoted |K|) by

|K| =
⋃
σ∈K

σ. ♦

Example 10.1. Consider the following simplicial complex:
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t

r`

b

c

The simplices are as follows (Note, we’ll use 〈v1, v2, . . . , vn〉 to denote “the
convex hull of {v1, v2, . . . , vn}”).

1. The 0-simplices: K0 = {〈t〉, 〈`〉, 〈b〉, 〈r〉, 〈c〉}

2. The 1-simplices: K1 = {〈t, `〉, 〈`, b〉, 〈b, r〉, 〈r, t〉, 〈t, c〉, 〈`, c〉, 〈b, c〉, 〈r, c〉}

3. The 2-simplices: K2 = {〈t, `, c〉, 〈b, r, c〉}.

One can verify the axioms are satisfied. The underlying space is just all of the stuff
except for the interior of the two white simplices, 〈t, r, c〉 and 〈b, `, c〉. ♦

Now another definition.

Definition 10.3 (Locally finite). Let K be a simplicial complex. Then we say K is
locally finite if for all 0-simplices σ ∈ K, σ is a vertex of only finitely-many simplices
of K. ♦

If one is not careful, this definition for locally-finite can create some
unexpected collections being referred to as “simplicial complexes.” Of course,
the weak topology is meant to prevent silly situations such as these, but we’ll
pretend it doesn’t exist for the time being. This allows us to construct some
PL-flavored structures that seem germane to examining wild knots in a way
that’s agnostic to the pathology at the wild point.

Example 10.2. Consider a proposed simplicial complex defined as follows.
1. For all n ∈ N, let In be defined by

In =
[

1
2n ,

1
2n−1

]
Observe these are all 1-simplices.
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2. Also define

an =
{

1
2n

}
bn =

{
1

2n−1

}
and

I∞ = {0}.

Observe these are all 0-simplices. Also note that ∂In = an ∪ bn.
Let S = I∞ ∪

⋃
n∈N {In, an, bn} (just scooping up all the items defined

above). Is this a valid simplicial complex? Is it locally finite? ♦

Sketch. We break the statement into parts. The results are straightforward,
we have just sought to be exhaustive for completeness.

Claim 1: The collection S defined in the question is a valid simplicial
complex.
Proof of Claim 1:
1. First, we verify that for all σ ∈ K, if τ is a face of σ, then τ ∈ K.

Let σ ∈ K be arbitrary. We have two sub-cases.
1) Suppose σ is a 0-simplex. Then σ is its only face, so the claim

holds.
2) Suppose σ is a 1-simplex. Then by construction, there exists

n ∈ N such that σ =
[

1
2n ,

1
2n−1

]
. Hence the faces of σ are

an =
{

1
2n
}
and bn =

{
1

2n−1

}
, both of which are elements of S

(by construction).
Hence we see that the first condition is satisfied.

2. Let σ1, σ2 ∈ K be arbitrarily chosen. We want to show that if
τ = σ1 ∩ σ2 6= ∅, then τ is a face of both σ1 and σ2.
First, note that if σ1 = σ2, then the claim is trivial. Hence suppose
σ1 6= σ2. We proceed by casework.
1) Suppose σ1, σ2 are both 0-simplices. Then since σ1 6= σ2, we

have σ1 ∩ σ2 = ∅, so the claim is satisfied vacuously.
2) Now suppose one of σ1, σ2 is I∞. Note that for any n ≥ 0, I∞

is disjoint from each of an, bn, and In. Hence σ1 ∩ σ2 = ∅, so
in this case the claim is also satisfied vacuously.

3) Now suppose at least one of σ1, σ2 is not a 0-simplex, and that
neither σ1, σ2 is I∞.a One can verify the following:
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i) Suppose one of σ1, σ2 is a 0-simplex and the other is
a 1-simplex. Without loss of generality, let σ1 be the 1-
simplex and σ2 be the 0-simplex. Then σ1 is of the form
In =

[
1

2n ,
1

2n−1

]
= 〈an ∪ bn〉 for some n (recall, an, bn

were defined as 1-element sets). Then σ1 ∩ σ2 6= ∅ iff σ2
is one of an or bn, at which point the claim follows by
construction of S.

ii) Suppose σ1, σ2 are of the form In, Im respectively, and
without loss of generality, suppose n > m. Then observe
we have In ∩ Im 6= ∅ iff n = m + 1. In this case, we see
In ∩ Im =

{
1

2n−1

}
=
{

1
2m
}
, which is an element of S by

construction.
In any case, we see the condition is satisfied.

It follows that S is a valid simplicial complex.
aThis is wordy, but we’re just taking the complement of the two cases we’ve

already done.

Claim 2: S is locally finite.
Proof of Claim: By a similar argument to the above, one can verify
that
1. For all n ∈ N, we have I∞ ∩ an = I∞ ∩ bn = I∞ ∩ In. Hence I∞ is

a vertex of exactly one simplex, namely itself.
2. For all n ∈ N, an is a vertex of In and In+1. Similarly, for n > 2,
bn is a vertex of In−1, In. For n = 1, b1 is a vertex of I1 and that’s
it.

In any case, we see that the simplicial complex is locally finite.

Claim 3: |S| = [0, 1].
Proof of Claim 3: Let x ∈ [0, 1] be arbitrary. We want to show ∃σ ∈ K
such that x ∈ σ. We proceed by casework.
1. Suppose x = 0. Then x ∈ I∞, as desired.
2. Suppose that x 6= 0. Then there exists n ∈ N such that

1
2n ≤ x ≤

1
2n−1 ,
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from which we have x ∈ In.a

In either case, it follows that there exists σ ∈ K such that x ∈ σ.
Hence [0, 1] ⊆

⋃
σ∈K σ. Now observe that by construction, for all σ ∈ K,

σ ⊆ [0, 1]. Hence
⋃
σ∈K σ = [0, 1].

Hence we have |S| = [0, 1], as desired.
aTo be extremely explicit: one can take log2 of each term in the inequality above;

since log2 is monotonic, the ordering is preserved. Then, one can use the Archimedean
property of the reals to obtain the existence of the desired n.

In any case, we see that according to all of our definitions, this is a honest-
to-goodness locally-finite simplicial complex. �

As we mentioned way back in Chapter 1, one can construct similar
simplicial complexes in Rn. For instance, consider the following collection in
R2:

Figure 10.1 A “locally-finite” simplicial complex.

Analogous objects in R3 seem like they could be very apt for describing
“discrete” wild knots, especially in light of Theorem 9.7. Of course, we must
be careful not to go too far in this direction; for instance, we would not want
to include objects like the following:

Example 10.3 (Non-example). Let K = {σi} be a collection of linear simplices
defined by

K = {{x} | x ∈ R}. ♦

This particular behavior could be constrained by requiring that K be
countable, but that would still allow for complexes like the following:

Example 10.4 (Non-example). Let K = {σi} be a collection of linear simplices
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defined by
K = {{x} | x ∈ Q}. ♦

Inspired by these examples (but also by wanting to prevent the non-
examples given above), we imagine we could achieve the desired effects by
looking at something like the following (note, we encourage the reader to
improve upon our naming conventions):

Definition 10.4 (A proposed definition). Let K = {σi} be a simplicial complex.
Define K to be almost locally finite if it is locally finite at all but finitely-many
0-simplices. ♦

Or maybe something like the following:

Definition 10.5 (Another proposed definition). Let K = {σi} be a locally-finite
simplicial complex. Define a feral point of K to be a 0-simplex 40 ∈ K such that
for all ε > 0, there exists infinitely-many σi ∈ K such that Bε(40) ∩ σi 6= ∅. Then
endow K with the subspace topology, and call K countably-PL if there are only
finitely-many feral points. ♦

We’d be interested in seeing if any of these proposed definitions provide
us objects for a new category. Morphisms would be similar to PL maps, only
now with extra requirements to respect the “feral” structure, e.g. feral points
map to feral points, plus maybe some analogue to the star condition at these
points.

We hope that future work in this direction might help to shed light on
deeper structure to knots. We are particularly excited about the implications
of Chapter 5, and wonder whether they can be generalized to everywhere-wild
knots. In particular, to study these “discrete” knots we used symmetry groups
of discrete sets. We wonder whether continuous symmetry groups could be
used to study wild knots, which (in some sense) have “continuous” collections
of crossings (although it seems we lose transverseness).

We’d also be interested in seeing deeper study of feral points, particularly
diagrammatic invariants for distinguishing them from wild points. Lastly,
we’d like to see a careful proof of an analogue to Reidemeister’s theorem in
this new context, as well the development of a new, slightly-stronger category
in which to study our embeddings.
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Appendix A

A Gallery of Some 3D
Representations of Feral
Knots

The following theorem is proven in Crowell and Fox (1963) (Appendix I, pg.
147).

Theorem A.1. Let K be a knot in R3 which is rectifiable and which is given
as the image of a periodic vector-valued function p(s) = (x(s), y(s), z(s))
of arc length s whose derivative p′(s) = (x′(s), y′(s), z′(s)) exists and is
continuous for all s. Then K is tame.

From what we can tell, the rectifiability condition is actually superfluous,
as it follows directly from the C1 hypothesis. C1 implies bounded variation,
which in turn implies rectifiability. We imagine Crowell and Fox (1963) were
simply trying to keep the prerequisite knowledge to a minimum. In any case,
we restate the result as follows.

Theorem A.2. Let K : S1 ↪→ R3. Then if K is C1, K is tame.

We’ll cite this freely in the below.

A.1 Countable Twists
Example A.1 (Countable Twists).

• Description: A countable # of twists
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• Example countable polygonal representation

Figure A.1 Countable Polygonal Representation

• Proof of tameness, method 1: Use Reidemeister I moves and Theorem 7.4

• Proof of tameness, method 2: Explicit, C1 3D parameterization as an arc:
f : [−π, π] ↪→ R3, parameters r, ω.

f(θ) =



rθ
3 cos

(
ω
θ

)
rθ3 sin

(
ω
θ

)
θ2

 θ ≥ 0

−f(−θ) θ < 0

C1: all of (−π, π). Can be extended past ±π easily.
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Figure A.2 Perspective view
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−150 −100 −50 0 50 100 150
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Figure A.3 Top view

• Proof of tameness, method 3: Employ the top-down view and apply Proposi-
tion 9.4.

♦

A.2 Countable Reidemeister II
Example A.2 (Countable Reidemeister II).

• Description: A countable # of Reidemeister II’s

• Example countable polygonal representation

Figure A.4 Countable Polygonal Representation

• Proof of tameness, method 1: Use Reidemeister II moves and Theorem 7.4, or
alternatively, using Theorem 5.3 in two steps.
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• Proof of tameness, method 2: Explicit, C1 3D parameterization as an arc:
f : [−π, π] ↪→ R3, parameters r, ω.

f(θ) =



[
rθ3 cos

(
ω
θ

)
θ2θ2

]
θ ≥ 0[

−rθ3 cos
(
ω
θ

)
−θ2θ2

]
θ < 0

C1: everywhere on (−π, π). Can be extended past ±π easily.
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Figure A.5 Perspective view
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−150 −100 −50 0 50 100 150

−10

−5

0

5

10

Figure A.7 Top view

• Proof of tameness, method 3: Employ the top-down view and apply Proposi-
tion 9.4.

♦





Appendix B

A Crash Course in PL
Topology

What is the big-picture idea of Linear Algebra? Reduce
infinite spaces to finite descriptions. That is it—this is the

meaning of a basis!

—Weiqing Gu

For our purposes today, we can think of Piecewise-Linear Topology as “the
business of trying to study continuous topological objects by approximating
them with linear (more accurately, affine) structures.” Because such structures
can be given finite descriptions, there is a sense in which this will bring a
more “discrete” flavor to our topological objects. Of particular importance
will be the concept of a simplicial complex, what it means for one to be
locally finite, and how we can use this to build up our understanding of knots.
We’ll begin by discussing some vocabulary.

B.1 Affine Sets

Really we’ll only be interested in convex sets for today. But to define them,
we need the concept of affine independence, so it seemed reasonable to do a
brief primer on affine topics while we’re at it.

Everything in the below should be general over any Banach space with
field R, but for today, we’ll only consider Rn.

Definition B.1 (Affine Set). Let F ⊆ Rn. Then F is called a affine set (also
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sometimes called a flat, but we won’t use that here) if for all x, y ∈ F and t ∈ R, we
have

[1− t]x+ ty ∈ F.

Geometrically, “every line through two points in F is itself a subset F .” ♦

Note, this is essentially just a linear subspace that we allow to be shifted
so as to not include the 0 vector. For instance:

x

y

z

Figure B.1 An affine set. The black circle indicates a point of intersection.

is an affine set. This is encoded in the following proposition.

Proposition B.1. Let F ⊆ Rn be an affine set. Then for arbitrary x ∈ F ,
F − x = {v − x | v ∈ F} is a linear subspace of Rn.

As an example, imagine shifting the plane in Fig. B.1 down to the origin.
Just as we have a notion linear independence for vector spaces, we have

affine independence for affine sets.

Definition B.2 (Affine Independence). Let {vi}ni=1 ⊆ Rn. Then we say {vi} are
affinely-independent iff for any j = 1, . . . , n, the set

Bj = {vi − vj | i 6= j}

is linearly independent. ♦

Note again, by Proposition B.1, this is just saying we have a shifted linear
subspace. We now define an analog to the span of a linearly independent set.

Definition B.3 (Affine Hull). Let A ⊂ Rn be arbitrary. Then the affine hull of A,
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denoted aff(A), is given by

aff(A) =
{

k∑
i=1

tixi

∣∣∣∣∣ k ∈ N>0, each ti ∈ R, xi ∈ A, and
k∑
i=1

ti = 1
}
. ♦

Note, we require k > 0 so that we don’t accidentally pick up the 0 vector.
One can use Proposition B.1 to verify the following:

Proposition B.2. Let X ⊆ Rn, and let v ∈ F . Then aff(X) − v =
span(X − v).

This formalizes our intuition that the affine hull is essentially a shifted
version of linear span. Finally, we introduce the analog to linear transforma-
tions, namely affine maps. These are essentially just linear transformations
followed by shifts; we’ll use them later to define PL maps.

Definition B.4 (Affine Map). Let n,m ∈ N, and let A ⊆ Rn, B ⊆ Rm be affine
sets.1 Then f : A→ B is said to be affine iff for all x, y ∈ A and all t ∈ R, we have

f([1− t]x+ ty) = [1− t]f(x) + tf(y). ♦

Note, it was important to require both A and B to be affine in or-
der to guarantee we don’t escape the domain / codomain in the equation
above. Again, we can reduce this to more familiar terms with the following
proposition.2

Proposition B.3. Let A ⊆ Rn, B ⊆ Rm be affine sets, and let f : A→ B.
Then f is affine iff for all v0 ∈ A, the function fv0 :〔F − x0〕→〔B− f(x0)〕
defined by

fv0(v) = f(v + v0)− f(v0)

is linear.

In interpreting the above, it might be helpful to note that by Proposi-
tion B.1, F − x0, B− f(x0) are linear subspaces of Rn,Rm respectively. Also
note that on the right-hand-side, we need the +v0 in the f(v + v0) to ensure
that we are feeding f something that really is in its domain.

Alright! This gives us everything we need to discuss convex sets and
simplicial complexes.

1We make no assumptions about the relative sizes of n,m.
2This basically says “affine maps can be thought of as shifting the affine set to the

origin, applying a linear transformation, and then shifting it somewhere else.”
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B.2 Convex Sets, Simplices, & Cells

Convex sets are (more or less) restricted versions of affine sets. Recall, in
defining affine sets, we were essentially requiring that any point p on a line
passing through points x, y of our space A had to also be an element of A.
For convex sets we’ll do something similar, only instead of a line passing
through x, y, we look at line segments with endpoints x, y. This is encoded
in the following definition.

Definition B.5 (Convex Sets). Let X ⊆ Rn. Then we say X is convex iff for all
x, y ∈ X and t ∈ [0, 1], we have

[1− t]x+ ty ∈ X. ♦

Note, affine sets are trivially convex. Just as we defined the affine hull
to mimic span for affine sets, we’ll define the convex hull to mimic span for
convex sets.

Definition B.6 (Convex Hull). Let A ⊆ Rn. Then the convex hull of A is given by

〈A〉 =

{
k∑
i=1

tixi

∣∣∣∣∣ t1 + · · ·+ tk = 1, and〔for all i = 1, . . . , k, ti ≥ 0 and xi ∈ A〕

}
. ♦

B.3 Simplices & Cells and their Complexes

Note, in this section, we mostly follow the exposition in J. L. Bryant’s
Piecewise Linear Topology, which we found the most readable of the sources
we referenced.3

Definition B.7 (Simplex). Let {vi}ni=1 be affinely independent in Rm. Then the
convex hull σ = 〈{vi}ni=1〉 is called an n− 1 simplex. ♦

Definition B.8 (Face). Let σ = 〈vi〉ni=1. Then for all subsets J ⊆ {1, . . . , n}, we
call τ = 〈vj〉j∈J a face of σ. We will often denote this by τ < σ. ♦

Definition B.9 (Convex Linear Cell). A ⊆ Rm is called a convex linear cell iff
there exist v1, . . . , vk (not necessarily affinely independent) such that

A = 〈{vi}ki=1〉.

If n is the size of a maximal affinely independent subset of A, we say A is a convex
linear n− 1-cell. ♦

3Can be found here: https://www.maths.ed.ac.uk/~v1ranick/papers/pltop.pdf

https://www.maths.ed.ac.uk/~v1ranick/papers/pltop.pdf
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Remark. Note, every convex linear n-cell A can be written as

A =
⋃̀
i=1

σi

where the σi are n-simplices without any “gaps” between them.

Definition B.10 (Simplicial Complex). Let K = {σi}, where the σi are all k-
simplices in Rn. Then we call K a simplicial complex iff

(1) (Closure under faces): For all σ ∈ K, for all faces τ ⊆ σ, we have τ ∈ K
as well.

(2) (Intersection only along faces): For all σ, τ ∈ K, if σ ∩ τ 6= ∅, then σ ∩ τ
is a face of both σ and τ . ♦

As an example, the following is a simplicial complex defined by taking
the standard tetrahedron and including each of its faces:

V1v1
v2
v3

v4

A1

v1 v3

v2
A2

v1 v2

v4
A3

v4 v1

v3
A4

v4 v2

v3

e1

v1

v2

e2

v1

v3

e3

A

D

e4

B

C

e5

B

D

e6

C

D

A B C D

{}

Figure B.2 Example simplicial complex
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In particular, K = {V1, A1, A2, A3, A4, e1, e2, e3, e4, e5, e6, A,B,C,D, {}}.
The following proposed “complex” fails condition (2):

Figure B.3 An example of a collection K that fails condition (2).

We can perform a resolution by subdividing faces until the condition is
regained:

Figure B.4 Subdividing to resolve the problem.
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Figure B.5 The new complex.

Definition B.11 (Polyhedron). Let K = {σi} be a simplicial complex. Then the
polyhedron of K (also called the underlying space of K), denoted |K|, is defined by

|K| =
⋃
σ∈K

σ. ♦

We think of |K| as being endowed with the weak topology, which (given
some niceness constraints) coincides with the subspace topology.

Definition B.12 (Weak topology). Let K be a simplicial complex. Define the weak
topology on |K| as follows:

Let U ⊆ |K| be arbitrary. Then we say U is open iff for all σi ∈ K, U ∩ σi is
open in σi. ♦

The appropriate niceness constraint is provided by local finiteness. This
is defined slightly differently in different texts.

Definition B.13 (Locally Finiteness). Let K = {σi} be a simplicial complex. Then
we say K is locally finite if for all 0-simplices v ∈ K, there exists ε > 0 such that
there exists only finitely-many σi for which

σi ∩Bε(v) = ∅.

♦

Note, other sources might define local finiteness in a different manner.
Namely,
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Definition B.14 (Local Finiteness (Alt.)). Let K be a simplicial complex. Then
we say K is locally finite if for all 0-simplices v ∈ K, there exists only finitely-many
σi such that v is a vertex of σi. ♦

As far as we can tell, these conditions are not equivalent, but we could
be missing something here. For instance, under Definition B.14, what’s to
stop us from something like the following?

Non-example: Let K = {σi} be defined by

K = {{x} | x ∈ [0, 1]}.

Naively, this appears to satisfy all of the axioms for a simplicial complex.
Closure under faces is trivially satisfied. And all of our simplices are disjoint,
so “intersection only along faces” is satisfied as well. But under Definition B.13,
this is not locally finite, while it is under Definition B.14.

Anyways, we have the following proposition, which we do not prove.

Proposition B.4. Let K be a simplicial complex that is locally finite in the
sense of Definition B.13. Then A ⊆ |K| is closed in Tweak iff it is closed in
|K| with the subspace topology on Rn (where n is the maximal dimension of
a simplex in the complex).

Definition B.15 (Subcomplex). Let K be a simplicial complex. Then L ⊆ K is
said to be a subcomplex if it is a simplicial complex. ♦

Definition B.16 (Boundary subcomplex). Let K be a simplicial complex. Then
for all σ ∈ K, we define the boundary subcomplex of σ by

σ̇ = {τ | τ 6= σ}. ♦

Definition B.17 (Interior). The interior of σ is defined by
◦
σ = σ − |σ̇|. ♦

Definition B.18 (Subdivision). Let K1,K2 be simplicial complexes. Then we say
K1 is a subdivision of K2 iff

1. |K1| = |K2|, and

2. For all σ ∈ K1, we have σ ∈ K2 as well.

Often, subdivision is denoted by ≺. ♦

We now define sensible morphisms for our complexes.
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Definition B.19 (Simplicial Map). Let K,L be simplicial complexes, and let
f : |K| → |L|. Then we call f a simplicial map iff for all σ ∈ K, we have f(σ) ∈ L
(with the added condition that the vertices of σ must be mapped to the vertices of
f(σ)). ♦

Proposition B.5. A simplicial map is fully determined by where it sends
each of the vertices (0-simplices) of K.

Definition B.20 (Piecewise Linear). Let K,L be simplicial complexes. Then a
function f : |K| → |L| is said to be piecewise-linear (or PL) iff there exist subdivisions
K ′ ≺ K, L′ ≺ L such that f : K ′ → L′ is simplicial. ♦

Definition B.21 (PL Homeomorphism). Let K,L be simplicial complexes. Then
we say f : |K| → |L| is a PL homeomorphism iff there exist subdivisions K ′ ≺ K,
L′ ≺ L such that f bijective and simplicial. ♦

We collect some propositions.

Proposition B.6. Let K be a simplicial complex, and let A ⊆ |K| be
compact. Then there exists a finite subcomplex L < K such that A ⊆ |L|.

Proof. See Hatcher4, Appendix A, Proposition A.1. �

This gives us that knots are polygonal.

Corollary B.7. Let K : S1 ↪→ R3 be a PL embedding. Then K is polygonal.

Sketch. Note, K is continuous and S1 is compact, hence −→K
(
S1) is compact.

By Proposition B.6, it follows that −→K
(
S1) consists of a finite union of

polygonal segments. �

Hopefully this has given the reader a bit of a sense for the basics of PL
topology. For more, we encourage referencing the works listed in Chapter 6.

B.4 Some Examples of Rigorously-Constructing Am-
bient Isotopies

Rigorously constructing ambient isotopies can be tedious and unpleasant.
However, given that our focus is on trying to provide rigorous foundations
for working with topological ambient isotopies, we’ll include some notes on
this process below. As with the rest of the material in the appendix, this is
strictly optional.

4http://pi.math.cornell.edu/~hatcher/AT/ATapp.pdf

http://pi.math.cornell.edu/~hatcher/AT/ATapp.pdf


216 A Crash Course in PL Topology

Proposition B.8. Let 40 be an n-simplex, and let x0 ∈ 4◦0 be arbitrary.
Denote the barycenter of 40 by c0. Then there exists an ambient isotopy Cx0 :
[0, 1]×Rn → Rn such that Cx0 is identity outside of 4◦0 and Cx0(1, x0) = c0.

Proof. Let p ∈ 4◦0 be arbitrary. Then there exists a unique “anchor point”
ap ∈ ∂40 such that there exists sp ∈ [0, 1] such that p = sp ·x0 + (1− sp) · ap.
Note, this is equivalent to saying that ap, p, x0 are colinear and either p = ap,
p = x0, or p is strictly between ap and x0. These lines are drawn in light
orange in Fig. B.6.

Claim: Let x(t) = t·c0+(1−t)x0 (note, this is the straight-line homotopy
from x0 to c0). Then the desired ambient isotopy Cx0 is given by

Cx0(t, p) = sp · x(t) + (1− sp) · ap. (∀p ∈ 40)

See Fig. B.6 for an illustration.

Figure B.6 The desired ambient isotopy

Proof of Claim: First, we show (a) that the proposed Cx0 doesn’t send
points outside of 40, (b) that we have identity on the boundary, and (c) that
we indeed have an ambient isotopy.

1. We want to show Cx0 doesn’t send points outside of40. Note, x(t) ∈ 40
for all t. Also note that sp + (1− sp) = 1 always. Since ap ∈ 40 as well,
this shows Cx0 is a convex combination of points in 40. Since 40 is
convex, it follows that Cx0(t, p) ∈ 4 for all t ∈ [0, 1], p ∈ 40. 3

2. We want to show Cx0 is identity on the boundary. Note that if p ∈ ∂40,
then p = ap and hence sp = 0. It follows that Cx0(t, ·) is identity on
∂40. 3

3. To show that Cx0(t, x) is an ambient isotopy, we must demonstrate
that it is identity at t = 0, that the image of 40 at t = 1 is the desired
modified version, that Cx0(t, ·) is a homeomorphism for each t, and
finally, that Cx0 is continuous overall.

(i) The desired properties at t = 0, 1 follow immediately from the
definition.
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(ii) We want to show that Cx0(t, ·) is a homeomorphism for each t.
Hence, let t0 ∈ [0, 1] be arbitrary. Write x(t0) = x0 + δ(t0) (from
the definition of x(t) above, we have δ(t0) = t0(c0 − x0)). Now,
note that

Cx0(t0, p) = sp · (x0 + t0(c0 − x0)) + (1− sp)ap

=
(
spx0 + (1− sp)ap

)
+ spt0(c0 − x0)

= p+ spt0(c0 − x0).

Ok now the ε-δ part: Let ε > 0 be given. Through some fairly
unpleasant trig, one can find a δ0 > 0 such that q ∈ Bδ0(p) implies
the angle ∠px0q is arbitrarily small. Then one can then show that
the rays −→x0p and −→x0q intersect ∂40 at points that are arbitrarily
close. From this, we can constraint |sp − sq| < ε, and use this to
show continuity.
To see that Cx0(t0, ·) has a continuous inverse, observe that p
and Cx0(t0, p) have the same anchor point ap and displacement
parameter sp. Thus, define

C−1
x0 (t0, p) = spx(t0)− spt0(c0 − x0),

and note that this is indeed a well-defined inverse, and the same
continuity argument as above demonstrates that it is continuous.

(iii) One can then directly verify that Cx0 is continuous.

The second lemma is similar. We omit some of the details of the proof
since they are similar to that given above.

Proposition B.9. Let 40,41 be n-simplices that share an n−1 face, and let
c0, c1 be the barycenters of 40,41 respectively. Then there exists an ambient
isotopy S0,1 : [0, 1] × Rn → Rn such that S0,1 is fixed on Rn − (40 ∪ 41)◦,
and S0,1(1, c0) = c1.

Proof. The same proof as above works when40,41 are regular (see Fig. B.7).
However, when 40,41 are not regular, we have some additional things to
worry about. In particular, 40 ∪41 might not be convex, so we can’t just
do a “straight-line” ambient isotopy.
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Figure B.7 The desired isotopy when the simplices are regular

If 40 ∪41 is not convex, we must be a little more creative. In particular,
we see that the ambient isotopy above (Fig. B.7) isn’t actually the most
natural choice. Instead, consider the following (see Fig. B.8 for illustration):

1) Let — 0,1 = {u1 · · ·un} denote the shared n − 1 face of 40 and 41.
Let v0 and v1 be the vertices of 40 and 41 (respectively) such that
v0, v1 6∈— 0,1.

2) Then note: for all x0 ∈ 4◦0, there exists a unique y ∈— 0,1 such that
x0 is collinear with v0, y. Similarly for x1 ∈ 4◦1.

3) Now, for each y ∈— 0,1, we join these lines with the following parame-
terization:

Y (s) =

2s · y + (1− 2s) · v0 s ∈
[
0, 1

2

]
(2s− 1) · v1 + (2− 2s) · y s ∈

(
1
2 , 1
]

the two cases here are illustrated by the orange and blue lines in Fig. B.8.
Note that Y

(
1
2

)
= y.

4) Now we define our ambient isotopy S0,1. First, we need to look at the
kinked line Yc(s) the barycenters of 40,41 live on. The corresponding
s0, s1 will be necessary in defining S0,1.
Let’s do it. Let c0, c1 be the barycenters of 40,41 respectively. We
want to show they really do lie on the same Y . To that end, note
that the line through v0, c0 to — 0,1 and the line from v1, c1 to — 0,1
both end at the barycenter of — 0,1 (to verify this, write everything in
barycentric coordinates). Hence, the corresponding Y (denote it Yc)
satisfies c0, c1 ∈ Yc([0, 1]). Thus there exists s0, s1 such that Yc(s0) = c0,
and Yc(s1) = c1. In particular, one can show that s0 = 1

3 , s1 = 2
3

independent of the choice of 40,41.
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Now we can define S0,1 itself. To do so, we’ll introduce a fairly compli-
cated formula (which exposes more information about how we derived
the formula) and then show that it simplifies from a complete mess to
something very simple. Let x ∈ (40 ∪41)◦ be arbitrary. Write it as
Y (s0) for some Y as described above in step 3). We define S0,1 by

S0,1(t, x) = S0,1(t, Y (s)) =

Y (t[s1 − s0 + s] + [1− t]s) s ∈
[
0, 1

2

]
Y (some mystery function!) s ∈

[
1
2 , 1
]
,

where we leave the reader to puzzle out what the mystery function is.

It follows that S0,1 is the desired ambient isotopy.

Figure B.8 An example where 40 ∪ 41 is not convex (see Important
Note below).

Important Note: Not all of the dotted lines are drawn in the final
diagram, and I’ve removed the color-coding. I’m not terribly pleased with
this, but it was getting to be too troublesome to do all of the trig arithmetic
in TikZ to justify continuing onwards. The point is that one should imagine
extending the reasoning of the first two diagrams, and observe that the
barycenter gets where it needs to go. �

Corollary B.10. Let 40,41, . . . ,4k be n-simplices such that for each i =
0, . . . , k − 1, 4i and 4i+1 share an n − 1-face. Let x0 ∈ 40 and x1 ∈ 4k.
Then there exists an ambient isotopy Hx0,x1 : [0, 1]× Rn → Rn such that H
is fixed outside of

⋃k
i=04◦k, i.e.

H(t, x) = x whenever x ∈ Rn −
k⋃
i=0
4◦k,

and H(1, x0) = x1.
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Proof. Note, by Proposition B.8, there exists an ambient isotopy Cx0 : [0, 1]×
Rn → Rn that leaves Rn−4◦0 fixed, and takes x0 to the barycenter c0 of 40.

Now, by Proposition B.9, there exists a sequence of ambient isotopies S0,1,
S1,2, . . ., Sk−1,k taking the barycenter of 40 to that of 41, the barycenter
of 41 to 42, and so on. For each i ∈ {0, . . . , k − 2}, let fi(x) = Si,i+1(1, x)
It follows that S0,k defined by

S0,k =



S0,1(k · t, x) t ∈
[
0, 1

k

]
S1,2((k · t)− 1, f0(x)) t ∈

[
1
k ,

2
k

]
...
Si,i+1

(
(k · t)− i, i−1

j=1 fj(x)
)

t ∈
[
i
k ,

i+1
k

]
...
Sk−1,k

(
(k · t)− (k − 1), k−2

j=1 fj(x)
)

t ∈
[
k−1
k , 1

]
can be shown to be a valid ambient isotopy.5 �

5Just apply the gluing lemma.
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C.1 Solution to the Chessboard Problem

Solution. Claim: No.

Proof: Observe that there are 25 black squares and 24 white squares. Also
note that every legal move takes a knight to an opposite-color square. Hence
after moving all the knights, we’d have 25 on black and 24 on white, which
is a contradiction. 囧

C.2 Julia Code for the Countable Reidemeister I
Example

� �
using Plots
using Colors
plotlyjs()

# r1 is the big r for the circle this is based on.
#
# This function just computes the equation seen in our explicit
# parameterization of the countable reidemeister I knot. Note that
# this uses the form defined in terms of the matrix-vector equation,
# since we found it more tangible when prototyping.
function to_cartesian(θ; r1=3)

# This is the special "f(0)=0" case in our piecewise definition of
# our function.
if θ == 0

return [r1,0,0]
end
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# Compute the radius of the smaller circle
r2 = abs(θ)ˆ3
x = r1*cos(θ)
y = r1*sin(θ)

# The radial vector is orthogonal to the tangent vector, hence
# we can use it as one of the basis vectors for the orthogonal
# frame.
vperp = [x, y, 0]
vperp /= sqrt((xˆ2 + yˆ2)) # Normalize it

# Since the big circle lies in the xy-plane, the z direction is
# also always one of the basis vectors for the orthogonal plane.
zperp = [0,0,1]

scale=2*πˆ2
if θ > 0

v_to_transform = [r2*sin(scale/θ), r2*cos(scale/θ), 0.0]
else

v_to_transform = [r2*sin(-1*scale/θ), r2*cos(scale/θ), 0.0]
end

# Rotate into the orthogonal plane
R_mat = [zperp vperp [0.0; 0.0; 0.0]]
v_out = (R_mat * v_to_transform) + [x,y,0]
return v_out

end

step = .0001
θs = 0:step:π/2
θ2s = reverse(-1 .* θs)

xyz_vals = to_cartesian.(θs)
xyz_opp = to_cartesian.(θ2s) # The mirror image
append!(xyz_opp, xyz_vals)

xs = [p[1] for p in xyz_opp]
ys = [p[2] for p in xyz_opp]
zs = [p[3] for p in xyz_opp]

lcol= colorant"#D6D7D9"
bcol= colorant"#1D252C"

plot(camera=(60, 25), size=(1500,1000),
legend=false, background_color=bcol,
color = lcol)#, grid=false)#, axis=false, ticks=false)

plot!(xs, ys, zs, color=lcol, lw=.5)� �
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C.3 Combinatorial Representations

C.3.1 Cycle representations

Index Cycle representation Order

(3, 1) (−3,−2)(1, 2) 2
(4, 1) (−3,−2i, 4, 3, i,−i, 2i) 7
(5, 1) (−5,−4,−2,−3)(1, 2, 4, 3) 4
(5, 2) (−5,−4,−2,−3)(1, 2, 4) 12
(6, 1) (−2,−3i, 6i,−4i, 1, 2, 4i)(−6i, 3i,−5i, 5i) 28
(6, 2) (−6,−2i, 4i)(−5i, 5i,−4i, 3i)(−3i, 1, 2i) 12
(6, 3) (−6, 4i, 6)(−5, 5,−3i)(−1, 1,−2i,−4i)(2i, 3i) 12
(6, 4) (−6,−5)(−3,−2)(1, 2)(4, 5) 2
(6, 5) (−3,−2)(−5i,−4i)(5i, 6i)(1, 2) 2
(7, 1) (−7,−6,−4)(−5,−2,−3)(1, 2, 4)(3, 6, 5) 3
(7, 2) (−7i, 2i)(−6i, 4i,−4i, 5i)(−5i, 7i,−3i, 3i,−2i, i,−i, 6i) 8
(7, 3) (−7,−6,−4,−5,−2,−3)(1, 2, 4)(3, 6, 5) 6
(7, 4) (−7,−6,−2,−3,−5,−4)(1, 2, 4)(3, 6, 7, 5) 12
(7, 5) (−7i, 6i,−4i, 3i,−5i, 7i)(−6i, 5i)(−3i, i,−i, 2i)(−2i, 4i) 12
(7, 6) (−3,−5i, i,−i, 2i)(−7i, 7i,−2i, 4, 3, 6i,−6i, 5i) 40
(7, 7) (−6,−4)(−3,−2i, 4, 7, 6, 3, 5i,−5i, i,−i, 2i) 22
(8, 1) (−4,−5i, 8i,−6i, 3, i,−i, 2i,−3,−2i, 4, 6i)(−8i, 5i,−7i, 7i) 12
(8, 2) (−2, 3i, 5i, 2,−4i,−8i,−7i,−5i,−1, 1)(−6i,−3i)(4i, 7i)(6i, 8i) 10
(8, 3) (−4,−7i, 7i,−8i, 5i)(−3,−5i, 3, 6i,−2)(−6i, 1, 2, 4, 8i) 5
(8, 4) (−5,−8i, 8i,−7i, 6i,−4,−6i, 3, i,−i, 2, 4, 7i,−2,−3) 15
(8, 5) (−8,−4,−7)(−5,−2i, 4, 8, 5, i,−i, 2i,−3)(3, 6, 7) 9
(8, 6) (−2, 3i, 5i, 2,−4i,−8i,−5i,−1, 1)(−7i,−3i,−6i)(4i, 7i, 6i, 8i) 36
(8, 7) (−8,−7,−5)(−6,−2i, i,−i, 2i,−3i, 5, 4, 7, 6, 3i,−4) 12
(8, 8) (−8, 7,−1, 1,−2, 3,−6i,−3, 5i, 8)(−7, 2,−4i) 30
(8, 9) (−8,−6,−4i, 8, 7, 5, 3i,−5,−2i, 4i,−7)(−3i, 6, i,−i, 2i) 55
(8, 10) (−5,−7i, 7i,−6i, 8i,−8i, 5, 3, 1, 2, 4, 6i,−4,−2,−3) 15
(8, 11) (−2, 3i, 5i, 2,−4i,−8i,−7i,−3i,−6i,−5i,−1, 1)(4i, 7i)(6i, 8i) 12
(8, 12) (−3,−5i, 8i,−6i, 1, 2, 4, 3, 6i,−2)(−8i, 5i,−7i, 7i) 20
(8, 13) (−7, 4,−3, 5,−i,−2i,−4, 7)(−6, 2i, 3)(−5, 8i, 6,−8i) 24
(8, 14) (−2,−3i, 6i)(−8i, 3i,−5i, 8i)(−7i, 7i,−6i, 1, 2, 4i)(−4i, 5i) 12
(8, 15) (−8i,−5i,−6i,−i,−2i,−4i,−7i)(2i, 3i, 5i, 8i, 4i, 6i) 42
(8, 16) (−6, 8i, 6,−i,−2, 3)(−3, 5i, 4i, 2,−4i,−7i) 6
(8, 17) (−6,−8i, 8i,−7i, 3, 6, i,−i, 2i,−3,−5,−4,−2i, 4, 7i) 15
(8, 18) (−5,−4,−2i, 4, 7, 3i)(−8i, 5, 8i)(−6i, 1, 2i,−3i, 6i) 30
(8, 19) (−8,−7, 6,−5, 4,−6)(−4,−2,−3, 5, 7, 3, 1, 2) 24
(8, 20) (−4, 6i, 8i, 7i,−2i)(−3,−5i,−7i,−6i, 5i, 4)(2i, 3, 1) 30
(8, 21) (−6, 8i, 6, 7i,−2i,−4i, 1, 2i,−3i)(−7i, 3i, 5i, 4i) 36

Table C.1 Ng.int cycle presentations for knots up to 8 crossings
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Index Cycle representation Order

(3, 1) (3+
u , 2+

u )(1+
o , 2+

o ) 2
(4, 1) (3+

u , 2−u , 4+
o , 3+

o , 1−o , 1−u , 2−o ) 7
(5, 1) (5+

u , 4+
u , 2+

u , 3+
u )(1+

o , 2+
o , 4+

o , 3+
o ) 4

(5, 2) (5+
u , 4+

u , 2+
u , 3+

u )(1+
o , 2+

o , 4+
o ) 12

(6, 1) (2+
u , 3−u , 6−o , 4−u , 1+

o , 2+
o , 4−o )(6−u , 3−o , 5−u , 5−o ) 28

(6, 2) (6+
u , 2−u , 4−o )(5−u , 5−o , 4−u , 3−o )(3−u , 1+

o , 2−o ) 12
(6, 3) (6+

u , 4−o , 6+
o )(5+

u , 5+
o , 3−u )(1+

u , 1+
o , 2−u , 4−u )(2−o , 3−o ) 12

(6, 4) (6+
u , 5+

u )(3+
u , 2+

u )(1+
o , 2+

o )(4+
o , 5+

o ) 2
(6, 5) (3+

u , 2+
u )(5−u , 4−u )(5−o , 6−o )(1+

o , 2+
o ) 2

(7, 1) (7+
u , 6+

u , 4+
u )(5+

u , 2+
u , 3+

u )(1+
o , 2+

o , 4+
o )(3+

o , 6+
o , 5+

o ) 3
(7, 2) (7−u , 2−o )(6−u , 4−o , 4−u , 5−o )(5−u , 7−o , 3−u , 3−o , 2−u , 1−o , 1−u , 6−o ) 8
(7, 3) (7+

u , 6+
u , 4+

u , 5+
u , 2+

u , 3+
u )(1+

o , 2+
o , 4+

o )(3+
o , 6+

o , 5+
o ) 6

(7, 4) (7+
u , 6+

u , 2+
u , 3+

u , 5+
u , 4+

u )(1+
o , 2+

o , 4+
o )(3+

o , 6+
o , 7+

o , 5+
o ) 12

(7, 5) (7−u , 6−o , 4−u , 3−o , 5−u , 7−o )(6−u , 5−o )(3−u , 1−o , 1−u , 2−o )(2−u , 4−o ) 12
(7, 6) (3+

u , 5−u , 1−o , 1−u , 2−o )(7−u , 7−o , 2−u , 4+
o , 3+

o , 6−o , 6−u , 5−o ) 40
(7, 7) (6+

u , 4+
u )(3+

u , 2−u , 4+
o , 7+

o , 6+
o , 3+

o , 5−o , 5−u , 1−o , 1−u , 2−o ) 22
(8, 1) (4+

u , 5−u , 8−o , 6−u , 3+
o , 1−o , 1−u , 2−o , 3+

u , 2−u , 4+
o , 6−o )(8−u , 5−o , 7−u , 7−o ) 12

(8, 2) (2+
u , 3−o , 5−o , 2+

o , 4−u , 8−u , 7−u , 5−u , 1+
u , 1+

o )(6−u , 3−u )(4−o , 7−o )(6−o , 8−o ) 10
(8, 3) (4+

u , 7−u , 7−o , 8−u , 5−o )(3+
u , 5−u , 3+

o , 6−o , 2+
u )(6−u , 1+

o , 2+
o , 4+

o , 8−o ) 5
(8, 4) (5+

u , 8−u , 8−o , 7−u , 6−o , 4+
u , 6−u , 3+

o , 1−o , 1−u , 2+
o , 4+

o , 7−o , 2+
u , 3+

u ) 15
(8, 5) (8+

u , 4+
u , 7+

u )(5+
u , 2−u , 4+

o , 8+
o , 5+

o , 1−o , 1−u , 2−o , 3+
u )(3+

o , 6+
o , 7+

o ) 9
(8, 6) (2+

u , 3−o , 5−o , 2+
o , 4−u , 8−u , 5−u , 1+

u , 1+
o )(7−u , 3−u , 6−u )(4−o , 7−o , 6−o , 8−o ) 36

(8, 7) (8+
u , 7+

u , 5+
u )(6+

u , 2−u , 1−o , 1−u , 2−o , 3−u , 5+
o , 4+

o , 7+
o , 6+

o , 3−o , 4+
u ) 12

(8, 8) (8+
u , 7+

o , 1+
u , 1+

o , 2+
u , 3+

o , 6−u , 3+
u , 5−o , 8+

o )(7+
u , 2+

o , 4−u ) 30
(8, 9) (8+

u , 6+
u , 4−u , 8+

o , 7+
o , 5+

o , 3−o , 5+
u , 2−u , 4−o , 7+

u )(3−u , 6+
o , 1−o , 1−u , 2−o ) 55

(8, 10) (5+
u , 7−u , 7−o , 6−u , 8−o , 8−u , 5+

o , 3+
o , 1+

o , 2+
o , 4+

o , 6−o , 4+
u , 2+

u , 3+
u ) 15

(8, 11) (2+
u , 3−o , 5−o , 2+

o , 4−u , 8−u , 7−u , 3−u , 6−u , 5−u , 1+
u , 1+

o )(4−o , 7−o )(6−o , 8−o ) 12
(8, 12) (3+

u , 5−u , 8−o , 6−u , 1+
o , 2+

o , 4+
o , 3+

o , 6−o , 2+
u )(8−u , 5−o , 7−u , 7−o ) 20

(8, 13) (7+
u , 4+

o , 3+
u , 5+

o , 1−u , 2−u , 4+
u , 7+

o )(6+
u , 2−o , 3+

o )(5+
u , 8−o , 6+

o , 8−u ) 24
(8, 14) (2+

u , 3−u , 6−o )(8−u , 3−o , 5−u , 8−o )(7−u , 7−o , 6−u , 1+
o , 2+

o , 4−o )(4−u , 5−o ) 12
(8, 15) (8−u , 5−u , 6−u , 1−u , 2−u , 4−u , 7−u )(2−o , 3−o , 5−o , 8−o , 4−o , 6−o ) 42
(8, 16) (6+

u , 8−o , 6+
o , 1−u , 2+

u , 3+
o )(3+

u , 5−o , 4−o , 2+
o , 4−u , 7−u ) 6

(8, 17) (6+
u , 8−u , 8−o , 7−u , 3+

o , 6+
o , 1−o , 1−u , 2−o , 3+

u , 5+
u , 4+

u , 2−u , 4+
o , 7−o ) 15

(8, 18) (5+
u , 4+

u , 2−u , 4+
o , 7+

o , 3−o )(8−u , 5+
o , 8−o )(6−u , 1+

o , 2−o , 3−u , 6−o ) 30
(8, 19) (8+

u , 7+
u , 6+

o , 5+
u , 4+

o , 6+
u )(4+

u , 2+
u , 3+

u , 5+
o , 7+

o , 3+
o , 1+

o , 2+
o ) 24

(8, 20) (4+
u , 6−o , 8−o , 7−o , 2−u )(3+

u , 5−u , 7−u , 6−u , 5−o , 4+
o )(2−o , 3+

o , 1+
o ) 30

(8, 21) (6+
u , 8−o , 6+

o , 7−o , 2−u , 4−u , 1+
o , 2−o , 3−u )(7−u , 3−o , 5−o , 4−o ) 36

Table C.2 Nstr cycle presentations for knots up to 8 crossings

C.3.2 Multiplication Tables
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(3, 1) 0 5 5 3 7 8 8 3 3 7 10 7 7 10 9 8 9 7 8 9 10 7 11 8 11 8 7 8 10 9 11 9 10 10 8 9 10
(4, 1) 6 4 7 7 10 4 9 8 9 9 8 9 9 5 7 6 8 12 10 7 8 12 6 11 6 10 12 10 8 12 10 10 8 8 10 9 9
(5, 1) 3 5 5 3 9 10 7 3 6 6 12 6 7 12 9 9 10 9 9 9 10 9 11 10 12 8 9 9 9 11 13 11 9 9 8 9 12
(5, 2) 3 5 4 3 8 10 7 3 6 7 12 7 7 12 9 9 10 11 9 9 10 11 11 10 12 6 11 9 9 11 13 11 9 8 7 9 12
(6, 1) 4 10 7 9 6 8 6 7 4 9 9 9 11 9 11 12 12 8 8 12 14 8 11 9 12 11 8 9 14 7 10 11 14 11 12 11 10
(6, 2) 8 9 9 9 8 3 7 9 9 11 9 11 11 9 9 8 12 10 8 14 12 10 11 8 10 12 10 12 12 9 9 11 12 10 11 10 7
(6, 3) 8 9 9 9 6 2 6 9 9 10 9 10 10 7 10 11 9 9 13 13 11 9 7 10 9 10 9 13 9 10 10 7 11 8 11 12 9
(6, 4) 3 7 6 3 10 10 7 0 6 7 13 7 7 13 11 9 11 10 10 10 10 10 11 7 12 9 10 10 9 12 14 7 10 11 8 11 8
(6, 5) 3 8 8 6 7 9 10 6 0 4 9 4 6 10 10 8 8 6 7 5 13 6 14 8 13 8 6 9 13 9 10 10 7 12 11 10 11
(7, 1) 5 7 7 5 10 11 10 3 2 7 14 7 7 14 11 8 12 11 11 11 10 11 10 10 12 10 11 11 7 13 13 10 10 10 8 11 13
(7, 2) 10 5 12 12 9 9 7 13 8 14 3 14 14 6 5 9 7 10 10 12 11 10 11 12 11 13 10 11 11 9 5 11 8 12 11 11 10
(7, 3) 5 7 7 5 10 11 7 3 2 6 14 6 7 14 11 8 12 11 11 11 10 11 11 11 12 10 11 11 7 13 13 10 11 11 5 11 13
(7, 4) 5 7 6 3 10 11 10 4 5 7 14 7 7 14 11 8 12 13 10 11 10 13 10 10 12 9 13 11 7 13 15 12 10 8 3 11 13
(7, 5) 10 6 12 12 9 9 10 13 10 14 6 14 14 5 4 5 4 10 8 10 11 10 12 12 11 13 9 11 9 10 4 8 5 12 15 11 8
(7, 6) 9 7 10 10 11 8 10 11 9 12 9 12 12 7 6 9 8 12 6 8 11 12 10 10 11 11 12 5 11 7 8 11 10 8 13 8 7
(7, 7) 9 7 10 10 12 7 11 10 11 9 11 8 8 7 7 5 10 10 12 5 9 10 8 11 7 13 10 12 9 14 12 11 10 10 11 10 9
(8, 1) 10 8 11 11 12 7 9 12 10 11 8 11 11 5 7 9 8 12 10 8 10 12 10 9 10 11 12 10 11 5 10 11 8 10 14 9 10
(8, 2) 7 12 11 11 8 8 9 11 5 13 10 13 13 9 12 9 12 7 9 11 16 8 6 9 14 10 7 10 15 7 9 11 14 10 14 11 7
(8, 3) 6 8 9 7 10 12 11 8 6 11 12 11 11 12 9 11 9 8 8 10 12 8 15 6 16 9 7 8 12 10 12 11 10 12 12 8 12
(8, 4) 8 6 9 8 12 14 13 9 8 9 12 9 9 10 6 6 5 10 4 8 8 10 7 13 12 9 10 6 10 12 12 11 5 11 9 10 12
(8, 5) 10 8 10 10 14 10 11 8 13 10 12 10 10 11 11 9 12 16 13 9 8 16 5 13 6 13 16 14 8 16 12 13 9 5 10 12 12
(8, 6) 5 12 11 11 8 8 9 11 4 13 10 13 13 9 12 9 12 8 9 11 16 8 6 9 12 10 8 10 15 7 9 11 14 9 14 11 9
(8, 7) 11 7 11 11 13 6 10 9 14 11 12 11 11 11 10 8 10 11 15 9 7 9 7 11 7 14 9 15 9 15 12 12 8 11 11 14 10
(8, 8) 6 11 10 9 9 7 10 3 5 11 12 11 11 10 10 10 9 9 5 13 13 9 14 7 13 8 8 7 12 7 13 12 15 11 11 11 10
(8, 9) 11 8 12 12 8 10 9 11 13 12 11 11 11 11 11 8 12 14 16 12 6 14 6 12 8 15 14 16 10 14 11 13 10 11 10 11 10

(8, 10) 7 8 8 8 11 13 8 8 6 9 13 8 9 13 10 11 8 11 7 9 11 11 14 8 15 7 11 7 11 11 13 12 8 10 11 9 11
(8, 11) 7 12 11 11 8 8 9 11 5 13 10 13 13 9 12 9 12 8 9 11 16 8 5 9 12 10 8 10 15 6 9 11 14 9 14 10 9
(8, 12) 7 8 9 9 10 12 11 9 7 11 12 11 11 12 9 11 9 10 8 10 14 10 15 6 16 9 10 8 12 10 12 11 10 12 12 8 12
(8, 13) 10 8 10 10 14 12 11 8 13 10 7 9 9 9 11 8 11 15 13 7 8 15 9 14 9 12 15 13 7 15 13 12 9 10 10 11 13
(8, 14) 7 12 11 11 8 10 5 10 7 13 10 13 13 9 11 14 11 8 8 12 16 7 15 6 12 11 8 9 15 8 8 11 4 11 14 11 10
(8, 15) 11 10 13 13 9 10 11 14 10 13 7 13 15 8 8 9 9 8 12 11 12 9 6 13 9 11 8 12 13 8 7 11 12 11 16 11 10
(8, 16) 8 10 11 10 9 9 12 7 8 9 5 10 12 8 11 11 11 9 9 9 13 7 12 12 13 11 9 11 12 9 9 8 11 15 13 10 10
(8, 17) 10 8 10 10 14 10 11 8 11 11 12 11 11 10 10 10 10 14 12 8 9 14 9 13 10 11 14 12 4 14 12 11 8 10 12 11 10
(8, 18) 10 10 10 10 11 11 8 11 12 10 8 11 11 11 12 11 9 10 8 12 12 10 10 10 12 8 10 8 6 10 12 15 12 7 12 9 12
(8, 19) 7 9 8 8 12 10 10 3 10 7 11 7 7 15 11 10 13 14 10 8 5 14 4 11 12 11 14 9 10 14 16 13 7 12 8 13 14
(8, 20) 9 9 10 10 11 10 5 11 8 12 11 10 12 11 7 9 9 11 8 11 13 11 14 6 11 10 11 8 12 11 11 12 8 10 13 7 10
(8, 21) 10 11 12 12 7 8 9 9 10 12 8 12 13 8 12 7 12 10 12 12 14 10 8 13 12 13 10 12 13 9 9 11 12 12 14 10 8

Table C.3 Multiplication table giving the lengths of all of the product knots in Reidemeister I/II reduced form
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Figure C.1 Heatmap for the multiplication table. Observe that the table is not symmetric.



228
M
isc

0

10

20

30

40

50

60

Figure C.2 Log-scale heatmap showing the order of the group generated by pairs of our knot cycles. This one is
symmetric.
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